Science.gov

Sample records for 2-step phase-shifting digital

  1. Geometric phase shifting digital holography.

    PubMed

    Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

    2016-06-01

    A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method. PMID:27244436

  2. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  3. One-exposure phase-shifting digital holography based on the self-imaging effect

    NASA Astrophysics Data System (ADS)

    Siemion, Agnieszka; Sypek, Maciej; Makowski, Michał; Suszek, Jaroslaw; Siemion, Andrzej; Wojnowski, Dariusz; Kolodziejczyk, Andrzej

    2010-05-01

    A diffractive optical element with self-imaging capabilities is used to make a phase-shifting digital holography optical system simpler and cheaper. Sequential phase-shifting requires multiple exposures, and parallel phase-shifting demands a more complicated optical system. As opposed to typical phase-shifting methods, using the self-imaging diffractive optical element requires only one exposure on a low-cost CMOS matrix, and due to the small number of needed elements, the optical system is very compact. Instead of the approximation and interpolation methods, the properties of the self-imaging effect are utilized in the recording process and in the numerical reconstruction process.

  4. A phase-shifting in-line digital holography of pre-magnification on imaging research

    NASA Astrophysics Data System (ADS)

    Lin, Qiaowen; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie; Panezai, Spozmai

    2013-12-01

    A phase shifting digital holography with pre-magnification is designed. In order to fully utilize the bandwidth of the camera, a four-step phase-shifting digital holography is adopted to retrieve the complex distribution of the object. To further enhance the resolution of the reconstructed image without phase aberration, two microscope objectives (MOs) are placed in front of the object and the reference mirror. The MO in the reference arm provides parallel beam at the PZT plane thus improve the precision of the phase shifting. A 1951 USAF negative resolution target is used as the sample. Experiment result demonstrates the feasibility of the proposed method.

  5. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  6. A novel method for identifying the order of interference using phase-shifting digital holography.

    PubMed

    Sokkar, T Z N; El-Farahaty, K A; Ramadan, W A; Wahba, H H; Raslan, M I; Hamza, A A

    2016-04-01

    In this paper, we introduced a mathematical method for measuring the optical path length differences (OPDs), which is suitable for large OPD values where the fringes connections are difficult to detect. The proposed method is based on varying the width of the fringes, without changing the wavelength of the used coherent source. Also, in this work, we discussed the need for such method in off-axis phase-shifting digital holography. Low-resolution off-axis holograms failed to detect the correct interference order. In general, off-axis phase-shifting digital holography is limited by the resolution of the captured holograms. The results obtained using our proposed technique were compared to the results obtained using off-axis phase-shifting digital holograms and conventional two-beam interferometry. Holograms were given for illustration. PMID:26588671

  7. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.

    PubMed

    Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon

    2016-05-01

    We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed. PMID:27137562

  8. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  9. Image authentication via sparsity-based phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-03-01

    Digital holography has been widely studied in recent years, and a number of applications have been demonstrated. In this paper, we demonstrate that sparsity-based phase-shifting digital holography can be applied for image authentication. In phase-shifting digital holography, the holograms are sequentially recorded. Only small parts of each hologram are available for numerical reconstruction. It is found that nonlinear correlation algorithm can be applied to simply authenticate the reconstructed object. The results illustrate that the recovered image can be correctly verified. In the developed system, the recorded holograms are highly compressed which can facilitate data storage or transmission, and one simple authentication strategy has been established instead of applying relatively complex algorithms (such as compressive sensing) to recover the object.

  10. Self-imaging phase mask used in digital holography with phase-shifting

    NASA Astrophysics Data System (ADS)

    Fajst, Agnieszka; Sypek, Maciej; Makowski, Michal; Suszek, Jaroslaw; Kolodziejczyk, Andrzej

    2008-12-01

    The digital reconstruction of an optically recorded hologram has become a fast developing method and has found a vast practical application in many branches of science and industry. An especially invented diffractive optical element with self imaging properties is placed in the reference beam. In the recording process this element forms its self-image in the hologram plane. Self-imaging properties of the diffractive optical element provide the possibility of recording a digital hologram by means of the phase-shifting without any additional imaging components. The innovation of the proposed method lies in using a self-imaging diffractive optical element which enables a significant simplification of a spatial phase shifting optical setup used to record the digital hologram with only a small decrease of the quality of the reconstructed image.

  11. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  12. Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Yen, Tzu-Ping

    2016-05-01

    A digital multi-step phase-shifting profilometry for three-dimensional (3-D) ballscrew surface imaging is presented. The 3-D digital imaging system is capable of capturing fringe pattern images. The straight fringe patterns generated by software in the computer are projected onto the ballscrew surface by the DLP projector. The distorted fringe patterns are captured by the CCD camera at different detecting directions for reconstruction algorithms. The seven-step phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase at each pixel position. The 3-D calibration method is used to obtain the relationship between the absolute phase map and ballscrew shape. The angular dependence of 3-D shape imaging for ballscrews is analyzed and characterized. The experimental results may provide a novel, fast, and high accuracy imaging system to inspect the surface features of the ballscrew without length limitation for automated optical inspection industry.

  13. High-speed parallel phase-shifting digital holography system using special-purpose computer for image reconstruction

    NASA Astrophysics Data System (ADS)

    Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-05-01

    We report a high-speed parallel phase-shifting digital holography system using a special-purpose computer for image reconstruction. Parallel phase-shifting digital holography is a technique capable of single-shot phase-shifting interferometry. This technique records information of multiple phase-shifted holograms required for calculation of phase-shifting interferometry with a single shot by using space-division multiplexing. This technique needs image-reconstruction process for a huge amount of recorded holograms. In particular, it takes a long time to calculate light propagation based on fast Fourier transform in the process and to obtain a motion picture of a dynamically and fast moving object. Then we designed a special-purpose computer for accelerating the image-reconstruction process of parallel phase-shifting digital holography. We developed a special-purpose computer consisting of VC707 evaluation kit (Xilinx Inc.) which is a field programmable gate array board. We also recorded holograms consisting of 128 × 128 pixels at a frame rate of 180,000 frames per second by the constructed parallel phase-shifting digital holography system. By applying the developed computer to the recorded holograms, we confirmed that the designed computer can accelerate the calculation of image-reconstruction process of parallel phase-shifting digital holography ~50 times faster than a CPU.

  14. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Quan, C.; Zhu, R.; Tay, C. J.

    2012-08-01

    Digital sinusoidal phase-shifting fringe projection profilometry (DSPFPP) is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. However, a highly accurate profile is often hindered by nonlinear response, color crosstalk and imbalance of a pair of digital projector and CCD/CMOS camera. In this paper, several phase error correction methods, such as Look-Up-Table (LUT) compensation, intensity correction, gamma correction, LUT-based hybrid method and blind phase error suppression for gray and color-encoded DSPFPP are described. Experimental results are also demonstrated to evaluate the effectiveness of each method.

  15. An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance

    NASA Astrophysics Data System (ADS)

    Hua, Li-Li; Xu, Ning; Yang, Geng

    2014-06-01

    In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness.

  16. Monitoring and evaluation of drying of paint by using phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Yokota, Masayuki

    2010-01-01

    We propose a novel method for monitoring the drying process of a painted surface by using phase-shifting digital holography. In comparison with previous methods using speckle patterns, the proposed method can afford an intensity image for directly monitoring and local variations of drying without an imaging lens. It can also be used for surfaces of complex shapes. In addition, quantitative analysis utilizing a cross-correlation function and phase change derived from the reconstructed complex amplitude is performed and the drying time of paint for different areas and temperature is evaluated. The technique is also applied to monitoring the drying process of a complex surface of a lightbulb.

  17. A study on the digital nano-moiré method and its phase shifting technique

    NASA Astrophysics Data System (ADS)

    Xie, Huimin; Liu, Zhanwei; Fang, Daining; Dai, Fulong; Gao, Hongjun; Zhao, Yapu

    2004-09-01

    A novel digital nano-moiré method is proposed to measure the in-plane nanoscopic deformation of an object. In the measurement, the periodic lattice of a single-crystal material acts as a specimen grating while a digital reference grating (DRG) is prepared by computer software. These two gratings overlap to generate a moiré fringe pattern. The preparation of the grating, the formation principle of digital nano-moiré fringes and its relative phase shifting technique are described in detail. A typical experiment was conducted with a highly oriented pyrolytic graphite (HOPG) sample. The residual deformation of the irradiated HOPG sample was measured using this method. The experiment result verifies the feasibility of this method, and demonstrates the potential for further applications.

  18. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy.

    PubMed

    Trujillo, Carlos; Doblas, Ana; Saavedra, Genaro; Martínez-Corral, Manuel; García-Sucerquia, Jorge

    2016-04-01

    The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device. PMID:27192250

  19. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography.

    PubMed

    Lee, Yonghee; Ito, Yasunori; Tahara, Tatsuki; Inoue, Junichi; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Matoba, Osamu

    2014-04-15

    We propose a single-shot phase-unwrapping method using two wavelengths in parallel phase-shifting digital holography (PPSDH). The proposed method enables one to solve the phase ambiguity problem in PPSDH. We conducted an experiment of the proposed method using two lasers whose wavelengths are 473 and 532 nm. An object having about 1.9 μm step, which is 7.1 times larger than the half wavelength of one of the lasers (266 nm), was fabricated by using vapor deposition of aluminum. Single-shot measurement of the height of the object was successfully demonstrated, and the validity of the proposed method was verified. PMID:24978996

  20. Superresolution imaging method using phase-shifting digital lensless Fourier holography.

    PubMed

    Granero, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier

    2009-08-17

    A method which is useful for obtaining superresolved imaging in a digital lensless Fourier holographic configuration is presented. By placing a diffraction grating between the input object and the CCD recording device, additional high-order spatial-frequency content of the object spectrum is directed towards the CCD. Unlike other similar methods, the recovery of the different band pass images is performed by inserting a reference beam in on-axis mode and using phase-shifting method. This strategy provides advantages concerning the usage of the whole frequency plane as imaging plane. Thus, the method is no longer limited by the zero order term and the twin image. Finally, the whole process results in a synthetic aperture generation that expands up the system cutoff frequency and yields a superresolution effect. Experimental results validate our concepts for a resolution improvement factor of 3. PMID:19687979

  1. Phase correction method for least-squares wavefront calculation in statistical generalized phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobukazu; Kajihara, Kazuki

    2015-09-01

    When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.

  2. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  3. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  4. Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer.

    PubMed

    Saif, Babak; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Eegholm, Bente Hoffmann; Blake, Peter; Keski-Kuha, Ritva; Feinberg, Lee; Arenberg, Jonathan W

    2008-02-20

    The James Webb Space Telescope (JWST) Backplane Stability Test Article (BSTA) was developed to demonstrate large precision cryogenic structures' technology readiness for use in the JWST. The thermal stability of the BSTA was measured at cryogenic temperatures at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF) and included nearly continuous measurements over a six-week period in the summer of 2006 covering the temperature range from ambient down to 30 Kusing a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI). The BSTA is a full size, one-sixth section of the JWST primary mirror backplane assembly (PMBA). The BSTA, measuring almost 3 m across, contains most of the prominent structural elements of the backplane and is to our knowledge the largest structure ever measured with SPS-DSPI at cryogenic conditions. The SPS-DSPI measured rigid body motion and deformations of BSTA to nanometer-level accuracy. The SPS-DSPI was developed specifically for the purposes of this test and other tests of large cryogenic structures for JWST. PMID:18288221

  5. Phase-shifting of correlation fringes created by image processing as an alternative to improve digital shearography

    NASA Astrophysics Data System (ADS)

    Braga, Roberto A.; González-Peña, Rolando J.; Marcon, Marlon; Magalhães, Ricardo R.; Paiva-Almeida, Thiago; Santos, Igor V. A.; Martins, Moisés

    2016-12-01

    The adoption of digital speckle pattern shearing interferometry, or speckle shearography, is well known in many areas when one needs to measure micro-displacements in-plane and out of the plane in biological and non-biological objects; it is based on the Michelson's Interferometer with the use of a piezoelectric transducer (PZT) in order to provide the phase-shift of the fringes and then to improve the quality of the final image. The creation of the shifting images using a PZT, despite its widespread use, has some drawbacks or limitations, such as the cost of the apparatus, the difficulties in applying the same displacement in the mirror repeated times, and when the phase-shift cannot be used in dynamic object measurement. The aim of this work was to create digitally phase-shift images avoiding the mechanical adjustments of the PZT, testing them with the digital shearography method. The methodology was tested using a well-known object, a cantilever beam of aluminium under deformation. The results documented the ability to create the deformation map and curves with reliability and sensitivity, reducing the cost, and improving the robustness and also the accessibility of digital speckle pattern shearing interferometry.

  6. Detection and correction of wavefront errors caused by slight reference tilt in two-step phase-shifting digital holography.

    PubMed

    Xu, Xianfeng; Cai, Luzhong; Gao, Fei; Jia, Yulei; Zhang, Hui

    2015-11-10

    A simple and convenient method, without the need for any additional optical devices and measurements, is suggested to improve the quality of the reconstructed object wavefront in two-step phase-shifting digital holography by decreasing the errors caused by reference beam tilt, which often occurs in practice and subsequently introduces phase distortion in the reconstructed wave. The effects of reference beam tilt in two-step generalized interferometry is analyzed theoretically, showing that this tilt incurs no error either on the extracted phase shift or on the retrieved real object wave amplitude on the recording plane, but causes great deformation of the recovered object wavefront. A corresponding error detection and correction approach is proposed, and the formulas to calculate the tilt angle and correct the wavefront are deduced. A series of computer simulations to find and remove the wavefront errors caused by reference beam tilt demonstrate the effectiveness of this method. PMID:26560791

  7. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells. PMID:19277078

  8. Dynamic phase-shifting photoelasticity.

    PubMed

    Asundi, A; Tong, L; Boay, C G

    2001-08-01

    The application of phase-shifting photoelasticity to a real-time dynamic event involves simultaneous recording of the four phase-shifted images. Here an instrument, believed to be novel, is developed and described for this purpose. Use of a Multispec Imager is introduced into digital photoelasticity for the first time to our knowledge. This device enables splitting the optical energy of an object into four identical paths, thus permitting recording of the required four phase-shifted images. Experimental demonstration is provided for validation. PMID:18360395

  9. Parallel-mode scanning optical sectioning using digital Fresnel holography with three-wave interference phase-shifting.

    PubMed

    Kelner, Roy; Rosen, Joseph

    2016-02-01

    The Fresnel incoherent correlation holography (FINCH) method is applicable to various techniques of imaging, including fluorescence microscopy. Recently, a FINCH configuration capable of optical sectioning, using a scanning phase pinhole, has been suggested [Optica 1, 70 (2014)]. This capability is highly important in situations that demand the suppression of out-of-focus information from the hologram reconstruction of a specific plane of interest, such as the imaging of thick samples in biology. In this study, parallel-mode scanning using multiple phase pinholes is suggested as a means to shorten the acquisition time in an optical sectioning FINCH configuration. The parallel-mode scanning is enabled through a phase-shifting procedure that extracts the mixed term of two out of three interfering beams. PMID:26906796

  10. In-line phase shift tomosynthesis

    SciTech Connect

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F.

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS with a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.

  11. Application of Phase Shifting Projection Moire on Solid Regular Figures and Plant Organs Three Dimensional Digital Model Generation

    NASA Astrophysics Data System (ADS)

    Lino, A. C. L.; Dal Fabbro, I. M.

    2008-04-01

    The conception of a tridimensional digital model of solid figures and plant organs started from topographic survey of virtual surfaces [1], followed by topographic survey of solid figures [2], fruit surface survey [3] and finally the generation of a 3D digital model [4] as presented by [1]. In this research work, i.e. step number [4] tested objects included cylinders, cubes, spheres and fruits. A Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface. Projected grid was named Gd. The difference between Gd and G1 followed by filtration generated de moiré fringes M1 and so on, obtaining the fringes M2, M3 and M4 from Gd. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Tested object was placed on a goniometer and rotate to generate four surfaces topography. These four surveyed surfaces were assembled by means of a SCILAB software, obtaining a three column matrix, corresponding to the object coordinates xi, also having elevation values and coordinates corrected as well. The work includes conclusions on the reliability of the proposed method as well as the setup simplicity and of low cost.

  12. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  13. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  14. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  15. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  16. Improved phase-shift-keyed detector

    NASA Technical Reports Server (NTRS)

    Chandler, J.

    1969-01-01

    Improved phase-shift-keyed detector contains an active filter circuit which uses an operational amplifier and resistor-capacitor network. The detector is used in the Saturn space vehicle and Apollo telescope mount command systems to translate an analog signal from the command receiver into digital information for the command decoder.

  17. Multicolor Holography With Phase Shifting

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  18. Differential phase shift keyed signal resolver

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.; Wallingford, W. M. (Inventor)

    1974-01-01

    A differential phase shift keyed signal resolver resolves the differential phase shift in the incoming signal to determine the data content thereof overcoming phase uncertainty without requiring a transmitted reference signal.

  19. A novel phase shifting structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Veena; Dubey, Vishesh; Ahmad, Azeem; Singh, Gyanendra; Mehta, D. S.

    2016-03-01

    This paper describes a new and novel phase shifting technique for qualitative as well as quantitative measurement in microscopy. We have developed a phase shifting device which is robust, inexpensive and involves no mechanical movement. In this method, phase shifting is implemented using LED array, beam splitters and defocused projection of Ronchi grating. The light from the LEDs are made incident on the beam splitters at spatially different locations. Due to variation in the geometrical distances of LEDs from the Ronchi grating and by sequentially illuminating the grating by switching on one LED at a time the phase shifted grating patterns are generated. The phase shifted structured patterns are projected onto the sample using microscopic objective lens. The phase shifted deformed patterns are recorded by a CCD camera. The initial alignment of the setup involves a simple procedure for the calibration for equal fringe width and intensity such that the phase shifted fringes are at equal phase difference. Three frame phase shifting algorithm is employed for the reconstruction of the phase map. The method described here is fully automated so that the phase shifted images are recorded just by switching of LEDs and has been used for the shape measurement of microscopic industrial objects. The analysis of the phase shifted images provides qualitative as well as quantitative information about the sample. Thus, the method is simple, robust and low cost compared to PZT devices commonly employed for phase shifting.

  20. Improving the accuracy of phase-shifting techniques

    NASA Astrophysics Data System (ADS)

    Cruz-Santos, William; López-García, Lourdes; Redondo-Galvan, Arturo

    2015-05-01

    The traditional phase-shifting profilometry technique is based on the projection of digital interference patterns and computation of the absolute phase map. Recently, a method was proposed that used phase interpolation to the corner detection, at subpixel accuracy in the projector image for improving the camera-projector calibration. We propose a general strategy to improve the accuracy in the search for correspondence that can be used to obtain high precision three-dimensional reconstruction. Experimental results show that our strategy can outperform the precision of the phase-shifting method.

  1. Enhanced two-frequency phase-shifting method.

    PubMed

    Hyun, Jae-Sang; Zhang, Song

    2016-06-01

    One of the major challenges of employing a two-frequency (or two-wavelength) phase-shifting algorithm for absolute three-dimensional shape measurement is its sensitivity to noise. Therefore, three- or more-frequency phase-shifting algorithms are often used in lieu of a two-frequency phase-shifting algorithm for applications where the noise is severe. This paper proposes a method to use geometric constraints of digital fringe projection system to substantially reduce the noise impact by allowing the use of more than one period of equivalent phase map for temporal phase unwrapping. Experiments successfully verified the enhanced performance of the proposed method without increasing the number of patterns. PMID:27411193

  2. Four-phase differential phase shift resolver

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.; Wallingford, W. M.

    1973-01-01

    Two systems have been developed to resolve phase uncertainty without transmitting reference signals. In both methods signal is impressed on carrier as differential, rather than absolute, phase shift. At the receiver four-phase demodulation and logic process unambiguously resolves differential phase shift of input carrier.

  3. Removal of complex-conjugate ambiguity in SDOCT by using phase shiftings

    NASA Astrophysics Data System (ADS)

    Cai, Wenyuan; Jiang, Zhuqing; Huang, Haochong

    2012-12-01

    The three-step or many steps phase shifting method is usually employed to resolve the complex-conjugate ambiguity in Spectral-domain optical coherence tomography (SD-OCT). However it reduces the image quality and also the imaging speed is slow. In this paper two steps phase-shifting is used in digital image processing to resolve the complex-conjugate ambiguity and improves the quality of reconstructed image in SD-OCT. In the two-step phase shifting method the phase shifting operation is used only once which simplified the experiment and also the effect of relative error in SD-OCT on image quality is eliminated.

  4. Deterministic convergence in iterative phase shifting

    SciTech Connect

    Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel

    2009-03-10

    Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.

  5. Tracking a phase-shift-keyed signal

    NASA Technical Reports Server (NTRS)

    Villarreal, S.; Lenett, S. D.; Kobayashi, H. S.; Pawlowski, J. F.

    1977-01-01

    In detector, phase shifter is used to generate negative phase shift opposing detected phase angle. This produces converted series sideband and component carrier, with residual carrier signal and converted series sideband and component carrier added together to produce tracking signal.

  6. Energy phase shift as mechanism for catalysis

    NASA Astrophysics Data System (ADS)

    Beke-Somfai, Tamás; Feng, Bobo; Nordén, Bengt

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal 'energy recycling', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex.

  7. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  8. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  9. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  10. Two-wavelength phase shift interferometry to characterize ballistic features

    NASA Astrophysics Data System (ADS)

    Pagano, Glenn W.; Mann, Christopher J.

    2014-05-01

    We apply two-wavelength phase shifting interferometry to generate 3D surface profile maps of spent bullet cartridge cases. From the captured interferograms, an optimized algorithm was used to calculate a phase profile from which a precise digital surface map of the cartridge casing may be produced. This 3D surface profile is used to enhance a firearms examiner's ability to uniquely identify distinct features or toolmarks imprinted on the casing when the weapon is fired. These features play a key role in the matching process of ballistic forensic examination.

  11. Transitional Bubble in Periodic Flow Phase Shift

    NASA Technical Reports Server (NTRS)

    Talan, M.; Hourmouziadis, Jean

    2004-01-01

    One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point

  12. Confocal simultaneous phase-shifting interferometry

    SciTech Connect

    Zhao Chenguang; Tan Jiubin; Tang Jianbo; Liu Tao; Liu Jian

    2011-02-10

    In order to implement the ultraprecise measurement with large range and long working distance in confocal microscopy, confocal simultaneous phase-shifting interferometry (C-SPSI) has been presented. Four channel interference signals, with {pi}/2 phase shift between each other, are detected simultaneously in C-SPSI. The actual surface height is then calculated by combining the optical sectioning with the phase unwrapping in the main cycle of the interference phase response, and the main cycle is determined using the bipolar property of differential confocal microscopy. Experimental results showed that 1 nm of axial depth resolution was achieved for either low- or high-NA objective lenses. The reflectivity disturbance resistibility of C-SPSI was demonstrated by imaging a typical microcircuit specimen. C-SPSI breaks through the restriction of low NA on the axial depth resolution of confocal microscopy effectively.

  13. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.

    2011-01-01

    The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.

  14. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene

    2011-01-01

    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument

  15. Photonic downconversion with tunable wideband phase shift.

    PubMed

    Jiang, Tianwei; Yu, Song; Wu, Ruihuan; Wang, Dongsheng; Gu, Wanyi

    2016-06-01

    A microwave photonic frequency downconversion system with wideband and continuous phase-shift function is proposed and experimentally demonstrated. In the proposed system, a radio frequency (RF) and a local oscillator (LO) signal drive two arms of a dual-drive Mach-Zehnder modulator (DMZM). A fiber Bragg grating (FBG) is used for reflecting the first-order sidebands of both RF and LO signals. Due to phase independence between RF and LO optical sidebands, the phase-shifting operation for an output intermediate frequency (IF) signal can be implemented either by adjusting the bias voltage of DMZM or by controlling the optical wavelength of laser. Experimental results demonstrate a full 0° to 360° phase shift, while an RF signal between 12 GHz to 20 GHz is downconverted to IFs below 4 GHz. The phase deviation is measured less than 2°, and the fluctuation of magnitude response is measured less than ±1  dB over a wideband frequency range. PMID:27244434

  16. A novel phase shift technique in shearography for NDT

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gao, J.

    2010-06-01

    Digital shearography (DS) is a whole-field non-contacting optical method for nondestructive testing (NDT) of subsurface flaws and strain measurement. In this paper, we describe a novel phaseshifting technique in DS for nondestructive evaluation (NDE) and NDT of quasi dynamic behaviour of objects subject to varying loads. A Wollaston lens, a precise wave plate device and a polariser are employed to introduce constant phase differences between two shearing wavefronts. The wave plate device is in front of the polariser, which has a transmissive wavefront distortion of less than 1/8 wavelength. Phase difference can be adjusted by rotating the polariser. The rotation for angle adjusting can be easily carried out according to the requirement of the phase shifting. In this technique, the phase shifting is performed only on the static images of the object before deformation or loading. By setting the angle of the polariser to 0º, -60º and 60º, three speckle patterns with the defined phase differences are captured, and are referred to as initial speckle patterns I1,0, I1,-60 and I1,60. Afterwards, the polariser is reset to 0º before loading. The speckle pattern I0 is treated as a base pattern, and will be subtracted from the subsequent speckle patterns which are captured in the quasi dynamic deformation process. During the quasi dynamic deformation process, the optical path and the entire optical set-up will be kept unchanged, and a series of speckle patterns (Im,0, m=2,3,…..) which carry the deformation information will be quickly captured. In the meantime, fast image subtractions will be performed. The speckle fringes (Im,0 -I1,0) will be displayed in real-time. In detailed post-processing, phase of differences method (PDM) [1] is used to extract phase information from the speckle images Im,0 -I1,0, I1,0, I1,-60 and I1,60. Specifically, when a three phase step technique is employed, the phase of the fringe pattern (Im,0-I1,0) can be calculated from (Im,0 -I1,0)+ I1

  17. Polarization phase shifting dispersed fringe sensor.

    PubMed

    Olczak, Gene

    2012-02-13

    The dispersed fringe sensor (DFS) has been demonstrated as an effective means of measuring mirror segment piston error for telescopes with primary mirror apertures below 10 meters. With larger proposed telescopes such as The Thirty Meter Telescope (TMT) and The European Large Telescope (ELT) including ever more segments, there is a need for improvement in the co-phasing capability for segmented primary mirrors. In this paper a novel DFS that employs polarization phase shifting technology is introduced. This novel technology provides system designers and engineers with a new tool to extend the dynamic range of a DFS. PMID:22418128

  18. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  19. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  20. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  1. Optoelectronic information encryption with phase-shifting interferometry.

    PubMed

    Tajahuerce, E; Matoba, O; Verrall, S C; Javidi, B

    2000-05-10

    A technique that combines the high speed and the high security of optical encryption with the advantages of electronic transmission, storage, and decryption is introduced. Digital phase-shifting interferometry is used for efficient recording of phase and amplitude information with an intensity recording device. The encryption is performed by use of two random phase codes, one in the object plane and another in the Fresnel domain, providing high security in the encrypted image and a key with many degrees of freedom. We describe how our technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. Electronic decryption can be performed with a one-step fast Fourier transform reconstruction procedure. Experimental results for both systems including a lensless setup are shown. PMID:18345139

  2. Phase-shifting behaviour revisited: An alternative measure

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Ryu, Doojin; Ryu, Doowon

    2014-05-01

    This study re-examines the recently documented phase-shifting behaviour of financial markets using an alternative measure, an intraday return-based measure. While most previous studies on phase-shifting behaviour adopt the volume-imbalance measure proposed by Plerou et al. (2003), we find that our return-based measure successfully captures phase-shifting behaviour, and moreover exhibits a unique pattern of phase-shifting that is not detected when the classical volume imbalance measure is used. By analysing a high-frequency dataset of KOSPI200 futures, we also find that large trades reveal phase-shifting behaviour more clearly and significantly than smaller trades.

  3. High-durability phase-shift film with variable transmittance

    NASA Astrophysics Data System (ADS)

    Nozawa, Osamu; Shishido, Hiroaki; Kajiwara, Takenori

    2015-10-01

    In order to maintain the lithographic margin and to have sufficient image resolution, attenuated phase shift masks are widely used as a resolution enhancement technique. To improve the radiation durability of the phase shift film, we have developed low oxidation MoSi shifters, such as A6L2, as one option for improving radiation durability. But to provide the best radiation durability, we have developed a new approach eliminating the molybdenum from the phase shift film and introduced a Silicon-Nitride (Si-N) based attenuated phase shift film. Traditionally the transmittance of the phase shift layer is usually around 6%. In the case of a pure Si3N4 film, the transmittance with 180 degree phase shift is around 18%. But, by controlling film structure with a combination of Si-N the transmittance can be tuned to the customers desired transmission value for high durability Mo free attenuated phase shift films.

  4. Model-based phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  5. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  6. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  7. Anomalous phase shifts in drift wave fluctuations

    NASA Astrophysics Data System (ADS)

    Diallo, Ahmed; Skiff, Fred

    2003-10-01

    Ion phase space density fluctuation measurements are performed in a linearly magnetized device using Laser Induced Fluorescence(LIF). An ICP source produces an 8cm diameter plasma column that drifts in a cylindrical vessel whose diameter and length are 40 cm and 3 m, respectively. These experiments are performed using a CW singly ionized Argon plasma that is immersed in a 1kG magnetic field along the axis of the cylinder. A density of the order of 10^9 cm-3 is obtained under a regulated neutral background pressure of 2.× 10-4 torr. The electron and ion temperature are respectively 2 eV and 0.1 eV. LIF is carried out by pumping the Ar II metastable (3d^1)^2G_9/2, using a CW tunable laser centered at 611.6653 nm scanned over 6 GHz, to metastable (4p^1)F_7/2, and then detecting the 460nm photons emitted from its transition to (4s^1)^2F_5/2. This collection is made possible using two low f-umber periscopes that are directed to PMTs. Here we present measurements of the complex two-point correlation function < f(v_i_allel),z_1,ω)f(v_i_allel,z_2,ω)> as a function of the spatial separation of two LIF detection systems Δ d = z_2-z_1, the ion parallel velocity v_i_allel and the frequency ω. Preliminary results show ion particle velocity dependent phase shifts at the drift wave frequency.

  8. Random phase-shifting interferometry based on independent component analysis

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Lu, Xiaoxu; Tian, Jindong; Shou, Junwei; Zheng, Dejin; Zhong, Liyun

    2016-07-01

    In random phase-shifting interferometry, a novel phase retrieval algorithm is proposed based on the independent component analysis (ICA). By performing the recombination of pixel position, a sequence of phase-shifting interferograms with random phase shifts are decomposed into a group of mutual independent components, and then the background and the measured phase of interferogram can obtained with a simple arctangent operation. Compared with the conventional advanced iterative algorithm (AIA) with high accuracy, both the simulation and the experimental results demonstrate that the proposed ICA algorithm reveals high accuracy, rapid convergence, and good noise-tolerance in random phase-shifting interferometry.

  9. Generalized phase shifting interferometry based on Lissajous calibration technology

    NASA Astrophysics Data System (ADS)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan; Song, Weihong

    2016-08-01

    The feasibility and limitation of directly using the Lissajous figure and ellipse fitting technology to correct the phase extraction error in generalized data reduction algorithm (GDRA) for phase extraction of randomly phase-shifted interferograms are analyzed and discussed. By combining Lissajous calibration technology, which represents the transformative process of Lissajous ellipse to circle (ETC), with advanced iterative algorithm (AIA) we propose a novel generalized phase shifting algorithm (GPSA), and here it is abbreviated as ETCI method. The phase distribution and phase shifts that extracted from randomly phase shifted interferograms by use of ETCI are more accurate and the whole process is far faster than AIA. Additionally, proposed method is less sensitive to non-uniform background intensity and modulation amplitude. Numerical simulations are conducted to evaluate the performance of ETCI, and some influential factors are elaborated. The experimental results further indicate proposed method is suitable for truly random phase shifted interferograms.

  10. A color phase shift profilometry for the fabric defect detection

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chang, Yu-lan; Xing, Guang-xin; Wang, Peng-qiang; Xi, Jiang-tao; Zhu, Teng-da

    2014-07-01

    For fabric defect identification in the textile industry, a three-dimensional (3D) color phase shift profilometry (CPSP) method is proposed. The detecting system is mainly composed of one CCD camera and one digital-light-processing (DLP) projector. Before detection, the system should be calibrated to make sure the camera parameters. The CPSP color grating is projected to the measured fabric by DLP projector, and then it is collected by CCD camera to obtain the grating phase. The 3D measurement can be completed by the grating phase difference. In image acquisition, only invariable grating is projected to the object. In order to eliminate the interference from background light during the image acquisition, the brightness correction method is researched for improving the detection accuracy. The experimental results show that the false rate of detecting the fabric defects is 5.78%, the correct rates of detecting the fabric defects of hole and qualified fabric are both 100%, and the correct rates of detecting the fabric defect of scratch and fold are 98% and 96%, respectively. The experiment proves that the proposed method can accurately identify fabric defects.

  11. Real-time microscopic phase-shifting profilometry.

    PubMed

    Van der Jeught, Sam; Soons, Joris A M; Dirckx, Joris J J

    2015-05-20

    A real-time microscopic profilometry system based on digital fringe projection and parallel programming has been developed and experimentally tested. Structured light patterns are projected onto an object through one pathway of a stereoscopic operation microscope. The patterns are deformed by the shape of the object and are then recorded with a high-speed CCD camera placed in the other pathway of the microscope. As the optical pathways of both arms are separated and reach the same object point at a relative angle, the recorded patterns allow the full-field object height variations to be calculated and the three-dimensional shape to be reconstructed by employing standard triangulation techniques. Applying proper hardware triggering, the projector-camera system is synchronized to capture up to 120 unique deformed line patterns per second. Using standard four-step phase-shifting profilometry techniques and applying graphics processing unit programming for fast phase wrapping, scaling, and visualization, we demonstrate the capability of the proposed system to generate 30 microscopic height maps per second. This allows the qualitative depth perception of the stereomicroscope operator to be enhanced by live quantitative height measurements with depth resolutions in the micrometer range. PMID:26192534

  12. Passive fathometer reflector identification with phase shift modeling.

    PubMed

    Michalopoulou, Zoi-Heleni; Gerstoft, Peter

    2016-07-01

    In passive fathometer processing, the presence of wavelets in the estimate of the medium's Green's function corresponds to the location of reflectors in the seabed; amplitudes are related to seabed properties. Bayesian methods have been successful in identifying reflectors that define layer interfaces. Further work, however, revealed that phase shifts are occasionally present in the wavelets and hinder accurate layer identification for some reflectors. With a Gibbs sampler that computes probability densities of reflector depths, strengths of the reflections, and wavelet phase shifts, the significance of phase shift modeling in successful estimation of reflectors and their strengths is demonstrated. PMID:27475201

  13. Suppressing phase errors from vibration in phase-shifting interferometry

    SciTech Connect

    Deck, Leslie L.

    2009-07-10

    A general method for reducing the influence of vibrations in phase-shifting interferometry corrects the surface phase map through a spectral analysis of a ''phase-error pattern,'' a plot of the interference intensity versus the measured phase, for each phase-shifted image. The method is computationally fast, applicable to any phase-shifting algorithm and interferometer geometry, has few restrictions on surface shape, and unlike spatial Fourier methods, high density spatial carrier fringes are not required, although at least a fringe of phase departure is recommended. Over a 100x reduction in vibrationally induced surface distortion is achieved for small amplitude vibrations on real data.

  14. Application of principal component analysis in phase-shifting photoelasticity.

    PubMed

    Quiroga, Juan A; Gómez-Pedrero, José A

    2016-03-21

    Principal component analysis phase shifting (PCA) is a useful tool for fringe pattern demodulation in phase shifting interferometry. The PCA has no restrictions on background intensity or fringe modulation, and it is a self-calibrating phase sampling algorithm (PSA). Moreover, the technique is well suited for analyzing arbitrary sets of phase-shifted interferograms due to its low computational cost. In this work, we have adapted the standard phase shifting algorithm based on the PCA to the particular case of photoelastic fringe patterns. Compared with conventional PSAs used in photoelasticity, the PCA method does not need calibrated phase steps and, given that it can deal with an arbitrary number of images, it presents good noise rejection properties, even for complicated cases such as low order isochromatic photoelastic patterns. PMID:27136792

  15. EUV phase-shifting masks and aberration monitors

    NASA Astrophysics Data System (ADS)

    Deng, Yunfei; Neureuther, Andrew R.

    2002-07-01

    Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.

  16. Multiplicative phase-shifting interferometry using optical flow.

    PubMed

    Vargas, J; Quiroga, J Antonio; Sorzano, C O S; Estrada, J C; Servín, M

    2012-08-20

    Fringe patterns with a multiplicative phase shift among them appear in experimental techniques as photoelasticity and RGB shadow moiré, among others. These patterns cannot be processed using standard phase-shifting demodulation techniques. In this work, we propose to use a multiframe regularized optical flow algorithm to obtain the interesting modulating phase. The proposed technique has been applied to simulated and experimental interferograms obtaining satisfactory results. PMID:22907020

  17. Correlated errors in phase-shifting laser Fizeau interferometry.

    PubMed

    de Groot, Peter J

    2014-07-01

    High-performance data processing algorithms for phase-shifting interferometry accommodate adjustment errors in the phase shift increment as well as harmonic distortions in the interference signal. However, a widely overlooked error source is the combination of these two imperfections. Phase shift tuning errors increase the sensitivity of phase estimation algorithms to second-order and higher harmonics present in Fizeau interference signals. I derive an analytical formula for evaluating these errors more realistically, in part to identify the characteristics of the optimal PSI algorithm. Even for advanced algorithms, it is found that multiple reflections increase the error contribution of detuning by orders of magnitude compared with the two-beam calculation and impose a practical limit of 30% in tuning error for sub-nm metrology in a 4%-4% Fizeau cavity. Consequently, a preferred approach for high precision spherical cavities is to use either wavelength tuning in place of mechanical phase shifting or an iterative solver that accommodates unknown phase shifts as a function of field position. PMID:25089998

  18. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  19. Precise determination of lattice phase shifts and mixing angles

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Lähde, Timo A.; Lee, Dean; Meißner, Ulf-G.

    2016-09-01

    We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.

  20. Fourier transform infrared phase shift cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Rentz Dupuis, Julia

    2013-05-01

    We report on our current status towards the development of a prototype Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. Our system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time, which is proportional to the losses of the cavity including those due to molecular absorption. Our approach is a broadband and spectral range enhancement to conventional CRDS which is typically done in the near IR at a single wavelength; at the same time our approach is a sensitivity enhancement to traditional FTIR owing to the long effective path of the resonant cavity. In this paper we present a summary of the theory including performance projections and the design details of the prototype FTIR-PS-CRDS system.

  1. In-plane displacement measurement using optical vortex phase shifting.

    PubMed

    Sun, Haibin; Wang, Xinghai; Sun, Ping

    2016-07-20

    In this paper, we propose a new method for in-plane displacement measurement by application of phase shifting based on an optical vortex. The phase shifts are obtained by displaying computer-generated fork holograms on the screen of a liquid-crystal spatial light modulator (LC-SLM). Furthermore, the vortex beam that is generated by the LC-SLM can be used as a reference light in the experiment. Eight speckle patterns with phase-shift increments of 0, π/2, π, and 3π/2 were captured by a CCD camera before and after the deformation. The displacement of the deformed object was obtained by unwrapping. Experimental results demonstrated the efficacy of the proposed method for in-plane displacement measurement. PMID:27463914

  2. Phase-shifting real-time holography with photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Gesualdi, M. R. R.; Soga, D.; Muramatsu, M.

    2006-01-01

    The phase-shifting interferometry techniques is a well-known technique which has been used with great success in optical profilers, micro-displacements, micro-deformations and others applications in Non-Destructive Test in basic research, engineering and biotechnology areas. This work presents our Advances in Phase-Shifting Real-Time Holography using Photorefractive Sillenite. And we have obtained quantitative results in many applications in measurements of micro-rotation, micro-displacements, deformation, surface contouring and whole lens wave-optics. The real-time holography process is doing using the photorefractive Bi 12SiO 20 crystal recording medium, where the phase-shifting 4-frames method for obtained the phase map, this was filtered by sin/cos filter and was applied the unwrapping process. The experimental results agree with the expected one in these applications and with promises potentialities of this method for studies with in situ visualization, monitoring and analysis.

  3. An in situ method for diagnosing phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Shao, J.; Ma, D.; Zhang, H.; Xie, Y.

    2016-05-01

    Current diagnosing phase shifting interferometry is a time and funds consuming process. Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper, mathematical solutions for errors were deduced from the difference of intensity patterns. Based on the diversity of error distributions, an effective method for distinguishing and diagnosing the error sources is proposed and verified by an elaborative designed simulation. In the actual comparison experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this method. The results showed that this method can be applied into the real-time measurement and provide an in situ diagnosing technique.

  4. Quantum-dot-induced phase shift in a pillar microcavity

    SciTech Connect

    Young, A. B.; Hu, C. Y.; Rarity, J. G.; Oulton, R.; Thijssen, A. C. T.; Schneider, C.; Reitzenstein, S.; Kamp, M.; Hoefling, S.; Worschech, L.; Forchel, A.

    2011-07-15

    We perform high-resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show the change in reflectivity as the quantum dot is tuned through the cavity resonance and measure the quantum-dot-induced phase shift using an ultrastable interferometer. The macroscopic phase shift we measure could be extended to the study of charged quantum dot pillar microcavity systems, where it could be exploited to realize a high-efficiency spin photon interface for hybrid quantum information schemes.

  5. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  6. Full 360 deg phase shifting of injection-locked oscillators

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong; Daryoush, Afshin S.

