Science.gov

Sample records for 2-thiobarbituric acid reactive

  1. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  2. First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)6](1,3-diethyl-2-thiobarbiturate)2·2H2O (M = Co2+, Ni2+): Crystal structure, spectroscopic and thermal properties

    NASA Astrophysics Data System (ADS)

    Golovnev, Nicolay N.; Molokeev, Maxim S.; Lesnikov, Maxim K.; Atuchin, Victor V.

    2016-06-01

    Two new d-element compounds, [Co(H2O)6](Detba)2·2H2O (1) and [Ni(H2O)6](Detba)2·2H2O (2) (HDetba - 1,3-diethyl-2-thiobarbituric acid) were synthesized and characterized by single-crystal and powder X-ray diffraction analysis, TG-DSC and FT-IR. Structural analysis revealed that (1) and (2) are discrete structures, in which M2+ ion (M = Co, Ni) is six-coordinated by water molecules and it forms an octahedron. The outer-sphere Detba- ions and H2O molecules participate in Osbnd H⋯(O/S) intermolecular hydrogen bonds which form the 2D layer. Thermal decomposition includes the stage of dehydration and the following stage of oxidation of Detba- with a release of CO2, SO2, H2O, NH3 and isocyanate gases.

  3. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  4. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  5. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T Ashton; Chin, Jason W; Anderson, J Christopher; Schultz, Peter G

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  10. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  11. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    NASA Astrophysics Data System (ADS)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic

  12. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    SciTech Connect

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  13. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    SciTech Connect

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  14. The reactivity of myeloperoxidase compound I formed with hypochlorous acid.

    PubMed

    Furtmüller, P G; Burner, U; Jantschko, W; Regelsberger, G; Obinger, C

    2000-01-01

    The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1 x 10(7) M(-1)s(-1) (pH 5), 2.0 x 10(8) M(-1)s(-1) (pH 7) and 2.0 x 10(6) M(-1)s(-1) (pH 9) at 15 degrees C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.

  15. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  16. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  17. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  18. Salicylic acid retention impairs aspirin reactivity in type 2 diabetes.

    PubMed

    Zhang, Haowen; Xie, Hao; Zheng, Xiao; Chai, Yingying; Tang, Zhiyuan; Chen, Hanyu; Li, Feiyan; Christoph, Heier; Chen, Jiandong; Sun, Weixin; Ye, Hui; Wang, Shiguang; Hao, Haiping; Chen, Xiaohu

    2017-01-05

    High on-aspirin platelet reactivity (HAPR) has been associated with compromised aspirin efficacy in patients with diabetes suffering from acute cardiovascular events, but the key mechanisms remain elusive. The objective of this study was to uncover the potential link between pathogenic accumulation of salicylic acid (SA), the major metabolite of aspirin, and HAPR in diabetic state. Aspirin failed to inhibit platelet CD62P expression and thromboxane (TX) B2/6-keto-prostaglandin(PG)F1α ratio in a type 2 diabetes mellitus (T2DM) mice model, particularly in the female, which were unanimously accompanied by significantly higher plasma SA concentrations. Pre-administration with SA increased both platelet CD62P expression and TXB2/6-keto-PGF1α ratio in female T2DM mice, while pretreatment with NaHCO3 caused the opposite effect. On the in vitro human umbilical vein endothelial cells (HUVECs)-platelet interaction assay, SA suppressed inflammation-induced cyclooxygenase-2 upregulation on HUVECs and attenuated their inhibitory effect on platelet aggregation in a dose-dependent manner. The prolonged retention of SA in diabetes may be partially explained by the downregulation of various SA efflux transporters in the kidney and the decreased urine pH. Importantly, in female aspirin non-responsive patients, the trough plasma concentration of SA are markedly increased with T2DM treated with long-term aspirin, and TXB2/6-keto-PGF1α ratio and uric acid level in plasma are positively correlated with SA concentration. Our findings support that the accumulation of SA represents an important factor in causing HAPR in diabetes, and that targeting impaired SA excretion may become a novel intervention strategy to diabetes-associated HAPR.

  19. Phase I Metabolic Stability and Electrophilic Reactivity of 2-Phenylaminophenylacetic Acid Derived Compounds.

    PubMed

    Pang, Yi Yun; Tan, Yee Min; Chan, Eric Chun Yong; Ho, Han Kiat

    2016-07-18

    Diclofenac and lumiracoxib are two highly analogous 2-phenylaminophenylacetic acid anti-inflammatory drugs exhibiting occasional dose-limiting hepatotoxicities. Prior data indicate that bioactivation and reactive metabolite formation play roles in the observed toxicity, but the exact chemical influence of the substituents remains elusive. In order to elucidate the role of chemical influence on metabolism related toxicity, metabolic stability and electrophilic reactivity were investigated for a series of structurally related analogues and their resulting metabolites. The resulting analogues embody progressive physiochemical changes through varying halogeno- and aliphatic substituents at two positions and were subjected to in vitro human liver microsomal metabolic stability and cell-based GSH depletion assays (to measure electrophilic reactivity). LC-MS/MS analysis of the GSH trapped reactive intermediates derived from the analogues was then used to identify the putative structures of reactive metabolites. We found that chemical modifications of the structural backbone led to noticeable perturbations of metabolic stability, electrophilic reactivity, and structures and composition of reactive metabolites. With the acquired data, the relationships between stability, reactivity, and toxicity were investigated in an attempt to correlate between Phase I metabolism and in vitro toxicity. A positive correlation was identified between reactivity and in vitro toxicity, indicating that electrophilic reactivity can be an indicator for in vitro toxicity. All in all, the effect of substituents on the structures and reactivity of the metabolites, however subtle the changes, should be taken into consideration during future drug design involving similar chemical features.

  20. Reactive Carbonyl Species Derived from Omega-3 and Omega-6 Fatty Acids.

    PubMed

    Wang, Yu; Cui, Ping

    2015-07-22

    Inflammation-related reactive oxygen species (ROS) and reactive nitrogen species (RNS) are associated with the development of cancer. ROS and RNS can directly damage biomacromolecules such as proteins, DNA, and lipids. Lipid peroxidation, however, can result in reactive carbonyl species (RCS) that can also modify proteins and DNA. In contrast to an extensive literature on the modification of proteins and DNA from omega-6 fatty acids, there are few studies on RCS generation from other fatty acids, particularly omega-3 fatty acids, which are frequently consumed from the diet and diet supplements. Therefore, a comparison between omega-3 and omega-6 fatty acids has been conducted. LC-MS/MS analysis of carbonyl-dinitrophenylhydrazine (DNPH) standards yielded characteristic fragment ions. Autoxidation products of α-linolenic acid and linoleic acid were then derivatized with DNPH and analyzed by LC-MS/MS. The results showed that α-linolenic acid, an omega-3 fatty acid, generated more acrolein and crotonaldehyde than did linoleic acid, an omega-6 fatty acid. Omega-3 fatty acids might be easily degraded to smaller monoaldehydes or dicarbonyls. Omega-3 fatty acids have been considered as health improvement components for a long time. However, on the basis of the results presented here, use of omega-3 fatty acids should be re-evaluated in vivo for safety purposes.

  1. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  2. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  3. Evaluation of the Reactivity of Reillex HPQ in 64 Percent Nitric Acid

    SciTech Connect

    Crooks, W.J. III

    2001-02-20

    The purpose of this work was to evaluate the reactivity of Reillex HPQ in 64 percent nitric acid and to address an accident scenario in which 64 percent nitric acid solution is inadvertently added to an HB-Line ion exchange column containing Reillex HPQ anion exchange resin.

  4. Implications of the role of reactive cystein in arginine kinase: reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol.

    PubMed

    Pan, Ji-Cheng; Cheng, Yuan; Hui, En-Fu; Zhou, Hai-Meng

    2004-04-30

    The reduction of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase by dithiothreitol has been investigated using the kinetic theory of the substrate reaction during modification of enzyme activity. The results show that the modified arginine kinase can be fully reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant, while arginine shows no effect. The results of ultraviolet (UV) difference and intrinsic fluorescence spectra indicate that the substrate arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and role in the catalysis of arginine kinase are discussed. It is suggested that the cysteine may be located in the hinge region of the two domains of arginine kinase. The reactive cysteine of arginine kinase may play an important role not in the binding to the transition-state analog but in the conformational changes caused by the transition-state analog.

  5. Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity

    NASA Astrophysics Data System (ADS)

    Charbouillot, Tiffany; Gorini, Sophie; Voyard, Guillaume; Parazols, Marius; Brigante, Marcello; Deguillaume, Laurent; Delort, Anne-Marie; Mailhot, Gilles

    2012-09-01

    In the first part of the work, we investigated the reactivity toward photogenerated hydroxyl radicals (rad OH) of seven monocarboxylic acids and six dicarboxylic acids found in natural cloud water. This leads to the proposition of a schematic degradation pathway linking glutaric acid (C5) to complete mineralization into CO2. We report a detailed mechanism on the succinic acid reactivity toward rad OH leading to the formation of malonic, glyoxylic and consequently oxalic acids and a comparison with reported pathways proposed by the CAPRAM (Chemical Aqueous Phase RAdical Mechanism) is discussed. We also investigated the photooxidation of formic acid under atmospherically relevant conditions leading to the possible formation of oxalic acid via radical mediated recombination. The second part focuses on the polychromatic irradiation (closed to solar irradiation) of a collected cloud aqueous phase showing that irradiation of cloud water leads to the formation of both formic and acetic acids. Carboxylic acid formation increases in the presence of photogenerated hydroxyl radicals from hydrogen peroxide, showing that photooxidation could play a key role in the formation of carboxylic acids under atmospherically relevant conditions.

  6. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Chen, Hao

    2010-01-01

    We have reported previously a method for the detection of sugars via in-situ derivatization with phenylboronic acid PhB(OH)2 using reactive desorption electrospray ionization (DESI, Chen et al., Chem. Commun. (2006) 597-599). The present study describes an improved method that employs modified phenylboronic acids including 3-nitrophenylboronic acid and N-methyl-4-pyridineboronic acid iodide. In contrast to using PhB(OH)2, enhanced sensitivity of using 3-nitrophenylboronic acid was observed due to the stabilization of the resulting boronate ester anion by the electron-withdrawing nitro group and the limit of detections (LODs) for glucose in water using 3-nitrophenylbornic acid and phenylboronic acid were determined to be 0.11 mM and 0.40 mM, respectively. In the case of N-methyl-4-pyridineboronic acid iodide, the corresponding LOD is 6.9 [mu]M and the higher sensitivity obtained is attributed to the efficient ionization of both the reactive DESI reagent and reaction product since the precursor acid with a quaternary ammonium group is pre-charged. In this case, additional important features are found: (i) unlike using phenylboronic acid or 3-nitrophenylbornic acid, the experiment, performed in the positive ion mode, is applicable to neutral and acidic saccharide solutions, facilitating the analysis of biological fluids without the need to adjust pH; (ii) simply by changing the spray solvent from water to acetonitrile, the method can be used for direct glucose analyses of both urine and serum samples via online desalting, due to the low solubility of salts of these biofluids in the sprayed organic solvent; (iii) in comparison with other sugar derivatizing reagents such as the Girard's reagent T, the N-methyl-4-pyridineboronic acid iodide shows higher reactivity in the reactive DESI; and (iv) the ions of saccharide DESI reaction products undergo extensive ring or glycosidic bond cleavage upon CID, a feature that might be useful in the structure elucidation of

  7. Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging.

    PubMed

    Xiong, Zhenjie; Sun, Da-Wen; Pu, Hongbin; Xie, Anguo; Han, Zhong; Luo, Man

    2015-07-15

    This study examined the potential of hyperspectral imaging (HSI) for rapid prediction of 2-thiobarbituric acid reactive substances (TBARS) content in chicken meat during refrigerated storage. Using the spectral data and the reference values of TBARS, a partial least square regression (PLSR) model was established and yielded acceptable results with regression coefficients in prediction (Rp) of 0.944 and root mean squared errors estimated by prediction (RMSEP) of 0.081. To simplify the calibration model, ten optimal wavelengths were selected by successive projections algorithm (SPA). Then, a new SPA-PLSR model based on the selected wavelengths was built and showed good results with Rp of 0.801 and RMSEP of 0.157. Finally, an image algorithm was developed to achieve image visualization of TBARS values in some representative samples. The encouraging results of this study demonstrated that HSI is suitable for determination of TBARS values for freshness evaluation in chicken meat.

  8. [Amino acid chloramines and chlorimines as antiplatelet agents: reactive properties and mechanism of action].

    PubMed

    Murina, M A; Roshchupkin, D I; Petrova, A O; Sergienko, V I

    2009-01-01

    Oxidative modifications of thiols, disulfide, and thioester atomic groups in proteins, peptides, and amino acids induced by chloramines or chloramine derivatives of amino acids and other reactive oxidants are considered. In the case of disulfide and thiol groups, production of sulfur-reactive groups may take place, such as disulphide S-oxides and sulphenic groups. Various chloramines and chloramines differently modify sulfur-containing groups. For example, N,N-dichlorotaurine rapidly modifies the thiolgroup in reduced glutathione and N-chloroglycine readily oxidizes the thioester group in methionine. Amino acid chloramines inhibit platelet aggregation by modifying S-containing centres. Autodecay of amino acid chloramines does not affect aggregation as follows from the absence of positive correlation between chloramines decay rate and antiplatelet activity. N,N-dichlorotaurine and its chlorimine derivatives are characterized by high stability and have good prospects as potential antiaggregants.

  9. Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid

    PubMed Central

    Gupta, Vinayak; Carroll, Kate S.

    2015-01-01

    Oxidation of a protein cysteine thiol to sulfenic acid, termed S-sulfenylation, is a reversible post-translational modification that plays a crucial role in regulating protein function and is correlated with disease states. The majority of reaction-based small molecule and immunochemical probes used for detecting sulfenic acids are based on the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) scaffold, which is selective, but suffers from low reactivity. In addition, mechanistic details and features that diminish or enhance nucleophile reactivity remain largely unknown. A significant hurdle to resolving the aforementioned issues has been the chemically unstable nature of small-molecule sulfenic acid models. Herein, we report a facile mass spectrometry-based assay and repurposed dipeptide-based model to screen a library of cyclic C-nucleophiles for reactivity with sulfenic acid under aqueous conditions. Observed rate constants for ~100 cyclic C-nucleophiles were obtained and, from this collection, we have identified novel compounds with more than 200-fold enhanced reactivity, as compared to dimedone. The increase in reactivity and retention of selectivity of these C-nucleophiles were validated in secondary assays, including a protein model for sulfenic acid. Together, this work represents a significant step toward developing new chemical reporters for detecting protein S-sulfenylation with superior kinetic resolution. The enhanced rates and varied composition of the C-nucleophiles should enable more comprehensive analyses of the sulfenome and serve as the foundation for reversible or irreversible nucleophilic covalent inhibitors that target oxidized cysteine residues in therapeutically important proteins. PMID:26819701

  10. Impact of Lewis acids on Diels-Alder reaction reactivity: a conceptual density functional theory study.

    PubMed

    Xia, Yue; Yin, Dulin; Rong, Chunying; Xu, Qiong; Yin, Donghong; Liu, Shubin

    2008-10-09

    Density functional theory (DFT) and conceptual/chemical DFT studies are carried out in this work for the normal electron demand Diels-Alder reaction between isoprene and acrolein to compare chemical reactivity and regioselectivity of the reactants in the absence and presence of Lewis acid (LA) catalysts. A cyclic coplanar structure of acrolein-LA complex has been observed and the natural bond orbital analysis has been employed to interpret the interaction between acrolein and LAs. Reactivity indices from frontier molecular orbital energies are proved to be adequate and efficient to evaluate the catalytic property of LAs. Linear relationships have been discovered among the bond order, bond length, catalytic activation, and chemical reactivity for the systems concerned. The validity and applicability of maximum hardness principle, minimum polarizability principle, and minimum electrophilicity principle are examined and discussed in the prediction of the major regioselective isomer and the preferred reaction pathway for the reactions in the present study.

  11. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  12. Effect of α-Lipoic Acid on Platelet Reactivity in Type 1 Diabetic Patients

    PubMed Central

    Mollo, Roberto; Zaccardi, Francesco; Scalone, Giancarla; Scavone, Giuseppe; Rizzo, Paola; Navarese, Eliano Pio; Manto, Andrea; Pitocco, Dario; Lanza, Gaetano Antonio; Ghirlanda, Giovanni; Crea, Filippo

    2012-01-01

    OBJECTIVE Type 1 diabetes is associated with increased platelet reactivity. We investigated whether α-lipoic acid (ALA) has any effect on platelet reactivity in these patients. RESEARCH DESIGN AND METHODS We randomly assigned 51 type 1 diabetic patients to ALA (600 mg once daily) or placebo for 5 weeks. Platelet reactivity was evaluated by the PFA-100 method and by measuring CD41 and CD62 platelet expression. C-reactive protein (CRP) and 8-iso-prostaglandin F2α serum levels also were measured. RESULTS Baseline variables were similar in the two groups. After treatment, closure time was longer (P = 0.006) and CD62P platelet expression was lower, both before (P = 0.002) and after (P = 0.009) ADP stimulation in the ALA group compared with the placebo group. CRP and 8-iso-prostaglandin F2α levels showed no differences between the two groups. CONCLUSIONS Our data show that ALA reduces measures of platelet reactivity ex vivo in type 1 diabetic patients, independently of antioxidant or anti-inflammatory effects. PMID:22228743

  13. hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity.

    PubMed

    Nikolov, Nikolai G; Dybdahl, Marianne; Jónsdóttir, Svava Ó; Wedebye, Eva B

    2014-11-01

    Ionization is a key factor in hERG K(+) channel blocking, and acids and zwitterions are known to be less probable hERG blockers than bases and neutral compounds. However, a considerable number of acidic compounds block hERG, and the physico-chemical attributes which discriminate acidic blockers from acidic non-blockers have not been fully elucidated. We propose a rule for prediction of hERG blocking by acids and zwitterionic ampholytes based on thresholds for only three descriptors related to acidity, size and reactivity. The training set of 153 acids and zwitterionic ampholytes was predicted with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes.

  14. Effects of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage.

    PubMed

    Hur, S J; Ye, B W; Lee, J L; Ha, Y L; Park, G B; Joo, S T

    2004-04-01

    The effects of conjugated linoleic acid (CLA) on color and lipid oxidation of beef patties were investigated. Ground beef was divided into three batches. The control patties were prepared with 90% lean meat and 10% tallow. The second treatment consisted of 90% lean meat with 9.5% tallow+0.5% CLA sources. The third treatment consisted of 90% lean meat with 8% tallow+2% CLA sources. The patties were wrap-packaged and then stored at 4° for 14 days. The CLA concentration significantly increased (P<0.05) by substituting CLA sources for fat. Storage of the patties did not alter the CLA concentration in beef patties. The treatment substituted with CLA sources had significantly lower TBARS (2-thiobarbituric acid-reactive substances) values (P<0.05) than the control. For oxymyoglobin contents and a* value, substituted CLA sources treatments had significantly higher values than the control. However, L* value significantly increased by substituting CLA sources for fat.

  15. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  16. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  17. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid.

    PubMed

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-02-06

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA(+) cells. Also, increases in haematocrit and CD71(-)/Ter119(+) erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34(+)/CD117(-) cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.

