Science.gov

Sample records for 2-thiobarbituric acid reactive

  1. Synthesis, structural characterization and biological studies of the triphenyltin(IV) complex with 2-thiobarbituric acid.

    PubMed

    Balas, V I; Verginadis, I I; Geromichalos, G D; Kourkoumelis, N; Male, L; Hursthouse, M B; Repana, K H; Yiannaki, E; Charalabopoulos, K; Bakas, T; Hadjikakou, S K

    2011-07-01

    The reaction between 2-thiobarbituric acid (H(2)TBA), which was treated with an equimolar amount of potassium hydroxide, in a water with triphenytin chloride in methanol, results in the formation of the {[Ph(3)Sn(O-HTBA)]}(n) (1) complex. Crystals of the hydrated 1 with formula {[Ph(3)Sn(O-HTBA)]·0.7(H(2)O)}(n) were growth from methanol/acetonitrile solution, of the white precipitation, filtered off, from the reaction. The crystal structure of complex 1 has been determined by X-ray diffraction at 120 K. Complex 1 is polymeric. The geometry around the tin(IV) ions is trigonal bi-pyramidal with coordination to three C atoms from phenyl groups and one O atom from a de-protonated HTBA ligand. Complex 1 and the already known [(n-Bu)(3)Sn(O-HTBA)·H(2)O] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cancer cell lines: HeLa (cervical), OAW-42 (ovarian), MCF-7 (breast, ER positive), MDA-MB-231 (breast, ER negative), A549 (lung), Caki-1 (renal) and additionally, the normal human lung cell line MRC-5 (normal human fetal lung fibroblast cells) and normal immortalized human mammary gland epithelial cell line MTSV17 with a Trypan Blue assay. Moreover complex 1 was evaluated for its in vitro cell growth proliferation activity against leiomyosarcoma cells (LMS), MCF-7 and MRC-5 cells with a Thiazolyl Blue Tetrazolium Bromide (MTT) assay. The type of cell death caused by complexes 1 and 2 was also evaluated by use of flow cytometry assay. The results showed that these compounds mediate a strong cytotoxic response to normal and cancer cell lines tested through apoptosis and induce cell cycle arrest in S phase of the cell cycle, suggesting DNA intercalation (direct or indirect) with the complexes. Finally, the influence of these complexes 1 and 2 upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. PMID:21521629

  2. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  3. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  4. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    SciTech Connect

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  5. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  10. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  11. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    PubMed

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation.

  12. Clustering chlorine reactivity of haloacetic acid precursors in inland lakes.

    PubMed

    Zeng, Teng; Arnold, William A

    2014-01-01

    Dissolved organic matter (DOM) represents the major pool of organic precursors for harmful disinfection byproducts, such as haloacetic acids (HAAs), formed during drinking water chlorination, but much of it remains molecularly uncharacterized. Knowledge of model precursors is thus a prerequisite for understanding the more complex whole water DOM. The utility of HAA formation potential data from model DOM precursors, however, is limited due to the lack of comparability to water samples. In this study, the formation kinetics of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two predominant HAA species, were delineated upon chlorination of seventeen model DOM precursors and sixty-eight inland lake water samples collected from the Upper Midwest region of the United States. Of particular interest was the finding that the DCAA and TCAA formation rate constants could be grouped into four statistically distinct clusters reflecting the core structural features of model DOM precursors (i.e., non-β-diketone aliphatics, β-diketone aliphatics, non-β-diketone phenolics, and β-diketone phenolics). A comparative approach built upon hierarchical cluster analysis was developed to gain further insight into the chlorine reactivity patterns of HAA precursors in inland lake waters as defined by the relative proximity to four model precursor clusters. This work highlights the potential for implementing an integrated kinetic-clustering approach to constrain the chlorine reactivity of DOM in source waters.

  13. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    SciTech Connect

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  14. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    SciTech Connect

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  15. Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide

    NASA Astrophysics Data System (ADS)

    Nanthananon, P.; Seadan, M.; Pivsa-Art, S.; Suttiruengwong, S.

    2015-07-01

    The poor crystallization rate of poly (lactic acid) (PLA) is a major drawback in terms of controlling the properties of final products. To overcome this, a nucleating agent is normally applied. In this work, the aliphatic bisamide, N, N'-(1,3-propylene) bis(10-undecenamide) (PBU), having reactive functional groups is used as a crystallization promoter for PLA by adding PBU in various concentration (0.1-0.7 wt%) into PLA together with peroxide via reactive melt blending. The conventional ethylene bis-stearamide(EBS) is used for a comparison. The extruded samples are characterized for gel content and FT-IR spectroscopy. The crystallization behaviour and rate, and spherulites morphology are investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. It is found that the addition of PBU into PLA results in the dramatic increase in crystallinity and crystallization rate of PLA compared with neat PLA and PLA added EBS. The crystallinity increases to 24.9-28.3% higher than neat PLA under even cooling rate of 7°C/min. The addition of 0.7 wt% PBU shows the fastest crystallization rate with t1/2 value isothermally crystallized at 130°C of only 6 min. POM images indicate the increase in the nucleation density and very fine spherulitesof PLA added PBU, promoting the fast crystallization.

  16. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  17. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  18. Formation, reactivity and detection of protein sulfenic acids

    PubMed Central

    Kettenhofen, Nicholas J.; Wood, Matthew J.

    2010-01-01

    It has become clear in recent decades that the post-translational modification of protein cysteine residues is a crucial regulatory event in biology. Evidence supports the reversible oxidation of cysteine thiol groups as a mechanism of redox-based signal transduction while the accumulation of proteins with irreversible thiol oxidations is a hallmark of stress-induced cellular damage. The initial formation of cysteine sulfenic acid (SOH) derivatives, along with the reactive properties of this functional group, serves as a crossroads whereby the local redox environment may dictate the progression of either regulatory or pathological outcomes. Protein-SOH are established as transient intermediates in the formation of more stable cysteine oxidation products both under basal conditions and in response to several redox-active extrinsic compounds. This review details both direct and multi-step chemical routes proposed to generate protein-SOH, the spectrum of secondary reactions that may follow their initial formation and the arsenal of experimental tools available for their detection. Both the pioneering studies that have provided a framework for our current understanding of protein-SOH as well as state-of-the-art proteomic strategies designed for global assessments of this post-translational modification are highlighted. PMID:20845928

  19. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  20. Reactive Carbonyl Species Derived from Omega-3 and Omega-6 Fatty Acids.

    PubMed

    Wang, Yu; Cui, Ping

    2015-07-22

    Inflammation-related reactive oxygen species (ROS) and reactive nitrogen species (RNS) are associated with the development of cancer. ROS and RNS can directly damage biomacromolecules such as proteins, DNA, and lipids. Lipid peroxidation, however, can result in reactive carbonyl species (RCS) that can also modify proteins and DNA. In contrast to an extensive literature on the modification of proteins and DNA from omega-6 fatty acids, there are few studies on RCS generation from other fatty acids, particularly omega-3 fatty acids, which are frequently consumed from the diet and diet supplements. Therefore, a comparison between omega-3 and omega-6 fatty acids has been conducted. LC-MS/MS analysis of carbonyl-dinitrophenylhydrazine (DNPH) standards yielded characteristic fragment ions. Autoxidation products of α-linolenic acid and linoleic acid were then derivatized with DNPH and analyzed by LC-MS/MS. The results showed that α-linolenic acid, an omega-3 fatty acid, generated more acrolein and crotonaldehyde than did linoleic acid, an omega-6 fatty acid. Omega-3 fatty acids might be easily degraded to smaller monoaldehydes or dicarbonyls. Omega-3 fatty acids have been considered as health improvement components for a long time. However, on the basis of the results presented here, use of omega-3 fatty acids should be re-evaluated in vivo for safety purposes.

  1. Reactivity of Hontomín carbonate rocks to acidic solution injection: reactive "push-pull" tracer tests results

    NASA Astrophysics Data System (ADS)

    De Gaspari, Francesca; Cabeza, Yoar; Luquot, Linda; Rötting, Tobias; Saaltink, Maarten W.; Carrera, Jesus

    2014-05-01

    Several field tests will be carried out in order to characterize the reservoir for CO2 injection in Hontomín (Burgos, Spain) as part of the Compostilla project of "Fundación Ciudad de la Energía" (CIUDEN). Once injected, the dissolution of the CO2 in the resident brine will increase the acidity of the water and lead to the dissolution of the rocks, constituted mainly by carbonates. This mechanism will cause changes in the aquifer properties such as porosity and permeability. To reproduce the effect of the CO2 injection, a reactive solution with 2% of acetic acid is going to be injected in the reservoir and extracted from the same well (reactive "push-pull" tracer tests) to identify and quantify the geochemical reactions occurring into the aquifer. The reactivity of the rock will allow us also to evaluate the changes of its properties. Previously, theoretical calculations of Damkhöler numbers were done to determine the acid concentrations and injection flow rates needed to generate ramified-wormholes patterns, during theses "push-pull" experiments. The aim of this work is to present the results and a preliminary interpretation of the field tests.

  2. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  3. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  4. Evaluation of the Reactivity of Reillex HPQ in 64 Percent Nitric Acid

    SciTech Connect

    Crooks, W.J. III

    2001-02-20

    The purpose of this work was to evaluate the reactivity of Reillex HPQ in 64 percent nitric acid and to address an accident scenario in which 64 percent nitric acid solution is inadvertently added to an HB-Line ion exchange column containing Reillex HPQ anion exchange resin.

  5. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Chen, Hao

    2010-01-01

    We have reported previously a method for the detection of sugars via in-situ derivatization with phenylboronic acid PhB(OH)2 using reactive desorption electrospray ionization (DESI, Chen et al., Chem. Commun. (2006) 597-599). The present study describes an improved method that employs modified phenylboronic acids including 3-nitrophenylboronic acid and N-methyl-4-pyridineboronic acid iodide. In contrast to using PhB(OH)2, enhanced sensitivity of using 3-nitrophenylboronic acid was observed due to the stabilization of the resulting boronate ester anion by the electron-withdrawing nitro group and the limit of detections (LODs) for glucose in water using 3-nitrophenylbornic acid and phenylboronic acid were determined to be 0.11 mM and 0.40 mM, respectively. In the case of N-methyl-4-pyridineboronic acid iodide, the corresponding LOD is 6.9 [mu]M and the higher sensitivity obtained is attributed to the efficient ionization of both the reactive DESI reagent and reaction product since the precursor acid with a quaternary ammonium group is pre-charged. In this case, additional important features are found: (i) unlike using phenylboronic acid or 3-nitrophenylbornic acid, the experiment, performed in the positive ion mode, is applicable to neutral and acidic saccharide solutions, facilitating the analysis of biological fluids without the need to adjust pH; (ii) simply by changing the spray solvent from water to acetonitrile, the method can be used for direct glucose analyses of both urine and serum samples via online desalting, due to the low solubility of salts of these biofluids in the sprayed organic solvent; (iii) in comparison with other sugar derivatizing reagents such as the Girard's reagent T, the N-methyl-4-pyridineboronic acid iodide shows higher reactivity in the reactive DESI; and (iv) the ions of saccharide DESI reaction products undergo extensive ring or glycosidic bond cleavage upon CID, a feature that might be useful in the structure elucidation of

  6. Multiscale Reactive Molecular Dynamics for Absolute pK a Predictions and Amino Acid Deprotonation.

    PubMed

    Nelson, J Gard; Peng, Yuxing; Silverstein, Daniel W; Swanson, Jessica M J

    2014-07-01

    Accurately calculating a weak acid's pK a from simulations remains a challenging task. We report a multiscale theoretical approach to calculate the free energy profile for acid ionization, resulting in accurate absolute pK a values in addition to insights into the underlying mechanism. Importantly, our approach minimizes empiricism by mapping electronic structure data (QM/MM forces) into a reactive molecular dynamics model capable of extensive sampling. Consequently, the bulk property of interest (the absolute pK a) is the natural consequence of the model, not a parameter used to fit it. This approach is applied to create reactive models of aspartic and glutamic acids. We show that these models predict the correct pK a values and provide ample statistics to probe the molecular mechanism of dissociation. This analysis shows changes in the solvation structure and Zundel-dominated transitions between the protonated acid, contact ion pair, and bulk solvated excess proton. PMID:25061442

  7. Fatty acid-induced changes in vascular reactivity in healthy adult rats.

    PubMed

    Christon, Raymond; Marette, André; Badeau, Mylène; Bourgoin, Frédéric; Mélançon, Sébastien; Bachelard, Hélène

    2005-12-01

    Dietary fatty acids (FAs) are known to modulate endothelial dysfunction, which is the first stage of atherosclerosis. However, their exact role in this initial phase is still unclear. The effects of isolated or combined (by 2) purified FAs from the main FA families were studied on the vascular response of isolated thoracic aorta in healthy rats to get a better understanding of the mechanisms of action of dietary FAs in regulating vascular endothelial function. Cumulative contraction curves to phenylephrine and relaxation curves to carbachol and then to sodium nitroprusside were obtained in the absence or presence of the FAs studied allowing endothelium-dependent and endothelium-independent ability of the smooth muscle to relax to be assessed in each experimental group. The endothelium-dependent vasodilator response to carbachol was lowered by eicosapentaenoic acid, whereas it was not altered either by docosahexaenoic acid alone or by combined eicosapentaenoic acid-docosahexaenoic acid, oleic acid, or stearic acid, and it was increased by linoleic acid (LA). A decreased phenylephrine-induced contraction was observed after incubation with arachidonic acid and with stearic acid. On the other hand, the endothelium-dependent relaxation was reduced by the addition of combined LA-arachidonic acid and LA-oleic acid. In conclusion, these data point out the differential effects of different types of FAs and of FAs alone vs combined on vascular reactivity. The complex nature of these effects could be partially linked to metabolic specificities of endothelial cells and to interactions between some FAs.

  8. Synthesis of peptide nucleic acids containing a crosslinking agent and evaluation of their reactivities.

    PubMed

    Akisawa, Takuya; Ishizawa, Yuki; Nagatsugi, Fumi

    2015-03-13

    Peptide nucleic acids (PNAs) are structural mimics of nucleic acids that form stable hybrids with DNA and RNA. In addition, PNAs can invade double-stranded DNA. Due to these characteristics, PNAs are widely used as biochemical tools, for example, in antisense/antigene therapy. Interstrand crosslink formation in nucleic acids is one of the strategies for preparing a stable duplex by covalent bond formation. In this study, we have synthesized PNAs incorporating 4-amino-6-oxo-2-vinylpyrimidine (AOVP) as a crosslinking agent and evaluated their reactivities for targeting DNA and RNA.

  9. Assessment of electrochemical potentiokinetic reactivation tests to qualify stainless steel for nitric acid service

    SciTech Connect

    Olsen, A.R.; Dillon, J.J.; Peters, A.H.; Clift, T.L.

    1986-12-31

    To minimize the costs and delivery time delays associated with purchasing type 304L stainless steel materials for service in nitric-acid-containing media, an alternative to the current Oak Ridge Y-12 Plant requirement of testing in accordance with American Society for Testing and Materials (ASTM) A 262, Practice C (the boiling nitric acid test), is being sought. A possible candidate is the electrochemical potentiokinetic reactivation (EPR) test being developed for the nuclear industry and under consideration for acceptance as an ASTM standard. Based on a review of the literature and some limited screening tests, this test, as currently proposed, is not a suitable substitute for the nitric acid test. However, with additional development the EPR test is a likely candidate for providing a quantitative substitute for the current qualitative oxalic acid etching (ASTM A 282, Practice A) often used to accept, but not reject, materials for use in a nitric acid medium.

  10. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  11. hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity.

    PubMed

    Nikolov, Nikolai G; Dybdahl, Marianne; Jónsdóttir, Svava Ó; Wedebye, Eva B

    2014-11-01

    Ionization is a key factor in hERG K(+) channel blocking, and acids and zwitterions are known to be less probable hERG blockers than bases and neutral compounds. However, a considerable number of acidic compounds block hERG, and the physico-chemical attributes which discriminate acidic blockers from acidic non-blockers have not been fully elucidated. We propose a rule for prediction of hERG blocking by acids and zwitterionic ampholytes based on thresholds for only three descriptors related to acidity, size and reactivity. The training set of 153 acids and zwitterionic ampholytes was predicted with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes.

  12. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  13. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative

    PubMed Central

    Bertozo, Luiza De Carvalho; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k2) for the reactions between Tau-NHBr and tryptophan (7.7 × 102 M−1s−1), melatonin (7.3 × 103 M−1s−1), serotonin (2.9 × 103 M−1s−1), dansylglycine (9.5 × 101 M−1s−1), tetramethylbenzidine (6.4 × 102 M−1s−1) and H2O2 (3.9 × M−1s−1) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 104 M−1s−1, pH 7.0, 9.5 × 10 M−1s−1 and pH 9.0, 1.7 × 10 M−1s−1), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr2). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H2O2. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  14. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative.

    PubMed

    De Carvalho Bertozo, Luiza; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k₂) for the reactions between Tau-NHBr and tryptophan (7.7 × 10² M(-1)s(-1)), melatonin (7.3 × 10³ M(-1)s(-1)), serotonin (2.9 × 10³ M(-1)s(-1)), dansylglycine (9.5 × 10¹ M(-1)s(-1)), tetramethylbenzidine (6.4 × 10² M(-1)s(-1)) and H₂O₂ (3.9 × M(-1)s(-1)) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 10⁴ M(-1)s(-1), pH 7.0, 9.5 × 10 M(-1)s(-1) and pH 9.0, 1.7 × 10 M(-1)s(-1)), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr₂). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H₂O₂. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  15. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  16. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  17. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-01

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  18. Pd(II) coordinated deprotonated diphenyl phosphino amino pyridine: reactivity towards solvent, base, and acid.

    PubMed

    Pratihar, Sanjay; Pegu, Rupa; Guha, Ankur Kanti; Sarma, Bipul

    2014-12-01

    The reactivity and stability of P(III)-N and P(III)≈N bonds will be different towards various solvents, bases, and acids because of their difference in bond strength due to different N-pπ-P-dπ donor bonding. For this, a P≈N containing Pd(II) complex, [Pd(DPAP)2] (C1), was synthesized from the reaction between PdCl2(COD) (COD = 1,4-cyclooctadiene) and 2 equiv. DPAP (diphenyl phosphino amino pyridine) ligand, followed by deprotonation of the N-H proton of the coordinated DPAP. The reactivity and stability of coordinated P≈N in complex C1 were determined in various protic and aprotic solvents, bases, and acids. The inertness of coordinated P=N towards various solvents and bases was observed, whereas protonation occurs at the nitrogen of P=N in the presence of an acid to form P-NH, with the generation of dicationic palladium complexes (C2). The dicationic complex C2 is found to be stable in the presence of bulky monoanionic Sn(IV) reagents, whereas, in the presence of more nucleophilic anions like Br(-) or I(-), dissociation of one DPAP ligand from dicationic Pd(II) complexes C2 leads to the generation of Pd(DPAP)X2 (X = Br(-), I(-)). Finally, the utility of the complexes towards Suzuki coupling of various aryl bromides and aryl or heteraryl boronic acids has been checked.

  19. Reactivity of alanylalanine diastereoisomers in neutral and acid aqueous solutions: a versatile stereoselectivity.

    PubMed

    Plasson, Raphaël; Tsuji, Maika; Kamata, Masazumi; Asakura, Kouichi

    2011-10-01

    A good comprehension of the reactivity of peptides in aqueous solution is fundamental in prebiotic chemistry, namely for understanding their stability and behavior in primitive oceans. Relying on the stereoselectivity of the involved reactions, there is a huge interest in amino acid derivatives for explaining the spontaneous emergence of homochirality on primitive Earth. The corresponding kinetic and thermodynamic parameters are however still poorly known in the literature. We studied the reactivity of alanylalanine in acidic to neutral conditions as a model system. The hydrolysis into amino acids, the epimerization of the N-terminal residue, and the cyclization into diketopiperazine could be successfully identified and studied. This kinetic investigation highlighted interesting behaviors. Complex mechanisms were observed in very acidic conditions. The relative kinetic stability of the diastereoisomers of the dipeptide is highly dependent of the pH, with the possibility to dynamically destabilize the thermodynamically more stable diastereoisomers. The existence of the cyclization of dipeptides adds complexity to the system. On one hand it brings additional stereoselectivities; on the other hand fast racemization of heterochiral dipeptides is obtained.

  20. Reactivity of Alanylalanine Diastereoisomers in Neutral and Acid Aqueous Solutions: a Versatile Stereoselectivity

    NASA Astrophysics Data System (ADS)

    Plasson, Raphaël; Tsuji, Maika; Kamata, Masazumi; Asakura, Kouichi

    2011-10-01

    A good comprehension of the reactivity of peptides in aqueous solution is fundamental in prebiotic chemistry, namely for understanding their stability and behavior in primitive oceans. Relying on the stereoselectivity of the involved reactions, there is a huge interest in amino acid derivatives for explaining the spontaneous emergence of homochirality on primitive Earth. The corresponding kinetic and thermodynamic parameters are however still poorly known in the literature. We studied the reactivity of alanylalanine in acidic to neutral conditions as a model system. The hydrolysis into amino acids, the epimerization of the N-terminal residue, and the cyclization into diketopiperazine could be successfully identified and studied. This kinetic investigation highlighted interesting behaviors. Complex mechanisms were observed in very acidic conditions. The relative kinetic stability of the diastereoisomers of the dipeptide is highly dependent of the pH, with the possibility to dynamically destabilize the thermodynamically more stable diastereoisomers. The existence of the cyclization of dipeptides adds complexity to the system. On one hand it brings additional stereoselectivities; on the other hand fast racemization of heterochiral dipeptides is obtained.

  1. A study on reactive blending of (poly lactic acid) and poly (butylene succinate co adipate)

    NASA Astrophysics Data System (ADS)

    Bureepukdee, C.; Suttiruengwong, S.; Seadan, M.

    2015-07-01

    This research aims to study the blending of Polylactic acid (PLA) and Polybutylene succinate co adipate (PBSA) in order to understand the role of peroxide in free radical reaction on the compatibilization between these two biodegradable polyesters. Various ratios of PLA/PBSA blends with and without reactive agents were prepared in the twin screw extruder. Two types of peroxides, Di (tert-butylperoxyisopropyl) benzene (DTBP) and 2, 5-Dimethyl-2, 5-(t-butylperoxy) hexane (DTBH), were used with various concentrations to compare. From the torques measurement, DTBP was more reactive with PLA and PBSA than DTBH. PLA and PBSA 80:20, 60:40, 50:50, 40:60, and 20:80% by weight were melt-blended in a twin screw extruder. The reactive polymer blends were also prepared for the same ratios of the blends with addition of 0.08 and 0.1 phr of DTBP. The mechanical, thermal, rheological, and morphological properties were investigated. The impact strengths of the non-reactive blend increased with the increasing in PBSA content. The optimal impact strength was obtained at 40%wt of PBSA with 0.1 phr of DTBP. Adding 0.08 and 0.1 phr of DTBP led to the co continuous phase morphology of PLA/PBSA blends. The per cent crystallinity of PLA increased when blended with PBSA. PBSA might induce the crystallization of PLA.

  2. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    PubMed

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown.

  3. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  4. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  5. Identification of Acidic pH-dependent Ligands of Pentameric C-reactive Protein*

    PubMed Central

    Hammond, David J.; Singh, Sanjay K.; Thompson, James A.; Beeler, Bradley W.; Rusiñol, Antonio E.; Pangburn, Michael K.; Potempa, Lawrence A.; Agrawal, Alok

    2010-01-01

    C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution. PMID:20843812

  6. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry

    NASA Astrophysics Data System (ADS)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  7. Grafting acrylic acid onto polypropylene by reactive extrusion with pre-irradiated PP as initiator

    NASA Astrophysics Data System (ADS)

    Cai, Chuanlun; Shi, Qiang; Li, Lili; Zhu, Lianchao; Yin, Jinghua

    2008-03-01

    In this paper, the modification of polypropylene (PP) with acrylic acid (AA) by reactive extrusion using pre-irradiated PP (rPP) as initiator was investigated. It was found the relatively high graft degree (Gd) and slight degradation of modified PP was obtained when 20 wt% rPP was used. This result can be explained in terms of effective concentration of free radicals. Compared with the neat PP, the modified PP showed the high-notched impact strength and improved adhesion of PP to polar substrate. This technique is of potential industrial interest for PP modification.

  8. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    NASA Astrophysics Data System (ADS)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  9. Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis.

    PubMed

    Mène-Saffrané, Laurent; Dubugnon, Lucie; Chételat, Aurore; Stolz, Stéphanie; Gouhier-Darimont, Caroline; Farmer, Edward E

    2009-01-16

    In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.

  10. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.

    PubMed

    Luo, Helen Y; Lewis, Jennifer D; Román-Leshkov, Yuriy

    2016-06-01

    Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates. PMID:27146555

  11. Relating physical state and reactivity: humidity dependent ozone uptake on tannic and shikimic acid

    NASA Astrophysics Data System (ADS)

    Steimer, S.; Huisman, A.; Krieger, U.; Lampimäki, M.; Marcolli, C.; Peter, T.; Ammann, M.

    2012-04-01

    Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Recent findings show that organic aerosol particles are capable of forming amorphous solids and semi-solids under atmospheric conditions [1]. Such particles should be highly viscous, leading to low diffusivity within the bulk. This would then slow down eventual chemical reactions in the bulk, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for the reaction of thin protein films with ozone [2]. To investigate the influence of the physical state on the reactivity of atmospherically relevant compounds, the uptake of ozone on two different organics was measured using a coated wall flow tube system. The investigated organic compounds are tannic acid, which is a proxy for atmospheric polyphenolic materials, and shikimic acid, a constituent of biomass burning aerosols. The viscosity of the organic film was adjusted by varying the humidity of the system, assuming a correlation between the two parameters due to water acting as a plasticizer. The investigated humidity range was 0% - 95% RH for tannic and 0% - 92% RH for shikimic acid. It was found that both of the compounds show a long term uptake of ozone which lasts for more than 20 h. The uptake coefficient is clearly humidity dependent and increases by close to two orders of magnitude between driest and wettest conditions. At a given humidity, shikimic acid is the more reactive compound. The measured humidity dependence supports the hypothesis that the uptake coefficient is a strong function of the diffusion coefficient of ozone in the organic film. 1. Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. 2. Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the

  12. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins

    PubMed Central

    2016-01-01

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput.2014, 10, 2729−273725061442), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H+/Cl– antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins. PMID:26734942

  13. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  14. Reactivity of substituted charged phenyl radicals toward components of nucleic acids.

    PubMed

    Ramírez-Arizmendi, Luis E; Heidbrink, Jenny L; Guler, Leonard P; Kenttämaa, Hilkka I

    2003-02-26

    Reactions of differently substituted phenyl radicals with components of nucleic acids have been investigated in the gas phase. A positively charged group located meta with respect to the radical site was employed to allow manipulation of the radicals in a Fourier-transform ion cyclotron resonance mass spectrometer. All of these electrophilic radicals react with sugars via exclusive hydrogen atom abstraction, with adenine and uracil almost exclusively via addition (likely at the C8 and C5 carbons, respectively), and with the nucleoside thymidine by hydrogen atom abstraction and addition at C5 in the base moiety (followed by elimination of (*)CH(3)). These findings parallel the reactivity of the phenyl radical with components of nucleic acids in solution, except that the selectivity for addition is different. Like HO(*), the electrophilic charged phenyl radicals appear to favor addition to the C5-end of the C5-C6 double bond of thymine and thymidine, whereas the phenyl radical preferentially adds to C6. The charged phenyl radicals do not predominantly add to thymine, as the neutral phenyl radical and HO(*), but mainly react by hydrogen atom abstraction from the methyl group (some addition to C5 in the base followed by loss of (*)CH(3) also occurs). Adenine appears to be the preferred target among the nucleobases, while uracil is the least favored. A systematic increase in the electrophilicity of the radicals by modification of the radicals' structures was found to facilitate all reactions, but the addition even more than hydrogen atom abstraction. Therefore, the least reactive radicals are most selective toward hydrogen atom abstraction, while the most reactive radicals also efficiently add to the base. Traditional enthalpy arguments do not rationalize the rate variations. Instead, the rates reflect the radicals' electron affinities used as a measure for their ability to polarize the transition state of each reaction.

  15. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  16. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of

  17. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  18. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  19. Reactive iron transport in an acidic mountain stream in Summit County, Colorado: A hydrologic perspective

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, K.E.

    1989-01-01

    A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.

  20. Skin testing of gallic acid-based hair dye in paraphenylenediamine/paratoluenediamine-reactive patients.

    PubMed

    Choi, Yunseok; Lee, Joon Ho; Kwon, Hyok Bu; An, Susun; Lee, Ai-Young

    2016-07-01

    Incidence of allergic contact dermatitis (ACD) to para-phenylenediamine (PPD)/paratoluenediamine (PTD) hair dyes is increasing. Hair dyes utilizing gallic acid (GA) may be a safe alternative. However, pretesting is recommended. We investigated the contact sensitivity to ingredients of a dye product; GA, monoethanolamine thioglycolate (MT), l-cystein and ferrous sulfate, and an appropriate pretest method in 31 patients reactive to PPD and/or PTD. An open test was performed with the test dye following the patch test. Subsequently, a use test was performed twice, with a 4-week interval. One subject showed a positive reaction to ferrous sulfate in the patch test. Another subject reacted to the first compound alone in the open test. Thirteen subjects manifesting cutaneous lesions from previous regular hair dyeing, showed reactions at the first use of the test dye; and six had reactions with reduced severity at the second test. GA and MT are safe for use in ACD patients reactive to PPD and/or PTD. For predicting contact allergy to hair dyes, the open test appeared to be a better pretest method than the patch test. PMID:26663148

  1. Silane modified starch for compatible reactive blend with poly(lactic acid).

    PubMed

    Jariyasakoolroj, Piyawanee; Chirachanchai, Suwabun

    2014-06-15

    A reactive blend of poly(lactic acid) (PLA) and a surface modified starch by silane coupling agent to achieve compatibility is proposed. A detailed structural analysis by using (1)H-(1)H TOCSY NMR spectrum clarifies, for the first time, that chloropropyl trimethoxysilane (CPMS) forms covalent bonds with starch during starch modification and consequently forms covalent bonds with PLA in the step of blending to produce a reactive blend of PLA and CP-starch. The CP-starch covalently bound with PLA provides the compatibility between PLA and starch and also plays the role as nucleating agent as identified from a significant increase of degree of crystallinity (as high as 10-15 times), as well as induces chain mobility, as identified from a slight decrease in glass transition temperature (∼5-10°C). The PLA/CP-starch film performed as well as neat PLA with slight increases in tensile strength and elongation at break, as compared to other PLA/silane modified starch films. PMID:24721076

  2. Silane modified starch for compatible reactive blend with poly(lactic acid).

    PubMed

    Jariyasakoolroj, Piyawanee; Chirachanchai, Suwabun

    2014-06-15

    A reactive blend of poly(lactic acid) (PLA) and a surface modified starch by silane coupling agent to achieve compatibility is proposed. A detailed structural analysis by using (1)H-(1)H TOCSY NMR spectrum clarifies, for the first time, that chloropropyl trimethoxysilane (CPMS) forms covalent bonds with starch during starch modification and consequently forms covalent bonds with PLA in the step of blending to produce a reactive blend of PLA and CP-starch. The CP-starch covalently bound with PLA provides the compatibility between PLA and starch and also plays the role as nucleating agent as identified from a significant increase of degree of crystallinity (as high as 10-15 times), as well as induces chain mobility, as identified from a slight decrease in glass transition temperature (∼5-10°C). The PLA/CP-starch film performed as well as neat PLA with slight increases in tensile strength and elongation at break, as compared to other PLA/silane modified starch films.

  3. Molybdenum(0) Dinitrogen Complexes Supported by Pentadentate Tetrapodal Phosphine Ligands: Structure, Synthesis, and Reactivity toward Acids.

    PubMed

    Hinrichsen, Svea; Kindjajev, Andrei; Adomeit, Sven; Krahmer, Jan; Näther, Christian; Tuczek, Felix

    2016-09-01

    The syntheses of two pentadentate tetrapodal phosphine (pentaPod(P)) ligands, P2(Ph)PP2(Ph) and P2(Me)PP2(Ph), are reported, which derive from the fusion of a tripod and a trident ligand. Reaction of the ligand P2(Ph)PP2(Ph) with [MoCl3(THF)3] followed by an amalgam reduction under N2 does not lead to well-defined products. The same reactions performed with the ligand P2(Me)PP2(Ph) afford the mononuclear molybdenum dinitrogen complex [MoN2(P2(Me)PP2(Ph))]. Because of the unprecedented topology of the pentaphosphine ligand, the Mo-P bond to the phosphine in the trans position to N2 is significantly shortened, explaining the very strong activation of the dinitrogen ligand (ν̃NN = 1929 cm(-1)). The reactivity of this complex toward acids is investigated. PMID:27526268

  4. Trace element reactivity in FeS-rich estuarine sediments: influence of formation environment and acid sulfate soil drainage.

    PubMed

    Morgan, Bree; Rate, Andrew W; Burton, Edward D

    2012-11-01

    Iron monosulfides (FeS) precipitate during benthic mineralisation of organic C and are well known to have a strong influence on trace element bioavailability in sediments. In this study we investigate the reactivity of trace elements (As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Zn) in sediments containing abundant and persistent FeS stores, collected from a south-western Australian estuarine system. Our objective was to explore the influence of sediment formation conditions on trace element reactivity by investigating sediments collected from different environments, including estuarine, riverine and acid sulfate soil influenced sites, within a single estuarine system. In general, we found a higher degree of reactivity (defined by 1 mol/L HCl extractions) for Cd, Mn, Pb and Zn, compared with a lower reactivity of As, Co, Cr, Cu, Mo and Ni. Moderate to strong correlations (R(2)>0.4, P<0.05) were observed between AVS and reactive Cd, Co, Mn, Mo, Ni, Pb and Zn within many of the formation environments. In contrast, correlations between AVS and As, Cr and Cu were generally poor (not significant, R(2)<0.4, P>0.05). Based on their reactivity and correlations with AVS, it appears that interactions (sorption, co-precipitation) between FeS and Cd, Mn, Pb and Zn in many of the sediments from this study are probable. Our data also demonstrate that drainage from acid sulfate soils (ASS) can be a source of trace elements at specific sites. A principal components analysis of our reactive (1 mol/L HCl extractable) trace element data clearly distinguished sites receiving ASS drainage from the other non-impacted sites, by a high contribution from Fe-Co-Mn-Ni along the first principal axis, and contributions from higher S-As/lower reactive Pb along the second axis. This demonstrates that trace element reactivity in sediments may provide a geochemical signature for sites receiving ASS drainage.

  5. Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for “Holes” in the T Cell Repertoire

    PubMed Central

    Frankild, Sune; de Boer, Rob J.; Lund, Ole; Nielsen, Morten; Kesmir, Can

    2008-01-01

    Background Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands. Principal Findings First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self-antigens. Conclusions T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cell cross-reactivity. PMID:18350167

  6. Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations.

    PubMed

    Janot, Noémie; Reiller, Pascal E; Korshin, Gregory V; Benedetti, Marc F

    2010-09-01

    Potentiometric titration is a common method to characterize dissolved organic matter (DOM) reactivity. Because of the sensitivity of pH electrodes, it is necessary to work with very high DOM (>1 g/L) concentrations that are unrealistic compared to those found in natural waters (0.1 to 100 mg/L). To obtain proton binding data for concentrations closer to environmental values, spectroscopic titration methodology is a viable alternative to traditional potentiometric titrations. Spectrophotometric titrations and UV-visible spectra of a diluted solution of purified Aldrich humic acid (5 mgDOC/L) are used to estimate changes in proton binding moieties as function of pH and ionic strength after calculation of differential absorbance spectra variations. After electrostatic correction of spectrophotometric data, there is a linear operational correlation between spectrophotometric and potentiometric data which can be used as a transfer function between the two properties. Spectrophotometric titrations are then used to determine the changes of humic acid protonation after adsorption onto alpha-alumina.

  7. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  8. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  9. Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes

    PubMed Central

    Koen, Yakov M.; Sarma, Diganta; Williams, Todd D.; Galeva, Nadezhda A.; Obach, R. Scott; Hanzlik, Robert P.

    2012-01-01

    Tienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins. To identify protein targets of TA metabolites, we incubated [14C]-TA with human hepatocytes, separated cellular proteins by 2D gel electrophoresis, and analyzed proteins in 36 radioactive spots by tryptic digestion followed by LC-MS/MS. Thirty one spots contained at least one identifiable protein. Sixteen spots contained only one of 14 non-redundant proteins which were thus considered to be targets of TA metabolites. Six of the 14 were also found in other radioactive spots that contained from 1 to 3 additional proteins. Eight of the 14 had not been reported to be targets for any reactive metabolite other than TA. The other 15 spots each contained from 2–4 identifiable proteins, many of which are known targets of other chemically reactive metabolites, but since adducted peptides were not observed, the identity of the adducted protein(s) in these spots is ambiguous. Interestingly, all the radioactive spots corresponded to proteins of low abundance, while many highly abundant proteins in the mixture showed no radioactivity. Furthermore, of approximately 16 previously reported protein targets of TA in rat liver (Methogo, R., Dansette, P. and Klarskov, K. (2007) Int. J. Mass Spectrom., 268, 284–295), only one (fumarylacetoacetase) is among the 14 targets identified in this work. One reason for this difference may be statistical, given that each study identified a small number of targets from among thousands present in hepatocytes. Another may be the species difference (i.e. rat vs. human), and still another may be the method of detection of adducted

  10. Mechanistic and kinetic study on the reactions of coumaric acids with reactive oxygen species: a DFT approach.

    PubMed

    Garzón, Andrés; Bravo, Iván; Barbero, Antonio J; Albaladejo, José

    2014-10-01

    The mechanism and kinetics of reactions between coumaric acids and a series of reactive oxygen species ((•)OX) was studied through the density functional theory (DFT). H atom abstraction from -OH and -COOH groups and addition to the nonaromatic double bond were the most representative reaction pathways chosen for which free energy barriers and rate constants were calculated within the transition state theory (TST) framework. From these calculations, it was estimated that (•)OH > (•)OCH3 > (•)OOH > (•)OOCH3 is the order of reactivity of (•)OX with any coumaric acid. The highest rate constant was estimated for p-coumaric acid + (•)OH reaction, whereas the rest of the (•)OX species are more reactive with o-coumaric acid. On the basis of the calculated rate constants, H abstraction from a -OH group should be the main mechanism for the reactions involving (•)OCH3, (•)OOH, and (•)OOCH3 radicals. Nevertheless, the addition mechanism, which sometimes is not considered in theoretical studies on reactions of phenolic compounds with electrophilic species, could play a relevant role in the global mechanism of coumaric acid + (•)OH reactions.