    1993-01-01

    A novel design is presented to produce analog phase shifts of 0 deg to 360 deg in optically controlled oscillators which are subharmonically injection-locked. The proposed concept was analytically described and experimentally demonstrated by producing a 360 deg phase shift in an 8 GHz oscillator that is indirectly optically injection-locked to a 4 GHz subharmonic frequency. This design concept could eliminate the need for switched delay-line phase shifters in T/R modules of optically controlled phased array antennas, thus making the T/R module more compact and efficient.

  7. Computational tool for phase-shift calculation in an interference pattern by fringe displacements based on a skeletonized image

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this manuscript an algorithm based on a graphic user interface (GUI) designed in MATLAB for an automatic phase-shifting estimation between two digitalized interferograms is presented. The proposed algorithm finds the midpoint locus of the dark and bright interference fringes in two skeletonized fringe patterns and relates their displacements with the corresponding phase-shift. In order to demonstrate the usefulness of the proposed GUI, its application to simulated and experimental interference patterns will be shown. The viability of this GUI makes it a helpful and easy-to-use computational tool for educational or research purposes in optical phenomena for undergraduate or graduate studies in the field of physics.

  8. A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.

    ERIC Educational Resources Information Center

    Yunus, W. Mahmood Mat; Ahmad, Maulana

    1996-01-01

    Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)

  9. Measurement and Calibration of PSD with Phase-shifting Interferometers

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.

    2008-01-01

    We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.

  10. Voltage-controlled attenuator with low phase shift

    NASA Technical Reports Server (NTRS)

    Lutes, G. F., Jr.

    1980-01-01

    Five megahertz RF (radiofrequency) signal attenuator utilizing RF quadrature hybrid, and optically viable-resistance load controlled by lamp circuit exhibits little phase shift. Circuit is designed to help distribute standard RF signal of controlled amplitude, and phase throughout complex of facilities could be useful in application to precision test equipment and communication electronics.

  11. Phase shifts of the paired wings of butterfly diagrams

    NASA Astrophysics Data System (ADS)

    Li, Ke-Jun; Liang, Hong-Fei; Feng, Wen

    2010-11-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength.

  12. Color deflectometry for phase retrieval using phase-shifting methods

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Legarda-Saenz, Ricardo; Garcia-Torales, G.

    2015-01-01

    In this paper, we propose a technique based on a color fringe pattern used on deflectometry experiment. The advantages of using color fringe patterns together with phase shifting techniques on deflectometry experiment are presented. An experimental wavefront reconstruction of a progressive lens shows the accuracy and simplicity of these techniques used to process the deflection measurements.

  13. Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms

    SciTech Connect

    Ayubi, Gaston A.; Di Martino, J. Matias; Alonso, Julia R.; Fernandez, Ariel; Perciante, Cesar D.; Ferrari, Jose A.

    2011-01-10

    Three-dimensional shape measurements by sinusoidal fringe projection using phase-shifting interferometry algorithms are distorted by the nonlinear response in intensity of commercial video projectors and digital cameras. To solve the problem, we present a method that consists in projecting and acquiring a temporal sequence of strictly binary patterns, whose (adequately weighted) average leads to a sinusoidal fringe pattern with the required number of bits. Since binary patterns consist of ''ones'' and ''zeros'' - and no half-tones are involved - the nonlinear response of the projector and the camera will not play a role, and a nearly unit contrast gray-level sinusoidal fringe pattern is obtained. Validation experiments are presented.

  14. 2-Step IMAT and 2-Step IMRT in three dimensions

    SciTech Connect

    Bratengeier, Klaus

    2005-12-15

    In two dimensions, 2-Step Intensity Modulated Arc Therapy (2-Step IMAT) and 2-Step Intensity Modulated Radiation Therapy (IMRT) were shown to be powerful methods for the optimization of plans with organs at risk (OAR) (partially) surrounded by a target volume (PTV). In three dimensions, some additional boundary conditions have to be considered to establish 2-Step IMAT as an optimization method. A further aim was to create rules for ad hoc adaptations of an IMRT plan to a daily changing PTV-OAR constellation. As a test model, a cylindrically symmetric PTV-OAR combination was used. The centrally placed OAR can adapt arbitrary diameters with different gap widths toward the PTV. Along the rotation axis the OAR diameter can vary, the OAR can even vanish at some axis positions, leaving a circular PTV. The width and weight of the second segment were the free parameters to optimize. The objective function f to minimize was the root of the integral of the squared difference of the dose in the target volume and a reference dose. For the problem, two local minima exist. Therefore, as a secondary criteria, the magnitude of hot and cold spots were taken into account. As a result, the solution with a larger segment width was recommended. From plane to plane for varying radii of PTV and OAR and for different gaps between them, different sets of weights and widths were optimal. Because only one weight for one segment shall be used for all planes (respectively leaf pairs), a strategy for complex three-dimensional (3-D) cases was established to choose a global weight. In a second step, a suitable segment width was chosen, minimizing f for this global weight. The concept was demonstrated in a planning study for a cylindrically symmetric example with a large range of different radii of an OAR along the patient axis. The method is discussed for some classes of tumor/organ at risk combinations. Noncylindrically symmetric cases were treated exemplarily. The product of width and weight of

  15. Phase shift reflectometry for sub-surface defect detection

    NASA Astrophysics Data System (ADS)

    Asundi, Anand; Lei, Huang; Eden, Teoh Kang Min; Sreemathy, Parthasarathy; May, Watt Sook

    2012-11-01

    Phase Shift Reflectometry has recently been seen as a novel alternative to interferometry since it can provide warpage measurement over large areas with no need for large optical components. To confirm its capability and to explore the use of this method for sub-surface defect detection, a Chinese magic mirror is used. This bronze mirror which dates back to the Chinese Han Dynasty appears at first sight to be an ordinary convex mirror. However, unlike a normal mirror, when illuminated by a beam of light, an image is formed onto a screen. It has been hypothesized that there are indentations inside the mirror which alter the path of reflected light rays and hence the reflected image. This paper explores various methods to measure these indentations. Of the methods test Phase Shift Reflectometry (PSR) was found suitable to be the most suitable both in terms of the sensitivity and the field of view.

  16. Phase-shifting point diffraction interferometer mask designs

    DOEpatents

    Goldberg, Kenneth Alan

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  17. Terahertz single-shot quadrature phase-shifting interferometry.

    PubMed

    Földesy, Péter

    2012-10-01

    A single-shot quadrature phase-shifting interferometry architecture is presented that is applicable to antenna coupled detector technologies. The method is based on orthogonally polarized object and reference beams and on linear and circular polarization sensitive antennas in space-division multiplexing. The technique can be adapted to two-, three-, and four-step and Gabor holography recordings. It is also demonstrated that the space-division multiplexing does not necessarily cause sparse sampling. A sub-THz detector array is presented containing multiple on-chip antennas and FET plasma wave detectors implemented in a 90 nm complementary metal-oxide semiconductor technology. As an example, two-step phase-shifting reconstruction results are given at 360 GHz. PMID:23027273

  18. Vibration-resistance technology of phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Chen, Jinbang; Chen, Lei; Wu, Ziming; Lee, Wulantuya

    2002-09-01

    A vibration-resistance phase-shifting interferometer (PSI) was recently constructed and demonstrated. In this instrument, we have developed a method for actively compensating for vibration using a closed-loop phase servo system. An essential feature of this is phase modulating interference fringes fractionizing technology. This method can detect the fringe movement at 1/400 fringe interval, so fringes phase can be locked by the closed-loop feedback within 0.005 π. And the instrument implements phase shifting with the same piezoelectric transducer (PZT) that also compensates for vibration as feedback device. A microprogrammed control unit (MCU) is used to process phase information from photoelectric receiver, and then output the control signal to PZT driver. Experiments show that this solution is unique.

  19. Coded octal phase shift keying in TDMA satellite communications

    NASA Astrophysics Data System (ADS)

    Rhodes, S. A.; Fang, R. J.; Chang, P. Y.

    The coded octal phase shift-keying (coded OPSK) signalling technique that has been proposed for TDMA satellite communications is presently subjected to a performance assessment for forward error correction (FEC) codes of different complexities. With the maximum likelihood path decoder, coded OPSK provides a coding gain relative to the performance of uncoded quaternary phase shift keying (QPSK). Significant coding gains of coded OPSK were obtained, relative to uncoded QPSK, for both an AWGN channel and a simulated INTELSAT V channel. Computer simulations have demonstrated that, for an FEC code of 64 states, coded OPSK transmitted over an AWGN channel yields a coding gain of about 3 dB and 4 dB at two different bit error probabilities. Corresponding coding gains for coded OPSK transmitted over the INTELSAT V channel were 3.2 dB and 4.5, at the same two bit error probability values.

  20. Nonlocal nonlinear refraction in Hibiscus sabdariffa with large phase shifts.

    PubMed

    Ramírez-Martínez, D; Alvarado-Méndez, E; Trejo-Durán, M; Vázquez-Guevara, M A

    2014-10-20

    In this work we present a study of nonlinear optical properties in organic materials (hibiscus sabdariffa). Our results demonstrate that the medium exhibits a highly nonlocal nonlinear response. We show preliminary numerical results of the transmittance as nonlocal response by considering, simultaneously, the nonlinear absorption and refraction in media. Numerical results are accord to measurement obtained by Z- scan technique where we observe large phase shifts. We also analyze the far field diffraction ring patterns of the sample. PMID:25401548

  1. Phase-shifting point diffraction interferometer grating designs

    DOEpatents

    Naulleau, Patrick; Goldberg, Kenneth Alan; Tejnil, Edita

    2001-01-01

    In a phase-shifting point diffraction interferometer, by sending the zeroth-order diffraction to the reference pinhole of the mask and the first-order diffraction to the test beam window of the mask, the test and reference beam intensities can be balanced and the fringe contrast improved. Additionally, using a duty cycle of the diffraction grating other than 50%, the fringe contrast can also be improved.

  2. Full phase-shifting methodology for 65-nm node lithography

    NASA Astrophysics Data System (ADS)

    Pierrat, Christophe; Driessen, Frank A. J. M.; Vandenberghe, Geert

    2003-06-01

    A new methodology for completely phase-shifting a poly layout without creating local phase conflicts was proposed for lithographic techniques combining one phase-shifting mask and one binary mask exposure1. Critical and non-critical areas of the layout are identified and phase conflicts are avoided by splitting the shifter regions from non-critical areas to non-critical areas without crossing critical areas. The out-of-phase splits of the shifter regions are removed using the binary exposure. Simulation results and experimental data collected for 90nm technology node show no sign of process latitude loss around the areas where the shifters are split. The overlay latitude is commensurate with 90nm technology scanner requirements (tool to itself). Simulation work shows that the two exposures are balancing each other out of focus in the 45-degree cut regions thus ensuring large focus latitude. The focus latitude reported is larger than the main feature process latitude; this result was confirmed experimentally. A set of phase-shifting design rules commensurate with an aggressive 65nm node technology (140nm pitch) was put together. Under these conditions, we have identified certain types of cuts that should be avoided during the generation of the phase-shifting layout; this is primarily the case for cuts in "elbow" structures which exhibit limited process latitude. Other cuts like line-end cuts will have to be modified. In this case we have proposed a side cut when the line-end is facing a perpendicular line with a minimum spacing. Despite these restrictions, test structures for the 65nm technology node were successfully converted with no phase conflicts. Experimental verification done on test structures using a 0.75 NA, 193nm scanner demonstrates 0.33 k1 capability using the full phase methodology.

  3. Phase-shifting response to light in older adults

    PubMed Central

    Kim, Seong Jae; Benloucif, Susan; Reid, Kathryn Jean; Weintraub, Sandra; Kennedy, Nancy; Wolfe, Lisa F; Zee, Phyllis C

    2014-01-01

    Abstract Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (−8), 3 h before (−3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age. PMID:24144880

  4. Singular-value demodulation of phase-shifted holograms.

    PubMed

    Lopes, Fernando; Atlan, Michael

    2015-06-01

    We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts. PMID:26030552

  5. Fourier transform infrared phase shift cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Dupuis, Julia Rentz

    2014-05-01

    OPTRA has developed a Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. This system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time. The spectral dependence of both of these values is introduced by the losses of the cavity including those due to the molecular absorption of the sample. OPTRA's approach allows broadband detection of chemicals across the feature-rich fingerprint region of the long-wave infrared. This represents a broadband and spectral range enhancement to conventional CRDS which is typically done at a single wavelength in the near IR; at the same time the approach is a sensitivity enhancement to traditional FTIR, owing to the long effective path of the resonant cavity. In previous papers1,2, OPTRA has presented a breadboard system aimed at demonstrating the feasibility of the approach and a prototype design implementing performance enhancements based on the results of breadboard testing. In this final paper in the series, we will present test results illustrating the realized performance of the fully assembled and integrated breadboard, thereby demonstrating the utility of the approach.

  6. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  7. Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors

    SciTech Connect

    Kimbrough, Bradley T

    2006-07-01

    In both temporal and spatial carrier phase shifting interferometry, the primary source of phase calculation error results from an error in the relative phase shift between sample points. In spatial carrier phase shifting interferometry, this phase shifting error is caused directly by the wave front under test and is unavoidable. In order to minimize the phase shifting error, a pix elated spatial carrier phase shifting technique has been developed by 4D technologies. This new technique allows for the grouping of phase shifted pixels together around a single point in two dimensions,minimizing the phase shift change due to the spatial variation in the test wavefront. A formula for the phase calculation error in spatial carrier phase shifting interferometry is derived. The error associated with the use of linear N-point averaging algorithms is presented and compared with those of the pix elated spatial carrier technique.

  8. Phase shift facilitation following cyclone disturbance on coral reefs.

    PubMed

    Roff, George; Doropoulos, Christopher; Zupan, Mirta; Rogers, Alice; Steneck, Robert S; Golbuu, Yimnang; Mumby, Peter J

    2015-08-01

    While positive interactions have been observed to influence patterns of recruitment and succession in marine and terrestrial plant communities, the role of facilitation in macroalgal phase shifts is relatively unknown. In December 2012, typhoon Bopha caused catastrophic losses of corals on the eastern reefs of Palau. Within weeks of the typhoon, an ephemeral bloom of monospecific macroalgae (Liagora sp.) was observed, reaching a peak of 38.6% cover in February 2013. At this peak, we observed a proliferation of a second macroalgal species, Lobophora variegata. Lobophora was distributed non-randomly, with higher abundances occurring within the shelter of Liagora canopies than on exposed substrates. Bite rates of two common herbivorous fish (Chlorurus sordidus and Ctenochaetus striatus) were significantly higher outside canopies (2.5- and sixfold, respectively), and cage exclusion resulted in a significant increase in Lobophora cover. Experimental removal of Liagora canopies resulted in a 53.1% decline in the surface area of Lobophora after 12 days, compared to a 51.7% increase within canopies. Collectively, these results indicate that Liagora canopies act as ecological facilitators, providing a 'nursery' exclusion zone from the impact of herbivorous fish, allowing for the establishment of understory Lobophora. While the ephemeral Liagora bloom had disappeared entirely 9 months post-typhoon, the facilitated shift to Lobophora has persisted for over 18 months, dominating ~40% of the reef substrate. While acute disturbance events such as typhoons have been suggested as a mechanism to reverse algal phase shifts, our results suggest that typhoons may also trigger, rather than just reverse, phase shifts. PMID:25761445

  9. Is phase-shift mask technology production-worthy?

    NASA Astrophysics Data System (ADS)

    Chen, Mung

    1991-07-01

    The feasibility and potential of Phase-Shift Mask (PSM) for sub- 0.5 urn fabrication have been clearly demonstrated. In the '91 SPIE Microlithography Syrnposium, a total of 18 papers on PSM were presented. Many new, innovative designs have been proposed. However, there is still a myriad of technical and logistic problems, which must be resolved for production implementation. We organized the workshop and panel discussion in the hope that the participants would collectively make an assessment of the maturity of the technology and reach a common understanding of the key issues.

  10. Inhomogeneous phase shifting: an algorithm for nonconstant phase displacements

    SciTech Connect

    Tellez-Quinones, Alejandro; Malacara-Doblado, Daniel

    2010-11-10

    In this work, we have developed a different algorithm than the classical one on phase-shifting interferometry. These algorithms typically use constant or homogeneous phase displacements and they can be quite accurate and insensitive to detuning, taking appropriate weight factors in the formula to recover the wrapped phase. However, these algorithms have not been considered with variable or inhomogeneous displacements. We have generalized these formulas and obtained some expressions for an implementation with variable displacements and ways to get partially insensitive algorithms with respect to these arbitrary error shifts.

  11. Experimental demonstration of microring quadrature phase-shift keying modulators.

    PubMed

    Dong, Po; Xie, Chongjin; Chen, Long; Fontaine, Nicolas K; Chen, Young-kai

    2012-04-01

    Advanced optical modulation formats are a key technology to increase the capacity of optical communication networks. Mach-Zehnder modulators are typically used to generate various modulation formats. Here, we report the first experimental demonstration of quadrature phase-shift keying (QPSK) modulation using compact microring modulators. Generation of 20 Gb/s QPSK signals is demonstrated with 30 μm radius silicon ring modulators with drive voltages of ~6 V. These compact QPSK modulators may be used in miniature optical transponders for high-capacity optical data links. PMID:22466187

  12. Phase-shifting point diffraction interferometer phase grating designs

    DOEpatents

    Naulleau, Patrick

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  13. Two-step phase-shifting fluorescence incoherent holographic microscopy

    PubMed Central

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Yao, Hai; Qu, Xinghua; Gao, Bruce Z.

    2014-01-01

    Abstract. Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from three to two. Using this method, we resolved microscopic fluorescent beads that were three-dimensionally distributed at different depths with two interferograms captured by a CCD camera. The method enables the FINCHSCOPE to work in conjunction with the frame-straddling technique and significantly enhance imaging speed. PMID:24972355

  14. Symmetry types and phase-shift synchrony in networks

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Matamba Messi, Leopold; Spardy, Lucy E.

    2016-04-01

    In this paper we discuss what is known about the classification of symmetry groups and patterns of phase-shift synchrony for periodic solutions of coupled cell networks. Specifically, we compare the lists of spatial and spatiotemporal symmetries of periodic solutions of admissible vector fields to those of equivariant vector fields in the three cases of Rn (coupled equations), Tn (coupled oscillators), and (Rk)n where k ≥ 2 (coupled systems). To do this we use the H / K Theorem of Buono and Golubitsky (2001) applied to coupled equations and coupled systems and prove the H / K theorem in the case of coupled oscillators. Josić and Török (2006) prove that the H / K lists for equivariant vector fields and admissible vector fields are the same for transitive coupled systems. We show that the corresponding theorem is false for coupled equations. We also prove that the pairs of subgroups H ⊃ K for coupled equations are contained in the pairs for coupled oscillators which are contained in the pairs for coupled systems. Finally, we prove that patterns of rigid phase-shift synchrony for coupled equations are contained in those of coupled oscillators and those of coupled systems.

  15. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  16. Cavity Attenuated Phase Shift-Based Monitoring of Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Kebabian, P. L.; Onasch, T. B.; Herndon, S. C.; Wood, E. C.; Wormhoudt, J.; Freedman, A.

    2009-06-01

    We are developing compact instruments for the monitoring of ambient atmospheric species, specifically nitrogen dioxide and particles, using cavity attenuated phase shift spectroscopy. The sensor, which detects the optical absorption of nitrogen dioxide within a 20 nm bandpass band centered at 440 nm, comprises a blue light emitting diode, an enclosed metal measurement cell (26 cm in length) incorporating a resonant optical cavity of near-confocal design and a vacuum photodiode detector. An analog heterodyne detection scheme is used to measure the phase shift in the waveform of the modulated light transmitted through the cell induced by the presence of nitrogen dioxide and/or particles within the cell. The entire apparatus is encased within a standard 19-inch rack-mounted enclosure. Levels of detection (1 s, 3 σ ) for nitrogen dioxide of 0.2 ppb and for aerosols of 3.5 Mm^{-1} have been achieved. Examples of high resolution field measurements and comparisons with other instrumentation will be presented.

  17. Binary encoded computer generated holograms for temporal phase shifting.

    PubMed

    Amphawan, Angela

    2011-11-01

    The trend towards real-time optical applications predicates the need for real-time interferometry. For real-time interferometric applications, rapid processing of computer generated holograms is crucial as the intractability of rapid phase changes may compromise the input to the system. This paper introduces the design of a set of binary encoded computer generated holograms (CGHs) for real-time five-frame temporal phase shifting interferometry using a binary amplitude spatial light modulator. It is suitable for portable devices with constraints in computational power. The new set of binary encoded CGHs is used for measuring the phase of the generated electric field for a real-time selective launch in multimode fiber. The processing time for the new set of CGHs was reduced by up to 65% relative to the original encoding scheme. The results obtained from the new interferometric technique are in good agreement with the results obtained by phase shifting by means of a piezo-driven flat mirror. PMID:22109188

  18. High sensitivity Moire interferometry with phase shifting at nano resolution

    NASA Astrophysics Data System (ADS)

    Chen, Bicheng

    Due to insatiate demand for miniaturization of electronics, there is a need for new techniques to measure full-field strain at micro-scale structures. In addition, Micro-Electronic-Mechanical-Systems (MEMS) require a high resolution and high sensitivity material property characterization technique. In this study, a theoretic model for a high sensitivity Moire Interferometry (MI) for measuring nano-scale strain field has been developed. The study also includes the application of the proposed measurement technique for the study of reliability of next generation nano-electronics/power electronics. The study includes both theoretical and experimental work. In the theoretical part, a far field modeling of a Moire Interferometer (MI) using the mode decomposition method is proposed according to the analytical formulation from the scalar diffraction theory. The wave propagation within the defined MI far field domain is solved analytically for a single frequency surface relieved grating structure following the Rayleigh-Sommerfeld formulation under the paraxial approximation. It is shown that the far-field electrical field and the intensity interferogram can be calculated using the mode decomposition method. Furthermore, the near-field (propagation distance < 1 mum) assumptions are validated using exact electromagnetic (EM) theory; and the EM fields are simulated in a few microns region above the surface of the diffraction grating. The study shows that there is a strong correlation (correlation factor R = 0.869) of spatial frequency response between EM field and strain field at the nanoscale. Experimentally, a 164 nm/pixel spatial resolution Moire Interferometer with automated full strain field calculation is proposed. Accurate full strain field maps are generated automatically by a combination of phase shifting technique (temporal data redundancy) and Continuous Wavelet Transform (CWT) (spatial data redundancy). A thermal experiment on BGA packaging is used to demonstrate

  19. Controllable optical phase shift over one radian from a single isolated atom.

    PubMed

    Jechow, A; Norton, B G; Händel, S; Blūms, V; Streed, E W; Kielpinski, D

    2013-03-15

    Fundamental optics such as lenses and prisms work by applying phase shifts of several radians to incoming light, and rapid control of such phase shifts is crucial to telecommunications. However, large, controllable optical phase shifts have remained elusive for isolated quantum systems. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1.3±0.1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value allowed by atomic theory over the accessible range of laser frequencies, pointing out new opportunities in microscopy and nanophotonics. Single-atom phase shifts of this magnitude open up new quantum information protocols, in particular long-range quantum phase-shift-keying cryptography. PMID:25166534

  20. Phase-shift-controlled logic gates in Y-shaped nonlinearly coupled chains.

    PubMed

    Assunção, T F; Nascimento, E M; Sombra, A S B; Lyra, M L

    2016-02-01

    We introduce a model system composed of two input discrete chains nonlinearly coupled to a single output chain which mimics the geometry of Y-shaped carbon nanotubes, photonic crystal wave guides, and DNA junctions. We explore the capability of the proposed system to perform logic gate operations based on the transmission of phase-shifted harmonic incoming waves. Within a tight-binding approach, we determine the exact transmission spectrum which exhibits a nonlinear induced bistability. Using a digitalization scheme of the output signal based on amplitude modulation, we show that AND, OR, and XOR logic operations can be achieved. Nonlinearity strongly favors the realization of logic operations in the regime of large wavelengths, while phase shifting is required for the OR logic gate to be realizable. A detailed analysis of the contrast ratio shows that optimal operation of the AND and OR logic gates takes place when the nonlinear response is the predominant physical property distinguishing the coupling and regular sites. These results point towards the possibility of Y-branched junctions to perform logic operations based on the transmission of traveling waves. PMID:26986342

  1. The phase shift method for studying nonlinear acoustics in a soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, a phase shift method for studying nonlinear acoustic behaviors of a soil is described. The method uses a phase-lock-in technique to measure the phase shift caused by increments in the amplitude of an excitation. The measured phase shift as a function of dynamic strain amplitude is use...

  2. Two new design methods for lithography mask: phase-shifting scattering bar and interlaced phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Yeh, Kwei-Tin; Huang, Chao-Yi

    2014-07-01

    For 193 nm immersion lithography, it is hard to print clear 4X nm dense images (ex. contact holes) on wafer without any modifications due to lower light intensity. In the past, the most common method is to add the scattering bars, which can enhance the light intensity of contact holes. However, with tinier pattern, the distance between scattering bars and contact holes will get quite close. Hence, the error tolerance for mask making was reduced. On the other hand, this method may also cause the pattern twist which will induce pattern crosslink. To solve this issue, a new design method for lithography mask was proposed, which is named "Phase-shifting Scattering Bar", and it shows better performance in 1D chain array patterns than those with traditional scattering bars. However, for even tinier patterns, it is quite difficult to put these scattering bars on mask. Hence, another special design named "Interlaced Phase-shifting Mask" was proposed to handle such tiny dense patterns. In this design, main patterns are also the scattering bars for adjacent patterns. Hence, there is no need for additional tiny scattering bars, and the mask making requirement can be also relaxed. Both of these two mask design are useful tools to trim and modify light intensity profile on wafer. The image contrast was largely enhanced which means a better resolution and a larger process window can be gained without the cost of new illumination equipments.

  3. Phase-shifting point-diffraction interferometry at EUV wavelengths

    SciTech Connect

    Goldberg, K.A.; Tejnil, E.; Sang Lee

    1997-04-01

    A novel phase-shifting point-diffraction interferometer (PS/PDI) operating at the Advanced Light Source (ALS) is being used to perform wavefront-measuring metrology at 13.4-nm wavelength to characterize aberrations in a multilayer-coated 10x Schwarzschild objective designed for extreme ultraviolet (EUV) projection lithography experiments. To achieve 0.1-micron critical dimension pattern transfer with EUV projection lithography at 13.4-nm wavelength, nearly diffraction-limited all-reflective multilayer-coated optical systems with 0.1 numerical aperture are required. The EUV wavefront, determined by the mirror surfaces and the reflective multilayer coatings, is measurable only at the operational wavelength of the system. The authors goal is to measure the EUV wavefront to an accuracy of 0.01 waves rms (0.13 nm). The PS/PDI is a type of point-diffraction interferometer, modified for significantly improved throughput and phase-shifting capability. The interferometer design utilizes a grating beamsplitter and pinhole spatial filters in the object and image planes of the optical system under test. The 10x-reduction Schwarzschild objective, with image-side numerical aperture of 0.08, is illuminated by a sub-micron pinhole in the object plane. A coarse, 20-micron pitch grating placed between the illumination pinhole and the Schwarzschild system serves a dual role as a small-angle beam-splitter and a phase-shifting element. The first-order diffracted beam from the grating is spatially filtered in the image plane of the Schwarzschild with a sub-100-nm pinhole and becomes the `D reference` wave in the interferometer. The zero-order beam is the `test` wave, and it passes unobstructed through a 4.5-{mu}m window in the image plane. The test and reference beams are separated by several microns in the image plane to minimize beam overlap. The interference fringes are recorded with a CCD detector placed about 12 cm from the Schwarzschild image plane.

  4. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Astrophysics Data System (ADS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-11-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  5. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  6. Phase-Shifting Liquid Crystal Point-Diffraction Interferometry

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Kenneth L.; Mercer, Carolyn R.

    2000-01-01

    , the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at

  7. Fast three-step phase-shifting algorithm

    SciTech Connect

    Huang, Peisen S.; Zhang Song

    2006-07-20

    We propose a new three-step phase-shifting algorithm, which is much faster than the traditional three-step algorithm. We achieve the speed advantage by using a simple intensity ratio function to replace the arc tangent function in the traditional algorithm. The phase error caused by this new algorithm is compensated for by use of a lookup table. Our experimental result sshow that both the new algorithm and the traditional algorithm generate similar results, but the new algorithm is 3.4 times faster. By implementing this new algorithm in a high-resolution, real-time three-dimensional shape measurement system,we were able to achieve a measurement speed of 40 frames per second ata resolution of 532x500 pixels, all with an ordinary personal computer.

  8. Low energy scattering phase shifts for meson-baryon systems

    NASA Astrophysics Data System (ADS)

    Detmold, William; Nicholson, Amy N.

    2016-06-01

    In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm, and a pion mass of mπ˜390 MeV , we determine the scattering lengths and effective ranges for these systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass, mπ˜230 MeV , on the largest volume. Using these determinations, along with those in previous work, we perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective range contributions using the multivolume calculations performed at mπ˜390 MeV .

  9. Phase shift estimation in interferograms with unknown phase step

    NASA Astrophysics Data System (ADS)

    Dalmau, Oscar; Rivera, Mariano; Gonzalez, Adonai

    2016-08-01

    We first present two closed formulas for computing the phase shift in interferograms with unknown phase step. These formulas obtain theoretically the exact phase step in fringe pattern without noise and only require the information in two pixels of the image. The previous formulas allows us to define a functional that yields an estimate of the phase step in interferograms corrupted by noise. In the experiment we use the standard Least Square formulation which also yields a closed formula, although the general formulation admits a robust potential. We provide two possible implementations of our approach, one in which the sites can be randomly selected and the other in which we can scan the whole image. The experiments show that the proposed algorithm presents the best results compared with state of the art algorithms.

  10. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  11. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    NASA Technical Reports Server (NTRS)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  12. EEG alpha phase shifts during transition from wakefulness to drowsiness.

    PubMed

    Kalauzi, Aleksandar; Vuckovic, Aleksandra; Bojić, Tijana

    2012-12-01

    Phases of alpha oscillations recorded by EEG were typically studied in the context of event or task related experiments, rarely during spontaneous alpha activity and in different brain states. During wake-to-drowsy transition they change unevenly, depending on the brain region. To explore their dynamics, we recorded ten adult healthy individuals in these two states. Alpha waves were treated as stable frequency and variable amplitude signals with one carrier frequency (CF). A method for calculating their CF phase shifts (CFPS) and CF phase potentials (CFPP) was developed and verified on surrogate signals as more accurate than phase shifts of Fourier components. Probability density estimate (PDE) of CFPS, CFPP and CF phase locking showed that frontal and fronto-temporal areas of the cortex underwent more extensive changes than posterior regions. The greatest differences were found between pairs of channels involving F7, F8, F3 and F4 (PDE of CFPS); F7, F8, T3 and T4 (CFPP); F7, F8, F3, F4, C3, C4 and T3 (decrease in CF phase locking). A topographic distribution of channels with above the average phase locking in the wake state revealed two separate regions occupying anterior and posterior brain areas (with intra regional and inter hemispheric connections). These regions merged and became mutually phase locked longitudinally in the drowsy state. Changes occurring primarily in the frontal and fronto-temporal regions correlated with an early decrease of alertness. Areas of increased phase locking might be correlated with topography of synchronous neuronal assemblies conceptualized within neural correlates of consciousness. PMID:22580156

  13. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array.

    PubMed

    Wang, Yang; Kumar, Aishwarya; Wu, Tsung-Yao; Weiss, David S

    2016-06-24

    Although the quality of individual quantum bits (qubits) and quantum gates has been steadily improving, the number of qubits in a single system has increased quite slowly. Here, we demonstrate arbitrary single-qubit gates based on targeted phase shifts, an approach that can be applied to atom, ion, or other atom-like systems. These gates are highly insensitive to addressing beam imperfections and have little cross-talk, allowing for a dramatic scaling up of qubit number. We have performed gates in series on 48 individually targeted sites in a 40% full 5 by 5 by 5 three-dimensional array created by an optical lattice. Using randomized benchmarking, we demonstrate an average gate fidelity of 0.9962(16), with an average cross-talk fidelity of 0.9979(2) (numbers in parentheses indicate the one standard deviation uncertainty in the final digits). PMID:27339984

  14. The use of TWT amplifiers in M-ary amplitude and phase shift keying systems

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1975-01-01

    A great deal of research is presently being conducted to study modulation schemes in order to reduce the bandwidth of digital communications. These M-ary amplitude and phase shift keying (MAPSK) modulation systems place new requirements on TWT amplifiers in space applications in that the various signal sets usually include two or more discrete output power levels as well as discrete phases at each power level. This paper presents a variety of predistortion schemes to circumvent the TWT problems of AM distortion and AM-to-PM conversion in order to produce MAPSK signal sets. A feedback scheme is presented to correct for long-term phase and amplitude drifts in the transmitter. A complete transmitter is proposed using predistortion to produce the desired MAPSK signal set at very high data rates including the possible use of a feedback stabilization scheme.

  15. An accurate 3D inspection system using heterodyne multiple frequency phase-shifting algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenzhong; Chee, Oichoo; Asundi, Anand

    This paper presents an accurate 3D inspection system for industrial applications, which uses digital fringe projection technology. The system consists of two CCD cameras and a DLP projector. The mathematical model of the 3D inspection system with 10 distortion parameters for each camera is proposed. A heterodyne multiple frequency phase-shifting algorithm is employed for overcoming the unwrapping problem of phase functions and for a reliable unwrapping procedure. The redundant phase information is used to increase the accuracy of the 3D reconstruction. To demonstrate the effectiveness of our system, a standard sphere was used for testing. The verification test for the 3D inspection systems are based on the VDI standard 2634. The result shows the proposed system can be used for industrial quality inspection with high measurement precision.

  16. Phase-Shifting Liquid Crystal Point-Diffraction Interferometry

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Kenneth L.; Mercer, Carolyn R.

    2000-01-01

    , the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at

  17. A novel one-dimensional phase-shift technique by using crossed fringe for phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Liu, Yuankun; Olesch, Evelyn; Yang, Zheng; Häusler, Gerd; Su, Xianyu

    2015-03-01

    In principle, PMD needs the two components of the local surface gradient. Therefore a sequence of two orthogonal sinusoidal fringe patterns have to be displayed and captured separately. It is easy and convenient by using a digital display, but it will be much difficult to build a PMD system with mechanic gratings. In this paper, we present a novel phase-shift technique by using the cross fringe pattern, in which a one-dimensional N-phase shift allows for the acquisition of the two orthogonal phases, with only N exposures instead of 2N exposures. Therefore, it make PMD possible be implemented by a one-dimensional translation of the fringe pattern, instead of the common two-dimensional translation, which will be quite useful for certain applications.

  18. Dispersion and phase shifts of torsional waves in forward models

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Livermore, P. W.; Mound, J. E.

    2013-12-01

    Torsional Alfvén waves have been thought to exist in the Earth's core since their theoretical prediction by Braginsky in 1970. More recently, they have been inferred from observations of secular variation and length of day, and also observed in geodynamo simulations. These inferences from geophysical data have provided an important means of estimating core properties such as viscosity and internal magnetic field strength. We produce 1D forward models of torsional waves in the Earth's core, also known as torsional oscillations, and study their evolution in a cylinder, a full sphere and an equatorially symmetric spherical shell. The key features of torsional waves in our models are: geometric dispersion, phase shifts and internal reflections. In all three core geometries, we find that travelling torsional waves undergo significant geometric dispersion that increases with successive reflections from the boundaries such that an initial wave pulse becomes unidentifiable within three transits of the core. This dispersion partly arises due to low amplitude wakes trailing behind sharply defined pulses during propagation, a phenomenon that is linked to the failure of Huygens' principle in the geometric setting of torsional waves. We investigate the relationship between geometric dispersion and wavelength, concluding that long wavelength features are more dispersive than short wavelength features. This result is particularly important because torsional waves inferred from secular variation are relatively long wavelength, and are therefore likely to undergo significant dispersion within the Earth's core. Torsional waves in all three geometries are reflected at the equator of the core-mantle boundary with the same sign as the incident wave, but display more complicated behaviour at the rotation axis. In a cylindrical core, the analytic solutions to the torsional wave equation are known. We use these to derive an expression for the phase shift that torsional waves undergo upon

  19. Coding for slow frequency hopped differential phase shift keying

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Gulliver, T. A.; Mason, Lloyd J.; Blake, Ian F.

    The performance of Reed-Solomon (RS) error-correcting codes with slow frequency hopped (SFH) differential phase shift keying (DPSK) signaling is analyzed and evaluated under worst-case partial-band noise (PBN) and worst-case multitone (MT) jamming. The results of a study of the bit error rate (BER) performance of this coded system are presented. A representative set of the performance curves is shown. SFH is used because the differential signaling required only the phase of the previous received signal as a reference. Using DPSK eliminates the need to establish a phase reference for the hop, as with coherent signaling. From the results it is clear that the number of codeword symbols per hop must be small in order for the RS code to provide protection against jamming. Otherwise, no improvement over uncoded DPSK is gained. Lowering the symbols per hop can be achieved either by reducing the number of bits per hop, or interleaving the RS codewords to a depth determined by the hop length and RS code parameters.

  20. Phase shifting two coupled circadian pacemakers - Implications for jet lag

    NASA Technical Reports Server (NTRS)

    Gander, P. H.; Kronauer, R. E.; Graeber, R. C.

    1985-01-01

    Two Van der Pol oscillators with reciprocal linear velocity coupling are utilized to model the response of the human circadian timing system to abrupt displacements of the environmental time cues (zeitgebers). The core temperature rhythm and sleep-wake cycle simulated by the model are examined. The relationship between the masking of circadian rhythms by environmental variables and behavioral and physiological events and the rates of resynchronization is studied. The effects of zeitgeber phase shifts and zeitgeber strength on the resynchronization rates are analyzed. The influence of intrinsic pacemakers periods and coupling strength on resynchronization are investigated. The simulated data reveal that: resynchronization after a time zone shift depends on the magnitude of the shift; the time of day of the shift has little influence on resynchronization; the strength of zeitgebers affects the rate and direction of the resynchronization; the intrinsic pacemaker periods have a significant effect on resynchronization; and increasing the coupling between the oscillators results in an increase in the rate of resynchronization. The model data are compared to transmeridian flight studies data and similar resynchronization patterns are observed.

  1. Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?

    NASA Astrophysics Data System (ADS)

    Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.

    2012-12-01

    Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.

  2. Atmospheric turbulence compensation with laser phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Eisenhauer, F.; Genzel, R.; Davies, R. I.; Ott, T.

    2006-04-01

    Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.

  3. Measuring rainwater content by radar using propagation differential phase shift

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.

    1994-01-01

    While radars measure several quantities closely coupled to the rainfall rate, for frequencies less than 15 GHz, estimates of the rainwater content W are traditionally computed from the radar reflectivity factor Z or the rate of attenuation A--quantities only weakly related to W. Consequently, instantaneous point estimates of W using Z and A are often erroneous. A more natural, alternative parameter for estimating W at these frequencies is the specific polarization propagation differential phase shift phi(sub DP), which is a measure of the change in the difference between phases of vertically (V) and horizontally (H) polarized waves with increasing distance from a radar. It is now well known that W is nearly linearly related to phi(sub DP) divided by (1 - reversed R), where reversed R is the mass-weighted mean axis ratio of the raindrops. Unfortunately, such relations are not widely used in part because measurements of phi(sub DP) are scarce but also because one must determine reversed R. In this work it is shown that this parameter can be estimated using the differential reflectivity (Z(sub H)/Z(sub V) at 3 GHz. An alternative technique is suggested for higher frequencies when the differential reflectivity becomes degraded by attenuation. While theory indicates that it should be possible using phi(sub DP) to estimate W quite accurately, measurement errors increase the uncertainty to +/- 18%-35% depending on reversed R. While far from ideal, it appears that these estimates are likely to be considerably more accurate than those deduced using currently available methods.

  4. Hybrid shearing and phase-shifting point diffraction interferometer

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2003-06-03

    A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.

  5. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  6. Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1961-01-01

    The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.

  7. Improving the resolution in phase-shifting Gabor holography by CCD shift

    NASA Astrophysics Data System (ADS)

    Granero, L.; Micó, V.; Zalevsky, Z.; García, J.; Javidi, B.

    2015-05-01

    Holography dates back to the year when Dennis Gabor reported on a method to avoid spherical aberration and to improve image quality in electron microscopy. Gabor's two-step holographic method was pioneer but suffered from three major drawbacks: the reconstructed image is affected by coherent noise, the twin image problem of holography that also affects the final image quality, and a restricted sample range (weak diffraction assumption) for preserving the holographic behavior of the method. Nowadays, most of those drawbacks have been overcome and new capabilities have been added due to the replacement of the classical recording media (photographic plate) by digital sensors (CCD and CMOS cameras). But in the Gabor' regime, holography is restricted to weak diffraction assumptions because otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. In this contribution, we present an experimental approach to overcome such limitation and improve final image resolution. We use the phase-shifting Gabor configuration while the CCD camera is shifted to different off-axis positions in order to capture a bigger portion of the diffracted wavefront. Thus, once the whole image set is recorded and digitally processed for each camera's position, we merge the resulting band-pass images into one image by assembling a synthetic aperture. Finally, a superresolved image is recovered by Fourier transformation of the information contained in the generated synthetic aperture. Experimental results are provided using a USAF resolution test target and validating our concepts for a gain in resolution of close to 2.