  18. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative

    PubMed Central

    Bertozo, Luiza De Carvalho; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k2) for the reactions between Tau-NHBr and tryptophan (7.7 × 102 M−1s−1), melatonin (7.3 × 103 M−1s−1), serotonin (2.9 × 103 M−1s−1), dansylglycine (9.5 × 101 M−1s−1), tetramethylbenzidine (6.4 × 102 M−1s−1) and H2O2 (3.9 × M−1s−1) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 104 M−1s−1, pH 7.0, 9.5 × 10 M−1s−1 and pH 9.0, 1.7 × 10 M−1s−1), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr2). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H2O2. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  19. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative.

    PubMed

    De Carvalho Bertozo, Luiza; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-04-21

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k₂) for the reactions between Tau-NHBr and tryptophan (7.7 × 10² M(-1)s(-1)), melatonin (7.3 × 10³ M(-1)s(-1)), serotonin (2.9 × 10³ M(-1)s(-1)), dansylglycine (9.5 × 10¹ M(-1)s(-1)), tetramethylbenzidine (6.4 × 10² M(-1)s(-1)) and H₂O₂ (3.9 × M(-1)s(-1)) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 10⁴ M(-1)s(-1), pH 7.0, 9.5 × 10 M(-1)s(-1) and pH 9.0, 1.7 × 10 M(-1)s(-1)), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr₂). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H₂O₂. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines.

  20. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries.

  1. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma.

    PubMed

    Lapenna, D; Ciofani, G; Pierdomenico, S D; Giamberardino, M A; Cuccurullo, F

    2001-08-01

    The thiobarbituric acid (TBA) reactivity of human plasma was studied to evaluate its adequacy in quantifying lipid peroxidation as an index of systemic oxidative stress. Two spectrophotometric TBA tests based on the use of either phosphoric acid (pH 2.0, method A) or trichloroacetic plus hydrochloric acid (pH 0.9, method B) were employed with and without sodium sulfate (SS) to inhibit sialic acid (SA) reactivity with TBA. To correct for background absorption, the absorbance values at 572 nm were subtracted from those at 532 nm, which represent the absorption maximum of the TBA:MDA adduct. Method B gave values of TBA-reactive substances (TBARS) 2-fold higher than those detected with method A. SS lowered TBARS by about 50% with both methods, indicating a significant involvement of SA in plasma TBA reactivity. Standard SA, at a physiologically relevant concentration of 1.5 mM, reacted with TBA, creating interference problems, which were substantially eliminated by SS plus correction for background absorbance. When method B was carried out in the lipid and protein fraction of plasma, SS inhibited by 65% TBARS formation only in the latter. Protein TBARS may be largely ascribed to SA-containing glycoproteins and, to a minor extent, protein-bound MDA. Indeed, EDTA did not affect protein TBARS assessed in the presence of SS. TBA reactivity of whole plasma and of its lipid fraction was instead inhibited by EDTA, suggesting that lipoperoxides (and possibly monofunctional lipoperoxidation aldehydes) are involved as MDA precursors in the TBA test. Pretreatment of plasma with KI, a specific reductant of hydroperoxides, decreased TBARS by about 27%. Moreover, aspirin administration to humans to inhibit prostaglandin endoperoxide generation reduced plasma TBARS by 40%. In conclusion, reaction conditions affect the relationship between TBA reactivity and lipid peroxidation in human plasma. After correction for the interfering effects of SA in the TBA test, 40% of plasma TBARS

  2. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-07

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  3. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids.

    PubMed

    Koo, Kyung A; Waisbourd-Zinman, Orith; Wells, Rebecca G; Pack, Michael; Porter, John R

    2016-02-15

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP

  4. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids

    PubMed Central

    Koo, Kyung A.; Waisbourd-Zinman, Orith; Wells, Rebecca G.; Pack, Michael; Porter, John R.

    2016-01-01

    In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP

  5. A study on reactive blending of (poly lactic acid) and poly (butylene succinate co adipate)

    NASA Astrophysics Data System (ADS)

    Bureepukdee, C.; Suttiruengwong, S.; Seadan, M.

    2015-07-01

    This research aims to study the blending of Polylactic acid (PLA) and Polybutylene succinate co adipate (PBSA) in order to understand the role of peroxide in free radical reaction on the compatibilization between these two biodegradable polyesters. Various ratios of PLA/PBSA blends with and without reactive agents were prepared in the twin screw extruder. Two types of peroxides, Di (tert-butylperoxyisopropyl) benzene (DTBP) and 2, 5-Dimethyl-2, 5-(t-butylperoxy) hexane (DTBH), were used with various concentrations to compare. From the torques measurement, DTBP was more reactive with PLA and PBSA than DTBH. PLA and PBSA 80:20, 60:40, 50:50, 40:60, and 20:80% by weight were melt-blended in a twin screw extruder. The reactive polymer blends were also prepared for the same ratios of the blends with addition of 0.08 and 0.1 phr of DTBP. The mechanical, thermal, rheological, and morphological properties were investigated. The impact strengths of the non-reactive blend increased with the increasing in PBSA content. The optimal impact strength was obtained at 40%wt of PBSA with 0.1 phr of DTBP. Adding 0.08 and 0.1 phr of DTBP led to the co continuous phase morphology of PLA/PBSA blends. The per cent crystallinity of PLA increased when blended with PBSA. PBSA might induce the crystallization of PLA.

  6. Metabolism of xenobiotic carboxylic acids: focus on coenzyme A conjugation, reactivity, and interference with lipid metabolism.

    PubMed

    Darnell, Malin; Weidolf, Lars

    2013-08-19

    While xenobiotic carboxylic acids (XCAs) have been studied extensively with respect to their enzymatic conversion to potentially reactive acyl glucuronides with implications to drug induced hepatotoxicity, the formation of xenobiotic-S-acyl-CoA thioesters (xenobiotic-CoAs) have been much less studied in spite of data indicating that such conjugates may be equally or more reactive than the corresponding acyl glucuronides. This review addresses enzymes and cell organelles involved in the formation of xenobiotic-CoAs, the reactivity of such conjugates toward biological macromolecules, and in vitro and in vivo methodology to assess consequences of such reactivity. Further, the propensity of xenobiotic-CoAs to interfere with endogenous lipid metabolism, e.g., inhibition of β-oxidation or depletion of the CoA or carnitine pools, adds to the complexity of the potential contribution of XCAs to hepatotoxicity by a number of mechanisms in addition to those in common with the corresponding acyl glucuronides. On the basis of our review of the literature on xenobiotic-CoA conjugates, there appear to be a number of gaps in our understanding of the bioactivation of XCA both with respect to the mechanisms involved and the experimental approaches to distinguish between the role of acyl glucuronides and xenobiotic-CoA conjugates. These aspects are focused upon and described in detail in this review.

  7. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    PubMed

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown.

  8. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  9. Synthesis of reactive nucleic acid analogues and their application for the study of structure and functions of biopolymers

    NASA Astrophysics Data System (ADS)

    Kanevskii, Igor'E.; Kuznetsova, Svetlana A.

    1998-07-01

    Data on the synthesis of reactive derivatives of nucleic acid analogues and their application for the study of structure and functions of biopolymers are generalised. The main types of such analogues including photoactivated reagents containing azidoaryl, halogeno, and thiol groups, psoralen and its derivatives, platinum-based reagents, and nucleic acid analogues containing substituted pyrophosphate or acyl phosphate internucleotide groups are presented. The mechanisms of interaction of these compounds with proteins and nucleic acids are considered. The prospects for the in vivo application of reactive nucleic acids in various systems are discussed. The bibliography includes 76 references.

  10. Unique Reactivity Patterns Catalyzed by Internal Lewis Acid Assisted Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Auvil, Tyler Jay

    The advancement of hydrogen bond donor (HBD) organocatalysis has been inhibited by a number of challenges. Conventional HBDs suffer from high catalyst loadings and operate in only limited types of reactions, typically the activation of 1,2- and 1,4-acceptors for nucleophilic attack. One strategy to address the shortcomings of HBD catalysis is to design innovative catalysts with improved reactivity. To this end, boronate ureas have been developed as a new family of enhanced HBD catalysts that enable useful new reactivity patterns. Boronate ureas are easily-accessible, small organic molecules that benefit from improved catalytic abilities plausibly due to internal coordination of the urea carbonyl to a strategically placed Lewis acid. Optimization of the boronate urea scaffold has revealed their enhanced catalytic activity, enabling new directions in HBD catalysis. The discovery of boronate ureas has allowed for the unveiling of new HBD activation modes, providing unique reactivity patterns that are inaccessible with conventional HBD catalysts. Among these reactivity patterns is the activation of strained nitrocyclopropane carboxylates for nucleophilic ring-opening reactions, which affords a swift route to access gamma-amino-alpha-nitroester building blocks. The ring-opening method was highlighted by its utilization in the total synthesis of a CB-1 receptor inverse agonist, which was recently patented by Eli Lilly. Additionally, boronate ureas can elicit carbene-like reactivity from alpha-diazocarbonyl compounds, allowing for organocatalytic heteroatom-hydrogen insertions reactions, the first of their kind. The boronate urea activation of alpha-nitrodiazoesters has permitted the development of an unsymmetric double alpha-arylation process, affording a synthetically challenging motif in a single flask. The alpha-arylation reaction proceeds through a conceptually novel organocatalytic transient N--H insertion process, employing anilines as carbene activators. The use

  11. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase.

    PubMed Central

    Albrich, J M; McCarthy, C A; Hurst, J K

    1981-01-01

    Oxidative degradation of biological substrates by hypochlorous acid has been examined under reaction conditions similar to those found in active phagosomes. Iron sulfur proteins are bleached extremely rapidly, followed in decreasing order by beta-carotene, nucleotides, porphyrins, and heme proteins. Enzymes containing essential cysteine molecules are inactivated with an effectiveness that roughly parallels the nucleophilic reactivities of their sulfhydryl groups. Other compounds, including glucosamines, quinones, riboflavin, and, except for N-chlorination, phospholipids, are unreactive. Rapid irreversible oxidation of cytochromes, adenine nucleotides, and carotene pigments occurs when bacterial cells are exposed to exogenous hypochlorous acid; with Escherichia coli, titrimetric oxidation of cytochrome was found to coincide with loss of aerobic respiration. The occurrence of these cellular reactions implicates hypochlorous acid as a primary microbicide in myeloperoxidase-containing leukocytes; the reactivity patterns observed are consistent with the view that bactericidal action results primarily from loss of energy-linked respiration due to destruction of cellular electron transport chains and the adenine nucleotide pool. PMID:6264434

  12. Relating physical state and reactivity: humidity dependent ozone uptake on tannic and shikimic acid

    NASA Astrophysics Data System (ADS)

    Steimer, S.; Huisman, A.; Krieger, U.; Lampimäki, M.; Marcolli, C.; Peter, T.; Ammann, M.

    2012-04-01

    Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Recent findings show that organic aerosol particles are capable of forming amorphous solids and semi-solids under atmospheric conditions [1]. Such particles should be highly viscous, leading to low diffusivity within the bulk. This would then slow down eventual chemical reactions in the bulk, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for the reaction of thin protein films with ozone [2]. To investigate the influence of the physical state on the reactivity of atmospherically relevant compounds, the uptake of ozone on two different organics was measured using a coated wall flow tube system. The investigated organic compounds are tannic acid, which is a proxy for atmospheric polyphenolic materials, and shikimic acid, a constituent of biomass burning aerosols. The viscosity of the organic film was adjusted by varying the humidity of the system, assuming a correlation between the two parameters due to water acting as a plasticizer. The investigated humidity range was 0% - 95% RH for tannic and 0% - 92% RH for shikimic acid. It was found that both of the compounds show a long term uptake of ozone which lasts for more than 20 h. The uptake coefficient is clearly humidity dependent and increases by close to two orders of magnitude between driest and wettest conditions. At a given humidity, shikimic acid is the more reactive compound. The measured humidity dependence supports the hypothesis that the uptake coefficient is a strong function of the diffusion coefficient of ozone in the organic film. 1. Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. 2. Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the

  13. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins

    PubMed Central

    2016-01-01

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput.2014, 10, 2729−273725061442), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H+/Cl– antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins. PMID:26734942

  14. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  15. Impact of the dietary fatty acid intake on C-reactive protein levels in US adults.

    PubMed

    Mazidi, Mohsen; Gao, Hong-Kai; Vatanparast, Hassan; Kengne, Andre Pascal

    2017-02-01

    Growing evidence suggests that the effects of diet on cardiovascular disease (CVD) occur through mechanisms involving subclinical inflammation. We assessed whether reported dietary fatty acid intake correlates with a serum high-sensitivity C-reactive protein (hs-CRP) concentration in a population-based sample of US men and women.In this cross-sectional analysis, participants were selected from the US National Health and Nutrition Examination Survey (NHANES) and restricted to those with available data on dietary intake, biochemical and anthropometric measurements from 2001 to 2010. All statistical analyses accounted for the survey design and sample weights by using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY).Of the 17,689 participants analyzed, 8607 (48.3%) were men. The mean age was 45.8 years in the overall sample, 44.9 years in men, and 46.5 years in women (P = 0.047). The age-, race-, and sex-adjusted mean dietary intakes of total polyunsaturated fatty acids (PUFAs), PUFAs 18:2 (octadecadienoic), and PUFAs 18:3 (octadecatrienoic) monotonically decreased across hs-CRP quartiles (P < 0.001), whereas dietary cholesterol increased across hs-CRP quartiles (P < 0.001)This study provides further evidence of an association between fatty acid intake and subclinical inflammation markers. hs-CRP concentrations are likely modulated by dietary fatty acid intake. However, the causality of this association needs to be demonstrated in clinical trials.

  16. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  17. Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    PubMed Central

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-01-01

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond. PMID:22832392

  18. Impact of the dietary fatty acid intake on C-reactive protein levels in US adults

    PubMed Central

    Mazidi, Mohsen; Gao, Hong-Kai; Vatanparast, Hassan; Kengne, Andre Pascal

    2017-01-01

    Abstract Growing evidence suggests that the effects of diet on cardiovascular disease (CVD) occur through mechanisms involving subclinical inflammation. We assessed whether reported dietary fatty acid intake correlates with a serum high-sensitivity C-reactive protein (hs-CRP) concentration in a population-based sample of US men and women. In this cross-sectional analysis, participants were selected from the US National Health and Nutrition Examination Survey (NHANES) and restricted to those with available data on dietary intake, biochemical and anthropometric measurements from 2001 to 2010. All statistical analyses accounted for the survey design and sample weights by using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY). Of the 17,689 participants analyzed, 8607 (48.3%) were men. The mean age was 45.8 years in the overall sample, 44.9 years in men, and 46.5 years in women (P = 0.047). The age-, race-, and sex-adjusted mean dietary intakes of total polyunsaturated fatty acids (PUFAs), PUFAs 18:2 (octadecadienoic), and PUFAs 18:3 (octadecatrienoic) monotonically decreased across hs-CRP quartiles (P < 0.001), whereas dietary cholesterol increased across hs-CRP quartiles (P < 0.001) This study provides further evidence of an association between fatty acid intake and subclinical inflammation markers. hs-CRP concentrations are likely modulated by dietary fatty acid intake. However, the causality of this association needs to be demonstrated in clinical trials. PMID:28207502

  19. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    PubMed

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  20. From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis

    PubMed Central

    YAMAMOTO, Hisashi

    2008-01-01

    This review focuses on the development of acid catalysis for selective organic transformations conducted in our laboratories for the past 30 years. Several important concepts in designing of catalysts are described with some examples. Further, recent developments in super Brønsted acid and their applications in a one-pot procedure to construct complex molecules with high diastereoselectivities are described. PMID:18941293

  1. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  2. Reactive airways dysfunction syndrome in housewives due to a bleach-hydrochloric acid mixture.

    PubMed

    Gorguner, Metin; Aslan, Sahin; Inandi, Tacettin; Cakir, Zeynep

    2004-02-01

    The sudden onset of asthmalike symptoms and persistence of airway reactivity following an acute exposure to an irritant gas or vapor has been termed reactive airways dysfunction syndrome (RADS). A mixture of sodium hypochlorite (bleach, 40%) and hydrochloric acid (18%) is commonly used as a household cleaning solution in our region. From this mixture, chlorine gas is produced, which can cause airway damage and ensuing RADS. Here we describe findings of patients with RADS due to this cleaning mixture, and determine factors associated with a favorable outcome. Data were collected retrospectively on 55 symptomatic patients presenting to our emergency department after inhalation exposure to a mixture of bleach and hydrochloric acid. Symptoms, past medical and smoking history, details of the exposure, initial peak expiratory flow rate (PEFR) and oxygenation, and acute reversibility of airways obstruction were documented. All patients met previously defined criteria for the diagnosis of RADS, but did not undergo methacholine challenge testing and bronchoalveolar lavage or histopathologic study. Fifty patients were followed over the course of 3 mo. The majority of exposures (64%) occurred in the bathroom or kitchen. Only 21 of 55 (38%) patients showed an improvement in PEFR of 15% or greater following two beta(2)-agonist inhalation treatments. In follow-up, 48 patients (87%) improved clinically and functionally (FEV(1)). Seven patients (13%) deteriorated, with ARDS developing in two, one of whom died from respiratory failure. Advanced age, initial low PEFR, exposure in a small enclosed area, use immediately after mixing, and prolonged short- and long-term exposures were associated with a poorer prognosis. This descriptive study is the largest case series in the literature of RADS developing after exposure to a bleach-hydrochloric acid mixture. The optimum acute treatment and long-term outcomes for patients with RADS due to this combination still need to be determined.

  3. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of

  4. Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia.

    PubMed

    Keene, Annabelle F; Johnston, Scott G; Bush, Richard T; Burton, Edward D; Sullivan, Leigh A

    2010-04-01

    This study examines the abundance of trace elements in surface sediments of a former acid sulfate soil (ASS) wetland subjected to marine tidal inundation. Sediment properties of this highly modified study site are compared with those of an adjacent unmodified, intertidal mangrove forest. Whilst some trace elements (Al, Cd, Mn, Ni and Zn) were clearly depleted due to mobilisation and leaching in the previous oxic-acidic phase, other trace elements (As and Cr) displayed significant enrichment in the tidally inundated ASS. Many trace elements were strongly associated with the reactive Fe and acid volatile sulfide (AVS) fractions, suggesting that trace elements may be adsorbed to abundant reactive Fe phases or sequestered as sulfide minerals. These findings provide an important understanding of the fate and mobility of reactive iron, AVS and trace elements during tidal remediation of a formerly acidified Great Barrier Reef (GBR) catchment.

  5. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  6. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  7. Reactive iron transport in an acidic mountain stream in Summit County, Colorado: A hydrologic perspective

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, K.E.

    1989-01-01

    A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.

  8. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage - column study.

    PubMed

    Shabalala, Ayanda N; Ekolu, Stephen O; Diop, Souleymane; Solomon, Fitsum

    2017-02-05

    This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber's salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  9. Skin testing of gallic acid-based hair dye in paraphenylenediamine/paratoluenediamine-reactive patients.

    PubMed

    Choi, Yunseok; Lee, Joon Ho; Kwon, Hyok Bu; An, Susun; Lee, Ai-Young

    2016-07-01

    Incidence of allergic contact dermatitis (ACD) to para-phenylenediamine (PPD)/paratoluenediamine (PTD) hair dyes is increasing. Hair dyes utilizing gallic acid (GA) may be a safe alternative. However, pretesting is recommended. We investigated the contact sensitivity to ingredients of a dye product; GA, monoethanolamine thioglycolate (MT), l-cystein and ferrous sulfate, and an appropriate pretest method in 31 patients reactive to PPD and/or PTD. An open test was performed with the test dye following the patch test. Subsequently, a use test was performed twice, with a 4-week interval. One subject showed a positive reaction to ferrous sulfate in the patch test. Another subject reacted to the first compound alone in the open test. Thirteen subjects manifesting cutaneous lesions from previous regular hair dyeing, showed reactions at the first use of the test dye; and six had reactions with reduced severity at the second test. GA and MT are safe for use in ACD patients reactive to PPD and/or PTD. For predicting contact allergy to hair dyes, the open test appeared to be a better pretest method than the patch test.