  11. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  12. Polylactide/Poly(ω-hydroxytetradecanoic acid) Reactive Blending: A Green Renewable Approach to Improving Polylactide Properties.

    PubMed

    Spinella, Stephen; Cai, Jiali; Samuel, Cedric; Zhu, Jianhui; McCallum, Scott A; Habibi, Youssef; Raquez, Jean-Marie; Dubois, Philippe; Gross, Richard A

    2015-06-01

    A green manufacturing technique, reactive extrusion (REx), was employed to improve the mechanical properties of polylactide (PLA). To achieve this goal, a fully biosourced PLA based polymer blend was conceived by incorporating small quantities of poly(ω-hydroxytetradecanoic acid) (PC14). PLA/PC14 blends were compatibilized by transesterification reactions promoted by 200 ppm titanium tetrabutoxide (Ti(OBu)4) during REx. REx for 15 min at 150 rpm and 200 °C resulted in enhanced blend mechanical properties while minimizing losses in PLA molecular weight. SEM analysis of the resulting compatibilized phase-separated blends showed good adhesion between dispersed PC14 phases within the continuous PLA phase. Direct evidence for in situ synthesis of PLA-b-PC14 copolymers was obtained by HMBC and HSQC NMR experiments. The size of the dispersed phase was tuned by the screw speed to "tailor" the blend morphology. In the presence of 200 ppm Ti(OBu)4, inclusion of only 5% PC14 increased the elongation at break of PLA from 3 to 140% with only a slight decrease in the tensile modulus (3200 to 2900 MPa). Furthermore, PLA's impact strength was increased by 2.4× that of neat PLA for 20% PC14 blends prepared by REx. Blends of PLA and PC14 are expected to expand the potential uses of PLA-based materials. PMID:25848833

  13. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa.

    PubMed

    Behzat, Balci

    2015-01-01

    The aim of this work is to evaluate decolorization of Reactive Black 39 (RB39) and Acid Red 360 (AR360) by Pseudomonas aeruginosa, which was isolated from a non-dye-contaminated activated sludge biomass. In the present study, the effect of various physicochemical parameters, initial dye concentration, temperature, pH, inoculum size and yeast extract concentration as an organic source on decolorization were investigated. P. aeruginosa was able to decolorize 20 mg/L RB39 completely within 144 hours in the presence of 0.5 g/L yeast extract at 25°C. Decolorization efficiencies for AR360 were found to be higher than RB39 under the same conditions. Optimal temperature to decolorize RB39 and AR360 was found to be 30 and 25°C, respectively. The activation energy (Ea) values for decolorization of RB39 and AR360 were found to be 61.89 kJ/mol and 81.18 kJ/mol, respectively. Experience showed that the pH and inoculum size had a considerable effect on decolorization of RB39 and AR360 by P. aeruginosa.

  14. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa.

    PubMed

    Behzat, Balci

    2015-01-01

    The aim of this work is to evaluate decolorization of Reactive Black 39 (RB39) and Acid Red 360 (AR360) by Pseudomonas aeruginosa, which was isolated from a non-dye-contaminated activated sludge biomass. In the present study, the effect of various physicochemical parameters, initial dye concentration, temperature, pH, inoculum size and yeast extract concentration as an organic source on decolorization were investigated. P. aeruginosa was able to decolorize 20 mg/L RB39 completely within 144 hours in the presence of 0.5 g/L yeast extract at 25°C. Decolorization efficiencies for AR360 were found to be higher than RB39 under the same conditions. Optimal temperature to decolorize RB39 and AR360 was found to be 30 and 25°C, respectively. The activation energy (Ea) values for decolorization of RB39 and AR360 were found to be 61.89 kJ/mol and 81.18 kJ/mol, respectively. Experience showed that the pH and inoculum size had a considerable effect on decolorization of RB39 and AR360 by P. aeruginosa. PMID:26465295

  15. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  16. Correlation between the acid-base properties of the La2O3 catalyst and its methane reactivity.

    PubMed

    Chu, Changqing; Zhao, Yonghui; Li, Shenggang; Sun, Yuhan

    2016-06-28

    Density functional theory and coupled cluster theory calculations were carried out to study the effects of the acid-base properties of the La2O3 catalyst on its catalytic activity in the oxidative coupling of methane (OCM) reaction. The La(3+)-O(2-) pair site for CH4 activation is considered as a Lewis acid-Brönsted base pair. Using the Lewis acidity and the Brönsted basicity in the fluoride affinity and proton affinity scales as quantitative measures of the acid-base properties, the energy barrier for CH4 activation at the pair site can be linearly correlated with these acid-base properties. The pair site consisting of a strong Lewis acid La(3+) site and a strong Brönsted base O(2-) site is the most reactive for CH4 activation. In addition, the basicity of the La2O3 catalyst was traditionally measured by temperature-programmed desorption of CO2, but the CO2 chemisorption energy is better regarded as a combined measure of the acid-base properties of the pair site. A linear relationship of superior quality was found between the energy barrier for CH4 activation and the CO2 chemisorption energy, and the pair site favorable for CO2 chemisorption is also more reactive for CH4 activation, leading to the conflicting role of the "basicity" of the La2O3 catalyst in the OCM reaction. The necessity for very high reaction temperatures in the OCM reaction is rationalized by the requirement for the recovery of the most reactive acid-base pair site, which unfortunately also reacts most readily with the byproduct CO2 to form the very stable CO3(2-) species.

  17. Characterization of humic acid reactivity modifications due to adsorption onto α-Al2O3.

    PubMed

    Janot, Noémie; Reiller, Pascal E; Zheng, Xing; Croué, Jean-Philippe; Benedetti, Marc F

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al(2)O(3) is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m(2) of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m(2) of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA(254), ratio of absorbance values E(2)/E(3) and width of the electron-transfer absorbance band Δ(ET) are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R ≥ 20 mg(PAHA)/g(α)(-)(A)1₂(O)₃. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could

  18. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles.

    PubMed

    Ault, Andrew P; Guasco, Timothy L; Baltrusaitis, Jonas; Ryder, Olivia S; Trueblood, Jonathan V; Collins, Douglas B; Ruppel, Matthew J; Cuadra-Rodriguez, Luis A; Prather, Kimberly A; Grassian, Vicki H

    2014-08-01

    Current climate and atmospheric chemistry models assume that all sea spray particles react as if they are pure NaCl. However, recent studies of sea spray aerosol particles have shown that distinct particle types exist (including sea salt, organic carbon, and biological particles) as well as mixtures of these and, within each particle type, there is a range of single-particle chemical compositions. Because of these differences, individual particles should display a range of reactivities with trace atmospheric gases. Herein, to address this, we study the composition of individual sea spray aerosol particles after heterogeneous reaction with nitric acid. As expected, a replacement reaction of chloride with nitrate is observed; however, there is a large range of reactivities spanning from no reaction to complete reaction between and within individual sea spray aerosol particles. These data clearly support the need for laboratory studies of individual, environmentally relevant particles to improve our fundamental understanding as to the properties that determine reactivity.

  19. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls.

  20. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  1. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    PubMed

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  2. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    PubMed

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling. PMID:22291200

  3. Complex polyfluoride additives in Fmoc-amino acid fluoride coupling processes. Enhanced reactivity and avoidance of stereomutation.

    PubMed

    Carpino, Louis A; Ionescu, Dumitru; El-Faham, Ayman; Beyermann, Michael; Henklein, Peter; Hanay, Christiane; Wenschuh, Holger; Bienert, Michael

    2003-04-01

    [reaction: see text] Isolated Fmoc amino acid fluorides have previously been shown to be among the most efficient reagents for peptide bond formation. Now, it has been found that anionic, polyhydrogen fluoride additives are capable of diverting many of the classical peptide coupling processes to acid fluoride couplings. Examples include the use of N-HBTU or N-HATU and the carbodiimide technique. As HF-containing species, these additives provide a more suitable medium for the coupling of systems that are sensitive to loss of configuration at the reactive carboxyl function.

  4. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  5. Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite.

    PubMed

    Joshi, Kaushik L; Psofogiannakis, George; van Duin, Adri C T; Raman, Sumathy

    2014-09-14

    Using reactive molecular dynamics (RMD), we present an atomistic insight into the interaction between water molecules and acidic centers of H-ZSM-5 zeolite. The reactive force field method, ReaxFF, was used to evaluate the adsorption and diffusion of water as well as to study the protonation of water molecules inside zeolite channels. The existing Si/Al/O/H parameters were refitted against DFT calculations to improve the ReaxFF description of interaction between water molecules and the acidic sites of zeolites. The diffusion coefficient of water in the zeolite obtained from refitted parameters is in excellent agreement with experimental results. The molecular dynamics (MD) simulations indicate that protonation of water molecules and acidity of the zeolite catalyst depend on water loadings and temperature and the observed trends compare favorably with existing experimental and theoretical studies. At higher water loadings, protonation of water molecules is more frequent leading to formation and growth of protonated water clusters inside zeolite channels. From the analysis of various reaction channels that were observed during the simulations, we found that such water clusters have relatively short life due to frequent interchange of protons and water molecules among the water clusters. Such proton hopping events play a key role in moving the protons between different acidic centers of zeolite. These simulations show the capability of ReaxFF in providing atomistic details of complex chemical interactions between the water phase and solid acid zeolites.

  6. The reaction of hyaluronic acid and its monomers, glucuronic acid and N-acetylglucosamine, with reactive oxygen species.

    PubMed

    Jahn, M; Baynes, J W; Spiteller, G

    1999-10-15

    Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.

  7. Degradation State, Sources, and Reactivity of Dissolved Organic Matter from an Amino Acid Time Series in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R. G.; Bergamaschi, B. A.; Hernes, P.

    2015-12-01

    A detailed time series of dissolved amino acids was obtained in an agricultural watershed in the northern Central Valley, California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). Total hydrolysable amino acid (THAA) concentrations ranged from 0.55 to 9.96 μM (mean 3.76 ± 1.80 μM) and not only peaked with discharge during winter storms, but also remained elevated throughout the irrigation season when discharge was low. Summer irrigation was a critical hydrologic regime for DOM cycling, since it mobilized DOM similar in concentration and reactivity to DOM released during winter storms for an extended period of time, with the largest amino acid contributions to the dissolved organic carbon (DOC) and the dissolved organic nitrogen (DON) pools (3.4 ‒ 3.7 % DOC-AA, 17.4 ‒ 22.5 % DON-AA), the largest proportion of basic amino acids (B/(B+A) = 0.19 ‒ 0.22), and the largest degradation index values (mean 1.37 ± 0.96). The mole percent of non-protein amino acids, commonly considered as an indicator of microbial degradation, decreased with DOM processing and was highest during summer (mean 4.1 ± 1.1%). A lack of correlation between THAA concentrations and UV-Vis absorbance and fluorescence proxies (including "protein-like" fluorophores B and T) indicated that optical properties may be limited in representing amino acid dynamics in this system. A new parameter for DOM processing derived from trends in individual amino acids demonstrated strong potential for inferring the extent of DOM degradation in freshwater systems. The biogeochemical relevance of irrigation practices is heightened by timing, since the additional export of reactive DOM coincides with enhanced downstream DOM processing in the Sacramento-San Joaquin River Delta, a critical habitat for endangered species serving as water source for 25 million Californians.

  8. Historical aspects and applications of barbituric acid derivatives. A review.

    PubMed

    Guillén Sans, R; Guzmán Chozas, M

    1988-12-01

    This review considers the pharmacological and other applications of barbituric and 2-thiobarbituric acid derivatives. A chronological description about the discovery, structural studies and first clinical assays are given. Therapeutic expectations as anticonvulsant, antimicrobial, spasmolytic, antiinflammatory, antitumoral and some other effects of 5,5-disubstituted barbituric acids and alkylidene- or arylidenebarbituric acids are overviewed. A considerable amount of these types of compounds have been proposed as industrial dyes and pigments, photosensitizers and thermosensitive materials. PMID:3073393

  9. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    SciTech Connect

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET

  10. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    DOE PAGES

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentialsmore » of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less

  11. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  12. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  13. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo.

    PubMed

    Chen, Joy; Peterson, Kenneth R; Iancu-Rubin, Camelia; Bieker, James J

    2010-09-28

    Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.

  14. Heterogeneous Chemistry of Lipopolysaccharides with Gas-Phase Nitric Acid: Reactive Sites and Reaction Pathways.

    PubMed

    Trueblood, Jonathan V; Estillore, Armando D; Lee, Christopher; Dowling, Jacqueline A; Prather, Kimberly A; Grassian, Vicki H

    2016-08-18

    Recent studies have shown that sea spray aerosol (SSA) has a size-dependent, complex composition consisting of biomolecules and biologically derived organic compounds in addition to salts. This additional chemical complexity most likely influences the heterogeneous reactivity of SSA, as these other components will have different reactive sites and reaction pathways. In this study, we focus on the reactivity of a class of particles derived from some of the biological components of sea spray aerosol including lipopolysaccharides (LPS) that undergo heterogeneous chemistry within the reactive sites of the biological molecule. Examples of these reactions and the relevant reactive sites are proposed as follows: R-COONa(s) + HNO3(g) → NaNO3 + R-COOH and R-HPO4Na(s) + HNO3(g) → NaNO3 + R-H2PO4. These reactions may be a heterogeneous pathway not only for sea spray aerosol but also for a variety of other types of atmospheric aerosol as well.

  15. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes

    SciTech Connect

    Ashani, Y.; Radic, Z.; Tsigelny, I.; Vellom, D.C.; Pickering, N.A.

    1995-03-17

    Single and multiple site mutants of recombinant mouse acetyicholinesterase (rMoAChE) were inhibited with racemic 7-(methylethoxyphosphinyloxy)- 1-methylquinolinium iodide (MEPQ) and the resulting mixture of two enantiomers, CH3PR,S(O) (OC2H5)-AChE(EMPR,S AChE), were subjected to reactivation with 2-(hydrox- yiminomethyl) -1 -methylpyridinium methanesulfonate (P2S) and 1- (2-hydroxyiminomethyl- 1` -pyridinium)-3- (4`-carbamoyl-1- pyridinium)-2-oxapropane dichloride (HI-6). Kinetic analysis of the reactivation profiles revealed biphasic behavior with an approximate 1:1 ratio of two presumed reactivatable enantiomeric components. Equilibrium dissociation and kinetic rate constants for reactivation of site-specific mutant enzymes were compared with those obtained for wild-type rMoAChE, tissue-derived Torpedo AChE and human plasma butyrylcholinesterase.

  16. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils

    PubMed Central

    2012-01-01

    Background Several low-molecular-weight phenolic acids are present in the blood of septic patients at high levels. The microbial origin of the most of phenolic acids in the human body was shown previously, but pathophysiological role of the phenolic acids is not clear. Sepsis is associated with the excessive production of reactive oxygen species (ROS) in both the circulation and the affected organs. In this work the influence of phenolic acids on ROS production in mitochondria and neutrophils was investigated. Methods ROS production in mitochondria and neutrophils was determined by MCLA- and luminol-dependent chemiluminescence. The rate of oxygen consumption by mitochondria was determined polarographically. The difference of electric potentials on the inner mitochondrial membrane was registered using a TPP+-selective electrode. The formation of phenolic metabolites in monocultures by the members of the main groups of the anaerobic human microflora and aerobic pathogenic bacteria was investigated by the method of gas chromatography–mass spectrometry. Results All phenolic acids had impact on mitochondria and neutrophils, the main producers of ROS in tissues and circulation. Phenolic acids (benzoic and cinnamic acids) producing the pro-oxidant effect on mitochondria inhibited ROS formation in neutrophils. Their effect on mitochondria was abolished by dithiothreitol (DTT). Phenyllactate and p-hydroxyphenyllactate decreased ROS production in both mitochondria and neutrophils. Bifidobacteria and lactobacilli produced in vitro considerable amounts of phenyllactic and p-hydroxyphenyllactic acids, Clostridia s. produced great quantities of phenylpropionic and p-hydroxyphenylpropionic acids, p-hydroxyphenylacetic acid was produced by Pseudomonas aeruginosa and Acinetobacter baumanii; and benzoic acid, by Serratia marcescens. Conclusions The most potent activators of ROS production in mitochondria are phenolic acids whose effect is mediated via the interaction with thiol

  17. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  18. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  19. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  20. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  1. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction. PMID:26595342

  2. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  3. Modulatory effects of alpha-linolenic acid on generation of reactive oxygen species in elaidic acid enriched peritoneal macrophages in rats.

    PubMed

    Rao, Y Poorna Chandra; Lokesh, B R

    2014-09-01

    Fatty acids are known to influence the ability of macrophages to generate reactive oxygen species (ROS). However the effect of elaidic acid (EA, 18:1 trans fatty acid) on ROS generation is not well studied. Rat peritoneal macrophages were enriched with elaidic acid by incubating the cells with 80 1M EA. The macrophages containing EA generated higher amounts of superoxide anion (O2*-), hydrogen peroxide (H2O2) and nitric oxide (NO) by 54, 123 and 237%, respectively as compared to control cells which did not contain EA. To study the competition of other C18 fatty acids with EA macrophages were incubated with EA along with stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (ALA, 18:3). ALA significantly reduced the incorporation of EA into macrophage lipids. This also significantly reduced the generation of O2*-, H2O2, NO by macrophages. Studies were also conducted by feeding rats with diet containing partially hydrogenated vegetable fat (PHVF) as a source for EA and linseed oil (LSO) as a source for ALA. The rats were fed AIN-93 diet containing PHVF with 17% EA and incremental amounts of linseed oil for 10 weeks. The peritoneal macrophages from rats fed partially hydrogenated vegetable fat generated higher levels of O2*-, H2O2, NO by 46, 161 and 76% respectively, when compared to rats fed control diets containing ground nut oil. Macrophages from rats fed PHVF with incremental amounts of LSO produced significantly lower levels ROS in a dose dependent manner. Thus ALA reduces the higher levels of ROS generated by macrophages containing EA.

  4. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.

    PubMed

    Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M

    2001-11-01

    Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.

  5. Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of reactivity using local ionization potential.

    PubMed

    Shoulder, J M; Alderman, N S; Breneman, C M; Nyman, M C

    2013-08-01

    Property-Encoded Surface Translator (PEST) descriptors were found to be correlated with the degradation rates of polycyclic aromatic hydrocarbons (PAHs) by the peroxy-acid process. Reaction rate constants (k) in hr(-1) for nine PAHs (acenaphthene, anthracene, benzo[a]pyrene, benzo[k]fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were determined by a peroxy-acid treatment method that utilized acetic acid, hydrogen peroxide, and a sulphuric acid catalyst to degrade the polyaromatic structures. Molecular properties of the selected nine PAHs were derived from structures optimized at B3LYP/6-31G(d) and HF/6-31G(d) levels of theory. Properties of adiabatic and vertical ionization potential (IP), highest occupied molecular orbitals (HOMO), HOMO/lowest unoccupied molecular orbital (LUMO) gap energies and HOMO/singly occupied molecular orbital (SOMO) gap energies were not correlated with rates of peroxy-acid reaction. PEST descriptors were calculated from B3LYP/6-31G(d) optimized structures and found to have significant levels of correlation with k. PIP Min described the minimum local IP on the surface of the molecule and was found to be related to k. PEST technology appears to be an accurate method in predicting reactivity and could prove to be a valuable asset in building treatment models and in remediation design for PAHs and other organic contaminants in the environment. PMID:23734862

  6. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid.

    PubMed

    Chen, Xi; Tan, Yue; Berionni, Guillaume; Ofial, Armin R; Mayr, Herbert

    2014-08-25

    The kinetics of the reactions of carbocations with carbanions 1 derived from 5-benzyl-substituted Meldrum's acids 1-H (Meldrum's acid = 2,2-dimethyl-1,3-dioxane-4,6-dione) were investigated by UV/Vis spectroscopic methods. Benzhydryl cations Ar2CH(+) added exclusively to C-5 of the Meldrum's acid moiety. As the second-order rate constants (kC) of these reactions in DMSO followed the linear free-energy relationship lg k = sN (N+E), the nucleophile-specific reactivity parameters N and sN for the carbanions 1 could be determined. In contrast, trityl cations Ar3C(+) reacted differently. While tritylium ions of low electrophilicity (E<-2) reacted with 1 through rate-determining β-hydride abstraction, more Lewis acidic tritylium ions initially reacted at the carbonyl oxygen of 1 to form trityl enolates, which subsequently reionized and eventually yielded triarylmethanes and 5-benzylidene Meldrum's acids by hydride transfer. PMID:25099696

  7. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent.

    PubMed

    Zhou, Xiaoyuan; Rauchfuss, Thomas B

    2013-02-01

    We report the one-pot alkylation of mesitylene with carbohydrate-derived 5-(hydroxymethyl)furfural (HMF) as a step toward diesel-range liquids. Using FeCl(3) as a catalyst, HMF is shown to alkylate toluene, xylene, and mesitylene in high yields in CH(2)Cl(2) and MeNO(2) solvents. Efforts to extend this reaction to greener or safer solvents showed that most ether-based solvents are unsatisfactory. Acid catalysts (e.g, p-TsOH) also proved to be ineffective. Using formic acid as a reactive solvent, mesitylene could be alkylated to give mesitylmethylfurfural (MMF) starting from fructose with yields up to approximately 70 %. The reaction of fructose with formic acid in the absence of mesitylene gave rise to low yields of the formate ester of HMF, which indicates the stabilizing effect of replacing the hydroxyl substituent with mesityl. The arene also serves as a second phase into which the product is extracted. Even by using formic acid, the mesitylation of less expensive precursors such as glucose and cellulose proceeded only in modest yields (ca. 20 %). These simpler substrates were found to undergo mesitylation by using hydrogen chloride/formic acid via the intermediate chloromethylfurfural. PMID:23281330

  8. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent.

    PubMed

    Zhou, Xiaoyuan; Rauchfuss, Thomas B

    2013-02-01

    We report the one-pot alkylation of mesitylene with carbohydrate-derived 5-(hydroxymethyl)furfural (HMF) as a step toward diesel-range liquids. Using FeCl(3) as a catalyst, HMF is shown to alkylate toluene, xylene, and mesitylene in high yields in CH(2)Cl(2) and MeNO(2) solvents. Efforts to extend this reaction to greener or safer solvents showed that most ether-based solvents are unsatisfactory. Acid catalysts (e.g, p-TsOH) also proved to be ineffective. Using formic acid as a reactive solvent, mesitylene could be alkylated to give mesitylmethylfurfural (MMF) starting from fructose with yields up to approximately 70 %. The reaction of fructose with formic acid in the absence of mesitylene gave rise to low yields of the formate ester of HMF, which indicates the stabilizing effect of replacing the hydroxyl substituent with mesityl. The arene also serves as a second phase into which the product is extracted. Even by using formic acid, the mesitylation of less expensive precursors such as glucose and cellulose proceeded only in modest yields (ca. 20 %). These simpler substrates were found to undergo mesitylation by using hydrogen chloride/formic acid via the intermediate chloromethylfurfural.

  9. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.

  10. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO. PMID:27376352

  11. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system.

    PubMed

    Yang, Wandian; Li, Pingli; Bo, Dechen; Chang, Heying; Wang, Xiaowei; Zhu, Tao

    2013-04-01

    Furfural is one of the most promising platform chemicals derived from biomass. In this study, response surface methodology (RSM) was utilized to determine four important parameters including reaction temperature (170-210°C), formic acid concentration (5-25 g/L), o-nitrotoluene volume percentage (20-80 vt.%), and residence time (40-200 min). The maximum furfural yield of 74% and selectivity of 86% were achieved at 190°C for 20 g/L formic acid concentration and 75 vt.% o-nitrotoluene by 75 min. The high boiling solvent, o-nitrotoluene, was recommended as extraction solvent in a reactive extraction system to obtain high furfural yield and reduce furfural-solvent separation costs. Although the addition of halides to the xylose solutions enhanced the furfural yield and selectivity, the concentration of halides was not an important factor on the furfural yield and selectivity.

  12. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. PMID:26946251

  13. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids.

    PubMed

    Ahmad, Farrukh; Hughes, Joseph B

    2002-10-15

    Sequential anaerobic/aerobic treatment of 2,4,6-trinitrotoluene (TNT) generally results in the incorporation of residues into biomass and natural organic matter fractions of a system. To better understand the potential contribution of hydroxylamine and nitroso moieties in these reactions, studies were conducted using model systems taking advantage of the biocatalytic-activity of Clostridium acetobutylicum that does not produce aminated TNT derivatives. To evaluate binding to biomass only, systems containing cell-free extracts of C. acetobutylicum and molecular hydrogen as a reductant were employed. At the end of treatment, mass balance studies showed that 10% of the total 14C was associated with an insoluble protein-containing precipitate that could not be extracted with organic solvents. Model reactions were conducted between a mixture of 2,4-dihydroxylamino-6-nitrotoluene (DHA6NT) and 4-hydroxylamino-2,6-dinitrotoluene (4HADNT) and 1-thioglycerol to test the involvement of the nitroso-thiol reaction in binding to biomass. It was demonstrated that DHA6NT formed a new and relatively polar product with 1-thioglycerol only in the presence of oxygen. The oxygen requirement confirmed that the nitroso functionality was responsible for the binding reaction. The reactivity of arylhydroxylamino and nitrosoarene functionalities toward International Humic Substance Society (IHSS) peat humic acid was evaluated under anaerobic and aerobic conditions, respectively. 4HADNT showed no appreciable reactivity toward peat humic acid. Conversely, the nitrosoarene compound, nitrosobenzene, showed rapid reactivity with peat humic acid (50% removal in 48 h). When tested with two other humic acids (selected on the basis of their protein content), it became apparent that the proteinaceous fraction was responsible at least in part for the nitrosoarene's removal from solution. Furthermore, the pretreatment of the humic acids with a selective thiol derivatizing agent had a considerable effect

  14. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid.

    PubMed

    Postula, Marek; Janicki, Piotr K; Eyileten, Ceren; Rosiak, Marek; Kaplon-Cieslicka, Agnieszka; Sugino, Shigekazu; Wilimski, Radosław; Kosior, Dariusz A; Opolski, Grzegorz; Filipiak, Krzysztof J; Mirowska-Guzel, Dagmara

    2016-06-01

    The objective of this study was to investigate whether rare missense genetic variants in several genes related to platelet functions and acetylsalicylic acid (ASA) response are associated with the platelet reactivity in patients with diabetes type 2 (T2D) on ASA therapy. Fifty eight exons and corresponding introns of eight selected genes, including PTGS1, PTGS2, TXBAS1, PTGIS, ADRA2A, ADRA2B, TXBA2R, and P2RY1 were re-sequenced in 230 DNA samples from T2D patients by using a pooled PCR amplification and next-generation sequencing by Illumina HiSeq2000. The observed non-synonymous variants were confirmed by individual genotyping of 384 DNA samples comprising of the individuals from the original discovery pools and additional verification cohort of 154 ASA-treated T2DM patients. The association between investigated phenotypes (ASA induced changes in platelets reactivity by PFA-100, VerifyNow and serum thromboxane B2 level [sTxB2]), and accumulation of rare missense variants (genetic burden) in investigated genes was tested using statistical collapsing tests. We identified a total of 35 exonic variants, including 3 common missense variants, 15 rare missense variants, and 17 synonymous variants in 8 investigated genes. The rare missense variants exhibited statistically significant difference in the accumulation pattern between a group of patients with increased and normal platelet reactivity based on PFA-100 assay. Our study suggests that genetic burden of the rare functional variants in eight genes may contribute to differences in the platelet reactivity measured with the PFA-100 assay in the T2DM patients treated with ASA. PMID:26599574

  15. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  16. Human cell toxicogenomic analysis linking reactive oxygen species to the toxicity of monohaloacetic acid drinking water disinfection byproducts.

    PubMed

    Pals, Justin; Attene-Ramos, Matias S; Xia, Menghang; Wagner, Elizabeth D; Plewa, Michael J

    2013-01-01

    Chronic exposure to drinking water disinfection byproducts has been linked to adverse health risks. The monohaloacetic acids (monoHAAs) are generated as byproducts during the disinfection of drinking water and are cytotoxic, genotoxic, mutagenic, and teratogenic. Iodoacetic acid toxicity was mitigated by antioxidants, suggesting the involvement of oxidative stress. Other monoHAAs may share a similar mode of action. Each monoHAA generated a significant concentration-response increase in the expression of a β-lactamase reporter under the control of the antioxidant response element (ARE). The monoHAAs generated oxidative stress with a rank order of iodoacetic acid (IAA) > bromoacetic acid (BAA) ≫ chloroacetic acid (CAA); this rank order was observed with other toxicological end points. Toxicogenomic analysis was conducted with a nontransformed human intestinal epithelial cell line (FHs 74 Int). Exposure to the monoHAAs altered the transcription levels of multiple oxidative stress responsive genes, indicating that each exposure generated oxidative stress. The transcriptome profiles showed an increase in thioredoxin reductase 1 (TXNRD1) and sulfiredoxin (SRXN1), suggesting peroxiredoxin proteins had been oxidized during monoHAA exposures. Three possible sources of reactive oxygen species were identified, the hypohalous acid generating peroxidase enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase 5 (NOX5), and PTGS2 (COX-2) mediated arachidonic acid metabolism. Each monoHAA exposure caused an increase in COX-2 mRNA levels. These data provide a functional association between monoHAA exposure and adverse health outcomes such as oxidative stress, inflammation, and cancer.

  17. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products.

  18. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. PMID:24491599

  19. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls. PMID:26471665

  20. Influence of stearic acid coating of the NaCl surface on the reactivity with NO2 under humidity.

    PubMed

    Sobanska, S; Barbillat, J; Moreau, M; Nuns, N; De Waele, I; Petitprez, D; Tobon, Y; Brémard, C

    2015-04-28

    In the atmosphere, sea salt aerosols, containing mainly NaCl, can accumulate fatty acids and undergo heterogeneous chemistry with atmospheric nitrogen oxides. The effect of stearic acid (SA) coating on the reactivity of the NaCl(100) surface with NO2 under humidity was studied by atomic force microscopy (AFM), Raman mapping and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to highlight processes occurring on NaCl surfaces. The vapor-deposition of SA on the NaCl surface generates heterogeneous coating with discontinuous monolayer islands. The SA molecules with all-trans conformation stick to the NaCl surface through -CO2H groups and are organized in parallel between them and nearly perpendicularly to the surface. The SA coating does not prevent the NaNO3 particle formation when the sample is exposed to NO2 under low humidity conditions. The initial abilities of the NaCl surface coated with SA to pick up NO2 from the gas phase are correlated with the fraction of bare NaCl area evidencing the spatially heterogeneous reactivity of the surface. The role of H2O in the NO2 uptake and the catalytic conversion of NaCl to NaNO3 is shown. Under humidity (RH = 50%), the H2O uptake by NaNO3 particles on the coated-NaCl surface is significantly more important than that adsorbed under analogous conditions without the presence of NaNO3 particles. This unusual water absorption initiates transitions (i) from solid NaNO3 particles to NaNO3 aqueous solution and (ii) from the SA monolayer with well-ordered all trans alkyl chains to the SA gel with completely disordered conformation. This mixed SA/NaNO3 layer on the particle surface may have significant consequences on the hygroscopic properties and reactivity of the sea salt aerosols in the atmosphere.

  1. A novel method of utilizing permeable reactive kiddle (PRK) for the remediation of acid mine drainage.

    PubMed

    Lee, Woo-Chun; Lee, Sang-Woo; Yun, Seong-Taek; Lee, Pyeong-Koo; Hwang, Yu Sik; Kim, Soon-Oh

    2016-01-15

    Numerous technologies have been developed and applied to remediate AMD, but each has specific drawbacks. To overcome the limitations of existing methods and improve their effectiveness, we propose a novel method utilizing permeable reactive kiddle (PRK). This manuscript explores the performance of the PRK method. In line with the concept of green technology, the PRK method recycles industrial waste, such as steel slag and waste cast iron. Our results demonstrate that the PRK method can be applied to remediate AMD under optimal operational conditions. Especially, this method allows for simple installation and cheap expenditure, compared with established technologies. PMID:26378366

  2. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves. PMID:25753845

  3. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  4. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  5. Geochemistry of a permeable reactive barrier for metals and acid mine drainage

    SciTech Connect

    Benner, S.G.; Blowes, D.W.; Herbert, R.B. Jr.; Ptacek, C.J.; Gould, W.D.

    1999-08-15

    A permeable reactive barrier, designed to remove metals and generate alkalinity by promoting sulfate reduction and metal sulfide precipitation, was installed in August 1995 into an aquifer containing effluent from mine tailings. Passage of groundwater through the barrier results in striking improvement in water quality. Dramatic changes in concentrations of SO{sub 4}, Fe, trace metals, and alkalinity are observed. Populations of sulfate reducing bacteria are 10,000 times greater, and bacterial activity, as measured by dehydrogenase activity, is 10 times higher within the barrier compared to the up-gradient aquifer. Dissolved sulfide concentrations increase by 0.2--120 mg/L, and the isotope {sup 34}S is enriched relative to {sup 32}S in the dissolved phase SO{sub 4}{sup 2{minus}} within the barrier. Water chemistry, coupled with geochemical speciation modeling, indicates the pore water in the barrier becomes supersaturated with respect to amorphous Fe sulfide. Solid phase analysis of the reactive mixture indicates the accumulation of Fe monosulfide precipitates. Shifts in the saturated states of carbonate, sulfate, and sulfide minerals and most of the observed changes in water chemistry in the barrier and down-gradient aquifer can be attributed, either directly or indirectly, to bacterially mediated sulfate reduction.

  6. Association of high-sensitivity C-reactive protein and uric acid with the metabolic syndrome components.

    PubMed

    Sah, Santosh Kumar; Khatiwada, Saroj; Pandey, Sunil; Kc, Rajendra; Das, Binod Kumar Lal; Baral, Nirmal; Lamsal, Madhab

    2016-01-01

    Metabolic syndrome (MetS) has been found to be associated with inflammatory molecules. This study was conducted among 125 MetS patients at B P Koirala Institute of Health Sciences, Dharan, Nepal to find an association of high-sensitivity C-reactive protein (hs-CRP) and serum uric acid with MetS components. Anthropometric measurements, blood pressure, medical history and blood samples were taken. Estimation of hs-CRP, serum uric acid, blood glucose, triglyceride and high density lipoprotein (HDL) cholesterol was done. hs-CRP had positive correlation with blood glucose (r = 0.2, p = 0.026) and negative with HDL cholesterol (r = -0.361, p < 0.001). Serum uric acid had positive correlation with waist circumference (r = 0.178, p = 0.047). Patients with elevated hs-CRP and uric acid had higher waist circumference (p = 0.03), diastolic BP (p = 0.002) and lower HDL cholesterol (p = 0.004) than others. Elevated hs-CRP and high uric acid were individually associated with higher odds for low HDL cholesterol (7.992; 1.785-35.774, p = 0.002) and hyperglycemia (2.471; 1.111-5.495, p = 0.029) respectively. Combined rise of hs-CRP and uric acid was associated with severity of MetS (p < 0.001) and higher odds for hyperglycemia (8.036; 2.178-29.647, p = 0.001) as compared to individual rise of hs-CRP or uric acid. The present study demonstrates that hs-CRP and serum uric acid are associated with MetS components, and the combined rise of hs-CRP and uric acid is associated with the increase in severity of MetS. PMID:27006878

  7. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    PubMed Central

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2012-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

  8. Effects of nitric acid on carbachol reactivity of the airways in normal and allergic sheep

    SciTech Connect

    Abraham, W.M.; Kim, C.S.; King, M.M.; Oliver, W. Jr.; Yerger, L.

    1982-01-01

    The airway effects of a 4-hr exposure (via a Plexiglas hood) to 1.6 ppm nitric acid vapor were evaluated in seven normal and seven allergic sheep, i.e., animals that have a history of reacting with bronchospasm to inhalation challenge with Ascaris suum antigen. The nitric acid vapor was generated by ultrasonic nebulization of a 2% nitric acid solution. Airway effects were assessed by measuring the change in specific pulmonary flow resistance before and after a standard inhalation challenge with 2.5% carbachol aerosol. Nitric acid exposure did not produce bronchoconstriction in either group. Pre-exposure increases in specific pulmonary flow resistance after carbachol inhalation were 68% (SD+/- 13%) and 82% (SD+/- 35%) for the normal and allergic sheep, respectively. Within 24 hr, the largest post-exposure increases in specific pulmonary flow resistance for the normal and allergic sheep were 108% (SD+/- 51%(P<.06)) and 175% (SD+/- 87% (p<.02)), respectively. We conclude that a short-term exposure to nitric acid vapor at levels below the industrial threshold limit (2 ppm), produces airway hyperreactivity to aerosolized carbachol in allergic sheep.

  9. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  10. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage.