  8. Phase Shift of the Circadian Rhythm of Lemna Caused by Pulses of a Leucine Analog, Trifluoroleucine

    PubMed Central

    Kondo, Takao

    1988-01-01

    Pulses of a fluorinated analog of leucine, 5′,5′,5′-trifluoroleucine, reset the phase of the circadian rhythm of K+ uptake in Lemna gibba G3 under continuous light conditions. The trifluoroleucine pulse caused the largest delay phase-shifts during the early subjective phase but it caused only small phase advances. The action of trifluoroleucine was investigated and the following results were obtained. (a) The uptake of trifluoroleucine was essentially the same at all circadian phases, even though phase shifting was dramatically different at different phases. At effective phases, the magnitude of phase shifting was well correlated with the amount of trifluoroleucine taken up by the duckweed. (b) The trifluoroleucine pulse lowered the endogenous content of valine and leucine but these decreases did not correlate with phase shifting. (c) Protein synthesis was not affected by trifluoroleucine pulses which caused large phase shifts. (d) Pulses of 4-azaleucine, a different structural analog of leucine, also caused phase shifting. However, neither the direction nor the effective times of phase shifting were similar to those of trifluoroleucine. Taken together, these results negate the proposition that trifluoroleucine and azaleucine caused phase shift by disturbing amino acid metabolism and/or inhibiting protein synthesis, but they suggest instead that these analogs are incorporated into some protein(s) which are necessary for normal clock operation. PMID:16666410

  9. Design of the phase-shifting algorithm for flatness measurement of a mask blank glass

    NASA Astrophysics Data System (ADS)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-04-01

    Nonlinearity and non-uniformity of phase-shifts significantly contribute to the error of the evaluated phase in phase-shifting interferometry. However, state of the art error-compensating algorithms can counteract the linear mis-calibration and first-order nonlinearity associated with the phase-shift. We describe an error expansion method that is utilized to construct a phase-shifting algorithm that can compensate the second-order nonlinearity and non-uniformity of phase-shifts. The conditions for eliminating the effect of second-order nonlinearity and non-uniformity of phase-shifts are given as a set of linear equations for the sampling amplitudes. We developed a novel 11-sample phase-shifting algorithm that can compensate for the second-order nonlinearity and non-uniformity of phase-shifts and is robust up to a 4th harmonic. Experimental results show that the surface shape of a transparent plate could be measured with a precision of 1 nm, over the 120-mm-diameter aperture.

  10. Three-frame generalized phase-shifting interferometry by a Euclidean matrix norm algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Yuanyuan; Wang, Yawei; Ji, Ying; Han, Hao; Jin, Weifeng

    2016-09-01

    Generalized phase-shifting interferometry (GPSI) is one of the most effective techniques in imaging of a phase object, in which phase retrieval is an essential and important procedure. In this paper, a simple and rapid algorithm for retrieval of the unknown phase shifts in three-frame GPSI is proposed. Using this algorithm, the value of phase shift can be calculated by a determinate formula consisting of three different Euclidean matrix norms of the intensity difference between two phase shifted interferograms, and then the phase can be retrieved easily. The algorithm has the advantages of freeing from the background elimination and less computation, since it only needs three phase-shifted interferograms without no extra measurements, the iterative procedure or the integral transformation. The reliability and accuracy of this algorithm were demonstrated by simulation and experimental results.

  11. Phase shifting interferometry using a spatial light modulator to measure optical thin films.

    PubMed

    Villalobos-Mendoza, Brenda; Granados-Agustín, Fermín S; Aguirre-Aguirre, Daniel; Cornejo-Rodríguez, Alejandro

    2015-09-10

    This work describes a process for measuring thin film steps, using phase shifting interferometry (PSI). The phase shifts are applied only in the region where the thin film steps are located. The phase shift is achieved by displaying different gray levels on a spatial light modulator (SLM Holoeye LC2012) placed in one arm of a Twyman-Green (T-G) interferometer. Before measuring the thin film steps, it was necessary to quantify the phase shifts achieved with this SLM by measuring the fringe shifts in experimental interferograms. The phase shifts observed in the interference patterns were produced by displaying the different gray levels on the SLM one by one, from 0 to 255. The experimental interferograms and the thicknesses of the thin film steps were successfully quantified, proving that this method can be used to measure thin films by applying the PSI method only on the region occupied by them. PMID:26368976

  12. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    PubMed

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization. PMID:19582027

  13. An embedded three-dimensional profilometry based on a combination of gray-code and phase shifting method

    NASA Astrophysics Data System (ADS)

    Li, Dong; Tian, Jindong

    2010-11-01

    An embedded three-dimensional (3-D) profilometry system based on a combination of gray-code and phase shifting (GCPS) method is proposed. This system consists of a digital-micromirror-device (DMD) based video projector, a high-speed CCD camera and an embedded digital signal processing hardware system based on DSP. In this technique, seven gray-code patterns and three sinusoidal fringe patterns with 120-deg phase shift are integrated in red, green and blue channels to form four color fringe patterns. When the four color fringe patterns are sent to the DMD based projector without color filter, the previous gray-code patterns and three sinusoidal fringe patterns are repeatedly projected to an object surface in gray-scale sequentially. These fringe patterns deformed by the object surface are captured by a high-speed CCD camera synchronized with the projector. An embedded hardware system is developed for synchronization between the camera and the projector and taking full advantage of DSP parallel processing capability for real-time phase retrieve and 3-D reconstruction. Since the number of projected images of GCPS is reduced from 11 to 4, the measurement speed is enhanced dramatically. Experimental results demonstrated the feasibility of the proposed technique for high-speed 3-D shape measurement.

  14. Selecting the optimal anti-aliasing filter for multichannel biosignal acquisition intended for inter-signal phase shift analysis.

    PubMed

    Keresnyei, Róbert; Megyeri, Péter; Zidarics, Zoltán; Hejjel, László

    2015-01-01

    The availability of microcomputer-based portable devices facilitates the high-volume multichannel biosignal acquisition and the analysis of their instantaneous oscillations and inter-signal temporal correlations. These new, non-invasively obtained parameters can have considerable prognostic or diagnostic roles. The present study investigates the inherent signal delay of the obligatory anti-aliasing filters. One cycle of each of the 8 electrocardiogram (ECG) and 4 photoplethysmogram signals from healthy volunteers or artificially synthesised series were passed through 100-80-60-40-20 Hz 2-4-6-8th order Bessel and Butterworth filters digitally synthesized by bilinear transformation, that resulted in a negligible error in signal delay compared to the mathematical model of the impulse- and step responses of the filters. The investigated filters have as diverse a signal delay as 2-46 ms depending on the filter parameters and the signal slew rate, which is difficult to predict in biological systems and thus difficult to compensate for. Its magnitude can be comparable to the examined phase shifts, deteriorating the accuracy of the measurement. As a conclusion, identical or very similar anti-aliasing filters with lower orders and higher corner frequencies, oversampling, and digital low pass filtering are recommended for biosignal acquisition intended for inter-signal phase shift analysis. PMID:25514627

  15. Calibration of spatially phase-shifted DSPI for measurement of large structures.

    PubMed

    Saif, Babak; Eegholm, Bente Hoffmann; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Blake, Peter; Keski-Kuha, Ritva; North-Morris, Michael

    2007-08-10

    We present a method for the calibration of a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI), which was designed and built for the purpose of testing the James Webb space telescope (JWST) optical structures and related technology development structures. The need to measure dynamic deformations of large, diffuse structures to nanometer accuracy at cryogenic temperature is paramount in the characterization of a large diameter space and terrestrial based telescopes. The techniques described herein apply to any situation, in which high accuracy measurement of diffuse structures are required. The calibration of the instrument is done using a single-crystal silicon gauge. The gauge has four islands of different heights that change in a predictable manner as a function of temperature. The SPS-DSPI is used to measure the relative piston between the islands as the temperature of the gauge is changed. The measurement results are then compared with the theoretical changes in the height of the gauge islands. The maximum deviation of the measured rate of change of the relative piston in nm/K from the expected value is 3.3%. PMID:17694108

  16. Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages

    PubMed Central

    Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.

    2015-01-01

    Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532

  17. Dual-wavelength in-line phase-shifting interferometry based on two dc-term-suppressed intensities with a special phase shift for quantitative phase extraction.

    PubMed

    Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng

    2016-06-01

    To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects. PMID:27244381

  18. Accurate calculation of phase shifts for electron collisions with positive ions

    NASA Astrophysics Data System (ADS)

    Gien, T. T.

    2003-06-01

    The Harris-Nesbet variational method was considered for the calculation of phase shifts of electron collisions with hydrogen-like ions (Li2+, Be3+, and B4+). Calculations were carried out for both singlet and triplet scattering. Very accurate results of phase shift of electron collisions with these ionic targets were obtained for the first time for partial waves of L up to six. The phase shifts that we obtained for low partial wave (S, P, and D) scattering were compared with those available in the literature by a few other research groups employing different numerical methods.

  19. Two-step phase-shifting fringe projection profilometry: intensity derivative approach

    SciTech Connect

    Yang Fujun; He Xiaoyuan

    2007-10-10

    A new two-step phase-shifting fringe projection profilometry is proposed. The slowly variable background intensity of fringe patterns is removed by the use of an intensity differential algorithm. The high-resolution differential algorithm is achieved based on global interpolation of fringe gray level on a subpixel scale. Compared with the traditional three- or four-step phase-shifting method, the profile measurement is sped up with this approach.Computer simulation and experimental performance are evaluated to demonstrate the validity of the proposed measurement method. The experimental results compared with those of the four-step phase-shifting method are presented.

  20. Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections.

    PubMed

    Zhang, Likun; Marston, Philip L

    2016-08-01

    Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation. PMID:27586777

  1. Development of high-precision high-frequency phase-shifting circuit

    NASA Astrophysics Data System (ADS)

    Ye, Shuliang; Song, Jiaying; Zhang, Baowu; Qiu, Jian

    2010-08-01

    Phase-locked frequency multiplying technology is utilized to amplify 10MHz signal to 640MHz. Pulse inhibition method is then exploited to make high-frequency signal have a phase shift of 2π. 20MHz signal with 2π / 32 phase shift is output after 5 times flip frequency division. In order to optimize electromagnetic compatibility, signal integrity and power integrity of a high-speed circuit, system simulation is performed using HyperLynx, a specially EDA simulation software. A whole printed circuit board (PCB) was made under the guide of optimized simulation results. Phase-shift experiments show that the output of high-frequency phase-shifting circuit system is two-way signals with a frequency of 20.0001 MHz with 1.8ns time difference, i.e. two signals with 12.96°phase difference are obtained.

  2. Optical π phase shift created with a single-photon pulse

    PubMed Central

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-01-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing. PMID:27386511

  3. Vehicular motion in 2D city traffic network with signals controlled by phase shift

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Kojima, Kengo; Nagatani, Takashi

    2011-03-01

    We study the dynamic behavior of vehicular traffic through the series of traffic lights controlled by phase shift in two-dimensional (2D) city traffic network. The nonlinear-map model is presented for the vehicular traffic. The city traffic network is made of one-way perpendicular streets arranged in a square lattice with traffic signals where vertical streets are oriented upwards and horizontal streets are oriented rightwards. There are two traffic lights for the movement to north or that to east at each crossing. The traffic lights are controlled by the cycle time, split, and phase shift. The vehicle moves through the series of signals on a path selected by the driver. The city traffic with a heterogeneous density distribution is also studied. The dependence of the arrival time on cycle time, split, phase shift, selected path, and density is clarified for 2D city traffic. It is shown that the vehicular traffic is efficiently controlled by the phase shift.

  4. The phase-shift of isospin-2 pi-pi scattering from lattice QCD

    SciTech Connect

    Jozef J. Dudek, Robert G. Edwards, Michael J. Peardon, David G. Richards, Christopher E. Thomas

    2011-04-01

    Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the L\\"uscher technique. In this letter, as a trial of the method, we report on the extraction of the non-resonant phase-shift for $S$ and $D$-wave $\\pi\\pi$ isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between $400$ and $520$ MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.

  5. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing. PMID:27386511

  6. Phase shift of isospin-2 {pi}{pi} scattering from lattice QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Richards, David G.; Thomas, Christopher E.; Peardon, Michael J.

    2011-04-01

    Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the Luescher technique. In this letter, as a trial of the method, we report on the extraction of the nonresonant phase-shift for S and D-wave {pi}{pi} isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.

  7. Phase-shift, stimuli-responsive drug carriers for targeted delivery

    PubMed Central

    O’Neill, Brian E; Rapoport, Natalya

    2011-01-01

    The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114

  8. A Novel Sample Based Quadrature Phase Shift Keying Demodulator

    PubMed Central

    Ali, Sawal Hamid Md

    2014-01-01

    This paper presents a new practical QPSK receiver that uses digitized samples of incoming QPSK analog signal to determine the phase of the QPSK symbol. The proposed technique is more robust to phase noise and consumes up to 89.6% less power for signal detection in demodulation operation. On the contrary, the conventional QPSK demodulation process where it uses coherent detection technique requires the exact incoming signal frequency; thus, any variation in the frequency of the local oscillator or incoming signal will cause phase noise. A software simulation of the proposed design was successfully carried out using MATLAB Simulink software platform. In the conventional system, at least 10 dB signal to noise ratio (SNR) is required to achieve the bit error rate (BER) of 10−6, whereas, in the proposed technique, the same BER value can be achieved with only 5 dB SNR. Since some of the power consuming elements such as voltage control oscillator (VCO), mixer, and low pass filter (LPF) are no longer needed, the proposed QPSK demodulator will consume almost 68.8% to 99.6% less operational power compared to conventional QPSK demodulator. PMID:25197687

  9. Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme

    NASA Astrophysics Data System (ADS)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2016-08-01

    We describe a Bragg grating with a phase shift section and a sampled grating scheme that converts input polarization to orthogonal polarization. A very narrow polarization-independent wavelength peak can be generated by phase shift structures and polarization-independent multiple diffraction peaks by sampled gratings. The characteristics of the device were examined by transfer matrix and finite-difference time-domain methods.

  10. Phase-shift measurments for second-harmonic generation in glass

    NASA Astrophysics Data System (ADS)

    Dominic, Vincent G.; Feinberg, Jack

    1993-12-01

    Focusing intense laser light along with some of its second harmonic into a glass sample transforms the glass into a frequency doubler. We present a new method to measure the optical phase shift between the second-harmonic beam used to seed the glass and the second- harmonic beam subsequently produced by the glass sample. Determination of this phase shift is essential for understanding the growth dynamics of the effect, and its value can discriminate between proposed theoretical models.

  11. Error analysis of the phase-shifting technique when applied to shadow moire

    SciTech Connect

    Han, Changwoon; Han Bongtae

    2006-02-20

    An exact solution for the intensity distribution of shadow moire fringes produced by a broad spectrum light is presented. A mathematical study quantifies errors in fractional fringe orders determined by the phase-shifting technique, and its validity is corroborated experimentally. The errors vary cyclically as the distance between the reference grating and the specimen increases. The amplitude of the maximum error is approximately 0.017 fringe, which defines the theoretical limit of resolution enhancement offered by the phase-shifting technique.

  12. Phase shifts to light are altered by antagonists to neuropeptide receptors.

    PubMed

    Chan, Ryan K; Sterniczuk, Roxanne; Enkhbold, Yaruuna; Jeffers, Ryan T; Basu, Priyoneel; Duong, Bryan; Chow, Sue-Len; Smith, Victoria M; Antle, Michael C

    2016-07-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is a heterogeneous structure. Two key populations of cells that receive retinal input and are believed to participate in circadian responses to light are cells that contain vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). VIP acts primarily through the VPAC2 receptor, while GRP works primarily through the BB2 receptor. Both VIP and GRP phase shift the circadian clock in a manner similar to light when applied to the SCN, both in vivo and in vitro, indicating that they are sufficient to elicit photic-like phase shifts. However, it is not known if they are necessary signals for light to elicit phase shifts. Here we test the hypothesis that GRP and VIP are necessary signaling components for the photic phase shifting of the hamster circadian clock by examining two antagonists for each of these neuropeptides. The BB2 antagonist PD176252 had no effect on light-induced delays on its own, while the BB2 antagonist RC-3095 had the unexpected effect of significantly potentiating both phase delays and advances. Neither of the VIP antagonists ([d-p-Cl-Phe6, Leu17]-VIP, or PG99-465) altered phase shifting responses to light on their own. When the BB2 antagonist PD176252 and the VPAC2 antagonist PG99-465 were delivered together to the SCN, phase delays were significantly attenuated. These results indicate that photic phase shifting requires participation of either VIP or GRP; phase shifts to light are only impaired when signalling in both pathways are inhibited. Additionally, the unexpected potentiation of light-induced phase shifts by RC-3095 should be investigated further for potential chronobiotic applications. PMID:27090819

  13. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  14. Simultaneous phase-shifting interferometry: immune to azimuth error of fast-axes in retarder array.

    PubMed

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Gu, Chenfeng; Zhu, Wenhua; Han, Zhigang

    2015-11-20

    Simultaneous phase-shifting interferometry based on a 2×2 retarder array with random fast-axes (RARF-SPSI) is proposed for real-time wavefront measurements. The retarder array is used as the phase-shift component, where the phase retardances are π/2, π, 3π/2, and 2π and the four fast-axes of the four retarders can be somewhat random. In this paper, the mathematical model of RARF-SPSI is built by using a Stokes vector and a Mueller matrix, the phase demodulation method through solving equations is derived, and the coefficient matrix of the equations that is associated with the azimuth of the fast-axes is calculated by Fourier analysis. Then the corresponding simulation analysis is executed. In the experiment, four simultaneous phase-shifting interferograms are captured and the phase distribution under test is demodulated through the proposed method. Compared with the four-bucket phase-shifting algorithm adopted in traditional simultaneous phase-shifting interferometry, the ripple error is suppressed well. The advantage of the proposed RARF-SPSI is that there is no need to calibrate the fast-axes of the phase-shift component before measuring; in other words, the phase demodulation error caused by the azimuth error of fast-axes is eliminated. PMID:26836541

  15. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double Electron Electron Resonance (DEER)†

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  16. Aplication of Phase Shift Projection Moire Technique in Solid Surfaces Topographic Survey

    NASA Astrophysics Data System (ADS)

    Lino, A. C. L.; Dal Fabbro, I. M.; Enes, A. M.

    2008-04-01

    The application of projection moiré with phase shift techniques in vegetable organs surface topography survey had to step up basic procedures before reaching significant conclusions. As recommended by [1], the proposed method should be tested on virtual surfaces [1] before being carried on solid symmetric surfaces [2], followed by tests on asymmetric surfaces as fruits [3] and finally a generation of a 3D digital models of solid figures as well as of fruits [4]. In this research, identified as the step [2], tested objects included cylinders, cubes and spheres. In this sense a Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface instead of being virtually distorted, receiving the name of Gd. The difference between Gd and G1, G2, G3, and G4 followed by filtration generated the moiré fringes M1, M2, M3 and M4 respectively. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Final representations in gray levels as well as in contour lines showed the topography of the deformed grid Gd. Parallel line segments were projected onto moiré generated surface images to evaluate the approximation to the real surface. Line segments images were then captured by means of the ImageJ software and the corresponding curve fitting obtained. The work conclusions included the reliability of the proposed method in surveying solid figures shape.

  17. Quantum Process Tomography of a Room Temperature Optically-Controlled Phase Shift

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Rind, Samuel; Figueroa, Eden; Stony Brook University Team

    2015-05-01

    We have developed a room temperature setup capable of optically controlled phase shifts on a weak probe field. Our system is realized in a vapor of 87Rb atoms under the conditions of electromagnetically induced transparency utilizing a N-type energy level scheme coupled by three optical fields. By varying the power of the signal field, we can control the size of an optical phase shift experienced by weak coherent state pulses of < n > ~ 1 , propagating through the vapor. We quantify the optical phase shift by measuring the process output via balanced homodyne tomography which provides us with the complete quadrature and phase information of the output states. Furthermore, we measure the output for a set of states over a subspace of the coherent state basis and gain the information to completely reconstruct our phase shift procedure by coherent state quantum process tomography. The reconstruction yields a rank-4 process superoperator which grants the ability to predict how our phase shift process will behave on an arbitrary quantum optical state in the mode of the reconstruction. Our results demonstrate progress towards room temperature systems for possible quantum gates; a key component of a future quantum processor designed to operate at room temperature. US-Navy Office of Naval Research N00141410801, National Science Foundation PHY-1404398, Natural Sciences and Engineering Research Council of Canada.

  18. Three-frame self-calibration phase shift algorithm using the Gram-Schmidt orthonormalization approach.

    PubMed

    Du, Hubing; Gao, Honghong

    2016-08-20

    Affected by the height dependent effects, the phase-shifting shadow moiré can only be implemented in an approximate way. In the technique, a fixed phase step around π/2 rad between two adjacent frames is usually introduced by a grating translation in its own plane. So the method is not flexible in some situations. Additionally, because the shadow moiré fringes have a complex intensity distribution, computing the introduced phase shift from the existing arccosine function or arcsine function-based phase shift extraction algorithm always exhibits instability. To solve it, we developed a Gram-Schmidt orthonormalization approach based on a three-frame self-calibration phase-shifting algorithm with equal but unknown phase steps. The proposed method using the arctangent function is fast and can be implemented robustly in many applications. We also do optical experiments to demonstrate the correction of the proposed method by referring to the result of the conventional five-step phase-shifting shadow moiré. The results show the correctness of the proposed method. PMID:27556993

  19. Melamine detection using phase-shift fiber-loop ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Wang, Xinhui; Chen, Ke; Mao, Xuefeng; Peng, Wei; Yu, Qingxu

    2014-12-01

    Melamine is an illegal adulteration in milk, infant formula and pet food. Its misuse is toxic to humans and animals, so rapid and reliable screening methods for melamine detection are essential. In this paper, a phase-shift fiber-loop ring-down spectroscopy (PS-FLRDS)-based system is developed and evaluated for the detection and quantification of melamine. In the PS-FLRDS technique, an intensity-modulated continuous-wave (CW) laser is used as the light source, and a phase shift between the incident and emitted light of the fiber loop is introduced due to losses caused by the fiber loop and absorbing sample. By measuring this phase shift, one can readily obtain the concentration information of the measured species. Phase shifts of melamine solutions with different concentrations are measured and the experimental results show that there is a good linear relationship between the phase shift and the melamine concentration in low concentration range and a detection limit of 0.03 mg/mL has been achieved.

  20. Temperature effects in the modal phase shift of a weakly guiding fiber

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Temperature may be determined by monitoring the modal phase shift of an optical fiber. We present the results of a numerical model that has been developed to calculate the phase shift of a weakly guiding optical fiber due to thermal strain. Whenever an optical fiber is subjected to temperature changes, the optical path length, the index of refraction and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)L, of the fields is also modified. A relationship for the modal phase shift is presented. This relation is applied to both single mode and two-mode fibers in order to determine the sensitivity characteristics of fibers that are subjected to temperature changes.

  1. Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble.

    PubMed

    Liao, Changrui; Xu, Lei; Wang, Chao; Wang, D N; Wang, Yiping; Wang, Qiao; Yang, Kaiming; Li, Zhengyong; Zhong, Xiaoyong; Zhou, Jiangtao; Liu, Yingjie

    2013-11-01

    We present a type of phase-shifted fiber Bragg gratings based on an in-grating bubble fabricated by femtosecond (fs) laser ablation together with a fusion-splicing technique. A microchannel vertically crossing the bubble is drilled by fs laser to allow liquid to flow in or out. By filling different refractive index (RI) liquid into the bubble, the phase-shift peak is found to experience a linear red shift with the increase of RI, while little contribution to the change of phase shift comes from the temperature and axial strain. Therefore, such a PS-FBG could be used to develop a promising tunable optical filter and sensor. PMID:24177122

  2. Frequency domain phase retrieval of simultaneous multi-wavelength phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Yin, Zhenxing; Zhong, Liyun; Xu, Xiaofei; Zhang, Wangping; Tian, Jindong; Lu, Xiaoxu

    2016-05-01

    In simultaneous multi-wavelength phase-shifting interferometry, we propose a novel frequency domain phase retrieval (FDPR) algorithm. First, using only a one-time phase-shifting operation, a sequence of simultaneous multi-wavelength phase-shifting interferograms (SPSMWIs) are captured by a monochrome charge-coupled device. Second, by performing a Fourier transform for each pixel of SPSMWIs, the wrapped phases of each wavelength can be retrieved from the complex amplitude located in the spectral peak of each wavelength. Finally, the phase of the synthetic wavelength can be obtained by the subtraction between the wrapped phases of a single wavelength. In this study, the principle and the application condition of the proposed approach are discussed. Both the simulation and the experimental result demonstrate the simple and convenient performance of the proposed FDPR approach.

  3. Phase error analysis and compensation for phase shifting profilometry with projector defocusing.

    PubMed

    Zheng, Dongliang; Da, Feipeng; Kemao, Qian; Seah, Hock Soon

    2016-07-20

    Phase shifting profilometry (PSP) using binary fringe patterns with projector defocusing is promising for high-speed 3D shape measurement. To obtain a high-quality phase, the projector usually requires a high defocusing level, which leads to a drastic fall in fringe contrast. Due to its convenience and high speed, PSP using squared binary patterns with small phase shifting algorithms and slight defocusing is highly desirable. In this paper, the phase accuracies of the classical phase shifting algorithms are analyzed theoretically, and then compared using both simulation and experiment. We also adapt two algorithms for PSP using squared binary patterns, which include a Hilbert three-step PSP and a double three-step PSP. Both algorithms can increase phase accuracy, with the latter featuring additional invalid point detection. The adapted algorithms are also compared with the classical algorithms. Based on our analysis and comparison results, proper algorithm selection can be easily made according to the practical requirement. PMID:27463929

  4. Redshift controversy in atom interferometry: representation dependence of the origin of phase shift.

    PubMed

    Schleich, Wolfgang P; Greenberger, Daniel M; Rasel, Ernst M

    2013-01-01

    Motivated by the recent debate on whether the Kasevich-Chu atom interferometer can measure the gravitational redshift, we show that in different representations of quantum mechanics chosen for the calculation, the observed phase shift appears as though it originates from different physical phenomena. In particular, we demonstrate that the decomposition of the total phase shift into three dynamical phases, which emerges in a semiclassical approach and is at the very heart of the redshift controversy, does not appear in an exact treatment based on a representation-free analysis. Here only two phenomena determine the phase shift: the difference of the laser phases and the acceleration of the atom. Hence, the Kasevich-Chu interferometer is an accelerometer or gravimeter. PMID:23383761

  5. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    SciTech Connect

    Perreault, John D.; Cronin, Alexander D.

    2005-09-23

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm.

  6. Optical Pi Phase Shift Created with a Single-Photon Pulse

    NASA Astrophysics Data System (ADS)

    Schmidt, Steffen; Tiarks, Daniel; Dürr, Stephan; Rempe, Gerhard

    2016-05-01

    A deterministic photon-photon quantum-logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of pi onto another light field. Here we experimentally demonstrate the generation of such a pi phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a pi phase shift for a second light pulse which propagates through the medium. This demonstrates the crucial step towards a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  7. Separation of electrostatic and magnetic phase shifts using a modified transport-of-intensity equation.

    PubMed

    Humphrey, E; Phatak, C; Petford-Long, A K; De Graef, M

    2014-04-01

    We introduce a new approach for the separation of the electrostatic and magnetic components of the electron wave phase shift, based on the transport-of-intensity equation (TIE) formalism. We derive two separate TIE-like equations, one for each of the phase shift components. We use experimental results on FeCoB and Permalloy patterned islands to illustrate how the magnetic and electrostatic longitudinal derivatives can be computed. The main advantage of this new approach is the fact that the differences in the power spectra of the two phase components (electrostatic phase shifts often have significant power in the higher frequencies) can be accommodated by the selection of two different Tikhonov regularization parameters for the two phase reconstructions. The extra computational demands of the method are more than compensated by the improved phase reconstruction results. PMID:24513573

  8. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  9. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Sivakumar, N. R.; Tan, B.; Venkatakrishnan, K.

    2006-01-01

    In-process measurement has been the requirement of the precision industries, but due to vibrations while manufacturing, in-process measurement has been difficult to achieve. There is little work on in-process measurement using phase shifting interferometry, as phase shifting is extremely sensitive to vibrations. In this work, the advantage of the developed non-mechanical and instantaneous phase shifting interferometry is felt while measuring surface profile of large flat surfaces under vibrating conditions which can be extended for in-process measurement of surface profile. A near common path optical configuration is achieved and the effect of the environment is reduced. Moreover, the measurement of phase is instantaneous which increases the versatility of this technique for measuring vibrating objects. Profile measurements were carried out on a smooth mirror surface excited with vibrations of different frequencies and the technique was found to be immune to vibrations of up to 1000 Hz.

  10. Transverse spatial phase-shifting method used in vibration-compensated interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Zhu, Ri-Hong; Chen, Lei; Li, Jin-Yun

    Based on the conception of temporal phase-shifting interferometry, we have developed a novel technique named transverse spatial phase-shifting method. Only using four photoelectric detectors with a certain spatial array, the method can directly detect wavefront phase variation due to external vibrations. As soon as wavefront variation was determined, some feedback control could be put on interferometer to compensate the vibrations. This method was applied to a Twyman-Green phase-shifting interferometer in which an adaptive vibration-compensated system has been built, it calibrated wavefront phase in real time by a piezoelectric transducer used as both wavefront phase shifter and vibration feedback device, thus fringe pattern could be stabilized and the optical testing would be carried out. Some experimental results were presented.

  11. Filter-less frequency-doubling microwave signal generator with tunable phase shift

    NASA Astrophysics Data System (ADS)

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin

    2016-07-01

    A prototype for frequency-doubling microwave signal generator with tunable phase shift based on a filter-less architecture is proposed and analyzed. In the proposal, one dual parallel polarization modulator is used as the key component to generate two ±1st order sidebands along the orthogonal polarization directions with suppressed carrier. Then the polarization states of the two sidebands are aligned with the principal axes of an electro-optical phase modulator (EOPM). Tunable phase shift is implemented by controlling the direct current voltage applied to the EOPM. Without using any filters or wavelength-dependent components, the system possesses good frequency tunability and it can be applied to multi-wavelength operation. Taking advantage of the ability of frequency multiplication, the frequency tuning range can be wider than the operation bandwidth of the modulator. By theoretical analyses and simulated verifications, a frequency-doubling microwave signal ranging from 22 to 40 GHz with full range phase shift is achieved.

  12. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  13. Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film

    NASA Astrophysics Data System (ADS)

    Hou, Yong-Qiang; Li, Xu; He, Kai; Qi, Hong-Ji; Yi, Kui; Shao, Jian-Da

    2013-01-01

    Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300-1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented.

  14. Non-Relativistic Phase Shifts for Scattering on Generalized Radial Yukawa Potentials

    NASA Astrophysics Data System (ADS)

    O. J., Oluwadare; K. E., Thylwe; K. J., Oyewumi

    2016-04-01

    Non-relativistic phase shifts for a generalized Yukawa potential V(r) = ‑ V0(e‑αr/r) ‑ V1(e‑2αr/r2) are studied by the amplitude-phase method and by a frequently used analytic method based on a Pekeris-type approximation of power-law potential terms. Small variations of V1 seem to have marginal effects on the effective potential and on exact phase shifts. However, as pointed out in this study, a Pekeris-type approximation in scattering applications often implies serious distortions of both effective potentials and phase shifts. The Pekeris-type based analytic approximation in this study seems to give low-quality scattering results for this model potential at low energies.

  15. Improved phase-shifting method for automatic processing of moiré deflectograms.

    PubMed

    Canabal, H; Quiroga, J A; Bernabeu, E

    1998-09-10

    An improved moiré deflectometry phase-shifting technique is presented. A squared grating is used to multiplex the information of the deflections in two orthogonal directions in one image. This procedure avoids the need to rotate the gratings to obtain complete deflection information. However, the use of these gratings makes impossible the application of standard phase-shifting algorithms. Specifically, the problems associated with the nonsinusoidal profile of the moiré fringes and the low-modulation areas produced by the square gratings are solved. A modified moiré deflectometry phase-shifting method is designed to deal with these problems. In addition, a method to obtain the zero order of the prismatic effect is developed. The technique configures a complete and automatic method of mapping ray deflections. From them the refractive power maps can be derived. Experimental results obtained with a progressive-addition lens are shown. PMID:18286121

  16. Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd

    2010-01-01

    SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion

  17. Study on the phase shift characteristic of the pneumatic Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wu, Yi Nong; Zhang, Hua; Chen, Nan

    2009-03-01

    Due to entire pneumatic connection between free piston and free displacer, the motion parameters of them including amplitude and phase shift can actually impact the cooling capacity and overall performance of cryocooler obviously. In this study, the procedure of design and manufacture pneumatic free piston and free displacer (FPFD) Stirling cryocooler had firstly been described in details. Then in order to accomplish study, the experimental bench has been set up based on 80 K@1 W Stirling cryocooler. The effect of the thermodynamic and pneumatic parameters including charging pressure, natural frequency of displacer, damping coefficient of displacer, working frequency on the pressure, displacement and displacer phase shift has been investigated, respectively by means of experimental and theoretical method. In particular, the variation of damping is realized by adjusting the width of clearance cut on the additional damping component, which is screwed on the displacer rod. Similarly, natural frequency of displacer is changed by the extra mass connected on the displacer. Due to the results of experimental study, the optimum working conditions of this Stirling cryocooler for 80 K cold tip temperature are as follows: charge pressure 15 bar, natural frequency of displacer 46 Hz, width of clearance 300 μm and working frequency 43 Hz. In agreement with the optimum working conditions, neighborhood interval of 90° is the ideal working domain for displacement phase shift. Meanwhile, the displacer phase shift should approach to 0°as near as possible and pressure phase shift should also be as small as possible, which have linear relation with non-dimensional damping characteristic of compressor. In view of theoretical study, the expressions of three phase shifts deduced from thermodynamic equation of piston and displacer respectively are expressed as the functions of working parameters, which are verified by the experimental data and consequently can be used as the powerful

  18. Phase-shifted assist feature OPC for sub-45-nm node optical lithography

    NASA Astrophysics Data System (ADS)

    Yoon, Gi-Sung; Kim, Hee-Bom; Lee, Jeung-Woo; Choi, Seong-Woon; Han, Woo-Sung

    2007-03-01

    Hyper numerical aperture (NA) implemented in immersion exposure system makes the semiconductor business enable to enter sub-45nm node optical lithography. Optical proximity correction(OPC) utilizing SRAF has been an essential technique to control critical dimension (CD) and to enhance across pitch performance in sub-wavelength lithography. Mask lithography, however, is getting more challenging with respect to patterning and processing sub-resolution assist features (SRAFs): the higher aspect ratio of mask structure, the more vulnerable. Mask manufacturing environment for DRAM and Flash becomes harsher mainly due to mask patterning problem especially pattern linearity, which causes pattern broken, inspection issue, and finally CD issue on wafer. When a pattern in relatively isolated pitches has small or large assist features, the assist features may bring unexpected CD or print on wafer. A frequency-preserving assist bar solution is the most preferred one, but it is difficult to realize for opaque assist features due to printability. In this paper, we propose a new type assist feature dubbed "Phase-shifted Assist Bar" to improve process window and to solve the resolution constraint of mask at sub-45nm manufacturing process node. The concept of phase-shift assist bar is applying phase-shift to SRAF realized with trench structure on general mask, such as Binary and Attenuated Phase-Shifted Mask (Att.PSM). The characteristics of phase-shift assist bar are evaluated with rigorous 3D lithography simulation and analyzed through verification mask, which is containing hugely various size and placement of main and assist feature. The analysis of verification mask has been done with aerial image verification tool. This work focuses on the performance of phase-shift assist bar as a promising OPC technique for "immersion era" in terms of resolution enhancement technique, optical proximity correction, and patterning on mask.

  19. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  20. Envelope solitary waves exist and collide head-on without phase shift in a dusty plasma

    PubMed Central

    Zhang, Heng; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2015-01-01

    The rarefactive KdV solitary waves in a dusty plasma have been extensively studied analytically and found experimentally in the previous works. Though the envelope solitary wave described by a nonlinear Schrödinger equation (NLSE) has been proposed by using the reductive perturbation method, it is first verified by using the particle-in-cell (PIC) numerical method in this paper. Surprisingly, there is no phase shift after the head on collision between two envelope solitary waves, while it is sure that there are phase shifts of two colliding KdV solitary waves after head on collision. PMID:26383642

  1. Envelope solitary waves exist and collide head-on without phase shift in a dusty plasma.

    PubMed

    Zhang, Heng; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2015-01-01

    The rarefactive KdV solitary waves in a dusty plasma have been extensively studied analytically and found experimentally in the previous works. Though the envelope solitary wave described by a nonlinear Schrödinger equation (NLSE) has been proposed by using the reductive perturbation method, it is first verified by using the particle-in-cell (PIC) numerical method in this paper. Surprisingly, there is no phase shift after the head on collision between two envelope solitary waves, while it is sure that there are phase shifts of two colliding KdV solitary waves after head on collision. PMID:26383642

  2. Femtosecond inscription of phase-shifted gratings by overlaid fiber Bragg gratings.

    PubMed

    Shamir, Avishay; Ishaaya, Amiel A

    2016-05-01

    Two slightly shifted gratings are inscribed, one over the other, in an SMF fiber with a femtosecond laser and a phase mask. The transmission spectrum of the complex structure is similar to that of a phase-shifted grating; yet, the fabrication process is fast and simple compared to standard methods. High-quality semi-phase-shifted gratings with -24  dB transmission loss and <100  pm transmission bandwidth are presented. Their application as highly narrow micro-resonators and notch filters seems feasible. PMID:27128063

  3. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error. PMID:27534475

  4. Wideband signal upconversion and phase shifting based on a frequency tunable optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Shifeng; Zhu, Dan; Pan, Shilong

    2014-03-01

    A wideband signal upconversion and phase shifting scheme based on a frequency tunable optoelectronic oscillator (OEO) are proposed and demonstrated. The OEO performs simultaneously tunable high-quality local oscillator (LO) signal generation, wideband frequency upconversion, and phase shifting within the whole 2π range. With the generated LO tuning from 9.549 to 11.655 GHz, wideband square signals are successfully upconverted to the X band. The phase of the upconverted signal is tuned from 0 to 360 deg. The phase noise of the oscillation signal is about -104 dBc/Hz at 10 kHz offset with or without the injected baseband signal.

  5. The coating design of phase-shifting reflector array with high reflectance and specified reflection phase shifts for static Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Hui; Wang, Yijun

    2016-02-01

    The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.

  6. Accuracy enhancement of three-dimensional reconstruction using phase-shifting shadow moiré

    NASA Astrophysics Data System (ADS)

    Jamali Avilagh, Ali; Rezaie, Amir Hossein

    2013-04-01

    An iterative algorithm and a denoising method for accuracy enhancement of three-dimensional (3-D) reconstruction processes by shadow moiré is proposed. Using traditional shadow moiré for 3-D reconstruction leads to a nonuniform phase shift error. The proposed iterative algorithm eliminates this error by using three phase-shifted interferograms and obtains precise phase information. Moreover the proposed denoising method, which is based on undecimated wavelet transform, effectively eliminates noise and grating patterns while retaining useful information. The proposed phase shifting shadow moiré method is compared with the structured lighting method, which is a common method for 3-D reconstruction, and it is further compared with traditional shadow moiré. The methods are simulated in a 3ds-Max environment. The simulation results show that the proposed shadow moiré technique achieves greater accuracy in comparison with the traditional shadow moiré and structured lighting techniques and also it has higher accuracy than existing typical phase-shifting algorithms.

  7. A Phase Shift Demodulation Technique: Verification and Application in Fluorescence Phase Based Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Jia, Chuanwu; Chang, Jun; Wang, Fupeng; Jiang, Hao; Zhu, Cunguang; Wang, Pengpeng

    2016-06-01

    A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.

  8. Experimental and numerical investigations of the phase-shift effect in capacitively coupled discharges

    SciTech Connect

    Gao, Fei; Zhang, Yu-Ru; Zhao, Shu-Xia; Wang, You-Nian

    2014-08-15

    The phase-shift effect has been investigated by a Langmuir probe and a fluid model in Ar capacitively coupled plasmas at 50 mTorr. In the discharge, two sources with the same frequency, i.e., 27.12 MHz, are applied on the top and bottom electrodes simultaneously, and the phase shift between them varies from 0 to π. It is found that the electron density has an off-axis peak near the radial edge when the phase difference is equal to 0 due to the electrostatic edge effect, and the best radial uniformity is observed at a phase difference equal to π. Furthermore, when the voltage increases, the best radial uniformity is obtained at lower phase shift values. Moreover, the electron energy probability function has a bi-temperature structure at all the selected phase differences at r = 1–15 cm. The evolution of the plasma characteristics with the phase difference implies that the best radial uniformity can be obtained, by balancing the electrostatic edge effect and the phase shift effect.

  9. Phase shifts and wave-packet displacements in neutron interferometry and a nondispersive, nondefocusing phase shifter

    SciTech Connect

    Lemmel, Hartmut; Wagh, Apoorva G.

    2010-09-15

    A phase shifter in neutron interferometry creates not only a phase shift but also a spatial displacement of the neutron wave packet, leading to a reduced interference contrast. This wave-packet displacement constitutes a major hindrance in measuring large phase shifts. Here we present a nondispersive configuration with two identical phase shifters placed on one path in successive gaps of a symmetric triple Laue (LLL) interferometer. As compared to a single phase shifter, the dual phase shifter generates double the phase shift, yet a net null displacement of the wave packet. The interferometer thus remains fully focused however large the phase shift or the incident wavelength spread, permitting a white incident neutron beam as in the case of a purely topological phase measurement. Misalignment angles of a monolithic nondispersive dual phase shifter are equal and opposite in the two gaps. Its phase therefore remains nondispersive over a much wider angular range and attains a minimum magnitude at the correct orientation, obviating the need to alternate the phase shifter between the two interferometer paths during its alignment. The setup is hence ideally suited for measuring neutron coherent scattering lengths to ultrahigh precision.

  10. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  11. Phase-integral calculation of phase shifts for a heavy-ion optical potential

    SciTech Connect

    Linnaeus, S.

    1986-10-01

    Phase shifts for an optical potential representing the nuclear scattering of /sup 18/O by /sup 58/Ni at 60 MeV laboratory energy are calculated by means of an arbitrary-order phase-integral formula taking account of two turning points. The results are found to be in excellent agreement with previously published numerical calculations.