  10. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.

    PubMed

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-03-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.

  11. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  12. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    PubMed Central

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700

  13. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    PubMed

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.

  14. Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity.

    PubMed

    Lee, Sangmin; Park, Chung-Mo

    2010-12-01

    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the inhibitory effects are reduced in the presence of physiological concentrations of SA. Abiotic stresses, including high salinity, impose oxidative stress on plants. Endogenous contents of H(2)O(2) are higher in the sid2 mutant seeds. However, exogenous application of SA reduces endogenous level of reactive oxygen species (ROS), indicating that SA is involved in plant responses to ROS-mediated damage under abiotic stress conditions. Gibberellic acid (GA), a plant hormone closely associated with seed germination, also reverses the inhibitory effects of high salinity on seed germination and seedling establishment. Under high salinity, GA stimulates SA biosynthesis by inducing the SID2 gene. Notably, SA also induces genes encoding GA biosynthetic enzymes. These observations indicate that SA promotes seed germination under high salinity by modulating antioxidant activity through signaling crosstalks with GA.

  15. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.

    PubMed

    Graciano, Maria Fernanda Rodrigues; Valle, Maíra M R; Kowluru, Anjan; Curi, Rui; Carpinelli, Angelo R

    2011-01-01

    Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.

  16. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species.

    PubMed

    Zhu, Yuan; Mahaney, James; Jellison, Jody; Cao, Jinzhen; Gressler, Julia; Hoffmeister, Dirk; Goodell, Barry

    2017-03-01

    This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.

  17. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  18. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  19. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents.

    PubMed

    Carr, A C; Hawkins, C L; Thomas, S R; Stocker, R; Frei, B

    2001-03-01

    Hypochlorous acid (HOCl), the major strong oxidant produced by the phagocyte enzyme myeloperoxidase, reacts readily with free amino groups to form N-chloramines. Since different N-chloramines have different stabilities and reactivities depending on their structures, we investigated the relative reactivities of three model N-chloramines and HOCl with human plasma constituents. TheN-chloramines studied were N(alpha)-acetyl-lysine chloramine (LysCA, a model of protein-associated N-chloramines), taurine chloramine (TaurCA, the primary N-chloramine produced by activated neutrophils), and monochloramine (MonoCA, a lipophilic N-chloramine). Addition of these chlorine species (100--1000 microM each) to plasma resulted in rapid loss of thiols, with the extent of thiol oxidation decreasing in the order TaurCA = LysCA > MonoCA = HOCl. The single reduced thiol of albumin was the major target. Loss of plasma ascorbate also occurred, with the extent decreasing in the order HOCl > LysCA > TaurCA > MonoCA. Experiments comparing equimolar albumin thiols and ascorbate showed that while HOCl caused equivalent loss of thiols and ascorbate, theN-chloramines reacted preferentially with thiols. The chlorine species also inactivated alpha(1)-antiproteinase, implicating oxidation of methionine residues, and ascorbate provided variable protection depending on the chlorine species involved. Together, our data indicate that in biological fluids N-chloramines react more readily with protein thiols than with methionine residues or ascorbate, and thus may cause biologically relevant, selective loss of thiol groups.

  20. S-Esters of Thiohydroximic Acid Esters - A Novel Class of Cholinesterase Reactivators.

    DTIC Science & Technology

    1981-01-05

    and kinetics of reactivation of diisopropyl phosphoryl -acetylcholinesterase. The compounds were moderately active in reactiva- tion of the enzyme, and...Nitrophenyl Acetate (pNPA) in the Presence of Thiohydroximates 19 IV Percent Reactivation (%r t) of Diisopropyl Phosphoryl -AChE after Incubation with 1.00 x 10...Order Observed Rate Constants, k b for Reactivation of Diisopropyl Phosphoryl -ob AChE as a Function of Reactivator Concentration at 25*C, PH =7.6

  1. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  2. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives.

    PubMed

    Zhang, Chun; Yang, Xiao-lan; Yuan, Yong-hua; Pu, Jun; Liao, Fei

    2012-08-01

    Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.

  3. Reactive transport of gentisic acid in a hematite-coated sand column: Experimental study and modeling

    NASA Astrophysics Data System (ADS)

    Hanna, K.; Rusch, B.; Lassabatere, L.; Hofmann, A.; Humbert, B.

    2010-06-01

    The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site ( tbnd FeOH°), while gentisic acid at the surface was described by two surface complexes ( tbnd FeLH 2°, log Kint = 8.9 and tbnd FeLH -, log Kint = -8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (˜10 -3 s -1) while external and internal mass transfer rates (˜10 2 s -1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.

  4. Amino acid sequence homology between rat and human C-reactive protein.

    PubMed Central

    Taylor, J A; Bruton, C J; Anderson, J K; Mole, J E; De Beer, F C; Baltz, M L; Pepys, M B

    1984-01-01

    The rat serum protein that undergoes Ca2+-dependent binding to pneumococcal C-polysaccharide and to phosphocholine residues, and that is evidently a member of the pentraxin family of proteins by virtue of its appearance under the electron microscope, has been variously designated as rat C-reactive protein (CRP) [de Beer, Baltz, Munn, Feinstein, Taylor, Bruton, Clamp & Pepys (1982) Immunology 45, 55-70], 'phosphoryl choline-binding protein' [Nagpurkar & Mookerjea (1981) J. Biol. Chem. 256, 7440-7448] and rat serum amyloid P component (SAP) [Pontet, D'Asnieres, Gache, Escaig & Engler (1981) Biochim. Biophys. Acta 671, 202-210]. The partial amino acid sequence (45 residues) towards the C-terminus of this protein was determined, and it showed 71.7% identity with the known sequence of human CRP but only 54.3% identity with human SAP. Since human CRP and SAP are themselves approximately 50% homologous, the level of identity between the rat protein and human SAP is evidence only of membership of the pentraxin family. In contrast, the much greater resemblance to human CRP confirms that the rat C-polysaccharide-binding/phosphocholine-binding protein is in fact rat CRP. PMID:6477504

  5. Allergenicity and cross-reactivity of naphthenic acid and its metallic salts in experimental animals.

    PubMed

    Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu

    2006-01-01

    The allergenicity and the cross-reactivity of naphthenic acid (NA) and its metallic salts were evaluated in experimental animals. In the guinea pig maximization test, sensitizing skin reactions were observed with cobalt naphthenate (CoN), zinc naphthenate (ZnN) and NA, but not with copper naphthenate, with CoN being the most potent sensitizer. Animals sensitized with 1 naphthenic compound cross-reacted to the other 3 as well. Furthermore, animals in the CoN-sensitized group reacted to the relevant metallic salt cobalt chloride (CoCl2). A dose-response study using the CoN-sensitized group showed that the concentration of CoCl2 required to elicit a skin reaction of similar extent in comparison with CoN was more than 10 times higher, when skin-reaction scores were compared on the basis of cobalt content. In the local lymph node assay, significant increases in stimulation index values without skin irritation were observed with CoN and ZnN, where the former was more potent than the latter. Although CoN is a reported skin sensitizer, this study showed that skin allergenicity of naphthenic compounds is not restricted solely to CoN. In addition, the results suggest the main antigenic determinant of naphthenic compounds to be the structure of NA, even though metal moieties modulate their allergenicity.

  6. Biosorption of reactive dye using acid-treated rice husk: factorial design analysis.

    PubMed

    Ponnusami, V; Krithika, V; Madhuram, R; Srivastava, S N

    2007-04-02

    A factorial experimental design technique was used to investigate the biosorption of reactive red RGB (lambda(max)=521 nm) from water solution on rice husk treated with nitric acid. Biosorption is favored because of abundance of biomass, low cost, reduced sludge compared to conventional treatment techniques and better decontamination efficiency from highly diluted solutions. Factorial design of experiments is employed to study the effect of four factors pH (2 and 7), temperature (20 and 40), adsorbent dosage (5 and 50mg/L) and initial concentration of the dye (50 and 250 mg/L) at two levels low and high. The efficiency of color removal was determined after 60 min of treatment. Main effects and interaction effects of the four factors were analyzed using statistical techniques. A regression model was suggested and it was found to fit the experimental data very well. The results were analyzed statistically using the Student's t-test, analysis of variance, F-test and lack of fit to define most important process variables affecting the percentage dye removal. The most significant variable was thus found to be pH.

  7. Modulation of the reactivity of the thiol of human serum albumin and its sulfenic derivative by fatty acids

    PubMed Central

    Torres, María José; Turell, Lucía; Botti, Horacio; Antmann, Laura; Carballal, Sebastián; Ferrer-Sueta, Gerardo; Radi, Rafael; Alvarez, Beatriz

    2012-01-01

    The single cysteine residue of human serum albumin (HSA-SH) is the most abundant plasma thiol. HSA transports fatty acids (FA), a cargo that increases under conditions of diabetes, exercise or adrenergic stimulation. The stearic acid-HSA (5/1) complex reacted 6-fold faster at pH 7.4 with the disulfide 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-fold faster with hydrogen peroxide and peroxynitrite. The apparent pKa of HSA-SH decreased from 7.9 ± 0.1 to 7.4 ± 0.1. Exposure to H2O2 (2 mM, 5 min, 37 °C) yielded 0.29 ± 0.04 moles of sulfenic acid (HSA-SOH) per mole of FA-bound HSA. The reactivity of HSA-SOH with low molecular weight thiols increased ~3-fold in the presence of FA. The enhanced reactivity of the albumin thiol at neutral pH upon FA binding can be rationalized by considering that the corresponding conformational changes that increase thiol exposure both increase the availability of the thiolate due to a lower apparent pKa and also loosen steric constraints for reactions. Since situations that increase circulating FA are associated with oxidative stress, this increased reactivity of HSA-SH could assist in oxidant removal. PMID:22450170

  8. Characterization of humic acid reactivity modifications due to adsorption onto α-Al2O3.

    PubMed

    Janot, Noémie; Reiller, Pascal E; Zheng, Xing; Croué, Jean-Philippe; Benedetti, Marc F

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al(2)O(3) is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m(2) of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m(2) of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA(254), ratio of absorbance values E(2)/E(3) and width of the electron-transfer absorbance band Δ(ET) are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R ≥ 20 mg(PAHA)/g(α)(-)(A)1₂(O)₃. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could

  9. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.

    PubMed

    Dong, Haoran; Ahmad, Kito; Zeng, Guangming; Li, Zhongwu; Chen, Guiqiu; He, Qi; Xie, Yankai; Wu, Yanan; Zhao, Feng; Zeng, Yalan

    2016-04-01

    This study investigated the effect of fulvic acid (FA) on the colloidal stability and reactivity of nano zero-valent iron (nZVI) at pH 5, 7 and 9. The sedimentation behavior of nZVI differed at different pH. A biphasic model was used to describe the two time-dependent settling processes (i.e., a rapid settling followed by a slower settling) and the settling rates were calculated. Generally, the settling of nZVI was more significant at the point of zero charge (pHpzc), which could be varied in the presence of FA due to the adsorption of FA on the nZVI surface. More FA was adsorbed on the nZVI surface at pH 5-7 than pH 9, resulting in the varying sedimentation behavior of nZVI via influencing the electrostatic repulsion among particles. Moreover, it was found that there was a tradeoff between the stabilization and the reactivity of nZVI as affected by the presence of FA. When FA concentration was at a low level, the adsorption of FA on the nZVI surface could enhance the particle stabilization, and thus facilitating the Cr(VI) reduction by providing more available surface sites. However, when the FA concentrations were too high to occupy the active surface sites of nZVI, the Cr(VI) reduction could be decreased even though the FA enhanced the dispersion of nZVI particles. At pH 9, the FA improved the Cr(VI) reduction by nZVI. Given the adsorption of FA on the nZVI surface was insignificant and its effect on the settling behavior of nZVI particles was minimal, it was proposed that the FA formed soluble complexes with the produced Fe(III)/Cr(III) ions, and thus reducing the degree of passivation on the nZVI surface and facilitating the Cr(VI) reduction.

  10. Correlation between chemical reactivity and the Hammett acidity function in amorphous solids using inversion of sucrose as a model reaction.

    PubMed

    Chatterjee, Koustuv; Shalaev, Evgenyi Y; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2008-01-01

    The goal was to evaluate the effects of acidity, expressed as the Hammett acidity function, on chemical reactivity in freeze-dried materials (lyophiles). Dextran-sucrose-citrate and polyvinyl pyrrolidone (PVP)-sucrose-citrate aqueous solutions, adjusted to pH values of 2.6, 2.8, and 3.0 were freeze dried, and characterized by X-ray powder diffractometry, DSC, isothermal microcalorimetry, and Karl Fischer titrimetry. Lyophiles were also prepared from identical solutions but containing bromophenol blue (BB). Diffuse reflectance-visible spectroscopy was used to measure the extent of BB protonation from which the Hammett acidity functions were determined. The stability studies were performed at 60 degrees C. All the freeze-dried samples were observed to be X-ray amorphous with <0.15% w/w water content. The T(g) of dextran lyophiles were approximately 20 degrees C higher than that of PVP lyophiles whereas enthalpy relaxation rates at 60 degrees C were similar. The Hammett acidity functions were significantly lower (i.e., higher acidity) for dextran systems (<2.2-2.6) when compared with PVP systems (3.3-3.9). The rate of sucrose inversion was significantly (an order of magnitude) higher in dextran lyophiles. This study showed that in amorphous matrices with comparable water content and structural relaxation times, chemical reactivity could be significantly different depending on the matrix "acidity".

  11. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls.

  12. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid.

    PubMed

    Goud, Anuradha P; Goud, Pravin T; Diamond, Michael P; Gonik, Bernard; Abu-Soud, Husam M

    2008-04-01

    Aging of the unfertilized oocyte inevitably occurs following ovulation, limiting its fertilizable life span. However, the mechanisms that regulate oocyte aging are still unclear. We hypothesize that reactive oxygen species such as superoxide (O2-), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) are likely candidates that may initiate these changes in the oocyte. In order to test this hypothesis, we investigated direct effects of O2- [hypoxanthine/xanthine oxidase system generating 0.12 (n=42) and 0.25 (n=45) microM O2-/min], H2O2 (20 or 100 microM, n=60), and HOCl, (1, 10, and 100 microM, n=50) on freshly ovulated or relatively old mouse oocytes, while their sibling oocytes were fixed immediately or cultured under physiological conditions (n=96). The aging process was assessed by the zona pellucida dissolution time (ZPDT), ooplasm microtubule dynamics (OMD), and cortical granule (CG) status. The ZPDT increased 2-fold in relatively old, compared to young, untreated oocytes (P<0.0001). Exposure to O2- increased it even further (P<0.0001). Similarly, more O2- exposed oocytes exhibited increased OMD and major CG loss, with fewer having normal OMD and intact CG compared to untreated controls. Interestingly, young oocytes resisted "aging," when exposed to 20 microM H2O2, while the same enhanced the aging phenomena in relatively old oocytes (P<0.05). Exposure to even very low levels of HOCl induced the aging phenomena in young and relatively old oocytes, and higher concentrations of HOCl compromised oocyte viability. Overall, O2-, H2O2, and HOCl each augment oocyte aging, more so in relatively old oocytes, suggesting compromised antioxidant capacity in aging oocytes.

  13. C-reactive protein and alpha 1-acid glycoprotein levels in dogs infected with Ehrlichia canis.

    PubMed Central

    Rikihisa, Y; Yamamoto, S; Kwak, I; Iqbal, Z; Kociba, G; Mott, J; Chichanasiriwithaya, W

    1994-01-01

    To elucidate whether acute-phase protein responses occur in dogs infected with Ehrlichia canis, C-reactive protein (CRP) and alpha 1-acid glycoprotein (AAG) levels were serially measured in the plasma of five dogs experimentally inoculated with E. canis and 10 sham-inoculated or noninoculated control dogs. The CRP concentration was measured by a canine-specific capture enzyme-linked immunosorbent assay, and the AAG concentration was measured by a canine-specific radial immunodiffusion method. In all E. canis-inoculated dogs, a 3.3- to 6.5-fold increase in the plasma CRP concentration and a 1.9- to 8.6-fold increase in the plasma AAG concentration over the preinoculation level occurred at days 4 to 6 postexposure. Despite the persistence of E. canis and high antibody titers, both CRP and AAG concentrations gradually declined to preexposure levels by day 34 postexposure. E. canis-infected dogs had mild and transient clinical signs which resolved without treatment by day 14 postexposure. The CRP and AAG concentrations in control inoculated or nontreated dogs remained within the normal range throughout the experimental period. Of 12 dogs naturally infected with E. canis, 75% had greater than 50 micrograms of CRP per ml and 83% had greater than 500 micrograms of AAG per ml. All of these 12 dogs had chronic and severe clinical signs of canine ehrlichiosis. Thus, elevations in the levels of acute-phase proteins occur in both acute and chronic canine ehrlichiosis. Determination of CRP and AAG concentrations may help in assessing the severity of inflammatory damage in dogs with E. canis infections. PMID:8027343

  14. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study.

    PubMed

    Al-Hosney, Hashim A; Carlos-Cuellar, Sofia; Baltrusaitis, Jonas; Grassian, Vicki H

    2005-10-21

    The heterogeneous uptake and reactivity of formic acid (HCOOH), a common gas-phase organic acid found in the environment, on calcium carbonate (CaCO(3)) particles have been investigated using a Knudsen cell reactor, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR measurements show that the adsorption of formic acid on the surface of calcium carbonate results in the formation of calcium formate. Besides calcium formate, carbonic acid is also a reaction product under dry conditions (<1% RH). Under dry conditions and at low pressures, the initial uptake coefficient of formic acid on CaCO(3) particles is measured to be 3 +/- 1 x 10(-3) and decreases as the surface saturates with adsorbed products. The maximum surface coverage of formic acid under dry conditions is determined to be (3 +/- 1)x 10(14) molecules cm(-2). Under humidified conditions (RH >10%), adsorbed water on the surface of the carbonate particles participates in the surface reactivity of these particles, which results in the enhanced uptake kinetics and extent of reaction of this organic acid on CaCO(3) as well as opens up several new reaction pathways. These reaction pathways include: (i) the water-assisted dissociation of carbonic acid to CO(2) and H(2)O and (ii) the formation of calcium formate islands and crystallites, as evident by SEM images. The results presented here show that adsorbed water plays a potentially important role in the surface chemistry of gas-phase organic acids on calcium carbonate particles.

  15. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  16. Interaction of flavanols with amino acids: postoxidative reactivity of the B-ring of catechin with glycine.

    PubMed

    Guerra, Paula Vanessa; Yaylayan, Varoujan A

    2014-04-30

    Flavanol-related structures such as epicatechin and catechins have been associated with potential antioxidant activity in food and are known to interfere with the Maillard reaction through scavenging of reactive dicarbonyl compounds. High-resolution ESI-TOF mass spectrometry and an isotope labeling technique were used to assess the reactivity of glycine with (+)-catechin heated under oxidative conditions at 120 °C for 70 min. Evidence based on accurate mass analysis of the products obtained and the isotope incorporation pattern of [(13)C-1]glycine, [(13)C-2]glycine, and [(15)N]glycine experiments indicated that (+)-catechin formed various adducts with glycine; two of them incorporated a single amino acid, and three adducts incorporated two amino acid moieties. Some of these adducts underwent dehydration reaction at ring C, and in some the C-ring remained intact. Detailed MS/MS analyses of the fragmentation patterns of these adducts have confirmed the addition of amino acid moieties to the oxidized B-ring of (+)-catechin through the formation of Schiff bases. Formation of such nonvolatile (+)-catechin/amino acid adducts provides insight into how amino acid can have the potential of modifying the antioxidant properties of (+)-catechin and how catechin in turn has the potential of modifying the profile of the Maillard reaction.