  11. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  12. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  13. Evaluation of serum neopterin, high-sensitivity C-reactive protein and thiobarbituric acid reactive substances in Egyptian patients with acute coronary syndromes

    PubMed Central

    Ragab, M; Hassan, H; Zaytoun, T; Refai, W; Rocks, B; Elsammak, M

    2005-01-01

    The present study evaluated serum neopterin, high-sensitivity C-reactive protein (hs-CRP) and thiobarbituric acid reactive substances (TBARS) in Egyptian patients with acute coronary artery disease. Thirty-six patients with unstable angina aged (mean ± SD) 61.3±9.4 years, 29 patients with myocardial infarction aged 58.2±8.7 years and 24 sex- and age-matched control subjects were included in the study. Neopterin levels were significantly higher in patients with myocardial infarction and those with unstable angina than in the healthy control group (P<0.001). The serum level of neopterin in the control group (median [range]) was 3.25 nmol/L (1.25 nmol/L to 5.4 nmol/L), whereas in patients with unstable angina and those with myocardial infarction, neopterin levels were 10.4 nmol/L (3.5 nmol/L to 15.2 nmol/L) and 12.6 nmol/L (3.25 nmol/L to 17.8 nmol/L), respectively. Levels of hs-CRP and TBARS were also significantly higher in patients with unstable angina and those with myocardial infarction than in the healthy control group (P<0.01). The medians (ranges) of hs-CRP were 4.8 mg/L (2.5 mg/L to 9.9 mg/L), 12.0 mg/L (4.6 mg/L to 31.0 mg/L) and 12.3 mg/L (7.5 mg/L to 32.1 mg/L) in the control group, patients with unstable angina and those with myocardial infarction, respectively. The means ± SD of TBARS in the control group, patients with unstable angina and those with myocardial infarction were 0.64±0.17 μmol/L, 1.17±0.31 μmol/L and 1.17±0.49 μmol/L, respectively. TBARS positively correlated with hs-CRP and neopterin levels. Furthermore, when both patients and controls were classified according to their smoking status, significantly higher levels of neopterin and TBARS were found in the smokers of each subgroup than in the nonsmokers. In conclusion, the present study found a higher level of neopterin, hs-CRP and TBARS in patients with coronary artery disease. Serum neopterin and hs-CRP positively correlated with the level of TBARS. The authors suggest that

  14. 6-Membered pseudocyclic IBX acids: syntheses, X-ray structural characterizations, and oxidation reactivities in common organic solvents.

    PubMed

    Moorthy, Jarugu Narasimha; Senapati, Kalyan; Parida, Keshaba Nanda

    2010-12-17

    We designed and synthesized λ(5)-cyclic periodinanes 1 and 2, which are homologous to IBX (1-hydroxy-1-oxo-1H-1λ(5)-benzo[d][1,2]iodoxol-3-one) by one carbon, to thwart close packing of molecules in the crystal lattice to permit solubility in common organic solvents and to facilitate oxidations with enhanced reactivity. The X-ray crystal structures revealed that both 1 and 2 exist in the solid state as pseudocyclic (PC) acids, i.e., 1PC and 2PC, and that the molecules in the lattice are less weakly associated as compared to those in the parent IBX due to the twisting introduced via the sp(3) benzylic carbon. Both 1PC and 2PC are found to dissolve in palpable amounts in DCM and acetonitrile to allow oxidation of a variety of alcohols and sulfides to carbonyl compounds and sulfoxides in a facile manner. The subtle differences in the sterics due to methyl and ethyl substituents in 1PC and 2PC are found to manifest in contrasting reactivities in that the oxidations of alcohols occur faster with 2PC, while those of sulfides to sulfoxides occur more rapidly with 1PC.

  15. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  16. Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces

    NASA Technical Reports Server (NTRS)

    Chameides, William L.

    1987-01-01

    A formalism is developed to describe the dry deposition of soluble reactive gases to wetted surfaces in terms of the relevant meteorological conditions, the surface roughness, the total amount of liquid water present on the surface, the rate of accumulation of this water, and the species' solubility and reactivity in the surface water. This formulation is then incorporated into a model designed to simulate the generation of acidic dew from the deposition of HNO3, SO2, S(IV) oxidants, H2O2, and O3. Similar to the observations of dew in the continental U.S., the model generates a dewdrop pH of about 4 by the end of the night; the pH can rapidly fall to toxic levels due to rapid evaporation after sunrise. Relatively low deposition velocities are predicted for the SO2 and O3 because of their lower solubilities and hence larger surface resistances than those of the other oxidants. Because the chemical lifetime of the SO2 in the dew is influenced by the atmospheric levels of H2O2, O3, and SO2, the SO2 deposition velocity is a strong function of these species' atmospheric abundances.

  17. Quantum mechanics/molecular mechanics modeling of fatty acid amide hydrolase reactivation distinguishes substrate from irreversible covalent inhibitors.

    PubMed

    Lodola, Alessio; Capoferri, Luigi; Rivara, Silvia; Tarzia, Giorgio; Piomelli, Daniele; Mulholland, Adrian; Mor, Marco

    2013-03-28

    Carbamate and urea derivatives are important classes of fatty acid amide hydrolase (FAAH) inhibitors that carbamoylate the active-site nucleophile Ser241. In the present work, the reactivation mechanism of carbamoylated FAAH is investigated by means of a quantum mechanics/molecular mechanics (QM/MM) approach. The potential energy surfaces for decarbamoylation of FAAH covalent adducts, derived from the O-aryl carbamate URB597 and from the N-piperazinylurea JNJ1661610, were calculated and compared to that for deacylation of FAAH acylated by the substrate oleamide. Calculations show that a carbamic group bound to Ser241 prevents efficient stabilization of transition states of hydrolysis, leading to large increments in the activation barrier. Moreover, the energy barrier for the piperazine carboxylate was significantly lower than that for the cyclohexyl carbamate derived from URB597. This is consistent with experimental data showing slowly reversible FAAH inhibition for the N-piperazinylurea inhibitor and irreversible inhibition for URB597.

  18. [USE OF HYALURONIC ACID ALONE AND COMBINED WITH ARGENTIC SULPHADIAZINE IN REACTIVE PERFORATING COLLAGENOSIS. A CASE REPORT].

    PubMed

    Cano Cerro, Miguel Mauricio; Jiménez Fornés, Eva María; Fabrich Lloret, María José; Gans Cuenca, Ovidio; Redón Martínez, Mara; Sales Molió, Elena

    2016-04-01

    The dermatosis known since reactive perforating collagenosis (RPC) is an injury that is characterized by the transepidermal elimination of the collagen. Two forms of presentation exist: the inherited one and the acquired one. The acquired form appears in the adult age, principally in diabetics with renal chronic insufficiency. The hyaluronic acid is a glycosaminoglycan of high place molecular weight that is synthesized in the system vacuolar of the fibroblasts and other cells, since they are the keratinocytes, with help of the factors of growth and in other cytokines. The argentic sulphadiazine is a hackneyed medicament of antiinfectious action that is in use for anticipating and treating the infections in wounds and burns of degree the II and IIIrd. His action realizes it on bacteria and fungi.

  19. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-01

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression. PMID:25957768

  20. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  1. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  2. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  3. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this. PMID:25889471

  4. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurtén, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-11-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of the reaction of stabilized Criegee intermediates (sCIs) with SO2, atmospheric oxidation processes were thought to be dominated by a few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulfuric acid (H2SO4). The measured total sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) /k(sCI + SO2), was determined at relative humidities of 10 and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene-derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecules cm-3 and nearly independent of the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster

  5. Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurten, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-01-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of stabilized Criegee intermediates (sCI), atmospheric oxidation processes were thought to be dominated by few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulphuric acid (H2SO4). The measured sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for the ozonolysis of α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) / k(sCI + SO2), was determined at relative humidities of 10% and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecule cm-3 and nearly independent on the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster with the

  6. Mechanical properties of a reactive endcapped polyimide based composite from polyamide acid

    SciTech Connect

    Hergenrother, P.M.; Rommel, M.L.

    1996-12-31

    The objective of this study was to characterize a composite unidirectional tape made with unsized Hercules IM7 fibers and a phenylethynyl terminated polyimide in the form of a polyamide acid. A processing study to examine the effect of cure parameters and robustness of the consolidation process was conducted and showed the versatile processing afforded by the phenylethynyl terminated polyimide. The mechanical and physical properties of laminates produced from the optimized composite cure process are presented and compared to a commercially available polyimide.

  7. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  8. Ruthenium-Catalyzed Oxidative Homocoupling of Arylboronic Acids in Water: Ligand Tuned Reactivity and Mechanistic Study.

    PubMed

    Tyagi, Deepika; Binnani, Chinky; Rai, Rohit K; Dwivedi, Ambikesh D; Gupta, Kavita; Li, Pei-Zhou; Zhao, Yanli; Singh, Sanjay K

    2016-06-20

    Molecular catalysts based on water-soluble arene-Ru(II) complexes ([Ru]-1-[Ru]-5) containing aniline (L1), 2-methylaniline (L2), 2,6-dimethylaniline (L3), 4-methylaniline (L4), and 4-chloroaniline (L5) were designed for the homocoupling of arylboronic acids in water. These complexes were fully characterized by (1)H, (13)C NMR, mass spectrometry, and elemental analyses. Structural geometry for two of the representative arene-Ru(II) complexes [Ru]-3 and [Ru]-4 was established by single-crystal X-ray diffraction studies. Our studies showed that the selectivity toward biaryls products is influenced by the position and the electronic behavior of various substituents of aniline ligand coordinated to ruthenium. Extensive investigations using (1)H NMR, (19)F NMR, and mass spectral studies provided insights into the mechanistic pathway of homocoupling of arylboronic acids, where the identification of important organometallic intermediates, such as σ-aryl/di(σ-aryl) coordinated arene-Ru(II) species, suggested that the reaction proceeds through the formation of crucial di(σ-aryl)-Ru intermediates by the interaction of arylboronic acid with Ru-catalyst to yield biaryl products. PMID:27276384

  9. Enhancing the Attenuation of Acid-Mine Drainage at Davis Mine, Rowe, Massachusetts via Installation of a Permeable Reactive Barrier.

    NASA Astrophysics Data System (ADS)

    Gillmor, A. M.; Yuretich, R. F.

    2008-12-01

    Acid Mine Drainage affects thousands of streams in the United States, sustaining the need for low-cost passive treatment options. Davis Mine, a 100 years-abandoned FeS2 mine in Western Massachusetts, is representative of the types of mines best suited for passive treatments; fairly remote, abandoned, and discharging moderately affected water (pH <3, Fe >100mg/L, SO42- >500mg/L) and is a good candidate for a 'starting point' of low-cost, low environmental impact remediation. We here report the shifts in pH, SO42-, and Fe following placement of reactive fill (50% CaMg(CO3)2, 25% cow manure, 25% seaweed compost) in a permeable reactive barrier placed below ground mid-way along the acidic effluent's path. Yearlong monitoring of water from 1 multi-level well (with ports in the shallow groundwater, middle groundwater, and bedrock) placed within the tailings pile over a previous year (2003-2004) showed for the three levels, respectively; pH 3.16, 4.24, and 4.04, Fe average concentrations of 4.5 mg/L, 6.5 mg/L, and 3.2 mg/L, and SO42- average concentrations of 235mg/L, 330mg/L, and 292 mg/L. One year (2007-2008) after placement of remediation mix, the three levels now average respectively; pH 4.16, 4.60, and 4.53, Fe concentrations of 0.7 mg/L, 4.8 mg/L, and 1.4 mg/L, and SO42- concentrations of 217 mg/L, 294 mg/L, and 266 mg/L. The most noticeable improvement in pH is seen in the shallow groundwater, consistent with its proximity to the reactive fill depth. Although complex microbial communities have been characterized at the site, uncertainty remains as to whether they are active in this case, and it is possible that these results may be explained solely by neutralization reactions. Results of this study indicate a good likelihood that this low environmental impact remediation could be effective.

  10. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  11. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    NASA Astrophysics Data System (ADS)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  12. Free radicals from 1-palmitoyl-2-arachidonoylphosphatidylcholine liposomes in Fe2+/ascorbic acid solution.

    PubMed

    Yoshida, T; Otake, H; Aramaki, Y; Hara, T; Tsuchiya, S; Hamada, A; Utsumi, H

    1996-06-01

    The generation of free radicals during the lipid peroxidation of liposomes composed of 1-palmitoyl-2-arachidonoylphosphatidylcholine (PAPC-liposome) in Fe2+/ascorbic acid (AsA) solution was studied by the ESR spin trapping technique. A carbon-centered radical adduct was observed using alpha-(4-pyridyl-1-oxide)-N-tert-butyl-nitorone (4-POBN) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), but no oxygen-centered radicals such as .OH, LO., and LOO. were observed. The lipid peroxidation evaluated as 2-thiobarbituric acid reactive substances was inhibited by the addition of 4-POBN. The intensity of this inhibitory effect was dependent on the time when 4-POBN was added to the mixture of PAPC-liposomes and Fe2+/AsA solution, and no inhibitory effect could be observed after 4 min. The signal intensity of the carbon-centered radical adduct was dependent on the lipid concentration of PAPC-liposomes. These results suggest that the alkyl radicals generated from PAPC-liposome peroxidation induced by Fe2+/AsA were trapped by DMPO or 4-POBN at an earlier stage of lipid peroxidation. PMID:8799472

  13. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2.

  14. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    NASA Astrophysics Data System (ADS)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, As<0.1 mg/L). As the contribution of the acidic stream increased, the concentration of Fe and Al in the solid phase reached a peak at different pHs. Although the optimal pH for As sorption was ~3, the overall maximum removal of As at the confluence, ocurred for pH~4. This is produced because optimal As sorption does not occur necessarily for the highest concentrations of particles being formed. We propose that fluvial confluences could be engineered to enhance the natural attenuation of contaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  15. Reactivity of molybdovanadophosphoric acids: Influence of the presence of vanadium in the primary and secondary structure

    SciTech Connect

    Casarini, D.; Centi, G.; Lena, V.; Tvaruzkova, Z. ); Jiru, P. )

    1993-10-01

    The catalytic behavior in butadiene and n-butane oxidation of molybdovanadophosphoric acids with vanadium localized inside the primary (oxoanion) and/or the secondary structure is reported. The samples are characterized by infrared, [sup 31]P-NMR, [sup 51]V-NMR, and UV-visible diffuse reflectance spectroscopies in order to obtain information on the nature and localization of vanadium in the samples before reaction and the possible changes occurring during the course of the catalytic reaction. In particular, it is shown that vanadium localized initially in the secondary structure can exchange with the molybdenum atoms of the oxoanion during the catalytic reaction. Introduction of vanadium in the molybdophosphoric acid structure enhances the selective formation of maleic anhydride from the butadiene when vanadium is present both inside the oxoanion or localized in the secondary structure (before the catalytic tests), but the maximum in catalytic performance is found for different amounts of vanadium, depending on where the vanadium is localized initially. However, when present in the secondary structure, vanadium also has a negative influence on the activity of the heteropoly acid. On the contrary, in n-butane oxidation, the presence of vanadium enhances the rate of alkane activation due to the different rate-determining step. The presence of V ions also affects the maximum selectivity and yield to maleic anhydride from butane. V ions in the secondary structure are more selective at low conversion, while V ions inside the oxoanion are more selective at higher conversions and thus allow better maximum yields to maleic anhydride. 40 refs., 11 figs., 2 tabs.

  16. Thiobarbituric-acid reactive substances (TBARS) response curves in the presence of 1:1 and 2:1 phyllosilicates

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, J.; Kibanova, D.; Nieto-Camacho, A.; Lemus, J.

    2008-12-01

    Clays catalyze chemical reactions including acid hydrolysis, condensations, oxidative polymerizations, etc. Here the authors propose that properties such as the content and structural distribution of structural Fe in expandable (e.g., hectorite, nontronite) or non-expandable (e.g., kaolinite) clay minerals influence the mechanism(s) and production rate of radical species in suspension, which can alter the chemical composition of biological material. The measurement of Thiobarbituric Acid Reactive Substances (TBARS) has become the method of choice for screening and monitoring lipid peroxidation, a major indicator of oxidative stress. The assay provides important information regarding free radical activity in disease states and has been used for measurement of anti-oxidant activity of several compounds and to determine lipid peroxidation. TBARS analyses for kaolinite, hectorite, and nontronites NAu-1 and NAu-2 showed variations in amounts of lipid peroxidation. The response followed the order kaolinite (0.42 nmol/mg protein), NAu-1 (1.15), hectorite (3.35), and NAu-2 (11.1). As determined by TBARS assays, clay properties including expandability, structural iron content and distribution, were found to influence the production rate. The effect of UV light incidence ("Ü = 540 nm) was found to be of little influence.

  17. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana.

    PubMed

    Chen, Shiguo; Yin, Chunyan; Strasser, Reto Jörg; Govindjee; Yang, Chunlong; Qiang, Sheng

    2012-03-01

    3-Acetyl-5-isopropyltetramic acid (3-AIPTA), a derivate of tetramic acid, is responsible for brown leaf-spot disease in many plants and often kills seedlings of both mono- and dicotyledonous plants. To further elucidate the mode of action of 3-AIPTA, during 3-AIPTA-induced cell necrosis, a series of experiments were performed to assess the role of reactive oxygen species (ROS) in this process. When Arabidopsis thaliana leaves were incubated with 3-AIPTA, photosystem II (PSII) electron transport beyond Q(A) (the primary plastoquinone acceptor of PSII) and the reduction of the end acceptors at the PSI acceptor side were inhibited; this was followed by increase in charge recombination and electron leakage to O(2), resulting in chloroplast-derived oxidative burst. Furthermore, the main antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) lost their activity. Excess ROS molecules directly attacked a variety of cellular components and subsequently caused electrolyte leakage, lipid peroxidation and cell membrane disruption. Finally, this led to cell destruction and leaf tissue necrosis. Thus, 3-AIPTA-triggered leaf necrosis of Arabidopsis was found to be a result of direct oxidative injury from the chloroplast-originated ROS burst initiated by the inhibition of normal photosynthetic electron transport.

  18. Lewis acid-base adducts of group 13 elements: synthesis, structure and reactivity toward benzaldehyde.

    PubMed

    Ganesamoorthy, C; Matthias, M; Bläser, D; Wölper, C; Schulz, S

    2016-07-28

    Lewis acid-base adducts [LGa-M(C6F5)3] (M = B 1, Al 2, Ga 3) were prepared by the reaction of gallanediyl LGa {L = HC[C(Me)N(2,6-i-Pr2C6H3)]2} with the Lewis acids M(C6F5)3 (M = B, Al, Ga). Benzaldehyde reacts with [LGa-M(C6F5)3] (M = B 1, Al 2) at room temperature with the insertion and formation of [LGa(C6F5){CH(Ph)(OB(C6F5)2)}] (4) and the zwitterionic species [LGa(C6F5){CH(Ph)(OAl(C6F5)2)}] (5), respectively, which was found to decompose at 80 °C with the formation of {(C6F5)2Al(OCH2Ph)}2 (6). Any attempts to isolate the insertion complex of [LGa-Ga(C6F5)3] with benzaldehyde failed and only {(C6F5)2Ga(OCH2Ph)}2 (7) was isolated at elevated temperatures. 2-5 and 7 were structurally characterized by heteronuclear NMR spectroscopy and single crystal X-ray diffraction.

  19. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  20. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  1. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  2. Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure.

    PubMed

    Juzeniene, Asta; Grigalavicius, Mantas; Ma, Li Wei; Juraleviciute, Marina

    2016-02-01

    Folic acid (FA) is the synthetic form of folate (vitamin B9), present in supplements and fortified foods. During ultraviolet (UV) radiation FA is degraded to 6-formylpterin (FPT) and pterin-6-carboxylic acid (PCA) which generate reactive oxygen species (ROS) and may be phototoxic. The aim of the present study was to investigate the production of ROS and phototoxicity of FA, FPT and PCA in skin cells during UVA exposure. The production of ROS and phototoxicity of FA, FPT and PCA were studied in the immortal human keratinocytes (HaCaT) and malignant skin cells (A431 and WM115) during UVA exposure. Increased ROS production and the photoinactivation of cells in vitro were observed during UVA exposure in the presence of FA, FPT and PCA. HPLC analysis revealed that 10 μM FA photodegradation was around 2.1 and 5.8-fold faster than that of 5 μM and 1 μM FA. Photodegradation of FA is concentration dependent, and even non-phototoxic doses of FA and its photoproducts, FPT and PCA, generate high levels of ROS in vitro. FA, FPT and PCA are phototoxic in vitro. The photodegradation of topical or unmetabolized FA during UV exposure via sunlight, sunbeds or phototherapy may lead to ROS production, to the cutaneous folate deficiency, skin photocarcinogenesis and other deleterious skin effects. Further studies are needed to confirm whether UV exposure can decrease cutaneous and serum folate levels in humans taking FA supplements or using cosmetic creams with FA.

  3. Glutathione plays a role in regulating the formation of toxic reactive intermediates from diphenylarsinic acid.

    PubMed

    Kinoshita, Kenji; Ochi, Takafumi; Suzuki, Toshihide; Kita, Kayoko; Kaise, Toshikazu

    2006-08-15

    The role of glutathione (GSH) in the cytotoxicity of diphenylarsinic acid [DPAA(V)], which was detected in drinking well water after a poisoning incident in Kamisu, Japan, was investigated in cultured human HepG2 cells. DPA-GS(III), which is the GSH adduct of DPAA, was synthesized and analyzed by HPLC/ESI-MS. DPA-GS(III) was highly toxic to cells and the potency was about 1000 times that of DPAA(V). DPAA(V) was stable in culture medium, while DPA-GS(III) was unstable and changed to protein-bound As (protein-As). By contrast, DPA-GS(III) remained stable with the addition of exogenous GSH, thereby reducing transformation to protein-As. In addition, DPA-GS(III) was transformed to bis(diphenylarsine)oxide [BDPAO(III)], which was observed under serum-free conditions. BDPAO(III) was very unstable and disappeared conversely with an increase in protein-As. In contrast, the presence of GSH suppressed the transformation of BDPAO(III) to protein-As while it enhanced the transformation of BDPAO(III) to DPA-GS(III). Depletion of cell GSH enhanced the cytotoxic effects of DPA-GS(III) and BDPAO(III). Moreover, exogenously-added GSH suppressed the cytotoxic effects of DPA-GS(III) and BDPAO(III). The dynamic behavior of arsenicals in the culture medium and the resultant cytotoxic effects suggested that GSH played a role in regulating the formation of toxic intermediates, such as DPA-GS(III) and BDPAO(III). Moreover, the results suggested that the formation of protein-As in culture medium was compatible with the cytotoxic effects and that GSH was a factor capable of regulating the formation of protein-As from either DPA-GS(III) or BDPAO(III). PMID:16793189

  4. Acid base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Bacteria grow in complex solutions where the adsorption of aqueous species and nucleation of mineral phases on the cell surface may interfere with membrane-dependent homeostatic functions. While previous investigations have provided evidence that bacteria may alter their surface chemical properties in response to environmental stimuli, to our knowledge no effort has been made to evaluate surface compositional changes resulting from non-nutritional chemical stresses within a quantitative framework applicable to surface complexation modeling. We consider here the influence of exposure to silica on cyanobacterial surface chemistry, particularly in light of the propensity for cyanobacteria to become silicified in geothermal environments. Using data modeled from over 50 potentiometric titrations of the unsheathed cyanobacterium Anabaena sp. strain PCC 7120, we find that both abiotic geochemical and biotic biochemical-assimilatory factors have important and different effects on cell surface chemistry. Changes in functional group distribution that resulted from growth by different nitrogen assimilation pathways were greatest in the absence of dissolved silica and less important in its presence. Furthermore, out of the three nitrogen assimilation pathways investigated, in terms of surface functional group distribution, nitrate-reducing cultures were least sensitive, and ammonium-assimilating cultures were most sensitive, to changes in media silica concentration. When functional group distributions were plotted as a function of silica concentration, it appears that, with higher silica concentrations, basic groups (p Ka > 7) increase in concentration relative to acidic groups (p Ka < 7), and the total ligand densities (on a per-weight basis) decreased. The results imply a decrease in both the magnitude and density of surface charge as the net result of growth at high silica concentrations. Thus, Anabaena sp. appears to actively respond to growth in silicifying solutions by

  5. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro.

    PubMed

    Puntel, Robson L; Nogueira, Cristina W; Rocha, João B T

    2005-02-01

    The aim of this study was to investigate the effect of Krebs cycle intermediates on basal and quinolinic acid (QA)- or iron-induced TBARS production in brain membranes. Oxaloacetate, citrate, succinate and malate reduced significantly the basal and QA-induced TBARS production. The potency for basal TBARS inhibition was in the order (IC50 is given in parenthesis as mM) citrate (0.37) > oxaloacetate (1.33) = succinate (1.91) > > malate (12.74). alpha-Ketoglutarate caused an increase in TBARS production without modifying the QA-induced TBARS production. Cyanide (CN-) did not modify the basal or QA-induced TBARS production; however, CN- abolished the antioxidant effects of succinate. QA-induced TBARS production was enhanced by iron ions, and abolished by desferrioxamine (DFO). The intermediates used in this study, except for alpha-ketoglutarate, prevented iron-induced TBARS production. Oxaloacetate, citrate, alpha-ketoglutarate and malate, but no succinate and QA, exhibited significantly iron-chelating properties. Only alpha-ketoglutarate and oxaloacetate protected against hydrogen peroxide-induced deoxyribose degradation, while succinate and malate showed a modest effect against Fe2+/H2O2-induced deoxyribose degradation. Using heat-treated preparations citrate, malate and oxaloacetate protected against basal or QA-induced TBARS production, whereas alpha-ketoglutarate induced TBARS production. Succinate did not offer protection against basal or QA-induced TBARS production. These results suggest that oxaloacetate, malate, succinate, and citrate are effective antioxidants against basal and iron or QA-induced TBARS production, while alpha-ketoglutarate stimulates TBARS production. The mechanism through which Krebs cycle intermediates offer protection against TBARS production is distinct depending on the intermediate used. Thus, under pathological conditions such as ischemia, where citrate concentrations vary it can assume an important role as a modulator of oxidative

  6. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  7. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  8. Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marice environment

    SciTech Connect

    Cowie, G.L.; Hedges, J.I. ); Calvert, S.E. )

    1992-05-01

    A sediment-trap sample, representing an annual average particle flux at 50 m in Saanich Inlet, British Columbia, was analyzed for its elemental, amino acid, neutral sugar, and lignin composition. The results uniformly indicate primarily marine organic matter sources for all samples, although relatively higher terrigenous contributions are evident in the sediments. The [delta][sup 13]C values of trap materials also point to primarily autochthonous particle fluxes. Comparison of annual average water-column fluxes to sediment accumulation rates indicates undersampling of sinking particles due to lateral sediment inputs at depth. The anoxic benthic interface appears to be an important site of diagenesis, and selective removal is observed both at compound-class and molecular levels. Preferential loss of marine organic material is indicated by the calculated [delta][sup 13]C value and biochemical composition of the substrate. Concentrations of all measured organic constituents decreased with depth in the uniformly varved 0-14 cm sediment interval, and suggest in situ degradation. Relative reactivities of the biochemical classes indicate a change in diagenetic substrate from that utilized above and at the benthic interface. With the exception of the amino acids, however, diagenesis is generally less selective in the sediments. Protein, polysaccharide, and lignin contributions to total organic carbon decrease from 37% in the sediment-trap sample to 22% at the bottom of the 0.14 cm sediment interval. These biochemicals represent over 40 and 50-60% of the degraded carbon and nitrogen, respectively, and thus are important nutrients for the benthic and water-column communities.

  9. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  10. Improvement of shelf-life of buffalo meat using lactic acid, clove oil and vitamin C during retail display.

    PubMed

    Naveena, B M; Muthukumar, M; Sen, A R; Babji, Y; Murthy, T R K

    2006-10-01

    Buffalo meat steaks dipped in either (1) distilled water (control), (2) lactic acid (LA), (3) LA+clove oil (clove), or (4) LA+clove+vitamin C (Vit C) were displayed at 4±1°C, illuminated by a standard fluorescent lamp. The pH, 2-thiobarbituric acid reactive substances (TBARS), instrumental colour (CIE L(∗), a(∗), b(∗)), aerobic plate counts (APC), psychrotrophic counts (PPC), coliform counts and sensory colour and odour were determined up to 12th day of display at 3 days interval. Results showed that, all the treatments have significantly (P<0.05) reduced the TBARS values compared to control. Among treatments, use of LA+clove has exhibited significantly (P<0.05) lowest TBARS values throughout display period than others. Buffalo meat steaks treated with either LA+clove or LA+clove+Vit C had significantly (P<0.05) lower APC, PPC and coliform counts than control or LA treated samples. LA+clove+Vit C treated samples maintained significantly (P<0.05) higher a(∗) and b(∗) values during display as well as improvement in sensory colour and odour than others. Treatment with either LA+clove or LA+clove+Vit C extended the display life of buffalo meat steaks at 4±1°C. There appears to be a significant advantage to using LA+clove or LA+clove+Vit C over LA alone.

  11. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications.

    PubMed

    Ji, Yuan; Ghosh, Kaustabh; Li, Bingquan; Sokolov, Jonathan C; Clark, Richard A F; Rafailovich, Miriam H

    2006-10-20

    A facile fabrication of a cross-linked hyaluronic acid (HA) hydrogel nanofibers by a reactive electrospinning method is described. A thiolated HA derivative, 3,3'-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), and poly(ethylene glycol) diacrylate (PEGDA) are selected as the cross-linking system. The cross-linking reaction occurs simultaneously during the electrospinning process using a dual-syringe mixing technique. Poly(ethylene oxide) (PEO) is added into the spinning solution as a viscosity modifier to facilitate the fiber formation and is selectively removed with water after the electrospinning process. The nanofibrous structure of the electrospun HA scaffold is well preserved after hydration with an average fiber diameter of 110 nm. A cell morphology study on fibronectin (FN)-adsorbed HA nanofibrous scaffolds shows that the NIH 3T3 fibroblasts migrate into the scaffold through the nanofibrous network, and demonstrate an elaborate three-dimensional dendritic morphology within the scaffold, which reflects the dimensions of the electrospun HA nanofibers. These results suggest the application of electrospun HA nanofibrous scaffolds as a potential material for wound healing and tissue regeneration. [image: see text] Laser scanning confocal microscopy demonstrates that the NIH3T3 fibroblast develops an extended 3D dendritic morphology within the fibronectin-adsorbed electrospun HA nanofibrous scaffold. PMID:17022092

  12. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  13. Hydrogen Reactivity on Highly-hydroxylated TiO2(110) Surfaces Prepared via Carboxylic Acid Adsorption and Photolysis

    SciTech Connect

    Du, Yingge; Petrik, Nikolay G.; Deskins, N. Aaron; Wang, Zhitao; Henderson, Michael A.; Kimmel, Gregory A.; Lyubinetsky, Igor

    2012-02-27

    Combined scanning tunneling microscopy, temperature-programmed desorption, photo stimulated desorption, and density functional theory studies have probed the formation and reactivity of highly-hydroxylated rutile TiO2(110) surfaces, which were prepared via a novel, photochemical route using trimethyl acetic acid (TMAA) dissociative adsorption and subsequent photolysis at 300 K. Deprotonation of TMAA molecules upon adsorption produces both surface bridging hydroxyls (OHb) and bidentate trimethyl acetate (TMA) species with a saturation coverage of near 0.5 monolayer (ML). Ultra-violet light irradiation selectively removes TMA species, producing a highly-hydroxylated surface with up to ~0.5 ML OHb coverage. At high coverages, the OHb species typically occupy second-nearest neighbor sites along the bridging oxygen row locally forming linear (2×1) structures of different lengths, although the surface is less ordered on a long scale. The annealing of the highly-hydroxylated surface leads to hydroxyl recombination and H2O desorption with ~100% yield, thus ruling out the diffusion of H into the bulk that has been suggested in the literature. In agreement with experimental data, theoretical results show that the recombinative H2O desorption is preferred over both H bulk diffusion and H2 desorption processes.

  14. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-01

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework.

  15. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-01

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. PMID:23169478

  16. Balloon-Borne Measurements of Total Reactive Nitrogen, Nitric Acid, and Aerosol in the Cold Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Matthews, W. A.; Fahey, D. W.; Murcray, D. G.; Hofmann, D. J.; Johnston, P. V.; Iwasaka, Y.; Iwata, A.; Sheldon, W. R.

    1990-01-01

    Total reactive nitrogen (NO(Y)) between 15 and 29 km was measured for the first time on board a balloon within the Arctic cold vortex. Observations of HNO3, aerosol, and ozone were made by instruments on the same balloon gondola which was launched from Esrange, Sweden (68 deg N, 20 deg E) on January 23, 1989. The NO(y) mixing ratio was observed to increase very rapidly from 6 ppbv at 18 km altitude to a maximum of 21 ppbv at 21 km, forming a sharp layer with a thickness of about 2 km. A minimum in the NO(y) mixing ratio of 5 ppbv was found at 27 km. The measured HNO3 profile shows broad similarities to that of NO(y). This observation, together with the observed very low column amount of NO2, shows that NO(x) had been almost totally converted to HNO3, and that NO(y) was composed mainly of HNO3. The enhanced aerosol concentration between 19 and 22 km suggests that the maximum abundance of HNO3 trapped in the form of nitric acid trihydrate (NAT) was about 6 ppbv at 21 km. The sampled air parcels were highly supersaturated with respect to NAT. Although extensive denitrification throughout the stratosphere did not prevail, an indication of denitrification was found at altitudes of 27 and 22 km, and between 18 and 15 km.

  17. Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants[W][OPEN

    PubMed Central

    Suzuki, Nobuhiro; Miller, Gad; Salazar, Carolina; Mondal, Hossain A.; Shulaev, Elena; Cortes, Diego F.; Shuman, Joel L.; Luo, Xiaozhong; Shah, Jyoti; Schlauch, Karen; Shulaev, Vladimir; Mittler, Ron

    2013-01-01

    Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal–spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned. PMID:24038652

  18. Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis

    PubMed Central

    Saucedo-García, Mariana; Gavilanes-Ruíz, Marina; Arce-Cervantes, Oscar

    2015-01-01

    Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses. PMID:25763001

  19. Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes.

    PubMed

    Manacorda, Carlos Augusto; Mansilla, Carmen; Debat, Humberto Julio; Zavallo, Diego; Sánchez, Flora; Ponz, Fernando; Asurmendi, Sebastián

    2013-12-01

    Losses produced by virus diseases depend mostly on symptom severity. Turnip mosaic virus (TuMV) is one of the most damaging and widespread potyvirus infecting members of the family Brassicaceae, including Arabidopsis thaliana. We used JPN1 and UK1 TuMV strains to characterize viral infections regarding symptom development, senescence progression, antioxidant response, reactive oxygen species (ROS) accumulation, and transcriptional profiling. Both isolates, despite accumulating similar viral titers, induced different symptomatology and strong differences in oxidative status. Early differences in several senescence-associated genes linked to the ORE1 and ORS1 regulatory networks as well as persistent divergence in key ROS production and scavenging systems of the plant were detected. However, at a later stage, both strains induced nutrient competition, indicating that senescence rates are influenced by different mechanisms upon viral infections. Analyses of ORE1 and ORS1 levels in infected Brassica juncea plants showed a similar pattern, suggesting a conserved differential response to both strains in Brassicaceae spp. Transcriptional analysis of the ORE1 and ORS1 regulons showed similarities between salicylic acid (SA) response and the early induction triggered by UK1, the most severe strain. By means of SA-defective NahG transgenic plants, we found that differential senescence progression and ROS accumulation between strains rely on an intact SA pathway. PMID:23945002

  20. Potato chip intake increases ascorbic acid levels and decreases reactive oxygen species in SMP30/GNL knockout mouse tissues.

    PubMed

    Kondo, Yoshitaka; Sakuma, Rui; Ichisawa, Megumi; Ishihara, Katsuyuki; Kubo, Misako; Handa, Setsuko; Mugita, Hiroyuki; Maruyama, Naoki; Koga, Hidenori; Ishigami, Akihito

    2014-09-24

    Potato chips (PC) contain abundant amounts of the free radical scavenger ascorbic acid (AA) due to the rapid dehydration of potato tubers (Solanum tuberosum) that occurs during frying. To evaluate the antioxidant activity of PC, this study examined reactive oxygen species (ROS) levels in tissues from SMP30/GNL knockout (KO) mice that cannot synthesize AA and determined AA and ROS levels after the animals were fed 20 and 10% PC diets for 7 weeks. Compared with AA-sufficient mice, AA-depleted SMP30/GNL KO mice showed high ROS levels in tissues. SMP30/GNL KO mice fed a PC diet showed high AA and low ROS levels in the brain, heart, lung, testis, soleus muscle, plantaris muscle, stomach, small intestine, large intestine, eyeball, and epididymal fat compared with AA-depleted mice. The data suggest that PC intake increases AA levels and enhances ROS scavenging activity in tissues of SMP30/GNL KO mice, which are a promising model for evaluating the antioxidant activity of foods. PMID:25180784

  1. In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain).

    PubMed

    Gibert, Oriol; Rötting, Tobias; Cortina, José Luis; de Pablo, Joan; Ayora, Carlos; Carrera, Jesús; Bolzicco, José

    2011-07-15

    Following on the accident occurred in Aznalcóllar in 1998, whereby a huge amount of acid mine drainage and heavy metal-bearing pyritic sludge was released to the Agrio river valley with the subsequent contamination of groundwater, a subsurface permeable reactive barrier (PRB) was installed to mitigate the long-term impacts by the spillage. The PRB material consisted of a mixture of limestone and vegetal compost. A particular characteristic of the Agrio aquifer is its high water flow velocity (0.5-1 m/d), which may pose difficulties in its remediation using PRB technology. The present study reports the 36-month performance of the PRB. Vertical differences in water velocity were observed within the PRB, with the deeper part being slower and more effective in neutralizing pH and removing heavy metals (Zn, Al, Cu). On the other hand, partial sulfate removal appeard to be restricted to the bottom of the PRB, but with no apparent influence on downgradient water quality. The results are finally compared with the other four reported existing PRBs for AMD worldwide.

  2. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species.

    PubMed

    Corona, Teresa; Pfaff, Florian F; Acuña-Parés, Ferran; Draksharapu, Apparao; Whiteoak, Christopher J; Martin-Diaconescu, Vlad; Lloret-Fillol, Julio; Browne, Wesley R; Ray, Kallol; Company, Anna

    2015-10-12

    Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound.

  3. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species.

    PubMed

    Corona, Teresa; Pfaff, Florian F; Acuña-Parés, Ferran; Draksharapu, Apparao; Whiteoak, Christopher J; Martin-Diaconescu, Vlad; Lloret-Fillol, Julio; Browne, Wesley R; Ray, Kallol; Company, Anna

    2015-10-12

    Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound. PMID:26311073

  4. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    PubMed

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 μM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox

  5. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    PubMed

    Cordeiro, Flávio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO₃⁻, high dose (5.0 mM N-NO₃⁻) and low dose (5.0 mM N-NO₃⁻). Treatments with HA and NO were positively increased, regardless of the N-NO₃⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO₃⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO₃⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.