  12. Potential energy function information from quantum phase shift using the variable phase method.

    PubMed

    Lemes, Nelson H T; Braga, João P; Alves, Márcio O; Costa, Éderson D'M

    2014-07-01

    The present work discusses quantum phase shift sensitivity analysis with respect to the potential energy function. A set of differential equations for the functional derivative of the quantum phase shift with respect to the potential energy function was established and coupled with the variable phase equation. This set of differential equations provides a simple, exact and straightforward way to establish the sensitivity matrix. The present procedure is easier to use than the finite difference approach, in which several direct problems have to be addressed. Furthermore, integration of the established equations can be used to demonstrate how the sensitivity phase shift is accumulated as a function of the interatomic distance. The potential energy function was refined to produce a better quality function. The average error on the phase shift decreased from 9.8% in the original potential function to 0.13% in the recovered potential. The present procedure is an important initial step for further work towards recovering potential energy functions in upper dimensions or to recovering this function from cross sections. PMID:24935112

  13. 12C+ 12C elastic scattering excitation functions and phase shift analysis

    NASA Astrophysics Data System (ADS)

    Ledoux, R. J.; Bechara, M. J.; Ordonez, C. E.; Al-Juwair, H. A.; Cosman, E. R.

    1983-03-01

    The 12C+ 12C elastic scattering has been measured for Ec.m.=14.6-31.3 MeV, θc.m.=30°-110°. The elastic data have been analyzed via a phase shift analysis, enabling the extraction of model independent sets of phase shift parameters. The extracted Jπ values for the intermediate structure resonances at Ec.m.=18.4, 19.3, and 20.3 MeV are 12+, 12+, and 12+ or 14+, respectively. The questions of ambiguities in the phase shift analysis and the comparison with Jπ values deduced from other experiments are discussed. Evidence is presented for the existence of gross structure resonances. The elastic scattering has also been analyzed using the sum-of-differences method to directly extract the total reaction cross section. The results of these analyses are compared to existing models of the origin of intermediate structure resonances. NUCLEAR REACTIONS Measured the 12C+ 12C elastic scattering, Ec.m.=14.6-31.3 MeV, θc.m.=30°-110°. Phase shift analysis, sum-of-differences analysis.

  14. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses

    SciTech Connect

    Alekseev, A E; Vdovenko, V S; Sergachev, I A; Simikin, D E; Gorshkov, B G; Potapov, V T

    2014-10-31

    We report a new method for reconstructing the signal shape of the external dynamic perturbations along the entire length of the fibre of an optical coherence reflectometer. The method proposed is based on differential phase-shift keying of a probe pulse and demodulation of scattered light by the phase diversity technique. Possibilities of the method are demonstrated experimentally. (fibre-optic sensors)

  15. Differential-phase-shift quantum key distribution with segmented pulse trains

    SciTech Connect

    Kawahara, Hiroki; Inoue, Kyo

    2011-06-15

    We present a modified scheme of differential-phase-shift (DPS) quantum key distribution (QKD) for improving its performance. A transmitter sends a weak coherent pulse train segmented with vacant pulses. Then, a receiver can find eavesdropping by monitoring the photon detection rate at particular time slots. Simulations show that the proposed scheme is robust against a sequential attack and a general individual attack.

  16. Exact analysis of a balanced receiver for differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Ho, Keang-Po

    2007-03-01

    The performance of differential phase-shift keying signals with a balanced receiver is exactly analyzed by using a closed-form expression without approximation. The numerical results are well matched with previous results based on the saddle-point approximation. The error probability is calculated exactly using the well-known Marcum Q function.

  17. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGESBeta

    Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enoughmore » to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2/Λχ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  18. Quantum displacement receiver for M-ary phase-shift-keyed coherent states

    SciTech Connect

    Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide; Pozza, Nicola Dalla; Assalini, Antonio

    2014-12-04

    We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.

  19. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

    NASA Astrophysics Data System (ADS)

    You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen

    2016-03-01

    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.

  20. Supersymmetry-generated jost functions and nucleon–nucleon scattering phase shifts

    SciTech Connect

    Bhoi, J. Laha, U.

    2015-10-15

    By exploiting the supersymmetry-inspired factorization method higher partial wave Jost solutions and functions for nuclear Hulthen potential are constructed from the knowledge of the ground state wave function. As a case study the nucleon–nucleon scattering phase shifts are computed for partial waves ℓ = 0, 1, and 2.

  1. Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy

    SciTech Connect

    Jia Peirong; Kofman, Jonathan; English, Chad

    2007-06-01

    We present new extensions of the two-step, triangular-pattern phase-shifting method for different numbers of phase-shifting steps to increase measurement accuracy and to analyze the influence of the number of phase-shifting steps and pitch of the projected triangular intensity-profile pattern on the measurement accuracy. Phase-shifting algorithms to generate the intensity ratio, essential for surface reconstruction, were developed for each measurement method. Experiments determined that higher measurement accuracy can be obtained with a greater number of phase-shifting steps and a lower value of pitch, as long as the pitch is appropriately selected to be divisible by the number of phase-shifting steps and not below an optimal value, where intensity-ratio unwrapping failure would occur.

  2. All-optical logic gates based on cross phase modulation effect in a phase-shifted grating.

    PubMed

    Li, Qiliang; Song, Junfeng; Chen, Xin; Bi, Meihua; Hu, Miao; Li, Shuqin

    2016-09-01

    In this paper, we perform a theoretical study of the all-optical logic gates based on the techniques of cross phase modulation (XPM) in a phase-shifted grating. Here the pumps are used to control the switching of a weak continuous wave (cw). In order to understand the transferring process of the information from the pump light to the cw light, we first study the switching characteristic of the device. Then, by changing the combination between two pumps, in a fiber grating with zero phase shift we have realized NOT, AND, and NAND gates, and in a phase-shifted grating with the phase shift π, the other various logic operations can be realized such as NAND gates and OR gates; when selecting Δφ=3/2π, we can realize XOR gates and XNOR gates. Thus the change of the phase shift of the phase-shifted grating will yield various logic gates. PMID:27607262

  3. Security enhanced optical one-time password authentication method by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jeong, Jong Rae

    2015-03-01

    We propose a new optical one-time password(OTP) authentication method by using digital holography, which enhances security strength in the cryptosystem compared to the conventional electronic OTP method. In this paper, a challenge-response optical OTP authentication based on two-factor authentication is presented by 2-step quadrature phase-shifting digital holography using orthogonal polarization, and two-way authentication is also performed using the challenge-response handshake in both directions. The ID (identification), PW (password) and OTP information are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted information are verified each other by the shared key. Because the encrypted digital holograms which are transmitted to the other party are expressed as random distribution, it guards against a replay attack and results in higher security level. Optically, encrypted digital hologram in our method is Fourier transform hologram and is recorded on CCD with 256 gray-level quantized intensities. The proposed method has an advantage that it does not need a time-synchronized OTP and can be applied to various security services. Computer experiments show that the proposed method is suitable for high secure OTP authentication.

  4. Assessment of a Single-Shot Pixelated Phase-Shifting Interferometer Utilizing a Liquid Crystal Spatial Light Modulator

    SciTech Connect

    Baker, K L; Stappaerts, E A

    2005-10-01

    This article introduces a novel phase shifting pixelated interferometer based on a liquid crystal spatial light modulator and simulates the expected performance. The phase shifted frames are captured simultaneously which reduces the problems arising from vibrations and air turbulence. The liquid crystal spatial light modulator is very flexible and can be configured to provide a large number of phase shift levels and geometries to reduce the measurement error.

  5. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  6. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects [review article

    NASA Astrophysics Data System (ADS)

    McManus, John W.; Polsenberg, Johanna F.

    2004-02-01

    This paper briefly reviews coral-algal phase shifts on coral reefs, with particular regard to summarizing the exogenous and endogenous factors in support of a proposed conceptual model, and to identifying critical information gaps. A phase shift occurs on a coral reef when the cover of a substrate by scleractinian corals is reduced in favor of macroalgal dominance, and resilience of the former condition is retarded because of ecological processes and/or environmental conditions. The change is often, but not always, associated with a perturbation such as coral bleaching, outbreaks of a coral-eating species, or storm damage. The new state is generally associated with some combination of reduced herbivory (from disease and/or fishing) and nutrient enrichment, although the relative importance of these factors is under debate and may vary among locations and even across single reefs. Disturbances that result in a state of generally low biotic three-dimensional structural complexity often precede a phase shift. Following such a disturbance, the system will pass to a state of higher biotic structural complexity, with either macroalgae or coral dominating. As the community progresses towards larger and more three-dimensionally complex corals or macroalgae, it exhibits greater resistance to shifting dominance from one state to the other. Studies of the phase-shift phenomena have been generally conducted at scales that are small relative to the sizes and inherent variability of whole coral reefs and systems of reefs. There is an urgent need for studies aimed at quantifying and simulating cause and effect aspects of the phase shift, including human-environment coupling, particularly in support of coral reef decision-making.

  7. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  8. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  9. A new varied continuation step method in seismic migration by phase shift plus interpolation

    SciTech Connect

    Guotian, T. )

    1992-01-01

    In this paper the principle of wave equation migration using phase shift plus interpolation is described briefly. Wave field extrapolation formula in such migration and final imaging equation are properly modified, with downward extrapolation operator redefined, so that the imaging can be achieved by using fast Fourier transform (FFT). A new varied continuation step method is given which is different from usual one in time domain. The new method, which is different from usual varied continuation step method for time domain interpolation in phase shift plus interpolation migration, uses the downward extrapolation continuation step much longer than a quarter of an apparent wave length; therefore, the efficiency of such seismic migration is improved satisfactorily. The processing results of theoretical model, coal field and high dip seismic data show that this new method is a f-k domain migration technique which is economic and suitable to the seismic data collected from the area where there are high dip formations and complicated geological structures.

  10. No indication of f0(1370) in ππ phase shift analyses

    NASA Astrophysics Data System (ADS)

    Ochs, Wolfgang

    2010-08-01

    The scalar meson f0(1370)—indicated in particular in the low energy pp¯→3 body reactions—is a crucial element in certain schemes of the scalar meson spectroscopy including glueballs. The most definitive results can be obtained from elastic and inelastic ππ phase shift analyses using the constraints from unitarity where the discrete ambiguities can be identified and resolved. We reconsider the phase shift analyses for π+π-→π+π-, π0π0, KK¯, ηη. While a clear resonance signal for f0(1500) in the resp. Argand diagrams is seen in all channels above a large "background" from f0(600) there is no clear signal of a second resonance "f0(1370)" in this mass range in any reaction, at the level of ˜10% branching ratio into ππ.

  11. Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting.

    PubMed

    Zhang, Yamei; Pan, Shilong

    2016-03-15

    A frequency-multiplying microwave photonic phase shifter with independent multichannel phase shifting capability is proposed and demonstrated using an integrated polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM) and a polarizer. By building a proper power distribution network to drive the PDM-DPMZM, two sidebands along two orthogonal polarization directions are generated with a spacing of two or four times the frequency of the driving signal. Leading the signal to a polarizer and a photodetector, a frequency-doubled or frequency-quadrupled signal with its phase adjusted by the polarization direction of the polarizer is achieved. The magnitude of the signal remains almost unchanged when the phase is adjusted. The proposed approach features compact configuration, scalable independent phase-shift channels and wide bandwidth, which can find applications in beam forming and analog signal processing for millimeter-wave or terahertz applications. PMID:26977684

  12. Generation and detection of gigahertz surface acoustic waves using an elastomeric phase-shift mask

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Zhao, Peng; Zhao, Ji-Cheng; Cahill, David G.

    2013-10-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements. The method has a lateral spatial resolution of <10 μm and is sensitive to the elastic constants of the material within ≈300 nm of the surface. SAWs with a wavelength of 700 nm and 500 nm are generated and detected using an elastomeric polydimethylsiloxane phase-shift mask which is fabricated using a commercially available Si grating as a mold. Time-domain electromagnetics calculations show, in agreement with experiment, that the efficiency of the phase-shift mask for generating and detecting SAWs decreases rapidly as the periodicity of the mask decreases below the optical wavelength. We validate the experimental approach using bulk and thin film samples with known elastic constants.

  13. Automated surface profile measurement of diamond grid disk by phase-shifted shadow Moiré

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Lin, Jie

    2014-06-01

    Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface profile of diamond grid disk. To eliminate erroneous bright or black spots caused by the diamond grids, a new approach is proposed by automatically selecting a proper threshold value from the differentiated image resulting from the addition of four phase-shifted images. According to the largest size of erroneous spot, the size of a structuring element is determined for morphology filtering. Thereafter the phase can be calculated and unwrapped correctly. Test of the method on a diamond grid disk is demonstrated and discussed.

  14. Two-frame phase-shifting interferometry for retrieval of smooth surface and its displacements

    NASA Astrophysics Data System (ADS)

    Muravsky, L. I.; Ostash, O. P.; Kmet', A. B.; Voronyak, T. I.; Andreiko, I. M.

    2011-03-01

    A new two-frame interferometric method with a blind phase shift of a reference wave is proposed for the reconstruction of smooth surface relief areas. In this method, a correlation approach based on the determination of correlation coefficient between intensity distributions of two interferograms is applied for the phase shift extraction. An algorithm for this method realization is developed and its performance is verified on test surfaces. An experimental setup containing a Twiman-Green interferometer was used in the reconstruction of smooth surfaces of metal specimens using the developed algorithm. Surface displacement phase fields were generated in case of a CT-notched specimen made of an aluminum alloy by the interactive procedure of element stitching of two surface reliefs and subtracting the surface relief after cyclic loading from the initial one. The received surface displacement fields allow us to determine the studied specimen fatigue process zone (FPZ) and FPZ size.

  15. Imaging 100 nm contacts with high transmission attenuated phase shift masks

    NASA Astrophysics Data System (ADS)

    Beach, James V.; Petersen, John S.; Eynon, Benjamin G., Jr.; Taylor, Darren; Gerold, Dave J.; Maslow, Mark J.

    2002-12-01

    This study explores the capability of printing 100 nm contacts through the use of 9% and 15% attenuated phase shift masks and a 0.75 NA 193 nm scanner. The mask designs targeted simultaneous solutions for 100 nm contacts at pitches from 200 nm to 300 nm. The two masks were successfully manufactured from experimental MoSiON embedded-attenuated phase shift mask (EAPSM) blanks. The 100 nm contacts were successfully printed with a depth of focus (DOF) from 0.1-0.7 μm. Overlapping process windows were not achieved but were possible upon adjustment of the mask biases. The observed mask error enhancement factor (MEEF) was approximately 3 for the 220 nm pitch. Side lobe printing was not observed for either mask.

  16. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer

    SciTech Connect

    Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; Czarkowski, Dariusz; Onar, Omer C.

    2015-05-12

    We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm x 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.

  17. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer

    DOE PAGESBeta

    Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; Czarkowski, Dariusz; Onar, Omer C.

    2015-05-12

    We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm xmore » 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.« less

  18. Phase-shifted helical long-period grating-based temperature-insensitive optical fiber twist sensors

    NASA Astrophysics Data System (ADS)

    Gao, Ran; Zhu, Yinian; Krishnaswamy, Sridhar; Yi, Jiang

    2015-03-01

    In smart structure monitoring, twist angle is one of the most critical mechanical parameters for infrastructure deterioration. A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long period fiber grating is fabricated with a multi-period rotation technology. A π / 2 and a 3π / 2 phase shift is introduced in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.

  19. Phase-shift interference microscope for the investigation of dipole-orientation distributions

    NASA Astrophysics Data System (ADS)

    Brinker, W.; Yilmaz, S.; Wirges, W.; Bauer, S.; Gerhard-Multhaupt, R.

    1995-04-01

    A compact experimental setup for an electro-optical microscope is introduced. The microscope is based on phase-shift interferometry (a well-known tool for surface profilometry) that is modified for measuring electro-optic responses. Its feasibility is demonstrated with a two-dimensional map of the electro-optic activity of a periodically poled nonlinear-optical side-chain polymer.

  20. Attenuated phase-shift mask (PSM) blanks for flat panel display

    NASA Astrophysics Data System (ADS)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  1. Derivation of retardation phase in computer-aided photoelasticity by using carrier fringe phase shifting.

    PubMed

    Ng, T W

    1997-11-01

    Previous phase-shifting schemes in computer-aided photoelasticity required the processing of six fringe patterns to derive the phase difference due to retardation. A technique in which a carrier fringe is used is demonstrated to reduce to four the number of fringe patterns required. The use of fewer fringe patterns lowers the computation time and the number of phase-step errors. The basis of the technique is outlined in detail, and experimental results are presented as well. PMID:18264365

  2. Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings.

    PubMed

    Zhou, Shu Fan; Reekie, Laurence; Chan, Hau Ping; Luk, Kwai Man; Chow, Yuk Tak

    2013-02-01

    Transmission filters for the terahertz domain having a shaped bandpass have been modeled and demonstrated. The filter designs were based on the desired filter type and bandwidth, and implemented by cascading quarter wave phase shifted fiber Bragg gratings written in Topas polymer subwavelength fiber. As an example, a 5-pole Chebyshev filter with <3 GHz bandwidth was designed and fabricated. Experimental and simulated results are in good agreement. PMID:23381404

  3. Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.

  4. Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks

    SciTech Connect

    Kawahara, Hiroki; Oka, Toru; Inoue, Kyo

    2011-11-15

    Phase-modulated differential-phase-shift (DPS) quantum key distribution (QKD) is presented for combating sequential attacks that most severely restrict the DPS-QKD system distance. Slow phase modulation imposed onto the DPS signal obstructs the optimum unambiguous state discrimination measurement conducted in the sequential attack and improves the QKD distance as a result. The condition with which the phase modulation does not degrade the DPS-QKD system performance is also described.

  5. Characterization of electromechanical actuator implemented to phase-shift system applied to a Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Barcelata-Pinzon, A.; Meneses Fabian, C.; Juarez-Salazar, R.; Durán-Sánchez, M.; Alvarez-Tamayo, R. I.; Robledo-Sánchez, C. I.; Muñoz-Mata, J. L.; Casco-Vázquez, J. F.

    2016-05-01

    Numerical results are presented to show the characterization of an electromechanical actuator capable to achieve equally spaced phase shifts and fraction linear wavelength displacements aided by an interface and a computational system. Measurements were performed by extracting the phase with consecutive interference patterns obtained in a Michelson arrangement setup. This paper is based in the use of inexpensive resources on stability adverse conditions to achieve similar results to those obtained with high-grade systems.

  6. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    SciTech Connect

    Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2χ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.

  7. ``Plug and play'' quantum key distribution system with differential phase shift

    NASA Astrophysics Data System (ADS)

    Zhou, Chunyuan; Wu, Guang; Chen, Xiuliang; Zeng, Heping

    2003-09-01

    We propose a "plug and play" scheme for the long-distance fiber-based cryptosystem based on the differential phase shift quantum key distribution, where any birefringence effects and polarization-dependent losses in the transmission fiber are automatically compensated by using a Faraday mirror. This system not only has stable performance but also creates keys 8/3 times more efficiently than the conventional cryptosystem based on the BB84 protocol.

  8. Measurement of focal length using phase shifted moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Trivedi, Satyaprakash; Dhanotia, Jitendra; Prakash, Shashi

    2013-06-01

    In present communication, a simple technique for determining the focal length using moiré deflectometry has been proposed. Necessary mathematical premise expressing the focal length of lens in terms of defocusing distance and the slope of wavefront phase has been deduced. Using a four-step phase shifting technique the testing procedure for determining the focal length has been demonstrated. Uncertainty in measurement has been estimated. Good co-relation between the measured value and the standard value has been obtained.

  9. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  10. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    SciTech Connect

    Lian, S.; Yang, H.; Kudo, H.; Momose, A.; Yashiro, W.

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  11. Altered Circadian Rhythm and Metabolic Gene Profile in Rats Subjected to Advanced Light Phase Shifts

    PubMed Central

    Herrero, Laura; Valcarcel, Lorea; da Silva, Crhistiane Andressa; Albert, Nerea; Diez-Noguera, Antoni; Cambras, Trinitat; Serra, Dolors

    2015-01-01

    The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT), brown adipose tissue (BAT) and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level. PMID:25837425

  12. Imaging performance of attenuated phase-shift mask using coherent scattering microscope

    NASA Astrophysics Data System (ADS)

    Lee, Jae Uk; Jeong, SeeJun; Hong, Seong Chul; Lee, Seung Min; Ahn, Jinho

    2014-03-01

    The half-tone phase shift mask (PSM) has been suggested for better imaging performances like image contrast, NILS and H-V bias compared to the binary mask (BIM) in EUV lithography. In this paper, we measured imaging performance of a fabricated half-tone attenuated PSM with Coherent Scattering Microscopy (CSM) and the results were compared with simulation data obtained by EM-suite tool. We prepared a half-tone attenuated PSM which has 12.7% reflectivity and 180° phase shift with absorber stack of 16.5mn-thick TaN absorber and 24nm-thick Mo phase shifter. With CSM, an actinic inspection tool, we measured the imaging properties of PSM. The diffraction efficiencies of BIM were measured as 31%, 36%, and 44% for 88 nm, 100 nm, and 128 nm mask CD, respectively, while those of PSM were measured as 45%, 62%, and 81%. Also the aerial image at wafer level obtained by CSM with high volume manufacturing tool's (HVM) illumination condition (NA=0.33, σ=0.9) showed higher image contrast and NILS with phase shift effect. And the measured data were consistent with the simulation data.

  13. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm.

    PubMed

    Leone, M Juliana; Marpegan, Luciano; Duhart, José M; Golombek, Diego A

    2012-07-01

    We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome. PMID:22734572

  14. Measurement of mean thickness of transparent samples using simultaneous phase shifting interferometry with four interferograms.

    PubMed

    Flores Muñoz, V H; Arellano, N-I Toto; Serrano García, D I; Martínez García, A; Rodríguez Zurita, G; García Lechuga, L

    2016-05-20

    In this research a novel interferometric system is reported, which allows the generation of four simultaneous interferograms with phase shifts of π/2. The system consists of three coupled interferometers: a rectangular Sagnac interferometer which generates a primary pattern with crossed circular polarizations, coupled to two Michelson interferometers which operate as a multiplexing system, and generating replicas of the primary pattern. The two coupled Michelson interferometers generate four patterns retaining their polarization properties, which allow independent phase shifts by placing a linear polarizer over each pattern, thereby, four interferograms with relative phase shifts of π/2 are obtained. The optical phase is calculated using the well-known four-step algorithm. With knowledge of the optical phase, different properties of the samples can be calculated or analyzed; in this case, by knowing the mean refractive index, we can calculate the mean thickness of test objects. The results obtained for static transparent samples are presented. The capability of the system to analyze dynamic events is shown when results for the calculation of a temperature field of a heat flow are presented. PMID:27411130

  15. The exergy of a phase shift: Ecosystem functioning loss in seagrass meadows of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Montefalcone, Monica; Vassallo, Paolo; Gatti, Giulia; Parravicini, Valeriano; Paoli, Chiara; Morri, Carla; Bianchi, Carlo Nike

    2015-04-01

    Sustained functioning of ecosystems is predicted to depend upon the maintenance of their biodiversity, structure and integrity. The large consensus achieved in this regard, however, faces to the objective difficulty of finding appropriate metrics to measure ecosystem functioning. Here, we aim at evaluating functional consequence of the phase shift occurring in meadows of the Mediterranean seagrass Posidonia oceanica, a priority habitat that is undergoing regression in many coastal areas due to multiple human pressures. Structural degradation of the P. oceanica ecosystem, consequent to increasing coastal exploitation and climate change, may result in the progressive replacement of this seagrass by opportunistic macrophytes, either native or alien. Reviewing published information and our personal records, we measured changes in biological habitat provisioning, species richness and biomass associated to each of the alternative states characterizing the phase shift. Then, ecosystem functioning was assessed by computing the exergy associated to each state, exergy being a state variable that measures the ecosystem capacity to produce work. Phase shift was consistently shown to imply loss in habitat provision, species richness, and biomass; structural and compositional loss was parallelled by a reduction of exergy content, thus providing for the first time an objective and integrative measure of the loss of ecosystem functioning following the degradation of healthy seagrass meadows.

  16. Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Arroyo, Sebastián I.; Zanette, Damián H.

    2016-01-01

    We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between the external force and the oscillation is controlled - contrary to the standard case, where the control parameter is the frequency of the force. Phase-shift control is the operational configuration under which self-sustained oscillators - and, in particular, micromechanical oscillators - provide a frequency reference useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-shift control oscillations are stable over the whole resonance curve, and provide analytical approximate expressions for the time dependence of the oscillation amplitude and frequency during transients. Second, we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the oscillation frequency when the resonance takes place, and present preliminary experimental results that illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices. Supplementary material in the form of one pdf file and one gif file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2015-60517-3

  17. Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wang, Zhao-Ying; Xu, Ao-Peng; Wang, Qi-Yu; Lin, Qiang

    2015-11-01

    Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).

  18. Remark on the phase shift in the Kuzmak-Whitham ansatz

    NASA Astrophysics Data System (ADS)

    Dobrokhotov, S. Yu.; Minenkov, D. S.

    2011-03-01

    We consider one-phase ( formal) asymptotic solutions in the Kuzmak-Whitham form for the nonlinear Klein-Gordon equation and for the Korteweg-de Vries equation. In this case, the leading asymptotic expansion term has the form X( S( x, t)/ h+Φ( x, t), I( x, t), x, t) + O( h), where h ≪ 1 is a small parameter and the phase S}( x, t) and slowly changing parameters I( x, t) are to be found from the system of "averaged" Whitham equations. We obtain the equations for the phase shift Φ( x, t) by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift Φ into the phase and adjust the parameter Ĩ by setting tilde S = S + hΦ+ O( h 2), Ĩ = I + hI 1 + O( h 2), then the functions tilde S ( x, t, h) and Ĩ( x, t, h) become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is X( tilde S ( x, t, h)/ h, Ĩ( x, t, h), x, t) + O( h).

  19. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank

    2005-06-27

    We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium. PMID:19498473

  20. Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Montefalcone, M.; Morri, C.; Peirano, A.; Albertelli, G.; Bianchi, C. N.

    2007-10-01

    We investigated the conservation status and ecosystem substitution in six Posidonia oceanica (L.) Delile meadows in 2002 along 300 km of the Ligurian coast (NW Mediterranean Sea). We studied the meadows by scuba transects and we compared the meadows state of health through in situ shoot density counts and computing the Conservation Index (CI), the latter measuring the proportional amount of dead matte relative to live P. oceanica. Both measures evidenced a generalised state of regression for most of the six meadows. We also reported the occurrence, within the meadows, of the other common Mediterranean seagrass Cymodocea nodosa, the Mediterranean green alga Caulerpa prolifera, and the invasive green algae Caulerpa taxifolia and Caulerpa racemosa. We measured the replacement of P. oceanica by these species using the Substitution Index (SI), related to the proportional cover of each substitutes. These were ranked in order of their colonisation potential with respect to P. oceanica. We identified and measured a community "phase shift" occurring within the Mediterranean seagrass meadows using a combined index, the Phase-Shift Index (PSI). The analysis of the three environmental indices (CI, SI and PSI) at regional scale allowed to introduce three "regional" ordinal scales to classify the conservation status, the degree of substitution and the level of phase shift in P. oceanica meadows.

  1. Optical coherence tomography application by using optical phase shift based on fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Lee, Seung Suk; Kim, Joo Ha; Eom, Tae Joong; Choi, Eun Seo

    2016-03-01

    We demonstrate fiber-optic sensor applications to full-range complex optical coherence tomography (OCT). To extend imaging range in OCT, real value or interferogram measured from an interferometer is needed to convert into complex value. For the purpose, various treatments such as mechanical, electro-optical, optical and programming based methods have been exploited in the interferometer. To make complex signal in fiber-optic interferometer, we propose vibrationbased optical phase shifting method. The proposed method utilizes optical fiber sensors that are for the detection of vibration using optical fiber. When coiled fiber was exposed to vibration, interferogram presents fringe shift without periodicity variations, which means that vibration induces phase shift in the interferometer. Therefore, intentionally generated vibration could be applicable to controlling of the optical phase shift and retrieval of the complex signal. As a result, the vibrations applied to coiled fiber were able to remove mirror image in Fourier domain. This result proved the feasibility of the proposed method on the extending of optical imaging range.

  2. Phase shift due to atom-atom interactions in a light-pulse atom interferometer

    NASA Astrophysics Data System (ADS)

    Jannin, Raphaël; Cladé, Pierre; Guellati-Khélifa, Saïda

    2015-07-01

    We present a theoretical model allowing precise calculation of the phase shift induced by atom-atom interactions in a light-pulse atom interferometer based on two-photon Raman atom optics. This model is in good agreement with numerical simulations based on solving the Gross-Pitaevskii equation. The atom interferometer exhibits an atom-atom-interaction-induced phase shift when there is asymmetry between the two arms of the interferometer. In the case of a Ramsey-Bordé atom interferometer ({π /2 -π /2 }-{π /2 -π /2 } pulse configuration), the asymmetry comes from the fact that the number of atoms in each arm of the interferometer is not constant. In the case of a Mach-Zehnder ({π /2 -π -π /2 } pulse sequence), if the pulses are perfect, the number of atoms is constant in the interferometer. We study the effect due to imperfections of the light pulses as well as the effect due to the expansion of the cloud. Our model leads to precise and simple formulas of the mean-field phase shift as a function of the experimental parameters.

  3. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals.

    PubMed

    Wang, C M; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-08-12

    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1/8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1/8 and ±5/8, as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1/8 or ±5/8. Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd_{2}As_{3} and should be helpful for exploring the Berry phase in various 3D systems. PMID:27563993

  4. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-08-01

    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1 /8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1 /8 and ±5 /8 , as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1 /8 or ±5 /8 . Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd2 As3 and should be helpful for exploring the Berry phase in various 3D systems.

  5. Application of thermal wave imaging and phase shifting method for defect detection in Stainless steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjit; Park, Jeonghak; Kim, Wontae

    2016-05-01

    This paper presents an experimental arrangement for detection of artificial subsurface defects in a stainless steel sample by means of thermal wave imaging with lock-in thermography and consequently, the impact of excitation frequency on defect detectability. The experimental analysis was performed at several excitation frequencies to observe the sample beginning from 0.18 Hz all the way down to 0.01 Hz. The phase contrast between the defective and sound regions illustrates the qualitative and quantitative investigation of defects. The two, three, four and five-step phase shifting methods are investigated to obtain the information on defects. A contrast to noise ratio analysis was applied to each phase shifting method allowing the choice of the most appropriate one. Phase contrast with four-step phase shifting at an optimum frequency of 0.01 Hz provides excellent results. The inquiry with the effect of defect size and depth on phase contrast shows that phase contrast decreases with increase in defect depth and increases with the increase in defect size.

  6. Evaluation of phase-shifting approaches for a point-diffraction interferometer with the mutual coherence function

    NASA Astrophysics Data System (ADS)

    Barchers, Jeffrey D.; Rhoadarmer, Troy A.

    2002-12-01

    The estimation accuracy of a point-diffraction interferometer is examined with two phase-shifting schemes: spatial and temporal. Under the assumption of plane- or spherical-wave propagation through isotropic turbulence that can be accurately represented as a series of thin phase screens, results that are valid for any scintillation regime are obtained by use of the invariance with a propagation of the mutual coherence function. It is established that the estimation accuracy of the spatial phase-shifting point-diffraction interferometer is invariant with scintillation. Upper and lower bounds on the performance of the temporal phase-shifting point-diffraction interferometer are developed. Wave optical simulation results are presented that validate the analytic predictions for the two phase-shifting schemes. The results and techniques presented can be used to assess the appropriate phase-shifting scheme given finite resources, such as a limited number of pixels in a detector array or a restricted detector frame rate.

  7. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    NASA Astrophysics Data System (ADS)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  8. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry

    NASA Astrophysics Data System (ADS)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2011-08-01

    Many physiological flows are driven by waves of muscular contractions passed along a tubular structure. This peristaltic pumping plays a role in ovum transport in the oviduct and in rapid sperm transport through the uterus. As such, flow due to peristalsis has been a central theme in classical biological fluid dynamics. Analytical approaches and numerical methods have been used to study flow in two-dimensional channels and three-dimensional tubes. In two dimensions, the effect of asymmetry due to a phase shift between the channel walls has been examined. However, in three dimensions, peristalsis in a non-axisymmetric tube has received little attention. Here, we present a computational model of peristaltic pumping of a viscous fluid in three dimensions based upon the method of regularized Stokeslets. In particular, we study the flow structure and mean flow in a three-dimensional tube whose asymmetry is governed by a single phase-shift parameter. We view this as a three-dimensional analog of the phase-shifted two-dimensional channel. We find that the maximum mean flow rate is achieved for the parameter that results in an axisymmetric tube. We also validate this approach by comparing our computational results with classical long-wavelength theory for the three-dimensional axisymmetric tube. This computational framework is easily implemented and may be adapted to more comprehensive physiological models where the kinematics of the tube walls are not specified a priori, but emerge due to the coupling of its passive elastic properties, force generating mechanisms, and the surrounding viscous fluid.

  10. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    NASA Astrophysics Data System (ADS)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  11. A Mathematical Model of the Circadian Phase-Shifting Effects of Exogenous Melatonin

    PubMed Central

    Breslow, Emily R.; Phillips, Andrew J.K.; Huang, Jean M.; St. Hilaire, Melissa A.; Klerman, Elizabeth B.

    2013-01-01

    Melatonin is endogenously produced and released in humans during nighttime darkness and is suppressed by ocular light exposure. Exogenous melatonin is used to induce circadian phase shifts and sleep. The circadian phase-shifting ability of a stimulus (e.g., melatonin or light) relative to its timing may be displayed as a phase response curve (PRC). Published PRCs to exogenous melatonin show a transition from phase advances to delays approximately 1 h after dim light melatonin onset. A previously developed mathematical model simulates endogenous production and clearance of melatonin as a function of circadian phase, light-induced suppression, and resetting of circadian phase by light. We extend this model to include the pharmacokinetics of oral exogenous melatonin and phase-shifting effects via melatonin receptors in the suprachiasmatic nucleus of the mammalian hypothalamus. Model parameters are fit using 2 data sets: (1) blood melatonin concentration following a 0.3- or 5.0-mg dose, and (2) a PRC to a 3.0-mg dose of melatonin. After fitting to the 3.0-mg PRC, the model correctly predicts that, by comparison, the 0.5-mg PRC is slightly decreased in amplitude and shifted to a later circadian phase. This model also reproduces blood concentration profiles of various melatonin preparations that differ only in absorption rate and percentage degradation by first-pass hepatic metabolism. This model can simulate experimental protocols using oral melatonin, with potential application to guide dose size and timing to optimally shift and entrain circadian rhythms. PMID:23382594

  12. Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    1. Both the timing of behavioural events (activity, sleep and social interactions) and the environmental light-dark cycle have been reported to contribute to entrainment of human circadian rhythms to the 24 h day. Yet, the relative contribution of those putative behavioural synchronizers to that of light exposure remains unclear. 2. To investigate this, we inverted the schedule of rest, sedentary activity and social contact of thirty-two young men either with or without exposure to bright light. 3. On this inverted schedule, the endogenous component of the core temperature rhythm of subjects who were exposed to bright light showed a significant phase shift, demonstrating that they were adapting to the new schedule. In contrast, the core temperature rhythm of subjects who were not exposed to bright light moved on average 0.2 h later per day and after 10 days had not significantly adapted to the new schedule. 4. The direction of phase shift in the groups exposed to bright light was dependent on the time of bright light exposure, while control subjects drifted to a later hour regardless of the timing of their schedule of sleep timing, social contact and meals. 5. These results support the concept that the light-dark cycle is the most important synchronizer of the human circadian system. They suggest that inversion of the sleep-wake, rest-activity and social contact cycles provides relatively minimal drive for resetting the human circadian pacemaker. 6. These data indicate that interventions designed to phase shift human circadian rhythms for adjustment to time zone changes or altered work schedules should focus on properly timed light exposure.

  13. Detection of Cerebral Hemorrhage in Rabbits by Time-Difference Magnetic Inductive Phase Shift Spectroscopy

    PubMed Central

    Pan, Wencai; Yan, Qingguang; Qin, Mingxin; Jin, Gui; Sun, Jian; Ning, Xu; Zhuang, Wei; Peng, Bin; Li, Gen

    2015-01-01

    Cerebral hemorrhage, a difficult issue in clinical practice, is often detected and studied with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). However, these expensive devices are not readily available in economically underdeveloped regions, and hence are unable to provide bedside and emergency on-site monitoring. The magnetic inductive phase shift (MIPS) is an emerging technology that may become a new tool to detect cerebral hemorrhage and to serve as an inexpensive partial substitute to medical imaging. In order to study a wider band of cerebral hemorrhage MIPS and to provide more useful information for measuring cerebral hemorrhage, we established a cerebral hemorrhage magnetic induction phase shift spectroscopy (MIPSS) detection system. Thirteen rabbits with five cerebral hemorrhage states were studied using a single coil-coil within a 1 MHz-200 MHz frequency range in linear sweep. A feature band (FB) with the highest detection sensitivity and the greatest stability was selected for further analysis and processing. In addition, a maximum conductivity cerebrospinal fluid (CSF) MRI was performed to verify and interpret the MIPSS result. The average phase shift change induced by a 3 ml injection of autologous blood under FB was -7.7503° ± 1.4204°, which was considerably larger than our previous work. Data analysis with a non-parametric statistical Friedman M test showed that in the FB, MIPSS could distinguish the five states of cerebral hemorrhage in rabbits, with a statistical significance of p<0.05. A B-F distribution profile was designed according to the MIPSS under FB that can provide instantaneous diagnostic information about the cerebral hemorrhage severity from a single set of measurements. The results illustrate that the MIPSS detection method is able to provide a new possibility for real-time monitoring and diagnosis of the severity of cerebral hemorrhage. PMID:26001112

  14. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-02-01

    Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) has been proposed to raise the noise tolerability of the channel. However, in practice, the measurement device in RRDPS QKD may be imperfect. Here, we show that, with these imperfections, the security of RRDPS may be damaged by proposing two attacks for RRDPS systems with uncharacterized measurement devices. One is valid even for a system with unit total efficiency, while the other is valid even when a single-photon state is sent. To prevent these attacks, either security arguments need to be fundamentally revised or further practical assumptions on the measurement device should be put.

  15. Spatial phase-shifting interferometry for measurement of aero-optical effects

    SciTech Connect

    Shough, D.M.; Kwon, O.Y.; Leary, D.F. )

    1992-05-01

    Interferometry has long been used to visualize the gas density distribution that results from aerodynamic phenomena. This paper describes an interferometer system that produces quantitative data. The resulting phase maps are high resolution and high accuracy images that are obtained from a single 8 ns laser pulse. A standard Mach-Zehnder interferometer is aligned so that there is approximately Lambda/4 of tilt per pixel. The technique is the spatial equivalent of phase-shifting interferometry. The raw phase maps are calculated and displayed in real time using an image processor. Results are presented from a Mach 3.5 projectile traveling through air. 7 refs.

  16. In Situ alignment system for phase-shifting point-diffraction interferometry

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2000-01-01

    A device and method to facilitate the gross alignment of patterned object- and image-plane masks in optical systems such as the phase-shifting point diffraction interferometer are provided. When an array of similar pinholes or discreet mask fields is used, confusion can occur over the alignment of the focused beams within the field. Adding to the mask pattern a circumscribed or inscribed set of symbols that are identifiable in situ facilitates the unambiguous gross alignment of the object- and/or image-plane masks. Alternatively, a system of markings can be encoded directly into the window shape to accomplish this same task.

  17. Rigorous intensity and phase-shift manipulation in optical frequency conversion.

    PubMed

    Yang, Bo; Yue, Yang-Yang; Lu, Rong-Er; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-01-01

    A simple method is employed to investigate the nonlinear frequency conversion in optical superlattices (OSL) with pump depletion. Four rigorous phase-matching conditions for different purposes are obtained directly from the nonlinear coupled equations, and the resulting OSL domain structures are generally aperiodic rather than periodic. With this method, not only the intensity but also the phase-shift of the harmonic waves can be manipulated at will. The second-harmonic generation of Gaussian beam is further investigated. This work may provide a guidance for the practical applications of designing nonlinear optical devices with high conversion efficiency. PMID:27272308

  18. Application of charge-dissipation material in MEBES phase-shift mask fabrication

    NASA Astrophysics Data System (ADS)

    Tan, Zoilo C. H.; Sauer, Charles A.

    1994-12-01

    Several charge dissipation materials were evaluated for their ability to improve the overlay accuracy during phase shift mask (PSM) registered writing on a MEBES system. These included an organic conductive polymer and a number of thin inorganic films, which were applied above or below the resist on a coated mask. When used with the resists, all conductive materials evaluated were capable of providing adequate charge dissipation during registered writing. Overlay accuracy of mean + 3 sigma

  19. Rigorous intensity and phase-shift manipulation in optical frequency conversion

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yue, Yang-Yang; Lu, Rong-Er; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-06-01

    A simple method is employed to investigate the nonlinear frequency conversion in optical superlattices (OSL) with pump depletion. Four rigorous phase-matching conditions for different purposes are obtained directly from the nonlinear coupled equations, and the resulting OSL domain structures are generally aperiodic rather than periodic. With this method, not only the intensity but also the phase-shift of the harmonic waves can be manipulated at will. The second-harmonic generation of Gaussian beam is further investigated. This work may provide a guidance for the practical applications of designing nonlinear optical devices with high conversion efficiency.