  17. Degradation State, Sources, and Reactivity of Dissolved Organic Matter from an Amino Acid Time Series in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R. G.; Bergamaschi, B. A.; Hernes, P.

    2015-12-01

    A detailed time series of dissolved amino acids was obtained in an agricultural watershed in the northern Central Valley, California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). Total hydrolysable amino acid (THAA) concentrations ranged from 0.55 to 9.96 μM (mean 3.76 ± 1.80 μM) and not only peaked with discharge during winter storms, but also remained elevated throughout the irrigation season when discharge was low. Summer irrigation was a critical hydrologic regime for DOM cycling, since it mobilized DOM similar in concentration and reactivity to DOM released during winter storms for an extended period of time, with the largest amino acid contributions to the dissolved organic carbon (DOC) and the dissolved organic nitrogen (DON) pools (3.4 ‒ 3.7 % DOC-AA, 17.4 ‒ 22.5 % DON-AA), the largest proportion of basic amino acids (B/(B+A) = 0.19 ‒ 0.22), and the largest degradation index values (mean 1.37 ± 0.96). The mole percent of non-protein amino acids, commonly considered as an indicator of microbial degradation, decreased with DOM processing and was highest during summer (mean 4.1 ± 1.1%). A lack of correlation between THAA concentrations and UV-Vis absorbance and fluorescence proxies (including "protein-like" fluorophores B and T) indicated that optical properties may be limited in representing amino acid dynamics in this system. A new parameter for DOM processing derived from trends in individual amino acids demonstrated strong potential for inferring the extent of DOM degradation in freshwater systems. The biogeochemical relevance of irrigation practices is heightened by timing, since the additional export of reactive DOM coincides with enhanced downstream DOM processing in the Sacramento-San Joaquin River Delta, a critical habitat for endangered species serving as water source for 25 million Californians.

  18. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    SciTech Connect

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET

  19. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    DOE PAGES

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; ...

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentialsmore » of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less

  20. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  1. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    PubMed

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-05-02

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mössbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but

  2. Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, Pascal; Shutthanandan, Janani

    2012-08-01

    Chemical imaging analysis of internally mixed sea salt/organic particles collected onboard the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and in particular hydration-dehydration cycles of mixed sea salt/organic particles, may result in formation of organic salts that will modify the acidity, hygroscopic, and optical properties of aged particles.

  3. Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids

    SciTech Connect

    Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

    2012-08-03

    Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

  4. Reactivity of Tannic Acid with Common Corrosion Products and Its Influence on the Hydrolysis of Iron in Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; Araúz, E. Y.; Iglesias, J.; Delgado, Y.

    2003-06-01

    To ascertain the role of tannic acid in the anticorrosive protection of steels, the reaction between 5% tannic acid aqueous solutions with lepidocrocite, goethite, superparamagnetic goethite, akaganeite, poorly crystalline maghemite, magnetite and hematite was studied using color changes, infrared and Mössbauer spectroscopy. After three months of interaction with lepidocrocite, the formation of an iron tannate complex was detected by its dark blue color and confirmed by infrared and Mössbauer analysis. Evidence for the chemical transformation was obtained for goethite in nanoparticles and poorly crystalline maghemite after reaction for six months. The other iron compounds do not transform to another oxide or phase upon treatment with the tannic acid solution. These results showed that lepidocrocite is the most reactive phase and that the size and degree of crystallinity have strong influence on the formation of the tannate complexes. The precipitation of iron phases from alkaline solutions of iron (II) sulfate heptahydrate containing different amount of tannic acid and potassium nitrate as oxidative agent was also studied. Mössbauer and infrared results show that in the absence of tannic acid some common rust components are obtained (viz. goethite, superparamagnetic goethite, maghemite and non-stoichiometric magnetite). The presence of 0.1% tannic acid in a low alkalinity solution results in the precipitation of iron oxyhydroxides and some iron tannates. Concentrations of 1% tannic acid are required for the formation of the tannates complexes as main reaction product.

  5. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo.

    PubMed

    Chen, Joy; Peterson, Kenneth R; Iancu-Rubin, Camelia; Bieker, James J

    2010-09-28

    Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.

  6. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  7. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  8. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  9. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  10. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction.

  11. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    PubMed

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  12. Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of reactivity using local ionization potential.

    PubMed

    Shoulder, J M; Alderman, N S; Breneman, C M; Nyman, M C

    2013-08-01

    Property-Encoded Surface Translator (PEST) descriptors were found to be correlated with the degradation rates of polycyclic aromatic hydrocarbons (PAHs) by the peroxy-acid process. Reaction rate constants (k) in hr(-1) for nine PAHs (acenaphthene, anthracene, benzo[a]pyrene, benzo[k]fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were determined by a peroxy-acid treatment method that utilized acetic acid, hydrogen peroxide, and a sulphuric acid catalyst to degrade the polyaromatic structures. Molecular properties of the selected nine PAHs were derived from structures optimized at B3LYP/6-31G(d) and HF/6-31G(d) levels of theory. Properties of adiabatic and vertical ionization potential (IP), highest occupied molecular orbitals (HOMO), HOMO/lowest unoccupied molecular orbital (LUMO) gap energies and HOMO/singly occupied molecular orbital (SOMO) gap energies were not correlated with rates of peroxy-acid reaction. PEST descriptors were calculated from B3LYP/6-31G(d) optimized structures and found to have significant levels of correlation with k. PIP Min described the minimum local IP on the surface of the molecule and was found to be related to k. PEST technology appears to be an accurate method in predicting reactivity and could prove to be a valuable asset in building treatment models and in remediation design for PAHs and other organic contaminants in the environment.

  13. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO.

  14. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids.

    PubMed

    Ahmad, Farrukh; Hughes, Joseph B

    2002-10-15

    Sequential anaerobic/aerobic treatment of 2,4,6-trinitrotoluene (TNT) generally results in the incorporation of residues into biomass and natural organic matter fractions of a system. To better understand the potential contribution of hydroxylamine and nitroso moieties in these reactions, studies were conducted using model systems taking advantage of the biocatalytic-activity of Clostridium acetobutylicum that does not produce aminated TNT derivatives. To evaluate binding to biomass only, systems containing cell-free extracts of C. acetobutylicum and molecular hydrogen as a reductant were employed. At the end of treatment, mass balance studies showed that 10% of the total 14C was associated with an insoluble protein-containing precipitate that could not be extracted with organic solvents. Model reactions were conducted between a mixture of 2,4-dihydroxylamino-6-nitrotoluene (DHA6NT) and 4-hydroxylamino-2,6-dinitrotoluene (4HADNT) and 1-thioglycerol to test the involvement of the nitroso-thiol reaction in binding to biomass. It was demonstrated that DHA6NT formed a new and relatively polar product with 1-thioglycerol only in the presence of oxygen. The oxygen requirement confirmed that the nitroso functionality was responsible for the binding reaction. The reactivity of arylhydroxylamino and nitrosoarene functionalities toward International Humic Substance Society (IHSS) peat humic acid was evaluated under anaerobic and aerobic conditions, respectively. 4HADNT showed no appreciable reactivity toward peat humic acid. Conversely, the nitrosoarene compound, nitrosobenzene, showed rapid reactivity with peat humic acid (50% removal in 48 h). When tested with two other humic acids (selected on the basis of their protein content), it became apparent that the proteinaceous fraction was responsible at least in part for the nitrosoarene's removal from solution. Furthermore, the pretreatment of the humic acids with a selective thiol derivatizing agent had a considerable effect

  15. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid.

    PubMed

    Postula, Marek; Janicki, Piotr K; Eyileten, Ceren; Rosiak, Marek; Kaplon-Cieslicka, Agnieszka; Sugino, Shigekazu; Wilimski, Radosław; Kosior, Dariusz A; Opolski, Grzegorz; Filipiak, Krzysztof J; Mirowska-Guzel, Dagmara

    2016-06-01

    The objective of this study was to investigate whether rare missense genetic variants in several genes related to platelet functions and acetylsalicylic acid (ASA) response are associated with the platelet reactivity in patients with diabetes type 2 (T2D) on ASA therapy. Fifty eight exons and corresponding introns of eight selected genes, including PTGS1, PTGS2, TXBAS1, PTGIS, ADRA2A, ADRA2B, TXBA2R, and P2RY1 were re-sequenced in 230 DNA samples from T2D patients by using a pooled PCR amplification and next-generation sequencing by Illumina HiSeq2000. The observed non-synonymous variants were confirmed by individual genotyping of 384 DNA samples comprising of the individuals from the original discovery pools and additional verification cohort of 154 ASA-treated T2DM patients. The association between investigated phenotypes (ASA induced changes in platelets reactivity by PFA-100, VerifyNow and serum thromboxane B2 level [sTxB2]), and accumulation of rare missense variants (genetic burden) in investigated genes was tested using statistical collapsing tests. We identified a total of 35 exonic variants, including 3 common missense variants, 15 rare missense variants, and 17 synonymous variants in 8 investigated genes. The rare missense variants exhibited statistically significant difference in the accumulation pattern between a group of patients with increased and normal platelet reactivity based on PFA-100 assay. Our study suggests that genetic burden of the rare functional variants in eight genes may contribute to differences in the platelet reactivity measured with the PFA-100 assay in the T2DM patients treated with ASA.

  16. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products.

  17. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  18. Human cell toxicogenomic analysis linking reactive oxygen species to the toxicity of monohaloacetic acid drinking water disinfection byproducts.

    PubMed

    Pals, Justin; Attene-Ramos, Matias S; Xia, Menghang; Wagner, Elizabeth D; Plewa, Michael J

    2013-01-01

    Chronic exposure to drinking water disinfection byproducts has been linked to adverse health risks. The monohaloacetic acids (monoHAAs) are generated as byproducts during the disinfection of drinking water and are cytotoxic, genotoxic, mutagenic, and teratogenic. Iodoacetic acid toxicity was mitigated by antioxidants, suggesting the involvement of oxidative stress. Other monoHAAs may share a similar mode of action. Each monoHAA generated a significant concentration-response increase in the expression of a β-lactamase reporter under the control of the antioxidant response element (ARE). The monoHAAs generated oxidative stress with a rank order of iodoacetic acid (IAA) > bromoacetic acid (BAA) ≫ chloroacetic acid (CAA); this rank order was observed with other toxicological end points. Toxicogenomic analysis was conducted with a nontransformed human intestinal epithelial cell line (FHs 74 Int). Exposure to the monoHAAs altered the transcription levels of multiple oxidative stress responsive genes, indicating that each exposure generated oxidative stress. The transcriptome profiles showed an increase in thioredoxin reductase 1 (TXNRD1) and sulfiredoxin (SRXN1), suggesting peroxiredoxin proteins had been oxidized during monoHAA exposures. Three possible sources of reactive oxygen species were identified, the hypohalous acid generating peroxidase enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase 5 (NOX5), and PTGS2 (COX-2) mediated arachidonic acid metabolism. Each monoHAA exposure caused an increase in COX-2 mRNA levels. These data provide a functional association between monoHAA exposure and adverse health outcomes such as oxidative stress, inflammation, and cancer.

  19. Reactive Extraction of Lactic Acid by Using Tri-n-octylamine: Structure of the Ionic Phase.

    PubMed

    Aimer, Matthias; Klemm, Elias; Langanke, Bernd; Gehrke, Helmut; Stubenrauch, Cosima

    2016-03-01

    Lactic acid is a promising biogenic platform chemical which can be produced by fermentation of cellulose and hemicellulose. However, separating lactic acid from the fermentation broth is extremely costly and technically complex. We therefore investigated whether liquid/liquid extraction of lactic acid with tri-n-octylamine is a cost-effective alternative to the existing downstream processing method. In order to find an answer to this question, the structure of the middle phase of the occurring three-phase region, which is enriched with up to 20 wt. % lactic acid, was explored. The results of our IR, small-angle X-ray scattering and NMR measurements show that this phase is ionic and has a bicontinuous structure. Due to the analogy with bicontinuous microemulsions, it should be possible to further enrich the lactic acid, which could lead to a rethink regarding the design of extraction processes.

  20. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    PubMed

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  1. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  2. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  3. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts.

    PubMed

    Wang, Wei; Buchholz, Andreas; Seiler, Michael; Hunger, Michael

    2003-12-10

    Recent progress reveals that, in the methanol-to-olefin (MTO) process on acidic zeolites, the conversion of an equilibrium mixture of methanol and DME is dominated by a "hydrocarbon pool" mechanism. However, the initial C-C bond formation, that is, the chemistry during the kinetic "induction period" leading to the reactive hydrocarbon pool, still remains unclear. With the application of a stopped-flow protocol, in the present work, pure surface methoxy groups [SiO(CH(3))Al] were prepared on various acidic zeolite catalysts (H-Y, H-ZSM-5, H-SAPO-34) at temperatures lower than 473 K, and the further reaction of these methoxy species was investigated by in situ (13)C MAS NMR spectroscopy. By using toluene and cyclohexane as probe molecules which are possibly involved in the MTO process, we show the high reactivity of surface methoxy species. Most importantly, the formation of hydrocarbons from pure methoxy species alone is demonstrated for the first time. It was found that (i) surface methoxy species react at room temperature with water to methanol, indicating the occurrence of a chemical equilibrium between these species at low temperatures. In the presence of aromatics and alkanes, (ii) the reactivity of surface methoxy groups allows a methylation of these organic compounds at reaction temperatures of ca. 433 and 493 K, respectively. In the absence of water and other organic species, that is, under flow conditions and on partially methylated catalysts, (iii) a conversion of pure methoxy groups alone to hydrocarbons was observed at temperatures of T >/= 523 K. This finding indicates a possible formation of the first hydrocarbons during the kinetic induction period of the MTO process via the conversion of pure surface methoxy species (case iii). After the first hydrocarbons are formed, or in the presence of a small amount of organic impurities, surface methoxy groups contribute to a further methylation of these organic compounds (case ii), leading to the formation of

  4. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.

    PubMed

    Prentice, Boone M; Gilbert, Joshua D; Stutzman, John R; Forrest, William P; McLuckey, Scott A

    2013-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.

  5. Effects of nitric acid on carbachol reactivity of the airways in normal and allergic sheep

    SciTech Connect

    Abraham, W.M.; Kim, C.S.; King, M.M.; Oliver, W. Jr.; Yerger, L.

    1982-01-01

    The airway effects of a 4-hr exposure (via a Plexiglas hood) to 1.6 ppm nitric acid vapor were evaluated in seven normal and seven allergic sheep, i.e., animals that have a history of reacting with bronchospasm to inhalation challenge with Ascaris suum antigen. The nitric acid vapor was generated by ultrasonic nebulization of a 2% nitric acid solution. Airway effects were assessed by measuring the change in specific pulmonary flow resistance before and after a standard inhalation challenge with 2.5% carbachol aerosol. Nitric acid exposure did not produce bronchoconstriction in either group. Pre-exposure increases in specific pulmonary flow resistance after carbachol inhalation were 68% (SD+/- 13%) and 82% (SD+/- 35%) for the normal and allergic sheep, respectively. Within 24 hr, the largest post-exposure increases in specific pulmonary flow resistance for the normal and allergic sheep were 108% (SD+/- 51%(P<.06)) and 175% (SD+/- 87% (p<.02)), respectively. We conclude that a short-term exposure to nitric acid vapor at levels below the industrial threshold limit (2 ppm), produces airway hyperreactivity to aerosolized carbachol in allergic sheep.

  6. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  7. Stability of prostacyclin analogues: an unusual lack of reactivity in acid-catalyzed alkene hydration.

    PubMed

    Magill, A; O'Yang, C; Powell, M F

    1988-04-01

    Prostacyclin analogue 5 undergoes specific acid-catalyzed hydration (kH+ = 1.9 x 10(-7)M-1 sec-1 at 25 degrees C) and a pH-independent oxidation reaction (k0 = 1.2 x 10(-10) sec-1 at 25 degrees C) above pH approximately 5. The hydration reaction for 5 is much slower than for other structurally similar exocyclic alkenes, even though the rate-determining step is proton transfer. This slowness of reaction and an analysis of the pH-rate profile show that 5 does not exhibit significant intramolecular general acid catalysis, as does prostacyclin.

  8. Seafood intake, polyunsaturated fatty acids, blood mercury, and serum C-reactive protein in US National Health and Nutrition Examination Survey (2005-2006).

    PubMed

    Emanuele, Erin; Meliker, Jaymie

    2017-04-01

    We examined the association between seafood consumption, mercury concentration, polyunsaturated fatty acids, selenium, and Vitamin D in relation to C-reactive protein using the cross-sectional US National Health and Nutrition Examination Survey 2005-2006. We hypothesized that seafood consumption and fatty acids will be negatively associated, and mercury will be positively associated with C-reactive protein, and that statistical adjustment for these factors will alleviate confounding thereby making these associations more apparent. The study sample included 1217 participants (706 males, 511 females) aged 16-49. Sex-stratified sample weighted multiple linear regression models revealed no associations of mercury, polyunsaturated fatty acids, fish intake, selenium, or vitamin D with serum C-reactive protein. However, when all variables were included together in one model, fish intake was associated with lower levels of CRP in females suggesting confounding in models that do not mutually adjust for seafood contaminants and nutrients. Prospective studies are needed to confirm these findings.

  9. On the reaction of D-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of reactivity.

    PubMed

    Rosini, Elena; Molla, Gianluca; Ghisla, Sandro; Pollegioni, Loredano

    2011-02-01

    Evidence is accumulating that oxygen access in proteins is guided and controlled. We also have recently described channels that might allow access of oxygen to pockets at the active site of the flavoprotein D-amino acid oxidase (DAAO) that have a high affinity for dioxygen and are in close proximity to the flavin. With the goal of enhancing the reactivity of DAAO with oxygen, we have performed site-saturation mutagenesis at three positions that flank the putative oxygen channels and high-affinity sites. The most interesting variants at positions 50, 201 and 225 were identified by a screening procedure at low oxygen concentration. The biochemical properties of these variants have been studied and compared with those of wild-type DAAO, with emphasis on the reactivity of the reduced enzyme species with dioxygen. The substitutions at positions 50 and 225 do not enhance this reaction, but mainly affect the protein conformation and stability. However, the T201L variant shows an up to a threefold increase in the rate constant for reaction of O(2) with reduced flavin, together with a fivefold decrease in the K(m) for dioxygen. This effect was not observed when a valine is located at position 201, and is thus attributed to a specific alteration in the micro-environment of one high-affinity site for dioxygen (site B) close to the flavin that plays an important role in the storage of oxygen. The increase in O(2) reactivity observed for T201L DAAO is of great interest for designing new flavoenzymes for biotechnological applications.

  10. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-08

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  11. Intracellular delivery of the reactive oxygen species generating agent D-penicillamine upon conjugation to poly-L-glutamic acid.