  6. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness.

    PubMed

    Hassan, Noura Ahmed; El-Bassossy, Hany M; Mahmoud, Mona Fouad; Fahmy, Ahmed

    2014-04-25

    Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations was investigated. Insulin deficiency or resistance was induced by STZ or fructose respectively. Atherosclerosis developed when rats were left for 8 or 12 weeks subsequent STZ or fructose administration respectively. CAPE (30 mg kg(-1) day(-1)) was given in the last 6 weeks. Afterwards, blood pressure (BP) was recorded. Then, isolated aorta reactivity to KCl and phenylephrine (PE) was studied. Blood glucose level, serum levels of insulin, tumor necrosis factor α (TNF-α) as well as advanced glycation end products (AGEs) were determined. Moreover aortic haem oxygenase-1 (HO-1) protein expression and collagen deposition were also assessed. Insulin deficiency and resistance were accompanied with elevated BP, exaggerated response to KCl and PE, elevated serum TNF-α and AGEs levels. Both models showed marked increase in collagen deposition. However, CAPE alleviated systolic and diastolic BP elevations and the exaggerated vascular contractility to both PE and KCl in both models without affecting AGEs level. CAPE inhibited TNF-α serum level elevation, induced aortic HO-1 expression and reduced collagen deposition. CAPE prevented development of hyperinsulinemia in insulin resistance model without any impact on the developed hyperglycemia in insulin deficiency model. In conclusion, CAPE offsets the atherosclerotic changes associated with diabetes via amelioration of the significant functional and structural derangements in the vessels in addition to its antihyperinsulinemic effect in insulin resistant model.

  7. Dissolution of beidellite in acidic solutions: Ion exchange reactions and effect of crystal chemistry on smectite reactivity

    NASA Astrophysics Data System (ADS)

    Robin, Valentin; Tertre, Emmanuel; Regnault, Olivier; Descostes, Michael

    2016-05-01

    The dissolution rate of beidellite, a dioctahedral smectite with tetrahedral charge that is a common swelling clay mineral in surface and subsurface natural environments, was studied in acidic solutions at 25 °C under far from equilibrium conditions. A <0.3 μm size fraction of SBId1 beidellite ((Si7.148Al0.852)(Al3.624Mg0.18Fe(III)0.224)O20(OH)4M+0.948) purchased from the Clay Mineral Society was used as the starting material, and experiments were performed in stirred flow-through reactors using HCl solutions with pH values ranging from 1 to 3. Several hydrodynamic conditions were tested using different flow rates with stirred and non-stirred particles. The aqueous Al/Si ratio measured at the outlet of the reactor was followed as a function of time and compared to solid stoichiometry values to assess the mechanisms occurring at the solid/solution interface. The reversible adsorption of Al3+ in the smectite interlayer space was evidenced for pH > 1.1, and the presence of an amorphous Si-enriched layer can be reasonably assumed in some cases from the interpretation of the aqueous concentrations and the characterization of the solid phase (X-ray diffraction and FTIR spectroscopy). Beidellite dissolution rates normalized to the sample mass (mol g-1 s-1) were obtained from Si and Al concentrations under steady state dissolution conditions. Calculated rates were compared with those previously reported for montmorillonite in several publications. The beidellite dissolution rates are, on average, ten times lower than those of montmorillonite. This implies that the smectite crystal chemistry (i.e., amount of Al3+ versus Mg2+ or Fe3+ substitution in the structure) has a strong effect on its stability and should be considered in reactive transport models in which the dissolution properties of smectites are taken into account.

  8. Heterogeneous Reactivity of NO2 with Photocatalytic Paints: A Possible Source of Nitrous Acid (HONO) in the Indoor Environment

    NASA Astrophysics Data System (ADS)

    Gligorovski, S.; Bartolomei, V.; Gandolfo, A.; Gomez Alvarez, E.; Kleffmann, J.; Wortham, H.

    2014-12-01

    There is an increasing concern about the indoor air environment, where we spend most of our time. Common methods of improving indoor air quality include controlling pollution sources, increasing ventilation rates or using air purifiers. Photocatalytic remediation technology was suggested as a new possibility to eliminate indoor air pollutants instead of just diluting or disposing them. In the present study, heterogeneous reactions of NO2 were studied on photocatalytic paints containing different size and quantity of TiO2. The heterogeneous reactions were conducted in a photo reactor under simulated atmospheric conditions. The flat pyrex rectangular plates covered with the paint were inserted into the reactor. These plates have been sprayed with the photocatalytic paints at our industrial partner's (ALLIOS) facilities using a high precision procedure that allowed the application of a thin layer of a given thickness of the paint. This allows a homogeneous coverage of the surface with the paint and an accurate determination of the exact amount of paint exposed to gaseous NO2. We demonstrate that the indoor photocatalytic paints which contain TiO2 can substantially reduce the concentrations of nitrogen dioxide (NO2). We show that the efficiency of nitrogen dioxide (NO2) removal increase with the quantity of TiO2 in the range 0 - 7 %. The geometric uptake coefficients increase from 5 · 10-6 to 1.6 · 10-5 under light irradiation of the paints. On the other hand, during the reactions of NO2 with this paint (7 % of TiO2) nitric oxide (NO) and nitrous acid (HONO) are formed. Nitrous acid (HONO) is an important harmful indoor pollutant and its photolysis leads to the formation of highly reactive OH radicals (Gomez Alvarez et al., 2013). Maximum conversion efficiencies of NO2to HONO and NO of 15 % and 33 % were observed at 30 % RH, respectively. Thus, the quantity of TiO2 embedded in the paint is an important parameter regarding the nitrogen oxides (NOx = NO + NO2

  9. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  10. Spectroscopic and computational studies of α-keto acid binding to Dke1: understanding the role of the facial triad and the reactivity of β-diketones.

    PubMed

    Diebold, Adrienne R; Straganz, Grit D; Solomon, Edward I

    2011-10-12

    The O(2) activating mononuclear nonheme iron enzymes generally have a common facial triad (two histidine and one carboxylate (Asp or Glu) residue) ligating Fe(II) at the active site. Exceptions to this motif have recently been identified in nonheme enzymes, including a 3His triad in the diketone cleaving dioxygenase Dke1. This enzyme is used to explore the role of the facial triad in directing reactivity. A combination of spectroscopic studies (UV-vis absorption, MCD, and resonance Raman) and DFT calculations is used to define the nature of the binding of the α-keto acid, 4-hydroxyphenlpyruvate (HPP), to the active site in Dke1 and the origin of the atypical cleavage (C2-C3 instead of C1-C2) pattern exhibited by this enzyme in the reaction of α-keto acids with dioxygen. The reduced charge of the 3His triad induces α-keto acid binding as the enolate dianion, rather than the keto monoanion, found for α-keto acid binding to the 2His/1 carboxylate facial triad enzymes. The mechanistic insight from the reactivity of Dke1 with the α-keto acid substrate is then extended to understand the reaction mechanism of this enzyme with its native substrate, acac. This study defines a key role for the 2His/1 carboxylate facial triad in α-keto acid-dependent mononuclear nonheme iron enzymes in stabilizing the bound α-keto acid as a monoanion for its decarboxylation to provide the two additional electrons required for O(2) activation.

  11. Spectroscopic and computational studies of α-keto acid binding to Dke1: understanding the role of the facial triad and the reactivity of β-diketones.

    PubMed

    Diebold, Adrienne R; Straganz, Grit D; Solomon, Edward I

    2011-10-12

    The O(2) activating mononuclear nonheme iron enzymes generally have a common facial triad (two histidine and one carboxylate (Asp or Glu) residue) ligating Fe(II) at the active site. Exceptions to this motif have recently been identified in nonheme enzymes, including a 3His triad in the diketone cleaving dioxygenase Dke1. This enzyme is used to explore the role of the facial triad in directing reactivity. A combination of spectroscopic studies (UV-vis absorption, MCD, and resonance Raman) and DFT calculations is used to define the nature of the binding of the α-keto acid, 4-hydroxyphenlpyruvate (HPP), to the active site in Dke1 and the origin of the atypical cleavage (C2-C3 instead of C1-C2) pattern exhibited by this enzyme in the reaction of α-keto acids with dioxygen. The reduced charge of the 3His triad induces α-keto acid binding as the enolate dianion, rather than the keto monoanion, found for α-keto acid binding to the 2His/1 carboxylate facial triad enzymes. The mechanistic insight from the reactivity of Dke1 with the α-keto acid substrate is then extended to understand the reaction mechanism of this enzyme with its native substrate, acac. This study defines a key role for the 2His/1 carboxylate facial triad in α-keto acid-dependent mononuclear nonheme iron enzymes in stabilizing the bound α-keto acid as a monoanion for its decarboxylation to provide the two additional electrons required for O(2) activation. PMID:21870808

  12. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins.

  13. Associations of erythrocyte membrane fatty acids with the concentrations of C-reactive protein, interleukin 1 receptor antagonist and adiponectin in 1373 men.

    PubMed

    Takkunen, M J; de Mello, V D F; Schwab, U S; Ågren, J J; Kuusisto, J; Uusitupa, M I J

    2014-10-01

    Dietary and endogenous fatty acids could play a role in low-grade inflammation. In this cross-sectional study the proportions of erythrocyte membrane fatty acids (EMFA) and the concentrations of C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1Ra) and adiponectin were measured and their confounder-adjusted associations examined in 1373 randomly selected Finnish men aged 45-70 years participating in the population based Metsim study in Eastern Finland. The sum of n-6 EMFAs, without linoleic acid (LA), was positively associated with concentrations of CRP and IL-1Ra (r partial=0.139 and r partial=0.115, P<0.001). These associations were especially strong among lean men (waist circumference <94 cm; r partial=0.156 and r partial=0.189, P<0.001). Total n-3 EMFAs correlated inversely with concentrations of CRP (r partial=-0.098, P<0.001). Palmitoleic acid (16:1n-7) correlated positively with CRP (r partial=0.096, P<0.001). Cis-vaccenic acid (18:1n-7) was associated with high concentrations of adiponectin (r partial=0.139, P<0.001). In conclusion, n-6 EMFAs, except for LA, correlated positively with the inflammatory markers. Palmitoleic acid was associated with CRP, whereas, interestingly, its elongation product, cis-vaccenic acid, associated with anti-inflammatory adiponectin.

  14. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    SciTech Connect

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  15. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    SciTech Connect

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-09-15

    Highlights: ► A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ► Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ► Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ► Nanocomposite films were prepared by an in situ polymerization reaction. ► The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na{sup +} montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  16. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  17. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  18. Development of an n-3 fatty acid and α-tocopherol enriched dry fermented sausage.

    PubMed

    Hoz, L; D'Arrigo, M; Cambero, I; Ordóñez, J A

    2004-07-01

    Five batches of "salchichon", which is a dry fermented Spanish sausage, were manufactured using backfat and meat enriched in polyunsaturated n-3 fatty acids and α-tocopherol. Raw materials were obtained from animals fed on diets of the same ingredients with the exception of the oil source [sunflower oil (batch control, C), linseed oil (L and LE), 1/1 (w/w) linseed and olive oil (LO and LOE)] and α-tocopherol quantity [20 mg/kg diet of α-tocopherol (C, L and LO) or 200 mg/kg diet of α-tocopherol (LOE and LE)]. A final product with a healthier polyunsaturated fatty acid n-6:n-3 ratio (< 4) was obtained from all linseed oil-enriched batches as compared with the control (12). The batches of sausages manufactured with backfat and meat from animals fed on diets enriched in α-tocopherol and linseed, or linseed and olive oil with or without α-tocopherol supplementation show a higher lipid oxidative stability than those of diets enriched in linseed oil without α-tocopherol supplementation. Sausages of dietary treatment C, LE, LO and LOE did not show differences in water, protein, fat and ash contents, a(w), pH, texture profile analysis and sensory features (odour, colour, texture, juiciness and taste quality). Sausages manufactured with material from animals fed on linseed oil-enriched diets and no added α-tocopherol (L) showed an unfavourable rancidity degree detected by both 2-thiobarbituric acid-reactive substances (TBARs) index and sensory panel.

  19. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors.

  20. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. PMID:27016821

  1. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.

    PubMed

    Chládková, B; Evgenidou, E; Kvítek, L; Panáček, A; Zbořil, R; Kovář, P; Lambropoulou, D

    2015-11-01

    In the present study, the coupling of adsorption capacity and photocatalytic efficiency of two different industrially produced titania catalysts was investigated and compared. The azo dye Reactive Red 195 was selected as a model compound. The tested catalysts, PK-10 and PK-180, exhibited different adsorption capacities due to their significant difference in their specific surface, but both have proven to be effective photocatalysts for photodegradation of the studied dye. PK-10 exhibited strong adsorption of the studied dye due to its high specific surface area, while the second studied catalyst, PK-180, demonstrated negligible adsorption of Reactive Red 195. The effect of the pH, the concentration of the catalyst and the initial concentration of the dye appear to affect the photocatalytic rate. The effect of the presence of humic acids and inorganic ions was also examined, while the contribution of various reactive species was indirectly evaluated through the addition of various scavengers. To evaluate the extent of mineralisation of the studied dye, total organic carbon (TOC) measurements during the experiment were also conducted. Besides total colour removal, evident reduction of TOC was also achieved using both catalysts. PMID:26054457

  2. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.

    PubMed

    Chládková, B; Evgenidou, E; Kvítek, L; Panáček, A; Zbořil, R; Kovář, P; Lambropoulou, D

    2015-11-01

    In the present study, the coupling of adsorption capacity and photocatalytic efficiency of two different industrially produced titania catalysts was investigated and compared. The azo dye Reactive Red 195 was selected as a model compound. The tested catalysts, PK-10 and PK-180, exhibited different adsorption capacities due to their significant difference in their specific surface, but both have proven to be effective photocatalysts for photodegradation of the studied dye. PK-10 exhibited strong adsorption of the studied dye due to its high specific surface area, while the second studied catalyst, PK-180, demonstrated negligible adsorption of Reactive Red 195. The effect of the pH, the concentration of the catalyst and the initial concentration of the dye appear to affect the photocatalytic rate. The effect of the presence of humic acids and inorganic ions was also examined, while the contribution of various reactive species was indirectly evaluated through the addition of various scavengers. To evaluate the extent of mineralisation of the studied dye, total organic carbon (TOC) measurements during the experiment were also conducted. Besides total colour removal, evident reduction of TOC was also achieved using both catalysts.

  3. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  4. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  5. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  6. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  7. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  8. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  9. 2-Iodoxybenzoic acid organosulfonates: preparation, X-ray structure and reactivity of new, powerful hypervalent iodine(V) oxidants.

    PubMed

    Yusubov, Mekhman S; Svitich, Dmitrii Yu; Yoshimura, Akira; Nemykin, Victor N; Zhdankin, Viktor V

    2013-12-14

    New powerful hypervalent iodine(V) oxidants, tosylate and mesylate derivatives of 2-iodoxybenzoic acid (IBX), were prepared by the reaction of IBX with the corresponding sulfonic acids. Single crystal X-ray crystallography of the diacetate derivative of IBX-tosylate revealed an unusual heptacoordinated iodine geometry without any significant intermolecular secondary interactions.

  10. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  11. Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel-Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity due to Ion-Pairing Effects.

    PubMed

    Mo, Xiaobin; Yakiwchuk, Joshua; Dansereau, Julien; McCubbin, J Adam; Hall, Dennis G

    2015-08-01

    The development of general and more atom-economical catalytic processes for Friedel-Crafts alkylations of unactivated arenes is an important objective of interest for the production of pharmaceuticals and commodity chemicals. Ferroceniumboronic acid hexafluoroantimonate salt (1) was identified as a superior air- and moisture-tolerant catalyst for direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes with stable and readily available primary and secondary benzylic alcohols. Compared to the use of classical metal-catalyzed alkylations with toxic benzylic halides, this methodology employs exceptionally mild conditions to provide a wide variety of unsymmetrical diarylmethanes and other 1,1-diarylalkane products in high yield with good to high regioselectivity. The optimal method, using the bench-stable ferroceniumboronic acid salt 1 in hexafluoroisopropanol as cosolvent, displays a broader scope compared to previously reported catalysts for similar Friedel-Crafts reactions of benzylic alcohols, including other boronic acids such as 2,3,4,5-tetrafluorophenylboronic acid. The efficacy of the new boronic acid catalyst was confirmed by its ability to activate primary benzylic alcohols functionalized with destabilizing electron-withdrawing groups like halides, carboxyesters, and nitro substituents. Arene benzylation was demonstrated on a gram scale at up to 1 M concentration with catalyst recovery. Mechanistic studies point toward the importance of the ionic nature of the catalyst and suggest that factors other than the Lewis acidity (pKa) of the boronic acid are at play. A SN1 mechanism is proposed where ion exchange within the initial boronate anion affords a more reactive carbocation paired with the non-nucleophilic hexafluoroantimonate counteranion. PMID:26158198

  12. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE. PMID:26558466

  13. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury.

    PubMed

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  14. Selenium levels, thiobarbituric acid-reactive substance concentrations and glutathione peroxidase activity in the blood of women with gestosis and imminent premature labour.

    PubMed

    Gromadzinska, J; Wasowicz, W; Krasomski, G; Broniarczyk, D; Andrijewski, M; Rydzynski, K; Wolkanin, P

    1998-01-01

    The aim of the study was to investigate antioxidant status, monitored by selenium and thiobarbituric acid-reactive substance concentrations in blood plasma, and glutathione peroxidase activity in erythrocytes and blood plasma in women with gestosis (n = 26), imminent premature labour (n = 48) and normal pregnancy (n = 23) during 19-38 weeks of pregnancy. Selenium concentrations in blood plasma were significantly higher in women with pathological pregnancies than in normal (45.5 +/- 10.5 micrograms l-1, p < 0.01 and 44.1 +/- 11.6 micrograms l-1, p < 0.05 vs. 38.6 +/- 8.3 micrograms l-1, respectively). In all groups of pregnant women Se concentrations were extremely low as compared with non-pregnant females. Glutathione peroxidase (GSH-Px) activity in blood plasma was significantly higher in complicated pregnancies than in healthy ones. There were no significant differences in thiobarbituric acid-reactive substance concentrations between all groups of pregnant women. Statistically significant correlations were found between blood plasma Se concentrations and GSH-Px activity in healthy pregnant (r = 0.53, p < 0.01), imminent premature labour (r = 0.39, p < 0.01), and non-pregnant females (r = 0.56, p < 0.001). PMID:9581018

  15. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury

    PubMed Central

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K]+, was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K]+ spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K]+ could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  16. Reactive geothermal transport simulations to study the formation mechanism of an impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

    2004-05-01

    Two types of fluids are encountered in the Onikobe geothermal reservoir (Japan): one is neutral and the other is acidic. It is hypothesized that acidic fluid might be upwelling along a fault zone from magma and that an impermeable barrier might be present between the acidic and neutral fluid zones. To test such a conceptual model and to study the geochemical behavior due to mixing of the two fluids, reactive geothermal transport simulations under both natural and production conditions were carried out using the code TOUGHREACT. Results indicate Mn-rich smectite precipitates near the mixing front. Precipitation of sphalerite and galena occurs in a similar region as the Mn-rich smectite. Precipitation of these minerals depends on pH and temperature. In addition, quartz, pyrite, and calcite precipitate in the shallow zone resulting in further development of caprock. The changes in porosity and permeability due to precipitation of Mn-rich smectite are small compared with that of quartz, calcite, and pyrite. However, the smectite precipitation is likely to fill open fractures and to form an impermeable barrier between acidic and neutral fluid regions. The simulated mineral assemblage is generally consistent with observations in the Onikobe field. The numerical simulations described here provide useful insight into geochemical behavior and formation of impermeable barriers from fluid mixing. The method presented in this paper may be useful in fundamental analysis of hydrothermal systems and in the exploration of geothermal reservoirs, including chemical evolution, mineral alteration, mineral scaling, and changes in porosity and permeability.

  17. Influence of kinetics on the determination of the surface reactivity of oxide suspensions by acid-base titration.

    PubMed

    Duc, M; Adekola, F; Lefèvre, G; Fédoroff, M

    2006-11-01

    The effect of acid-base titration protocol and speed on pH measurement and surface charge calculation was studied on suspensions of gamma-alumina, hematite, goethite, and silica, whose size and porosity have been well characterized. The titration protocol has an important effect on surface charge calculation as well as on acid-base constants obtained by fitting of the titration curves. Variations of pH versus time after addition of acid or base to the suspension were interpreted as diffusion processes. Resulting apparent diffusion coefficients depend on the nature of the oxide and on its porosity.

  18. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  19. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  20. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress.

    PubMed

    Shinkai, Yasuhiro; Abiko, Yumi; Ida, Tomoaki; Miura, Takashi; Kakehashi, Hidenao; Ishii, Isao; Nishida, Motohiro; Sawa, Tomohiro; Akaike, Takaaki; Kumagai, Yoshito

    2015-05-18

    Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress. PMID:25807370

  1. Fourier Transform Infrared Spectroscopy Demonstrates The Reactivity Of The Protonated Carboxyl Group Of The Acid Salt Of Calcium Bilirubinate.

    NASA Astrophysics Data System (ADS)

    Soloway, R. D.; Wu, J.-G.; Xu, D.-F.; Zhang, Y.-F.; Martini, D. K.; Hong, N.-K.; Crowther, R. S.

    1989-12-01

    Calcium bilirubinate is a major salt in pigment gallstones. Bilirubin IX (H2BR) is a tetrapyrrole with 1 propionic acid side chain on both the B and C rings. A striking feature is the strong intramolecular hydrogen bonding of both carboxyl groups as determined by x-ray diffraction. This greatly reduces aqueous solubility. Much less is known about the structure of the salts of calcium bilirubinate since single crystals have not been formed. One or both carboxyl groups of bilirubin may coordinate with calcium in stone, forming the acid or neutral salt.

  2. ASCORBATE PEROXIDASE6 Protects Arabidopsis Desiccating and Germinating Seeds from Stress and Mediates Cross Talk between Reactive Oxygen Species, Abscisic Acid, and Auxin1[C][W][OPEN

    PubMed Central

    Chen, Changming; Letnik, Ilya; Hacham, Yael; Dobrev, Petre; Ben-Daniel, Bat-Hen; Vanková, Radomíra; Amir, Rachel; Miller, Gad

    2014-01-01

    A seed’s ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis. PMID:25049361

  3. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin.

    PubMed

    Chen, Changming; Letnik, Ilya; Hacham, Yael; Dobrev, Petre; Ben-Daniel, Bat-Hen; Vanková, Radomíra; Amir, Rachel; Miller, Gad

    2014-09-01

    A seed's ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis. PMID:25049361

  4. Construction of a D-amino acid oxidase reactor based on magnetic nanoparticles modified by a reactive polymer and its application in screening enzyme inhibitors.

    PubMed

    Mu, Xiaoyu; Qiao, Juan; Qi, Li; Liu, Ying; Ma, Huimin

    2014-08-13

    Developing facile and high-throughput methods for exploring pharmacological inhibitors of D-amino acid oxidase (DAAO) has triggered increasing interest. In this work, DAAO was immobilized on the magnetic nanoparticles, which were modified by a biocompatible reactive polymer, poly(glycidyl methacrylate) (PGMA) via an atom transfer radical polymerization technique. Interestingly, the enzyme immobilization process was greatly promoted with the assistance of a lithium perchlorate catalyst. Meanwhile, a new amino acid ionic liquid (AAIL) was successfully synthesized and employed as the efficient chiral ligand in a chiral ligand exchange capillary electrophoresis (CLE-CE) system for chiral separation of amino acids (AAs) and quantitation of methionine, which was selected as the substrate of DAAO. Then, the apparent Michaelis-Menten constants in the enzyme system were determined with the proposed CLE-CE method. The prepared DAAO-PGMA-Fe3O4 nanoparticles exhibited excellent reusability and good stability. Moreover, the enzyme reactor was successfully applied in screening DAAO inhibitors. These results demonstrated that the enzyme could be efficiently immobilized on the polymer-grafted magnetic nanoparticles and that the obtained enzyme reactor has great potential in screening enzyme inhibitors, further offering new insight into monitoring the relevant diseases.

  5. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  6. 10E,12Z-conjugated linoleic acid impairs adipocyte triglyceride storage by enhancing fatty acid oxidation, lipolysis, and mitochondrial reactive oxygen species

    PubMed Central

    den Hartigh, Laura J.; Han, Chang Yeop; Wang, Shari; Omer, Mohamed; Chait, Alan

    2013-01-01

    Conjugated linoleic acid (CLA) is a naturally occurring dietary trans fatty acid found in food from ruminant sources. One specific CLA isomer, 10E,12Z-CLA, has been associated with health benefits, such as reduced adiposity, while simultaneously promoting deleterious effects, such as systemic inflammation, insulin resistance, and dyslipidemia. The precise mechanisms by which 10E,12Z-CLA exerts these effects remain unknown. Despite potential health consequences, CLA continues to be advertised as a natural weight loss supplement, warranting further studies on its effects on lipid metabolism. We hypothesized that 10E,12Z-CLA impairs lipid storage in adipose tissue by altering the lipid metabolism of white adipocytes. We demonstrate that 10E,12Z-CLA reduced triglyceride storage due to enhanced fatty acid oxidation and lipolysis, coupled with diminished glucose uptake and utilization in cultured adipocytes. This switch to lipid utilization was accompanied by a potent proinflammatory response, including the generation of cytokines, monocyte chemotactic factors, and mitochondrial superoxide. Disrupting fatty acid oxidation restored glucose utilization and attenuated the inflammatory response to 10E,12Z-CLA, suggesting that fatty acid oxidation is critical in promoting this phenotype. With further investigation into the biochemical pathways involved in adipocyte responses to 10E,12Z-CLA, we can discern more information about its safety and efficacy in promoting weight loss. PMID:23956445

  7. Reactivity of pi-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Andras, Maria T.; Hepp, Aloysius F.

    1990-01-01

    In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed.

  8. Serum copper, ceruloplasmin, protein thiols and thiobarbituric acid reactive substance status in liver cancer associated with elevated levels of alpha-fetoprotein.

    PubMed

    Nayak, Shivananda B; Yashwanth, S; Pinto, Sneha M; Bhat, Vinutha R; Mayya, Srimathi S

    2005-01-01

    Serum copper, ceruloplasmin, protein thiols and thiobarbituric acid reactive substances (TEARS) were estimated in 25 patients of liver cancer. The copper to ceruloplasmin ratio was moderately increased (P<0.05) but the copper (P<0.001) and ceruloplasmin (P<0.001) levels were significantly increased in liver cancer patients when compared to controls. Protein thiols levels were found to be highly significant (P<0.001). Where as the TEARS levels were not found to be significant. Trace elements and free radicals have been implicated in the etiology of cancer. Hence the estimation of ceruloplasmin and protein thiols along with the copper may be of high value in the early diagnosis of cancer.

  9. Homo- and heteroleptic alkoxycarbene f-element complexes and their reactivity towards acidic N-H and C-H bonds.

    PubMed

    Arnold, Polly L; Cadenbach, Thomas; Marr, Isobel H; Fyfe, Andrew A; Bell, Nicola L; Bellabarba, Ronan; Tooze, Robert P; Love, Jason B

    2014-10-14

    The reactivity of a series of organometallic rare earth and actinide complexes with hemilabile NHC-ligands towards substrates with acidic C-H and N-H bonds is described. The synthesis, characterisation and X-ray structures of the new heteroleptic mono- and bis(NHC) cyclopentadienyl complexes LnCp2(L) 1 (Ln = Sc, Y, Ce; L = alkoxy-tethered carbene [OCMe2CH2(1-C{NCHCHN(i)Pr})]), LnCp(L)2 (Ln = Y) , and the homoleptic tetrakis(NHC) complex Th(L)4 4 are described. The reactivity of these complexes, and of the homoleptic complexes Ln(L)3 (Ln = Sc 3, Ce), with E-H substrates is described, where EH = pyrrole C4H4NH, indole C8H6NH, diphenylacetone Ph2CC(O)Me, terminal alkynes RC≡CH (R = Me3Si, Ph), and cyclopentadiene C5H6. Complex 1-Y heterolytically cleaves and adds pyrrole and indole N-H across the metal carbene bond, whereas 1-Ce does not, although 3 and 4 form H-bonded adducts. Complexes 1-Y and 1-Sc form adducts with CpH without cleaving the acidic C-H bond, 1-Ce cleaves the Cp-H bond, but 2 reacts to form the very rare H(+)-[C5H5](-)-H(+) motif. Complex 1-Ce cleaves alkyne C-H bonds but the products rearrange upon formation, while complex 1-Y cleaves the C-H bond in diphenylacetone forming a product which rearranges to the Y-O bonded enolate product.

  10. Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation.

    PubMed

    Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J

    2006-06-01

    The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation. PMID:16776483

  11. Reactive arthritis

    PubMed Central

    Hind, C. R. K.

    1982-01-01

    Reactive arthritis is a rare complication of certain infections. The similar features and HLA associations with the seronegative arthropathies have raised the possibility that the latter may be forms of reactive arthritis. This review describes the clinical and epidemiological features, and the recent advances in our understanding of the underlying pathogenesis of reactive arthritis. PMID:7100033

  12. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    PubMed

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the

  13. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse.

    PubMed

    Mustad, Vikkie A; Demichele, Stephen; Huang, Yung-Sheng; Mika, Amanda; Lubbers, Nathan; Berthiaume, Nathalie; Polakowski, Jim; Zinker, Brad

    2006-10-01

    Diets rich in monounsaturated fatty acids (MUFA) are recommended for individuals with type 2 diabetes mellitus (T2DM). The American Heart Association recommends increasing intakes of n-3 polyunsaturated fatty acids (PUFA) to reduce the risk of vascular disease in high-risk individuals; however, the long-term effects of these bioactive fatty acids on glucose metabolism in insulin resistance are controversial. The present studies were conducted to evaluate the effects of diets rich in both MUFA and alpha linolenic acid (C18:3n-3, ALA), eicosapentaenoic acid (C20:5n-3, EPA), or docosahexaenoic acid (C22:6n-3, DHA), on glycemic control and other parameters related to vascular health in a mouse model of T2DM and insulin resistance. Male ob/ob mice (n = 15 per treatment) were fed 1 of 4 lipid-modified formula diets (LFDs) for 4 weeks: (1) MUFA control, (2) ALA blend, (3) EPA blend, and (4) DHA blend. A portion of a MUFA-rich lipid blend in the control LFD was replaced with 11% to 14% energy as n-3 PUFA. After 4 weeks, plasma glucose response to a standard meal (1.5 g carbohydrate/kg body weight) and insulin challenge (2 U/kg body weight, IP) was assessed, and samples were collected for analysis of glucose, insulin, and lipids. Vascular reactivity of isolated aortic rings was assessed in an identical follow-up study. The results showed that insulin-resistant mice fed an LFD with EPA and/or DHA blends had significantly (P < .05) lower triglycerides and free fatty acids, but insulin sensitivity and fasting plasma glucose were not improved. However, mice fed with the ALA blend had significantly improved insulin sensitivity when compared to those fed with other LFD (P < .05). Animals fed an LFD with n-3 PUFA from marine or plant sources showed significantly improved vascular responses as compared with the MUFA-rich LFD (E(max), P < .05) and ob/ob reference mice consuming chow (E(max) and pEC(50), P < .05). In summary, long-term consumption of LFD with n-3 PUFAs improved blood

  14. Profiling fatty acids in vegetable oils by reactive pyrolysis-gas chromatography with dimethyl carbonate and titanium silicate.

    PubMed

    Fabbri, Daniele; Baravelli, Valentina; Chiavari, Giuseppe; Prati, Silvia

    2005-12-30

    A novel methodology in on-line pyrolysis-gas chromatography (Py-GC) for the fast analysis of fatty acids in vegetable oils with minimal sample treatment and the use of non-toxic reagents is described. Pyrolysis at 500 degrees C for 10 s of sub-microgram quantity of vegetable oil dissolved in dimethyl carbonate (DMC) and in the presence of nanopowder titanium silicon oxide resulted in the production of fatty acid methyl esters (FAMEs) as unique products. Pyrolysis performed by means of a resistively heated filament pyrolyser interfaced to a GC-MS apparatus enabled the direct analysis of evolved FAMEs. The DMC/Py-GC-MS analysis was tested on soybean, coconut, linseed, walnut and olive oil and the results compared to the classical BF(3)-methanol as reference methodology. The DMC method exhibited a lower precision and was biased towards lower levels of polyunsaturated fatty acids (PUFA) in comparison to the BF(3)-methanol method, but was more advantageous in terms of reduced sample treatment, waste generation and risk factors of employed chemicals.

  15. Profiling fatty acids in vegetable oils by reactive pyrolysis-gas chromatography with dimethyl carbonate and titanium silicate.

    PubMed

    Fabbri, Daniele; Baravelli, Valentina; Chiavari, Giuseppe; Prati, Silvia

    2005-12-30

    A novel methodology in on-line pyrolysis-gas chromatography (Py-GC) for the fast analysis of fatty acids in vegetable oils with minimal sample treatment and the use of non-toxic reagents is described. Pyrolysis at 500 degrees C for 10 s of sub-microgram quantity of vegetable oil dissolved in dimethyl carbonate (DMC) and in the presence of nanopowder titanium silicon oxide resulted in the production of fatty acid methyl esters (FAMEs) as unique products. Pyrolysis performed by means of a resistively heated filament pyrolyser interfaced to a GC-MS apparatus enabled the direct analysis of evolved FAMEs. The DMC/Py-GC-MS analysis was tested on soybean, coconut, linseed, walnut and olive oil and the results compared to the classical BF(3)-methanol as reference methodology. The DMC method exhibited a lower precision and was biased towards lower levels of polyunsaturated fatty acids (PUFA) in comparison to the BF(3)-methanol method, but was more advantageous in terms of reduced sample treatment, waste generation and risk factors of employed chemicals. PMID:16216255

  16. Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4).

    PubMed

    Palmisano, Ilaria; Della Chiara, Giulia; D'Ambrosio, Rosa Lucia; Huichalaf, Claudia; Brambilla, Paola; Corbetta, Silvia; Riba, Michela; Piccirillo, Rosanna; Valente, Sergio; Casari, Giorgio; Mai, Antonello; Martinelli Boneschi, Filippo; Gabellini, Davide; Poli, Guido; Schiaffino, Maria Vittoria

    2012-08-21

    The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4(+) ACH-2 T-lymphocytic cells but not in HDAC4(-) U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity.

  17. Reactive carbonyls and polyunsaturated fatty acids produce a hydroxyl radical-like species: a potential pathway for oxidative damage of retinal proteins in diabetes.

    PubMed

    Pennathur, Subramaniam; Ido, Yasuo; Heller, Jozsef I; Byun, Jaeman; Danda, Ratna; Pergola, Pablo; Williamson, Joseph R; Heinecke, Jay W

    2005-06-17

    The pattern of oxidized amino acids in aortic proteins of nonhuman primates suggests that a species resembling hydroxyl radical damages proteins when blood glucose levels are high. However, recent studies argue strongly against a generalized increase in diabetic oxidative stress, which might instead be confined to the vascular wall. Here, we describe a pathway for glucose-stimulated protein oxidation and provide evidence of its complicity in diabetic microvascular disease. Low density lipoprotein incubated with pathophysiological concentrations of glucose became selectively enriched in ortho-tyrosine and meta-tyrosine, implicating a hydroxyl radical-like species in protein damage. Model system studies demonstrated that the reaction pathway requires both a reactive carbonyl group and a polyunsaturated fatty acid, involves lipid peroxidation, and is blocked by the carbonyl scavenger aminoguanidine. To explore the physiological relevance of the pathway, we used mass spectrometry and high pressure liquid chromatography to quantify oxidation products in control and hyperglycemic rats. Hyperglycemia raised levels of ortho-tyrosine, meta-tyrosine, and oxygenated lipids in the retina, a tissue rich in polyunsaturated fatty acids. Rats that received aminoguanidine did not show this increase in protein and lipid oxidation. In contrast, rats with diet-induced hyperlipidemia in the absence of hyperglycemia failed to exhibit increased protein and lipid oxidation products in the retina. Our observations suggest that generation of a hydroxyl radical-like species by a carbonyl/polyunsaturated fatty acid pathway might promote localized oxidative stress in tissues vulnerable to diabetic damage. This raises the possibility that antioxidant therapies that specifically inhibit the pathway might delay the vascular complications of diabetes.

  18. Amino acid starvation induces reactivation of silenced transgenes and latent HIV-1 provirus via down-regulation of histone deacetylase 4 (HDAC4).

    PubMed

    Palmisano, Ilaria; Della Chiara, Giulia; D'Ambrosio, Rosa Lucia; Huichalaf, Claudia; Brambilla, Paola; Corbetta, Silvia; Riba, Michela; Piccirillo, Rosanna; Valente, Sergio; Casari, Giorgio; Mai, Antonello; Martinelli Boneschi, Filippo; Gabellini, Davide; Poli, Guido; Schiaffino, Maria Vittoria

    2012-08-21

    The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4(+) ACH-2 T-lymphocytic cells but not in HDAC4(-) U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity. PMID:22826225

  19. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group.

    PubMed

    Cui, Li-Qian; Dong, Zhi-Lei; Liu, Kai; Zhang, Chi

    2011-12-16

    5-Trimethylammonio-1,3-dioxo-1,3-dihydro-1λ(5)-benzo[d][1,2]iodoxol-1-ol anion (AIBX 1a), an o-iodoxybenzoic acid (IBX) derivative having the trimethylammonium moiety on its phenyl ring, possesses very good solubility in water and distinct oxidative properties from IBX, which is demonstrated in the oxidation of various β-keto esters to the corresponding dehydrogenated products using water as cosolvent. The regeneration of AIBX 1a can be easily realized from the reaction mixture due to its good water solubility. PMID:22082110

  20. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group.

    PubMed

    Cui, Li-Qian; Dong, Zhi-Lei; Liu, Kai; Zhang, Chi

    2011-12-16

    5-Trimethylammonio-1,3-dioxo-1,3-dihydro-1λ(5)-benzo[d][1,2]iodoxol-1-ol anion (AIBX 1a), an o-iodoxybenzoic acid (IBX) derivative having the trimethylammonium moiety on its phenyl ring, possesses very good solubility in water and distinct oxidative properties from IBX, which is demonstrated in the oxidation of various β-keto esters to the corresponding dehydrogenated products using water as cosolvent. The regeneration of AIBX 1a can be easily realized from the reaction mixture due to its good water solubility.