  20. Rigorous intensity and phase-shift manipulation in optical frequency conversion

    PubMed Central

    Yang, Bo; Yue, Yang-Yang; Lu, Rong-er; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-01-01

    A simple method is employed to investigate the nonlinear frequency conversion in optical superlattices (OSL) with pump depletion. Four rigorous phase-matching conditions for different purposes are obtained directly from the nonlinear coupled equations, and the resulting OSL domain structures are generally aperiodic rather than periodic. With this method, not only the intensity but also the phase-shift of the harmonic waves can be manipulated at will. The second-harmonic generation of Gaussian beam is further investigated. This work may provide a guidance for the practical applications of designing nonlinear optical devices with high conversion efficiency. PMID:27272308

  1. State estimation of voltage and phase-shift transformer tap settings

    SciTech Connect

    Teixeira, P.A.; Brammer, S.R.; Rutz, W.L. ); Merritt, W.C.; Salmonsen, J.L. )

    1992-08-01

    Traditionally, state estimation algorithms have treated each transformer tap setting (voltage transformer turns ratio or phase-shift transformer angle) as a fixed parameter of the network, even though the real-time measurement may be in error or non-existent. In this paper, a new transformer tap estimation technique is presented which incorporates the function directly into the state estimation algorithm. The procedure provides for turns ratio and phase angle measurements and treats each transformer tap setting as an independent state variable. Test results for an actual 300-bus network demonstrate the tap estimation capability.

  2. High-speed imaging of sound using parallel phase-shifting interferometry.

    PubMed

    Ishikawa, Kenji; Yatabe, Kohei; Chitanont, Nachanant; Ikeda, Yusuke; Oikawa, Yasuhiro; Onuma, Takashi; Niwa, Hayato; Yoshii, Minoru

    2016-06-13

    Sound-field imaging, the visualization of spatial and temporal distribution of acoustical properties such as sound pressure, is useful for understanding acoustical phenomena. This study investigated the use of parallel phase-shifting interferometry (PPSI) with a high-speed polarization camera for imaging a sound field, particularly high-speed imaging of propagating sound waves. The experimental results showed that the instantaneous sound field, which was generated by ultrasonic transducers driven by a pure tone of 40 kHz, was quantitatively imaged. Hence, PPSI can be used in acoustical applications requiring spatial information of sound pressure. PMID:27410311

  3. M-ary-state phase-shift-keying discrimination below the homodyne limit

    SciTech Connect

    Becerra, F. E.; Fan, J.; Polyakov, S. V.; Migdall, A.; Baumgartner, G.; Goldhar, J.; Kosloski, J. T.

    2011-12-15

    We investigate a strategy for M-ary discrimination of nonorthogonal phase states with error rates below the homodyne limit. This strategy uses feed forward to update a reference field and signal nulling for the state discrimination. We experimentally analyze the receiver performance using postprocessing and a Bayesian strategy to emulate the feed-forward process. This analysis shows that for a moderate system detection efficiency, it is possible to surpass the homodyne error limit for quadrature phase-shift keying signals using feed forward.

  4. Multiparty quantum secret sharing scheme based on the phase shift operations

    NASA Astrophysics Data System (ADS)

    Du, Yu-tao; Bao, Wan-su

    2013-11-01

    Based on a kind of multiparty quantum secret sharing schemes with Bell states, we propose a novel collective attack strategy in this paper. In our strategy, the group of in-attackers can obtain the entire secret information without introducing any error. More interestingly, a new multiparty quantum secret sharing scheme is proposed based on the 3-element phase shift operations. The scheme can resist not only the existing attacks, but also the cheating attack from the dishonest agent. Meanwhile, the scheme improves the efficiency of scheme by reducing the number of the eavesdropping detections and the computation complexity.

  5. Universal gates based on targeted phase shifts in a 3D neutral atom array

    NASA Astrophysics Data System (ADS)

    Kumar, Aishwarya; Wang, Yang; Wu, Tsung-Yao; Weiss, David

    2016-05-01

    We demonstrate a new approach to making targeted single qubit gates using Cesium atoms in a 5x5x5 3D neutral atom array. It combines targeted AC Zeeman phase shifts with global microwave pulses to produce arbitrary single qubit gates. Non-targeted atoms are left virtually untouched by the gates. We have addressed 48 sites, targeted individually, in a 40% full array. We have also performed Randomized Benchmarking to characterize the fidelity and crosstalk errors of this gate. These gates are highly insensitive to addressing beam imperfections and can be applied to other systems and geometries. Supported by NSF.

  6. High-speed deformation measurement using spatially phase-shifted speckle interferometry

    NASA Astrophysics Data System (ADS)

    Beckmann, Tobias; Fratz, Markus; Bertz, Alexander; Carl, Daniel

    2014-02-01

    Electronic speckle pattern interferometry (ESPI) is a powerful technique for differential shape measurement with submicron resolution. Using spatial phase-shifting (SPS), no moving parts are required, allowing frame acquisition rates limited by camera hardware. We present ESPI images of 1 megapixel resolution at 500 fps. Analysis of SPS data involves complex, time-consuming calculations. The graphics processing units found in state-of-the-art personal computers have exceptional parallel processing capabilities, allowing real-time SPS measurements at video frame rates. Deformation analysis at this frame rate can be used to analyze transient phenomena such as transient temperature effects in integrated circuit chips or during material processing.

  7. Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.

    PubMed

    Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li

    2014-11-17

    All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output. PMID:25402095

  8. Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations

    SciTech Connect

    Liu, Han-Chun; Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2015-02-14

    Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.

  9. Homodyne detection of coherence and phase shift of a quantum dot in a cavity.

    PubMed

    Bakker, Morten P; Snijders, Henk; Löffler, Wolfgang; Barve, Ajit V; Coldren, Larry A; Bouwmeester, Dirk; van Exter, Martin P

    2015-07-01

    A homodyne measurement technique is demonstrated that enables direct observation of the coherence and phase of light that passed through a coupled quantum dot (QD)-microcavity system, which in turn enables clear identification of coherent and incoherent QD transitions. As an example, we study the effect of power-induced decoherence, where the QD transition saturates and incoherent emission from the excited state dominates at higher power. Further, we show that the same technique allows measurement of the quantum phase shift induced by a single QD in the cavity, which is strongly enhanced by cavity quantum electrodynamics effects. PMID:26125395

  10. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOEpatents

    Naulleau, Patrick; Goldberg, Kenneth Alan

    2000-01-01

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  11. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  12. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Disawal, Reena; Prakash, Shashi

    2016-03-01

    In present communication, a simple technique for measurement of displacement using phase shifted wedge plate lateral shearing interferometry is described. The light beam from laser is expanded and illuminates a wedge plate of relatively large angle. Light transmitted through the wedge plate is converged onto a reflecting specimen using a focusing lens. Back-reflected wavefront from the specimen is incident on the wedge plate. Because of the tilt and shear of the wavefront reflected from the wedge plate, typical straight line fringes appear. These fringes are superimposed onto a sinusoidal grating forming a moiré pattern. The orientation of the moiré fringes is a function of specimen displacement. Four step phase shifting test procedure has been incorporated by translating the grating in phase steps of π/2. Necessary mathematical formulation to establish correlation between the 'difference phase' and the displacement of the specimen surface is undertaken. The technique is automatic and provides resolution and expanded uncertainty of 1 μm and 0.246 μm, respectively. Detailed uncertainty analysis is also reported.

  13. Optical gain, phase shift, and profile in free-electron lasers. Interim report

    SciTech Connect

    Hafizi, B.; Sprangle, P.A.; Ting, A.

    1987-07-20

    The gain, phase shift, wavefront curvature and radius of the radiation envelope in a free-electron-laser amplifier are obtained in the small signal regime. The electron beam is assumed to have a Gaussian density distribution in the transverse direction. Numerical calculations indicate that the radius and curvature of the radiation beam entering a wiggler asymptote have unique, spatially constant values after a finite transition region. However, in the asymptotic region, the wavefronts are divergent. Analytical expressions for the gain, phase shift, curvature, and spot size are derived. It is shown analytically that small perturbations of the optical waist and curvature about the matched value are spatially damped out, indicating the stability of the matched envelope. When the electron beam envelope is modulated in space, the optical spot size oscillates with an almost identical wavelength but is delayed in phase. In the case of small-amplitude long-wavelength betatron modulation of the electron-beam envelope, generation of optical sidebands in wave-number space is examined, and the effect on the dispersions characteristics of the primary wave is found to be negligible for typical experimental parameters.

  14. Imaging quality automated measurement of image intensifier based on orthometric phase-shifting gratings.

    PubMed

    Sun, Song; Cao, Yiping

    2016-06-01

    A method for automatically measuring the imaging quality parameters of an image intensifier based on orthometric phase-shifting gratings (OPSG) is proposed. Two sets of phase-shifting gratings, one with a fringe direction at 45° and the other at 135°, are successively projected onto the input port of the image intensifier, and the corresponding deformed patterns modulated by the measured image intensifier on its output port are captured with a CCD camera. Two phases are retrieved from these two sets of deformed patterns by a phase-measuring algorithm. By building the relationship between these retrieved phases, the referential fringe period can be determined accurately. Meanwhile, the distorted phase distribution introduced by the image intensifier can also be efficiently separated wherein the subtle imaging quality information can be further decomposed. Subsequently, the magnification of the image intensifier is successfully measured by fringe period self-calibration. The experimental results have shown the feasibility of the proposed method, which can automatically measure the multiple imaging quality parameters of an image intensifier without human intervention. PMID:27411191

  15. An illumination-invariant phase-shifting algorithm for three-dimensional profilometry

    NASA Astrophysics Data System (ADS)

    Deng, Fuqin; Liu, Chang; Sze, Wuifung; Deng, Jiangwen; Fung, Kenneth S. M.; Leung, W. H.; Lam, Edmund Y.

    2012-01-01

    Uneven illumination is a common problem in real optical systems for machine vision applications, and it contributes significant errors when using phase-shifting algorithms (PSA) to reconstruct the surface of a moving object. Here, we propose an illumination-reflectivity-focus (IRF) model to characterize this uneven illumination effect on phase-measuring profilometry. With this model, we separate the illumination factor effectively, and then formulate the phase reconstruction as an optimization problem. To simplify the optimization process, we calibrate the uneven illumination distribution beforehand, and then use the calibrated illumination information during surface profilometry. After calibration, the degrees of freedom are reduced. Accordingly, we develop a novel illumination-invariant phase-shifting algorithm (II-PSA) to reconstruct the surface of a moving object under an uneven illumination environment. Experimental results show that the proposed algorithm can improve the reconstruction quality both visually and numerically. Therefore, using this IRF model and the corresponding II-PSA, not only can we handle uneven illumination in a real optical system with a large field of view (FOV), but we also develop a robust and efficient method for reconstructing the surface of a moving object.

  16. A comparison of de-noising methods for differential phase shift and associated rainfall estimation

    NASA Astrophysics Data System (ADS)

    Hu, Zhiqun; Liu, Liping; Wu, Linlin; Wei, Qing

    2015-04-01

    Measured differential phase shift UDP is known to be a noisy unstable polarimetric radar variable, such that the quality of UDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many UDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy UDP data were generated and de-noised by using several methods such as finite-impulse response (FIR), Kalman, wavelet, traditional mean, and median filters. The biases were compared between KDP from simulated and observed UDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman, and wavelet methods have a better de-noising effect than the traditional methods. After UDP was de-noised, the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with UDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h ≥1. However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h ≥1. The performance of wavelet analysis was found to be the most stable of these filters.

  17. Generation of obliquely incident ions using phase-shifted RF voltages applied on rod electrodes

    NASA Astrophysics Data System (ADS)

    Ui, Akio; Sato, Yosuke; Sasaki, Toshiyuki; Sakai, Itsuko; Hayashi, Hisataka

    2016-06-01

    A new method of generating obliquely incident ions has been investigated. A plasma system with a cathode consisting of a repetition of a group of four electrode rods connected to their respective RF power supplies is proposed. The ion angular distribution (IAD) is controlled by modulating the phase shift of the four RF powers. The IAD of an argon high-density plasma was analyzed on the basis of transient plasma simulation. When the RF voltages are controlled so that the phase shift is π/2, a convex-shaped plasma sheath corresponding to each group of four rods appears and propagates parallel to the wafer with time. By propagating this “wavy” sheath, a bimodal IAD consisting of ions obliquely incident mainly from two directions are obtained nearly uniformly across the wafer. This method is capable of generating obliquely incident ions, which is expected to be effective as an additional knob for precise profile control in fine-pattern reactive-ion etching (RIE).

  18. Mask topography effects in projection printing of phase-shifting masks

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K.; Neureuther, Andrew R.

    1994-06-01

    Topography effects of glass edges in phase-shifting masks (PSM's) on image quality are assessed using the rigorous electromagnetic simulation program TEMPEST on three different optical systems for four PSM technologies including alternating, rim, attenuated, and chromeless. The scalar and thin mask approximations used in simulation programs such as SPLAT can be in error by as much as 20% for certain classes of shifter edges. A feature size independent bias of 0.021 lambda /NA per edge is recommended for alternating masks with vertical edges because light is lost near the etched glass edges. No direct electromagnetic interaction between chromium edges and shifter edges was found for rim phase-shifting masks. The rim dimension can thus be designed solely on the basis of the sidelobe level and peak intensity. For attenuated PSM, edge effects are less severe but sidelobe problems occur. For a center to sidelobe contrast of 0.6 over a DOF of 3 RU, a lower transmission of 4% is recommended. For chromeless PSM, the imbalance in image peaks is shown to be affected by the optical stepper parameters. In any PSM technology, it appears that a 360 deg glass protrusion may produce a drastic drop in intensity due to resonance effects.

  19. Focus shift and process latitude of contact holes on attenuated phase-shifting masks

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Ferguson, Richard A.; Martino, Ronald M.; Neureuther, Andrew R.

    1995-05-01

    Focus shift and process latitude of contact features on both dark-field and light-field attenuated phase-shifting masks and binary intensity masks were examined using experimentally measured aerial images from the Ziess MSM-100 with IBM AIMS software, the scalar and thin-mask approximation in SPLAT, and the rigorous electromagnetic simulator TEMPEST. The dark-field attenuated phase-shifting mask (aPSM) contact holes show the most severe amount of focus shift, although the shift is not much different from that of space openings. Exposure latitude of dark field aPSM features shows a 12% improvement (from 33% to 45%) over conventional binary intensity mask. Depth-of-focus is also improved. under biasing of the mask features can also improve the process latitude of dark-field masks, whereas the contrary is true for light-field mask features. In general, the process latitude of light-field contact features is worse than that of dark-field features, indicating the need for positive deep-UV photoresist technology.

  20. Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Tobita, Kazuhiro

    2012-10-01

    We study the dynamical behavior of counter traffic flow through a sequence of signals (traffic lights) controlled by a phase shift. There are two lanes for the counter traffic flow: the first lane is for east-bound vehicles and the second lane is for west-bound vehicles. The green-wave strategy is studied in the counter traffic flow where the phase shift of signals in the second lane has opposite sign to that in the first lane. A nonlinear dynamic model of the vehicular motion is presented by nonlinear maps at a low density. There is a distinct difference between the traffic flow in the first lane and that in the second lane. The counter traffic flow exhibits very complex behavior on varying the cycle time, the phase difference, and the split. Also, the fundamental diagram is derived by the use of the cellular automaton (CA) model. The dependence of east-bound and west-bound vehicles on cycle time, phase difference, and density is clarified.

  1. Family of Hermitian low-momentum nucleon interactions with phase shift equivalence

    NASA Astrophysics Data System (ADS)

    Holt, Jason D.; Kuo, T. T.; Brown, G. E.

    2004-03-01

    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum nucleon-nucleon ( NN ) interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions of Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Λ . Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.

  2. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration

    NASA Astrophysics Data System (ADS)

    Wu, Haiteng; Chen, Jian; Yang, Keji; Hu, Xuxiao

    2016-04-01

    Multilayer structures have been widely used in industrial fields, and non-destructive evaluation of these structures is of great importance to assure their quality and performance. Recently, ultrasonic array imaging using full matrix capture, e.g. the total focusing method (TFM), has been shown to increase sensitivity to small defects and improve imaging resolution in homogeneous media. However, it cannot be applied to multilayer structures directly, due to the sound velocity variation in different layers and because refraction occurs at layer interfaces, which gives rise to difficulties in determining the propagation path and time. To overcome these problems, an extended phase shift migration (EPSM) is proposed for the full matrix imaging of multilayer structures in this paper. Based on the theory of phase shift migration for monostatic pulse-echo imaging, full matrix imaging using EPSM is derived by extrapolating the wavefields in both transmission and reception, and extended to the multilayer case. The performance of the proposed algorithm is evaluated by full matrix imaging of a two-layer structure with side-drilled holes conducted both in the simulation and the experiment. The results verify that the proposed algorithm is capable of full matrix imaging of a layered structure with a high resolution and signal-to-noise ratio. For comparison, full matrix imaging using the TFM with root-mean-squared velocity is also performed, and the results demonstrate that the proposed algorithm is superior to the TFM in improving both the image quality and resolution.

  3. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  4. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    PubMed

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. PMID:25817914

  5. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning.

    PubMed

    Zhong, Min; Su, Xianyu; Chen, Wenjing; You, Zhisheng; Lu, Mingteng; Jing, Hailong

    2014-12-29

    To determine the shape of a complex object with vertical measurement mode and higher accuracy, a novel modulation measuring profilometry realizing auto-synchronous phase shifting and vertical scanning is proposed. Coaxial optical system for projection and observation instead of triangulation system is adopted to avoid shadow and occlusion. In the projecting system, sinusoidal grating is perpendicular to optical axis. For moving the grating along a direction at a certain angle to optical axis, 1D precision translation platform is applied to achieve purposes of both phase-shifting and vertical scanning. A series of fringe patterns with different modulation variations are captured by a CCD camera while scanning. The profile of the tested object can be reconstructed by the relationship between the height values and the modulation distributions. Unlike the previous method based on Fourier transform for 2D fringe pattern, the modulation maps are calculated from the intensity curve formed by the points with definite pixel coordinates in the captured fringe patterns. The paper gives the principle of the proposed method, the set-up of measurement system and the method for system calibration. Computer simulation and experiment results proved its feasibility. PMID:25607133

  6. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  7. Experimental analysis of time-phase-shift flow sensing based on a piezoelectric peristaltic micropump

    NASA Astrophysics Data System (ADS)

    Huang, Pao-Cheng; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2016-05-01

    Flow rate sensing is a critical issue for piezoelectric-based micropump systems. This paper describes experimental analysis of flow rate sensing in a peristaltic micropump system. Sensing can be integrated with such a pump using piezoelectric actuators based on the time-phase-shift (TPS) method. To do this, an evaluation-window is added on the falling edge of the driving pulse to help detect the flow velocity without affecting the flow rate. We fabricate a prototype piezoelectric peristaltic micropump with three chambers and three piezoelectric actuators. The middle actuator works not only as an actuator for driving fluid but also as a transducer for sensing flow rate. An evaluation-window is performed to ascertain the relationship between the flow rate and the phase shift of output-signal responses from the transducer. The experimental results show that the evaluation-window response of flow rates in a piezoelectric peristaltic micropump has rates of from 5.56‒33.36 μl s-1. The results are extended to propose a practical flow rate sensor, the design of which can be realized easily in the piezoelectric peristaltic micropump system for sensorless responses that can detect flow rate without any sensors or circuits. The proposed TPS method is real-time, integrated, fast, efficient, and suitable for flow rate detection in piezoelectric peristaltic micropumps.

  8. Phase shifts and phase π jumps in four-terminal waveguide Aharonov-Bohm interferometers

    NASA Astrophysics Data System (ADS)

    Kreisbeck, Christoph; Kramer, Tobias; Buchholz, Sven S.; Fischer, Saskia F.; Kunze, Ulrich; Reuter, Dirk; Wieck, Andreas D.

    2010-10-01

    Quantum coherent properties of electrons can be studied in Aharonov-Bohm (AB) interferometers. We investigate both experimentally and theoretically the transmission phase evolution in a four-terminal quasi-one-dimensional AlGaAs/GaAs-based waveguide AB ring. As main control parameter besides the magnetic field, we tune the Fermi wave number along the pathways using a top-gate. Our experimental results and theoretical calculations demonstrate the strong influence of the measurement configuration upon the AB-resistance-oscillation phase in a four-terminal device. While the nonlocal setup displays continuous phase shifts of the AB oscillations, the phase remains rigid in the local voltage-probe setup. Abrupt phase jumps are found in all measurement configurations. We analyze the phase shifts as functions of the magnetic field and the Fermi energy and provide a detailed theoretical model of the device. Scattering and reflections in the arms of the ring are the source of abrupt phase jumps by π .

  9. Phase shifts, herbivory, and the resilience of coral reefs to climate change.

    PubMed

    Hughes, Terence P; Rodrigues, Maria J; Bellwood, David R; Ceccarelli, Daniela; Hoegh-Guldberg, Ove; McCook, Laurence; Moltschaniwskyj, Natalie; Pratchett, Morgan S; Steneck, Robert S; Willis, Bette

    2007-02-20

    Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly. PMID:17291763

  10. Coral-algal phase shifts alter fish communities and reduce fisheries production.

    PubMed

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  11. SPM characterizaton of anomalies in phase-shift mask and their effect on wafer features

    NASA Astrophysics Data System (ADS)

    Muckenhirn, Sylvain; Meyyappan, A.; Walch, Kelvin; Maslow, Mark J.; Vandenberghe, Geert; van Wingerden, Johannes

    2001-08-01

    As dimensions get smaller and circuits get more complex, the demand for comprehensive measurements of reticule geometries increases. 3D characterization of phase shift mask (PSM) is required to understand the quality of the transferred image. To avoid anomalies between the measurements, the structures on both mask/reticule and wafer should be measured using the same technique. The technique used should be insensitive to differences in the intrinsic characteristics of the materials (chromium on quartz, resist on conductive or non-conductive layers). Scanning probe microscopy (SPM) is ideally suited to make these characterizations on both masks/reticule and wafers. It quantitatively profiles lines and trenches in three dimensions. SPM is a nondestructive technique, allowing for the preservation of the integrity of mask and wafers. The profiles of features on a phase shift mask (PSM) are measured with SPM. Some undesirable effects such as micro loading versus structure size during quartz etch, positive slope of the quartz sidewall, and CD differential between chromium and quartz are characterized. Some of the corresponding features on the wafer are measured with SPM and the correlation between the mask anomalies and their effect on wafer features are established.

  12. Aggressive and sexual social stimuli do not phase shift the circadian temperature rhythm in rats.

    PubMed

    Meerlo, P; Daan, S

    1998-05-01

    The objective of the present study was to determine whether the rat circadian system is sensitive to social stimuli. Male rats were subjected to a sociosexual interaction with an estrous female or to an aggressive interaction with a dominant male conspecific. The interactions lasted for 1 h and took place in the middle of the circadian resting phase. Control animals were picked up and handled for a few minutes, but were otherwise left undisturbed. Animals were housed under constant dim red light during the whole period of the experiment. To assess the effects of the interactions on free-running circadian rhythmicity, body temperature was measured by means of radio telemetry. neither the sociosexual interaction with a female nor the aggressive interaction with another male induced phase shifts or changes in the free-running period. The rat circadian system does not seem to be sensitive to social stimuli directly. Moreover, the finding that aggressive interactions do not phase shift circadian rhythms indicates that the endogenous pacemaker in rats is not sensitive to stressors. PMID:9653577

  13. Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Yang, Lianxiang; Chen, Xu; Xu, Nan; Wang, Yonghong

    2013-10-01

    High accuracy full field three dimensional (3D) deformation measurements have always been an essential problem for the manufacturing, instrument, and aerospace industry. 3D deformations, which can be translated further into 3D strain and stress, are the key parameter for design, manufacturing and quality control. Due to the fast development of the manufacturing industry, especially in the automobile and airspace industry, rapid design and optimization concepts have already widely accepted. These concepts all require the support of rapid, high sensitive and accuracy 3D deformation measurement. Advanced optical methods are gaining widely acceptance for deformation and stain measurement by industry due to the advantages of non-contact, full-field and high measurement sensitivity. Of these methods, Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. Combined with a phase shift technique, ESPI systems can measure the 3D deformation with dozens of nanometer level sensitivity. Cataloged by phase calculation methods, ESPI systems can be divided into temporal phase shift ESPI systems and spatial phase shift ESPI system. This article provides a review and a comparison of temporal and spatial phase shift speckle pattern interferometry for 3D deformation measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI which is suited well for static measurement and by the spatial phase-shift ESPI which is particularly useful for dynamic measurement will be discussed in detail. Basic theory, brief derivation and different optical layouts for the two systems will be presented. The potentials and limitations of the both ESPI

  14. Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry.

    PubMed

    Qiu, Xiang; Zhong, Liyun; Xiong, Jiaxiang; Zhou, Yunfei; Tian, Jindong; Li, Dong; Lu, Xiaoxu

    2016-06-13

    In simultaneous phase-shifting dual-wavelength interferometry, by matching both the phase-shifting period number and the fringe number in interferogram of two wavelengths to the integers, the phase with high accuracy can be retrieved through combining the principle component analysis (PCA) and least-squares iterative algorithm (LSIA). First, by using the approximate ratio of two wavelengths, we can match both the temporal phase-shifting period number and the spatial fringe number in interferogram of two wavelengths to the integers. Second, using above temporal and spatial hybrid matching condition, we can achieve accurate phase shifts of single-wavelength of phase-shifting interferograms through using PCA algorithm. Third, using above phase shifts to perform the iterative calculation with the LSIA method, the wrapped phases of single-wavelength can be determined. Both simulation calculation and experimental research demonstrate that by using the temporal and spatial hybrid matching condition, the PCA + LSIA based phase retrieval method possesses significant advantages in accuracy, stability and processing time. PMID:27410297

  15. Scattering Theory of Kondo Mirages and Observation of Single Kondo Atom Phase Shift*

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.; Hersch, Jesse S.; Heller, Eric J.; Manoharan, H. C.; Lutz, C. P.; Eigler, D. M.

    2001-03-01

    We explain the origin of the Kondo mirage seen in recent quantum corral Scanning Tunneling Microscope (STM) experiments with a scattering theory of electrons on the surfaces of metals. Our theory combined with experimental data provides the first direct observation of a single Kondo atom phase shift. The Kondo mirage observed at the empty focus of an elliptical quantum corral is shown to arise from multiple electron bounces off the corral wall adatoms in a manner analagous to the formation of a real image in optics. We demonstrate our theory with direct quantitive comparision to experimental data. *This research was supported by the National Science Foundation under Grant No. CHE9610501 and by ITAMP.

  16. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  17. Sensitivity Distribution Properties of a Phase-Shifted Fiber Bragg Grating Sensor to Ultrasonic Waves

    PubMed Central

    Wu, Qi; Okabe, Yoji; Saito, Kazuya; Yu, Fengming

    2014-01-01

    In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG) to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the material's geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring. PMID:24412903

  18. Reduction of translation rate stabilizes circadian rhythm and reduces the magnitude of phase shift.

    PubMed

    Nakajima, Masato; Koinuma, Satoshi; Shigeyoshi, Yasufumi

    2015-08-14

    In the intracellular environment, the circadian oscillator is exposed to molecular noise. Nevertheless, cellular rhythms are robust and show almost constant period length for several weeks. To find which molecular processes modulate the stability, we examined the effects of a sublethal dose of inhibitors for processes in the molecular clock. Inhibition of PER1/2 phosphorylation by CKIε/δ led to reduced amplitude and enhancement of damping, suggesting that inhibition of this process destabilized oscillation. In contrast, moderate inhibition of translation led to stabilization of the circadian oscillation. Moreover, inhibition of translation also reduced magnitude of phase shift. These results suggest that some specific molecular processes are crucial for stabilizing the circadian rhythm, and that the molecular clock may be stabilized by optimizing parameters of some crucial processes in the primary negative feedback loop. Moreover, our findings also suggested that rhythm stability is closely associated with phase stability against stimuli. PMID:26141234

  19. Application of ultrasound phase-shift analysis to authenticate wooden panel paintings.

    PubMed

    Bravo, José M; Sánchez-Pérez, Juan V; Ferri, Marcelino; Redondo, Javier; Picó, Rubén

    2014-01-01

    Artworks are a valuable part of the World's cultural and historical heritage. Conservation and authentication of authorship are important aspects to consider in the protection of cultural patrimony. In this paper we present a novel application of a well-known method based on the phase-shift analysis of an ultrasonic signal, providing an integrated encoding system that enables authentication of the authorship of wooden panel paintings. The method has been evaluated in comparison with optical analysis and shows promising results. The proposed method provides an integrated fingerprint of the artwork, and could be used to enrich the cataloging and protection of artworks. Other advantages that make particularly attractive the proposed technique are its robustness and the use of low-cost sensors. PMID:24803191

  20. High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2015-10-15

    High-speed three dimensional imaging based on two-wavelength parallel-phase-shift interferometry is presented. The technique is demonstrated using a high-resolution polarization-based Linnik interferometer operating with three high-speed phase-masked CCD cameras and two quasi-monochromatic modulated light sources. The two light sources allow for phase unwrapping the single source wrapped phase so that relatively high step profiles having heights as large as 3.7 μm can be imaged in video rate with ±2  nm accuracy and repeatability. The technique is validated using a certified very large scale integration (VLSI) step standard followed by a demonstration from the semiconductor industry showing an integrated chip with 2.75 μm height copper micro pillars at different packing densities. PMID:26469586

  1. Switching speed effect of phase shift keying in SLED for generating high power microwaves

    NASA Astrophysics Data System (ADS)

    Xiong, Zheng-Feng; Cheng, Cheng; Yu, Jian; Chen, Huai-Bi; Ning, Hui

    2016-01-01

    SLAC energy doubler (SLED) type radio-frequency pulse compressors are widely used in large-scale particle accelerators for converting long-duration moderate-power input pulses into short-duration high-power output pulses. Phase shift keying (PSK) is one of the key components in SLED pulse compression systems. Performance of the PSK will influence the output characteristics of the SLED, such as the rise-time of the output pulse, maximal peak power gain, and energy efficiency. In this paper, a high power microwave source based on power combining and pulse compression of conventional klystrons is introduced. The effects of nonideal PSK with slow switching speed and PSK without power output during the switching process are investigated, and the experimental results with nonideal PSK agree well with the analytical results.

  2. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  3. Infrared Frequency Selective Surfaces Fabricated using Optical Lithography and Phase-Shift Masks

    SciTech Connect

    S.J. Spector; D.K. Astolfi; S.P. Doran; T.M. Lyszczarz; J.E. Raynolds

    2001-06-15

    A frequency selective surface (FSS) structure has been fabricated for use in a thermophotovoltaic system. The FSS provides a means for reflecting the unusable light below the bandgap of the thermophotovoltaic cell while transmitting the usable light above the bandgap. This behavior is relatively independent of the light's incident angle. The fabrication of the FSS was done using optical lithography and a phase-shift mask. The FSS cell consisted of circular slits spaced by 1100 nm. The diameters and widths of the circular slits were 870 nm and 120 nm, respectively. The FSS was predicted to pass wavelengths near 7 {micro}m and reflect wavelengths outside of this pass-band. The FSSs fabricated performed as expected with a pass-band centered near 5 {micro}m.

  4. Phase-shifting point diffraction interferometer focus-aid enhanced mask

    DOEpatents

    Naulleau, Patrick

    2000-01-01

    A phase-shifting point diffraction interferometer system (PS/PDI) employing a PS/PDI mask that includes a PDI focus aid is provided. The PDI focus aid mask includes a large or secondary reference pinhole that is slightly displaced from the true or primary reference pinhole. The secondary pinhole provides a larger capture tolerance for interferometrically performing fine focus. With the focus-aid enhanced mask, conventional methods such as the knife-edge test can be used to perform an initial (or rough) focus and the secondary (large) pinhole is used to perform interferometric fine focus. Once the system is well focused, high accuracy interferometry can be performed using the primary (small) pinhole.

  5. Phase Shift Analyses of pp Elastic Scattering between 500 and 800 MeV

    NASA Astrophysics Data System (ADS)

    Nagata, J.; Yoshino, H.; Matsuda, M.

    1995-03-01

    The single-energy phase-shift analyses of pp elastic scattering have been made by using double-spin and triple-spin correlation parameters measured at SIN in the incident energy region TL = 447-580 MeV, and at LAMPF at TL = 735 MeV. The scattering amplitudes have been almost uniquely determined at TL = 500, 530, 560, 580 and 735 MeV. The Argand diagrams of 1D2-, 3P2- and 3F3-wave amplitudes show counter clockwise behavior. The obtained I = 1 amplitudes in the present analysis will contribute to the determination of the I = 0 amplitudes of np scattering in the same energy region.

  6. Phase-shifter edge effects on attenuated phase-shifting mask image quality

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Ferguson, Richard A.; Neureuther, Andrew R.

    1994-05-01

    Edge effects of space, line, and linespace patterns in attenuated phase-shifting masks are studied using experimentally measured aerial images from the IBM AIMS tool, the scalar and thin mask approximations in SPLAT, and the rigorous electromagnetic simulator TEMPEST. The inadequacy of the thin mask approximation cannot be anticipated from comparisons of in- focus images of isolated line features as the experimentally measured image and the predictions from SPLAT and TEMPEST agree well. However, the scalar and thin mask approximations are not suitable for out of focus image prediction for all pattern types because the presence of the glass edges causes a focus shift of about 0.1 micrometers . Printing small isolated spaces and dense linespace patterns is more robust than isolated lines in the attenuated PSM technology.

  7. Photonic radio frequency phase-shift amplification by radio frequency interferometry.

    PubMed

    Ayun, Moshe Ben; Schwarzbaum, Arye; Rosenberg, Seva; Pinchas, Monika; Sternklar, Shmuel

    2015-11-01

    We present a new technique for radio frequency (RF) phase-shift amplification based on RF interferometry and demonstrate it in an optical system. A striking feature of this amplifier is that the input phase noise is not amplified together with the input phase signal, so the phase sensitivity improves with higher phase amplification. We also predict that in the case of correlated amplitude noise, the sensitivity is not affected by the amplitude noise. With 600 MHz of modulated light and a phase amplification of 100, we demonstrate a phase resolution of 0.2 mrad, giving a distance resolution of 8 μm. We postulate that nanometric distance resolution can be achieved with sub-gigahertz modulation. PMID:26512469

  8. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation.

    PubMed

    Urricelqui, Javier; Zornoza, Ander; Sagues, Mikel; Loayssa, Alayn

    2012-11-19

    We demonstrate a novel dynamic BOTDA sensor based, for the first time to our knowledge, on the use of the Brillouin phase-shift in addition to the conventional Brillouin gain. This provides the advantage of measurements that are largely immune to variations in fiber attenuation or changes in pump pulse power. Furthermore, the optical detection deployed leads to an enhanced precision or measurement time and to the broadening of the measurement range. Proof-of-concept experiments demonstrate 1.66-kHz measurement rate with 1-m resolution over a 160 m sensing fiber length. Moreover, a measurement range of 2560 µε with a precision of 20 µε is successfully proved. PMID:23187549

  9. Sensitivity distribution properties of a phase-shifted fiber bragg grating sensor to ultrasonic waves.

    PubMed

    Wu, Qi; Okabe, Yoji; Saito, Kazuya; Yu, Fengming

    2014-01-01

    In this research, the sensitivity distribution properties of a phase-shifted fiber Bragg grating (PS-FBG) to ultrasonic waves were investigated employing the surface attachment method. A careful consideration was taken and examined by experimental results to explain that the distances and angles between the sensor and ultrasonic source influence not only the amplitudes, but also the initial phases, waveforms, and spectra of detected signals. Furthermore, factors, including the attachment method and the material's geometric dimensions, were also discussed. Although these results were obtained based on PS-FBG, they are also applicable to a normal FBG sensor or even an optical fiber sensor, due to the identical physical changes induced by ultrasonic waves in all three. Thus, these results are useful for applications of optical fiber sensors in non-destructive testing and structural health monitoring. PMID:24412903

  10. Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Cao, Zhu; Liu, Yang; Shen-Tu, Guo-Liang; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2015-05-01

    In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification—making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

  11. Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser.

    PubMed

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Qiaoni; Yang, Kaiming; Sun, Bing; Yin, Guolu; Liu, Shen; Zhou, Jiangtao; Zhao, Jing

    2015-05-01

    We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam. PMID:25927770

  12. Analytical description of 3D optical pulse diffraction by a phase-shifted Bragg grating.

    PubMed

    Golovastikov, Nikita V; Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2016-08-22

    Diffraction of a three-dimensional (3D) spatiotemporal optical pulse by a phase-shifted Bragg grating (PSBG) is considered. The pulse diffraction is described in terms of signal transmission through a linear system with a transfer function determined by the reflection or transmission coefficient of the PSBG. Resonant approximations of the reflection and transmission coefficients of the PSBG as functions of the angular frequency and the in-plane component of the wave vector are obtained. Using these approximations, a hyperbolic partial differential equation (Klein-Gordon equation) describing a general class of transformations of the incident 3D pulse envelope is derived. A solution to this equation is found in the form of a convolution integral. The presented rigorous simulation results fully confirm the proposed theoretical description. The obtained results may find application in the design of new devices for spatiotemporal pulse shaping and for optical information processing and analog optical computing. PMID:27557167

  13. Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Brun, B.; Martins, F.; Faniel, S.; Hackens, B.; Cavanna, A.; Ulysse, C.; Ouerghi, A.; Gennser, U.; Mailly, D.; Simon, P.; Huant, S.; Bayot, V.; Sanquer, M.; Sellier, H.

    2016-04-01

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

  14. Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts.

    PubMed

    Brun, B; Martins, F; Faniel, S; Hackens, B; Cavanna, A; Ulysse, C; Ouerghi, A; Gennser, U; Mailly, D; Simon, P; Huant, S; Bayot, V; Sanquer, M; Sellier, H

    2016-04-01

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts. PMID:27081995

  15. Kondo phase shift at the zero-bias anomaly of quantum point contacts

    NASA Astrophysics Data System (ADS)

    Brun, Boris; Martins, Frederico; Faniel, Sébastien; Hackens, Benoit; Cavanna, Antonella; Ulysse, Christian; Ouerghi, Albdelkarim; Gennser, Ulf; Mailly, Dominique; Simon, Pascal; Huant, Serge; Bayot, Vincent; Sanquer, Marc; Sellier, Hermann

    The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

  16. A scheme for a single molecule phase-shift gate in a solid matrix

    SciTech Connect

    Cui, Xiao-Dong; Zheng, Yujun

    2015-06-07

    We propose a feasible scheme to implement a phase-shift gate ( (table) ) based on a two-state single molecule in a solid matrix, where γ is a geometric phase controlled through a fast on-resonant laser field and a slow off-resonant radio-frequency field. In our scheme, a non-Hermitian quantum model is employed to characterize the single molecule in a solid matrix including the spontaneous decay effect. By the coupling between the radio-frequency field and the two-state permanent dipole difference resulting from the solid matrix, the spontaneous decay fatal to the preservation of geometric phase can be effectively suppressed for a considerably long waiting time.

  17. Spin Hall effect in two-dimensional systems within the relativistic phase shift model

    NASA Astrophysics Data System (ADS)

    Johansson, Annika; Herschbach, Christian; Fedorov, Dmitry V.; Henk, Jürgen; Mertig, Ingrid

    2015-11-01

    Recently, a relativistic phase shift model (RPSM) was introduced [D. V. Fedorov et al., Phys. Rev. B 88, 085116 (2013), 10.1103/PhysRevB.88.085116] to describe the skew-scattering mechanism of the spin Hall effect caused by impurities in bulk crystals. Here, we present its analog derived for two-dimensional (2D) systems. The proposed 2D-RPSM is applied to one-monolayer noble-metal films with various substitutional impurities and the obtained results are compared with those of corresponding first-principles calculations. We demonstrate that, in contrast to the three-dimensional RPSM, the considered model does not provide a sufficient qualitative description of the transport properties. Therefore, an ab initio treatment is necessary for the description of the spin Hall effect in two-dimensional crystals.

  18. Practical round-robin differential phase-shift quantum key distribution.

    PubMed

    Zhang, Ying-Ying; Bao, Wan-Su; Zhou, Chun; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2016-09-01

    Recently, a novel protocol named round-robin differential phase-shift (RRDPS) quantum key distribution [Nature 509, 475(2014)] has been proposed. It can estimate information leakage without monitoring bit error rate. In this paper, we study the performance of RRDPS using heralded single photon source (HSPS) without and with decoy-state method, then compare it with the performance of weak coherent pulses (WCPs). From numerical simulation, we can see that HSPS performs better especially for shorter packet and higher bit error rate. Moreover, we propose a general theory of decoy-state method for RRDPS protocol based on only three decoy states and one signal state. Taking WCPs as an example, the three-intensity decoy-state protocol can distribute secret keys over a distance of 128 km when the length of pulses packet is 32, which confirms great practical interest of our method. PMID:27607679

  19. Instantaneous high-resolution focus tracking and a vibrometery system using parallel phase shift interferometry

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Safrani, Avner; Abdulhlaim, Ibrahim

    2016-09-01

    High resolution fast focus tracking and vibrometery system based on parallel phase shift polarization interferometry using three detectors is presented. The basic design and algorithm are described, followed by an experimental demonstration showing sub nm resolution of different controlled motion profiles instantaneously monitored at a feedback rate of 100 kHz. The fact that the method does not rely on active optical components, potentially allows extremely high vibration rates to be measured; limited only by the detector bandwidth and sampling rate. In addition, the relatively simple design relies only on standard optical equipment, combined with the simple algorithm, makes the task of setting up a high performance vibrometry system cheap and readily available.

  20. Analysis and synthesis of phase shifting algorithms based on linear systems theory

    NASA Astrophysics Data System (ADS)

    Servin, M.; Estrada, J. C.

    2012-08-01

    We review and update a recently published formalism for the theory of linear Phase Shifting Algorithms (PSAs) based on linear filtering (systems) theory, mainly using the Frequency Transfer Function (FTF). The FTF has been for decades the standard tool in Electrical Engineering to analyze and synthesize their linear systems. Given the well defined FTF approach (matured over the last century), it clarifies, in our view, many not fully understood properties of PSAs. We present easy formulae for the spectra of the PSAs (the FTF magnitude), their Signal to Noise (S/N) power-ratio gain, their detuning robustness, and their harmonic rejection in terms of the FTF. This paper has more practical appeal than previous publications by the same authors, hoping to enrich the understanding of this PSA's theory as applied to the analysis and synthesis of temporal interferometry algorithms in Optical Metrology.