    PubMed

    Wadhwa, Saurabh; Mumper, Russell J

    2010-06-07

    D-penicillamine is an aminothiol that is cytotoxic to cancer cells and generates dose dependent reactive oxygen species (ROS) via copper catalyzed oxidation. However, the delivery of D-pen to cancer cells remains a challenge due to its high hydrophilicity, highly reactive thiol group and impermeability to the cell membrane. To overcome this challenge, we investigated a novel poly-L-glutamic acid (PGA) conjugate of D-pen (PGA-D-pen) where D-pen was conjugated to PGA modified with 2-(2-pyridyldithio)-ethylamine (PDE) via disulfide bonds. Confocal microscopy and cell uptake studies showed that the fluorescently labeled PGA-D-pen was taken up by human leukemia cells (HL-60) in a time dependent manner. Treatment of HL-60, murine leukemia cells (P388) and human breast cancer cells (MDA-MB-468) with PGA-D-pen resulted in dose dependent cytotoxicity and elevation of intracellular ROS levels. PGA-D-pen induced apoptosis in HL-60 cells which was verified by Annexin V binding. The in vivo evaluation of the conjugate in the P388 murine leukemia model (intraperitoneal) resulted in significant enhancement in the survival of CD2F1 mice over vehicle control.

  12. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat

    PubMed Central

    Karwowska, Małgorzata; Dolatowski, Zbigniew J.

    2017-01-01

    Objective This study evaluated the effect of acid whey and freeze-dried cranberries on the physicochemical characteristics, lipid oxidation and fatty acid composition of nitrite-free fermented sausage made from deer meat and pork fat. Antioxidant interactions between acid whey and cranberry compounds were also explored. Methods Four formulations of fermented venison sausage were prepared: F1 (control), F2 (with 5% liquid acid whey), F3 (with 0.06% of freeze-dried cranberries), and F4 (with 5% liquid acid whey and 0.06% of freeze-dried cranberries). Each sample was analyzed for pH, water activity (aw), heme iron content, 2-thiobarbituric acid reactive substances (TBARS) value and conjugated dienes at the end of the manufacturing process and at 30 and 90 days of refrigerated storage. Fatty acid composition was measured once at the end of the manufacturing process. Results At the end of ripening, all samples presented statistically different values for a pH range of 4.47 to pH 4.59. The sum of the unsaturated fatty acids was higher, while the conjugated diene and the TBARS values were lower in sausages with freeze-dried cranberries as compared to the control sausage. The highest content of heme iron (21.52 mg/kg) at day 90 was found in the sausage formulation with the addition of freeze-dried cranberries, which suggests that the addition of cranberries stabilized the porphyrin ring of the heme molecule during storage and thereby reduced the release of iron. The use of liquid acid whey in combination with cranberries appears to not be justified in view of the oxidative stability of the obtained products. Conclusion The results suggest that the application of freeze-dried cranberries can lower the intensity of oxidative changes during the storage of nitrite-free fermented sausage made from deer meat. PMID:27165018

  13. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-08

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression.

  14. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  15. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  16. [USE OF HYALURONIC ACID ALONE AND COMBINED WITH ARGENTIC SULPHADIAZINE IN REACTIVE PERFORATING COLLAGENOSIS. A CASE REPORT].

    PubMed

    Cano Cerro, Miguel Mauricio; Jiménez Fornés, Eva María; Fabrich Lloret, María José; Gans Cuenca, Ovidio; Redón Martínez, Mara; Sales Molió, Elena

    2016-04-01

    The dermatosis known since reactive perforating collagenosis (RPC) is an injury that is characterized by the transepidermal elimination of the collagen. Two forms of presentation exist: the inherited one and the acquired one. The acquired form appears in the adult age, principally in diabetics with renal chronic insufficiency. The hyaluronic acid is a glycosaminoglycan of high place molecular weight that is synthesized in the system vacuolar of the fibroblasts and other cells, since they are the keratinocytes, with help of the factors of growth and in other cytokines. The argentic sulphadiazine is a hackneyed medicament of antiinfectious action that is in use for anticipating and treating the infections in wounds and burns of degree the II and IIIrd. His action realizes it on bacteria and fungi.

  17. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species.

    PubMed

    Peiretti, Pier Giorgio; Medana, Claudio; Visentin, Sonja; Giancotti, Valeria; Zunino, Valentina; Meineri, Giorgia

    2011-06-15

    The aim of this research was to determine the content of the histidinic antioxidants, advanced glycation end products (pentosidine) and thiobarbituric acid reactive substance (TBARS) in the meat from different animal species. Carnosine, anserine, homocarnosine and pentosidine were quantified by HPLC/MS, while TBARS was determined by photometric measurements. The total CRCs (carnosine+anserine+homocarnosine) content was in the increasing order: beef

  18. Gaining Insight Into Reactivity Differences Between Malonic Acid Half Thioesters (MAHT) and Malonic Acid Half Oxyesters (MAHO).

    PubMed

    Bew, Sean P; Stephenson, G Richard; Rouden, Jacques; Godemert, Jeremey; Seylani, Haseena; Martinez-Lozano, Luis A

    2017-04-03

    An efficient two-step synthesis of structurally and functionally diverse thiophenol- and (cyclo)alkyl-derived malonic acid half thioesters (MAHTs) and phenol-derived malonic acid half oxyesters (MAHOs) has been achieved using cheap, readily available and easily handled starting materials. The synthesis of the MAHTs and MAHOs (the majority of which have not been previously reported) is readily scalable to afford gram quantities of product. In a hydrogen→deuterium exchange, an interesting stereoelectronic effect was observed when different aryl groups were incorporated. Significant changes in the rates of hydrogen→deuterium exchange and levels of isotope incorporation were observed. By way of example, using [(2) H]methanol and 4-bromophenol-derived MAHO afforded only 14 % [(2) H]-incorporation (9 min, k=31) whereas the corresponding 4-bromothiophenol-derived MAHT afforded 97 % [(2) H]-incorporation (9 min, k=208). In a benchmark procedure and comprehensive DFT study, 54 ester and thioester configurations and conformations were characterized. In the MAHT series, a sulfur-containing molecular orbital provides a path for increased delocalisation of electron density into the enol that is unavailable in MAHOs. This facilitates keto-enol tautomerisation and consequently enhances the rate and percentage of hydrogen→deuterium exchange.

  19. Use of Reactive Transport Modeling to Evaluate Remedial Options for an Acid Mine Drainage Stream, With Emphasis on Prediction Uncertainty

    NASA Astrophysics Data System (ADS)

    Runkel, R. L.; Kimball, B. A.; Walton-Day, K.; Verplanck, P. L.

    2006-12-01

    Mineral Creek, a headwater stream in Southwestern Colorado, drains a sub-alpine watershed with numerous abandoned mines. A synoptic study conducted in 1999 indicates that the Mineral Creek watershed contributes 60% of the observed copper load for the Upper Animas River. In addition, zinc concentrations observed during the 1999 study exceed toxicity standards along the entire length of Mineral Creek. Given these findings, Mineral Creek is the potential site of future remedial actions to improve stream-water quality. Using the 1999 data, a reactive transport model was used to predict the effects of a small treatment system that neutralizes acidic inflow waters. Model application indicates that the treatment system would significantly improve water quality, producing higher pH values and lower dissolved metal concentrations downstream. Despite this progress, the results of model application may be of limited use for planning remediation, due to the potential uncertainty of model predictions (e.g. errors in the characterization of hydrologic and geochemical processes). An additional study was therefore conducted in 2005 to develop estimates of prediction uncertainty. The 2005 study implemented a paired-synoptic approach in which two synoptics were conducted under similar hydrologic conditions. The first synoptic was similar to the 1999 study in that the overall goal was to characterize stream-water quality under existing (acidic) conditions. The second synoptic study was conducted during a continuous sodium hydroxide injection that was designed to mimic a small treatment system. As in the initial model application, data collected under existing conditions (synoptic 1) will be used to calibrate the reactive transport model. Model inputs will then be modified to reflect the effects of treatment, and predictions of post-remediation water quality will be obtained by model application. The results of this application will then be compared to data from the post

  20. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this.

  1. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  2. Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurten, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-01-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of stabilized Criegee intermediates (sCI), atmospheric oxidation processes were thought to be dominated by few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulphuric acid (H2SO4). The measured sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for the ozonolysis of α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) / k(sCI + SO2), was determined at relative humidities of 10% and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecule cm-3 and nearly independent on the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster with the

  3. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids

    NASA Astrophysics Data System (ADS)

    Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.; Mauldin, R. L., III; Kurtén, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M. P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.

    2014-11-01

    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of the reaction of stabilized Criegee intermediates (sCIs) with SO2, atmospheric oxidation processes were thought to be dominated by a few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulfuric acid (H2SO4). The measured total sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) /k(sCI + SO2), was determined at relative humidities of 10 and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene-derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0-2.4) × 1012 molecules cm-3 and nearly independent of the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster

  4. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  5. Synthesis and Reactivity of (18)F-Labeled α,α-Difluoro-α-(aryloxy)acetic Acids.

    PubMed

    Khotavivattana, Tanatorn; Calderwood, Samuel; Verhoog, Stefan; Pfeifer, Lukas; Preshlock, Sean; Vasdev, Neil; Collier, Thomas L; Gouverneur, Véronique

    2017-02-03

    In this work, we describe the (18)F-labeling of α,α-difluoro-α-(aryloxy)acetic acid derivatives and demonstrate that these building blocks are amenable to post-(18)F-fluorination functionalization. Protodecarboxylation offers a new entry to (18)F-difluoromethoxyarene, and the value of this approach is further demonstrated with coupling processes leading to representative (18)F-labeled TRPV1 inhibitors and TRPV1 antagonists.

  6. Enhancing the Attenuation of Acid-Mine Drainage at Davis Mine, Rowe, Massachusetts via Installation of a Permeable Reactive Barrier.

    NASA Astrophysics Data System (ADS)

    Gillmor, A. M.; Yuretich, R. F.

    2008-12-01

    Acid Mine Drainage affects thousands of streams in the United States, sustaining the need for low-cost passive treatment options. Davis Mine, a 100 years-abandoned FeS2 mine in Western Massachusetts, is representative of the types of mines best suited for passive treatments; fairly remote, abandoned, and discharging moderately affected water (pH <3, Fe >100mg/L, SO42- >500mg/L) and is a good candidate for a 'starting point' of low-cost, low environmental impact remediation. We here report the shifts in pH, SO42-, and Fe following placement of reactive fill (50% CaMg(CO3)2, 25% cow manure, 25% seaweed compost) in a permeable reactive barrier placed below ground mid-way along the acidic effluent's path. Yearlong monitoring of water from 1 multi-level well (with ports in the shallow groundwater, middle groundwater, and bedrock) placed within the tailings pile over a previous year (2003-2004) showed for the three levels, respectively; pH 3.16, 4.24, and 4.04, Fe average concentrations of 4.5 mg/L, 6.5 mg/L, and 3.2 mg/L, and SO42- average concentrations of 235mg/L, 330mg/L, and 292 mg/L. One year (2007-2008) after placement of remediation mix, the three levels now average respectively; pH 4.16, 4.60, and 4.53, Fe concentrations of 0.7 mg/L, 4.8 mg/L, and 1.4 mg/L, and SO42- concentrations of 217 mg/L, 294 mg/L, and 266 mg/L. The most noticeable improvement in pH is seen in the shallow groundwater, consistent with its proximity to the reactive fill depth. Although complex microbial communities have been characterized at the site, uncertainty remains as to whether they are active in this case, and it is possible that these results may be explained solely by neutralization reactions. Results of this study indicate a good likelihood that this low environmental impact remediation could be effective.

  7. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  8. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    NASA Astrophysics Data System (ADS)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  9. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2.

  10. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  11. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site.

    PubMed

    Zhu, C; Hu, F Q; Burden, D S

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  12. Arjunolic acid ameliorates reactive oxygen species via inhibition of p47phox-serine phosphorylation and mitochondrial dysfunction

    PubMed Central

    Miriyala, Sumitra; Chandra, Mini; Maxey, Benjamin; Day, Alicia; St. Clair, Daret K.; Panchatcharam, Manikandan

    2015-01-01

    Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2:3:23-Trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2•−) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2•− in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation. PMID:26319153

  13. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis.

    PubMed

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson's disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson's disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  14. A classical reactive potential for molecular clusters of sulphuric acid and water

    SciTech Connect

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2015-10-12

    We present a two state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, it is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent. SMK was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; JLS and IJF were supported by the IMPACT scheme at University College London (UCL). We acknowledge the UCL Legion High Performance Computing Facility, and associated support services together with the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. JLS thanks Dr. Gregory Schenter, Dr. Theo Kurtén and Prof. Hanna Vehkamäki for important guidance and discussions.

  15. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  16. Differential reactivity of Cu(111) and Cu(100) during nitrate reduction in acid electrolyte.

    PubMed

    Bae, Sang-Eun; Gewirth, Andrew A

    2008-01-01

    The interactions of nitrate with Cu(100) and Cu(111) in acidic solution are studied by cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (EC-STM). CV results show that reduction of nitrate on Cu(111) commences at 0.0 V vs. Ag/AgCl while the corresponding potential is -0.3 V on Cu(100). EC-STM images show that the terrace of both Cu(111) and Cu(100) are atomically flat at potentials more negative than -0.7 V. The Cu(100) surface exhibits flat terraces throughout the entire cathodic potential range. Close to OCP, step edges start to corrode. In contrast to Cu(100), the first layer of Cu(111) is converted to an atomically rough and defected surface-associated with nascent surface oxidation at potentials positive of -0.7 V. This surface oxidation is correlated with nitrate reduction.

  17. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  18. Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains.

    PubMed

    Xuan, Weimin; Shao, Sida; Schultz, Peter G

    2017-04-03

    The use of genetically encoded noncanonical amino acids (ncAAs) to construct crosslinks within or between proteins has emerged as a useful method to enhance protein stability, investigate protein-protein interactions, and improve the pharmacological properties of proteins. We report ncAAs with aryl carbamate side chains (PheK and FPheK) that can react with proximal nucleophilic residues to form intra- or intermolecular protein crosslinks. We evolved a pyrrolysyl-tRNA synthetase that incorporates site-specifically PheK and FPheK into proteins in both E. coli and mammalian cells. PheK and FPheK when incorporated into proteins showed good stability during protein expression and purification. FPheK reacted with adjacent Lys, Cys, and Tyr residues in thioredoxin in high yields. In addition, crosslinks could be formed between FPheK and Lys residue of two interacting proteins, including the heavy chain and light chain of an antibody Fab.

  19. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite.

    PubMed

    Bryant, David E; Kee, Terence P

    2006-06-14

    Anoxic irradiation of a type IIICD iron meteorite known to contain the phosphide mineral schreibersite (Fe,Ni)3P in the presence of ethanol/water affords the reactive oxyacid H-phosphinic acid (H3PO2) as the dominant phosphorus product.

  20. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  1. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.

    PubMed

    Zagury, Gerald J; Kulnieks, Viktors I; Neculita, Carmen M

    2006-08-01

    Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.

  2. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.

    PubMed

    Conde, Cristiane M S; Cyrino, Fatima Z G A; Bottino, Daniel A; Gardette, Jean; Bouskela, Eliete

    2007-05-01

    Previous experiments in our laboratory, using the hamster cheek pouch microcirculation, have shown that precapillary vessels exhibit spontaneous rhythmic luminal variations, termed vasomotion, a myogenic activity sustained by a balance between membrane currents among which polarizing K(+) currents play an important role. In these microvessels, endothelium-derived relaxing factors (EDRFs) seem to regulate arteriolar diameter [via nitric oxide (NO) and cyclic GMP] and vasomotion [probably via endothelium-derived hyperpolarizing factor (EDHF)]. Fish or fish oil diet can decrease the risk of cardiovascular diseases, probably by modifying the conductance of selective ion channels, such as K(+) and/or Ca(++), and/or increasing the production of vasodilators, such as NO. To investigate its effect on microvascular reactivity, using the same preparation and an intravital microscope coupled to a closed circuit TV system, male hamsters were treated for 14 days, twice a day, with 0.4 mL/100 g body weight with fish or olive oil. An attempt was also undertaken to record in arterioles, in vivo, the membrane potential of smooth muscle cells during their vasomotor activity combining conventional microelectrode and intravital microscopy techniques. The effects of topical application of two vasodilators, acetylcholine [endothelium-dependent one, NO release and membrane hyperpolarization via Ca(++)-activated K(+) channels (K(Ca))] and sodium nitroprusside (endothelium-independent, NO donor and no change on membrane potential) and two vasoconstrictors which elicited membrane depolarization via Ca(++) channels, phenylephrine (alpha(1)-adrenergic receptor agonist) and serotonin (5-hydroxi-tryptamine) on mean internal diameter of arterioles and venules, arteriolar blood flows, spontaneous arteriolar vasomotion frequency and amplitude and functional capillary density (FCD, number of capillaries with flowing red blood cells per unit area of tissue) were determined. Anesthesia was induced by

  3. Synthesis and reactivity of 6-substituted (Z)-2-En-4-ynoic acids

    SciTech Connect

    Struve, G.; Seltzer, S.

    1982-05-21

    Five different 6-substituted (Z)-2-en-4-ynoic acids (X = CH/sub 3/,CH/sub 3/CHOH, CH/sub 3/C(=CH/sub 2/), CH/sub 3/CHOAc, CH/sub 3/CO have been synthesized. The first three were formed by coupling of methyl(Z)-3-iodopropenoate and the appropriate cuprous acetylide followed by ester hydrolysis. The latter two were obtained from the hydroxyl compound by acetylation and oxidation, respectively. Three of the five compounds were shown to undergo lactonization by nucleophilic addition of the carboxlate group to the acetylenic carbon to yield 4-alkylidene-2-butenolide derivatives with specific trans addition. The rate of lactonization for the title compound (X = CH/sub 3/CO) is too fast to measure. The kinetics of lactonization for X = CH/sub 3/CHOAc and CH/sub 3/CHOH have been measured in water and dimethylformamide. The observed rate ratio for lactonization suggests the possibility of electrophilic catalysis by the neighboring acetate group.

  4. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro.