  1. Conjugates of gonadotropin releasing hormone (GnRH) with carminic acid: Synthesis, generation of reactive oxygen species (ROS) and biological evaluation.

    PubMed

    Lev-Goldman, Vered; Mester, Brenda; Ben-Aroya, Nurit; Hanoch, Tamar; Rupp, Barbara; Stanoeva, Tsvetanka; Gescheidt, Georg; Seger, Rony; Koch, Yitzhak; Weiner, Lev; Fridkin, Mati

    2008-07-15

    We synthesized two carminic acid (7-alpha-d-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-2-anthracene carboxlic acid, CA)-GnRH conjugates to be used as a model for potential photoactive targeted compounds. CA was conjugated to the epsilon-amino group of [d-Lys(6)]GnRH through its carboxylic moiety or via a beta-alanine spacer (beta-ala). Redox potentials of CA and its conjugates were determined. We used electron spin resonance (ESR) and spin trapping techniques to study the light-stimulated redox properties of CA and its CA-GnRH conjugates. Upon irradiation, the compounds stimulated the formation of reactive oxygen species (ROS), that is, singlet oxygen ((1)O(2)) and oxygen radicals (O(2)(-*) and OH(*)). Both conjugates exhibited higher ROS production than the non-conjugated CA. The bioactivity properties of the CA conjugates and the parent peptide, [d-Lys(6)]GnRH, were tested on primary rat pituitary cells. We found that the conjugates preserved the bioactivity of GnRH as illustrated by their capability to induce ERK phosphorylation and LH release. PMID:18571926

  2. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress.

  3. Synergistic activities of a silver(I) glutamic acid complex and reactive oxygen species (ROS): a novel antimicrobial and chemotherapeutic agent.

    PubMed

    Batarseh, K I; Smith, M A

    2012-01-01

    The antimicrobial and chemotherapeutic activities of a silver(I) glutamic acid complex with the synergistic concomitant generation of reactive oxygen species (ROS) were investigated here. The ROS generation system employed was via Fenton chemistry. The antimicrobial and chemotherapeutic activities were investigated on Staphylococcus aureus ATCC 43300 and Escherichia coli bacteria, and Vero and MCF-7 tumor cell lines, respectively. Antimicrobial activities were conducted by determining minimum inhibitory concentration (MIC), while chemotherapeutic efficacies were done by serial dilution using standard techniques to determine the half maximal inhibitory concentration (IC50). The antimicrobial and chemotherapeutic results obtained were compared with positive control drugs gentamicin, oxacillin, penicillin, streptomycin and cisplatin, a ubiquitously used platinum-based antitumor drug, and with the silver(I) glutamic acid complex and hydrogen peroxide separately. Based on MIC and IC50 values, it was determined that this synergistic approach was very effective at extremely low concentrations, especially when compared with the other drugs evaluated here. This finding might be of great significance regarding metronomic dosing when this synergistic approach is clinically implemented. Since silver at low concentrations exhibits no toxic, mutagenic and carcinogenic activities, this might offer an alternative approach for the development of safer silver-based antimicrobial and chemotherapeutic drugs, thereby reducing or even eliminating the toxicity associated with current drugs. Accordingly, the present approach might be integrated into the systemic clinical treatment of infectious diseases and cancer. PMID:22680634

  4. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress. PMID:27112014

  5. Chiral bio-nanocomposites based on thermally stable poly(amide-imide) having phenylalanine linkages and reactive organoclay containing tyrosine amino acid.

    PubMed

    Mallakpour, Shadpour; Dinari, Mohammad

    2013-03-01

    Montmorillonite clay modified with the bio-active trifunctional L-tyrosine amino acid salt was used as a reactive organoclay (OC) for the preparation of poly(amide-imide) (PAI)/OC hybrid films. One of the functional groups of the L-tyrosine as the swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining functional groups were available for further reaction with polymer matrix. The soluble PAI with amine end groups including phenylalanine amino acid was synthesised under green condition using molten tetra-butylammonium bromide by direct polymerization reaction of chiral diacid and 2-(3,5-diaminophenyl)benzimidazole. PAI/OC bio-nanocomposites films containing different contents of OC were prepared via solution intercalation method through blending of OC with the PAI solution. X-ray diffraction and transmission electron microscopy revealed that the dispersion of silicate layers in the PAI created an exfoliated structure as a result of using the trifunctional groups of the swelling agent. The structure and thermal behavior of the synthesised materials were characterized by a range of methods, including X-ray diffraction, Fourier transform infrared spectroscopy, (1)H-NMR, electron microscopy, elemental and thermogravimetric analysis techniques. Thermogravimetric analysis results indicated that the addition of OC into the PAI matrix was increased in the thermal decomposition temperatures of the resulted bio-nanocomposites.

  6. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed

  7. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.; Denham, Miles E.

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and

  8. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  9. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  10. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated.

  11. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  12. Aerobic C-H Acetoxylation of 8-Methylquinoline in PdII-Pyridinecarboxylic Acid Systems: Some Structure-Reactivity Relationships

    SciTech Connect

    Wang, Daoyong; Zavalij, Peter Y.; Vedernikov, Andrei N.

    2013-09-09

    Catalytic oxidative C–H acetoxylation of 8-methylquinoline as a model substrate with O2 as oxidant was performed using palladium(II) carboxylate catalysts derived from four different pyridinecarboxylic acids able to form palladium(II) chelates of different size. A comparison of the rates of the substrate C–H activation and the O2 activation steps shows that the C–H activation step is rate-limiting, whereas the O2 activation occurs at a much faster rate already at 20 °C. The chelate ring size and the chelate ring strain of the catalytically active species are proposed to be the key factors affecting the rate of the C–H activation.

  13. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    PubMed Central

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  14. Mechanical Properties and Morphological Changes of Poly(lactic acid)/Polycarbonate/Poly(butylene adipate-co-terephthalate) Blend Through Reactive Processing—Effects of Fabrication Processes—

    NASA Astrophysics Data System (ADS)

    Kanzawa, Takeshi; Tokumitsu, Katsuhisa

    The mechanical properties of poly(lactic acid) (PLA)/polycarbonate (PC) blend were improved considerably by addition of both poly(butylene adipate-co-terephthalate) (PBAT) and dicumyl peroxide (DCP) as a radical coupling agent for PLA and PBAT. In this work, the authors aimed to grasp meltdown properties of PLA/PBAT with/without DCP by (1) clarifying the effect of addition of DCP on the melt viscoelatsic properties of PLA/PBAT, and make this ternary system more suitable by (2) optimizing additive contents and (3) investigating the effect of fabrication processes on mechanical properties and morphologies of the blends. The growth curves of G' and G'' for PLA/PBAT (70/30) (wt/wt) with/without DCP measured by a rheometer suggested that branching and cross-linking structures were formed by hetero-and/or homogeneous radical coupling reactions. The elongation at break of the ternary reactive blend with DCP 0.30 phr (PLA/PBAT/PC blend with DCP) increased up to 160%, which was much better than that with other DCP contents. Moreover, the value of standard deviation for the ternary reactive blend was smaller. Furthermore, PLA/PBAT/PC ternary polymer blends were prepared through a twin-screw extruder with an L/D ratio of 75, and their physical and meltdown properties were investigated. The domain size of the reactive blend with an L/D ratio of 75 was smaller than that of 45, however, the impact strength of the blend with an L/D ratio of 75 decreased with increasing rotation speed of the extruder. Moreover, the MFR of the blend increased with increasing rotation speed of the extruder as well. As the MFR of PC prepared under same condition of blending did not change, so this suggested that PLA/PBAT components of the ternary blends were degraded in higher shear rate. As a result, the impact strength of the ternary blends decreased as well.

  15. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione

    PubMed Central

    Munemasa, Shintaro; Muroyama, Daichi; Nagahashi, Hiroki; Nakamura, Yoshimasa; Mori, Izumi C.; Murata, Yoshiyuki

    2013-01-01

    The phytohormone abscisic acid (ABA) induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH) is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling were largely unknown. Recently we demonstrated that GSH functions as a negative regulator of ABA signaling in guard cells. In this study we performed more detailed analyses to reveal how GSH regulates guard cell ABA signaling using the GSH-deficient Arabidopsis mutant cad2-1. The cad2-1 mutant exhibited reduced water loss from rosette leaves. Whole-cell current recording using patch clamp technique revealed that the cad2-1 mutation did not affect ABA regulation of S-type anion channels. We found enhanced activation of Ca2+ permeable channels by hydrogen peroxide (H2O2) in cad2-1 guard cells. The cad2-1 mutant showed enhanced H2O2-induced stomatal closure and significant increase of ROS accumulation in whole leaves in response to ABA. Our findings provide a new understanding of guard cell ABA signaling and a new strategy to improve plant drought tolerance. PMID:24312112

  16. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione.

    PubMed

    Munemasa, Shintaro; Muroyama, Daichi; Nagahashi, Hiroki; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-01-01

    The phytohormone abscisic acid (ABA) induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH) is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling were largely unknown. Recently we demonstrated that GSH functions as a negative regulator of ABA signaling in guard cells. In this study we performed more detailed analyses to reveal how GSH regulates guard cell ABA signaling using the GSH-deficient Arabidopsis mutant cad2-1. The cad2-1 mutant exhibited reduced water loss from rosette leaves. Whole-cell current recording using patch clamp technique revealed that the cad2-1 mutation did not affect ABA regulation of S-type anion channels. We found enhanced activation of Ca(2+) permeable channels by hydrogen peroxide (H2O2) in cad2-1 guard cells. The cad2-1 mutant showed enhanced H2O2-induced stomatal closure and significant increase of ROS accumulation in whole leaves in response to ABA. Our findings provide a new understanding of guard cell ABA signaling and a new strategy to improve plant drought tolerance.

  17. T-cell reactivity to glutamic acid decarboxylase in stiff-man syndrome and cerebellar ataxia associated with polyendocrine autoimmunity

    PubMed Central

    Costa, M; Saiz, A; Casamitjana, R; Castañer, M FernÁndez; SanmartÍ, A; Graus, F; Jaraquemada, D

    2002-01-01

    Antibodies to glutamic acid decarboxilase (GAD-Abs) are present in the serum of 60–80% of newly diagnosed type 1 diabetes (DM1) patients and patients with autoimmune polyendocrine syndrome (APS) associated with DM1. Higher titre of GAD-Abs are also present in the serum of 60% of patients with stiff-man syndrome (SMS) and all reported patients with cerebellar ataxia associated with polyendocrine autoimmunity (CAPA). Several studies suggest that GAD-Abs may play a critical role in the pathogenesis of SMS and CAPA but little is known about T-cell responsiveness to GAD-65 in these neurological diseases. To analyse cell-mediated responses to GAD, we studied the peripheral blood lymphocyte proliferation and cytokine responses to recombinant human GAD-65 in 5 patients with SMS, 6 with CAPA, 9 with DM1, 8 with APS and 15 control subjects. GAD-65-specific cellular proliferation was significantly higher in SMS than in CAPA, DM1, APS or controls. In contrast, only T cells from CAPA patients showed a significantly high production of interferon-γ after GAD stimulation, compared to all other patients and controls. No differences were found for IL-4 production. These results suggest that, despite similar humoral autoreactivity, cellular responses to GAD are different between SMS and CAPA, with a greater inflammatory response in CAPA, and this difference may be relevant to the pathogenesis of these diseases. PMID:12197888

  18. A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance.

    PubMed

    Nie, Shengjun; Yue, Haiyun; Xing, Da

    2015-10-15

    To characterize the function of salicylic acid (SA) in acquired thermotolerance, the effects of heat shock (HS) on wild-type and sid2 (for SA induction deficient 2) was investigated. After HS treatment, the survival ratio of sid2 mutant was lower than that of wild-type. However, pretreatment with hydrogen peroxide (H2O2) rescued the sid2 heat sensitivity. HsfA2 is a key component of acquired thermotolerance in Arabidopsis. The expression of HsfA2 induced by SA was highest among those of heat-inducible Hsfs (HsfA2, HsfA7a, HsfA3, HsfB1, and HsfB2) in response to HS. Furthermore, the application of AsA, an H2O2 scavenger, significantly reduced the expression level of HsfA2 induced by SA. Although SA enhanced the survival of sid2 mutant, no significant effect on the hsfA2 mutant was observed, suggesting that HsfA2 is responsible for SA-induced acquired thermotolerance as a downstream factor. Further, real-time PCR analysis revealed that after HS treatment, SA also up-regulated mRNA transcription of HS protein (Hsp) genes through AtHsfA2. Time course experiments showed an increase in the fluorescence intensity of DCF in the mitochondria occurred earlier than in other regions of the protoplasts in response to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA-induced mitochondrial ROS possibly originated from complex III in the respiration chain. Collectively, our data suggest that SA functions and acts upstream of AtHsfA2 in acquired thermotolerance, which requires a pathway with H2O2 production involved and is dependent on increased expression of Hsp genes. PMID:26099269

  19. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments

    PubMed Central

    2014-01-01

    Background Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were followed over time for the same range of total enzyme protein loadings to provide comparative data on glucose and xylose yields of monomers and oligomers from the pretreated solids. The composition of pretreated solids and enzyme adsorption on each substrate were also measured to determine. The extent glucose release could be related to these features. Results Corn stover solids from pretreatment by DA, AFEX, and IL were enzymatically digested over a range of low to moderate loadings of commercial cellulase, xylanase, and pectinase enzyme mixtures, the proportions of which had been previously optimized for each pretreatment. Avicel® cellulose, regenerated amorphous cellulose (RAC), and beechwood xylan were also subjected to enzymatic hydrolysis as controls. Yields of glucose and xylose and their oligomers were followed for times up to 120 hours, and enzyme adsorption was measured. IL pretreated corn stover displayed the highest initial glucose yields at all enzyme loadings and the highest final yield for a low enzyme loading of 3 mg protein/g glucan in the raw material. However, increasing the enzyme loading to 12 mg/g glucan or more resulted in DA pretreated corn stover attaining the highest longer-term glucose yields. Hydrolyzate from AFEX pretreated corn stover had the highest proportion of xylooligomers, while IL produced the most glucooligomers. However, the amounts of both oligomers dropped with increasing enzyme loadings and hydrolysis times. IL pretreated corn stover had the highest enzyme adsorption capacity. Conclusions Initial hydrolysis yields were highest

  20. Ga(III) complexes as models for the M(III) site of purple acid phosphatase: ligand effects on the hydrolytic reactivity toward bis(2,4-dinitrophenyl) phosphate.

    PubMed

    Coleman, Fergal; Hynes, Michael J; Erxleben, Andrea

    2010-07-19

    The effects of a series of Ga(III) complexes with tripodal ligands on the hydrolysis rate of the activated phosphate diester bis(2,4-dinitrophenyl)phosphate (BDNPP) have been investigated. In particular, the influence of the nature of the ligand donor sites on the reactivity of Ga(III) which represents a mimic of the Fe(III) ion in purple acid phosphatase has been evaluated. It has been shown that replacing neutral nitrogen donor atoms and carboxylate groups by phenolate groups enhanced the reactivity of the Ga complexes. Bell-shaped pH-rate profiles and the measured solvent deuterium isotope effects are indicative of a mechanism that involves nucleophilic attack on the coordinated substrate by Ga-OH. The trend in reactivity found for the different Ga complexes reveals that of the two effects of the metal, Lewis acid activation of the substrate and nucleophile activation, the latter one is more important in determining the intrinsic reactivity of the metal catalyst. The relevance of the present findings for the modulation of the activity of the M(III) ion in purple acid phosphatase whose active site contains a phenolate (tyrosine side chain) is discussed. PMID:20565083

  1. c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity.

    PubMed

    Socodato, Renato; Portugal, Camila C; Canedo, Teresa; Domith, Ivan; Oliveira, Nadia A; Paes-de-Carvalho, Roberto; Relvas, João B; Cossenza, Marcelo

    2015-02-01

    3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naïve (nonactivated) microglia are believed to generate little ROS under basal conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by Aβ oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage.

  2. Enzymes That Scavenge Reactive Oxygen Species Are Down-Regulated Prior to Gibberellic Acid-Induced Programmed Cell Death in Barley Aleurone1

    PubMed Central

    Fath, Angelika; Bethke, Paul C.; Jones, Russell L.

    2001-01-01

    Gibberellins (GAs) initiate a series of events that culminate in programmed cell death, whereas abscisic acid (ABA) prevents this process. Reactive oxygen species (ROS) are key elements in aleurone programmed cell death. Incubation of barley (Hordeum vulgare) aleurone layers in H2O2 causes rapid death of all cells in GA- but not ABA-treated layers. Sensitivity to H2O2 in GA-treated aleurone cells results from a decreased ability to metabolize ROS. The amounts and activities of ROS scavenging enzymes, including catalase (CAT), ascorbate peroxidase, and superoxide dismutase are strongly down-regulated in aleurone layers treated with GA. CAT activity, protein, and Cat2 mRNA decline rapidly following exposure of aleurone layers to GA. In ABA-treated layers, on the other hand, the amount and activity of CAT and Cat2 mRNA increases. Incubation in ABA maintains high amounts of ascorbate peroxidase and superoxide dismutase, whereas GA brings about a rapid reduction in the amounts of these enzymes. These data imply that GA-treated cells loose their ability to scavenge ROS and that this loss ultimately results in oxidative damage and cell death. ABA-treated cells, on the other hand, maintain their ability to scavenge ROS and remain viable. PMID:11351079

  3. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    PubMed Central

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  4. Limited effect of reactive oxygen species on the composition of susceptible essential amino acids in the midguts of Lymantria dispar caterpillars.

    PubMed

    Barbehenn, Raymond V; Niewiadomski, Julie; Kochmanski, Joseph; Constabel, C Peter

    2012-11-01

    The essential amino acids (EAAs) arginine, histidine, lysine, and methionine, as well as cysteine (semiessential), are believed to be susceptible to reactions with reactive oxygen species (ROS) in biological systems. The decreased availability of these EAAs could harm insect nutrition, since several of them can also be limiting for protein synthesis. However, no in vivo studies have quantified the effect of ROS in the midguts of insect herbivores on EAA composition. This study examined the association between elevated levels of ROS in the midgut fluid of Lymantria dispar caterpillars and the compositions of EAAs (protein-bound + protein-free) in their midgut fluid and frass. Contrary to expectation, the compositions of EAAs were not significantly decreased by ROS in midgut fluid ex vivo when incubated with phenolic compounds. Two in vivo comparisons of low- and high-ROS-producing leaves also showed similar results: there were no significant decreases in the compositions of EAAs in the midgut fluids and/or frass of larvae with elevated levels of ROS in their midguts. In addition, waste nitrogen excretion was not significantly increased from larvae on high-ROS treatments, as would be expected if ROS produced unbalanced EAA compositions. These results suggest that L. dispar larvae are able to tolerate elevated levels of ROS in their midguts without nutritionally significant changes in the compositions of susceptible EAAs in their food.

  5. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions.

  6. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress.

  7. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages

    PubMed Central

    Yanagisawa, Naotake; Shimada, Kazunori; Miyazaki, Tetsuro; Kume, Atsumi; Kitamura, Yohei; Sumiyoshi, Katsuhiko; Kiyanagi, Takashi; Iesaki, Takafumi; Inoue, Nao; Daida, Hiroyuki

    2008-01-01

    Background Deterioration of peroxisomal β-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA) in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD) protein (ALDP)-deficient mice. Results Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ), intracellular reactive oxygen species (ROS), and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interluekin-6 (IL-6), and interleukin-12p70 (IL-12p70), were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS) mRNA expression also showed an increase in macrophages from ALDP-deficient mice. Conclusion These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses. PMID:19038055

  8. Abscisic Acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS Modulate Root Elongation via Reactive Oxygen Species in Medicago truncatula1[W][OPEN

    PubMed Central

    Zhang, Chang; Bousquet, Amanda; Harris, Jeanne M.

    2014-01-01

    Abscisic acid (ABA) modulates root growth in plants grown under normal and stress conditions and can rescue the root growth defects of the Medicago truncatula lateral root-organ defective (latd) mutant. Here, we demonstrate that reactive oxygen species (ROS) function downstream of ABA in the regulation of root growth by controlling cell elongation. We also show that the MtLATD/NUMEROUS INFECTIONS AND POLYPHENOLICS (NIP) nitrate transporter is required for ROS homeostasis and cell elongation in roots and that this balance is perturbed in latd mutants, leading to an excess of superoxide and hydrogen peroxide and a corresponding decrease in cell elongation. We found that expression of the superoxide-generating NADPH oxidase genes, MtRbohA and MtRbohC (for respiratory burst oxidase homologs), is increased in latd roots and that inhibition of NADPH oxidase activity pharmacologically can both reduce latd root ROS levels and increase cell length, implicating NADPH oxidase function in latd root growth defects. Finally, we demonstrate that ABA treatment alleviates ectopic ROS accumulation in latd roots, restores MtRbohC expression to wild-type levels, and promotes an increase in cell length. Reducing the expression of MtRbohC using RNA interference leads to increased root elongation in both wild-type and latd roots. These results reveal a mechanism by which the MtLATD/NIP nitrate transporter and ABA modulate root elongation via superoxide generation by the MtRbohC NADPH oxidase. PMID:25192698

  9. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  10. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: role of reactive oxygen species.

    PubMed

    Pazmiño, Diana M; Rodríguez-Serrano, María; Romero-Puertas, María C; Archilla-Ruiz, Angustias; Del Río, Luis A; Sandalio, Luisa M

    2011-11-01

    In this work the differential response of adult and young leaves from pea (Pisum sativum L.) plants to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) (23 mm) applied by foliar spraying was investigated. The concentration of 2,4-D (23 mm) and the time of treatment (72 h) were previously optimized in order to visualize its toxic effects on pea plants. Under these conditions, the herbicide induced severe disturbances in mesophyll cells structure and proliferation of vascular tissue in young leaves and increased acyl-CoA oxidase (ACX), xanthine oxidase (XOD) and lipoxygenase (LOX) activities in young leaves, and only ACX and LOX in adult leaves. This situation produced reactive oxygen species (ROS) over-accumulation favoured by the absence of significant changes in the enzymatic antioxidants, giving rise to oxidative damages to proteins and membrane lipids. An increase of ethylene took place in both young and adult leaves and the induction of genes encoding the stress proteins, PRP4A and HSP 71,2, was observed mainly in young leaves. These results suggest that ROS overproduction is a key factor in the effect of high concentrations of 2,4-D, and ROS can trigger a differential response in young and adult leaves, either epinasty development in young leaves or senescence processes in adult tissues.

  11. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase

    PubMed Central

    Li, Y.; Chen, L.J.; Jiang, F.; Yang, Y.; Wang, X.X.; Zhang, Z.; Li, Z.; Li, L.

    2015-01-01

    Hormesis is an adaptive response to a variety of oxidative stresses that renders cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an important antioxidant that has protective effects against DNA damage caused by reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic effect remains unknown, as is the molecular mechanism that is involved. We found that a low concentration (10 μM) of CaA increased human liver L-02 cell viability, attenuated hydrogen peroxide (H2O2)-mediated decreases in cell viability, and decreased the extent of H2O2-induced DNA double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA treatment reduced ROS levels, which might have played a protective role. CaA also activated the extracellular signal-regulated kinase (ERK) signal pathway in a time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability and the protective effects against H2O2-mediated DNA damage. This study adds to the understanding of the antioxidant effects of CaA by identifying a novel molecular mechanism of enhanced cell viability and protection against DNA damage. PMID:25831202

  12. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids.

    PubMed

    Niehaus, Thomas D; Nguyen, Thuy N D; Gidda, Satinder K; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A; McCarty, Donald R; Downs, Diana M; Cooper, Arthur J L; Fiehn, Oliver; Mullen, Robert T; Hanson, Andrew D

    2014-07-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.

  13. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

    PubMed Central

    Köksal, Burcu; Emre, Memet Hanifi; Polat, Alaadin

    2015-01-01

    BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed. PMID:27275196

  14. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage.

    PubMed

    Gibert, Oriol; Cortina, José Luis; de Pablo, Joan; Ayora, Carlos

    2013-11-01

    A permeable reactive barrier (PRB) was installed in Aznalcóllar (Spain) in order to rehabilitate the Agrio aquifer groundwater severely contaminated with acid mine drainage after a serious mining accident. The filling material of the PRB consisted of a mixture of calcite, vegetal compost and, locally, Fe(0) and sewage sludge. Among the successes of the PRB are the continuous neutralisation of pH and the removal of metals from groundwater within the PRB (removals of >95%). Among the shortcomings are the improper PRB design due to the complexity of the internal structure of the Agrio alluvial deposits (which resulted in an inefficient capture of the contaminated plume), the poor degradability of the compost used and the short residence time within the PRB (which hindered a complete sulphate reduction), the clogging of a section of the PRB and the heterogeneities of the filling material (which resulted in preferential flows within the PRB). Undoubtedly, it is only through accumulated experience at field-scale systems that the potentials and limits of the PRB technology can be determined.

  15. Effect of metal ions on the reactions of the cumyloxyl radical with hydrogen atom donors. Fine control on hydrogen abstraction reactivity determined by Lewis acid-base interactions.

    PubMed

    Salamone, Michela; Mangiacapra, Livia; DiLabio, Gino A; Bietti, Massimo

    2013-01-01

    A time-resolved kinetic study on the effect of metal ions (M(n+)) on hydrogen abstraction reactions from C-H donor substrates by the cumyloxyl radical (CumO(•)) was carried out in acetonitrile. Metal salt addition was observed to increase the CumO(•) β-scission rate constant in the order Li(+) > Mg(2+) > Na(+). These effects were explained in terms of the stabilization of the β-scission transition state determined by Lewis acid-base interactions between M(n+) and the radical. When hydrogen abstraction from 1,4-cyclohexadiene was studied in the presence of LiClO(4) and Mg(ClO(4))(2), a slight increase in rate constant (k(H)) was observed indicating that interaction between M(n+) and CumO(•) can also influence, although to a limited extent, the hydrogen abstraction reactivity of alkoxyl radicals. With Lewis basic C-H donors such as THF and tertiary amines, a decrease in k(H) with increasing Lewis acidity of M(n+) was observed (k(H)(MeCN) > k(H)(Li(+)) > k(H)(Mg(2+))). This behavior was explained in terms of the stronger Lewis acid-base interaction of M(n+) with the substrate as compared to the radical. This interaction reduces the degree of overlap between the α-C-H σ* orbital and a heteroatom lone-pair, increasing the C-H BDE and destabilizing the carbon centered radical formed after abstraction. With tertiary amines, a >2-order of magnitude decrease in k(H) was measured after Mg(ClO(4))(2) addition up to a 1.5:1 amine/Mg(ClO(4))(2) ratio. At higher amine concentrations, very similar k(H) values were measured with and without Mg(ClO(4))(2). These results clearly show that with strong Lewis basic substrates variations in the nature and concentration of M(n+) can dramatically influence k(H), allowing for a fine control of the substrate hydrogen atom donor ability, thus providing a convenient method for C-H deactivation. The implications and generality of these findings are discussed.

  16. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  17. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-01-01

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide. PMID:27338318

  18. Effect of dietary Satureja khuzistanica powder on semen characteristics and thiobarbituric acid reactive substances concentration in testicular tissue of Iranian native breeder rooster

    PubMed Central

    Heydari, M. J.; Mohammadzadeh, S.; Kheradmand, A.; Alirezaei, M.

    2015-01-01

    Because of a paucity of information on the effect of Satureja khuzistanica in male chickens, this study was undertaken to determine the influence of dietary S. khuzistanica powder (SKP) on seminal characteristics and testes thiobarbituric acid reactive substances (TBARS) content in Iranian native breeder rooster. Thirty-six 40-week-old roosters were randomly allotted to 3 equal groups and received either a basal diet without SKP (T1 or control), or a diet containing 20 g/kg (T2) and 40 g/kg (T3) of SKP for 8-week-long experimental period. Semen samples were obtained weekly by abdominal massage to evaluate the seminal characteristics. At the end of the eighth week 18 birds (6 birds per each group) were randomly slaughtered, and sample was taken from right testes for TBARS evaluation. Administration of SKP improved all semen traits, except for sperm concentration. Likewise, TBARS content in SKP treatments did not significantly differ from the control (P>0.05). Seminal volume, live sperm percentage and plasma membrane integrity percentage in SKP-treated groups were higher than the control. Conversely, abnormal sperm percentages reduced in SKP-treated groups (P<0.05). Plasma membrane integrity in experimental treatments was significantly higher than the control in 2nd, 3rd and 7th weeks. However, at 6th and 8th weeks only T3 treatment was significantly different from the control. Notably, there was an increase in total sperm concentration in SKP-treated groups in compared to the control birds. In conclusion, this study indicated that addition of SKP in rooster diet improves sperm quality and also reduces their sperm membrane lipid peroxidation, which may lead to higher fertilization rate. PMID:27175185

  19. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells

    PubMed Central

    Zuleger, Cindy L.; Macklin, Michael D.; Bostwick, Bret L.; Pei, Qinglin; Newton, Michael A.; Albertini, Mark R.

    2011-01-01

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  20. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells.

    PubMed

    Zuleger, Cindy L; Macklin, Michael D; Bostwick, Bret L; Pei, Qinglin; Newton, Michael A; Albertini, Mark R

    2011-02-28

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  1. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat.

    PubMed

    Peiretti, Pier Giorgio; Medana, Claudio; Visentin, Sonja; Dal Bello, Federica; Meineri, Giorgia

    2012-05-01

    Commercial samples of beef and turkey meat were prepared by commonly used cooking methods with standard cooking times: (1) broiled at 200°C for 10min, (2) broiled at a medium temperature (140°C) for 10min, (3) cooked by microwave (MW) for 3min and then grilled (MW/grill) for 7min, (4) cooked in a domestic microwave oven for 10min, and (5) boiled in water for 10min. The raw and cooked meats were then analysed to determine the carnosine, anserine, homocarnosine, pentosidine, and thiobarbituric acid-reactive substance (TBARS) contents. It was observed that boiling beef caused a loss of approximately 50% of the carnosine, probably because of the high water solubility of carnosine and its homologues; cooking by microwave caused a medium loss of the anti-oxidants of approximately 20%; cooking by MW/grill led to a reduction in carnosine of approximately 10%. As far as the anserine and homocarnosine contents were concerned, a greater loss was observed for the boiling method (approximately 70%) while, for the other cooking methods, the value ranged from 30% to 70%. The data oscillate more for the turkey meat: the minimum carnosine decrease was observed in the cases of MW/grill and broiling at high temperature (25%). Analogously, the anserine and homocarnosine contents decreased slightly in the case of MW/grill and broiling at a high temperature (2-7%) and by 10-30% in the other cases. No analysed meat sample showed any traces of pentosidine above the instrumental determination limits. The cooked beef showed an increased TBARS value compared to the raw meat, and the highest values were found when the beef was broiled at a high temperature, cooked by microwave or boiled in water. The TBARS value of the turkey meat decreased for all the cooking methods in comparison to the TBARS value of the fresh meat.

  2. Apple flavonols and n-3 polyunsaturated fatty acid-rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation.

    PubMed

    Sekhon-Loodu, Satvir; Catalli, Adriana; Kulka, Marianna; Wang, Yanwen; Shahidi, Fereidoon; Rupasinghe, H P Vasantha

    2014-06-01

    Both quercetin glycosides and omega-3 polyunsaturated fatty acids (n-3 PUFA) are well established for their individual health benefits in ameliorating metabolic disease. However, their combined effects are not well documented. It was hypothesized that the beneficial properties of quercetin glycosides can be enhanced when provided in combination with n-3 PUFA. Therefore, the aim of the present study was to investigate the effects of apple flavonols (AF) and fish oil (FO), alone and in combination, on proinflammatory biomarkers and lipid profiles in rats fed a high-fat diet. Sixty male Wistar rats were randomly divided into 5 groups (n = 12) and fed a high-fat diet for 4 weeks. One of the 5 groups of rats was used as the high-fat control. The other 4 groups of rats were injected with lipopolysaccharide (LPS) (5 mg/kg body weight) intraperitoneally, 5 hours before euthanization. One of these 4 groups was used as the hypercholerolemic and inflammatory control (high-fat with lipopolysaccharide [HFL]), and the other 3 received AF (HFL + 25 mg/kg per day AF), FO (HFL + 1 g/kg per day FO), or the combination (HFL + AF + FO). Compared to the HFL group, the AF, FO, and AF + FO groups showed lower serum concentrations of interleukin-6 and C-reactive protein (CRP) levels. The AF, FO, and AF + FO also had lowered serum triacylglycerol and non-high-density lipoprotein cholesterol (HDL-C) concentrations, but higher HDL-C levels relative to the HFL group. An additive effect was observed on serum CRP in the AF + FO group as compared with the AF or FO groups. The results demonstrated that AF and FO inhibited the production of proinflammatory mediators and showed an improved efficacy to lower serum CRP when administered in combination, and they significantly improved blood lipid profiles in rats with diet-induced hyperlipidemia and LPS-induced acute inflammation.

  3. Apple flavonols and n-3 polyunsaturated fatty acid-rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation.

    PubMed

    Sekhon-Loodu, Satvir; Catalli, Adriana; Kulka, Marianna; Wang, Yanwen; Shahidi, Fereidoon; Rupasinghe, H P Vasantha

    2014-06-01

    Both quercetin glycosides and omega-3 polyunsaturated fatty acids (n-3 PUFA) are well established for their individual health benefits in ameliorating metabolic disease. However, their combined effects are not well documented. It was hypothesized that the beneficial properties of quercetin glycosides can be enhanced when provided in combination with n-3 PUFA. Therefore, the aim of the present study was to investigate the effects of apple flavonols (AF) and fish oil (FO), alone and in combination, on proinflammatory biomarkers and lipid profiles in rats fed a high-fat diet. Sixty male Wistar rats were randomly divided into 5 groups (n = 12) and fed a high-fat diet for 4 weeks. One of the 5 groups of rats was used as the high-fat control. The other 4 groups of rats were injected with lipopolysaccharide (LPS) (5 mg/kg body weight) intraperitoneally, 5 hours before euthanization. One of these 4 groups was used as the hypercholerolemic and inflammatory control (high-fat with lipopolysaccharide [HFL]), and the other 3 received AF (HFL + 25 mg/kg per day AF), FO (HFL + 1 g/kg per day FO), or the combination (HFL + AF + FO). Compared to the HFL group, the AF, FO, and AF + FO groups showed lower serum concentrations of interleukin-6 and C-reactive protein (CRP) levels. The AF, FO, and AF + FO also had lowered serum triacylglycerol and non-high-density lipoprotein cholesterol (HDL-C) concentrations, but higher HDL-C levels relative to the HFL group. An additive effect was observed on serum CRP in the AF + FO group as compared with the AF or FO groups. The results demonstrated that AF and FO inhibited the production of proinflammatory mediators and showed an improved efficacy to lower serum CRP when administered in combination, and they significantly improved blood lipid profiles in rats with diet-induced hyperlipidemia and LPS-induced acute inflammation. PMID:25026921

  4. Diazotization of the amino acid [closo-1-CB9H8-1-COOH-6-NH3] and reactivity of the [closo-1-CB9H8-1-COO-6-N2]- anion.

    PubMed

    Ringstrand, Bryan; Kaszynski, Piotr; Young, Victor G

    2011-03-21

    A comparative study of the reactivity of dinitrogen acids [closo-1-CB(9)H(8)-1-COOH-10-N(2)] (3[10]) and [closo-1-CB(9)H(8)-1-COOH-6-N(2)] (3[6]) was conducted by diazotization of a mixture of amino acids [closo-1-CB(9)H(8)-1-COOH-6-NH(3)] (1[6]) and [closo-1-CB(9)H(8)-1-COOH-10-NH(3)] (1[10]) with NO(+)BF(4)(-) in the presence of a heterocyclic base (pyridine, 4-methoxypyridine, 2-picoline, or quinoline). The 10-amino acid 1[10] formed an isolable stable 10-dinitrogen acid 3[10], while the 6-dinitrogen carboxylate 3[6](-) reacted in situ, giving products of N-substitution at the B6 position with the heterocyclic solvent (4[6]). The molecular and crystal structures for pyridinium acid 4[6]a were determined by X-ray crystallography. The electronic structures and reactivity of the 6-dinitrogen derivatives of the {1-CB(9)} cluster were assessed computationally at the B3LYP/6-31G(d,p) and MP2/6-31G(d,p) levels of theory and compared to those of the 10-dinitrogen, 2-dinitrogen, and 1-dinitrogen analogues.

  5. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  6. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  7. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  8. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  9. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α: A Meta-Analysis

    PubMed Central

    Li, Kelei; Huang, Tao; Zheng, Jusheng; Wu, Kejian; Li, Duo

    2014-01-01

    Background Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Methods and Findings A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m2. The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Conclusions Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended. PMID:24505395

  10. Study of Marine Natural Products Including Resorcyclic Acid Lactones from Humicola fuscoatra That Reactivate Latent HIV-1 Expression in an in Vitro Model of Central Memory CD4+ T Cells

    PubMed Central

    2015-01-01

    An extract of Humicola fuscoatra (UCSC strain no. 108111A) was shown to reactivate latent HIV-1 expression in an in vitro model of central memory CD4+ T cells. We report the bioassay-guided isolation and structure determination of several resorcyclic acid lactones, including four known compounds, radicicol (1, aka. monorden) and pochonins B (2), C (3), and N (4), and three new analogues, radicicols B–D (5–7). Compounds 1–3 and 5 showed moderate activities in the memory T cell model of HIV-1 latency. Radicicol (1) displayed lower potency in reactivating latent HIV-1 (EC50 = 9.1 μM) relative to the HDAC inhibitors apicidin (EC50 = 0.3 μM), romidepsin (EC50 = 0.003 μM), and SAHA (EC50 = 0.6 μM); however, it achieved equivalent maximum efficacy relative to the positive control compounds (98% of SAHA and romidepsin). PMID:24495105

  11. Disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical as a model of reactive oxygen species catalysed by Lewis and/or Brønsted acids.