  1. Locked SU(1,1) Nonlinear Interferometer for Phase Shift Measurements in Triangular Nanohole Arrays

    NASA Astrophysics Data System (ADS)

    Layden, Emily; Coulter, Tabitha; Lukens, Joseph; Lawrie, Ben; Pooser, Raphael

    2016-05-01

    Nonlinear interferometers have proven to be more sensitive than classical interferometers, and classical interferometers have been shown to have a better limit of detection when coupled with a plasmonic sensor. Here we study combining a locked nonlinear interferometer with a plasmonic triangle nanohole array. Locking the nonlinear interferometer provides more substantial information about the noise in the system and makes this type of sensor more accessible for practical applications. We compared the stability of the locked verses the unlocked system and observed a more stable output when locking the interferometer compared to the unlocked system. The system is less susceptible to fluctuations due to air currents, meaning that smaller phase shifts can be resolved. Applying this nonlinear interferometer to a plasmonic sensor, such as a nanohole array exhibiting extraordinary optical transmission, allows for increased sensitivity in the detection of a particular analyte concentration.

  2. Application of Ultrasound Phase-Shift Analysis to Authenticate Wooden Panel Paintings

    PubMed Central

    Bravo, José M.; Sánchez-Pérez, Juan V.; Ferri, Marcelino; Redondo, Javier; Picó, Rubén

    2014-01-01

    Artworks are a valuable part of the World's cultural and historical heritage. Conservation and authentication of authorship are important aspects to consider in the protection of cultural patrimony. In this paper we present a novel application of a well-known method based on the phase-shift analysis of an ultrasonic signal, providing an integrated encoding system that enables authentication of the authorship of wooden panel paintings. The method has been evaluated in comparison with optical analysis and shows promising results. The proposed method provides an integrated fingerprint of the artwork, and could be used to enrich the cataloging and protection of artworks. Other advantages that make particularly attractive the proposed technique are its robustness and the use of low-cost sensors. PMID:24803191

  3. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration.

    PubMed

    Malara, P; Campanella, C E; De Leonardis, F; Giorgini, A; Avino, S; Passaro, V M N; Gagliardi, G

    2015-05-01

    The transmission spectrum of a ring resonator enclosing a π-phase shifted fiber Bragg grating (π-FBG) shows a spectral feature at the Bragg wavelength that is much sharper than resonance of the π-FBG alone, and that can be detected with a simple integrated cavity output technique. Hence, the resolution of any sensor based on the fitting of the π-FBG spectral profile can be largely improved by the proposed configuration at no additional fabrication costs and without altering the sensor robustness. A theoretical model shows that the resolution enhancement attainable in the proposed closed-loop geometry depends on the quality factor of the ring resonator. With a commercial grating in a medium-finesse ring, a spectral feature 12 times sharper than the π-FBG resonance is experimentally demonstrated. A larger enhancement is expected in a low-loss, polarization maintaining setup. PMID:25927801

  4. Vulnerability to chosen-plaintext attack of optoelectronic information encryption with phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Qin, Wan; Peng, Xiang; Meng, Xiangfeng; Gao, Bruce Z.

    2011-06-01

    The optical cryptosystem based on phase-shifting interferometry (PSI) is one of the most interesting optical cryptographic schemes in recent years. However, we find that the PSI technique provides an attractive method to record the ciphertext, but contributes little to the security level of the cryptosystem. From the cryptanalysis point of view, in a certain simplified case, an attacker is only required to crack two equivalent decryption keys instead of the original random phase keys and geometric key. Moreover, a chosen-plaintext attack method is proposed, in which an impulse function is chosen as a known plaintext. By using this attack, the attacker can effectively recover any plaintext from the corresponding ciphertext. The validity of the attack is verified by computer simulations.

  5. Error detection and correction for a multiple frequency quaternary phase shift keyed signal

    NASA Astrophysics Data System (ADS)

    Hopkins, Kevin S.

    1989-06-01

    A multiple frequency quaternary phased shift (MFQPSK) signaling system was developed and experimentally tested in a controlled environment. In order to insure that the quality of the received signal is such that information recovery is possible, error detection/correction (EDC) must be used. Various EDC coding schemes available are reviewed and their application to the MFQPSK signal system is analyzed. Hamming, Golay, Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (R-S) block codes as well as convolutional codes are presented and analyzed in the context of specific MFQPSK system parameters. A computer program was developed in order to compute bit error probabilities as a function of signal to noise ratio. Results demonstrate that various EDC schemes are suitable for the MFQPSK signal structure, and that significant performance improvements are possible with the use of certain error correction codes.

  6. Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating.

    PubMed

    Guo, Jingjing; Xue, Shigui; Zhao, Qun; Yang, Changxi

    2014-08-11

    We report what is to our knowledge the first ultrasonic imaging of seismic physical models by using a phase-shifted fiber Bragg grating (PS-FBG). Seismic models, which consist of multiple layer structures, were immersed in water. Piezoelectric (PZT) transducer was used to generate ultrasonic waves and a PS-FBG as a receiver. Two-dimensional (2D) ultrasonic images were reconstructed by scanning the PS-FBG with a high-precision position scanning device. In order to suppress the low-frequency drift of the Bragg wavelength during scanning, a tight wavelength tracking method was employed to lock the laser to the PS-FBG resonance in its reflection bandgap. The ultrasonic images captured by the PS-FBG have been compared with the images obtained by the geophysical imaging system, Sinopec, demonstrating the feasibility of our PS-FBG based imaging system in seismic modeling studies. PMID:25321040

  7. Phase shift migration for imaging layered objects and objects immersed in water.

    PubMed

    Olofsson, Tomas

    2010-11-01

    This paper proposes the use of phase shift migration for ultrasonic imaging of layered objects and objects immersed in water. The method, which was developed in reflection seismology, is a frequency domain technique that in a computationally efficient way restores images of objects that are isotropic and homogeneous in the lateral direction but inhomogeneous in depth. The performance of the proposed method was evaluated using immersion test data from a block with side-drilled holes with an additional scatterer residing in water. In this way, the method's capability of simultaneously imaging scatterers in different media and at different depths was investigated. The method was also applied to a copper block with flat bottom holes. The results verify that the proposed method is capable of producing high-resolution and low-noise images for layered or immersed objects. PMID:21041139

  8. A surface-plasmon resonance phase modulation bio-reaction detection system with (5,1) phase-shifting algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hung; Lee, Shu-Sheng; Hsu, I.-Hung; Tseng, Eddie; Lee, Chih-Kung

    2007-12-01

    Surface plasmon resonance (SPR) is a very important metrology in biology detection. Phase modulation is one of the SPR detection technologies and the sample changes can be recognized from the phase variation. It is able to detect very tiny bio sample variation due to its high sensitivity. In this study, the optical system design based on a paraboloidal lens-based surface plasmon resonance instrument will be used to control the SPR critical angle. The charge coupled device camera (CCD camera) will be used to record the images of the bio-reaction and (5,1) phase-shifting algorithm will be adopted to retrieve the phase fringes of the whole spot from the intensity maps. The combination of the angle control SPR system and the (5,1) phase-shifting algorithm will expand the whole spot detection ability from the intensity to phase modulation because the intensity maps are going to be recorded for the (5,1) phase-shifting algorithm calculation. The difference between (5,1) phase-shifting algorithm and Five-Step Algorithm1 is that (5,1) phase-shifting algorithm only needs one image map at one time during the bio reaction and Five-Step Algorithm requires five image maps. Therefore, (5,1) phase-shifting algorithm will reduce the process of experiment and the requirement of the memory. The different concentration alcohols were measured by the optical system to verify the (5,1) phase-shifting algorithm applied in SPR phase modulation measurement and to prove the idea is workable and successful.

  9. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    PubMed

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  10. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise

    PubMed Central

    Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  11. The effects and inhibition of frequency offset on differential phase-shift keying detection

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Zhou, Jing; Su, Shaojing; Pan, Zhongming

    2015-10-01

    Differential phase-shift keying (DPSK) has been widely implemented and developed in high-speed optical communication systems. The low error rate detection at high access rate is one of the considerable issues in practical engineering application. Balanced detection based on fiber Mach-Zehnder delay interferometer (MZDI) is the typical optical DPSK signal detecting method. It requires that the free spectrum range (FSR) of the MZDI equals the reciprocal of symbol period of the DPSK signal. For the reasons of ambient temperature variation and nonlinear phase noise, a dynamic frequency offset always exists between the FSR and the reciprocal of symbol period. That may introduce some optical signal-to-noise ratio (OSNR) costs and fault detections. Therefore, it is significant to inhibit the frequency offset on DPSK detection. In this paper, firstly, we discuss the effects of frequency offset on DPSK detection, and realize the conclusion that frequency offset is virtually equivalent to an additional phase difference between adjacent symbols. Secondly, through simulation, we analyze the feasibility of DPSK detection in the presence of a definite range of frequency offset, and present the quantitative computation of effective coverage, duty cycle, and optimal sampling time of symbol interference. Some issues which should be considered in practical implementation are also discussed. Finally, according to the relationship among phase difference, temperature and voltage, we propose a phase difference compensation scheme which can automatically adjust the voltage for optimal detections, and dynamically track the changing of ambient temperature and nonlinear phase noise. Furthermore, we ascertain the performance of the voltage requested for implementing the scheme. The scheme can be also developed to quadrature phase-shift keying (QPSK) and differential QPSK (DQPSK) modulation situations.

  12. Circadian Phase-Shifting Effects of Repeated Ramelteon Administration in Healthy Adults

    PubMed Central

    Richardson, Gary S.; Zee, Phyllis C.; Wang-Weigand, Sherry; Rodriguez, Laura; Peng, Xuejun

    2008-01-01

    Study Objectives: To assess the ability of repeated daily oral ramelteon to facilitate re-entrainment of human circadian rhythms after an imposed phase advance of the sleep-wake cycle. Methods: A total of 75 healthy adult volunteers aged 18–45 years remained in a sleep laboratory for 6 days and 5 nights; a 5-h phase advance in their sleep-wake cycle was imposed under dim-light conditions. Oral ramelteon (1, 2, 4, or 8 mg once daily for 4 days) or placebo was administered 30 min before bedtime. The primary endpoint was the phase of the circadian rhythm as assessed by the time at which salivary melatonin concentrations declined below 3 pg/mL after morning awakening (dim-light melatonin offset [DLMoff]). Results: After 4 days of once-daily treatment, participants receiving 1, 2, or 4 mg ramelteon exhibited statistically significant phase shifts in DLMoff of −88.0 (16.6), −80.5 (14.8), and −90.5 (15.2) minutes respectively, versus −7.1 (18.6) minutes for placebo (least-squares mean(SEM), p = 0.002, p = 0.003, p = 0.001, respectively). Change in DLMoff for the 8 mg dose of ramelteon, −27.9 (16.4) minutes, was not significantly different than that for placebo (p = 0.392). Conclusions: Ramelteon (1, 2, or 4 mg per day) administered before bedtime significantly advanced the phase of the circadian rhythm after a 5-h phase advance in the sleep-wake cycle. These findings suggest that ramelteon has potential as a specific therapy for circadian rhythm sleep disorders. Citation: Richardson GS; Zee PC; Wang-Weigand S; Rodriguez L; Peng X. Circadian phase-shifting effects of repeated ramelteon administration in healthy adults. J Clin Sleep Med 2008;4(5):456–461. PMID:18853704

  13. Decreased emotional reactivity of rats exposed to repeated phase shifts of light-dark cycle.

    PubMed

    Okuliarova, Monika; Molcan, Lubos; Zeman, Michal

    2016-03-15

    Disturbed light-dark (LD) cycles are associated with circadian disruption of physiological and behavioural rhythms and in turn with an increased risk of disease development. However, direct causal links and underlying mechanisms leading to negative health consequences still need to be revealed. In the present study, we exposed male Wistar rats to repeated phase shifts of LD cycle and analysed their ability to cope with mild emotional stressors. In experiment 1, rats were submitted to either a regular 12:12 LD cycle (CTRL rats) or 8-h phase delay shifts applied every 2days for 5weeks (SHIFT rats). Subsequently, the behaviour was examined in the open-field, black-white box and elevated plus maze tests. In experiment 2, changes in blood pressure (BP), heart rate (HR) as well as the activity of autonomic nervous system were measured in telemeterised rats in response to open-field and black-white box tests before and after 5-week exposure to shifted LD regime. Locomotor activity was consistently higher in SHIFT than CTRL rats in in the open-field and black-white box tests. Interestingly, in the elevated plus maze, SHIFT rats displayed increased risk assessment and decreased grooming compared to CTRL rats. Anxiety measures were affected only in the black-white box, where SHIFT rats displayed reduced anxiety-like behaviour compared to CTRL rats. Differences in behavioural reactivity between SHIFT and CTRL rats did not correspond with BP and HR changes. However, exposure to phase shifts increased the sympathovagal reactivity in the black-white box. Together, our results demonstrated that disturbed LD conditions decreased emotional reactivity of rats and affected their ability to cope with emotional stressors denoting an additional risk mechanism linking disrupted circadian organisation to adverse health effects. PMID:26773465

  14. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  15. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans

    PubMed Central

    Eastman, Charmane I.; Suh, Christina; Tomaka, Victoria A.; Crowley, Stephanie J.

    2015-01-01

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals. PMID:25670162

  16. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  17. Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin

    2016-09-01

    Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.

  18. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Tang, Jian; Li, Xiaoming; Dong, Chuanbo

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  19. Demodulation of two-shot fringe patterns with random phase shifts by use of orthogonal polynomials and global optimization.

    PubMed

    Tian, Chao; Liu, Shengchun

    2016-02-22

    We propose a simple and robust phase demodulation algorithm for two-shot fringe patterns with random phase shifts. Based on a smoothness assumption, the phase to be recovered is decomposed into a linear combination of finite terms of orthogonal polynomials, and the expansion coefficients and the phase shift are exhaustively searched through global optimization. The technique is insensitive to noise or defects, and is capable of retrieving phase from low fringe-number (less than one) or low-frequency interferograms. It can also cope with interferograms with very small phase shifts. The retrieved phase is continuous and no further phase unwrapping process is required. The method is expected to be promising to process interferograms with regular fringes, which are common in optical shop testing. Computer simulation and experimental results are presented to demonstrate the performance of the algorithm. PMID:26906984

  20. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry

    PubMed Central

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-01-01

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation. PMID:26178451

  1. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal

  2. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions.

    PubMed

    Lin, Guoxing

    2015-10-01

    Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that

  3. Adding static printing capabilities to the EUV phase-shifting point diffraction interferometer

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik H.; Batson, Phillip; Denham, Paul; Jackson, Keith; Rekawa, Seno; Bokor, Jeffery

    2001-03-01

    While interferometry is routinely used for the characterization and alignment of lithographic optics, the ultimate performance metric for these optics is printing in photoresist. Direct comparison of imaging and wavefront performance is also useful for verifying and improving the predictive power of wavefront metrology under actual printing conditions. To address these issues, static, small-field printing capabilities are being added to the extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) implemented at the Advanced Light Source at Lawrence Berkeley National Laboratory. This Sub-field Exposure Station (SES) will enable the earliest possible imaging characterization of the upcoming Engineering Test Stand (ETS) Set-2 projection optics. Relevant printing studies with the ETS projection optics require illumination partial coherence with {sigma} of approximately 0.7. This {sigma} value is very different from the coherent illumination requirements of the EUV PS/PDI and the coherence properties naturally provided by synchrotron undulator beamline illumination. Adding printing capabilities to the PS/PDI experimental system thus necessitates the development of an alternative illumination system capable of destroying the inherent coherence of the beamline. The SES is being implemented with two independent illuminators: the first is based on a novel EUV diffuser currently under development and the second is based on a scanning mirror design. Here we describe the design and implementation of the new SES, including a discussion of the illuminators and the fabrication of the EUV diffuser.

  4. Diffractive phase-shift lithography photomask operating in proximity printing mode.

    PubMed

    Cirino, Giuseppe A; Mansano, Ronaldo D; Verdonck, Patrick; Cescato, Lucila; Neto, Luiz G

    2010-08-01

    A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source. PMID:20721026

  5. Phase shifts and the role of herbivory in the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Ledlie, M. H.; Graham, N. A. J.; Bythell, J. C.; Wilson, S. K.; Jennings, S.; Polunin, N. V. C.; Hardcastle, J.

    2007-09-01

    Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.

  6. Phase sensitivity in deformed-state superposition considering nonlinear phase shifts

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2016-07-01

    We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.

  7. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    PubMed

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  8. Quantitative reflection phase mesoscopy by remote coherence tuning of phase-shift interference patterns

    PubMed Central

    Arbel, Elad; Bilenca, Alberto

    2015-01-01

    Conventional low-magnification phase-contrast microscopy is an invaluable, yet a qualitative, imaging tool for the interrogation of transparent objects over a mesoscopic millimeter-scale field-of-view in physical and biological settings. Here, we demonstrate that introducing a compact, unbalanced phase-shifting Michelson interferometer into a standard reflected brightfield microscope equipped with low-power infinity-corrected objectives and white light illumination forms a phase mesoscope that retrieves remotely and quantitatively the reflection phase distribution of thin, transparent, and weakly scattering samples with high temporal (1.38 nm) and spatial (0.87 nm) axial-displacement sensitivity and micrometer lateral resolution (2.3 μm) across a mesoscopic field-of-view (2.25 × 1.19 mm2). Using the system, we evaluate the etch-depth uniformity of a large-area nanometer-thick glass grating and show quantitative mesoscopic maps of the optical thickness of human cancer cells without any area scanning. Furthermore, we provide proof-of-principle of the utility of the system for the quantitative monitoring of fluid dynamics within a wide region. PMID:26216719

  9. Reproducibility of contact lens power measurements using the phase shifting schlieren method

    NASA Astrophysics Data System (ADS)

    Joannes, Luc; Hough, Tony; Hutsebaut, Xavier; Dubois, Xavier; Ligot, Renaud; Saoul, Bruno; Van Donink, Philip; De Coninck, Kris

    2009-06-01

    PURPOSE. To assess a new method of power measurement of soft and rigid contact lenses. The method is the phase shifting schlieren method, as embodied in the Nimo TR1504 instrument. MATERIALS and METHODS. Three Nimo TR1504 instruments were used to measure the power related dimensions of: a) a range of custom toric rigid lenses; b) a range of commercially available spherical hydrogel lenses; and c) a commercially available range of toric silicone hydrogel lenses. The measurements were carried out using a standard ISO ring test protocol where independent tests were carried out under conditions of reproducibility. The analysis of the measurements was carried out using ISO methods which enabled the reproducibility standard deviation, SR, of the method to be calculated. RESULTS. The results show that this new method has a reproducibility standard deviation SR of 0.048D for spherical soft (hydrogel) lenses. This means the back vertex power of spherical soft lenses having a power in the range +/-20.0D can be determined to current ISO product tolerances with a single measurement. The method has SR of 0.059D for sphere power and 0.093D for cylinder power for toric soft lenses having powers in the range +/-10.0D and cylinder powers in the range +/-2.0D. A single measurement will determine sphere power to current ISO tolerance limits with 95% confidence while two measurements are required to determine the cylinder power to the same confidence level.

  10. Wavefront reconstruction in phase-shifting interferometry via sparse coding of amplitude and absolute phase.

    PubMed

    Katkovnik, V; Bioucas-Dias, J

    2014-08-01

    Phase-shifting interferometry is a coherent optical method that combines high accuracy with high measurement speeds. This technique is therefore desirable in many applications such as the efficient industrial quality inspection process. However, despite its advantageous properties, the inference of the object amplitude and the phase, herein termed wavefront reconstruction, is not a trivial task owing to the Poissonian noise associated with the measurement process and to the 2π phase periodicity of the observation mechanism. In this paper, we formulate the wavefront reconstruction as an inverse problem, where the amplitude and the absolute phase are assumed to admit sparse linear representations in suitable sparsifying transforms (dictionaries). Sparse modeling is a form of regularization of inverse problems which, in the case of the absolute phase, is not available to the conventional wavefront reconstruction techniques, as only interferometric phase modulo-2π is considered therein. The developed sparse modeling of the absolute phase solves two different problems: accuracy of the interferometric (wrapped) phase reconstruction and simultaneous phase unwrapping. Based on this rationale, we introduce the sparse phase and amplitude reconstruction (SPAR) algorithm. SPAR takes into full consideration the Poissonian (photon counting) measurements and uses the data-adaptive block-matching 3D (BM3D) frames as a sparse representation for the amplitude and for the absolute phase. SPAR effectiveness is documented by comparing its performance with that of competitors in a series of experiments. PMID:25121537

  11. RACE and Calculations of Three-dimensional Distributed Cavity Phase Shifts

    NASA Technical Reports Server (NTRS)

    Li, Ruoxin; Gibble, Kurt

    2003-01-01

    The design for RACE, a Rb-clock flight experiment for the ISS, is described. The cold collision shift and multiple launching (juggling) have important implications for the design and the resulting clock accuracy and stability. We present and discuss the double clock design for RACE. This design reduces the noise contributions of the local oscillator and simplifies and enhances an accuracy evaluation of the clock. As we try to push beyond the current accuracies of clocks, new systematic errors become important. The best fountain clocks are using cylindrical TE(sub 011) microwave cavities. We recently pointed out that many atoms pass through a node of the standing wave microwave field in these cavities. Previous studies have shown potentially large frequency shifts for atoms passing through nodes in a TE(sub 013) cavity. The shift occurs because there is a small traveling wave component due to the absorption of the copper cavity walls. The small traveling wave component leads to position dependent phase shifts. To study these effects, we perform Finite Element calculations. Three-dimensional Finite Element calculations require significant computer resources. Here we show that the cylindrical boundary condition can be Fourier decomposed to a short series of two-dimensional problems. This dramatically reduces the time and memory required and we obtain (3D) phase distributions for a variety of cavities. With these results, we will be able to analyze this frequency shift in fountain and future space clocks.

  12. Phase shifts in precision atom interferometry due to the localization of atoms and optical fields

    SciTech Connect

    Wicht, A.; Sarajlic, E.; Hensley, J.M.; Chu, S.

    2005-08-15

    We discuss details of momentum transfer in the interaction between localized atoms and localized optical fields which are relevant to precision atom interferometry. Specifically, we consider a {lambda}-type atom coherently driven between its ground states by a bichromatic optical field. We assume that the excited state can be eliminated adiabatically from the time evolution. It is shown that the average recoil momentum is given by the phase gradient of the two-photon field at the 'position' of the atom, provided that the optical field can be described by a function which is separable in position and time and that the atomic wave function is symmetric and well localized within the optical field envelope. The result does not require the optical fields to have a Gaussian spatial dependence. Our discussion provides the basis for the analysis of systematic errors in precision atom interferometry arising from optical wave-front curvature, wave-front distortion, and the Gouy phase shift of Gaussian beams. We apply our result to the atom interferometer experiment of Chu and co-workers which measures the fine-structure constant.

  13. Ultrafast all-optical temporal differentiation in integrated phase-shifted Bragg gratings

    NASA Astrophysics Data System (ADS)

    Rutkowska, Katarzyna A.; Duchesne, David; Strain, Michael J.; Azana, José; Morandotti, Roberto; Sorel, Marc

    2010-12-01

    All-optical communications and data processing exemplifies an important alternative to overcome the speed and bandwidth limitations imposed by electronics. Specifically, practical implementation of analog operations, including optical temporal differentiation, is fundamental for future ultrafast signal processing and computing networks. In addition, the development of fully integrated systems that allow on-single-chip operations is of significant interest. In this work we report the design, fabrication tolerances and first experimental demonstration of an integrated, ultrafast differentiator based on π-phase-shifted Bragg gratings. By using deeply-sidewall-etched Silicon-on-Insulator (SOI) ridged waveguides, first-order optical differentiation has been achieved on sub-millimeters length scales, reaching THz processing speeds. The proposed device has numerous potential applications, including all-optical, analog solving of differential equations (important for virtual modeling of scientific phenomena)1, data processing and analysis2, as well as for the generation of Hermite-Gaussian waveforms (used for arbitrary optical coding and decoding)3.

  14. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface. PMID:21047101

  15. Tunable optoelectronic oscillator incorporating a carrier phase-shifted double sideband modulation system

    NASA Astrophysics Data System (ADS)

    Li, Chengxin; Chen, Fushen; Zhang, Jiahong

    2016-01-01

    A tunable optoelectronic oscillator (OEO) implemented by using a carrier phase-shifted double sideband modulation (CPS-DSB) system consisting of an optical coupler (OC), a Mach-Zehnder modulator (MZM) biased at the minimum transmission point, a polarization beam splitter (PBS), and a tunable optical delay line (TODL) is proposed and experimentally demonstrated. The key device in the system is the CPS-DSB system, which functions in conjunction with a chirped fiber Bragg grating (CFBG) in the loop form a high-Q microwave photonic filter (MPF). Through simply adjusting the TODL, the central frequency of the MPF is shifted and the frequency tunability of the OEO can be realized. A detailed theoretical analysis is provided and the results are confirmed by an experiment. A microwave signal with a frequency-tuning range from 7.24 to 14.05 GHz is generated. The phase noise, the long-term stability and the side-mode suppression performance of the generated microwave signal are also investigated.

  16. A staggered differential phase-shift keying modulation format for 100Gbit/s applications.

    PubMed

    Shao, Yufeng; Wen, Shuangchun; Chen, Lin; Li, Ying; Xu, Huiwen

    2008-08-18

    We propose and demonstrate by numerical simulation a new phase modulation format, the staggered differential phase-shift keying (SDPSK), for 100 Gbit/s applications. Non-return-to-zero (NRZ) SDPSK signals was generated by using two phase modulators, and return-to-zero (RZ) SDPSK signals with 50% duty cycle was generated by cascading a dual-arm Mach-Zehnder modulator. The demodulation of 2 bit/symbol can be simply achieved on 1 bit rate through only one Mach-Zehnder delay interferometer and a balanced receiver. By comparing the transmission characteristics of the two staggered phase modulation formats with those of NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK, respectively, we show that, the SDPSK signal has similar chromatic dispersion and polarization-mode-dispersion tolerance to the DPSK signal with same NRZ or RZ shape, while the SDPSK signal has stronger nonlinear tolerance than the DPSK or DQPSK signal. In addition, the SDPSK signal has the best transmission performance when each signal was transmitted over 106km optical SMF+DCF, and then launched into a third-order Gaussian optical bandpass filter placed with beyond 125GHz bandwidth. PMID:18711532

  17. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    NASA Astrophysics Data System (ADS)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  18. Quantitative reflection phase mesoscopy by remote coherence tuning of phase-shift interference patterns

    NASA Astrophysics Data System (ADS)

    Arbel, Elad; Bilenca, Alberto

    2015-07-01

    Conventional low-magnification phase-contrast microscopy is an invaluable, yet a qualitative, imaging tool for the interrogation of transparent objects over a mesoscopic millimeter-scale field-of-view in physical and biological settings. Here, we demonstrate that introducing a compact, unbalanced phase-shifting Michelson interferometer into a standard reflected brightfield microscope equipped with low-power infinity-corrected objectives and white light illumination forms a phase mesoscope that retrieves remotely and quantitatively the reflection phase distribution of thin, transparent, and weakly scattering samples with high temporal (1.38 nm) and spatial (0.87 nm) axial-displacement sensitivity and micrometer lateral resolution (2.3 μm) across a mesoscopic field-of-view (2.25 × 1.19 mm2). Using the system, we evaluate the etch-depth uniformity of a large-area nanometer-thick glass grating and show quantitative mesoscopic maps of the optical thickness of human cancer cells without any area scanning. Furthermore, we provide proof-of-principle of the utility of the system for the quantitative monitoring of fluid dynamics within a wide region.

  19. Static and dynamic microdeformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Muratet, Sylvaine; Zamkotsian, Fr‰d.‰ric; Fourniols, Jean-Yves

    2005-01-01

    Since micro deformable mirrors based on Micro-Opto-Electronico-Mechanical Systems (MOEMS) technology would be essential in next generation adaptive optics system, we are designing, realizing, characterizing and modeling this key-component. Actuators and a continuous-membrane micro deformable mirror (3*3 actuators, 600*600 μm2) have been designed in-house and processed by surface micromachining in the Cronos foundry. A dedicated characterization bench has been developed for the complete analysis. This Twyman-Green interferometer allows high in-plane resolution (4 μm) or large field of view (40mm). Out-of-plane measurements are performed with phase-shifting interferometry showing highly repeatable results (standard deviation<5nm). Features such as optical quality or electro-mechanical behavior are extracted from these high precision three-dimensional component maps and FEM can be fitted. Dynamic analysis like vibration mode and cut-off frequency is realized with time-averaged interferometer. The deformable mirror exhibit a 350nm stroke for 35 volts on the central actuator. This limited stroke could be overcome by changing the components material and promising actuators are made with polymers.

  20. Static and dynamic microdeformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Muratet, Sylvaine; Zamkotsian, Frédéric; Fourniols, Jean-Yves

    2004-12-01

    Since micro deformable mirrors based on Micro-Opto-Electronico-Mechanical Systems (MOEMS) technology would be essential in next generation adaptive optics system, we are designing, realizing, characterizing and modeling this key-component. Actuators and a continuous-membrane micro deformable mirror (3*3 actuators, 600*600 µm2) have been designed in-house and processed by surface micromachining in the Cronos foundry. A dedicated characterization bench has been developed for the complete analysis. This Twyman-Green interferometer allows high in-plane resolution (4 µm) or large field of view (40mm). Out-of-plane measurements are performed with phase-shifting interferometry showing highly repeatable results (standard deviation<5nm). Features such as optical quality or electro-mechanical behavior are extracted from these high precision three-dimensional component maps and FEM can be fitted. Dynamic analysis like vibration mode and cut-off frequency is realized with time-averaged interferometer. The deformable mirror exhibit a 350nm stroke for 35 volts on the central actuator. This limited stroke could be overcome by changing the components material and promising actuators are made with polymers.

  1. Absolute surface metrology by differencing spatially shifted maps from a phase-shifting interferometer.

    PubMed

    Bloemhof, E E

    2010-07-15

    Surface measurements of precision optics are commonly made with commercially available phase-shifting Fizeau interferometers that provide data relative to flat or spherical reference surfaces whose unknown errors are comparable to those of the surface being tested. A number of ingenious techniques provide surface measurements that are "absolute," rather than relative to any reference surface. Generally, these techniques require numerous measurements and the introduction of additional surfaces, but still yield absolute information only along certain lines over the surface of interest. A very simple alternative is presented here, in which no additional optics are required beyond the surface under test and the transmission flat (or sphere) defining the interferometric reference surface. The optic under test is measured in three positions, two of which have small lateral shifts along orthogonal directions, nominally comparable to the transverse spatial resolution of the interferometer. The phase structure in the reference surface then cancels out when these measurements are subtracted in pairs, providing a grid of absolute surface height differences between neighboring resolution elements of the surface under test. The full absolute surface, apart from overall phase and tip/tilt, is then recovered by standard wavefront reconstruction techniques. PMID:20634825

  2. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Montagut, Y. J.; García, J. V.; Jiménez, Y.; March, C.; Montoya, A.; Arnau, A.

    2011-06-01

    The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequency/mass sensitivity with the square of frequency predicted by Sauerbrey. However, this sensitivity improvement has not been completely transferred in terms of resolution. The decrease of frequency stability due to the increase of the phase noise, particularly in oscillators, made impossible to reach the expected resolution. A new concept of sensor characterization at constant frequency has been recently proposed. The validation of the new concept is presented in this work. An immunosensor application for the detection of a low molecular weight contaminant, the insecticide carbaryl, has been chosen for the validation. An, in principle, improved version of a balanced-bridge oscillator is validated for its use in liquids, and applied for the frequency shift characterization of the QCM immunosensor application. The classical frequency shift characterization is compared with the new phase-shift characterization concept and system proposed.

  3. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications.

    PubMed

    Montagut, Y J; García, J V; Jiménez, Y; March, C; Montoya, A; Arnau, A

    2011-06-01

    The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequency/mass sensitivity with the square of frequency predicted by Sauerbrey. However, this sensitivity improvement has not been completely transferred in terms of resolution. The decrease of frequency stability due to the increase of the phase noise, particularly in oscillators, made impossible to reach the expected resolution. A new concept of sensor characterization at constant frequency has been recently proposed. The validation of the new concept is presented in this work. An immunosensor application for the detection of a low molecular weight contaminant, the insecticide carbaryl, has been chosen for the validation. An, in principle, improved version of a balanced-bridge oscillator is validated for its use in liquids, and applied for the frequency shift characterization of the QCM immunosensor application. The classical frequency shift characterization is compared with the new phase-shift characterization concept and system proposed. PMID:21721715

  4. Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice

    PubMed Central

    Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.

    2011-01-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  5. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  6. An alternative approach to estimating rainfall rate by radar using propagation differential phase shift

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.

    1994-01-01

    In this work it is shown that for frequencies from 3 to 13 GHz, the ratio of the specific propagation differential phase shift phi(sub DP) to the rainfall rate can be specified essentially independently of the form of the drop size distribution by a function only of the mass-weighted mean drop size D(sub m). This significantly reduces one source of substantial bias errors common to most other techniques for measuring rain by radar. For frequencies 9 GHz and greater, the coefficient can be well estimated from the ratio of the specific differential attenuation to phi(sub DP), while at nonattenuating frequencies such as 3 GHz, the coefficient can be well estimated using the differential reflectivity. In practice it appears that this approach yields better estimates of the rainfall rate than any other current technique. The best results are most likely at 13.80 GHz, followed by those at 2.80 GHz. An optimum radar system for measuring rain should probably include components at a both frequencies so that when signals at 13.8 GHz are lost because of attenuation, good measurements are still possible at the lower frequency.

  7. A new approach to estimating rainwater content by radar using propagation differential phase shift

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.; Caylor, I. J.

    1994-01-01

    As microwaves propagate through rain, the rate of phase change with increasing distance is different depending upon whether the transmissions are polarized horizontally or vertically. This rate of change is the so-called specific propagation differential phase shift phi(sub DP). This paper demonstrates that at several frequencies and over a wide domain the ratio of phi(sub DP) to the rainwater content W is nearly linearly related to D(sub m), the mass-weighted mean drop size. An investigation of errors indicates that this new approach is likely to yield more accurate estimates of W than the other classical reflectivity factor Z, attenuation, or polarization techniques. The most accurate estimates of W are most likely at the highest frequency considered, 13.80 GHz. In lieu of such high-frequency measurements, these somewhat esoteric results are made more concrete through an analysis of 3-GHz radar measurements collected during the Convection and Precipitation Experiment in a tropical rainstorm in Florida. Among the principal advantages of using phi(sub DP) to measure rain are that an absolute calibration of the radar is no longer required and the estimates are decoupled from measurements of the radar reflectivity factor. Consequently, temporal and spatial structures of rain estimates do not simply mimic those of the reflectivity factor, as happens for classical estimation techniques using Z.

  8. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift

    PubMed Central

    Ling, S. D.; Johnson, C. R.; Frusher, S. D.; Ridgway, K. R.

    2009-01-01

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  9. Fingerprint detection and mapping using a phase shifted coherent gradient sensing technique.

    PubMed

    Dhanotia, Jitendra; Prakash, Satya; Bhatia, Vimal; Prakash, Shashi

    2016-07-10

    In this paper, a full field technique for mapping a latent fingerprint using a coherent gradient sensing (CGS) sensor is proposed. Collimated light from an He-Ne laser illuminates a specimen comprising a fingerprint implanted onto a reflecting surface. Reflected light from the specimen is analyzed using the CGS sensor comprising a pair of gratings. Reflected light carries information regarding the depth and orientation of furrows and ridges in the fingerprint. The topological information of the fingerprint is retrieved using four-step phase shifting interferometry. Well-defined 2D and 3D phase plots have been reconstructed to map the topography of the human fingerprint. The recorded slope data reconstructs the information regarding the separation and depth of the ridges in the latent fingerprint. The proposed technique is noninvasive and full field and does not require any kind of chemical or physical treatment. The sensor is very simple, yields interferometric sensitivity, and has the advantages of easy alignment, compactness, and low cost. PMID:27409305

  10. Measurement of displacement and distance with a polarization phase shifting folded Twyman Green interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2015-11-20

    A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement. PMID:26836546

  11. Intensity and phase fields behind Phase Shifting Masks studied with High Resolution Interference Microscopy

    NASA Astrophysics Data System (ADS)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Weichelt, Tina; Zeitner, Uwe; Vogler, Uwe; Voelkel, Reinhard

    2015-03-01

    The proximity printing industry is in real need of high resolution results and it can be done using Phase Shift Mask (PSM) or by applying Optical Proximity Correction (OPC). In our research we are trying to find out details of how light fields behind the structures of photo masks develop in order to determine the best conditions and designs for proximity printing. We focus here on parameters that are used in real situation with gaps up to 50 μm and structure sizes down to 2 μm. The light field evolution behind the structures is studied and delivers insight in to precisions and tolerances that need to be respected. It is the first time that an experimental analysis of light propagation through mask is presented in detail, which includes information on intensity and phase. The instrument we use is known as High Resolution Interference Microscopy (HRIM). HRIM is a Mach-Zehnder interferometer which is capable of recording three dimensional distributions of intensity and phase with diffraction limited resolution. Our characterization technique allows plotting the evolution of the desired light field and therefore printable structure till the desired proximity gap. In this paper we discuss in detail the evolution of intensity and phase fields of elbow or corner structure at different position behind a phase mask and interpret the main parameters. Of particular interest are tolerances against proximity gap variation and the resolution in printed structures.

  12. Ontogenetic phase shifts in metabolism: links to development and anti-predator adaptation.

    PubMed

    Yagi, Mitsuharu; Kanda, Takeshi; Takeda, Tatsusuke; Ishimatsu, Atsushi; Oikawa, Shin

    2010-09-22

    The allometric relationships between resting metabolism (VO(2)) and body mass (M), VO(2) = a(i)M(b), are considered a fundamental law of nature. A distinction though needs to be made between the ontogeny (within a species) and phylogeny (among species) of metabolism. However, the nature and significance of the intraspecific allometry (ontogeny of metabolism) have not been established in fishes. In this study, we present experimental evidence that a puffer fish ranging 0.0008-3 g in wet body mass has four distinct allometric phases in which three stepwise increases in scaling constants (a(i), i = 1-4), i.e. ontogenetic phase shifts in metabolism, occur with growth during its early life stages at around 0.002, 0.01 and 0.1 g, keeping each scaling exponent constant in each phase (b = 0.795). Three stepwise increases in a(i) accompanied behavioural and morphological changes and three peaks of severe cannibalism, in which the majority of predation occurred on smaller fish that had a lower value of a(i). Though fishes are generally highly fecund, producing a large number of small eggs, their survivability is very low. These results suggest that individuals with the ability to rapidly grow and step up 'a(i)' develop more anti-predator adaptation as a result of the decreased predatory risk. PMID:20444717

  13. Experimental round-robin differential phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Yu-Huai; Cao, Yuan; Dai, Hui; Lin, Jin; Zhang, Zhen; Chen, Wei; Xu, Yu; Guan, Jian-Yu; Liao, Sheng-Kai; Yin, Juan; Zhang, Qiang; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2016-03-01

    In conventional quantum key distribution (QKD) protocols, security is guaranteed by estimating the amount of leaked information. Such estimation tends to overrate, leading to a fundamental threshold of the bit error rate, which becomes a bottleneck of practical QKD development. This bottleneck is broken through by the recent work of round-robin differential phase-shift (RRDPS) protocol, which eliminates the fundamental threshold of the bit error rate. The key challenge for the implementation of the RRDPS scheme lies in the realization of a variable-delay Mach-Zehnder interferometer, which requires active and random choice of many delays. By designing an optical system with multiple switches and employing an active phase stabilization technology, we successfully construct a variable-delay interferometer with 127 actively selectable delays. With this measurement, we experimentally demonstrate the RRDPS protocol and obtain a final key rate of 15.54 bps with a total loss of 18 dB and an error rate of 8.9%.

  14. Second level exposure for phase shift mask applications using an SLM-based DUV mask writer

    NASA Astrophysics Data System (ADS)

    Chandramouli, Mahesh; Olshausen, Bob; Korobko, Yulia; Henrichs, Sven; Qu, Ping; Ma, Jian; Auches, Bruce; Cole, Damon; Ostrom, Thomas; Beyerl, Angela; Eklund, Robert; Zerne, Raoul; Goransson, Peter; Persson, Magnus; Newman, Tom

    2005-06-01

    Phase shift mask (PSM) applications are becoming essential for addressing the lithography requirements of the 65 nm technology node and beyond. Many mask writer properties must be under control to expose the second level of advanced PSM: second level alignment system accuracy, resolution, pattern fidelity, critical dimension (CD) uniformity and registration. Optical mask writers have the advantage of process simplicity for this application, as they do not require a discharge layer. This paper discusses how the mask writer properties affect the error budget for printing the second level. A deep ultraviolet (DUV) mask writer with a spatial light modulator (SLM) is used in the experimental part of the paper. Partially coherent imaging optics at the 248 nm wavelength provide improved resolution over previous systems, and pattern fidelity is optimized by a real-time corner enhancement function. Lithographic performance is compared to the requirements for second level exposure of advanced PSM. The results indicate sufficient capability and stability for 2nd level alternating PSM patterning at the 65 nm and 45 nm nodes.