    PubMed

    Puntel, Robson L; Nogueira, Cristina W; Rocha, João B T

    2005-02-01

    The aim of this study was to investigate the effect of Krebs cycle intermediates on basal and quinolinic acid (QA)- or iron-induced TBARS production in brain membranes. Oxaloacetate, citrate, succinate and malate reduced significantly the basal and QA-induced TBARS production. The potency for basal TBARS inhibition was in the order (IC50 is given in parenthesis as mM) citrate (0.37) > oxaloacetate (1.33) = succinate (1.91) > > malate (12.74). alpha-Ketoglutarate caused an increase in TBARS production without modifying the QA-induced TBARS production. Cyanide (CN-) did not modify the basal or QA-induced TBARS production; however, CN- abolished the antioxidant effects of succinate. QA-induced TBARS production was enhanced by iron ions, and abolished by desferrioxamine (DFO). The intermediates used in this study, except for alpha-ketoglutarate, prevented iron-induced TBARS production. Oxaloacetate, citrate, alpha-ketoglutarate and malate, but no succinate and QA, exhibited significantly iron-chelating properties. Only alpha-ketoglutarate and oxaloacetate protected against hydrogen peroxide-induced deoxyribose degradation, while succinate and malate showed a modest effect against Fe2+/H2O2-induced deoxyribose degradation. Using heat-treated preparations citrate, malate and oxaloacetate protected against basal or QA-induced TBARS production, whereas alpha-ketoglutarate induced TBARS production. Succinate did not offer protection against basal or QA-induced TBARS production. These results suggest that oxaloacetate, malate, succinate, and citrate are effective antioxidants against basal and iron or QA-induced TBARS production, while alpha-ketoglutarate stimulates TBARS production. The mechanism through which Krebs cycle intermediates offer protection against TBARS production is distinct depending on the intermediate used. Thus, under pathological conditions such as ischemia, where citrate concentrations vary it can assume an important role as a modulator of oxidative

  5. Acid base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Bacteria grow in complex solutions where the adsorption of aqueous species and nucleation of mineral phases on the cell surface may interfere with membrane-dependent homeostatic functions. While previous investigations have provided evidence that bacteria may alter their surface chemical properties in response to environmental stimuli, to our knowledge no effort has been made to evaluate surface compositional changes resulting from non-nutritional chemical stresses within a quantitative framework applicable to surface complexation modeling. We consider here the influence of exposure to silica on cyanobacterial surface chemistry, particularly in light of the propensity for cyanobacteria to become silicified in geothermal environments. Using data modeled from over 50 potentiometric titrations of the unsheathed cyanobacterium Anabaena sp. strain PCC 7120, we find that both abiotic geochemical and biotic biochemical-assimilatory factors have important and different effects on cell surface chemistry. Changes in functional group distribution that resulted from growth by different nitrogen assimilation pathways were greatest in the absence of dissolved silica and less important in its presence. Furthermore, out of the three nitrogen assimilation pathways investigated, in terms of surface functional group distribution, nitrate-reducing cultures were least sensitive, and ammonium-assimilating cultures were most sensitive, to changes in media silica concentration. When functional group distributions were plotted as a function of silica concentration, it appears that, with higher silica concentrations, basic groups (p Ka > 7) increase in concentration relative to acidic groups (p Ka < 7), and the total ligand densities (on a per-weight basis) decreased. The results imply a decrease in both the magnitude and density of surface charge as the net result of growth at high silica concentrations. Thus, Anabaena sp. appears to actively respond to growth in silicifying solutions by

  6. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  7. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  8. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling.

    PubMed

    Pelagio-Flores, Ramón; Ruiz-Herrera, León Francisco; López-Bucio, José

    2016-09-01

    Serotonin (5-hydroxytryptamine) is a bioactive indoleamine with neurotransmitter function in vertebrates, which represents an emerging signaling molecule in plants, playing key roles in the development and defense. In this study, the role of reactive oxygen species (ROS) and jasmonic acid (JA)-ethylene (Et) signaling in root developmental alterations induced by serotonin was investigated. An Arabidopsis thaliana mutant defective at the RADICAL-INDUCED CELL DEATH1 (RCD1) locus was resistant to paraquat-induced ROS accumulation in primary roots and showed decreased inhibition or root growth in response to serotonin. A suite of JA- and Et-related mutants including coronatine insensitive1, jasmonic acid resistant1 (jar1), etr1, ein2 and ein3 showed tolerance to serotonin in the inhibition of primary root growth and ROS redistribution within the root tip when compared with wild-type (WT) seedlings. Competence assays between serotonin and AgNO3 , a well-known blocker of Et action, showed that primary root growth in medium supplemented with serotonin was normalized by AgNO3 , whereas roots of eto3, an Et overproducer mutant, were oversensitive to serotonin. Comparison of ROS levels in WT, etr1, jar1 and rcd1 primary root tips using the ROS-specific probe 2',7'-dichlorofluorescein diacetate and confocal imaging showed that serotonin inhibition of primary root growth likely occurs independently of its conversion into melatonin. Our results provide compelling evidence that serotonin affects ROS distribution in roots, involving RCD1 and components of the JA-Et signaling pathways.

  9. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  10. Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants[W][OPEN

    PubMed Central

    Suzuki, Nobuhiro; Miller, Gad; Salazar, Carolina; Mondal, Hossain A.; Shulaev, Elena; Cortes, Diego F.; Shuman, Joel L.; Luo, Xiaozhong; Shah, Jyoti; Schlauch, Karen; Shulaev, Vladimir; Mittler, Ron

    2013-01-01

    Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal–spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned. PMID:24038652

  11. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework.

  12. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination

    PubMed Central

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H2O2) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H2O2 regulated the ABA content in the embryos through ABA-8′-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H2O2 scavenging enzyme, was higher, as was the expression of HvCAT2. Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize (Zea mays) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination. PMID:28377774

  13. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  14. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination.

    PubMed

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H2O2) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H2O2 regulated the ABA content in the embryos through ABA-8'-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H2O2 scavenging enzyme, was higher, as was the expression of HvCAT2. Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize (Zea mays) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination.

  15. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species.

    PubMed

    Corona, Teresa; Pfaff, Florian F; Acuña-Parés, Ferran; Draksharapu, Apparao; Whiteoak, Christopher J; Martin-Diaconescu, Vlad; Lloret-Fillol, Julio; Browne, Wesley R; Ray, Kallol; Company, Anna

    2015-10-12

    Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound.

  16. Reactivity of San Andres dolomite

    SciTech Connect

    Anderson, M.S. )

    1991-05-01

    The San Andres formation is routinely stimulated with acid. Although numerous acidizing simulators are available to aid in treatment optimization, existing reactivity data were generated with quarried rock rather than formation samples. This paper presents reactivity data for five San Andres dolomite samples. These data can be used in most fracture-acidizing-design simulators to allow more accurate simulation of the acidizing process.

  17. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    PubMed

    Cordeiro, Flávio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO₃⁻, high dose (5.0 mM N-NO₃⁻) and low dose (5.0 mM N-NO₃⁻). Treatments with HA and NO were positively increased, regardless of the N-NO₃⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO₃⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO₃⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.

  18. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.

    PubMed

    Neculita, Carmen M; Zagury, Gérald J

    2008-09-15

    Passive bioreactors involving sulphate-reducing bacteria (SRB) are a practical alternative technology to treat acid mine drainage (AMD). Careful selection of the organic carbon source is important to ensure performance and long-term efficiency of the treatment. However, a rigorous and methodical characterization to predict the biodegradability of organic substrates by SRB still needs to be investigated. In the present study, four natural organic materials were thoroughly characterized to assess their ability to serve as substrates and to find a parameter that links organic carbon sources with their biodegradability. Three reactive mixtures were then comparatively evaluated for their performance to treat a highly contaminated AMD in long-term (152 days) batch experiments. All three mixtures were successful for sulphate reduction and metal (Fe, Ni, Cd, Zn, and Mn) removal (91.8-99.8%). Higher efficiencies were observed in the reactors with 30% (w/w) cellulosic wastes (maple wood chips and sawdust) which decreased sulphate concentrations from 5500 mg/L to <1mg/L, than in reactors with 2-3% cellulosic wastes, where final sulphate concentrations were in the range 2000-2750 mg/L. Organic material characterization indicated that higher C/N ratios, chemical oxygen demand (COD)/SO(4)(2-) ratios and dissolved organic carbon (DOC)/SO(4)(2-) ratios were associated with better sulphate-reducing conditions and metal removal. This work suggests that C/N and DOC/SO(4)(2-) ratios considered together are key parameters to assess the biodegradability of natural organic wastes under sulphate-reducing conditions.

  19. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    PubMed Central

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  20. Dissolution of beidellite in acidic solutions: Ion exchange reactions and effect of crystal chemistry on smectite reactivity

    NASA Astrophysics Data System (ADS)

    Robin, Valentin; Tertre, Emmanuel; Regnault, Olivier; Descostes, Michael

    2016-05-01

    The dissolution rate of beidellite, a dioctahedral smectite with tetrahedral charge that is a common swelling clay mineral in surface and subsurface natural environments, was studied in acidic solutions at 25 °C under far from equilibrium conditions. A <0.3 μm size fraction of SBId1 beidellite ((Si7.148Al0.852)(Al3.624Mg0.18Fe(III)0.224)O20(OH)4M+0.948) purchased from the Clay Mineral Society was used as the starting material, and experiments were performed in stirred flow-through reactors using HCl solutions with pH values ranging from 1 to 3. Several hydrodynamic conditions were tested using different flow rates with stirred and non-stirred particles. The aqueous Al/Si ratio measured at the outlet of the reactor was followed as a function of time and compared to solid stoichiometry values to assess the mechanisms occurring at the solid/solution interface. The reversible adsorption of Al3+ in the smectite interlayer space was evidenced for pH > 1.1, and the presence of an amorphous Si-enriched layer can be reasonably assumed in some cases from the interpretation of the aqueous concentrations and the characterization of the solid phase (X-ray diffraction and FTIR spectroscopy). Beidellite dissolution rates normalized to the sample mass (mol g-1 s-1) were obtained from Si and Al concentrations under steady state dissolution conditions. Calculated rates were compared with those previously reported for montmorillonite in several publications. The beidellite dissolution rates are, on average, ten times lower than those of montmorillonite. This implies that the smectite crystal chemistry (i.e., amount of Al3+ versus Mg2+ or Fe3+ substitution in the structure) has a strong effect on its stability and should be considered in reactive transport models in which the dissolution properties of smectites are taken into account.

  1. Heterogeneous Reactivity of NO2 with Photocatalytic Paints: A Possible Source of Nitrous Acid (HONO) in the Indoor Environment

    NASA Astrophysics Data System (ADS)

    Gligorovski, S.; Bartolomei, V.; Gandolfo, A.; Gomez Alvarez, E.; Kleffmann, J.; Wortham, H.

    2014-12-01

    There is an increasing concern about the indoor air environment, where we spend most of our time. Common methods of improving indoor air quality include controlling pollution sources, increasing ventilation rates or using air purifiers. Photocatalytic remediation technology was suggested as a new possibility to eliminate indoor air pollutants instead of just diluting or disposing them. In the present study, heterogeneous reactions of NO2 were studied on photocatalytic paints containing different size and quantity of TiO2. The heterogeneous reactions were conducted in a photo reactor under simulated atmospheric conditions. The flat pyrex rectangular plates covered with the paint were inserted into the reactor. These plates have been sprayed with the photocatalytic paints at our industrial partner's (ALLIOS) facilities using a high precision procedure that allowed the application of a thin layer of a given thickness of the paint. This allows a homogeneous coverage of the surface with the paint and an accurate determination of the exact amount of paint exposed to gaseous NO2. We demonstrate that the indoor photocatalytic paints which contain TiO2 can substantially reduce the concentrations of nitrogen dioxide (NO2). We show that the efficiency of nitrogen dioxide (NO2) removal increase with the quantity of TiO2 in the range 0 - 7 %. The geometric uptake coefficients increase from 5 · 10-6 to 1.6 · 10-5 under light irradiation of the paints. On the other hand, during the reactions of NO2 with this paint (7 % of TiO2) nitric oxide (NO) and nitrous acid (HONO) are formed. Nitrous acid (HONO) is an important harmful indoor pollutant and its photolysis leads to the formation of highly reactive OH radicals (Gomez Alvarez et al., 2013). Maximum conversion efficiencies of NO2to HONO and NO of 15 % and 33 % were observed at 30 % RH, respectively. Thus, the quantity of TiO2 embedded in the paint is an important parameter regarding the nitrogen oxides (NOx = NO + NO2

  2. Versatile supramolecular reactivity of zinc-tetra(4-pyridyl)porphyrin in crystalline solids: Polymeric grids with zinc dichloride and hydrogen-bonded networks with mellitic acid.

    PubMed

    Lipstman, Sophia; Goldberg, Israel

    2009-12-11

    Crystal engineering studies confirm that the zinc-tetra(4-pyridyl)porphyrin building block reveals versatile supramolecular chemistry. In this work, it was found to be reactive in the assembly of both (a) a 2D polymeric array by a unique combination of self-coordination and coordination through external zinc dichloride linkers and (b) an extended heteromolecular hydrogen-bonded network with mellitic acid sustained by multiple connectivity between the component species.

  3. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids.

    PubMed Central

    Craven, P A; Pfanstiel, J; DeRubertis, F R

    1987-01-01

    Deoxycholate (DOC), chenodeoxycholate, 12-O-tetradecanoyl phorbol-13-acetate (TPA), or 1-oleoyl-2-acetyl-glycerol (OAG) activated colonic epithelial protein kinase C as reflected by translocation from the soluble to the particulate cell fraction. Activation of protein kinase C was correlated with stimulation of enhanced proliferative activity of colonic mucosa and reactive oxygen production. TPA and OAG, but not DOC, directly activated soluble protein kinase C in vitro. However, DOC rapidly increased labeled inositol phosphate and diacylglycerol accumulation in colonic epithelial cells. Retinoic acid inhibited protein kinase C activity and suppressed DOC-, TPA-, and OAG-induced increases in reactive oxygen production. The results support a role for protein kinase C in the stimulation of colonic epithelial proliferative activity and reactive oxygen production induced by bile acids, TPA and OAG. In contrast to TPA and OAG, which activate protein kinase C directly, bile acids appear to activate protein kinase C indirectly by increasing the diacylglycerol content of colonic epithelium. PMID:3027128

  4. Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production.

    PubMed

    Ozfidan, C; Turkan, I; Sekmen, A H; Seckin, B

    2012-03-01

    We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.

  5. Alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes.

    PubMed

    Koçak, G; Aktan, F; Canbolat, O; Ozoğul, C; Elbeğ, S; Yildizoglu-Ari, N; Karasu, C

    2000-12-01

    The present study investigated the effects of alpha-lipoic acid treatment (50 mg/kg/day) on the metabolism and vascular condition already damaged by streptozotocin (STZ)-diabetes in rats. Carbohydrate and lipid metabolism, oxidative stress and antioxidant status were assessed in non-diabetic controls, 12-week untreated diabetic and 12-week treated diabetic (untreated for 6 weeks and then treated with alpha-lipoic acid for the last 6 weeks) rats. Blood pressures of rats were measured by tail-cuff method. Vascular reactivity was evaluated in isolated aortic rings. Morphology of aorta was examined by electron microscopy technique. Alpha-lipoic acid treatment effectively reversed body weight, blood glucose, plasma insulin, cholesterol, triglycerides and lipid peroxidation levels of diabetic animals. STZ-diabetes resulted in increased blood pressure, which was partially improved by alpha-lipoic acid treatment. Although the superoxide dismutase (SOD) activity in aortic homogenates was not changed by diabetes or antioxidant treatment, catalase or glutathione peroxidase (GPx) activity significantly increased in untreated diabetic rats. Alpha-lipoic acid treatment improved catalase activity in diabetic aorta. The contractile effect of phenylephrine markedly increased in diabetic rings, which was completely reversed by alpha-lipoic acid treatment. The maximum vasorelaxant response of pre-contracted aortic rings exposed to cumulatively increased concentrations of acetylcholine was unaffected by diabetes or antioxidant treatment. Sodium nitroprusside-induced endothelium-independent relaxations were similar in all experimental groups. Various alterations caused by STZ-diabetes in aorta structure were partially ameliorated by alpha-lipoic acid treatment. The potency of alpha-lipoic acid on the reversal of hypertension by affecting vascular reactivity and morphology as well as general metabolism of diabetic rats confirms the importance of hyperglycemia-induced oxidative stress in

  6. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  7. Higher reactivity of apolipoprotein B-100 and alpha-tocopherol compared to sialic acid moiety of low-density lipoprotein (LDL) in radical reaction.

    PubMed

    Matsukawa, Nao; Nariyama, Yoko; Hashimoto, Ryoko; Kojo, Shosuke

    2003-09-01

    Radical reaction of low-density lipoprotein (LDL) is a key step in atherogenesis and causes both a decrease in the sialic acid moiety and modification of apolipoprotein B-100 (apoB). Although apoB modification (cross-link and fragmentation) increases in atherosclerosis, the change in apoB-bound sialic acid in atherosclerosis is controversial. To elucidate the physiological implications of desialylation of LDL by radical reaction, the reactivity of sialic acid of LDL was compared with that of apoB, which underwent facile fragmentation in radical reactions. ApoB was determined by immunoblot analysis with anti-apoB antiserum, and the sialic acid moiety was measured by blot analysis with a biotin-bound lectin [biotin-SSA from Japanese elderberry (Sambucus sieboldiana)] specific to sialic acid. When human LDL was oxidized with Cu(2+) at 37 degrees C, apoB and apoB-attached sialic acid decreased simultaneously. Comparison of the staining bands with anti-apoB and with biotin-SSA shows that sialic acid moieties still remain on fragmented apoB proteins, indicating that the decrease in sialic acid is much slower than that of apoB fragmentation. In addition, human plasma was oxidized with 400 microM of Cu(2+) at 37 degrees C. Similar analysis indicates that the decrease in sialic acid attached to apoB also results from the fragmentation of apoB. This study indicates that the fragmentation of apoB proceeds at a much faster rate than the decrease in sialic acid content when a free radical reaction is induced in isolated LDL as well as in plasma LDL exposed to Cu(2+)-induced oxidative stress. On the basis of these results, the modification of apoB is much more sensitive than the decrease in sialic acid as an indicator of oxidative stress.

  8. Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen.

    PubMed

    Ogura, Jiro; Kuwayama, Kaori; Sasaki, Shunichi; Kaneko, Chihiro; Koizumi, Takahiro; Yabe, Keisuke; Tsujimoto, Takashi; Takeno, Reiko; Takaya, Atsushi; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken

    2015-09-01

    The prevalence of hyperuricemia/gout increases with aging. However, the effect of aging on function for excretion of uric acid to out of the body has not been clarified. We found that ileal uric acid clearance in middle-aged rats (11-12 months) was decreased compared with that in young rats (2 months). In middle-aged rats, xanthine oxidase (XO) activity in the ileum was significantly higher than that in young rats. Inosine-induced reactive oxygen species (ROS), which are derived from XO, also decreased ileal uric acid clearance. ROS derived from XO decreased the active homodimer level of breast cancer resistance protein (BCRP), which is a uric acid efflux transporter, in the ileum. Pre-administration of allopurinol recovered the BCRP homodimer level, resulting in the recovering ileal uric acid clearance. Moreover, we investigated the effects of ROS derived from XO on BCRP homodimer level directly in Caco-2 cells using hypoxanthine. Treatment with hypoxanthine decreased BCRP homodimer level. Treatment with hypoxanthine induced mitochondrial dysfunction, suggesting that the decreasing BCRP homodimer level might be caused by mitochondrial dysfunction. In conclusion, ROS derived from XO decrease BCRP homodimer level, resulting in suppression of function for uric acid excretion to the ileal lumen. ROS derived from XO may cause the suppression of function of the ileum for the excretion of uric acid with aging. The results of our study provide a new insight into the causes of increasing hyperuricemia/gout prevalence with aging.

  9. Recovery of acetic acid from pre-hydrolysis liquor of hardwood kraft-based dissolving pulp production process by reactive extraction with triisooctylamine.

    PubMed

    Yang, G; Jahan, M Sarwar; Ahsan, Laboni; Zheng, Linqiang; Ni, Yonghao

    2013-06-01

    Acetic acid was one of the main compositions of the pre-hydrolysis liquor (PHL), which was recovered by reactive extraction with triisooctylamine (TIOA) diluted with decanol. Dilution of TIOA played an important role in extracting acetic acid from the PHL. The recovery of acetic acid from the PHL by TIOA was increased from 10.34% to 66.60% with the dilution of TIOA to 20% by decanol at the HAc to TIOA molar ratio of 1, consequently, the equilibrium distribution coefficient KD increased. The effects of time, temperature and pH on the extraction process were also studied. The extraction process was very fast. The acetic acid extraction decreased from 65.13% to 57.34% with the rise of temperature to 50°C from 20°C. A higher pH increased the dissociation of acetic acid, as a result, decreased acetic acid extraction. The hemicelluloses in the PHL were unaffected on the extraction process of acetic acid.