    PubMed

    Nakanishi, Ikuo; Kawashima, Tomonori; Ohkubo, Kei; Waki, Tsukasa; Uto, Yoshihiro; Kamada, Tadashi; Ozawa, Toshihiko; Matsumoto, Ken-Ichiro; Fukuzumi, Shunichi

    2014-01-25

    Electron-transfer disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) occurred in the presence of Sc(3+) acting as a strong Lewis acid in deaerated acetonitrile. In contrast, in the case of weaker Lewis acids than Sc(3+), such as Mg(2+) and Li(+), external protons from acetic acid were required for the disproportionation of DPPH˙ to occur. PMID:24292255

  12. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background:N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers.Objective:We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acid...

  13. The acidity and proton affinity of the damaged base 1,N6-ethenoadenine in the gas phase versus in solution: intrinsic reactivity and biological implications.

    PubMed

    Liu, Min; Xu, Meng; Lee, Jeehiun K

    2008-08-01

    1,N(6)-ethenoadenine (epsilonA) is a highly mutagenic lesion that is excised from human DNA by the enzyme alkyladenine DNA glycosylase (AAG). In an effort to understand the intrinsic properties of 1,N(6)-ethenoadenine, we examined its gas phase acidity and proton affinity using quantum mechanical calculations and mass spectrometric experimental methods. We measure two acidities for epsilonA: a more acidic site (DeltaH(acid) = 332 kcal mol(-1); DeltaG(acid) = 325 kcal mol(-1)) and a less acidic site (DeltaH(acid) = 367 kcal mol(-1); DeltaG(acid) = 360 kcal mol(-1)). We also find that the proton affinity of the most basic site of 1,N(6)-ethenoadenine is 232-233 kcal mol(-1) (GB = 224 kcal mol(-1)). These measurements, when compared to calculations, establish that, under our experimental conditions, we have only the canonical tautomer of 1,N(6)-ethenoadenine present. We also compare the gas phase acidic properties of epsilonA with that of the normal bases adenine and guanine and find that epsilonA is the most acidic. This supports the theory that AAG and other related enzymes may cleave damaged bases as anions. Furthermore, comparison of the gas phase and aqueous acidities indicates that the nonpolar environment of the enzyme enhances the acidity differences of epsilonA versus adenine and guanine. PMID:18593189

  14. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  15. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    PubMed

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  16. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.

    PubMed

    Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M

    2015-10-30

    The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used.

  17. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.

    PubMed

    Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M

    2015-10-30

    The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used. PMID:25956647

  18. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  19. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Promotes Phenotypic Switching from Dedifferentiated to Differentiated Phenotype via Reactive Oxygen Species and p38 Mitogen-Activated Protein Kinase in Vascular Smooth Muscle Cells.

    PubMed

    Dan, Juhua; Sun, Xin; Li, Wanlu; Zhang, Yun; Li, Xuesong; Xu, Haobo; Li, Zhitao; Tian, Zhen; Guo, Shuyuan; Yao, Jianting; Gao, Weidong; Tian, Ye

    2015-06-01

    Sonodynamic therapy (SDT) has been found to inhibit in-stent restenosis in animal models. However, the mechanism is not fully elucidated. Here, we investigated the effects of 5-aminolevulinic acid (ALA)-mediated SDT (ALA-SDT) on vascular smooth muscle cells (VSMCs), a cause of restenosis, with a focus on SDT-induced phenotypic switching. Serum-induced dedifferentiated VSMCs were cultured with ALA (1 mm, 24 h) and exposed to ultrasound (0.8 W/cm(2)) for 5 min. Results indicated that ALA-SDT inhibited the migration and proliferation of VSMCs and enhanced the expression of differentiated phenotypic markers in VSMCs. Additionally, ALA-SDT increased intracellular reactive oxygen species accumulation and phosphorylated p38 mitogen-activated protein kinase in VSMCs. Inhibition of reactive oxygen species elevation or p38 mitogen-activated protein kinase activity abolished the expression of smooth muscle 22α (SM22α) in VSMCs induced by ALA-SDT. Taken together, these results suggest that ALA-SDT promotes transformation of the VSMC phenotype from the dedifferentiated to differentiated status via reactive oxygen species and activated p38 mitogen-activated protein kinase.

  20. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  1. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  2. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  3. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  4. Divergent reactivity in palladium-catalyzed annulation with diarylamines and α,β-unsaturated acids: direct access to substituted 2-quinolinones and indoles.

    PubMed

    Kancherla, Rajesh; Naveen, Togati; Maiti, Debabrata

    2015-06-01

    A palladium-catalyzed CH activation strategy has been successfully employed for exclusive synthesis of a variety of 3-substituted indoles. A [3+3] annulation for synthesizing substituted 2-quinolinones was recently developed by reaction of α,β-unsaturated carboxylic acids with diarylamines under acidic conditions. In the present work, an analogous [3+2] annulation is achieved from the same set of starting materials under basic conditions to generate 1,3-disubstituted indoles exclusively. Mechanistic studies revealed an ortho-palladation-π-coordination-β-migratory insertion-β-hydride elimination reaction sequence to be operative under the reaction conditions. PMID:25941155

  5. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  6. Ga[sub 13], Al[sub 13], GaAl[sub 12], and chromium-pillared montmorillonites: Acidity and reactivity for cumene conversion

    SciTech Connect

    Bradley, S.M.; Kydd, R.A. )

    1993-05-01

    A comparison has been made of the acidic characters of a series of metal polyoxocation pillar interlayered clay minerals (M-PILCs) by studying the infrared spectra of adsorbed pyridine. These comparisons were made for Ga[sub 13]-, Al[sub 13]- and GaAl[sub 12]-PILCs, and for Na[sup +]-exchanged montmorillonite (Na-STx-1). The Ga[sub 13]-PILC, was found to exhibit the strongest Lewis acid sites, followed by the AL[sub 13]-, and GaAl[sub 12]-PILCs and then by the Ns-STx-1. The relative number of Lewis acid sites, however, was found to be much greater for the GaAl[sub 12]-PILC, particularly after calcination at higher temperatures, indicating that the Ga[sub 13] Lewis acid sites did not have as high a thermal stability. The Broensted acidic characters for the pillared clays depend on the pillar, and follow the general decreasing order of abundance of GaAl[sub 12]-, Al[sub 13], and Ga[sub 13]-PILC when expressed as absorbance per unit mass. When the acidities per unit surface area were estimated, however, the Ga[sub 13]-PILCs were found to have the greatest number. This indicated that while the pillars contribute to the PILC acidities primarily through increasing the exposed phyllosilicate sheet surface areas, there is also a significant effect arising from the acidic characters of the pillars themselves. The dehydrogenation activities of Ga[sub 13]-, GaAl[sub 12]-, Al[sub 13]-, and Na-STx-1, in addition to a chromium polyoxocation-PILC, were compared by observing the products formed upon reaction with the model compound cumene. The Ga[sub 13]- and chromium-PILCs and the Na-Stx-1 exhibited almost exclusively dehydrogenation activities, whereas the Al[sub 13]- and GaAl[sub 12]-PILCs exhibited both cracking and dehydrogenation behaviors. These results prove that the pillars themselves can very strongly effect the catalytic activities of the PILCs. 3 refs., 6 figs., 2 tabs.

  7. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    SciTech Connect

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  8. Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials

    NASA Astrophysics Data System (ADS)

    Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

    2012-12-01

    Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The

  9. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  10. On the role of Ti(IV) as a Lewis acid in the chemistry of titanium zeolites: Formation, structure, reactivity, and aging of Ti-peroxo oxidizing intermediates. A first principles study.

    PubMed

    Spanó, Eleonora; Tabacchi, Gloria; Gamba, Aldo; Fois, Ettore

    2006-11-01

    The ethylene epoxidation cycle in a H2O2/H2O-loaded Ti zeolite has been simulated by a Car-Parrinello approach. Results indicate a process where the zeolitic framework is the active oxygen mediator. The dissociative chemisorption of H2O2 leads, via a transient Ti-hydroperoxo species, to H2O and a Ti-peroxo zeolite intermediate. Transfer of active oxygen to ethylene follows, giving the epoxide and recovering the catalyst. A thorough theoretical characterization indicates that the active oxidizing species is an asymmetric eta2-Ti-peroxo, absorbing in the visible range. The lability of the intermediate is found related to eta2 <--> eta1 interconversions of the Ti-peroxo structure. The interconversions, triggered by water molecules, could account for the experimentally found reduced catalytic activity in aged TS-1 catalysts. The results provide a microscopic picture of the reactivity and dehydration/aging processes of the catalyst fully consistent with experiments and highlight the fundamental role of the Lewis acid character of Ti in the formation, reactivity, and degradation of the active oxidizing species.

  11. Synthesis and reactivity of (C6F5)3B-N-heterocycle complexes. 1. Generation of highly acidic sp3 carbons in pyrroles and indoles.

    PubMed

    Guidotti, Simona; Camurati, Isabella; Focante, Francesca; Angellini, Luca; Moscardi, Gilberto; Resconi, Luigi; Leardini, Rino; Nanni, Daniele; Mercandelli, Pierluigi; Sironi, Angelo; Beringhelli, Tiziana; Maggioni, Daniela

    2003-07-11

    The reaction of pyrroles and indoles with B(C(6)F(5))(3) and BCl(3) produces 1:1 B-N complexes containing highly acidic sp(3) carbons, for example, N-[tris(pentafluorophenyl)borane]-5H-pyrrole (1) and N-[tris(pentafluorophenyl)borane]-3H-indole (2), that are formed by a new formal N-to-C hydrogen shift, the mechanism of which is discussed. With some derivatives, restricted rotation around the B-N bond and/or the B-C bonds was observed by NMR techniques, and some rotational barriers were calculated from experimental data. The acidity of the sp(3) carbons in these complexes is shown by their ability to protonate NEt(3), with formation of pyrrolyl- and indolyl-borate ammonium salts. The driving force for this reaction is given by the restoration of the aromaticity of the heterocycle. PMID:12839436

  12. The reactivation of DnaA(L366K) requires less acidic phospholipids supporting their role in the initiation of chromosome replication in Escherichia coli.

    PubMed

    Aranovich, Alexander; Parola, Abraham H; Fishov, Itzhak

    2007-09-18

    DnaA(L366K), in concert with a wild-type DnaA (wtDnaA) protein, restores the growth of Escherichia coli cells arrested in the absence of adequate levels of cellular acidic phospholipids. In vitro and in vivo studies showed that DnaA(L366K) alone does not induce the initiation of replication, and wtDnaA must also be present. Hitherto the different behavior of wt and mutant DnaA were not understood. We now demonstrate that this mutant may be activated at significantly lower concentrations of acidic phospholipids than the wild-type protein, and this may explain the observed growth restoration in vivo. PMID:17719583

  13. Lewis acid catalyzed [2+2] cycloaddition of ynamides and propargyl silyl ethers: synthesis of alkylidenecyclobutenones and their reactivity in ring-opening and ring expansion.

    PubMed

    Chen, Ling; Cao, Jian; Xu, Zheng; Zheng, Zhan-Jiang; Cui, Yu-Ming; Xu, Li-Wen

    2016-07-21

    A family of four-membered enones, polysubstituted alkylidenecyclobutenones, were easily prepared by a Lewis acid catalyzed [2+2] cycloaddition of ynamides and propargyl silyl ethers. This challenging regioselective [2+2] cycloaddition enables the efficient construction and conversion of four-membered enones, which provides high-value and structurally diverse products through the unexpected ring-opening and ring expansion of alkylidenecyclobutenone with Grignard reagents, organolithium, primary amines, and water. PMID:27387596

  14. The acid-base and redox reactivity of CeO2 nanoparticles: Influence of the Hubbard U term in DFT + U studies

    NASA Astrophysics Data System (ADS)

    Boronat, Mercedes; López-Ausens, Tirso; Corma, Avelino

    2016-06-01

    The interaction of small molecules with acid-base and redox centers in small Ce21O42 nanoparticles has been theoretically investigated using the DFT + U approach with the PW91 functional and U = 0.2 and 4 eV, in order to determine the influence of the U value on the trends observed in selected properties describing such interactions. CO adsorption at low coordinated Ce4 + Lewis acid centers, water adsorption and dissociation at acid-base pairs, formation of oxygen vacancy defects by removal of an oxygen atom from the system, and interaction of molecular O2 with such defects have been considered. The largest effect of the value of U is found for the description of the reduced Ce21O41 nanoparticle. In all other cases involving stoichiometric and oxidized Ce21O42 and Ce21O43 systems, the trends in the calculated adsorption and reaction energies, optimized geometries, charge distribution, and vibrational frequencies are quite similar at the three levels considered.

  15. Modification of the mechanical behavior in the glass transition region of poly(lactic acid) (PLA) through catalyzed reactive extrusion with poly(carbonate) (PC)

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Thanh; Coltelli, Maria-Beatrice; Anguillesi, Irene; Cinelli, Patrizia; Lazzeri, Andrea

    2014-05-01

    In order to improve the thermal stability of PLA based materials the strategy of blending it with poly(carbonate) of bisphenol A (PC), having a higher glass transition temperature, was followed and PLA/PC blends with different compositions, obtained also in the presence of an interchange reaction catalyst, Tetrabutylammonium tetraphenylborate (TBATPB) and triacetin were prepared by melt extrusion. The dynamical mechanical characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tanδ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data, showing an interesting improvement of thermal stability above the PLA glass transition, were explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.

  16. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase.

    PubMed Central

    Abriola, D P; MacKerell, A D; Pietruszko, R

    1990-01-01

    Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete. PMID:1968743

  17. Mark 22 Reactivity

    SciTech Connect

    Buckner, M.R.

    2001-07-02

    Calculations for reactivity held in control rods have underpredicted the observed Mark 22 reactivity. Reactivity predictions by charge designers have accounted for this by including large biases which change with exposure and reactor region. The purpose of this study was to thoroughly investigate the methods and data used in the reactivity calculations. The goal was to identify errors and improvements and make necessary corrections.

  18. Cytotoxic effect of p-Coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy.

    PubMed

    Shailasree, S; Venkataramana, M; Niranjana, S R; Prakash, H S

    2015-02-01

    p-Coumaric acid (p-CA), an ubiquitous plant phenolic acid, has been proven to render protection against pathological conditions. In the present study, p-CA was evaluated for its capacity to induce cytotoxic effect to neuroblastoma N2a cells and we report here the possible mechanism of its action. p-CA at a concentration of 150 μmol/L, upon exposure for 72 h, stimulated 81.23 % of cells to apoptosis, as evidenced by flow cytometer studies mediated through elevated levels of ROS (7.5-fold over control). Excess ROS production activated structural injury to mitochondrial membrane, observed as dissipation of its membrane potential and followed by the release of cytochrome c (8.73-fold). Enhanced generation of intracellular ROS correlated well with the decreased levels (~60 %) of intracellular GSH. Sensitizing neuroblastoma cells for induction of apoptosis by p-CA identified p53-mediated upregulated accumulation of caspase-8 messenger RNA (2.8-fold). Our data report on autophagy, representing an additional mechanism of p-CA to induce growth arrest, detected by immunoblotting and fluorescence, correlated with accumulation of elevated levels (1.2-fold) of the LC3-II protein and acridine orange-stained autophagosomes, both autophagy markers. The present study indicates p-CA was effective in production of ROS-dependent mitochondrial damage-induced cytotoxicity in N2a cells.

  19. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  20. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    SciTech Connect

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  1. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    SciTech Connect

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping; and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  2. Probing polymorphism and reactivity in the organic solid state using 13C NMR spectroscopy: Studies of p-Formyl- trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Harris, Kenneth D. M.; Thomas, John M.

    1991-09-01

    p-Formyl- trans-cinnamic acid (p-FCA) is known to exist in two different crystal phases (denoted β and γ). When crystals of the β phase of p-FCA are exposed to UV radiation, a solid state dimerization reaction occurs to produce 4,4'-diformyl-β-truxinic acid. In contrast, crystals of the γ phase of p-FCA are photostable. It is shown in this paper that high resolution solid state 13C NMR spectroscopy is a sensitive technique for distinguishing the β and γ phases of p-FCA, and can be used to investigate, in detail, the chemical transformation that occurs upon UV irradiation of the β phase. Specifically, the 13C NMR spectra presented here were recorded using the TOSS (total suppression of sidebands) pulse sequence; this is based upon the standard 13C CPMAS (cross polarization/magic angle sample spinning/high power 1H decoupling) method, but has the additional feature that all orders of spinning sidebands are eliminated from the spectrum. The photoproduct obtained from UV irradiation of β-p-FCA contains a significant noncrystalline component (assessed via powder X-ray diffraction), and our NMR studies suggest that this noncrystalline component of the photoproduct contains some amount of the γ phase of the monomer p-FCA. A mechanism is proposed to explain the fact that UV irradiation of β-p-FCA can generate, in addition to the expected photodimer, an impurity amount of the γ phase of p-FCA.

  3. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.

    PubMed

    Gibert, Oriol; de Pablo, Joan; Cortina, José Luis; Ayora, Carlos

    2005-08-01

    The efficiency of the sulphate reducing bacteria-based in situ treatment of acid mine drainage is often limited by the low degradability of the current carbon sources, typically complex plant-derived materials. In such non-sulphate-reducing conditions, field and laboratory experiences have shown that mechanisms other than sulphide precipitation should be considered in the metal removal, i.e. metal (oxy)hydroxides precipitation, co-precipitation with these precipitates, and sorption onto the organic matter. The focus of the present paper was to present some laboratory data highlighting the Zn and Cu sorption on vegetal compost and to develop a general and simple model for the prediction of their distribution in organic-based passive remediation systems. The model considers two kinds of sorption sites ( succeeds SO(2)H(2)) and the existence of monodentate and bidentate metal-binding reactions, and it assumes that only free M(2+) species can sorb onto the compost surface. The acid-base properties of the compost were studied by means of potentiometric titrations in order to identify the nature of the involved surface functional groups and their density. The distribution coefficient (K(D)) for both Zn and Cu were determined from batch experiments as a function of pH and metal concentration. The model yielded the predominant surface complexes at the experimental conditions, being succeeds SO(2)Zn for Zn and succeeds SO(2)HCu(+) and ( succeeds SO(2)H)(2)Cu for Cu, with log K(M) values of -2.10, 3.36 and 4.65, respectively. The results presented in this study have demonstrated that the proposed model provides a good description of the sorption process of Zn and Cu onto the vegetal compost used in these experiments.

  4. Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain.

    PubMed Central

    Spencer, P; Jordan, P M

    1993-01-01

    5-Aminolaevulinic acid dehydratase (ALAD) from a recombinant strain of Escherichia coli was purified to homogeneity. The enzyme is a homo-octamer of subunit M(r) 36554 +/- 17. Enzyme activity was dependent on the presence of Zn2+ ions and an exogenous thiol. Two molar equivalents of Zn2+ are bound/mol of subunit under reducing conditions. On exposure to the metal chelator EDTA, the two Zn2+ ions are removed, giving an inactive metal-depleted apo-ALAD. On oxidation of holo-ALAD, two disulphide bonds are formed with the loss of 1 mol of Zn2+/mol of subunit. The formation of the first disulphide led to the loss of catalytic activity. Replacement of the two bound Zn2+ ions with Co2+ resulted in the formation of a green protein with a spectrum indicative of the presence of charge-transfer bands from one or more cysteine-Co2+ ligands. While Mg2+ could not activate apo-ALAD alone, it was able to substitute for the second molar equivalent of bound Zn2+, leading to a further 4-fold stimulation in activity. The four cysteine residues involved in the formation of the two disulphide bonds were identified by protein-chemistry studies and were all located in a region of the protein extending from amino acid residues 120-134. Protein sequence data obtained in the present study has permitted the resolution of several differences between the published gene-derived protein sequences for ALAD from E. coli. PMID:8439296

  5. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  6. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  7. Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.

    PubMed

    Milanovic, Dusan; Sticht, Carsten; Röhrich, Manuel; Maier, Patrick; Grosu, Anca-L; Herskind, Carsten

    2015-10-01

    The cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of resistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. In conclusion, combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.

  8. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.

    PubMed

    Sun, Xia; Yan, Yubo; Li, Jiansheng; Han, Weiqing; Wang, Lianjun

    2014-02-15

    Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a "two solvents" reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe2O3, FeO(OH), Fe3O4 and Cr2FeO4. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the kobs from 0.600 to 0.024 min(-1). Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater.

  9. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production.

    PubMed

    Reyes-Ocampo, J; Ramírez-Ortega, D; Cervantes, G I Vázquez; Pineda, B; Balderas, Pavel Montes de Oca; González-Esquivel, D; Sánchez-Chapul, L; Lugo-Huitrón, R; Silva-Adaya, D; Ríos, C; Jiménez-Anguiano, A; Pérez-de la Cruz, V

    2015-09-01

    The kynurenines 3-hydroxyanthranilic acid (3-HANA) and its precursor 3-hydroxykynurenine (3-HK) are metabolites derived from tryptophan degradation. 3-HK, has been related to diverse neurodegenerative diseases including Huntington's, Alzheimer's and Parkinson's diseases that share mitochondrial metabolic dysregulation. Nevertheless, the direct effect of these kynurenines on mitochondrial function has not been investigated despite it could be regulated by their redox properties that are controversial. A body of literature has suggested a ROS mediated cell death induced by 3-HK and 3-HANA. On the other hand, some works have supported that both kynurenines have antioxidant effects. Therefore, the aim of this study was to investigate 3-HK and 3-HANA effects on mitochondrial and cellular function in rat cultured cortical astrocytes (rCCA) and in animals intrastriatally injected with these kynurenines as well as to determinate the ROS role on these effects. First, we evaluated 3-HK and 3-HANA effect on cellular function, ROS production and mitochondrial membrane potential in vivo and in vitro in rCCA. Our results show that both kynurenines decreased MTT reduction in a concentration-dependent manner together with mitochondrial membrane potential. These observations were accompanied with increased cell death in rCCA and in circling behavior and morphological changes of injected animals. Interestingly, we found that ROS production was not increased in both in vitro and in vivo experiments, and accordingly lipid peroxidation (LP) was neither increased in striatal tissue of animals injected with both kynurenines. The lack of effect on these oxidative markers is in agreement with the ·OH and ONOO(-) scavenging capacity of both kynurenines detected by chemical combinatorial assays. Altogether, these data indicate that both kynurenines exert toxic effects through mechanisms that include impairment of cellular energy metabolism which are not related to early ROS production.

  10. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III).

    PubMed

    Zhou, Lei; Zhang, Ya; Wang, Qi; Ferronato, Corinne; Yang, Xi; Chovelon, Jean-Marc

    2016-10-01

    The photochemical activities of three kinds of carbon nanotubes (CNTs) were investigated in the present study. Efficient procedures of dispersing the three kinds of carbon nanotubes in water were established, and the quantitative analysis methods were also developed by TOC-absorbance method. High pH value or low ionic strength of the colloidal solutions facilitated the dispersion of CNTs. The suspensions of three kinds of CNTs could generate singlet oxygen ((1)O2) and hydroxyl radical (•OH) under irradiation of simulated sunlight, while superoxide radical (O2 (•-)) was not detected. The steady-state concentrations of (1)O2 and •OH generated by these CNTs were also determined. The presence of CNTs in natural waters can affect the photochemical behavior of water constituents, such as nitrate, dissolved organic matter, and Fe(3+). Specifically, in nitrate solution, the presence of CNTs could inhibit the generation of •OH by nitrate through light screening effect, while the quenching effect of hydroxyl radicals by CNTs was not observed. Besides light screening effect, the three kinds of CNTs used in the experiments also have a strong inhibiting effect on the ability of DOM to produce •OH by binding to the active sites. Moreover, the adsorption of Fe(3+) on MWCNT-OH and MWCNT-COOH could lead to its inactivation of formation of •OH in acidic conditions. However, the presence of the three kinds of CNTs did not affect the ligand-to-metal charge transfer (LMCT) reaction of DOM-Fe (III) complex.

  11. System for reactivating catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  12. An investigation into the antigenic cross-reactivity of Ophiophagus hannah (king cobra) venom neurotoxin, phospholipase A2, hemorrhagin and L-amino acid oxidase using enzyme-linked immunosorbent assay.

    PubMed

    Tan, N H; Lim, K K; Jaafar, M I

    1993-07-01

    The antigenic cross-reactivity of four Ophiophagus hannah (king cobra) venom components, the neurotoxin (OH-NTX), phospholipase A2 (OH-PLA2), hemorrhagin (OH-HMG) and L-amino acid oxidase (OH-LAAO) were examined by indirect and double sandwich ELISAs. The indirect ELISAs for OH-NTX, OH-PLA2 and OH-HMG were very specific when assayed against the various heterologous snake venoms and O. hannah venom components, at 25 ng/ml antigen level. At higher antigen concentrations (100-400 ng/ml), there were moderate to strong indirect ELISA cross-reactions between anti-O. hannah neurotoxin and venoms from various species of cobra as well as two short neurotoxins. However, anti-O. hannah hemorrhagin did not cross-react with any of the venoms tested, even at these high antigen concentrations, indicating that O. hannah hemorrhagin is antigenically very different from other venom hemorrhagins. Examination of the indirect ELISA cross-reactions between anti-O. hannah PLA2 and several elapid PLA2 enzymes suggests that the elapid PLA2 antigenic class has more than two subgroups. The antibodies to O. hannah L-amino acid oxidase, however, yielded indirect ELISA cross-reactions with many venoms as well as with OH-NTX, OH-PLA2 and OH-HMG, indicating that OH-LAAO shares common epitopes even with unrelated proteins. The double sandwich ELISAs for the four anti-O. hannah venom components, on the other hand, generally exhibited a higher degree of selectivity than the indirect ELISA procedure.

  13. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics.

    PubMed

    Bhagan, Salome; Wayland, Bradford B

    2011-11-01

    Aqueous solutions of group nine metal(III) (M = Co, Rh, Ir) complexes of tetra(3,5-disulfonatomesityl)porphyrin [(TMPS)M(III)] form an equilibrium distribution of aquo and hydroxo complexes ([(TMPS)M(III)(D(2)O)(2-n)(OD)(n)]((7+n)-)). Evaluation of acid dissociation constants for coordinated water show that the extent of proton dissociation from water increases regularly on moving down the group from cobalt to iridium, which is consistent with the expected order of increasing metal-ligand bond strengths. Aqueous (D(2)O) solutions of [(TMPS)Ir(III)(D(2)O)(2)](7-) react with dihydrogen to form an iridium hydride complex ([(TMPS)Ir-D(D(2)O)](8-)) with an acid dissociation constant of 1.8(0.5) × 10(-12) (298 K), which is much smaller than the Rh-D derivative (4.3 (0.4) × 10(-8)), reflecting a stronger Ir-D bond. The iridium hydride complex adds with ethene and acetaldehyde to form organometallic derivatives [(TMPS)Ir-CH(2)CH(2)D(D(2)O)](8-) and [(TMPS)Ir-CH(OD)CH(3)(D(2)O)](8-). Only a six-coordinate carbonyl complex [(TMPS)Ir-D(CO)](8-) is observed for reaction of the Ir-D with CO (P(CO) = 0.2-2.0 atm), which contrasts with the (TMPS)Rh-D analog which reacts with CO to produce an equilibrium with a rhodium formyl complex ([(TMPS)Rh-CDO(D(2)O)](8-)). Reactivity studies and equilibrium thermodynamic measurements were used to discuss the relative M-X bond energetics (M = Rh, Ir; X = H, OH, and CH(2)-) and the thermodynamically favorable oxidative addition of water with the (TMPS)Ir(II) derivatives.

  14. p-Hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes. A chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase.

    PubMed

    Hazen, S L; Hsu, F F; Heinecke, J W

    1996-01-26

    Reactive aldehydes generated during lipid peroxidation have been implicated in the pathogenesis of atherosclerosis as well as other inflammatory diseases. A potential catalyst for such reactions is myeloperoxidase, a hemeprotein secreted by activated phagocytes. We now report that activated neutrophils utilize the myeloperoxidase-H2O2-chloride system to convert L-tyrosine to p-hydroxyphenylacetaldehyde. Production of p-hydroxyphenylacetaldehyde was nearly quantitative at physiological concentrations of L-tyrosine and chloride. Aldehyde generation required myeloperoxidase, H2O2, L-tyrosine, and chloride ion; it was inhibited by the H2O2 scavenger catalase and by the heme poisons azide and cyanide. Phorbol ester- and calcium ionophore-stimulated human neutrophils likewise generated p-hydroxyphenylacetaldehyde from L-tyrosine by a pathway inhibited by azide, cyanide, and catalase. Aldehyde production accounted for 75% of H2O2 generated by optimally stimulated neutrophils at plasma concentrations of L-tyrosine and chloride. Collectively, these results indicate that activated phagocytes, under physiological conditions, utilize myeloperoxidase to execute the chloride-dependent conversion of L-tyrosine to the lipid-soluble aldehyde, p-hydroxyphenylacetaldehyde, in near quantitative yield. Moreover, like aldehydes derived from lipid peroxidation, amino acid-derived aldehydes may exert potent biological effects in vascular lesions and other sites of inflammation.

  15. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    PubMed

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  16. Reactivity of boranes with a titanium(IV) amine tris(phenolate) alkoxide complex; formation of a Ti(IV) tetrahydroborate complex, a Ti(III) dimer and a Ti(IV) hydroxide Lewis acid adduct.

    PubMed

    Johnson, Andrew L; Davidson, Matthew G; Mahon, Mary F

    2007-12-14

    Treatment of the titanium(IV) alkoxide complex [Ti(Oi Pr)(OC6Me2H(2)CH2)3N] (2) with BH3.THF, as part of a study into the utility and reactivity of (2) in the metal mediated borane reduction of acetophenone, results in alkoxide-hydride exchange and formation of the structurally characterised titanium(iv) tetrahydroborate complex [Ti{BH4}(OC6Me2H2CH2)3N] (3). Complex (3) readily undergoes reduction to form the isolable titanium(III) species [Ti(OC6Me2H2CH2)3N]2 (4). Reaction of (2) with B(C6F5)3 results in formation of the Lewis acid adduct [Ti(OC6Me2H2CH2)3N][HO.B(C6F5)3] (5). In comparison, treatment of the less sterically encumbered alkoxide Ti(Oi Pr)4 with B(C6F5)3 results in alkoxide-aryl exchange and formation of the organometallic titanium complex [Ti(Oi Pr)3(C6F5)]2 (6). The molecular structures of 3, 4, 5 and 6 have been determined by X-ray diffraction.

  17. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    PubMed

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-01

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  18. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  19. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  20. Synthesis of MnO{sub 2} phases from LiMn{sub 2}O{sub 4} in aqueous acidic media. Mechanisms of phase transformations, reactivity, and effect of Bi species

    SciTech Connect

    Larcher, D.; Courjal, P.; Gerand, B.; Blyr, A.; Pasquier, A. du; Tarascon, J.M.; Urbina, R.H.

    1998-10-01

    The nature of the phases obtained by acid digestion of LiMn{sub 2}O{sub 4} phases prepared at 800 C from a mixture of MnO{sub 2} (EMD) and Li{sub 2}CO{sub 3} was investigated. The authors found that the complete transformation toward {alpha}-MnO{sub 2} and then {gamma}-MnO{sub 2} observed for LiMn{sub 2}O{sub 4} treated in 2.5 M H{sub 2}SO{sub 4} for 24 h at 95 C is highly dependent on the amount of water in the reaction medium. The {lambda} {yields} {alpha}/{gamma} transformation was found to be the result of a dissolution-crystallization mechanism that can be completely avoided by adding a soluble Bi, Pb, or Tl salt to the reaction medium. By coupling energy dispersive spectroscopy analysis, infrared spectroscopy, and potentiometric titration, the authors demonstrated the presence of Bi species adsorbed at the surface of the {lambda}-MnO{sub 2} oxide thus modifying its reactivity. In addition, the kinetics of the {lambda} {yields} {alpha}/{gamma} phase transformation was found to depend on the amount of added Bi salt, suggesting the complexing role of Bi toward Mn (Bi-Mn complexes), thereby affecting the crystallization step of the reaction. The same treatment was applied to LiMn{sub 2}O{sub 4} in the presence of a Bi salt in anhydrous electrolyte (LiPF{sub 6}/ethylene carbonate/dimethyl carbonate). In this case, the spinel oxide dissolution slows down and BiF{sub 3} precipitates. With respect to recent findings about the mechanisms involved in the electrochemical capacity failure at elevated temperature in Li-ion LiMn{sub 2}O{sub 4} cells, these results open new alternatives to solve this recurrent problem.

  1. The Prognostic Value of Serum Levels of Heart-Type Fatty Acid Binding Protein and High Sensitivity C-Reactive Protein in Patients With Increased Levels of Amino-Terminal Pro-B Type Natriuretic Peptide

    PubMed Central

    Jeong, Ji Hun; Seo, Yiel Hea; Ahn, Jeong Yeal; Kim, Kyung Hee; Seo, Ja Young; Kim, Moon Jin; Lee, Hwan Tae

    2016-01-01

    Background Amino-terminal pro-B type natriuretic peptide (NT-proBNP) is a well-established prognostic factor in heart failure (HF). However, numerous causes may lead to elevations in NT-proBNP, and thus, an increased NT-proBNP level alone is not sufficient to predict outcome. The aim of this study was to evaluate the utility of two acute response markers, high sensitivity C-reactive protein (hsCRP) and heart-type fatty acid binding protein (H-FABP), in patients with an increased NT-proBNP level. Methods The 278 patients were classified into three groups by etiology: 1) acute coronary syndrome (ACS) (n=62), 2) non-ACS cardiac disease (n=156), and 3) infectious disease (n=60). Survival was determined on day 1, 7, 14, 21, 28, 60, 90, 120, and 150 after enrollment. Results H-FABP (P<0.001), NT-proBNP (P=0.006), hsCRP (P<0.001) levels, and survival (P<0.001) were significantly different in the three disease groups. Patients were divided into three classes by using receiver operating characteristic curves for NT-proBNP, H-FABP, and hsCRP. Patients with elevated NT-proBNP (≥3,856 pg/mL) and H-FABP (≥8.8 ng/mL) levels were associated with higher hazard ratio for mortality (5.15 in NT-proBNP and 3.25 in H-FABP). Area under the receiver operating characteristic curve analysis showed H-FABP was a better predictor of 60-day mortality than NT-proBNP. Conclusions The combined measurement of H-FABP with NT-proBNP provides a highly reliable means of short-term mortality prediction for patients hospitalized for ACS, non-ACS cardiac disease, or infectious disease. PMID:27374706

  2. Progression of lipid peroxidation measured as thiobarbituric acid reactive substances, damage to DNA and histopathological changes in the liver of rats subjected to a methionine-choline-deficient diet.

    PubMed

    Jordao, Alceu Afonso; Zanutto, Marcia Elena; Domenici, Fernanda Aparecida; Portari, Guilherme Vannucchi; Cecchi, Andréa Oliveira; Zucoloto, Sergio; Vannucchi, Helio

    2009-09-01

    Methionine-choline-deficient diet represents a model for the study of the pathogenesis of steatohepatitis. Male rats were divided into three groups, the first group receiving a control diet and the other two groups receiving a methionine-choline-deficient diet for 1 month (MCD1) and for 2 months (MCD2), respectively. The livers of the animals were collected for the determination of vitamin E, thiobarbituric acid reactive substances (TBARS), GSH concentration, DNA damages, and for histopathological evaluation. The hepatic TBARS and GSH content was higher (P < 0.05) in the groups receiving the experimental diet (MCD1 and MCD2) compared to control diet, and hepatic vitamin E concentration differed (P < 0.05) between the MCD1 and MCD2 groups, with the MCD2 group presenting a lower concentration. Damage to hepatocyte DNA was greater (P < 0.05) in the MCD2 group (262.80 DNA injuries/100 hepatocytes) compared to MCD1 (136.4 DNA injuries/100 hepatocytes) and control diet (115.83 DNA injuries/100 hepatocytes). Liver histopathological evaluation showed that steatosis, present in experimental groups was micro- and macro-vesicular and concentrated around the centrolobular vein, zone 3, with preservation of the portal space. The inflammatory infiltrate was predominantly periductal and the steatosis and inflammatory infiltrate was similar in the MCD1 and MCD2 groups, although the presence of Mallory bodies was greater in the MCD2 group. The study describes the contribution of a methionine-choline-deficient diet to the progression of steatosis, lipid peroxidation and hepatic DNA damage in rats, serving as a point of reflection about the role of these nutrients in the western diet and the elevated non-alcoholic steatohepatitis rates in humans.

  3. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  4. PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl− Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yizhou; Chen, Zhong-Hua; Zhang, Ben; Hills, Adrian; Blatt, Michael R.

    2013-01-01

    The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca2+ signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca2+ channels and Ca2+ release from endomembrane stores coordinately elevate cytosolic free Ca2+ concentration ([Ca2+]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca2+ channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca2+ channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca2+]i increases in vivo. The basal activity of Ca2+ channels was not affected in the mutant; raising the concentration of Ca2+ outside was sufficient to promote Ca2+ entry, to inactivate current carried by inward-rectifying K+ channels and to activate current carried by the anion channels, both of which are sensitive to [Ca2+]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca2+ channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca2+ channels through ROS, thus affecting [Ca2+]i and its regulation of stomatal closure. PMID:23899646

  5. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice.

    PubMed

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-12-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.

  6. Effect of electron beam irradiation and storage at 5 degrees C on thiobarbituric acid reactive substances and carbonyl contents in chicken breast meat infused with antioxidants and selected plant extracts.