  15. Phase shift in leaf movements of xanthium attributed to age and rhythm patterns.

    PubMed

    Koukkari, W L; Hobbs, L C; Salisbury, F B

    1992-04-01

    Leaves of cockelbur (Xanthium strumarium L.) have been reported to be in either an upright or downward position during the dark span (night) of a 24-hour cycle. Results from our studies clearly indicate that such differences in leaf position are not related to differences in ecotypes but can be attributed to age of the leaf, pattern of the waveform of the rhythm at various stages of the light-dark synchronizer regimen, and the statistical model used for the analysis of the waveform. Younger leaves reached a maximum upright position closer to the middle of the dark span, whereas older leaves reached this position closer to the end of the dark span. A phase shift of up to 6 to 10 hours may occur as the leaf ages. Results from the examination of the pattern of the waveform at four different times showed that the pattern of a younger leaf was different from that of an older leaf during the middle of the dark span, during the light-to-dark transition, and during the middle of the light span, but not during the dark-to-light transition. Linear regression, statistical analyses, and the fitting of harmonics clearly indicate that it is the trough, more than the peak, that differs with the age of the leaf. PMID:16668803

  16. Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry

    PubMed Central

    Horsley, David A.; Park, Hyunkyu; Laut, Sophie P.; Werner, John S.

    2008-01-01

    The static and dynamic characteristics of a bimorph deformable mirror (DM) for use in an adaptive optics system are described. The DM is a 35-actuator device composed of two disks of lead magnesium niobate (PMN), an electrostrictive ceramic that produces a mechanical strain in response to an imposed electric field. A custom stroboscopic phase-shifting interferometer was developed to measure the deformation of the mirror in response to applied voltage. The ability of the mirror to replicate optical aberrations described by the Zernike polynomials was tested as a measure of the mirror’s static performance. The natural frequencies of the DM were measured up to 20 kHz using both stroboscopic interferometry as well as a commercial laser Doppler vibrometer (LDV). Interferometric measurements of the DM surface profile were analyzed by fitting the surface with mode-shapes predicted using classical plate theory for an elastically supported disk. The measured natural frequencies were found to be in good agreement with the predictions of the theoretical model. PMID:19122798

  17. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  18. Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Shihua; Quan, Chenggen; Tay, Cho Jui; Reading, Ivan; Fang, Zhongping

    2004-01-01

    We describe a laser interferometric system in which two objectives are used to measure surface profile on a connectorized fiber-end surface. By the use of the proposed illumination design a He-Ne laser as a point light source is transformed to an extended light source, which is beneficial to localize interference fringe pattern near the test surface. To obtain an optimal contrast of the interference fringe pattern, the flat mirror with an adjustable reflection ratio is used to suit different test surfaces. A piezoelectric transducer attached on the reference mirror can move precisely along the optical axis of the objective and permits implementation of four-step phase-shifting interferometry without changing the relative position between the CCD sensor and the test surface. Therefore, an absolutely constant optical magnification can be accurately kept to capture the interference fringe patterns resulting from a combination of light reflected from both the reference flat mirror and the test surface. The experimental result shows that surface profile on a fiber-end with surface features such as a small fiber diameter of 125 μm and a low reflection ratio of less than 4% are measurable. Measurements on a standard calibration ball show that the accuracy of the proposed setup is comparable with that of existing white-light interferometers and stylus profilometers.

  19. Evaluation of stress redistribution in CMCs using phase-shifting Moire interferometry and thermoelastic infrared imaging

    SciTech Connect

    Mackin, T.J.

    1995-12-31

    Stress redistribution is a key feature affecting the practical utility of composite materials. A non-linear material response, such as fiber debonding and sliding, results in stress redistributions in the vicinity of stress concentrators. The existence of stress redistribution in ceramic matrix composites has been demonstrated using thermoelastic techniques, the results of which will be compared to surface strain maps gathered using phase-shifting Moir{acute e} interferometry. The Moir{acute e} technique measures strain distributions, while thermoelastic imaging measures strain distributions. The combination of both techniques permits experimental assessment of changes in the constitutive response of the materials. Results of Moir6 and thermoelastic experiments will be presented for three composite systems: C/C, SiC/CAS, and SiC/SiC. In the case of the SiC/CAS composite, the stress redistribution results in a notch-insensitive material. The changes in the constitutive response is rationalized based upon changes in the micro-mechanical properties of the composites. Thus, careful processing control can be exploited to design materials with varying amounts of notch-sensitivity.

  20. Defect printability of alternating phase-shift mask: a critical comparison of simulation and experiment

    NASA Astrophysics Data System (ADS)

    Ozawa, Ken; Komizo, Tooru; Kikuchi, Koji; Ohnuma, Hidetoshi; Kawahira, Hiroichi

    2002-07-01

    An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a dual-trench type for KrF exposure, with programmed quartz defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM100 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topography of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated defect identified by the alt-PSM of a single-trench type for ArF exposure are 240 nm in bottom diameter and 50 degrees in height (phase) for the cylindrical shape and 240 nm in bottom diameter and 90 degrees in height (phase) for the rotating trapezoidal shape, where the CD error limit is +/- 5%.

  1. Transmission and phase balancing of alternating phase-shifting masks (5x): theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Griesinger, Uwe A.; Pforr, Rainer; Knobloch, Juergen; Friedrich, Christoph M.

    1999-12-01

    Dual trench alternating phase shifting masks with an optimized value of the so-called shallow trench depth represents an interesting approach to overcome aerial image imbalances. In order to get a better understanding of the possibilities and limits of this approach, especially for 5X reduction, theoretical and experimental investigations were accomplished. In this paper experimental data obtained from 5X dual trench type alternating PSMs, using DUV-lithography are introduced and compared with 3D-mask simulations. The masks were fabricated with different etch depths and contain parts of typical DRAM patterns. Besides the transmission balancing also the phase balancing has an important influence on the effective process window of an alternating PSM. The effective phase error can be measured with an AIMS-system (MSM100). The comparison with simulated data allows the determination of the phase error. In a second step the influence of different balancing methods on phase and transmission were investigated with the TEMPEST mask simulator for unpolarized light. The optimization of the balancing with respect to the CD-bias, undercut and etch depth will be shown and a first approach of a sensitivity analysis will be presented.

  2. A binary phase-shift keying receiver for the detection of attention to human speech.

    PubMed

    Lopez-Gordo, M A; Pelayo, F

    2013-08-01

    Synthetic sounds, tone-beeps, vowels or syllables are typically used in the assessment of attention to auditory stimuli because they evoke a set of well-known event-related potentials, whose characteristics can be statistically contrasted. Such approach rules out the use of stimuli with non-predictable response, such as human speech. In this study we present a procedure based on the robust binary phase-shift keying (BPSK) receiver that permits the real-time detection of selective attention to human speeches in dichotic listening tasks. The goal was achieved by tagging the speeches with two barely-audible tags whose joined EEG response constitutes a reliable BPSK constellation, which can be detected by means of a BPSK receiver. The results confirmed the expected generation of the BPSK constellation by the human auditory system. Also, the bit-error rate and the information transmission rate achieved in the detection of attention fairly followed the expected curves and equations of the standard BPSK receiver. Actually, it was possible to detect attention as well as the estimation a priori of its accuracy based on the signal-to-noise ratio of the BPSK signals. This procedure, which permits the detection of the attention to human speeches, can be of interest for new potential applications, such as brain-computer interfaces, clinical assessment of the attention in real time or for entertainment. PMID:23746289

  3. Increasing the operating distance of a phase-shift laser range-finding system by using an active reflector

    NASA Astrophysics Data System (ADS)

    Hu, Pengcheng; Yu, Liang; Mei, Jianting; Tan, Jiubin

    2015-12-01

    A new phase-shift laser ranging method is developed by combining the conventional phase-shift ranging and the concept of transponder, in which the passive mirror in a phase-shift laser range-finding system is replaced with an active reflector whose light source power is the same as that at the measurement terminal. As a result, the power of the returned light is inversely proportional to the 2nd instead of the 4th power of the distance being measured. Section 3 indicate that by using the active reflector, the operating distance is dramatically increased without increasing the laser power or lens aperture. With a transmitted power of 20 mW and an aperture of 100 mm, the operating distance increased from 1.5 km to 9.4 km, and a 15-fold range gain can be forecasted for a transmitted power of 1 W. This strongly confirms the suitability of the developed phase-shift method with an active reflector for measuring longer distances.

  4. Simultaneous multi-wavelength phase-shifting interferometry based on principal component analysis with a color CMOS

    NASA Astrophysics Data System (ADS)

    Fan, Jingping; Lu, Xiaoxu; Xu, Xiaofei; Zhong, Liyun

    2016-05-01

    From a sequence of simultaneous multi-wavelength phase-shifting interferograms (SMWPSIs) recorded by a color CMOS, a principal component analysis (PCA) based multi-wavelength interferometry (MWI) is proposed. First, a sequence of SMWPSIs with unknown phase shifts are recorded with a single-chip color CMOS camera. Subsequently, the wrapped phases of single-wavelength are retrieved with the PCA algorithm. Finally, the unambiguous phase of the extended synthetic wavelength is achieved by the subtraction between the wrapped phases of single-wavelength. In addition, to eliminate the additional phase introduced by the microscope and intensity crosstalk among three-color channels, a two-step phase compensation method with and without the measured object in the experimental system is employed. Compared with conventional single-wavelength phase-shifting interferometry, due to no requirements for phase shifts calibration and the phase unwrapping operation, the actual unambiguous phase of the measured object can be achieved with the proposed PCA-based MWI method conveniently. Both numerical simulations and experimental results demonstrate that the proposed PCA-based MWI method can enlarge not only the measuring range, but also no amplification of noise level.

  5. Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology.

    PubMed

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-04-20

    The accuracy of phase-shifting interferometers (PSI) is crippled by nonlinearity of the phase shifter and instability of the environment such as vibration and air turbulence. A general algorithm, utilizing Lissajous figures and ellipse fitting, of correcting the phase extraction error in the phase shifting interferometry is described in this paper. By plotting N against D, where N and D represent the numerator and denominator terms of the phase extraction function (i.e. an arctangent function) respectively, a Lissajous ellipse is created. Once the parameters of the ellipse are determined by ellipse fitting, one can transform the ellipse to a unit circle (ETC). Through this process the phase extraction error caused by random phase shift errors can be corrected successfully. Proposed method is non-iterated, adapts to all phase shifting algorithms (PSAs), and has high accuracy. Some factors that may affect the performance of proposed method are discussed in numerical simulations. Optical experiments are implemented to validate the effectiveness of proposed algorithm. PMID:25969117

  6. The Application of Silicon Rich Nitride Films for Use as Deep-Ultraviolet Lithography Phase-Shifting Masks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Tao; Yamaguchi, Tomuo; Ohshimo, Kentaro; Aoyama, Mitsuru; Asinovsky, Leo

    1998-02-01

    Silicon rich nitride (SiRN) film prepared by plasma enhanced chemical vapor deposition (PECVD) for use as the phase-shifting mask for Deep-ultraviolet (UV) lithography has been developed. Optical properties and compositional characterizations of the SiRN films using Auger electron spectroscopy (AES) and spectroscopic ellipsometry (SE) combined with an empirical dielectric function (EDF), as well as phase-shifting mask simulation show that the SiRN is feasible for use in the application of single layer halftone phase-shifting mask (SLHTPSM) in the Deep-UV range. Optical constants of n ≈ 2.5 and k < 0.6 at 193 nm were realized by approaching the N/Si composition to the stoichiometric ratio of Si3N4. The deposition conditions for the films having the transmittance of 5 - 10% with a 180° phase shift at 193 nm (ArF) have been determined. Short wavelength extrapolation by EDF best-fit parameters based on a proper film-stack model provides a potential method to characterize the optical properties of amorphous SiRN down to about 190 nm, which is outside the range of most commercial SE's.

  7. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  8. The influence of a phase shift between the top and bottom walls on the Brownian transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Li, Feng-guo; Xie, Hui-zhang; Liu, Xue-mei; Ai, Bao-quan

    2015-03-01

    Transport of noninteracting self-propelled particles is numerically investigated in a two-dimensional horizontally asymmetrical channel with nonstraight midline which can be controlled by the phase shift between the top and bottom walls. From numerical simulations, we found that self-propelled particles can be rectified by the self-propelled velocity. The direction of the average velocity is determined by the horizontally asymmetrical parameter of the channel. The average velocity is very sensitive to the phase shift and its behaviors can be manipulated by changing the phase shift. As the phase shift is increased, the average velocity decreases and its peak position moves (to right or left). Remarkably, the average velocity is zero when the phase shift is in the interval [ 3 π / 5 , 4 π / 5 ]. The small phase shift may facilitate the rectification process for the large horizontal asymmetry of the channel.

  9. Effect of phase shifts in pressure-flow relationship on response to inspiratory resistance.

    PubMed

    Younes, M; Sanii, R

    1989-08-01

    Inspiratory prolongation is an integral component of the response to added inspiratory resistance. To ascertain whether this response depends on the relation between inspiratory flow (V) and the pressure perturbation, we compared the responses when this relationship was made progressively less distinct by creating phase shifts between V and the resulting negative mouth pressure (Pm). This was done with an apparatus that altered Pm in proportion to V (J. Appl. Physiol. 62:2491-2499, 1987). V was passed through low-pass electronic filters of different frequency responses before serving as the command signal to the apparatus. In six normal subjects the average neural inspiratory duration (TI) response (delta TI) was sharply (P less than 0.01) reduced (0.32 +/- 0.07 to 0.12 +/- 0.07 s) when the filter's frequency response decreased from 7.5 to 3.0 Hz. The TI response was essentially flat between tube resistance (i.e., no lag, delta TI = 0.36 +/- 0.11 s) and the 7.5-Hz filter, and there was no further change in TI response with filters having a frequency response less than 3.0 Hz, with all TI responses in this range being not significant. Subjects could not consciously perceive a difference between various filter settings. We conclude that the TI response is critically influenced by the phase of the negative pressure wave relative to TI. Furthermore the TI responses are not deliberate, although consciousness is required for their elicitation. PMID:2676945

  10. Volumetric Electromagnetic Phase-Shift Spectroscopy of Brain Edema and Hematoma

    PubMed Central

    Gonzalez, Cesar A.; Valencia, Jose A.; Mora, Alfredo; Gonzalez, Fernando; Velasco, Beatriz; Porras, Martin A.; Salgado, Javier; Polo, Salvador M.; Hevia-Montiel, Nidiyare; Cordero, Sergio; Rubinsky, Boris

    2013-01-01

    Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of “Volumetric Electromagnetic Phase Shift Spectroscopy” (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study. PMID:23691001

  11. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data.

    PubMed Central

    Lakowicz, J R; Laczko, G; Cherek, H; Gratton, E; Limkeman, M

    1984-01-01

    Recently it has become possible to measure fluorescence phase-shift and modulation data over a wide range of modulation frequencies. In this paper we describe the analysis of these data by the method of nonlinear least squares to determine the values of the lifetimes and fractional intensities for a mixture of exponentially decaying fluorophores. Analyzing simulated data allowed us to determine those experimental factors that are most critical for successfully resolving the emissions from mixtures of fluorophores. The most critical factors are the accuracy of the experimental data, the relative difference of the individual decay times, and the inclusion of data measured at multiple emission wavelengths. After measuring at eight widely spaced modulation frequencies, additional measurements yielded only a modest increase in resolution. In particular, the uncertainty in the parameters decreased approximately as the reciprocal of the square root of the number of modulation frequencies. Our simulations showed that with presently available precision and data for one emission bandpass, two decay times could be accurately determined if their ratio were greater than or equal to 1.4. Three exponential decays could also be resolved, but only if the range of the lifetimes were fivefold or greater. To reliably determine closely-spaced decay times, the data were measured at multiple emission wavelengths so that the fractional intensities of the components could be varied. Also, independent knowledge of any of the parameters substantially increased the accuracy with which the remaining parameters could be determined. In the subsequent paper we present experimental results that broadly confirm the predicted resolving potential of variable-frequency phase-modulation fluorometry. PMID:6498264

  12. Pattern-dependent correction of mask topography effects for alternating phase-shifting masks

    NASA Astrophysics Data System (ADS)

    Ferguson, Richard A.; Wong, Alfred K. K.; Brunner, Timothy A.; Liebmann, Lars W.

    1995-05-01

    Strategies for modifying both mask fabrication processes and design data for alternating phase-shifting masks to account for mask scattering phenomena are explored. Results were derived from the rigorous solution of Maxwell's equations using the EMFlex and TEMPEST programs for an etched-quartz fabrications process. By importing the resulting diffracted orders into VCIMAGE, full vector calculation of the aerial image from mask to wafer was obtained. From the rigorous mask simulations, the 0th and 1st diffracted orders were translated into an effective transmission and phase based on a thin-mask approximation. With this analysis technique, a 0.25 micrometers line-space grating for the baseline etched-quartz process (4X magnification) showed a transmission error of 7.2% and a phase error of 1.6 degree(s). In order to compensate for these errors, etch-back fabrication techniques, in which the quartz was recessed beneath the chrome, were evaluated to determine the extent to which the transmission and phase errors could be reduced. For the dual etch-back process typically in use today, a residual transmission error of approximately 0.5% could not be completely removed, even for etch-back depths greater than 200 nm. Correction of the phase errors was achieved by reducing the reactive-ion etch depth by 2-3 nm. Design manipulation, in which the 180 degree(s) opening was increased in size, required feature-dependent phase errors as large as 1 degree(s) were present.

  13. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-04-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  14. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    SciTech Connect

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

  15. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  16. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  17. 48 CFR 14.503-2 - Step two.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Step two. 14.503-2 Section 14.503-2 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Two-Step Sealed Bidding 14.503-2 Step two. (a) Sealed...

  18. Photonic crystal fiber π-phase-shifted long-period gratings with wide bandpass and temperature insensitivity

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Zhu, Yinian

    2015-11-01

    In order to solve for the mode intensity distributions in a photonic crystal fiber (PCF) cross section and the propagation constant for the design of fiber bandpass filters, we numerically analyze the modal distributions of the fundamental core mode and different cladding modes. Based on the simulation results, we also experimentally demonstrate a simple fabrication of bandpass filters inscribed on the PCF by inserting a π-phase shift in a 12-period long-period grating (LPG). Two rejection bands with greater than 18 dB isolation and an ultra-wide band of 85.3 nm are achieved. The phase-shifted PCF-LPGs are fabricated using a CO2 laser with point-by-point focused pulses. The proposed fiber bandpass filter is compact and is not influenced by temperature effects.

  19. Obtaining the curve “Phase shift vs gray level” of a spatial light modulator Holoeye LC2012

    NASA Astrophysics Data System (ADS)

    Villalobos-Mendoza, B.; Granados-Agustín, F. S.; Aguirre-Aguirre, D.; Cornejo-Rodríguez, A.

    2015-04-01

    In this work, the process to obtain the curve “Graylevel vs phase shift” of a transmissive spatial light modulator (SLM) HoloeyeLC2012 is described. This work arises from the need that exists for having a new optical surface testing method at INAOE's Optical Workshop. The SLM was placed in one arm of a Twyman-Green interferometer. The fringe shifts in the interference patterns were produced by displaying the different gray levels in the SLM. The gray level images displayed in the SLM were divided in two equal parts, the upper part was varying the different gray levels from 0 to 255 and the lower part stayed fixed with a gray level of 0 as reference. We show the different phase shifts and the experimental interferograms. From this analysis it was found out that a noticeable phase shift can be obtained from the 50 to the 190 gray levels.

  20. Real-time displacement measurement system using phase-shifted optical pulse interferometry: Application to a seismic observation system

    NASA Astrophysics Data System (ADS)

    Yoshida, Minoru; Hirayama, Yoshiharu; Takahara, Atsushi; Kashi, Motofumi; Takeuchi, Keiji; Ikeda, Toshiharu; Hirai, Fumio; Mizuno, Yosuke; Nakamura, Kentaro; Kimura, Hitoshi; Ino, Norio; Inoue, Wataru

    2016-02-01

    We developed a method of detecting incident light levels on the oscillator surfaces and light pulses that include two interfering pulses with a phase shift of π/2 (phase-shifted optical pulse interferometry). This system enables the measurement of displacements greatly exceeding the half wavelength of the laser. Moreover, it allows measurements at multiple locations with a single optical fiber for using optical pulses. In this study, we conducted an interference experiment using 30 ns optical pulses and transmitted them at 1 µs intervals. We confirmed that the above two measurements are possible. Furthermore, from the data of the oscillator used for verification, we showed that measurements on the order of nanometers are possible. Since this method does not require a power supply to the oscillator, its widespread applications in physical exploration can be expected.

  1. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    PubMed

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators. PMID:18264347

  2. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2006-01-01

    As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%.

  3. Averaging methods for the phase shift of arbitrarily perturbed strongly nonlinear oscillators with an application to capture

    NASA Astrophysics Data System (ADS)

    Bourland, F. J.; Haberman, Richard; Kath, William L.

    1991-08-01

    Strongly nonlinear oscillators under slowly varying perturbations (not necessarily Hamiltonian) are analyzed by putting the equations into the standard form for the method of averaging. By using the usual near-identity transformations, energy-angle (and equivalent action-angle) equations are derived using the properties of strongly nonlinear oscillators. By introducing a perturbation expansion, a differential equation for the phase shift is derived and shown to agree with earlier results obtained by Bourland and Haberman using the multiple scale perturbation method. The slowly varying phase shift is used (by necessity) to determine the boundary of the basin of attraction for competing stable equilibria, even though these averaged equations are known not to be valid near a separatrix (unperturbed homoclinic orbit).

  4. Complex surface three-dimensional shape measurement method based on defocused Gray code plus phase-shifting

    NASA Astrophysics Data System (ADS)

    Zeng, Zhuohuan; Fu, Yanjun; Li, Biao; Chai, Minggang

    2016-08-01

    Binary pattern defocused projection method can overcome the nonlinear gamma of the projector, as well as filter high harmonics and high-frequency noise. However, high-accuracy three-dimensional (3-D) shape measurement of complex surface using it still remains a challenge. Therefore, a novel Gray code plus phase-shifting method based on defocusing is proposed to solve the problem. The edges of Gray code patterns become blurred owing to defocus, which makes the recovery of accurate Gray code patterns difficult. To solve this problem, the positive and inverse Gray code patterns are projected to obtain threshold values, which are used to achieve the binarization of Gray code patterns. This method is robust and suitable for different defocus levels. Compared with the traditional Gray code plus phase-shifting method, the experimental results prove the effectiveness and feasibility of the proposed method.

  5. Ultra-Low Power Cross-Phase Shifts using Metastable Xenon in a High-Finesse Cavity

    NASA Astrophysics Data System (ADS)

    Hickman, Garrett; Pittman, Todd; Franson, James

    Many important applications in quantum information and quantum communications make use of weak single-photon nonlinearities. These nonlinearities have been produced using a number of methods, but they generally require a complicated experimental setup. We demonstrate a relatively simple system for producing ultra-low power cross-phase modulation, by using metastable xenon as the nonlinear medium within an optical cavity. Using metastable xenon prevents the degradation of optical surfaces which typically occurs with the use of alkali vapors such as rubidium. We produce phase shifts of up to 10 mrad using 4.5-fJ control pulses. We discuss the performance of this system and outline the planned improvements that will allow the cavity to produce single-photon phase shifts on the order of 1 mrad. This work was supported in part by DARPA DSO Grant No. W31P4Q-12-1-0015 and by NSF Grant No. PHY-1402708.

  6. Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus

    PubMed Central

    Seagraves, Kelly M.; Hedwig, Berthold

    2014-01-01

    The cricket's auditory system is a highly directional pressure difference receiver whose function is hypothesised to depend on phase relationships between the sound waves propagating through the auditory trachea that connects the left and right hearing organs. We tested this hypothesis by measuring the effect of experimentally constructed phase shifts in acoustic stimuli on phonotactic behavior of Gryllus bimaculatus, the oscillatory response patterns of the tympanic membrane, and the activity of the auditory afferents. The same artificial calling song was played simultaneously at the left and right sides of the cricket, but one sound pattern was shifted in phase by 90 deg (carrier frequencies between 3.6 and 5.4 kHz). All three levels of auditory processing are sensitive to experimentally induced acoustic phase shifts, and the response characteristics are dependent on the carrier frequency of the sound stimulus. At lower frequencies, crickets steered away from the sound leading in phase, while tympanic membrane vibrations and auditory afferent responses were smaller when the ipsilateral sound was leading. In contrast, opposite responses were observed at higher frequencies in all three levels of auditory processing. Minimal responses occurred near the carrier frequency of the cricket's calling song, suggesting a stability at this frequency. Our results indicate that crickets may use directional cues arising from phase shifts in acoustic signals for sound localisation, and that the response properties of pressure difference receivers may be analysed with phase-shifted sound stimuli to further our understanding of how insect auditory systems are adapted for directional processing. PMID:24737767

  7. Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy

    PubMed Central

    Stanley, David A.; Talathi, Sachin S.; Parekh, Mansi B.; Cordiner, Daniel J.; Zhou, Junli; Mareci, Thomas H.; Ditto, William L.

    2013-01-01

    For over a century epileptic seizures have been known to cluster at specific times of the day. Recent studies have suggested that the circadian regulatory system may become permanently altered in epilepsy, but little is known about how this affects neural activity and the daily pattern of seizures. To investigate, we tracked long-term changes in the rate of spontaneous hippocampal EEG spikes (SPKs) in a rat model of temporal lobe epilepsy. In healthy animals, SPKs oscillated with near 24-h period; however, after injury by status epilepticus, a persistent phase shift of ∼12 h emerged in animals that later went on to develop chronic spontaneous seizures. Additional measurements showed that global 24-h rhythms, including core body temperature and theta state transitions, did not phase shift. Instead, we hypothesized that locally impaired circadian input to the hippocampus might be responsible for the SPK phase shift. This was investigated with a biophysical computer model in which we showed that subtle changes in the relative strengths of circadian input could produce a phase shift in hippocampal neural activity. MRI provided evidence that the medial septum, a putative circadian relay center for the hippocampus, exhibits signs of damage and therefore could contribute to local circadian impairment. Our results suggest that balanced circadian input is critical to maintaining natural circadian phase in the hippocampus and that damage to circadian relay centers, such as the medial septum, may disrupt this balance. We conclude by discussing how abnormal circadian regulation may contribute to the daily rhythms of epileptic seizures and related cognitive dysfunction. PMID:23678009

  8. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system. PMID:27409006

  9. Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.

    PubMed

    Seagraves, Kelly M; Hedwig, Berthold

    2014-07-01

    The cricket's auditory system is a highly directional pressure difference receiver whose function is hypothesised to depend on phase relationships between the sound waves propagating through the auditory trachea that connects the left and right hearing organs. We tested this hypothesis by measuring the effect of experimentally constructed phase shifts in acoustic stimuli on phonotactic behavior of Gryllus bimaculatus, the oscillatory response patterns of the tympanic membrane, and the activity of the auditory afferents. The same artificial calling song was played simultaneously at the left and right sides of the cricket, but one sound pattern was shifted in phase by 90 deg (carrier frequencies between 3.6 and 5.4 kHz). All three levels of auditory processing are sensitive to experimentally induced acoustic phase shifts, and the response characteristics are dependent on the carrier frequency of the sound stimulus. At lower frequencies, crickets steered away from the sound leading in phase, while tympanic membrane vibrations and auditory afferent responses were smaller when the ipsilateral sound was leading. In contrast, opposite responses were observed at higher frequencies in all three levels of auditory processing. Minimal responses occurred near the carrier frequency of the cricket's calling song, suggesting a stability at this frequency. Our results indicate that crickets may use directional cues arising from phase shifts in acoustic signals for sound localisation, and that the response properties of pressure difference receivers may be analysed with phase-shifted sound stimuli to further our understanding of how insect auditory systems are adapted for directional processing. PMID:24737767

  10. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach-Zehnder modulators.

    PubMed

    Dong, Po; Gui, Chengcheng

    2016-06-15

    In coherent optical transmission, traveling-wave Mach-Zehnder modulators are commonly used to generate various advanced formats where the modulators are biased at the minimum transmission point. Here, we report that an optical isolation effect with lower backward transmission occurs under this condition. This concept is successfully demonstrated to achieve ∼7  dB isolation over a 90-nm wavelength span under binary phase-shift keying modulation using a commercial lithium niobate modulator. PMID:27304273

  11. Temperature-insensitive compact phase-shifted long-period gratings induced by surface deformation in single-mode fiber

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Lei, Xiaohua; Zhu, Yinian

    2015-12-01

    We present a temperature-insensitive compact phase-shifted long-period grating (PS-LPG) induced by using focused pulse CO2 laser via point-by-point technique. By introducing a phase shift with 1800° ( π shift) in the center of the long-period grating (~420 µm per period, 20 periodicity in total), the original coupling resonance at 1318.55 nm splits into two symmetrical spectral peaks at 1283 and 1348 nm. FWHM between those two peaks is 36.55 nm, and the power intensities of two peaks are the same as -10.2 dB. The thermal characteristic of the PS-LPGs is around 8.8 pm/°C that is less than that of fiber Bragg grating (12 pm/°C). As a result, such fiber grating devices can be applied in a laser cavity as an all-fiber filter. Variation of phase shifts in LPGs give rise to different spectral peaks of coupled resonance, which makes the proposed PS-LPGs as a good candidate for the applications in sensing networks and optical telecommunications.

  12. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study

    PubMed Central

    Nakayama, Shinsuke; Shimono, Ken; Liu, Hong-Nian; Jiko, Hideyasu; Katayama, Noburu; Tomita, Tadao; Goto, Kazunori

    2006-01-01

    Gastrointestinal (GI) motility is well organized. GI muscles act as a functional syncytium to achieve physiological functions under the control of neurones and pacemaker cells, which generate basal spontaneous pacemaker electrical activity. To date, it is unclear how spontaneous electrical activities are coupled, especially within a micrometre range. Here, using a microelectrode array, we show a spatio-temporal analysis of GI spontaneous electrical activity. The muscle preparations were isolated from guinea-pig stomach, and fixed in a chamber with an array of 8 × 8 planar multielectrodes (with 300 μm in interpolar distance). The electrical activities (field potentials) were simultaneously recorded through a multichannel amplifier system after high-pass filtering at 0.1 Hz. Dihydropyridine Ca2+ channel antagonists are known to differentiate the electrical pacemaker activity of interstitial cells of Cajal (ICCs) by suppressing smooth muscle activity. In the presence of nifedipine, we observed spontaneous electrical activities that were well synchronized over the array area, but had a clear phase shift depending on the distance. The additional application of tetrodotoxin (TTX) had little effect on the properties of the electrical activity. Furthermore, by constructing field potential images, we visualized the synchronization of pacemaker electrical activities resolving phase shifts that were measurable over several hundred micrometres. The results imply a phase modulation mechanism other than neural activity, and we postulate that this mechanism enables smooth GI motility. In addition, some preparations clearly showed plasticity of the pacemaker phase shift. PMID:16990400

  13. Measurement of elastic 12C+alpha scattering: details of the experiment, analysis, and discussion of phase shifts

    SciTech Connect

    Couture, Aaron Joseph; Detwiler, Rebecca; Gorres, Joachim; Stech, Edward J; Ugalde, Claudio; Wiescher, Michael C F; Heil, Michael; Kappeler, Franz; Azuma, Richard E; Buchmann, Lothar

    2009-01-01

    Recent global analyses of {sup 12}C({alpha},{gamma}){sup 16}O have incorporated both elastic-scallering and {beta}-decay data in addition to direct measurements. In that context, it has been shown that an improvement in the available elastic-scallering data could help determine the contribution of the two subthreshold states, 6.92(2{sup +}) and 7.12(1{sup -}) MeV, and with excellent statistics could restrict resonance parameters above the threshold. To this end angular distributions of {sup 12}C({alpha}, {alpha}){sup 12}C in the {alpha}-energy range of 2.6-8.2 MeV, at angles from 24 to 166 have been measured at the University of Notre Dame using an array of 32 silicon detectors. Details of the experiment are reported. In the present analysis, the phase shifts have been determined from our previously reported R-matrix fit to these data. The uncertainties in the R-matrix phase shifts ({ell} = 0...6) are derived by a new Monte Carlo analysis technique as described in the article. We provide these phase shifts here for general use, in particular for the improved analysis and extrapolation of the {alpha} radiative capture to low energies.

  14. Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method

    NASA Astrophysics Data System (ADS)

    Zheng, Quan; Han, Zhigang; Chen, Lei

    2016-09-01

    The spectroscopic phase shifting method was proposed to determine the misalignment error of a compound zero-order waveplate. The waveplate, which is composed of two separate multi-order quartz waveplates, was measured by a polarizer-waveplate-analyser setup with a spectrometer as the detector. The theoretical relationship between the misalignment error and the azimuth of the polarized light that emerged from the waveplate was studied by comparing two forms of the Jones matrix of the waveplate. Four spectra were obtained to determine the wavelength-dependent azimuth using a phase shifting algorithm when the waveplate was rotated to four detection angles. The misalignment error was ultimately solved from the wavelength-dependent azimuth by the Levenberg-Marquardt method. Experiments were conducted at six misalignment angles. The measured results of the misalignment angle agree well with their nominal values, indicating that the spectroscopic phase shifting method can be a reliable way to measure the misalignment error of a compound zero-order waveplate.

  15. Hybrid direct-detection differential phase shift keying-multipulse pulse position modulation techniques for optical communication systems

    NASA Astrophysics Data System (ADS)

    Morra, Ahmed E.; Shalaby, Hossam M. H.; Hegazy, Salem F.; Obayya, Salah S. A.

    2015-12-01

    In this paper, a hybrid differential phase shift keying-multipulse pulse position modulation (DPSK-MPPM) technique is proposed in order to enhance the receiver sensitivity of optical communication systems. Both binary and quadrature formats are adopted in the proposed systems. Direct-detection DPSK schemes that are based on an asymmetric Mach-Zehnder interferometer with a novel ultrafast discrete delay unit are presented to simplify the receiver implementation. Expressions for the bit-error rate (BER) of the proposed hybrid modulation techniques are derived taking into account the effect of the optical amplifier noise. Under the constraints of the same transmitted data rate, bandwidth, and average received optical signal-to-noise ratio, the BER performances of the proposed schemes are then evaluated numerically and compared with that of traditional differential binary phase shift keying (DBPSK), differential quadrature phase shift keying (DQPSK), and MPPM schemes and with that of recent hybrid schemes. Furthermore, a comparison between the proposed systems and the traditional ones is held in terms of the bandwidth-utilization efficiency. Our results reveal that the proposed hybrid schemes are more energy-efficient and have higher receiver sensitivity compared with the traditional ones while improving the bandwidth-utilization efficiency. The proposed DPSK-MPPM system is ready to accommodate adjustable (or variable) bit rates, by virtue of the programmable delay integrated to the receiver system.

  16. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus

    PubMed Central

    Michel, S.; Clark, J. P.; Ding, J. M.; Colwell, C. S.

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raised the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity tropomyosin-related receptor kinase may be important as modulators of this excitatory input into the SCN. In order to test this possibility, we used whole-cell patch-clamp methods to measure spontaneous excitatory currents in mouse SCN neurons. We found that the amplitude and frequency of these currents were increased by BDNF and decreased by the neurotrophin receptor inhibitor K252a. The neurotrophin also increased the magnitude of currents evoked by application of N-methyl-D-aspartate and amino-methyl proprionic acid. Next, we measured the rhythms in action potential discharge from the SCN brain slice preparation. We found that application of K252a dramatically reduced the magnitude of phase shifts of the electrical activity rhythm generated by the application of glutamate. By itself, BDNF caused phase shifts that resembled those produced by glutamate and were blocked by K252a. The results demonstrate that BDNF and neurotrophin receptors can enhance glutamatergic synaptic transmission within a subset of SCN neurons and potentiate glutamate-induced phase shifts of the circadian rhythm of neural activity in the SCN. PMID:16930436

  17. Method of Phase and Amplitude Modulation/Demodulation Using Datapages with Embedded Phase-Shift for Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Bunsen, Masatoshi; Umetsu, Shuhei; Takabayashi, Masanori; Okamoto, Atsushi

    2013-09-01

    A technique for the phase and amplitude detection of object beams with multivalued phase and amplitude modulation is proposed for holographic storage systems. Generally, the spatial distribution of the complex amplitude of the object beam can be precisely detected by phase-shifting interferometric measurements in which the phase of the reference wave for interferometry is temporally or spatially changed in the datapage retrieval process. On the other hand, our technique allows fast, accurate, and feasible phase and amplitude demodulations by preliminary embedding phase shift into the phase signal of the datapage during recording. This technique will significantly improve the data transfer rate and vibration tolerance of the holographic storage system because the complex amplitudes of the object beam carrying datapages can be detected by single-shot image capturing. The optical system for datapage replay will also be simplified because there is no need to use any phase-shifting device during data retrieval. The single-shot detection of the phase-modulated datapage is experimentally demonstrated.

  18. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid

    NASA Astrophysics Data System (ADS)

    Nguyen Pham, Hai Huy; Hisatake, Shintaro; Minin, I. V.; Minin, O. V.; Nagatsuma, Tadao

    2016-05-01

    The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation model of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.

  19. Phase-shift effect in capacitively coupled plasmas with two radio frequency or very high frequency sources

    SciTech Connect

    Xu Xiang; Zhao Shuxia; Zhang Yuru; Wang Younian

    2010-08-15

    A two-dimensional fluid model was built to study the argon discharge in a capacitively coupled plasma reactor and the full set of Maxwell equations is included in the model to understand the electromagnetic effect in the capacitive discharge. Two electrical sources are applied to the top and bottom electrodes in our simulations and the phase-shift effect is focused on. We distinguish the difference of the phase-shift effect on the plasma uniformity in the traditional radio frequency discharge and in the very high frequency discharge where the standing wave effect dominates. It is found that in the discharges with frequency 13.56 MHz, the control of phase difference can less the influence of the electrostatic edge effect, and it gets the best radial uniformity of plasma density at the phase difference {pi}. But in the very high frequency discharges, the standing wave effect plays an important role. The standing wave effect can be counteracted at the phase difference 0, and be enhanced at the phase difference {pi}. The standing wave effect and the edge effect are balanced at some phase-shift value between 0 and {pi}, which is determined by discharge parameters.

  20. Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism

    NASA Astrophysics Data System (ADS)

    Wu, Liangying; Pei, Li; Liu, Chao; Wang, Jianshuai

    2016-05-01

    In this study, the V-I transmission matrix (V-I TM) is proposed to analyze the tunable single phase shift (SPS) and multiple phase shifts (MPS) inserted in a linearly chirped fiber Bragg grating (LCFBG). According to the simulation results, the peaks appear on the transmission spectrum, when the phase shifts are induced in the LCFBG. With the increase of the phase shift, the center wavelength of the peak moves toward long wavelength region. A remarkable degree of bilateral symmetry can be found as characteristic of the depth of peaks. The maximum depth caused by inserted π-shift is the symmetric axis. Moreover, when MPS are inserted simultaneously, the appeared peaks are independent and the variation tendency of each peak is the same with that caused by SPS. The experiment of phase shift induced by a piezoelectric transducer (PZT) verifies the correctness of the simulation, and a narrow bandwidth of 0.028 nm is acquired.

  1. On the performance of Trellis coded modulation with octal phase shift keying over the TDRSS channel

    NASA Technical Reports Server (NTRS)

    Osborne, William P.; Wolcott, Ted J.; Kopp, Brian T.; Ross, Michael

    1993-01-01

    As the National Aeronautics and Space Administration moves into the 21st century with programs like Space Station Freedom, a manned mission to Mars, and the new Landsat mission, transmission demands on the Tracking and Data Relay Satellite System (TDRSS) will very likely exceed the available bandwidth. The Manual Lujan, Jr. Center for Space Telemetering and Telecommunications Systems (CSTTS) at New Mexico State University (NMSU) is studying techniques for increasing the data rate capabilities of TDRSS. These techniques include the use of advanced bandwidth efficient modulation formats to increase the data rate that can be sustained in a TDRSS transponder and the use of lossless bandwidth compression of the data to be transmitted to lower the data rate required from the user spacecraft. Based upon current technology the most promising bandwidth efficient modulation technique is Trellis Coded Modulation (TCM) operating with Octal Phase shift Keying (8PSK). Trellis Coded Modulation coding with 8PSK carrier modulation has the capability to increase the data rate which can be transmitted through the TDRSS spacecraft by a factor of 2 to 2.5 times that available with todays coded QPSK systems with only a small penalty in link performance relative to the existing systems. However, before NASA can safely employ TCM coding it is necessary to prove that this complex format can perform on the real TDRSS link as it does in labs and simulation studies. This proof-of-concept test over a live satellite channel was the objective of the construction and testing performed under this task of the NMSU NASA grant referenced above. In conjunction with NASA, NMSU's CSTTS has constructed a system to test a new candidate TDRSS modulation scheme, TCM 8PSK, that can enhance the information throughput of the TDRSS spacecraft. The test system for this project which was constructed over a period of 18 months by NMSU consisted of two racks of commercial and univeristy-designed and -built

  2. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  3. Coarse-Frequency-Comb Multiple-Beam Interferometry: Phase Assessment Using Common Phase Shifting Procedures

    NASA Astrophysics Data System (ADS)

    Schwider, J.

    2010-04-01

    interferometry in combination with frequency comb illumination. Through the use of a set of properly selected wavelengths the resulting interference pattern will become on the one hand more and more cosine-type with increasing enhancement factors and on the other hand it will be shown how the nonlinear relationship of the intensity distribution on the phase in the multiple beam interferometer can be overcome. Typical systematic errors show a periodicity with 4-times the fringe frequency of the interference pattern. By using the averaging of the measuring results of two measurements having a phase offset of π/4 it is possible to reduce this error by at least one order of magnitude. The impact of the nonlinear intensity profile of multiple beam fringes in transmitted light can in addition be reduced through inverted intensity values in the common phase shifting equations. It will be shown that in this way repeatability values can be obtained of 1.2 A˚ peak to valley and 0.12 A˚ rms.