  10. Associations of erythrocyte membrane fatty acids with the concentrations of C-reactive protein, interleukin 1 receptor antagonist and adiponectin in 1373 men.

    PubMed

    Takkunen, M J; de Mello, V D F; Schwab, U S; Ågren, J J; Kuusisto, J; Uusitupa, M I J

    2014-10-01

    Dietary and endogenous fatty acids could play a role in low-grade inflammation. In this cross-sectional study the proportions of erythrocyte membrane fatty acids (EMFA) and the concentrations of C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1Ra) and adiponectin were measured and their confounder-adjusted associations examined in 1373 randomly selected Finnish men aged 45-70 years participating in the population based Metsim study in Eastern Finland. The sum of n-6 EMFAs, without linoleic acid (LA), was positively associated with concentrations of CRP and IL-1Ra (r partial=0.139 and r partial=0.115, P<0.001). These associations were especially strong among lean men (waist circumference <94 cm; r partial=0.156 and r partial=0.189, P<0.001). Total n-3 EMFAs correlated inversely with concentrations of CRP (r partial=-0.098, P<0.001). Palmitoleic acid (16:1n-7) correlated positively with CRP (r partial=0.096, P<0.001). Cis-vaccenic acid (18:1n-7) was associated with high concentrations of adiponectin (r partial=0.139, P<0.001). In conclusion, n-6 EMFAs, except for LA, correlated positively with the inflammatory markers. Palmitoleic acid was associated with CRP, whereas, interestingly, its elongation product, cis-vaccenic acid, associated with anti-inflammatory adiponectin.

  11. Modification of the liver fatty acids by Hibiscus sabdariffa Linnaeus (Malvaceae) infusion, its possible effect on vascular reactivity in a metabolic syndrome model.

    PubMed

    Pérez-Torres, Israel; Zúñiga Muñoz, Alejandra; Beltrán-Rodríguez, Ulises; Díaz-Díaz, Eulises; Martínez-Memije, Raúl; Guarner Lans, Verónica

    2014-01-01

    We investigated the effects of Hibiscus sabdariffa Linnaeus (HSL)-fed infusion on the fatty acid (FA) profile in liver of metabolic syndrome (MS) rats and its possible effect on vascular reactivity. Body mass, intra-abdominal fat, triglycerides, insulin, blood pressure, saturated, monounsaturated FA, NEFAs, Δ(9)-, Δ(6)-desaturases and vasoconstriction were increased, while vasorelaxation, polyunsaturated FA, endothelial nitric oxide and [Formula: see text]/[Formula: see text] ratio decreased in MS versus Control, but HSL infusion modified it and increased Δ(5)-desaturase. The results suggest that the alteration in FA liver metabolism in the MS contributes to impaired vascular reactivity, but treatment with of HSL infusion can improve this condition.

  12. UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3,3',4,4'-Benzophenone Tetracarboxylic Acid.

    PubMed

    Hou, Aiqin; Feng, Guanchen; Zhuo, Jingyuan; Sun, Gang

    2015-12-23

    3,3',4,4'-Benzophenone tetracarboxylic acid (BPTCA) could directly react with hydroxyl groups on cellulose to form ester bonds. The modified cotton fabrics not only provided good wrinkle-free and ultraviolet (UV) protective functions, but also exhibited important photochemical properties such as producing reactive oxygen species (ROS) including hydroxyl radicals (HO(•)) and hydrogen peroxide (H2O2) under UV light exposure. The amounts of the produced hydroxyl radical and hydrogen peroxide were measured, and photochemical reactive mechanism of the BPTCA treated cellulose was discussed. The results reveal that the fabrics possess good washing durability in generation of hydroxyl radicals and hydrogen peroxide. The cotton fabrics modified with different concentrations of BPTCA and cured at an elevated temperature demonstrated excellent antimicrobial activities, which provided 99.99% antibacterial activities against both E. coli and S. aureus. The advanced materials have potential applications in medical textiles and biological material fields.

  13. Development and validation of a high-performance liquid chromatography method for the evaluation of niflumic acid cross-reactivity of two commercial immunoassays for cannabinoids in urine.

    PubMed

    Kovatsi, Leda; Pouliopoulos, Athanasios; Papadaki, Antonia; Samanidou, Victoria; Tsoukali, Heleni

    2010-05-01

    Niflumic acid is a nonsteroidal, anti-inflammatory drug widely prescribed in Greece. We recently noticed that this drug cross-reacts for cannabinoids in a kinetic interaction of microparticles in a solution (KIMS) immunoassay method but does not in an enzyme multiplied immunoassay technique (EMIT) immunoassay method. The objective of the study was to develop and validate a high-performance liquid chromatographic method in order to evaluate niflumic acid cross-reactivity in two commercial immunoassays for cannabinoids in urine, both in niflumic acid standards as well as in urine specimens obtained from subjects receiving niflumic acid. Urine niflumic acid standards were prepared in drug-free urine at 13 concentrations ranging from 1.25 to 1000 microg/mL. The standards gave presumptive positive cannabinoids results when analyzed by the KIMS immunoassay method when the concentration was above 2.5 microg/mL. None of the prepared standards gave a false-positive cannabinoid result when analyzed by the EMIT immunoassay method. By applying a 50 ng/mL cutoff for cannabinoids in these assays, all 55 urine specimens collected from the 5 subjects who participated gave negative results by the EMIT and false-positive results by the KIMS immunoassay method. It is concluded that KIMS is more prone to cross-reactions by niflumic acid compared to EMIT. Therefore, all positive screening tests for cannabinoids obtained by KIMS should be confirmed by another technique.

  14. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    SciTech Connect

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  15. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    SciTech Connect

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-09-15

    Highlights: ► A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ► Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ► Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ► Nanocomposite films were prepared by an in situ polymerization reaction. ► The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na{sup +} montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  16. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  17. Comparative analysis of the reactivity of nickel and a Ni-Re (10 wt %) alloy during direct current polarization in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Skryleva, E. A.; Levchuk, O. M.; Tsybin, O. I.; Bol'shikh, A. O.; Kuznetsova, O. G.

    2016-11-01

    A comparative analysis of the reactivity of nickel and its alloy with rhenium during their direct current polarization in sulfuric acid solutions (50-150 g/L, 25-60°C) is carried out. The regions of anodic potentials of their active dissolution and passivation are determined on the basis of the analysis results. The chemical compositions of the passivation films of electrode polarization are determined by X-ray photoelectron spectroscopy. The mechanism of film formation is established. The influence of the depolarizing ability of rhenium in the alloy composition on the depassivation of the alloy is revealed and evaluated.

  18. Thermally Reactive Phenylethynyl-Terminated Bis (benzylester) and Bis (amide) Monomers Based on Semi-Enzymatically Produced 6-Phenylethynyl Picolinic Acid

    DTIC Science & Technology

    2005-12-01

    electron-withdrawing properties of the pyridine moiety would increase the reactivity of PEPCA in a Diels – Alder reaction if PEPCA were to serve as a...valid OMB control number. 1. REPORT DATE DEC 2005 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Thermally...addition funnel, a condenser and nitrogen inlet and outlet were added 6-bromopicolinic acid (Aldrich; 2.02 g, 10 mmol) and methanol (50 mL). Thionyl

  19. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol (MBO) Photooxidation: Evidence for Acid-Catalyzed Reactive Uptake of Epoxide

    NASA Astrophysics Data System (ADS)

    Surratt, J. D.; Zhang, H.; Worton, D. R.; Lewandowski, M.; Ortega, J.; Zhang, Z.; Lin, Y.; Park, J.; Kristensen, K.; Bhathela, N.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Jaoui, M.; Offenberg, J. H.; Kleindienst, T. E.; Gilman, J. B.; De Gouw, J. A.; Park, C.; Schade, G. W.; Frossard, A. A.; Russell, L. M.; Kaser, L.; Jud, W.; Hansel, A.; Karl, T.; Glasius, M.; Gold, A.; Seinfeld, J.; Guenther, A. B.

    2012-12-01

    2-methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied aerosol acidity levels. Results indicate SOA was enhanced with increasing aerosol acidity especially under low-NO conditions. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. This organosulfate species was also observed and correlated with aerosol acidity from ambient fine aerosol (PM2.5) samples that were collected from different field campaigns where MBO emissions are important, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Importantly, this compound can account for as high as 1% of the total organic aerosol mass in the atmosphere. It is hypothesized that MBO epoxide generated under low-NO conditions is the precursor to MBO SOA based upon the above results. Thus, the MBO epoxide was synthesized in high purity to investigate its potential to form SOA via reactive uptake in a series of controlled dark chamber studies. Our results suggest the MBO epoxide substantially forms SOA only in the presence of acidic seed aerosols. The chemical characterization results of the SOA constituents are consistent with field measurements in terms of the major SOA tracers.

  20. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors.

  1. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.

    PubMed

    Chládková, B; Evgenidou, E; Kvítek, L; Panáček, A; Zbořil, R; Kovář, P; Lambropoulou, D

    2015-11-01

    In the present study, the coupling of adsorption capacity and photocatalytic efficiency of two different industrially produced titania catalysts was investigated and compared. The azo dye Reactive Red 195 was selected as a model compound. The tested catalysts, PK-10 and PK-180, exhibited different adsorption capacities due to their significant difference in their specific surface, but both have proven to be effective photocatalysts for photodegradation of the studied dye. PK-10 exhibited strong adsorption of the studied dye due to its high specific surface area, while the second studied catalyst, PK-180, demonstrated negligible adsorption of Reactive Red 195. The effect of the pH, the concentration of the catalyst and the initial concentration of the dye appear to affect the photocatalytic rate. The effect of the presence of humic acids and inorganic ions was also examined, while the contribution of various reactive species was indirectly evaluated through the addition of various scavengers. To evaluate the extent of mineralisation of the studied dye, total organic carbon (TOC) measurements during the experiment were also conducted. Besides total colour removal, evident reduction of TOC was also achieved using both catalysts.

  2. Kinetics of proton transfer between ortho substituted benzoic acids and the carbinol base of crystal violet in toluene. Ortho effect on the reactivity of benzoic acids in apolar aprotic solvents.

    PubMed

    Sen Gupta, Susanta K; Mishra, Sangeeta

    2011-05-12

    Apolar aprotic solvents are particularly advantageous for investigating the intrinsic ortho effect free from complications of specific solvent effects. A kinetic study for toluene-phase proton transfers between ortho F, Cl, Br, I, OMe, OEt, OPh, OAc, Me, NO(2), COMe, COPh, OH, NH(2), and H benzoic acids and crystal violet carbinol base has shown the forward rate constant (log k(+1)) is the most appropriate reactivity parameter in toluene. log k(+1) (toluene) as compared to other reported reactivity parameters in benzene, toluene, or chlorobenzene has been found more sensitive to the ortho substituent effect. The regression results of the correlation of log k(+1) (toluene) of the acids (except OH and NH(2) substituted ones) according to seven ortho effect models are all very significant, and the best result is given by Fujita-Nishioka's model. The overall analysis reveals that a substituent's ortho effect pattern is a 58:24:18 ratio of its ordinary electrical, proximity electrical, and steric effects and that the proximity electrical effect is the major component to account for the peculiarity of the substituent's ortho effect. The results further favor the transmission of this effect mainly through the molecular cavity. The effect may, however, be outweighed by the steric component for bulky enough substituents, e.g., Me. The enhanced strength exhibited by salicylic acid in toluene has been quantitatively described using Pytela-Liška's σ(HB)(i) parameter. The abnormally high log k(+1) observed for anthranilic acid in toluene has been ascribed to a very extensive homoconjugation in its acid-acid anion complex induced by the acid's three hydrogen bond donors.

  3. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  4. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  5. Incorporation of marine lipids into mitochondrial membranes increases susceptibility to damage by calcium and reactive oxygen species: evidence for enhanced activation of phospholipase A2 in mitochondria enriched with n-3 fatty acids.

    PubMed Central

    Malis, C D; Weber, P C; Leaf, A; Bonventre, J V

    1990-01-01

    Experiments were designed to evaluate the susceptibility of mitochondrial membranes enriched with n-3 fatty acids to damage by Ca2+ and reactive oxygen species. Fatty acid content and respiratory function were assessed in renal cortical mitochondria isolated from fish-oil- and beef-tallow-fed rats. Dietary fish oils were readily incorporated into mitochondrial membranes. After exposure to Ca2+ and reactive oxygen species, mitochondria enriched in n-3 fatty acids, and using pyruvate and malate as substrates, had significantly greater changes in state 3 and uncoupled respirations, when compared with mitochondria from rats fed beef tallow. Mitochondrial site 1 (NADH coenzyme Q reductase) activity was reduced to 45 and 85% of control values in fish-oil- and beef-tallow-fed groups, respectively. Exposure to Ca2+ and reactive oxygen species enhance the release of polyunsaturated fatty acids enriched at the sn-2 position of phospholipids from mitochondria of fish-oil-fed rats when compared with similarly treated mitochondria of beef-tallow-fed rats. This release of fatty acids was partially inhibited by dibucaine, the phospholipase A2 inhibitor, which we have previously shown to protect mitochondria against damage associated with Ca2+ and reactive oxygen species. The results indicate that phospholipase A2 is activated in mitochondria exposed to Ca2+ and reactive oxygen species and is responsible, at least in part, for the impairment of respiratory function. Phospholipase A2 activity and mitochondrial damage are enhanced when mitochondrial membranes are enriched with n-3 fatty acids. PMID:2123344

  6. Impacts of chemical reactivity on ice nucleation of kaolinite particles: A case study of levoglucosan and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Tobo, Yutaka; DeMott, Paul J.; Raddatz, Michael; Niedermeier, Dennis; Hartmann, Susan; Kreidenweis, Sonia M.; Stratmann, Frank; Wex, Heike

    2012-10-01

    Changes in the ice nucleation properties of mineral dust particles due to soluble coatings are still not well understood. Here we show that the reactivity with soluble materials deposited on the surfaces of kaolinite particles is an important factor affecting the ice nucleation properties of the particles. Using kaolinite particles treated with levoglucosan or H2SO4 (i.e., non-reactive and reactive materials, respectively), we investigated the fraction of particles capable of nucleating ice at temperatures ranging from -34°C to -26°C. Below water saturation, both the levoglucosan and H2SO4 coatings similarly reduced the ice nucleating ability of kaolinite particles. Above water saturation, however, only the H2SO4 coatings reduced the ice nucleating ability of the particles, particularly at warmer temperatures. We suggest that the absence or presence of surface chemical reactions plays an important role in determining the number concentrations of ice crystals formed from mineral dust ice nuclei under mixed-phase cloud conditions.

  7. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  8. COX‐2 induction by unconjugated bile acids involves reactive oxygen species‐mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma

    PubMed Central

    Song, Shumei; Guha, Sushovan; Liu, Kaifeng; Buttar, Navtej S; Bresalier, Robert S

    2007-01-01

    Objectives Bile reflux contributes to oesophageal injury and neoplasia. COX‐2 is involved in both inflammation and carcinogenesis; however, the precise mechanisms by which bile acids promote COX‐2 expression in the oesophagus are largely unknown. We analysed the molecular mechanisms that govern bile acid‐mediated expression of COX‐2 in Barrett's oesophagus and oesophageal adenocarcinoma (OA). Design The effects of bile acids on COX‐2 expression were analysed in immortalised Barrett's oesophagus and OA cells using immunoblotting and transient transfections. Pharmacological inhibitors, phospho‐specific antibodies, dominant‐negative mutants and siRNA techniques were used to identify relevant signalling pathways. Flow cytometry and reactive oxygen species (ROS) scavengers were used to examine ROS involvement. Immunohistochemistry was performed on oesophageal mucosa obtained from an established rat model of bile reflux. Results Unconjugated bile acids potently stimulated COX‐2 expression and induced AKT and ERK1/2 phosphorylation in concert with COX‐2 induction. These findings were mimicked in the in vivo rat model. Dominant‐negative (DN) AKT and LY294002 (PI3K inhibitor) or U0126 (MEK‐1/2 inhibitor) blocked chenodeoxycholic acid (CD) and deoxycholic acid (DC) mediated COX‐2 induction. CD and DC also induced CREB phosphorylation and AP‐1 activity. CREB‐specific siRNA and DN AP‐1 blocked CD and DC‐induced COX‐2 induction. Finally, CD and DC increased intracellular ROS, while ROS scavengers blocked COX‐2 induction and the signalling pathways involved. Conclusions Unconjugated bile acids induce CREB and AP‐1‐dependent COX‐2 expression in Barrett's oesophagus and OA through ROS‐mediated activation of PI3K/AKT and ERK1/2. This study enhances our understanding of the molecular mechanisms by which bile acids promote the development of oesophageal adenocarcinoma. PMID:17604323

  9. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  10. Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel-Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity due to Ion-Pairing Effects.

    PubMed

    Mo, Xiaobin; Yakiwchuk, Joshua; Dansereau, Julien; McCubbin, J Adam; Hall, Dennis G

    2015-08-05

    The development of general and more atom-economical catalytic processes for Friedel-Crafts alkylations of unactivated arenes is an important objective of interest for the production of pharmaceuticals and commodity chemicals. Ferroceniumboronic acid hexafluoroantimonate salt (1) was identified as a superior air- and moisture-tolerant catalyst for direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes with stable and readily available primary and secondary benzylic alcohols. Compared to the use of classical metal-catalyzed alkylations with toxic benzylic halides, this methodology employs exceptionally mild conditions to provide a wide variety of unsymmetrical diarylmethanes and other 1,1-diarylalkane products in high yield with good to high regioselectivity. The optimal method, using the bench-stable ferroceniumboronic acid salt 1 in hexafluoroisopropanol as cosolvent, displays a broader scope compared to previously reported catalysts for similar Friedel-Crafts reactions of benzylic alcohols, including other boronic acids such as 2,3,4,5-tetrafluorophenylboronic acid. The efficacy of the new boronic acid catalyst was confirmed by its ability to activate primary benzylic alcohols functionalized with destabilizing electron-withdrawing groups like halides, carboxyesters, and nitro substituents. Arene benzylation was demonstrated on a gram scale at up to 1 M concentration with catalyst recovery. Mechanistic studies point toward the importance of the ionic nature of the catalyst and suggest that factors other than the Lewis acidity (pKa) of the boronic acid are at play. A SN1 mechanism is proposed where ion exchange within the initial boronate anion affords a more reactive carbocation paired with the non-nucleophilic hexafluoroantimonate counteranion.

  11. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  12. Specificity of the photoreaction of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen with ribonucleic acid. Identificaton of reactive sites in Escherichia coli phenylalanine-accepting transfer ribonucleic acid

    SciTech Connect

    Bachellerie, J.P.; Hearst, J.E.

    1982-03-16

    In order to test the potential of psoralen photo-addition for the probing of RNA conformation at sequence resolution, the specificity of the reaction of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with Escherichia coli tRNA/sup Phe/ was analyzed. The sites of HMT covalent addition have been identified by a combination of analytical techniques involving chemical cleavage of the tRNA/sup Phe/ molecule at the m/sup 7/G site and gel electrophoresis of RNase T/sub 1/ digests together with paper electrophoretic characterization of HMT-modified nucleotides and oligonucleotides. HMT photoaddition shows a very high preference for uracil residues. However, important differences in HMT photoreactivity are observed for various U sites of the tRNA/sup Phe/ molecule. Reactivity of specific bases has been correlated with partial melting of the molecule. Data available so far indicate a strong preference of the photo-reactive probe for a ''loose'' helical conformation as compared with a tight helix, whereas a random coil appears poorly reactive. (JMT)

  13. Reactive extraction of citric acid using tri-n-octylamine in nontoxic natural diluents: part 1--equilibrium studies from aqueous solutions.