    PubMed

    Rababah, Taha; Hettiarachchy, Navam; Horax, Ronny; Eswaranandam, Satchithanandam; Mauromoustakos, Andronikos; Dickson, James; Niebuhr, Steven

    2004-12-29

    This study evaluated the effectiveness of synthetic and natural antioxidants, green tea, commercial grape seed extracts/combinations, and TBHQ, with varying concentrations of lipid oxidation of nonirradiated and irradiated chicken breast meats stored at 5 degrees C for 12 days. Fresh boneless and skinless chicken breast meats were vacuum-infused with varying concentrations of antioxidants: green tea, grape seed extracts alone/in combination, and TBHQ. The irradiation dosage was 3.0 kGy. Carbonyl values of raw chicken meat and thiobarbituric acid reactive substances (TBARS) values of raw and cooked chicken meat were determined for 0-12 days at 5 degrees C storage. TBARS values for 0-12 days of storage at 5 degrees C ranged from 1.21 to 7.3 and 1.22 to 8.51 mg malondialdehyde/100 g chicken for nonirradiated and irradiated raw chicken, respectively. TBARS values of cooked chicken ranged from 2.19 to 35.83 and 2.45 to 45.72 mg malondialdehyde/100 g chicken for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS values of both controls and plant extracts. The carbonyl content in meat lipid ranged from 1.7 to 2.9 and 1.7 to 4.41 micromol acetophenone/10 g of nonirradiated and irradiated chicken meat, respectively, and meat protein ranged from 1.4 to 2.07 and 1.41 to 2.72 micromol/10 g meat. Infusion of chicken meat with selected plant extracts is an effective method to minimize lipid oxidation and volatiles developments caused by irradiation. PMID:15612823

  7. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation.

    PubMed

    Gui, Minghui; Ormsbee, Lindell E; Bhattacharyya, Dibakar

    2013-08-01

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment.

  8. Low aggregation state diminishes ferrihydrite reactivity

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Heister, Katja; Meckenstock, Rainer U.

    2013-04-01

    Ferrihydrite is an abundant iron(oxy)hydroxide in soils and sediments and plays an important role in microbial iron cycling due to its high reactivity. Therefore, it is often synthesized and used in geomicrobiological and mineralogical studies. The reactivities of synthetic ferrihydrites vary between different studies and synthesis protocols. Hence, we synthesized five different ferrihydrites and characterized them with XRD, FTIR, XPS, and BET specific surface area. The reactivity of the ferrihydrite samples towards ascorbic acid was examined and compared with microbial reduction rates by Geobacter sulfurreducens. FTIR and XRD results show the presence of secondary, higher crystalline iron oxide phases like goethite and akaganeite for two samples. Consequently, those samples revealed lower biotic and abiotic reduction rates compared to pure ferrihydrite. Comparison of reduction rates with the specific surface area of all ferrihydrites showed neither correlation with abiotic reductive dissolution nor with microbial reduction. Especially one sample, characterized by a very low aggregation state and presence of secondary minerals, revealed a poor reactivity. We speculate that apart from the occurring secondary minerals also the low aggregation state played an important role. Decreasing aggregation diminishes the amount of kinks and edges on the surfaces, which are produced at contact sites in aggregates. According to dissolution theories, dissolution mainly starts at those surface defects and slows down with decreasing amount of defects. Furthermore, the non-aggregated ferrihydrite is free of micropores, a further stimulant for dissolution. Independent repetitions of experiments and syntheses according to the same protocol but without formation of secondary minerals, confirmed the low reactivity of the non-aggregated ferrihydrite. In summary, our results indicate that a decreasing aggregation state of ferrihydrite to a certain size does increase the reactivity

  9. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  10. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  11. Reactive Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Bouret, Y.; Celestini, F.

    2016-05-01

    We experimentally investigate the reactivity of Leidenfrost droplets with their supporting substrates. Several organic liquids are put into contact with a copper substrate heated above their Leidenfrost temperature. As the liquid evaporates, the gaseous flow cleans the superficial copper oxide formed at the substrate surface and the reaction maintains a native copper spot below the evaporating droplet. The copper spot can reach several times the droplet size for the most reactive organic compounds. This study shows an interesting coupling between the physics of the Leidenfrost effect and the mechanics of reactive flows. Different applications are proposed such as drop motion tracking and vapor flow monitoring.

  12. Human salivary α-amylase (EC.3.2.1.1) activity and periodic acid and schiff reactive (PAS) staining: A useful tool to study polysaccharides at an undergraduate level.

    PubMed

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosália; Prudêncio, Cristina

    2006-07-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically valuable (J. R. Rudland, S. C. Rennie (2003) The determination of the relevance of basic sciences learning objectives to clinical practice using a questionnaire survey, Med. Educ. (Oxf.) 37, 962-965; E. C. Wragg (2003) How can we determine the relevance of basic sciences learning objectives to clinical practice?, Med. Educ. (Oxf.) 37, 948-949). Thus, nowadays teachers are compelled to use their imagination to be able to elaborate laboratory sessions aiming for the understanding of theoretical concepts that are also clinically related: in other words, basic concepts and skills that underlie the competencies demanded of the future health professional. In the present work, we describe a set of laboratory sessions implemented in the discipline of biochemistry, belonging to the first year of several courses of allied health professionals, which can also be implemented in other health sciences courses. These sessions focus on the characteristics and properties of carbohydrates. The exercises we propose include two different laboratory practical sessions based on a histopathological routine technique known as periodic acid and Schiff reactive that is currently used to detect sugar metabolic and tumor diseases (J. M. T. Rivera, C. T. López, B. C. Segui (2001) Bioquímica Estructural: Conceptos y Tests, Tebar Flores, Madrid). The methodology described enables the demonstration of some biochemical properties of polysaccharides, namely animal and vegetable, and the catalytic activity of the human salivary α-amylase (EC.3.2.1.1) enzyme. A further comparison between α-amylase activity in vitro and in situ is also possible by the

  13. Recent changes in anthropogenic reactive nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  14. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  15. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  16. Reactivity Studies on a Diazadiphosphapentalene.

    PubMed

    Cui, Jingjing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-07-11

    The reactivity of diazadiphosphapentalene 1 towards various substrates was investigated. Reaction of 1 with ammonia-borane resulted in transfer hydrogenolysis concomitantly with the cleavage of a P-N bond. By treatment of 1 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), oxidation took place at one of the phosphorus atoms of 1, and a P(V) /P(III) mixed-valence derivative was isolated. At the same time, it was demonstrated that only one of the phosphorus atoms in 1 behaves as an electron donor for electrophiles and Lewis acids. The former afforded an intramolecularly coordinated phosphine-phosphenium species, whereas the latter demonstrates the ligand property of 1. UV irradiation induced rearrangement of 1 into another example of another diazadiphosphapentalene. PMID:27283866

  17. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  18. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  19. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    the desired rheological and structural characteristics of the final products for potential applications such as low density extrusion foaming or compatibilization of immiscible polymer blends. Important modification conditions through coagents are identified and reaction mechanisms are proposed. A high MW saturated polyester, PET, can also be rheologically modified in extruders through low MW multifunctional anhydride and epoxy compounds by chain extension/branching. Several such modifiers were successfully screened in terms of their reactivity towards PET under controlled reactive extrusion conditions. A dianhydride with medium reactivity was then successfully used in a one-step reactive modification/extrusion foaming process to produce low density foams. A similar process was successfully used to produce small cell size foams from a four component system containing PET, PP and lesser amounts of a low molecular weight multifunctional epoxy compound and an acid functionalized polyolefin, the latter acting as compatibilizers.

  20. Myochrysine Solution Structure and Reactivity

    PubMed Central

    Jones, William B.; Zhao, Zheng; Dorsey, John G.; Tepperman, Katherine

    1994-01-01

    We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95°. The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 μM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine. The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)2]- and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (Kapp) for the reaction is 6×10-4M-1. Further reaction of [Au(CN)2]- with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL2]-. These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used for the study of gold

  1. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  2. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  3. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  4. The reactivity of α-oxoaldehyde with reactive oxygen species in diabetes complications

    PubMed Central

    Matsumura, Yuriko; Iwasawa, Atsuo; Kobayashi, Toshihiro; Kamachi, Toshiaki; Ozawa, Toshihiko; Kohno, Masahiro

    2013-01-01

    The reactions of three α-oxoaldehydes (methylglyoxal, glyoxal, and pyruvic acid) with hydroxyl radicals generated by sonolysis of water were investigated using an electron spin resonance (electron paramagnetic resonance) spin-trapping method, and their reaction kinetics were investigated. It is apparent from our experimental results that methylglyoxal exhibits the highest reactivity of the three α-oxoaldehydes. These α-oxoaldehydes can react with hydroxyl radicals faster than other well-known antioxidants can. The reactivity of hydroxyl radicals is higher than that of hydrogen peroxides. PMID:23526048

  5. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  6. Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

    PubMed

    Hwang, Sung Won; Lee, Yoon-Mi; Aldini, Giancarlo; Yeum, Kyung-Jin

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives. PMID:26927058

  7. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  8. [Reactive arthritis. A review].

    PubMed

    Gutiérrez, F; Espinoza, L R

    1990-07-01

    The arthritides that meet the definition or reactive arthritis include the so-called seronegative spondyloarthropathies. Patients are usually aged less than thirty-two. Preceding infection is generally intestinal or venereal, although the involved agent may remain unknown. Enteric forms occur in small epidemics, whereas venereal forms correlate with a recent new sexual partner. The clinical picture varies in severity, with manifestations overlapping between disorders, and often the first complaint is extra-articular. Highly suggestive of reactive arthritis is "sausage" deformity of fingers and toes, pain and stiffness about multiple joints accompanied by radiating lower back discomfort, and enthesitis, particularly at the Achilles tendon. One out of six or seven patients becomes disabled; therapy aimed at preventing disability is vital since medication has little effect on spinal involvement. Antibiotic therapy may be effective in cases in which specific etiologic agents are well defined.

  9. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  10. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  11. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Skylab reactivation mission report

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1980-01-01

    On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.

  14. Reactivation of latent melioidosis.

    PubMed

    Johnson, A B; Ali, N

    1990-09-01

    Reports of melioidosis in residents of European countries are rare. We describe a case of reactivation of latent melioidosis in a United Kingdom resident. The case demonstrates the lack of clinical response to chemotherapy despite proven in vitro sensitivity of the organism to the drugs used. It is important to consider melioidosis as a cause of septicaemic illness in patients who have travelled to, or been resident in South-East Asia.

  15. Reactivation of latent melioidosis.

    PubMed Central

    Johnson, A. B.; Ali, N.

    1990-01-01

    Reports of melioidosis in residents of European countries are rare. We describe a case of reactivation of latent melioidosis in a United Kingdom resident. The case demonstrates the lack of clinical response to chemotherapy despite proven in vitro sensitivity of the organism to the drugs used. It is important to consider melioidosis as a cause of septicaemic illness in patients who have travelled to, or been resident in South-East Asia. PMID:2235805

  16. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  17. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  18. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  19. Generation of reactive oxygen species by the faecal matrix

    PubMed Central

    Owen, R; Spiegelhalder, B; Bartsch, H

    2000-01-01

    BACKGROUND—Reactive oxygen species are implicated in the aetiology of a range of human diseases and there is increasing interest in their role in the development of cancer.
AIM—To develop a suitable method for the detection of reactive oxygen species produced by the faecal matrix.
METHODS—A refined high performance liquid chromatography system for the detection of reactive oxygen species is described.
RESULTS—The method allows baseline separation of the products of hydroxyl radical attack on salicylic acid in the hypoxanthine/xanthine oxidase system, namely 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, and catechol. The increased efficiency and precision of the method has allowed a detailed evaluation of the dynamics of reactive oxygen species generation in the faecal matrix. The data show that the faecal matrix is capable of generating reactive oxygen species in abundance. This ability cannot be attributed to the bacteria present, but rather to a soluble component within the matrix. As yet, the nature of this soluble factor is not entirely clear but is likely to be a reducing agent.
CONCLUSIONS—The soluble nature of the promoting factor renders it amenable to absorption, and circumstances may exist in which either it comes into contact with either free or chelated iron in the colonocyte, leading to direct attack on cellular DNA, or else it initiates lipid peroxidation processes whereby membrane polyunsaturated fatty acids are attacked by reactive oxygen species propagating chain reactions leading to the generation of promutagenic lesions such as etheno based DNA adducts.


Keywords: colorectal cancer; faecal matrix; hypoxanthine; phytic acid; reactive oxygen species; xanthine oxidase PMID:10644317

  20. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation

    PubMed Central

    Gui, Minghui; Ormsbee, Lindell E.; Bhattacharyya, Dibakar

    2014-01-01

    Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment. PMID:24954974

  1. Isolation and Reactivity of Trifluoromethyl Iodonium Salts

    PubMed Central

    2016-01-01

    The strategic incorporation of the trifluoromethyl (CF3) functionality within therapeutic or agrochemical agents is a proven strategy for altering their associated physicochemical properties (e.g., metabolic stability, lipophilicity, and bioavailability). Electrophilic trifluoromethylation has emerged as an important methodology for installing the CF3 moiety onto an array of molecular architectures, and, in particular, CF3 λ3-iodanes have garnered significant interest because of their unique reactivity and ease of handling. Trifluoromethylations mediated by these hypervalent iodine reagents often require activation through an exogenous Lewis or Brønsted acid; thus, putative intermediates invoked in these transformations are cationic CF3 iodoniums. These iodoniums have, thus far, eluded isolation and investigation of their innate reactivity (which has encouraged speculation that such species cannot be accessed). A more complete understanding of the mechanistic relevance of CF3 iodoniums is paramount for the development of new trifluoromethylative strategies involving λ3-iodanes. Here, we demonstrate that CF3 iodonium salts are readily prepared from common λ3-iodane precursors and exhibit remarkable persistence under ambient conditions. These reagents are competent electrophiles for a variety of trifluoromethylation reactions, and their reactivity is reminiscent of that observed when CF3 iodanes are activated using Lewis acids. As such, our results suggest the mechanistic relevance of CF3 iodonium intermediates in trifluoromethylative processes mediated by λ3-iodanes. The isolation of CF3 iodonium salts also presents the unique opportunity to employ them more generally as mechanistic probes. PMID:27280169

  2. Elusive roles for reactive astrocytes in neurodegenerative diseases

    PubMed Central

    Ben Haim, Lucile; Carrillo-de Sauvage, Maria-Angeles; Ceyzériat, Kelly; Escartin, Carole

    2015-01-01

    Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND. PMID:26283915

  3. Assessment of sequence homology and cross-reactivity

    SciTech Connect

    Aalberse, Rob C. . E-mail: r.aalberse@sanquin.nl

    2005-09-01

    Three aspects of allergenicity assessment and are discussed: IgE immunogenicity, IgE cross-reactivity and T cell cross-reactivity, all with emphasis on in-silico predictability: from amino acid sequence via 3D structure to allergenicity.(1)IgE immunogenicity depends to an overwhelming degree on factors other than the protein itself: the context and history of the protein by the time it reaches the immune system. Without specification of these two factors very few foreign proteins can be claimed to be absolutely non-allergenic. Any antigen may be allergenic, particularly if it avoids activation of TH2-suppressive mechanisms (CD8 cells, TH1 cells, other regulatory T cells and regulatory cytokines). (2)IgE cross-reactivity can be much more reliably assessed by a combination of in-silico homology searches and in vitro IgE antibody assays. The in-silico homology search is unlikely to miss potential cross-reactivity with sequenced allergens. So far, no biologically relevant cross-reactivity at the antibody level has been demonstrated between proteins without easily-demonstrable homology. (3)T cell cross-reactivity is much more difficult to predict compared to B cell cross-reactivity, and its effects are more diverse. Yet, pre-existing cross-reactive T cell activity is likely to influence the outcome not only of the immune response, but also of the effector phase of the allergic reaction.

  4. Myochrysine solution structure and reactivity.

    PubMed

    Elder, R C; Jones, W B; Zhao, Z; Dorsey, J G; Tepperman, K

    1994-01-01

    We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95 degrees . The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 muM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine.The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)(2)](-) and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (K(app)) for the reaction is 6x10(-4)M(-1). Further reaction of [Au(CN)(2)](-) with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL(2)](-). These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used

  5. Bacterial responses to reactive chlorine species.

    PubMed

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  6. Formation and Reactivity of Biogenic Iron Minerals

    SciTech Connect

    Ferris, F. Grant

    2003-06-01

    In the current study we aimed to determine how the cell surface polymers, such as lipopolysaccharide (LPS) and capsular material, of a number of strains of Shewanella influenced surface proton binding behavior. An investigation of this kind is pertinent as surface proton binding site reactivity may influence a number of important eco-physiological factors. For example, proton binding sites may sequester Fe2+, as well as other metals like Ni2+, and thus inhibit the supply and metabolic reduction of Fe3+.(Parmar et al. 2001) Further understanding the cell surface reactivity of Shewanella is also important as this may influence the ability of the microorganism to adhere and interact with metal oxides and hydroxides. This study combined acid-base titration analyses to determine proton binding behavior with SDS-PAGE analysis of LPS.

  7. Reactive Power from Distributed Energy

    SciTech Connect

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  8. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-01

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. PMID:26669517

  9. Hydroxyl radical scavenging reactivity of proton pump inhibitors.

    PubMed

    Simon, Wolfgang Alexander; Sturm, Ernst; Hartmann, Hans-Jürgen; Weser, Ulrich

    2006-04-28

    In addition to the established control of acid secretion of the class of proton pump inhibitors (PPI) reactivity from the pyridyl methyl sulphinyl benzimidazole type a second independent anti-inflammatory reactivity was observed in vitro. This inhibitory reactivity was clearly noticed using three different assays where the aggressive hydroxyl radicals were successfully trapped in a concentration dependent manner. There is unequivocal evidence that the proton pump inhibitors having the sulphoxide group are able to scavenge hydroxyl radicals which are generated during a Fenton reaction. By way of contrast, the corresponding thioethers were substantially less active. No detectable effect was seen in the superoxide radical scavenging system. In conclusion, pantoprazole as well as the other proton pump inhibitors have a pronounced inhibitory reactivity towards hydroxyl radicals.

  10. Nitrous acid (HONO) observations during the Uintah Basin Wintertime Ozone Studies (UBWOS) and the Wintertime Investigation of Transport, Emission, and Reactivity (WINTER) study: sources, measurements interferences, and implications beyond.

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Roberts, J. M.; Alvarez, S. L.; Bates, T. S.; Brown, S. S.; Edwards, P.; Flynn, J. H., III; De Gouw, J. A.; Johnson, J. E.; Lee, B. H.; Lefer, B. L.; Liggio, J.; Lopez-Hilfiker, F.; Quinn, P.; Stutz, J.; Thornton, J. A.; Tsai, J. Y.; Wentzell, J. J. B.; Wild, R. J.; Yuan, B.

    2015-12-01

    Recent work has highlighted HONO as a strong daytime source of OH radicals though a general lack of consensus exists with respect to the sources and overall impact of HONO photolysis on daytime radical budgets. Improvements in atmospheric HOx and NOx budgets, and therefore daytime HONO constraints, are necessary to improve air quality control strategies in adversely affected regions. In this presentation HONO measurements made using multiple collocated instruments during the UBWOS 2013 and 2014 field studies will be discussed. These results suggest that our ability to measure HONO is heavily dependent on our understanding of sampling artifacts, measurement interferences, and background determinations. We also present mid-latitude tropospheric observations of HO2NO2, as high as 1.5 ppbv, that coincide with the observed maxima in daytime HONO. These coinciding observations of both HONO and HO2NO2 will be presented with a particular emphasis on potential vertical gradients, surface chemistry, and daytime budgets. Results of this work may be relevant to interpretation of HONO observations in a range of environments from clean arctic to relatively polluted urban summertime regions. Measurements of HONO from the Wintertime Investigation of Transport, Emission, and Reactivity (WINTER) project in 2015 will be shown for comparison.

  11. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  12. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  13. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.

  14. Feasibility of preparing nanodrugs by high-gravity reactive precipitation.

    PubMed

    Chen, Jian-Feng; Zhou, Min-Yi; Shao, Lei; Wang, Yu-Yong; Yun, Jimmy; Chew, Nora Y K; Chan, Hak-Kim

    2004-01-01

    To study the feasibility of producing nanoparticles of organic pharmaceuticals using a novel high-gravity reactive precipitation (HGRP) technique, reactive precipitation of benzoic acid as a model compound was carried out in a rotating packed bed under high gravity. The main factors such as the rotating bed speed, concentration and volume flow rate of the reactants (sodium benzoate and HCl) affecting the particle size of the precipitate were studied. Particle size was measured by transmission electron microscopy. Benzoic acid was precipitated as nanoparticles as fine as 10nm. The particle size was decreased with increasing rotating bed speed, concentration and volume flow rate of the reactants. The formation of ultrafine particles was due to intensified micro-mixing of reactants in the rotating bed to enhance nucleation while suppressing crystal growth. The results have demonstrated the feasibility to produce nanodrugs by the principle of acid-base precipitating reaction using HGRP.

  15. Kinetics of reactive wetting

    SciTech Connect

    Yost, F.G.

    2000-04-14

    The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line, and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.

  16. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    SciTech Connect

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  17. Reactive plasticizers in negative E-beam resists

    NASA Astrophysics Data System (ADS)

    Namaste, Y. M.; Obendorf, S. K.; Rodriguez, R.

    1988-05-01

    Negative electron resists generally exhibit excellent sensitivity, but suffer from swelling during development which results in poor resolution. A new approach to this problem is presented, in which reactive monomers are blended with host polymers to provide sensitive negative resists with improved resolution. Polychloromethylstyrene (PCMS) and VMCH (a terpolymer containing 86 percent vinyl chloride, 13 percent vinyl acetate and 1 percent maleic acid) were both found to be compatible with two reactive monomers, trimethylolpropanetrimethacrylate (TMPTMA) and dipentaerythritolpentaacrylate (DPEPA). Addition of 20 percent (w/w) of either monomer to PCMs or VMCH resulted in approximately tenfold increases in sensitivity.

  18. Functional models of α-keto acid dependent nonheme iron oxygenases: synthesis and reactivity of biomimetic iron(II) benzoylformate complexes supported by a 2,9-dimethyl-1,10-phenanthroline ligand.

    PubMed

    Das, Oindrila; Chatterjee, Sayanti; Paine, Tapan Kanti

    2013-03-01

    Two biomimetic iron(II) benzoylformate complexes, [LFe(II)(BF)(2)] (2) and [LFe(II)(NO(3))(BF)] (3) (L is 2,9-dimethyl-1,10-phenanthroline and BF is monoanionic benzoylformate), have been synthesized from an iron(II)-dichloro complex [LFe(II)Cl(2)] (1). All the iron(II) complexes have been structurally and spectroscopically characterized. The iron(II) center in 2 is coordinated by a bidentate NN ligand (2,9-dimethyl-1,10-phenanthroline) and two monoanionic benzoylformates to form a distorted octahedral coordination geometry. One of the benzoylformates binds to the iron in 2 via both carboxylate oxygens but the other one binds in a chelating bidentate fashion via one carboxylate oxygen and the keto oxygen. On the other hand, the iron(II) center in 3 is ligated by one NN ligand, one bidentate nitrate, and one monoanionic chelating benzoylformate. Both iron(II) benzoylformate complexes exhibit the facial NNO donor environment in their solid-state structures. Complexes 2 and 3 are stable in noncoordinating solvents under an inert atmosphere, but react with dioxygen under ambient conditions to undergo oxidative decarboxylation of benzoylformate to benzoate in high yields. Evidence for the formation of an iron(IV)-oxo intermediate upon oxidative decarboxylation of benzoylformate was obtained by interception and labeling experiments. The iron(II) benzoylformate complexes represent the functional models of α-keto acid dependent oxygenases.

  19. Reactive-infiltration instability in radial geometry

    NASA Astrophysics Data System (ADS)

    Grodzki, Piotr; Szymczak, Piotr

    2015-04-01

    A planar dissolution front propagating through a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This phenomenon, usually referred to known as reactive-infiltration instability is an important mechanism for pattern development in geology, with a range of morphologies and scales, from cave systems running for hundreds of miles to laboratory acidization on the scale of centimeters. In general, this instability is characterized by two length scales: the diffusive length (D/v) and the reactant penetration length (v/r), where v is the Darcy velocity, D - the diffusion constant and r - the dissolution rate. If the latter scale is much smaller than the former one can adopt the so-called thin front limit, where the interface is treated as a discontinuity in porosity, with a completely dissolved phase on one side and an undissolved phase on the other. Linear stability analysis for this case has been carried out by Chadam et al. [1], and the corresponding dispersion relation shows that long wavelengths are unstable, whereas short wavelengths are stabilized by diffusion. In their derivation, Chadam et al. have considered a linear geometry with a uniform pressure gradient applied along one of the directions. However, in many cases (e.g. in the acidization techniques used in oil industry) the reactive fluids are injected through a well and thus the relevant geometry is radial rather than linear. Motivated by this, we have carried out the linear stability analysis of the reactive-infiltration problem in radial geometry, with the fluid injection at the centre of the system. We stay within the thin-front limit and derive the corresponding dispersion relation, which shows the stable regions for both the long-wavelength and short-wavelength modes, and the unstable region in between. Next, we study how

  20. Reactivity of Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    In the preceding chapter, the fundamental nature of sulfide mineral surfaces has been discussed, and the understanding we have of the ways in which the surface differs from a simple truncation of the bulk crystal structure reviewed. This naturally leads on to considering our understanding of sulfide surface chemistry, in the sense of how sulfide surfaces interact and react, particularly with gases and liquids. As noted elsewhere in this volume, research on sulfide mineral surfaces and surface reactivity is a relatively recent concern of mineralogists and geochemists, partly prompted by the availability of new imaging and spectroscopic methods, powerful computers and new computer algorithms. There has been a significantly longer history of sulfide mineral surface research associated with technologists working with, or within, the mining industry. Here, electrochemical methods, sometimes combined with analytical and spectroscopic techniques, have been used to probe surface chemistry. The motivation for this work has been to gain a better understanding of the controls of leaching reactions used to dissolve out metals from ores, or to understand the chemistry of the froth flotation systems used in concentrating the valuable (usually sulfide) minerals prior to metal extraction. The need for improved metal extraction technologies is still a major motivation for research on sulfide surfaces, but in the last couple of decades, new concerns have become important drivers for such work. In particular, much greater awareness of the negative environmental impact of acid and toxic metal-bearing waters derived from breakdown of sulfide minerals at former mining operations has prompted research on oxidation reactions, and on sorption of metals at sulfide surfaces. At the interface between fundamental geochemistry and industrial chemistry, the role of sulfide substrates in catalysis, and in the self-assembly and functionalization of organic molecules, has become an area of

  1. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  2. Kinetics of Reactive Wetting

    SciTech Connect

    YOST, FREDERICK G.

    1999-09-09

    for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.

  3. The diffusion-active permeable reactive barrier.

    PubMed

    Schwarz, Alex O; Rittmann, Bruce E

    2010-03-01

    Using the biogeochemical model CCBATCH, which we expanded to include transport processes, we study a novel approach for the treatment of aquifers contaminated with toxic concentrations of metals, the diffusion-active permeable reactive barrier (DAPRB), which is based on generation of sulfide by Sulfate Reducing Bacteria (SRB) as the groundwater moves through a layered treatment zone. In the DAPRB, layers of low conductivity (low-K) containing reactive materials are intercalated between layers of high conductivity (high-K) that transport the groundwater across the barrier. Because diffusion dominates transport in the reactive layers, microbial communities can take advantage there of the chemical-gradient mechanism for protection from toxicants. The ideal sulfidic DAPRB design includes particulate organic matter (POM) and solid sulfate mineral inside the reactive (low-K) layer. This leads to sulfate reduction and the formation of sulfide ligands that complex with toxic metals, such as Zn(2+) in the high-K layer. We perform a theoretical biogeochemical analysis of the ideal configuration of a DAPRB for treatment of Zn-contaminated groundwater. Our analysis using the expanded CCBATCH confirms the gradient-resistance mechanism for bio-protection, with the ZnS bio-sink forming at the intersection of the Zn and sulfide plumes inside the high-K layers of the DAPRB. The detailed DAPRB analysis also shows that total alkalinity and pH distributions are representative footprints of the two key biogeochemical processes taking place, sulfidogenesis and Zn immobilization as sulfide mineral. This is so because these two reactions consume or produce acidic hydrogen and alkalinity. Additionally, because Zn immobilization is due to ZnS mineral precipitation, the ZnS mineral distribution is a good indicator for the bio-sink. Bio-sinks are located for the most part within the high-K layers, and their exact position depends on the relative magnitude of metal and sulfide fluxes. Finally

  4. Fish oil and neurovascular reactivity to mental stress in humans.

    PubMed

    Carter, Jason R; Schwartz, Christopher E; Yang, Huan; Joyner, Michael J

    2013-04-01

    Omega-3 fatty acids found in fish oil have been suggested to protect against cardiovascular disease, yet underlying mechanisms remain unclear. Despite the well-documented link between mental stress and cardiovascular risk, no study has examined neural cardiovascular reactivity to mental stress after fish oil supplementation. We hypothesized that fish oil would blunt the blood pressure, heart rate (HR), and muscle sympathetic nerve activity (MSNA) responsiveness to mental stress and/or augment limb vasodilation associated with mental stress. Blood pressure, HR, MSNA, forearm vascular conductance (FVC), and calf vascular conductance (CVC) responses were recorded during a 5-min mental stress protocol in 67 nonhypertensive subjects before and after 8 wk of fish oil (n = 34) or placebo supplementation (n = 33). Fish oil blunted HR reactivity to mental stress (group × condition × time interactions, P = 0.012) but did not alter blood pressure reactivity to mental stress (interactions, P > 0.05). Fish oil blunted total MSNA reactivity to mental stress (interaction, P = 0.039) but did not alter MSNA burst frequency and burst incidence reactivity (interactions, P > 0.05). Finally, fish oil significantly blunted CVC reactivity to mental stress (interaction, P = 0.013) but did not alter FVC reactivity (interaction, P > 0.05). In conclusion, 8 wk of fish oil supplementation significantly attenuated both HR and total MSNA reactivity to mental stress and elicited a paradoxical blunting of calf vascular conductance. These findings support and extend the growing evidence that fish oil may have positive health benefits regarding neural cardiovascular control in humans.

  5. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  6. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis.

    PubMed

    Hseu, You-Cheng; Senthil Kumar, K J; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25-200μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease.

  7. Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.

    PubMed

    Medina-Cleghorn, Daniel; Bateman, Leslie A; Ford, Breanna; Heslin, Ann; Fisher, Karl J; Dalvie, Esha D; Nomura, Daniel K

    2015-10-22

    We are exposed to a growing number of chemicals in our environment, most of which have not been characterized in terms of their toxicological potential or mechanisms. Here, we employ a chemoproteomic platform to map the cysteine reactivity of environmental chemicals using reactivity-based probes to mine for hyper-reactive hotspots across the proteome. We show that environmental contaminants such as monomethylarsonous acid and widely used pesticides such as chlorothalonil and chloropicrin possess common reactivity with a distinct set of proteins. Many of these proteins are involved in key metabolic processes, suggesting that these targets may be particularly sensitive to environmental electrophiles. We show that the widely used fungicide chlorothalonil specifically inhibits several metabolic enzymes involved in fatty acid metabolism and energetics, leading to dysregulated lipid metabolism in mice. Our results underscore the utility of using reactivity-based chemoproteomic platforms to uncover novel mechanistic insights into the toxicity of environmental chemicals.

  8. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  9. Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation

    NASA Astrophysics Data System (ADS)

    Maillot, Fabien; Morin, Guillaume; Juillot, Farid; Bruneel, Odile; Casiot, Corinne; Ona-Nguema, Georges; Wang, Yuheng; Lebrun, Sophie; Aubry, Emmanuel; Vlaic, Gilberto; Brown, Gordon E.

    2013-03-01

    Poorly ordered nanocrystalline hydroxysulfate minerals of microbial origin, such as schwertmannite, Fe8O8(OH)6SO4, are important arsenic scavengers in sulfate-rich acid mine drainage (AMD) environments. However, despite the fact that As(III) and As(V) have been shown to sorb on schwertmannite, little is known about the actual mechanism of arsenic scavenging processes after microbial Fe(II) oxidation in AMD environments. The major focus of the present study is to determine the molecular-level structure of poorly ordered As(III) and As(V) bearing Fe oxyhydroxysulfate minerals from the Carnoulès AMD, France, which exhibits exceptional As(III) concentrations. Powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to compare field samples with a large set of synthetic analogs prepared via biotic or abiotic pathways, with As/Fe ratios typical of minerals and mineraloids ranging from nanocrystalline schwertmannite to amorphous hydroxysulfate compounds. Our results yield further evidence for the poisoning effect of As(V) in limiting the nucleation of schwertmannite. For initial dissolved As(V)/Fe(III) molar ratios ⩾0.2, amorphous Fe(III)-As(V) hydroxysulfate forms, with a local structure consistent with that of amorphous ferric arsenate. EXAFS data for this amorphous material are consistent with corner-sharing FeO6 octahedra to which AsO4 tetrahedra attach via double-corner 2C linkages. For As(V)/Fe(III) molar ratios lower than 0.2, As(V) binds to schwertmannite via 2C surface complexes. In contrast with the As(V)-containing samples, As(III) has a lower affinity for schwertmannite following its nucleation, as this mineral phase persists up to an initial As(III)/Fe(III) molar ratio of 0.6. EXAFS data indicate that during the precipitation process, As(III) forms dominantly 2C surface complexes on schwertmannite surfaces, likely on the sides of double-chains of Fe(III)(O,OH)6 octahedra, with a smaller proportion of edge

  10. Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment

    SciTech Connect

    Shams, K.G.; Miller, R.L.; Baldwin, R.M.

    1992-07-13

    In this paper, we describe results from a study in which mild chemical pretreatment of coal has been used to enhance low severity liquefaction reactivity. We have found that ambient pretreatment of eight Argonne coals using methanol and a trace amount of hydrochloric acid improves THF-soluble conversions 24.5 wt% (maf basis) for Wyodak subbituminous coal and 28.4 wt% for Beulah-Zap lignite with an average increase of 14.9 wt% for liquefaction of the eight coals at 623 K (350{degree}C) reaction temperature and 30 min. reaction time. Similar enhancement results occurred using, hexane or acetone in place of methanol. Pretreatment with methanol and HCI separately indicated that both reagents were necessary to achieve maximum liquefaction improvement. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol%. No appreciable effect on reactivity was observed at higher acid concentrations. Although vapor phase alcohol/HCI mixtures have been shown to partially alkylate bituminous coals, analysis of Wyodak and Illinois {number sign}6 coal samples indicated that no organic phase alteration occurred during pretreatment; however, over 90 wt% of the calcium was removed from each coal. Calcium is thought to catalyze retrogressive reactions during coal pyrolysis, and thus calcium removal prior to low severity liquefaction minimizes the rate of THF-insoluble product formation.

  11. Reactivity to nicotine cues over repeated cue reactivity sessions.

    PubMed

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.

  12. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  13. Signaling functions of reactive oxygen species.

    PubMed

    Forman, Henry Jay; Maiorino, Matilde; Ursini, Fulvio

    2010-02-01

    We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.

  14. Allergenic tropomyosins and their cross-reactivities.

    PubMed

    Jeong, Kyoung Yong; Hong, Chein-Soo; Yong, Tai-Soon

    2006-01-01

    The ingestion or inhalation of some proteins may lead to adverse immune reactions. Allergens may trigger allergic reactions in genetically predisposed individuals when they are absorbed through the skin or make contact with mucous membranes. An allergic disease often deteriorates the quality of life and may sometimes be life-threatening due to anaphylactic shock. A number of allergens have been characterized from various multicellular organisms to date. It is thought to be reasonable to pay a special attention to the substance which is highly cross-reactive and which causes adverse responses in the molecules that are not sensitized but similar to the sensitized allergen. Tropomyosin has been described as an important food allergen in shrimp, lobster, crab, oysters, squid, and other invertebrates. Allergic reactions to shellfish and mollusks are often cross-reactive, which may be explained by the highly conserved amino acid sequences of tropomyosins among invertebrates, but vertebrate tropomyosins are not known to be allergenic. Several tropomyosins from domestic arthropods have been reported to be allergenic. Recently, it was suggested that an infection of helminthic parasites might lead to sensitization to tropomyosin and elicit allergic reactions to other invertebrates. Much effort has been made to characterize these allergenic tropomyosins from various sources. We will discuss the physicochemical characteristics and the potential application of tropomyosin for the diagnosis and therapeutics of allergic disorders.

  15. Reactivity of hair cystine in microemulsion media.

    PubMed

    Erra, P; Solans, C; Azemar, N; Parra, J L; Touraud, D; Clausse, M

    1990-04-01

    Synopsis Reduction of keratin cystine by thioglycolic acid incorporated in microemulsions of the water/sodium dodecilsulphate/n-pentanol/n-dodecane system has been determined. The results obtained have been interpreted in relation to the properties of the reaction media. Microemulsions with constant oil-to-surface active mixture weight ratios (R(o/s)) and different concentrations of water were chosen as reaction media. At low water concentrations a steep increase in reactivity with the increase of water was observed at all values of R(o/s). However it was more pronounced the higher the oil content. A relation between maximum cysteine formation and percolative behaviour of the microemulsion was found at high R(o/s) values.

  16. Heterogeneous uptake of amines by citric acid and humic acid.

    PubMed

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  17. The influence of electric field on the global and local reactivity descriptors: reactivity and stability of weakly bonded complexes.

    PubMed

    Kar, Rahul; Chandrakumar, K R S; Pal, Sourav

    2007-01-18

    The response of the global and local reactivity density-based descriptors (chemical potential, hardness, softness, Fukui function, and local softness) in the presence of external electric field has been studied for some of the simple prototype molecular systems. In addition to the analysis on the reactivity of these systems, the influence of the electric field on the interaction energy of the complexes formed by these systems has also been studied using the recently proposed semiquantitative model based on the local hard-soft acid-base principle. By using the inverse relationship between the global hardness and softness parameters, a simple relationship is obtained for the variation of hardness in terms of the Fukui function under the external electric field. It is shown that the increase in the hardness values for a particular system in the presence of external field does not necessarily imply that the reactivity of the system would be deactivated or vice versa. PMID:17214475

  18. Formation and Reactivity of Biogenic Iron Minerals

    SciTech Connect

    Ferris, F. Grant

    2002-06-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals.

  19. Surface Reactivity of Quasicrystalline Materials

    NASA Astrophysics Data System (ADS)

    Jenks, Cynthia J.