  4. Characterizing polarized illumination in high numerical aperture optical lithography with phase shifting masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory Russell

    The primary objective of this dissertation is to develop the phase shifting mask (PSM) as a precision instrument to characterize effects in optical lithography related to the use of polarized partially coherent illumination. The intent is to provide an in-situ characterization technique to add to the lithographer's tool-kit to help enable the stable and repeatable mass production of integrated circuits with feature sizes approaching 1/6th the wavelength of light being used. A series of complex-valued mathematical functions have been derived from basic principles and recent advances in photomask fabrication technology have enabled their implementation with four-phase mask making. When located in the object plane of an imaging system, these test functions serve to engineer a wavefiront that interacts with one particular optical effect, creating a measurable signal in the image plane. In most cases, these test patterns leverage proximity effects to create a central image intensity and are theoretically the most sensitive to the desired effect. Five novel classes of test patterns have been developed for in-situ characterization. The first two classes, The Linear Phase Grating (LPG) and Linear Phase Ring (LPR), both serve to characterize illumination angular distribution and uniformity by creating signals dependent on illumination angular frequency. The third class consists of the Radial Phase Grating (RPG) and Proximity Effect Polarization Analyzers (PEPA), which each create a polarization-dependent signal by taking advantage of the image reversal of one polarization component at high numerical aperture (NA). PSM Polarimetry employs a series of these patterns to form a complete polarization characterization of any arbitrary illumination scheme. The fourth and fifth classes employ sub-resolution interferometric reference probes to coherently interact with proximity effect spillover from a surrounding pattern. They measure the effective phase and transmission of the

  5. Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference

    NASA Astrophysics Data System (ADS)

    Guo, Tong; Li, Feng; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2016-07-01

    Conventional multi-wavelength phase-shifting interferometry utilizes two or three monochromatic light sources, such as lasers, to realize the measurement of the surface topography with large discontinuity. In this paper, the white light source, with a single-chip CCD color camera, is used to accomplish multi-wavelength phase-shifting interferometry. In addition, we propose an algorithm which combines white light phase-shifting algorithm, equivalent wavelength method and fringe order method to achieve measuring and calibrating the micro-structures ranging from nanometer scale to micrometer scale. Finally, the proposed method is validated by a traceable step height standard.

  6. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  7. Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts

    PubMed Central

    Yan, Lily; Silver, Rae

    2012-01-01

    The mechanism whereby brief light exposure resets the mammalian circadian clock in a phase dependent manner is not known, but is thought to involve Per gene expression. At the behavioural level, a light pulse produces phase delays in early subjective night, phase advances in late subjective night, and no phase shifts in mid-subjective night or subjective day. To understand the relationship between Per gene activity and behavioural phase shifts, we examined light-induced mPer1 and mPer2 expression in the suprachiasmatic nucleus (SCN) of the mouse, in the subjective night, with a view to understanding SCN heterogeneity. In the VIP-containing region of the SCN (termed `core'), light-induced mPer1 expression occurs at all times of the subjective night, while mPer2 induction is seen only in early subjective night. In the remaining regions of the SCN (termed `shell'), a phase delaying light pulse produces no mPer1 but significant mPer2 expression, while a phase advancing light pulse produces no mPer2 but substantial mPer1 induction. Moreover, following a light pulse during mid-subjective night, neither mPer1 nor mPer2 are induced in the shell. The results reveal that behavioural phase shifts occur only when light-induced Per gene expression spreads from the core to the shell SCN, with mPer1 expression in shell corresponding to phase advances, and mPer2 corresponding to phase delays. The results indicate that the time course and the localization of light-induced Per gene expression in SCN reveals important aspects of intra-SCN communication. PMID:12405967

  8. Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity

    SciTech Connect

    Durand, Mathieu; Morville, Jerome; Romanini, Daniele

    2010-09-15

    We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.

  9. Decision-directed automatic gain control for MAPSK systems. [M-ary Amplitude and Phase Shift Keying

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1974-01-01

    An automatic gain control (AGC) loop is presented for use with M-ary amplitude and phase shift keying (MAPSK) systems. The gain control amplifier is regulated by an error signal formed by the difference between the estimated amplitude level and the received amplitude level. The AGC performance is thus independent of the short-term average received signal energy. AGC loop analysis and simulation is presented for M-ary amplitude shift keying and quadrature amplitude shift keying. The AGC is shown to have a negligible degradation on the symbol probability of error for most practical cases. A generalized AGC for an arbitrary MAPSK system is presented.

  10. Significant Treatment Effect of Bupropion in Patients With Bipolar Disorder but Similar Phase-Shifting Rate as Other Antidepressants

    PubMed Central

    Li, Dian-Jeng; Tseng, Ping-Tao; Chen, Yen-Wen; Wu, Ching-Kuan; Lin, Pao-Yen

    2016-01-01

    Abstract Bupropion is widely used for treating bipolar disorder (BD), and especially those with depressive mood, based on its good treatment effect, safety profile, and lower risk of phase shifting. However, increasing evidence indicates that the safety of bupropion in BD patients may not be as good as previously thought. The aim of this study was to summarize data on the treatment effect and safety profile of bupropion in the treatment of BD via a meta-analysis. Electronic search through PubMed and ClinicalTrials.gov was performed. The inclusion criteria were: (i) studies comparing changes in disease severity before and after bupropion treatment or articles comparing the treatment effect of bupropion in BD patients with those receiving other standard treatments; (ii) articles on clinical trials in humans. The exclusion criteria were (i) case reports/series, and (ii) nonclinical trials. All effect sizes from 10 clinical trials were pooled using a random effects model. We examined the possible confounding variables using meta-regression and subgroup analysis. Bupropion significantly improved the severity of disease in BD patients (P < 0.001), and the treatment effect was similar to other antidepressants/standard treatments (P = 0.220). There were no significant differences in the dropout rate (P = 0.285) and rate of phase shifting (P = 0.952) between BD patients who received bupropion and those who received other antidepressants. We could not perform a detailed meta-analysis of every category of antidepressant, nor could we rule out the possible confounding effect of concurrent psychotropics or include all drug side effects. Furthermore, the number of studies recruited in the meta-analysis was relatively small. Our findings reconfirm the benefits of bupropion for the treatment of bipolar depression, which are similar to those of other antidepressants. However, the rate of phase shifting with bupropion usage was not as low compared to other

  11. Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices.

    PubMed

    Tobing, L Y M; Tjahjana, L; Darmawan, S; Zhang, D H

    2012-02-27

    Coupling induced effects are higher order effects inherent in waveguide evanescent coupling that are known to spectrally distort optical performances of integrated optics devices formed by coupled resonators. We present both numerical and experimental studies of coupling-induced phase shift in various basic integrated optics devices. Rigorous finite difference time domain simulations and systematic experimental characterizations of different basic structures were conducted for more accurate parameter extraction, where it can be observed that coupling induced wave vector may change sign at the increasing gap separation. The devices characterized in this work were fabricated by CMOS-process 193 nm Deep UV (DUV) lithography in silicon-on-insulator (SOI) technology. PMID:22418385

  12. Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws

    NASA Astrophysics Data System (ADS)

    Mizutani, Akihiro; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-12-01

    Recently, a new type of quantum key distribution, called the round-robin differential-phase-shift (RRDPS) protocol [T. Sasaki et al., Nature (London) 509, 475 (2014), 10.1038/nature13303], was proposed, where the security can be guaranteed without monitoring any statistics. In this Rapid Communication, we investigate source imperfections and side-channel attacks on the source of this protocol. We show that only three assumptions are needed for the security, and no detailed characterizations of the source or the side-channel attacks are needed. This high robustness is another striking advantage of the RRDPS protocol over other protocols.

  13. Self-Consistent Signal-to-Noise Analysis of CDMA Multiuser Detection with M-Ary Phase-Shift Keying

    NASA Astrophysics Data System (ADS)

    Kato, Hiroyuki; Okada, Masato; Miyoshi, Seiji

    2013-02-01

    We present a theory of the performance of parallel interference cancellation (PIC) for code division multiple access (CDMA) multiuser detection with M-ary phase-shift keying (M-ary PSK) in the large-system limit. The behavior of PIC is essentially the same as that of the associative memory model. Therefore, we analyze the PIC for CDMA using self-consistent signal-to-noise analysis (SCSNA), which was developed to describe the behavior of the associative memory model. We obtain a quantitative description of the performance of PIC.

  14. Switchable liquid-crystal phase-shift mask for super-resolution photolithography based on Pancharatnam-Berry phase

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus; Culbreath, Christopher; Li, Yannian; Yokoyama, Hiroshi

    2015-11-01

    We present a novel liquid-crystal-based phase-shift mask that utilizes the Pancharatnam-Berry phase for super-resolution photolithography. Using an automated maskless photoalignment technique, we pattern an azobenzene alignment layer in a nematic liquid-crystal cell to fabricate the mask. Since the image is formed by phase cancellation, the minimum feature size is not restricted by the diffraction limit; here, we obtain submicron features. The liquid-crystal properties of the cell allow the mask to be switched on and off by applying a voltage. The cost effectiveness and flexibility of this technique make it a promising new technology for photolithography.

  15. Upper bounds for the security of differential-phase-shift quantum key distribution with weak coherent states

    NASA Astrophysics Data System (ADS)

    Curty, Marcos; Tamaki, Kiyoshi; Moroder, Tobias; Gómez-Sousa, Hipólito

    2009-04-01

    In this paper we present limitations imposed by sequential attacks on the maximal distance achievable by a differential-phase-shift (DPS) quantum key distribution (QKD) protocol with weak coherent pulses. Specifically, we compare the performance of two possible sequential attacks against DPS QKD where Eve realizes, respectively, optimal unambiguous state discrimination of Alice's signal states, and optimal unambiguous discrimination of the relative phases between consecutive signal states. We show that the second eavesdropping strategy provides tighter upper bounds for the security of a DPS QKD scheme than the former one.

  16. Displacement damage in bit error ratio performance of on-off keying, pulse position modulation, differential phase shift keying, and homodyne binary phase-shift keying-based optical intersatellite communication system.

    PubMed

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Dong, Chen; Li, Xuan

    2016-04-10

    Displacement damage (DD) effect induced bit error ratio (BER) performance degradations in on-off keying (OOK), pulse position modulation (PPM), differential phase-shift keying (DPSK), and homodyne binary phase shift keying (BPSK) based systems were simulated and discussed under 1 MeV neutron irradiation to a total fluence of 1×1012  n/cm2 in this paper. Degradation of main optoelectronic devices included in communication systems were analyzed on the basis of existing experimental data. The system BER degradation was subsequently simulated and the variations of BER with different neutron irradiation location were also achieved. The result shows that DD on an Er-doped fiber amplifier (EDFA) is the dominant cause of system degradation, and a BPSK-based system performs better than the other three systems against DD. In order to improve radiation hardness of communication systems against DD, protection and enhancement of EDFA are required, and the use of a homodyne BPSK modulation scheme is a considered choice. PMID:27139876

  17. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  18. Phase-shift formed in a long period fiber grating and its application to the measurements of temperature and refractive index.

    PubMed

    Hishiki, Keisuke; Li, Hongpu

    2013-05-20

    A novel approach to calibrate a phase-shift formed in a long-period fiber grating (LPG) is firstly proposed and numerically demonstrated, which is based on the use of either intensity- or wavelength-interrogation technique to the main loss-peak of the phase-shift LPG in the spectrum. Moreover, by using a CO2 laser with high-repetition-rate pulses emission, an equivalent phase-shift is successfully created at middle of the LPG. As an application of the proposed calibration scheme, measurement for the temperature and the refractive index of the ambient solution has been proposed and successfully demonstrated by using a phase-shifted LPG. PMID:23736412

  19. Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation

    NASA Astrophysics Data System (ADS)

    Enz, Stephanie; Thomsen, Jon Juel

    2011-10-01

    Knowing the influence of fluid flow perturbations on the dynamic behavior of fluid-conveying pipes is of relevance, e.g., when exploiting flow-induced oscillations of pipes to determine the fluids mass flow or density, as done with Coriolis flow meters (CFM). This could be used in the attempts to improve accuracy, precision, and robustness of CFMs. A simple mathematical model of a fluid-conveying pipe is formulated and the effect of pulsating fluid flow is analyzed using a multiple time scaling perturbation analysis. The results are simple analytical predictions for the transverse pipe displacement and approximate axial shift in vibration phase. The analytical predictions are tested against pure numerical solution using representative examples, showing good agreement. Fluid pulsations are predicted not to influence CFM accuracy, since proper signal filtering is seen to allow the determination of the correct mean phase shift. Large amplitude motions, which could influence CFM robustness, do not appear to be induced by the investigated fluid pulsation. Pulsating fluid of the combination resonance type could, however, influence CFMs robustness, if induced pipe motions go unnoticed and uncontrolled during CFM operation by feedback control. The analytical predictions offer an immediate insight into how fluid pulsation affects phase shift, which is a quantity measured by CFMs to estimate the mass flow, and lead to hypotheses for more complex geometries, i.e. industrial CFMs. The validity of these hypotheses is suggested to be tested using laboratory experiments, or detailed computational models taking fluid-structure interaction into account.

  20. Code generator using distributed phase shifts applied on a chirped fibre Bragg grating in a semiconductor fibre ring laser

    NASA Astrophysics Data System (ADS)

    D. Simard, Alexandre; LaRochelle, Sophie

    2009-06-01

    As data traffic increases on telecommunication networks, optical communication systems must adapt to deal with this increasing bursty traffic. Packet switched networks are considered a good solution to provide efficient bandwidth management. We recently proposed the use of spectra amplitude codes (SAC) to implement all-optical label processing for packet switching and routing. The implementation of this approach requires agile photonic components including filters and lasers. In this paper, we propose a reconfigurable source able to generate the routing codes, which are composed of two wavelengths on a 25 GHz grid. Our solution is to use a cascade of two chirped fibre Bragg gratings (CFBG) in a semiconductor fibre ring laser. The wavelength selection process comes from distributed phase shifts applied on the CFBG that is used in transmission. Those phase shifts are obtained via local thermal perturbations created by resistive chrome lines deposited on a glass plate. The filter resonances are influenced by four parameters: the chrome line positions, the temperature profile along the fibre, the neighbouring heater state (ON/OFF) and the grating itself. Through numerical modeling, these parameters are optimized to design the appropriate chrome line pattern. With this device, we demonstrate successful generation of reconfigurable SAC codes.

  1. The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs.

    PubMed

    Cruz, Igor Cristino Silva; Meira, Verena Henschen; de Kikuchi, Ruy Kenji Papa; Creed, Joel Christopher

    2016-04-01

    Phase shift phenomena are becoming increasingly common. However, they are also opportunities to better understand how communities are structured. In Southwest Atlantic coral reefs, a shift to the zoanthid Palythoa cf. variabilis dominance has been described. To test if competition drove this process, we carried out a manipulative experiment with three coral species. To estimate the natural frequency of encounters we assess the relationship between the proportion of encounters and this zoanthids coverage. The contact causes necrosis in 78% of coral colonies (6.47 ± SD 7.92 cm(2)) in 118 days. We found a logarithmic relationship between the proportion of these encounters and the cover of P. cf. variabilis, where 5.5% coverage of this zoanthid is enough to put 50% of coral colonies in contact, increasing their partial mortality. We demonstrate that zoanthid coverage increase followed by coral mortality increase will reduce coral cover and that competition drives the phase shift process. PMID:26849036

  2. Full-field swept-source optical coherence tomography with phase-shifting techniques for skin cancer detection

    NASA Astrophysics Data System (ADS)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-05-01

    The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.

  3. Digital panoramic polarimeter for remote investigatirn of an optical parameter of celestial bodies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delec, A. S.; Nevodovskiy, PV.; Andruk, V. M.

    2003-09-01

    Digital panoramic polarimeter is an astronomical television device with panoramic high-sensitivity receiver "superisokone", LI-804 and mechanical block which consist of the polaroid modulator and large rotating achromatic phase-shift plate.

  4. Theoretical investigation of nonlinear damping and nonlinear phase shift of spin-electromagnetic waves propagating in infinite multiferroics at sub-terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Ustinova, I. A.; Cherkasskii, M. A.; Ustinov, A. B.; Kalinikos, B. A.

    2015-12-01

    The nonlinear phase shift and nonlinear damping of spin-electromagnetic waves were theoretically studied for the first time in sub-terahertz frequency range in infinite homogeneous longitudinal magnetized multiferroics. The research was based on the solution of the Ginzburg-Landau equation. It is shown that the saturation of the phase shift occurs due to the nonlinear damping if the nonlinear damping coefficients exceed v1=108 s-1 and v2=109 s-1.

  5. Analyzing algorithms for nonlinear and spatially nonuniform phase shifts in the liquid crystal point diffraction interferometer. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Jain, N.

    1999-03-01

    Phase-shifting interferometry has many advantages, and the phase shifting nature of the Liquid Crystal Point Diffraction Interferometer (LCPDI) promises to provide significant improvement over other current OMEGA wavefront sensors. However, while phase-shifting capabilities improve its accuracy as an interferometer, phase-shifting itself introduces errors. Phase-shifting algorithms are designed to eliminate certain types of phase-shift errors, and it is important to chose an algorithm that is best suited for use with the LCPDI. Using polarization microscopy, the authors have observed a correlation between LC alignment around the microsphere and fringe behavior. After designing a procedure to compare phase-shifting algorithms, they were able to predict the accuracy of two particular algorithms through computer modeling of device-specific phase shift-errors.

  6. Digitally controlled distributed phase shifter

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1992-12-31

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one of two discrete bias voltages. The application of the discrete bias voltages change the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  7. A 2-Step Laemmli and Antigen Retrieval Method Improves Immunodetection.

    PubMed

    Scalia, Carla R; Gendusa, Rossella; Cattoretti, Giorgio

    2016-07-01

    Detection by immunohistochemistry of antigens relies on reproducibly optimal preanalytical and analytical variables such as fixation conditions, antigen retrieval (AR), and the resolutive power of the detection system. There is a need to improve immunodetection on routinely fixed and embedded material, particularly for scarcely represented but relevant antigens. We devised a 2-step method and applied it to a panel of antigens of common use for diagnosis, prognosis, individualized therapy use, or research. The first step consists of a 10 minutes. Incubation at 95°C with a modified Laemmli extraction buffer. This was followed by a traditional AR method. Detection of the vast majority of antigens was improved over a simple AR with preservation of tissue integrity, as shown by quantitative image analysis. The mechanism underlying the improved detection may be controlled denaturation followed by heat-mediated retrieval, a method we dubbed "antigen relaxing" and which will improve routine detection of scarce antigens in formalin-fixed, paraffin-embedded material. PMID:26067142

  8. Digital demodulator

    NASA Technical Reports Server (NTRS)

    Shull, T. A. (Inventor)

    1982-01-01

    A digital demodulator for converting pulse code modulated data from phase shift key (PSK) to non return to zero (NRZ) and to biphase data is described. The demodulator is composed of standard integrated logic circuits. The key to the demodulation function is a pair of cross coupled one shot multivibrators and which with a flip-flop produce the NRZ-L is all that is required, the circuitry is greatly simplified and the 2(v) times bit rate contraint can be removed from the carrier. A flip-flop, an OR gate, and AND gate and a binary counter generate the bit rate clock (BTCK) for the NRZ-L. The remainder of the circuitry is for converting the NRZ-L and BTCK into biphase data. The device was designed for use in the space shuttle bay environment measurements.

  9. A phase-shift fluorometer using a laser and a transverse electrooptic modulator for subnanosecond lifetime measurements.

    PubMed Central

    Salmeen, I; Rimai, L

    1977-01-01

    We described a simple phase-shift fluorometer using continuous laser excitation. The laser enables the use of a transverse mode electrooptic modulator with a half-wave retardation voltage of about 200 V (in contrast to many kilovolts of longitudinal modulators) at frequencies up to 100 MHz. The modulated fluorescence signal is detected, after passing through a double monochromator, by a photomultiplier tube feeding a radio frequency (RF) tuned amplifier. THE RF phase is then determined by phase-sensitive detection using a double balanced mixer with the reference obtained from a PIN photodiode-turned amplifier combination which detects light split off from the main exciting beam. The laser and double monochromator allow the observation of modulated Raman solvent and Rayleigh scatterin, which are convenient for determining the zero reference phase. PMID:922124

  10. Compensation of fringe distortion for phase-shifting three-dimensional shape measurement by inverse map estimation.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2016-08-01

    For three-dimensional shape measurement, phase-shifting techniques are widely used to recover the objective phase containing height information from images of projected fringes. Although such techniques can provide an accurate result in theory, there might be considerable error in practice. One main cause of such an error is distortion of fringes due to nonlinear responses of a measurement system. In this paper, a postprocessing method for compensating distortion is proposed. Compared to other compensation methods, the proposed method is flexible in two senses: (1) no specific model of nonlinearity (such as the gamma model) is needed, and (2) no special calibration data are needed (only the observed image of the fringe is required). Experiments using simulated and real data confirmed that the proposed method can compensate multiple types of nonlinearity without being concerned about the model. PMID:27505383

  11. High speed all-optical PRBS generation using binary phase shift keyed signal based on QD-SOA

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2014-09-01

    A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) using binary phase shift keyed (BPSK) signal based on quantum-dot semiconductor optical amplifiers (QD-SOA) has been designed and studied. The PRBS is generated by a linear feedback shift register (LFSR) composed of all-optical logic XOR and AND gates. The XOR gate is composed of a pair of QD SOA Mach-Zehnder interferometers, which can generate BSPK signal to realize all-optical logic XOR gate. Results show that this scheme can mitigate the patterning effects and increase the operation speed to ~250Gb/s.

  12. Phase Shift in the Potassium Uptake Rhythm of the Duckweed Lemna gibba G3 Caused by an Azide Pulse 1

    PubMed Central

    Kondo, Takao

    1983-01-01

    A 6-hour application (6-hour pulse) of 1 millimolar azide significantly changed the phase of the potassium uptake rhythm of Lemna gibba G3. The phase response curve obtained was type 0 and very similar to that caused by a 6-hour pulse of low temperature (5°C) or darkness. The magnitude of the phase shift and the type of the phase response curve depended on the concentration of azide. However, 6-hour pulses of 3 millimolar cyanide or 10 micromolar (3-(3,4-dichlorophenyl)-1,1-dimethylurea) failed to shift the phase of the rhythm, while these pulses lowered the rate of carbon dioxide uptake or release. Azide, even at 3 micromolar, selectively reduced the amplitude of the rhythm without inhibiting the mean level of potassium uptake. PMID:16663266

  13. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    SciTech Connect

    Zeghuzi, A. Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-05-25

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  14. Asymmetric cryptosystem and software design based on two-step phase-shifting interferometry and elliptic curve algorithm

    NASA Astrophysics Data System (ADS)

    Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2013-11-01

    We propose an asymmetric cryptosystem based on two-step phase-shifting interferometry (PSI) and elliptic curve (EC) public-key cryptographic algorithm, in which one image is encrypted to two interferograms by double random-phase encoding (DRPE) in Fresnel domain and two-step PSI, and the session keys such as geometrical parameters and pseudo-random seeds, are asymmetrically encoded and decoded with the aid of EC algorithm. The receiver, who possesses the corresponding private key generated by EC algorithm, can successfully decipher the transmitted data using the extracted session keys. The utilization of EC asymmetric cryptosystem solves the problem of key management and dispatch, which is inevitable in the conventional optical symmetric cryptosystems. Not only computer simulation, but also software design and development are carried out to verify the feasibility of the proposed cryptosystem.

  15. Measurement of surface acoustic wave velocity using phase shift mask and application on thin film of thermoelectric material

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Zhao, Peng; Gunning, Noel; Johnson, David; Zhao, Ji-Cheng; Cahill, David

    2014-03-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements and apply this method, in combination with conventional picosecond acoustics, to determine a subset of the elastic constants of thin films of semiconducting misfit layered compounds. SAWs with a wavelength of 700 nm are generated and detected using an elastomeric polydimethylsiloxane (PDMS) phase-shift mask which is fabricated using a commercially-available Si grating as a mold. The velocity of SAWs of [(SnSe)1.04]m[MoSe2]n synthesized by elemental reactants show subtle variations in their elastic constants as a function of m and n. Precise measurements of elastic constants will enable a better understanding of interfacial stiffness in nanoscale multilayers and the effects of phonon focusing on thermal conductivity.

  16. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    SciTech Connect

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by {pi} radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.

  17. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    NASA Astrophysics Data System (ADS)

    Prosnitz, D.; Scharlemann, E. T.; Sheaffer, M. K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted RF signal is switched in a coded pattern between discrete values differing by (pi) radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.

  18. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    NASA Astrophysics Data System (ADS)

    Prosnitz, D.; Scharlemann, E. T.; Sheaffer, M. K.

    1992-07-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple slippage arguments.

  19. A low cost design to eliminate polarization induced phase shift for dual Mach-Zehnder fiber interferometer

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liang, Sheng; Liu, Qianzhe; Xiao, Wen

    2015-08-01

    In dual Mach-Zehnder interferometer (DMZI) system, polarization induced phase shift (PIPS) leads to a big location error. Traditional approaches adopt polarization controller (PC) to eliminate PIPS by controlling polarization state (PS) of light source. Through establishing the influence model of input light PS and equivalent polarization parameters of sensing cable on interference signals, an approach using a simplified polarization controller (PC) to obtain high location accuracy is proposed. The simplified PC is composed of a polarizer and a fiber-fused half-wave plate and can provide a linearly polarized light with azimuth angle controlled. Simulation and experiment indicate that the proposed method and PC design not only has capability of eliminating PIPS, but also has the benefits of low cost and easy control.

  20. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  1. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  2. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  3. Replica Analysis of Multiuser Detection for Code Division Multiple Access with M-Ary Phase-Shift Keying

    NASA Astrophysics Data System (ADS)

    Kato, Hiroyuki; Okada, Masato; Miyoshi, Seiji

    2013-07-01

    We analyze the performance of the maximizer of the posterior marginals (MPM) detector for code division multiple access (CDMA) multiuser detection with M-ary phase shift keying (M-ary PSK) in the large system limit by the replica method. The obtained theory agrees with computer simulation reasonably well. We also derive the theory in the case of the large M limit and discuss the dependence of the properties of M-ary PSK CDMA communication on M. We show that the waterfall phenomenon occurs for both the finite and infinite values of M. We also show that a value of M for which the decoded phase information on the original user symbol becomes minimum exists. Furthermore, we discuss the relationship between the theory based on the replica method and that based on self-consistent signal-to-noise analysis (SCSNA).

  4. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique.

    PubMed

    Wang, Yajun; Laughner, Jacob I; Efimov, Igor R; Zhang, Song

    2013-03-11

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  5. Development of a sub-100nm integrated imaging system using chromeless phase-shifting imaging with very high NA KrF exposure and off-axis illumination

    NASA Astrophysics Data System (ADS)

    Petersen, John S.; Conley, Will; Roman, Bernard J.; Litt, Lloyd C.; Lucas, Kevin; Wu, Wei; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Gerold, David J.; Maslow, Mark J.; Socha, Robert J.; van Praagh, Judith; Droste, Richard

    2002-07-01

    Examining features of varying pitch imaged using phase- shifting masks shows a pitch dependence eon the transmission best suited for optimum imaging. The reason for this deals with the relative magnitude of the zero and higher diffraction orders that are formed as the exposing wavelength passes through the plurality of zero and higher diffraction orders that are formed as the exposing wavelength passes through the plurality of zero and 180- degree phase-shifted regions. Subsequently, some of the diffraction orders are collected and projected to form the image of the object. chromeless Phase-Shift Lithography (CPL) deals with using half-toning structures to manipulate these relative magnitudes of these diffraction orders to ultimately construct the desired projected image. A key feature of CPL is that with the ability to manipulate the diffraction orders, a single weak phase-shifting mask can be made to emulate any weak phase-shifting mask and therefore the optimal imaging condition of any pattern can be placed on a single mask regardless of the type of weak phase- shifter that produces that result. In addition, these structures are used to render the plurality of size, shape and pitch such that the formed images produce their respective desired size and shape with sufficient image process tolerance. These images are typically made under identical exposure conditions, but not limited to single exposure condition. These half toning structures can be used exterior, as assist features, or interior to the primary feature. These structures can range in transmission from 0 percent to 100 percent and they can be phase-shifted relative to the primary features or not. Thus CPL deals with the design, layout, and utilization of transparent and semi- transparent phase-shift masks and their use in an integrated imaging solution of exposure tool, mask and the photoresist recording media. This paper describes the method of diffraction matching, provides an example and reviews some

  6. Three-dimensional shape measurement based on a combination of gray-code and phase-shift light projection

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Fu, Yanjun; Yang, Jie; Xia, Guisuo; Wang, Jiasheng

    2013-10-01

    Blade is the key component of the aero-engine. In generally, it requires precise size and accurate shape, so the three-dimensional shape measurement of the blade is very important. Fringe projection profilometry is generally used to measure the 3D shape of an object, because of the advantages of non-contact operation, full-field acquisition, high resolution, and fast data processing. In this paper, 3D shape measurement method based on surface structured light that combination of gray-code and phase-shift projection is proposed. The wrapped phase of the blade is got by the four-step phase-shift method. In the projection process of the gray-code, due to the ambient light, different surface reflectance and surface physical discontinuous, the edge of gray-code becomes smooth, leading to decode error, so that the gray-code pattern must be binaried before decode. Through the accurate binarization of the blade gray-code pattern, the decoding cycle of the blade is achieved, and the unwrapped phase is achieved by phase unwrapping. Then the unwrapped phase difference between the blade and reference plane is got, the height of the blade can be obtained by the relationship between the phase difference and the height. The experimental and simulation results show that the proposed method can achieve a high precision, high speed and low cost 3D shape measurement of the blade. The measurement accuracy reaches 0.03 mm. The proposed method extends the reliability and practicality of the fringe projection profilometry.

  7. Vertical comb-drive microscanner with 4x4 array of micromirrors for phase-shifting Mirau microinterferometry

    NASA Astrophysics Data System (ADS)

    Bargiel, Sylwester; Lullin, Justine; Lemoal, Patrice; Perrin, Stéphane; Passilly, Nicolas; Albero, Jorge; Froehly, Luc; Lardet-Vieudrin, Franck; Gorecki, Christophe

    2016-04-01

    In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.

  8. Evaluation of transparent etch stop layer phase shift mask patterning and comparison with the single trench undercut approach

    NASA Astrophysics Data System (ADS)

    Rody, Y.; Martin, P.; Couderc, C.; Sixt, P.; Gardin, C.; Lucas, K.; Patterson, K.; Miramond-Collet, C.; Belledent, J.; Boone, R.; Borjon, A.; Trouiller, Y.

    2005-11-01

    Despite the complexity of AAPSM patterning using the complementary PSM approach with respect to OPC correction, mask making, fab logistics etc, the technique still remains a valuable solution for special products where a low CD dispersion printing process is required. For current and next generation process technologies (90-65nm ground rules), the most common alternating mask solution of single trench etch with or without undercut becomes more difficult to manufacture. Especially challenging is the aspect ratio control of quartz etched trenches as a function of density in order to assure the correct phase angle and sidewall for dense and isolated structures over all phase shifted geometries. In order to solve this problem, a modified mask architecture is proposed, called the Transparent Etch Stop Layer (TESL) phase shift mask. In TESL, a transparent (etch stop) layer is deposited on the quartz substrate, followed by the deposition of a quartz layer having a thickness corresponding to the required phase angle for the used wavelength. On top a Chromium layer will be deposited. The patterning of this mask will be quite similar to the single trench variant. The difference is, that now an overetch can be applied for the phase definition resulting from the high etch selectivity of quartz to the etch stop material. The result of this approach should be that we can better control the phase depth and sidewall angle for dense and isolated structures. In this paper we will discuss the results of the printing tests performed using TESL masks especially with respect to litho process window, and we will compare these with the single trench undercut approach. Simulation results are presented with respect to shifter sidewall profile and TESL thickness in order to optimize image imbalance. Throughout the study we will correlate simulations and measurements to the after-MBOPC CD values for the shifter structures. These results will allow us to determine if the TESL AAPSM approach

  9. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach. PMID:26560789

  10. Negative initial phase shift of Kerr rotation generated from the building-up process of resident electron spin polarization in a CdTe single quantum well

    NASA Astrophysics Data System (ADS)

    Yan, L.-P.; Kurosawa, M.; Kaji, R.; Karczewski, G.; Takeyama, S.; Adachi, S.

    2014-11-01

    Initial phase shift in a precessional motion of resident electron-spin polarization is studied in a CdTe/Cd 0.85Mg0.15Te single quantum well using a time-resolved Kerr rotation technique. The generation dynamics of resident electron-spin polarization involve the formation and transformation of the associated optically excited states and are complicated particularly in the early time region. A careful analysis of the phase shift gives a deep understanding of the generation processes. In the experiments, the negative phase shift of the resident electron-spin polarization is observed, and the mechanism associated especially with a quick hole spin flip in negative trions is studied through the dependences on excitation power and magnetic field strength.

  11. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    NASA Technical Reports Server (NTRS)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  12. All-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an analog on the electromagnetically induced transparency effect

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Xiong, Liangbin; Zeng, Qingdong; Chen, Zhihong; Lv, Hao; Ding, Yaoming; Du, Jun; Yu, Huaqing

    2016-06-01

    We theoretically and numerically investigate all-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an all-optical analog on the electromagnetically induced transparency effect. The free-carrier plasma dispersion effect modulation method is applied to improve the tuning rate with a response time of picoseconds. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Compared with no phase-shift multiplication effect, the average pump power of all-optical switching required to yield the π-phase shift difference decreases by 55.1%, and the size of the modulation region is reduced by 50.1% when the average pump power reaches 60.8 mW. This work provides a new direction for low-power consumption and miniaturization of microstructure integration light-controlled switching devices in optical communication and quantum information processing.

  13. Digital self-coherent detection.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Leven, Andreas

    2008-01-21

    We review recent progresses on digital self-coherent detection of differential phase-shift keyed (DPSK) signal using orthogonal differential direct detection followed by high-speed analog-to-digital conversion and digital signal processing (DSP). Techniques such as data-aided multisymbol phase estimation for receiver sensitivity enhancement, unified detection scheme for multi-level DPSK signals, and optical field reconstruction are described. The availability of signal field information brings the possibility to compensate for some linear and nonlinear transmission impairments through further DSP. An adaptive DSP algorithm for simultaneous electronic polarization de-multiplexing and polarization-mode dispersion compensation is also presented. PMID:18542154

  14. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  15. Analyzing the special PFG signal attenuation behavior of intermolecular MQC via the effective phase shift diffusion equation method

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2015-10-01

    Inter-molecular multiple quantum coherence (iMQC) has important applications in NMR and MRI. However, the current theoretical methods still have some difficulties in analyzing the behavior of iMQC signal attenuation of pulsed field gradient diffusion experiments. In this paper, the iMQC diffusion experiments were analyzed by an effective phase shift diffusion equation (EPSDE) method, which is based on the idea that the accumulating phase shift (APS) can be viewed as the result of a diffusion process in virtual phase space (VPS) with effective diffusion coefficient K2(t) D (rad2/s) where K ( t ) = ∫0 t γ g ( t ' ) d t ' is a wavenumber and D is the physical diffusion coefficient of the spin carrier in the real space. The term K(ttot) z1 needs to be added to the APS when K(ttot) is not zero. Most of the time, K(ttot) equals zero. However, in iMQC experiments, the condition K(ttot) equaling zero or being non-zero for each spin depends on the gradient pulse setting. The signal attenuations of these two types of iMQC, zero or non-zero K(ttot), were analyzed in detail for free and restricted diffusions, which shows that there are significant differences between these two types of iMQC. Particularly, if an apparent diffusion coefficient Dapp is used to analyze the signal attenuation, it equals nD for zero K(ttot) which agrees with current theoretical and experimental reports, while for non-zero K(ttot), it equals (2n - 1) D which agrees with experimental results from the literature; there are no similar theoretical results reported for comparison. The result that Dapp equals (2n - 1) D is important because the higher value of Dapp means that non-zero K(ttot) iMQC can potentially provide more contrast and measure slower diffusion rates than zero K(ttot) iMQC. The EPSDE method provides a new way to analyze iMQC diffusion experiments.

  16. Galaxy secular mass flow rate determination using the potential-density phase shift approach: Application to six nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Buta, Ronald J.

    2015-01-01

    Using the potential-density phase shift approach developed by the present authors in earlier publications, we estimate the magnitude of radial mass accretion/excretion rates across the disks of six nearby spiral galaxies (NGC 628, NGC 3351, NGC 3627, NGC 4321, NGC 4736, and NGC 5194) having a range of Hubble types. Our goal is to examine these rates in the context of bulge building and secular morphological evolution along the Hubble sequence. Stellar surface density maps of the sample galaxies are derived from SINGS 3.6 μm and SDSS i-band images using colors as an indicator of mass-to-light ratios. Corresponding molecular and atomic gas surface densities are derived from published CO (1-0) and HI interferometric observations of the BIMA SONG, THINGS, and VIVA surveys. The mass flow rate calculations utilize a volume-type torque integral to calculate the angular momentum exchange rate between the basic state disk matter and what we assume to be density wave modes in the observed galaxies. This volume-type integral contains the contributions from both the gravitational surface torque couple and the advective surface torque couple at the nonlinear, quasi-steady state of the wave modes, in sharp contrast to its behavior in the linear regime, where it contains only the contribution from the gravitational surface torque couple used by Lynden-Bell & Kalnajs in 1972. The potential-density phase shift approach yields angular momentum transport rates several times higher than those estimated using the Lynden-Bell and Kalnajs approach. And unlike Lynden-Bell and Kalnajs, whose approach predicts zero mass redistribution across the majority of the disk surface (apart from the isolated locations of wave-particle resonances) for quasi-steady waves, the current approach leads to predictions of significant mass redistribution induced by the quasi-steady density wave modes, enough for the morphological types of disks to evolve substantially within its lifetime. This difference

  17. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.

    PubMed

    Ling, S D; Johnson, C R

    2012-06-01

    Spatial closures in the marine environment are widely accepted as effective conservation and fisheries management tools. Given increasing human-derived stressors acting on marine ecosystems, the need for such effective action is urgently clear. Here we explore mechanisms underlying the utility of marine reserves to reinstate trophic dynamics and to increase resilience of kelp beds against climate-driven phase shift to sea urchin barrens on the rapidly warming Tasmanian east coast. Tethering and tagging experiments were used to examine size- and shelter-specific survival of the range-extending sea urchin Centrostephanus rodgersii (Diadematidae) translocated to reefs inside and outside no-take Tasmanian marine reserves. Results show that survival rates of C. rodgersii exposed on flat reef substratum by tethering were approximately seven times (small urchins 10.1 times; large urchins 6.1 times) lower on protected reef within marine reserve boundaries (high abundance of large predatory-capable lobsters) compared to fished reef (large predatory lobsters absent). When able to seek crevice shelter, tag-resighting models estimated that mortality rates of C. rodgersii were lower overall but remained 3.3 times (small urchins 2.1 times; large urchins 6.4 times) higher in the presence of large lobsters inside marine reserves, with higher survival of small urchins owing to greater access to crevices relative to large urchins. Indeed, shelter was 6.3 times and 3.1 times more important to survival of small and large urchins, respectively, on reserved relative to fished reef. Experimental results corroborate with surveys throughout the range extension region, showing greater occurrence of overgrazing on high-relief rocky habitats where shelter for C. rodgersii is readily available. This shows that ecosystem impacts mediated by range extension of such habitat-modifying organisms will be heterogeneous in space, and that marine systems with a more natural complement of large and thus

  18. Two mechanisms of rephasal of circadian rhythms in response to a 180 deg phase shift /simulated 12-hr time zone change/

    NASA Technical Reports Server (NTRS)

    Deroshia, C. W.; Winget, C. M.; Bond, G. H.

    1976-01-01

    A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.

  19. Nanoscale dimensional focused ion beam repair of quartz defects on 90-nm node alternating aperture phase shift masks

    NASA Astrophysics Data System (ADS)

    Robinson, Tod E.; Graupera, Anthony; Morrison, Troy B.; Ramstein, Marcus

    2004-08-01

    The effort to produce perfect dimension repairs of quartz bump defects on Alternating-Aperture Phase Shift Masks (AAPSM) has been brought to a new level with process developments to meet 90 nm technology node specifications. Decreasing photomask line and space dimensions pushes performance requirements for a mask repair system in terms of fine control in difficult to access structures on the mask surface. New repair strategies using a recently improved focused ion beam mask repair system for different defect types are discussed, along with their relative effectiveness. These strategies are then applied to the repair of full height extension and bridging defects in a line and space array. The role of quartz topography and its optical effects, Cr edge bias, and the combination of both strategies in a quartz bump repair are discussed. Additionally, effective process controls in repair are also discussed, along with analysis of metrology data received from a stylus nano-profilometer (SNP) system, and their relationship to potential imaging on the wafer by examination of AIMS data at a high numerical aperture. Several possible mask repair process flows are also reviewed in light of this work.

  20. Monolithic Single-Mode DFB Laser Array with Precise Wavelength Control for Optoelectronic Integration using an Equivalent Phase Shift Method

    NASA Astrophysics Data System (ADS)

    Li, Jingsi; Cheng, Julian; Microelectronics Research Center Team

    2013-03-01

    The integrated distributed feedback (DFB) laser array is a key component in photonic integrated circuits for wavelength-division multiplexing (WDM) system. However, it is difficult to precisely control the wavelength of individual lasers. When the rear facet of the laser is coated with a high-reflectivity mirror, a random phase change is introduced that shifts the lasing wavelength, making monolithic integration of a wavelength-controlled WDM array very difficult. To solve this problem, we propose a method to precisely control the lasing wavelength of DFB lasers over a wide range by introducing an equivalent phase shift in the cavity using sampled Bragg gratings, using wafer-scale optical lithography and requiring only coarse dimension control. The wavelength can be fine-tuned by applying different DC currents. It is shown that a WDM-DFB laser array with uniform wavelength spacing can be controlled accurately in this manner. Integrated arrays of single-mode DFB lasers for WDM systems can thus be fabricated in a low-cost manner without using low-throughput e-beam lithography, and is scalable for mass-manufacturing.