    1997-03-01

    A fundamental knowledge and understanding of the reactivity of quasicrystalline materials is of great interest because of certain practical properties these materials possess, namely low coefficients of friction and oxidation resistance. A recent "hierarchical cluster" model proposed by Janot(C. Janot Phys. Rev. B 56 (1996) 181.) predicts that quasicrystal surfaces should be intrinsically inert and rough, and is useful in explaining their interesting properties. Surface structure and preparation may play a role in the applicability of this model. In this talk, we examine these factors and present experimental measurements of the surface reactivity of some Al-based quasicrystalline materials under ultra-high vacuum conditions (less than 2 x 10-10 Torr). To gain an understanding of what properties are unique to quasicrystals, we make comparisons with the surface reactivity of crystalline alloys of similar composition and pure, crystalline aluminum. note number.

  20. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOEpatents

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  1. Influence of microemulsion structure on cystine reactivity with keratin fibres.

    PubMed

    Solans, C; Parra, J L; Erra, P; Azemar, N; Clausse, M; Touraud, D

    1987-10-01

    Summary The activity of thioglycolic acid, incorporated in a microemulsion, towards cystine residues present in keratin proteins has been investigated. In an attempt to relate the structural state of the microemulsions to cystine reactivity, an appropriate model system showing a large microemulsion domain with diverse structures was chosen. The realm of preferentially hydrocarbon-continuous microemulsion-type media was found to induce the highest activity.

  2. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    NASA Astrophysics Data System (ADS)

    Ortiz Rivera, Lymaris; Bakaev, Victor A.; Banerjee, Joy; Mueller, Karl T.; Pantano, Carlo G.

    2016-05-01

    Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a 13C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC-MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H2O and CO2 without any contribution to chemical bonding at the interface.

  3. Neurological Complications of VZV Reactivation

    PubMed Central

    Nagel, Maria A.

    2014-01-01

    Purpose of the review Varicella zoster virus (VZV) reactivation results in zoster, which may be complicated by postherpetic neuralgia, myelitis, meningoencephalitis and VZV vasculopathy. This review highlights the clinical features, laboratory abnormalities, imaging changes and optimal treatment of each of those conditions. Because all of these neurological disorders produced by VZV reactivation can occur in the absence of rash, the virological tests proving that VZV caused disease are discussed. Recent findings After primary infection, VZV becomes latent in ganglionic neurons along the entire neuraxis. With a decline in VZV-specific cell-mediated immunity, VZV reactivates from ganglia and travels anterograde to the skin to cause zoster, which is often complicated by postherpetic neuralgia. VZV can also travel retrograde to produce meningoencephaltis, myelitis and stroke. When these complications occur without rash, VZV-induced disease can be diagnosed by detection of VZV DNA or anti-VZV antibody in CSF and treated with intravenous acyclovir. Summary Awareness of the expanding spectrum of neurological complications caused by VZV reactivation with and without rash will improve diagnosis and treatment. PMID:24792344

  4. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY WORKSHOP

    EPA Science Inventory

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on Ju...

  5. Reactivity of Various Compound Classes Towards the Folin-Ciocalteu Reagent

    NASA Astrophysics Data System (ADS)

    Walker, Richard B.; Everette, Jace D.; Bryant, Quinton M.; Green, Ashlee M.; Abbey, Yvonne A.; Wangila, Grant W.

    2010-04-01

    The Folin-Ciocalteu assay has been used for over 80 years for the detection and quantitation of phenols. A modification of it, called the Lowry assay, is used for the quantitation of proteins. It has been commonly reported that the Folin-Ciocalteu reagent, which is a complex mixture containing sodium molybdate and sodium tungstate, is reactive towards other antioxidants besides phenols. However, until now, no one has done experiments to test this hypothesis. In our study, we tested the reactivity of the reagent towards over 70 compounds. Compound classes included phenols, thiols, vitamins, amino acids, proteins, nucleotide bases, unsaturated fatty acids, carbohydrates, organic acids, inorganic ions, aldehydes and ketones. All phenols, proteins and thiols tested were reactive towards the reagent. Other compounds which showed reactivity included guanine, glyceraldehyde, dihydroxyacetone, tyrosine, tryptophan, cysteine, ascorbic acid, Trolox, retinoic acid, pyridoxine, Fe+2, Mn+2, I- and SO3-2. In summary, our study showed that the Folin-Ciocalteu reagent is significantly reactive towards other compounds besides phenols. Therefore, it should be seen as a measure of total antioxidant capacity rather than phenolic content. It would be useful as a general antioxidant assay for measuring antioxidant capacities of compounds of biomedical interest.

  6. Improving TCO-Conjugated Antibody Reactivity for Bioorthogonal Pretargeting

    NASA Astrophysics Data System (ADS)

    Chu, Tina Tingyi

    Cancer remains a major cause of death because of its unpredictable progression. Utilizing bioorthogonal chemistry between trans-cyclooctene (TCO) and tetrazine to target imaging agents to tumors in two subsequent steps offers a more versatile platform for molecular imaging. This is accomplished by pretargeting TCO-modified primary antibody to cell surface biomarkers, followed by delivery of tetrazine-modified imaging probes. In previous work, it has been established that TCO-tetrazine chemistry can be applied to in vivo imaging, resulting in precise tumor detection. However, most TCO modifications on an antibody are not reactive because they are buried within hydrophobic domains. To expose and improve the reactivity, Rahim et al. incorporated a polyethylene glycol (PEG) linker through a two-step reaction with DBCO-azide, which successfully maintained 100% TCO functionality. In this project, various types of linkers were studied to improve the reactivity in a single step. Three primary types of linkers were studied: hydrophilic PEG chains, hydrophobic short linkers, and amphiphilic linkers. Our results show that PEG chain alone can only maintain 40% TCO reactivity. Unexpectedly, a short alkyl chain (valeric acid) provided superior results, with 60% TCO reactivity. Lengthening the alkyl chain did not improve results further. Finally, an amphiphilic linker containing valeric acid and PEG performed worse than either linker type alone, at ˜30% functionality. We conclude that our previous 100% functional TCO result obtained with the two-step coupling may have stemmed from generation of the DBCO/azide cycloaddition product. Future work will explore factors such as rigidity of linker structure, polarity, or charges.

  7. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes

    PubMed Central

    Rodríguez-Bolaños, Monica; Cabrera, Nallely

    2016-01-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588

  8. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice.

    PubMed

    Mahmoud, Motamed Elsayed; Ihara, Fumiaki; Fereig, Ragab M; Nishimura, Maki; Nishikawa, Yoshifumi

    2016-02-01

    Although Toxoplasma gondii (T. gondii) infection is relevant to many psychiatric disorders, the fundamental mechanisms of its neurobiological correlation with depression are poorly understood. Here, we show that reactivation of chronic infection by an immunosuppressive regimen caused induction of depressive-like behaviors without obvious sickness symptoms. However, the depression-related behaviors in T. gondii-infected mice, specifically, reduced sucrose preference and increased immobility in the forced-swim test were observed at the reactivation stage, but not in the chronic infection. Interestingly, reactivation of T. gondii was associated with production of interferon-gamma and activation of brain indoleamine 2, 3-dioxygenase, which converts tryptophan to kynurenine and makes it unavailable for serotonin synthesis. Furthermore, serotonin turnover to its major metabolite, 5-hydroxyindoleacetic acid, was also enhanced at the reactivation stage. Thus, enhanced tryptophan catabolic shunt and serotonin turnover may be implicated in development of depressive-like behaviors in mice with reactivated T. gondii. PMID:26554725

  9. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  10. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  11. C-Reactive Protein (CRP) Test

    MedlinePlus

    ... Home Visit Global Sites Search Help? C-Reactive Protein Share this page: Was this page helpful? Also known as: CRP Formal name: C-Reactive Protein Related tests: ESR , Complement , Procalcitonin , ANA , Rheumatoid Factor ...

  12. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  13. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  14. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Perceptual basis for reactive teleoperation.

    SciTech Connect

    Park, Y. S.; Ewing, T. F.; Boyle, J. M.; Yule, T. J.

    2001-08-28

    To enhance task performance in partially structured environment, enhancement of teleoperation was proposed by introducing autonomous behaviors. Such autonomy is implemented based on reactive robotic architecture, where reactive motor agents that directly couples sensory inputs and motor actions become the building blocks. To this end, presented in this paper is a perceptual basis for the motor agents. The perceptual basis consists of perceptual agents that extracts environmental information from a structured light vision system and provide action oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms--sensor fission, fusion, and fashion--becomes basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.

  16. Melioidosis: reactivation during radiation therapy

    SciTech Connect

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  17. Functional Reactive Polymer Electrospun Matrix.

    PubMed

    Agarwal, Vipul; Ho, Dominic; Ho, Diwei; Galabura, Yuriy; Yasin, Faizah; Gong, Peijun; Ye, Weike; Singh, Ruhani; Munshi, Alaa; Saunders, Martin; Woodward, Robert C; St Pierre, Timothy; Wood, Fiona M; Fear, Mark; Lorenser, Dirk; Sampson, David D; Zdyrko, Bogdan; Luzinov, Igor; Smith, Nicole M; Iyer, K Swaminathan

    2016-02-01

    Synthetic multifunctional electrospun composites are a new class of hybrid materials with many potential applications. However, the lack of an efficient, reactive large-area substrate has been one of the major limitations in the development of these materials as advanced functional platforms. Herein, we demonstrate the utility of electrospun poly(glycidyl methacrylate) films as a highly versatile platform for the development of functional nanostructured materials anchored to a surface. The utility of this platform as a reactive substrate is demonstrated by grafting poly(N-isopropylacrylamide) to incorporate stimuli-responsive properties. Additionally, we demonstrate that functional nanocomposites can be fabricated using this platform with properties for sensing, fluorescence imaging, and magneto-responsiveness. PMID:26780245

  18. Reactive behavior, learning, and anticipation

    NASA Technical Reports Server (NTRS)

    Whitehead, Steven D.; Ballard, Dana H.

    1989-01-01

    Reactive systems always act, thinking only long enough to 'look up' the action to execute. Traditional planning systems think a lot, and act only after generating fairly precise plans. Each represents an endpoint on a spectrum. It is argued that primitive forms of reasoning, like anticipation, play an important role in reducing the cost of learning and that the decision to act or think should be based on the uncertainty associated with the utility of executing an action in a particular situation. An architecture for an adaptable reactive system is presented and it is shown how it can be augmented with a simple anticipation mechanism that can substantially reduce the cost and time of learning.

  19. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  20. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    PubMed

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  1. Reactivity of metal catalysts in glucose-fructose conversion.

    PubMed

    Loerbroks, Claudia; van Rijn, Jeaphianne; Ruby, Marc-Philipp; Tong, Qiong; Schüth, Ferdi; Thiel, Walter

    2014-09-15

    A joint experimental and computational study on the glucose-fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were only mediocre catalysts, and MgCl2 was inactive. To explain these differences in reactivity, DFT calculations were performed for various metal complexes. The computed mechanism consists of two proton transfers and a hydrogen-atom transfer; the latter was the rate-determining step for all catalysts. The computational results were consistent with the experimental findings and rationalized the observed differences in the behavior of the metal catalysts. To be an efficient catalyst, a metal complex should satisfy the following criteria: moderate Brønsted and Lewis acidity (pKa = 4-6), coordination with either water or weaker σ donors, energetically low-lying unoccupied orbitals, compact transition-state structures, and the ability for complexation of glucose. Thus, the reactivity of the metal catalysts in water is governed by many factors, not just the Lewis acidity. PMID:25156402

  2. Reactivity of metal catalysts in glucose-fructose conversion.

    PubMed

    Loerbroks, Claudia; van Rijn, Jeaphianne; Ruby, Marc-Philipp; Tong, Qiong; Schüth, Ferdi; Thiel, Walter

    2014-09-15

    A joint experimental and computational study on the glucose-fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were only mediocre catalysts, and MgCl2 was inactive. To explain these differences in reactivity, DFT calculations were performed for various metal complexes. The computed mechanism consists of two proton transfers and a hydrogen-atom transfer; the latter was the rate-determining step for all catalysts. The computational results were consistent with the experimental findings and rationalized the observed differences in the behavior of the metal catalysts. To be an efficient catalyst, a metal complex should satisfy the following criteria: moderate Brønsted and Lewis acidity (pKa = 4-6), coordination with either water or weaker σ donors, energetically low-lying unoccupied orbitals, compact transition-state structures, and the ability for complexation of glucose. Thus, the reactivity of the metal catalysts in water is governed by many factors, not just the Lewis acidity.

  3. Reactive nitrogen species reactivities with nitrones: theoretical and experimental studies.

    PubMed

    Nash, Kevin M; Rockenbauer, Antal; Villamena, Frederick A

    2012-08-20

    Reactive nitrogen species (RNS) such as nitrogen dioxide ((•)NO(2)), peroxynitrite (ONOO(-)), and nitrosoperoxycarbonate (ONOOCO(2)(-)) are among the most damaging species present in biological systems due to their ability to cause modification of key biomolecular systems through oxidation, nitrosylation, and nitration. Nitrone spin traps are known to react with free radicals and nonradicals via electrophilic and nucleophilic addition reactions and have been employed as reagents to detect radicals using electron paramagnetic resonance (EPR) spectroscopy and as pharmacological agents against oxidative stress-mediated injury. This study examines the reactivity of cyclic nitrones such as 5,5-dimethylpyrroline N-oxide (DMPO) with (•)NO(2), ONOO(-), ONOOCO(2)(-), SNAP, and SIN-1 using EPR. The thermochemistries of nitrone reactivity with RNS and isotropic hfsc's of the addition products were also calculated at the PCM(water)/B3LYP/6-31+G**//B3LYP/6-31G* level of theory with and without explicit water molecules to rationalize the nature of the observed EPR spectra. Spin trapping of other RNS such as azide ((•)N(3)), nitrogen trioxide ((•)NO(3)), amino ((•)NH(2)) radicals and nitroxyl (HNO) were also theoretically and experimentally investigated by EPR spin trapping and mass spectrometry. This study also shows that other spin traps such as 5-carbamoyl-5-methyl-pyrroline N-oxide, 5-ethoxycarbonyl-5-methyl-pyrroline N-oxide, and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide can react with radical and nonradical RNS, thus making spin traps suitable probes as well as antioxidants against RNS-mediated oxidative damage. PMID:22775566

  4. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  5. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  6. Reactive nitrogen species in cellular signaling

    PubMed Central

    Adams, Levi; Franco, Maria C

    2015-01-01

    The transduction of cellular signals occurs through the modification of target molecules. Most of these modifications are transitory, thus the signal transduction pathways can be tightly regulated. Reactive nitrogen species are a group of compounds with different properties and reactivity. Some reactive nitrogen species are highly reactive and their interaction with macromolecules can lead to permanent modifications, which suggested they were lacking the specificity needed to participate in cell signaling events. However, the perception of reactive nitrogen species as oxidizers of macromolecules leading to general oxidative damage has recently evolved. The concept of redox signaling is now well established for a number of reactive oxygen and nitrogen species. In this context, the post-translational modifications introduced by reactive nitrogen species can be very specific and are active participants in signal transduction pathways. This review addresses the role of these oxidative modifications in the regulation of cell signaling events. PMID:25888647

  7. Sensing and Tactile Artificial Muscles from Reactive Materials

    PubMed Central

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V.; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires. PMID:22319265

  8. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  9. Valpromide Inhibits Lytic Cycle Reactivation of Epstein-Barr Virus

    PubMed Central

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan; McInerney, Grace E.; Lyons, Danielle E.

    2016-01-01

    ABSTRACT Reactivation of Epstein-Barr virus (EBV) from latency into the lytic phase of its life cycle allows the virus to spread among cells and between hosts. Valproic acid (VPA) inhibits initiation of the lytic cycle in EBV-infected B lymphoma cells. While VPA blocks viral lytic gene expression, it induces expression of many cellular genes, because it is a histone deacetylase (HDAC) inhibitor. Here we show, using derivatives of VPA, that blockade of EBV reactivation is separable from HDAC inhibition. Valpromide (VPM), an amide derivative of valproic acid that is not an HDAC inhibitor, prevented expression of two EBV genes, BZLF1 and BRLF1, that mediate lytic reactivation. VPM also inhibited expression of a viral late gene, but not early genes, when BZLF1 was exogenously expressed. Unlike VPA, VPM did not activate lytic expression of Kaposi’s sarcoma-associated herpesvirus. Expression of cellular immediate-early genes, such as FOS and EGR1, is kinetically upstream of the EBV lytic cycle. VPM did not activate expression of these cellular immediate-early genes but decreased their level of expression when induced by butyrate, an HDAC inhibitor. VPM did not alter expression of several other cellular immediate-early genes, including STAT3, which were induced by the HDAC inhibitors in cells refractory to lytic induction. Therefore, VPM selectively inhibits both viral and cellular gene expression. VPA and VPM represent a new class of antiviral agents. The mechanism by which VPA and VPM block EBV reactivation may be related to their anticonvulsant activity. PMID:26933051

  10. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health.

  11. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  12. Serial follow-up of repeat voluntary blood donors reactive for anti-HCV ELISA

    PubMed Central

    Choudhury, N.; Tulsiani, Sunita; Desai, Priti; Shah, Ripal; Mathur, Ankit; Harimoorthy, V.

    2011-01-01

    Background: Voluntary non-remunerated repeat blood donors are perceived to be safer than the first time blood donors. This study was planned for follow-up of previous hepatitis C virus (HCV) test results of anti-HCV enzyme-linked immunosorbent assay (ELISA) reactive repeat blood donors. The aim was to suggest a protocol for re-entry of the blood donors who are confirmed HCV negative by nucleic acid test (NAT) and recombinant immunoblot assay (RIBA). A group of repeat voluntary donors were followed retrospectively who became reactive on a cross sectional study and showed HCV reactivity while donating blood regularly. Material and Methods: A total of 51,023 voluntary non remunerated blood donors were screened for anti-HCV ELISA routinely. If anybody showed positivity, they were tested by two ELISA kits (screening and confirmatory) and then confirmed infection status by NAT and or RIBA. The previous HCV test results of repeat donors reactive by anti-HCV ELISA were looked back from the records. Data of donors who were repeat reactive with single ELISA kit (in the present study) were analyzed separately from those reactive with two ELISA kits (in the present study). Results: In this study, 140 (0.27%) donors who were reactive by anti HCV ELISA were included. Out of them, 35 were repeat voluntary donors and 16 (11.43%) were reactive with single ELISA kit. All 16 donors were reactive by single ELISA kit occasionally in previous donations. Their present ELISA positive donations were negative for HCV NAT and RIBA. A total of 19 (13.57%) donors were reactive with two ELISA kits. In their previous donations, the donors who were reactive even once with two ELISA kits were consistently reactive by the same two ELISA kits in their next donations also. Conclusion: Donor sample reactive by only single ELISA kit may not be considered as infectious for disposal as they were negative by NAT and or RIBA. One time ELISA positivity was found probably due to ELISA kit specificity and

  13. Quantum Entanglement and Chemical Reactivity.

    PubMed

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  14. [Biodegradation of reactive turquoise blue].

    PubMed

    Fu, L; Wen, X; Xu, L; Qian, Y

    2001-07-01

    In this study, the anaerobic degradation and the aerobic degradation of a kind of reactive dye--Reactive Turquoise Blue(RTB) were compared. The results proved that anaerobic sludge could only decompose RTB in the presence of glucose while aerobic sludge decomposed RTB with or without the presence of glucose (RTB of 20 mg/L was reduced by 37.4% through 24 hours' aerobic treatment with RTB as sole carbon source). The enhancement of glucose concentration was beneficial for both anaerobic and aerobic degradation of RTB: the anaerobic and the aerobic removal efficiencies were respectively 81.5% and 73.6% with RTB of 20 mg/L and glucose of 1200 mg/L. In the influent RTB concentration also had influence on the activity of anaerobic and aerobic microorganisms. When glucose concentration was 800 mg/L or 1200 mg/L and RTB concentration was 20 mg/L to 100 mg/L, anaerobic removal efficiency of RTB was higher than aerobic removal efficiency by 4.9%-27.2%, which meant that anaerobic bacteria is more powerful than aerobic bacteria in terms of RTB removal.

  15. Protein hydroperoxides can give rise to reactive free radicals.

    PubMed Central

    Davies, M J; Fu, S; Dean, R T

    1995-01-01

    Proteins damaged by free-radical-generating systems in the presence of oxygen yield relatively long-lived protein hydroperoxides. These hydroperoxides have been shown by e.p.r. spectroscopy to be readily degraded to reactive free radicals on reaction with iron(II) complexes. Comparison of the observed spectra with those obtained with free amino acid hydroperoxides had allowed identification of some of the protein-derived radical species (including a number of carbon-centred radicals, alkoxyl radicals and a species believed to be the CO2 radical anion) and the elucidation of novel fragmentation and rearrangement processes involving amino acid side chains. In particular, degradation of hydroperoxide functions on the side chain of glutamic acid is shown to result in decarboxylation at the side-chain carboxy group via the formation of the CO2 radical anion; the generation of an identical radical from hydroperoxide groups on proteins suggests that a similar process occurs with these molecules. In a number of cases these fragmentation and rearrangement reactions give rise to further reactive free radicals (R., O2-./HO2., CO2-.) which may act as chain-carrying species in protein oxidations. These studies suggest that protein hydroperoxides are capable of initiating further radical chain reactions both intra- and inter-molecularly, and provide information on some of the fundamental mechanisms of protein alteration and side-chain fragmentation. PMID:7832784

  16. Geophysical Characterization and Reactive Transport Modeling to Quantify Plume Behavior

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Wainwright, H.; Bea, S. A.; Spycher, N.; Li, L.; Sassen, D.; Chen, J.

    2012-12-01

    Predictions of subsurface contaminant plume mobility and remediation often fail due to the inability to tractably characterize heterogeneous flow-and-transport properties and monitor critical geochemical transitions over plume-relevant scales. This study presents two recently developed strategies to quantify and predict states and processes across scales that govern plume behavior. Development of both strategies takes advantage of multi-scale and disparate datasets and has involved the use of reactive transport models, geophysical methods, and stochastic integration approaches. The first approach, called reactive facies, exploits coupled physiochemical heterogeneity to characterize subsurface flow and transport properties that impact plume sorption and thus mobility. We develop and test the reactive facies concept within uranium contaminated Atlantic Coastal Plain sediments that underlie the U.S. Department of Energy Savannah River Site, F-Area, South Carolina. Through analysis of field data (core samples, geophysical well logs, and cross-hole ground penetrating radar and seismic datasets) coupled with laboratory sorption studies, we have identified two reactive facies that have unique distributions of mineralogy, texture, porosity, hydraulic conductivity and geophysical attributes. We develop and use facies-based relationships with geophysical data in a Bayesian framework to spatially distribute reactive facies and their associated transport properties and uncertainties along local and plume-scale geophysical transects. To illustrate the value of reactive facies, we used the geophysically-obtained reactive facies properties to parameterize reactive transport models and simulate the migration of an acidic-U(VI) plume through the 2D domains. Modeling results suggest that each identified reactive facies exerts control on plume evolution, highlighting the usefulness of the reactive facies concept and approach for spatially distributing properties that control flow and

  17. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  18. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  19. Utilization of acid tars

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Aminov, A.N.

    1987-01-01

    Freshly produced acid tar (FPAT), obtained as refinery waste in treating petroleum oils with sulfuric acid and oleum, contains 80% or more sulfuric acid. Of such tars, pond acid tars, which contain up to 80% neutral petroleum products and sulfonated resins, are more stable, and have found applications in the production of binders for paving materials. In this article the authors are presenting results obtained in a study of the composition and reactivity of FPAT and its stability in storage in blends with asphalts obtained in deasphalting operations, and the possibility of using the FPAT in road construction has been examined. In this work, wastes were used which were obtained in treating the oils T-750, KhF-12, I-8A, and MS-14. Data on the change in group chemical composition of FPAT are shown, and the acidity, viscosity, needle penetration, and softening point of acid tars obtained from different grades of oils are plotted as functions of the storage time. It is also shown that the fresh and hardened FPATs differ in their solubilities in various solvents.

  20. Uric acid protects erythrocytes from ozone-induced changes

    SciTech Connect

    Meadows, J.; Smith, R.C.

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  1. Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses.

    PubMed

    Jing, Lichen; Laing, Kerry J; Dong, Lichun; Russell, Ronnie M; Barlow, Russell S; Haas, Juergen G; Ramchandani, Meena S; Johnston, Christine; Buus, Soren; Redwood, Alec J; White, Katie D; Mallal, Simon A; Phillips, Elizabeth J; Posavad, Christine M; Wald, Anna; Koelle, David M

    2016-03-01

    The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy. PMID:26810224

  2. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  3. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  4. Gender differences in reactive and proactive aggression.

    PubMed

    Connor, Daniel F; Steingard, Ronald J; Anderson, Jennifer J; Melloni, Richard H

    2003-01-01

    The purpose of our investigation was to study gender differences in proactive and reactive aggression in a sample of 323 clinically referred children and adolescents (68 females and 255 males). Proactive aggression and reactive aggression were assessed using the Proactive/Reactive Aggression Scale. Demographic, historical, family, diagnostic, and treatment variables were entered into stepwise regression analyses to determine correlates of proactive and reactive aggression in males and females. Results reveal high rates of aggression in both males and females in the sample. Self reported drug use, expressed hostility, and experiences of maladaptive parenting were correlated with proactive aggression for both genders. Hyperactive/impulsive behaviors were correlated with male reactive aggression. An early age of traumatic stress and a low verbal IQ were correlated with female proactive aggression. Gender differences in correlates of proactive and reactive aggression may provide possible targets for research, prevention, and treatment efforts focused on reducing maladaptive aggression in clinically referred youth. PMID:12723901

  5. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    SciTech Connect

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  6. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  7. Bis(mesitoyl)phosphinic acid: photo-triggered release of metaphosphorous acid in solution.

    PubMed

    Fast, David E; Zalibera, Michal; Lauer, Andrea; Eibel, Anna; Schweigert, Caroline; Kelterer, Anne-Marie; Spichty, Martin; Neshchadin, Dmytro; Voll, Dominik; Ernst, Hanna; Liang, Yu; Dietliker, Kurt; Unterreiner, Andreas-Neil; Barner-Kowollik, Christopher; Grützmacher, Hansjörg; Gescheidt, Georg

    2016-08-01

    Bis(mesitoyl)phosphinic acid and its sodium salt display a unique photo-induced reactivity: both derivatives stepwise release two mesitoyl radicals and, remarkably, metaphosphorous acid (previously postulated as transient species in the gas phase), providing a new phosphorus-based reagent. PMID:27431207

  8. [Cross reactivity between fish and shellfish].

    PubMed

    Torres Borrego, J; Martínez Cuevas, J F; Tejero García, J

    2003-01-01

    In Spain, fish allergy represents 18 % of all cases of food allergy in children while reactions caused by crustacea and mollusks account for 3.8 % and 1.6 % respectively. Cross-reactivity is defined as the recognition of distinct antigens by the same IgE antibody, demonstrable by in vivo and in vitro tests, which clinically manifests as reactions caused by antigens homologous to different species. Subclinical sensitization can also occur, giving rise to patients sensitized to particular fish or shellfish but who do not present symptoms on consumption.Cod and shrimp have been the models used to study allergy to fish and crustacea respectively. The major allergens responsible for cross-reactivity among distinct species of fish and amphibians are proteins that control calcium flow in the muscular sarcoplasm of these animals, called parvalbumins, with a molecular weight of approximately 12 kD and an isoelectric point of 4.75, resistant to the action of heat and enzymatic digestion. Recently, recombinant carp parvalbumin has been reproduced, confirming that this allergen contains 70 % of the IgE epitopes present in natural extract of cod, tuna and salmon, which makes it a valid tool in the diagnosis of patients with fish allergy. Moreover, this recombinant allergen could constitute the basis for the development of immunotherapy against food allergy. In the case of shellfish, a non-taxonomic group that includes crustacea and mollusks, the major allergen is tropomyosin, an essential protein in muscle contraction both in invertebrates and vertebrates. In invertebrates, tropomyosins, which have a molecular weight of between 38 and 41 kD, show great homology in their amino acid sequence and are the panallergens responsible for cross-reactions between crustacea, insects, mites, nematodes, and different classes of mollusks. It is estimated that 50 % of individuals allergic to some type of fish are at risk for reacting to a second species, while those allergic to some type of

  9. Regulatory Analysis of Reactivity Transients

    SciTech Connect

    Beyer, Carl E.; Clifford, Paul M.; Geelhood, Kenneth J.; Voglewede, John C.

    2009-08-01

    This paper will describe modifications made to the FRAPCON-3 and FRAPTRAN fuel performance codes and models that impact reactivity initiated accident (RIA) analyses. The modified models include an upper bound empirical and best estimate release models for fast transients, and a revised fuel failure model that accounts for ductile and brittle failure. Because experimental data exists for discrete test conditions, the codes and models are used to interpolate and to some extent, to extrapolate these test conditions. An upper bound empirical model for release is used to establish new recommended release fractions for long-lived and short lived (radioactive) isotopes for RIA events in Regulatory Guide 1.183. A best estimate release model is used in FRAPTRAN 1.4 based on grain boundary gas concentrations from FRAPCON-3.4 to predict release for RIA events. Code and model predictions will be compared to failure and release data from RIA tests to demonstrate accuracy.

  10. Automatic Processing of Reactive Polymers

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1985-01-01

    A series of process modeling computer codes were examined. The codes use finite element techniques to determine the time-dependent process parameters operative during nonisothermal reactive flows such as can occur in reaction injection molding or composites fabrication. The use of these analytical codes to perform experimental control functions is examined; since the models can determine the state of all variables everywhere in the system, they can be used in a manner similar to currently available experimental probes. A small but well instrumented reaction vessel in which fiber-reinforced plaques are cured using computer control and data acquisition was used. The finite element codes were also extended to treat this particular process.

  11. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672

  12. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.

  13. Sulfenic acid chemistry, detection and cellular lifetime☆

    PubMed Central

    Gupta, Vinayak; Carroll, Kate S.

    2014-01-01

    Background Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods. Scope of review This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered. Major conclusions Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins. General significance Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and

  14. Reactive broadcasting protocol for video on demand

    NASA Astrophysics Data System (ADS)

    Paris, Jehan-Francois; Carter, Steven W.; Long, Darrell D. E.

    1999-12-01

    We propose a reactive broadcasting protocol that addresses the problem of distributing moderately popular videos in a more efficient fashion. Like all efficient broadcasting protocols, reactive broadcasting assumes that the customer set-top box has enough local storage to store at least one half of each video being watched. Unlike other broadcasting protocols, reactive broadcasting only broadcasts the later portions of each video. the initial segment of each video is distributed on demand using a stream tapping protocol. Our simulations show that reactive broadcasting outperforms both conventional broadcasting protocols and pure stream tapping for a wide range of video request rates.

  15. Detection of Pesticides and Pesticide Metabolites Using the Cross Reactivity of Enzyme Immunoassays

    USGS Publications Warehouse

    Thurman, E.M.; Aga, D.S.

    2001-01-01

    Enzyme immunoassay is an important environmental analysis method that may be used to identify many pesticide analytes in water samples. Because of similarities in chemical structure between various members of a pesticide class, there often may be an unwanted response that is characterized by a percentage of cross reactivity. Also, there may be cross reactivity caused by degradation products of the target analyte that may be present in the sample. In this paper, the concept of cross reactivity caused by degradation products or by nontarget analytes is explored as a tool for identification of metabolites or structurally similar compounds not previously known to be present in water samples. Two examples are examined in this paper from various water quality studies. They are alachlor and its metabolite, alachlor ethane sulfonic acid, and atrazine and its class members, prometryn and propazine. A method for using cross reactivity for the detection of these compounds is explained in this paper.

  16. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  17. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    PubMed

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties.

  18. Immune reactivity to food coloring.

    PubMed

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Artificial food dyes are made from petroleum and have been approved by the US Food and Drug Administration (FDA) for the enhancement of the color of processed foods. They are widely used in the food and pharmaceutical industries to increase the appeal and acceptability of their products. Synthetic food colorants can achieve hues not possible for natural colorants and are cheaper, more easily available, and last longer. However, since the use of artificial food coloring has become widespread, many allergic and other immune reactive disorders have increasingly been reported. During the past 50 y, the amount of synthetic dye used in foods has increased by 500%. Simultaneously, an alarming rise has occurred in behavioral problems in children, such as aggression, attention deficit disorder (ADD), and attention-deficit/hyperactivity disorder (ADHD). The ingestion of food delivers the greatest foreign antigenic load that challenges the immune system. Artificial colors can also be absorbed via the skin through cosmetic and pharmaceutical products. The molecules of synthetic colorants are small, and the immune system finds it difficult to defend the body against them. They can also bond to food or body proteins and, thus, are able to act in stealth mode to circumvent and disrupt the immune system. The consumption of synthetic food colors, and their ability to bind with body proteins, can have significant immunological consequences. This consumption can activate the inflammatory cascade, can result in the induction of intestinal permeability to large antigenic molecules, and could lead to cross-reactivities, autoimmunities, and even neurobehavioral disorders. The Centers for Disease Control (CDC) recently found a 41% increase in diagnoses of ADHD in boys of high-school age during the past decade. More shocking is the legal amount of artificial colorants allowed by the FDA in the foods, drugs, and cosmetics that we consume and use every day. The consuming public is largely

  19. Immune reactivity to food coloring.

    PubMed

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Artificial food dyes are made from petroleum and have been approved by the US Food and Drug Administration (FDA) for the enhancement of the color of processed foods. They are widely used in the food and pharmaceutical industries to increase the appeal and acceptability of their products. Synthetic food colorants can achieve hues not possible for natural colorants and are cheaper, more easily available, and last longer. However, since the use of artificial food coloring has become widespread, many allergic and other immune reactive disorders have increasingly been reported. During the past 50 y, the amount of synthetic dye used in foods has increased by 500%. Simultaneously, an alarming rise has occurred in behavioral problems in children, such as aggression, attention deficit disorder (ADD), and attention-deficit/hyperactivity disorder (ADHD). The ingestion of food delivers the greatest foreign antigenic load that challenges the immune system. Artificial colors can also be absorbed via the skin through cosmetic and pharmaceutical products. The molecules of synthetic colorants are small, and the immune system finds it difficult to defend the body against them. They can also bond to food or body proteins and, thus, are able to act in stealth mode to circumvent and disrupt the immune system. The consumption of synthetic food colors, and their ability to bind with body proteins, can have significant immunological consequences. This consumption can activate the inflammatory cascade, can result in the induction of intestinal permeability to large antigenic molecules, and could lead to cross-reactivities, autoimmunities, and even neurobehavioral disorders. The Centers for Disease Control (CDC) recently found a 41% increase in diagnoses of ADHD in boys of high-school age during the past decade. More shocking is the legal amount of artificial colorants allowed by the FDA in the foods, drugs, and cosmetics that we consume and use every day. The consuming public is largely

  20. Linear response function of the Mayer bond order: an indicator to describe intrinsic chemical reactivity of molecules

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shusuke; Mitsuta, Yuki; Okumura, Mitsutaka; Yamaguchi, Kizashi; Nakamura, Haruki

    2015-02-01

    We here formulate and implement linear response function (LRF) of the Mayer bond order (MBO), which is expected to be a new indicator to describe intrinsic chemical reactivity of molecules. We calculate LRFs of the MBOs of para-substituted benzoic acids, and compare the results with the Hammett substituent constants and computational results of acid dissociation constants that were previously reported. The results are discussed from the viewpoint of the applicability of LRF of the MBO to estimate the relative reactivity of the substituted benzoic acids.

  1. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  2. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  3. Microstructure-reactivity relationship of Ti + C reactive nanomaterials

    NASA Astrophysics Data System (ADS)

    Manukyan, Khachatur V.; Lin, Ya-Cheng; Rouvimov, Sergei; McGinn, Paul J.; Mukasyan, Alexander S.

    2013-01-01

    The influence of short-term (≤10 min) high energy ball milling (HEBM) on the microstructure and reactivity of a titanium-carbon powder mixture is reported. It is proved that the mechanism of microstructural transformation in a Ti-C mixture during HEBM defines the reaction mechanism in the produced Ti/C structural energetic materials. More specifically, it is shown that after the first two minutes of dry milling (DM) in an inert (argon) atmosphere the initially crystalline graphite flakes were almost completely amorphized and uniformly distributed on the surface of the deformed titanium particles. A subsequent "cold-welding" leads to formation of Ti-(C-rich/Ti)-Ti agglomerates. TEM studies reveal that the (C-rich/Ti) composite layers consist of nano-size (20 nm) Ti particles distributed in the matrix of the amorphous carbon and thus are characterized by extremely high surface area contacts between the reagents. A rapid self-ignition of the material during DM occurs just after 9.5 min of mechanical treatment, resulting in formation of pure cubic TiC. Wet grinding (WG) of a Ti-C mixture in hexane, under otherwise identical parameters, provides more "soft" conditions, which do not allow the rapid amorphization of carbon during the first stage of grinding. As a result graphite and titanium form sandwich-like Ti/C composite particles, in which the reagents contact primarily along the boundaries of the layers. Such particles gradually transform to the TiC phase without a spontaneous reaction during the HEBM process. The reactivity, i.e., self-ignition temperature and ignition delay time, of different milling-induced microstructures, were also studied. It was found that the ignition temperature in Ti-C structural energetic material prepared under optimized HEBM conditions is ˜600 K, which is more than three times lower than that of the initial reaction mixture (Tig ˜ 1900 K). A significant decrease of the effective activation energy for interaction in the Ti-C system

  4. Water complexes of important air pollutants: geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity.

    PubMed

    Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela

    2010-05-13

    Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species. PMID:20394451

  5. Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro.

    PubMed

    Zaccone, Eric J; Thompson, Janet A; Ponnoth, Dovenia S; Cumpston, Amy M; Goldsmith, W Travis; Jackson, Mark C; Kashon, Michael L; Frazer, David G; Hubbs, Ann F; Shimko, Michael J; Fedan, Jeffrey S

    2013-01-01

    "Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  6. POPCORN FLAVORING EFFECTS ON REACTIVITY OF RAT AIRWAYS IN VIVO AND IN VITRO

    PubMed Central

    Zaccone, Eric J.; Thompson, Janet A.; Ponnoth, Dovenia S.; Cumpston, Amy M.; Goldsmith, W. Travis; Jackson, Mark C.; Kashon, Michael L.; Frazer, David G.; Hubbs, Ann F.; Shimko, Michael J.; Fedan, Jeffrey S.

    2015-01-01

    “Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  7. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.