    PubMed

    Keshav, Amit; Norge, Prakriti; Wasewar, Kailas L

    2012-05-01

    Use of cheap, nontoxic, and selective solvents could economically provide a solution to the recovery of carboxylic acids produced by the bioroute. In this regard in the present paper, reactive extraction of citric acid was studied. Problems encompassing the recovery of the acid ([H(3)A](aq)(o) = 0.1-0.8) was solved by using tertiary amine (tri-n-octylamine, TOA) in natural diluents (rice bran oil, sunflower oil, soybean oil, and sesame oil). TOA was very effective in removal of acid providing distribution coefficient (D) as high as 18.51 (E% = 95%), 12.82 (E% = 93%), 15.09 (E% = 94%), and 16.28 (E% = 94%) when used with rice bran oil, sunflower oil, soybean oil, and sesame oil, respectively. Overall extraction constants and association numbers for TOA + rice bran oil, TOA + sunflower oil, TOA + soybean oil, and TOA + sesame oil were evaluated to be 35.48 (mol/l)(-1.46), 29.79 (mol/l)(-1.30), 33.79 (mol/l)(-1.51), and 37.64 (mol/l)(-1.65) and 1.46, 1.30, 1.51, and 1.65, respectively. Specific equilibrium complexation constants (K (E(n/m))) were also predicted using mathematical modeling.

  14. Influence of kinetics on the determination of the surface reactivity of oxide suspensions by acid-base titration.

    PubMed

    Duc, M; Adekola, F; Lefèvre, G; Fédoroff, M

    2006-11-01

    The effect of acid-base titration protocol and speed on pH measurement and surface charge calculation was studied on suspensions of gamma-alumina, hematite, goethite, and silica, whose size and porosity have been well characterized. The titration protocol has an important effect on surface charge calculation as well as on acid-base constants obtained by fitting of the titration curves. Variations of pH versus time after addition of acid or base to the suspension were interpreted as diffusion processes. Resulting apparent diffusion coefficients depend on the nature of the oxide and on its porosity.

  15. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  16. Lectin-histochemical reactivity of sialic acid in breast cancer and its relationship to prognosis using limulus polyphemus agglutinin.

    PubMed

    Ding, K; Yamaguchi, A; Goi, T; Maehara, M; Nakagawara, G

    1997-04-01

    Studies of circulating sialic acid have revealed its relationship with a variety of malignant tumors. It is not vet clear whether sialic acid could be used as a prognostic marker of breast cancer, and few studies have examined sialic acid expression in the cell membrane and cytoplasm of breast cancer cells by means of the lectin-histochemical technique. In the present study, we used biotinylated limulus polyphemus agglutinin (LPA), a special binding lectin of sialic acid, to stain sialic acid in breast cancer cells. Of the 104 cases of breast cancer examined, 59 (56.7%) positive cases were observed. There was a significant correlation between the LPA staining and the clinicopathologic features of all patients, including pathological stage and lymph node metastasis. Among the 100 patients who underwent curative operation, the mean disease-free survival rate of the 45 patients who were LPA-negative was significantly higher than that of the 55 LPA-positive patients (p<0.05). These results suggest that the positive expression of sialic acid in breast cancer could be used as a marker of malignancy potential, as well as a poor survival factor, and the biotinylated LPA assay may provide a convenient and useful method to predict the prognosis of breast cancer.

  17. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  18. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress.

    PubMed

    Shinkai, Yasuhiro; Abiko, Yumi; Ida, Tomoaki; Miura, Takashi; Kakehashi, Hidenao; Ishii, Isao; Nishida, Motohiro; Sawa, Tomohiro; Akaike, Takaaki; Kumagai, Yoshito

    2015-05-18

    Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress.

  19. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  20. Picosecond pulse radiolysis of highly concentrated sulfuric acid solutions: evidence for the oxidation reactivity of radical cation H2O(•+).

    PubMed

    Ma, Jun; Schmidhammer, Uli; Mostafavi, Mehran

    2014-06-12

    Aqueous solution of sulfuric acid is used as a suitable system to investigate the reactivity of the short-lived radical cation H2O(•+) which is generated by radiation in water. Ten aqueous solutions containing sulfuric acid with concentration from 1 to 18 mol L(-1) are studied by picosecond pulse radiolysis. The absorbance of the secondary radical SO4(•-) (or HSO4(•)) formed within the 10 ps electron pulse is measured by a pulse-probe method in the visible range. The analysis of the kinetics show that the radicals of sulfuric acid are formed within the picosecond electron pulse via two parallel mechanisms: direct electron detachment by the electron pulse and oxidation by the radical cation of water H2O(•+). In highly concentrated solution when SO4(2-) is in contact with H2O(•+), the electron transfer becomes competitive against proton transfer with another water molecule. Therefore, H2O(•+) may act as an extremely strong oxidant. The maximum radiolytic yield of scavenged H2O(•+) is estimated to be 5.3 ± 0.1 × 10(-7) mol J(-1).

  1. Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy-β-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A

    PubMed Central

    Duffy, Richard J.; Morris, Kay A.; Vallakati, Ravikrishna; Zhang, Wei; Romo, Daniel

    2009-01-01

    A novel class of small spirocyclic heterocycles, spiroepoxy-β-lactones (1,4-dioxaspiro[2.3]-hexan-5-ones), is described that exhibit a number of interesting reactivity patterns. These spiroheterocycles, including an optically active series, are readily synthesized by epoxidation of ketene dimers (4-alkylidene-2-oxetanones) available from homo- or heteroketene dimerization. An analysis of bond lengths in these systems by X-ray crystallography and comparison to data for known spirocycles and those determined computationally, suggest that anomeric effects in these systems may be more pronounced due to their rigidity and may contribute to their surprising stability. The synthetic utility of spiroepoxy-β-lactones was explored and one facile rearrangement identified under several conditions provides a 3-step route from acid chlorides to optically active tetronic acids, ubiquitous heterocycles in bioactive natural products. The addition of various nucleophiles to these spirocycles leads primarily to addition at C5 and C2. The utility of an optically active spiroepoxy-β-lactone was demonstrated in the concise, enantioselective synthesis of the anti-fouling agent, (+)-maculalactone A, which proceeds in 5 steps from hydrocinnamoyl chloride by way of a tetronic acid intermediate. PMID:19453152

  2. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence.

  3. Construction of a D-amino acid oxidase reactor based on magnetic nanoparticles modified by a reactive polymer and its application in screening enzyme inhibitors.

    PubMed

    Mu, Xiaoyu; Qiao, Juan; Qi, Li; Liu, Ying; Ma, Huimin

    2014-08-13

    Developing facile and high-throughput methods for exploring pharmacological inhibitors of D-amino acid oxidase (DAAO) has triggered increasing interest. In this work, DAAO was immobilized on the magnetic nanoparticles, which were modified by a biocompatible reactive polymer, poly(glycidyl methacrylate) (PGMA) via an atom transfer radical polymerization technique. Interestingly, the enzyme immobilization process was greatly promoted with the assistance of a lithium perchlorate catalyst. Meanwhile, a new amino acid ionic liquid (AAIL) was successfully synthesized and employed as the efficient chiral ligand in a chiral ligand exchange capillary electrophoresis (CLE-CE) system for chiral separation of amino acids (AAs) and quantitation of methionine, which was selected as the substrate of DAAO. Then, the apparent Michaelis-Menten constants in the enzyme system were determined with the proposed CLE-CE method. The prepared DAAO-PGMA-Fe3O4 nanoparticles exhibited excellent reusability and good stability. Moreover, the enzyme reactor was successfully applied in screening DAAO inhibitors. These results demonstrated that the enzyme could be efficiently immobilized on the polymer-grafted magnetic nanoparticles and that the obtained enzyme reactor has great potential in screening enzyme inhibitors, further offering new insight into monitoring the relevant diseases.

  4. Using fluorescence-based microplate assay to assess DOM-metal binding in reactive materials for treatment of acid mine drainage.

    PubMed

    Neculita, Carmen Mihaela; Dudal, Yves; Zagury, Gerald J

    2011-01-01

    One potential drawback of compost-based passive bioreactors, which is a promising biotechnology for acid mine drainage (AMD) treatment, is the transport of dissolved organic matter (DOM)-metal complexes in surface waters. To address this problem, the objective of this study was to assess the maximum capacity of organic substrates to release soluble DOM-metal complexes in treated water. The reactivities of DOM in maple wood chips and sawdust, composted poultry manure, and leaf compost were quantified toward Cd2+, Ni2+, Fe2+, and Cu2+ using fluorescence quenching. The DOM showed the highest reactivity toward Fe, but a limited number of available sites for sorption, whereas DOM-Cd complexes exhibited the lowest fluorescence quenching. Overall, the DOM from a mixture of wastes formed higher concentrations of DOM-metal complexes relative to sole substrates. Among DOM-metal complexes, the concentrations of DOM-Ni complexes were the highest. After reaching steady-state, low concentrations of DOM-metal complexes were released in treated water, which is in agreement with theoretical predictions based on geochemical modeling. Therefore, in addition to physicochemical characterization, fluorescence quenching technique is recommended for the substrate selection of bioreactors.

  5. Reactivity of pi-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Andras, Maria T.; Hepp, Aloysius F.

    1990-01-01

    In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed.

  6. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species

    PubMed Central

    Ruefli, Astrid A.; Ausserlechner, Michael J.; Bernhard, David; Sutton, Vivien R.; Tainton, Kellie M.; Kofler, Reinhard; Smyth, Mark J.; Johnstone, Ricky W.

    2001-01-01

    Many chemotherapeutic agents induce mitochondrial-membrane disruption to initiate apoptosis. However, the upstream events leading to drug-induced mitochondrial perturbation have remained poorly defined. We have used a variety of physiological and pharmacological inhibitors of distinct apoptotic pathways to analyze the manner by which suberoylanilide hydroxamic acid (SAHA), a chemotherapeutic agent and histone deacetylase inhibitor, induces cell death. We demonstrate that SAHA initiates cell death by inducing mitochondria-mediated death pathways characterized by cytochrome c release and the production of reactive oxygen species, and does not require the activation of key caspases such as caspase-8 or -3. We provide evidence that mitochondrial disruption is achieved by means of the cleavage of the BH3-only proapoptotic Bcl-2 family member Bid. SAHA-induced Bid cleavage was not blocked by caspase inhibitors or the overexpression of Bcl-2 but did require the transcriptional regulatory activity of SAHA. These data provide evidence of a mechanism of cell death mediated by transcriptional events that result in the cleavage of Bid, disruption of the mitochondrial membrane, and production of reactive oxygen species to induce cell death. PMID:11535817

  7. Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation.

    PubMed

    Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J

    2006-06-01

    The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation.

  8. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    PubMed

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the

  9. [Nanocerium restores the erythrocytes stability to acid hemolysis by inhibition of oxygen and nitrogen reactive species in old rats].

    PubMed

    Kotsuruba, A V; Kopjak, B S; Sagach, V F; Spivak, N Ja

    2015-01-01

    In experiments in vivo the effect of nanocerium (cerium oxide nanoparticles) on the stability of red blood cells to acid hemolysis, levels of both ROS and RNS generation and H2S pools in plasma and erythrocytes of old rats were investigated. In red blood cells of old rats the proton penetration into the matrix of erythrocytes showed a significant raising and the fate of labile "aging" erythrocytes in old animals compared with adult were up- regulated. These phenomena paralleled with significant up-regulation of ROS and RNS generation. Introduction for 14 days per os to old rats 0.1 mg/kg of nanocerium fully restored resistance of erythrocytes to acid hemolysis by ROS and RNS in both plasma and erythrocytes reduction. Nanocerium decreased the erythrocytes and, conversely, significantly increased the plasma's pools of H2S.

  10. Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway.

    PubMed

    Lu, Tien-Hui; Su, Chin-Chuan; Tang, Feng-Cheng; Chen, Chun-Hung; Yen, Cheng-Chieh; Fang, Kai-Min; Lee, kuan-I; Hung, Dong-Zong; Chen, Ya-Wen

    2015-01-05

    Chloroacetic acid (CA), a chlorinated analog of acetic acid and an environmental toxin that is more toxic than acetic, dichloroacetic, or trichloroacetic acids, is widely used in chemical industries. Furthermore, CA has been found to be the major disinfection by-products (DBPs) of drinking water. CA has been reported to be highly corrosive and to induce severe tissue injuries (including nervous system) that lead to death in mammals. However, the effects and underlying mechanisms of CA-induced neurotoxicity remain unknown. In the present study, we found that CA (0.5-2.0 mM) significantly increased LDH release, decreased the number of viable cells (cytotoxicity) and induced apoptotic events (including: increases in the numbers of apoptotic cells, the membrane externalization of phosphatidylserine (PS), and caspase-3/-7 activity) in Neuro-2a cells. CA (1.5 mM; the approximate to LD50) also triggered ER stress, which was identified by monitoring several key molecules that are involved in the unfolded protein responses (including the increase in the expressions of p-PERK, p-IRE-1, p-eIF2α, ATF-4, ATF-6, CHOP, XBP-1, GRP 78, GRP 94, and caspase-12) and calpain activity. Transfection of GRP 78- and GRP 94-specific si-RNA effectively abrogated CA-induced cytotoxicity, caspase-3/-7 and caspase-12 activity, and GRP 78 and GRP 94 expression in Neuro-2a cells. Additionally, pretreatment with 2.5 mM N-acetylcysteine (NAC; a glutathione (GSH) precursor) dramatically suppressed the increase in lipid peroxidation, cytotoxicity, apoptotic events, calpain and caspase-12 activity, and ER stress-related molecules in CA-exposed cells. Taken together, these results suggest that the higher concentration of CA exerts its cytotoxic effects in neuronal cells by triggering apoptosis via a ROS-induced ER stress signaling pathway.

  11. Spectroscopic detection, reactivity, and acid-base behavior of ring-dimethoxylated phenylethanoic acid radical cations and radical zwitterions in aqueous solution.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2004-01-23

    A product and time-resolved kinetic study of the one-electron oxidation of ring-dimethoxylated phenylethanoic acids has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations or radical zwitterions depending on pH, and pK(a) values for the corresponding acid-base equilibria have been measured. The radical cations undergo decarboxylation with first-order rate constants (k(dec)) ranging from <10(2) to 5.6 x 10(4) s(-1) depending on radical cation stability. A significant increase in k(dec) (between 10 and 40 times) is observed on going from the radical cations to the corresponding radical zwitterions. The results are discussed in terms of the ease of intramolecular side chain to ring electron transfer required for decarboxylation, in both the radical cations and radical zwitterions.

  12. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells.

    PubMed

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-02-20

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  13. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress.

  14. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis.

    PubMed

    Miura, Kenji; Okamoto, Hiroyuki; Okuma, Eiji; Shiba, Hayato; Kamada, Hiroshi; Hasegawa, Paul M; Murata, Yoshiyuki

    2013-01-01

    Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.

  15. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    PubMed

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H2 O2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H2 O2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H2 O2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD(+) ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2.

  16. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    PubMed Central

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-01-01

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells. PMID:28230729

  17. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed

  18. A chemical test of critical point isomorphism: reactive dissolution of ionic solids in isobutyric acid + water near the consolute point.

    PubMed

    Baird, James K; Baker, Jonathan D; Hu, Baichuan; Lang, Joshua R; Joyce, Karen E; Sides, Alison K; Richey, Randi D

    2015-03-12

    Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.

  19. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated.

  20. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  1. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  2. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.; Denham, Miles E.

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and

  3. Arsenate and Selenate Scavenging by Basaluminite: Insights into the Reactivity of Aluminum Phases in Acid Mine Drainage.

    PubMed

    Carrero, Sergio; Fernandez-Martinez, Alejandro; Pérez-López, Rafael; Poulain, Agnieszka; Salas-Colera, Eduardo; Nieto, José Miguel

    2017-01-03

    Basaluminite precipitation may play an important role in the behavior of trace elements in water and sediments affected by acid mine drainage and acid sulfate soils. In this study, the affinity of basaluminite and schwertmannite for arsenate and selenate is compared, and the coordination geometries of these oxyanions in both structures are reported. Batch isotherm experiments were conducted to examine the sorption capacity of synthetic schwertmannite and basaluminite and the potential competitive effect of sulfate. In addition, synchrotron-based techniques such as differential pair distribution function (d-PDF) analysis and extended X-ray absorption fine structure (EXAFS) were used to determine the local structure of As(V) and Se(VI) complexes. The results show that oxyanion exchange with structural sulfate was the main mechanism for removal of selenate, whereas arsenate was removed by a combination of surface complexes and oxyanion exchange. The arsenate adsorption capacity of basaluminite was 2 times higher than that of schwertmannite and 3 times higher than that of selenate in both phases. The sulfate:arsenate and sulfate:selenate exchange ratios were 1:2 and 1:1, respectively. High sulfate concentrations in the solutions did not show a competitive effect on arsenate sorption capacity but had a strong impact on selenate uptake, suggesting some kind of specific interaction for arsenate. Both d-PDF and EXAFS results indicated that the bidentate binuclear inner sphere was the most probable type of ligand for arsenate on both phases and for selenate on schwertmannite, whereas selenate forms outer-sphere complexes in the aluminum octahedral interlayer of basaluminite. Overall, these results show a strong affinity of poorly crystalline aluminum phases such as basaluminite for As(V) and Se(VI) oxyanions, with adsorption capacities on the same order of magnitude as those of iron oxides. The results obtained in this study are relevant to the understanding of trace

  4. Aerobic C-H Acetoxylation of 8-Methylquinoline in PdII-Pyridinecarboxylic Acid Systems: Some Structure-Reactivity Relationships

    SciTech Connect

    Wang, Daoyong; Zavalij, Peter Y.; Vedernikov, Andrei N.

    2013-09-09

    Catalytic oxidative C–H acetoxylation of 8-methylquinoline as a model substrate with O2 as oxidant was performed using palladium(II) carboxylate catalysts derived from four different pyridinecarboxylic acids able to form palladium(II) chelates of different size. A comparison of the rates of the substrate C–H activation and the O2 activation steps shows that the C–H activation step is rate-limiting, whereas the O2 activation occurs at a much faster rate already at 20 °C. The chelate ring size and the chelate ring strain of the catalytically active species are proposed to be the key factors affecting the rate of the C–H activation.

  5. Tuning the Band Bending and Controlling the Surface Reactivity at Polar and Nonpolar Surfaces of ZnO through Phosphonic Acid Binding.

    PubMed

    McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W

    2016-11-16

    ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F13OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F13OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

  6. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity.

    PubMed

    Gémes, Katalin; Poór, Péter; Horváth, Edit; Kolbert, Zsuzsanna; Szopkó, Dóra; Szepesi, Agnes; Tari, Irma

    2011-06-01

    Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.

  7. Mn (III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone

    PubMed Central

    2013-01-01

    Background Substantial experimental evidence supports that reactive species mediate secondary damage after traumatic spinal cord injury (SCI) by inducing oxidative stress. Removal of reactive species may reduce secondary damage following SCI. This study explored the effectiveness of a catalytic antioxidant - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) - in removing reactive oxygen species (ROS), reducing oxidative stress, and improving functional recovery in vivo in a rat impact SCI model. The efficiency of MnTBAP was also compared with that of methylprednisolone – the only drug used clinically in treating acute SCI. Results In vivo measurements of time courses of ROS production by microdialysis and microcannula sampling in MnTBAP, methylprednisolone, and saline (as vehicle control)-treated SCI rats showed that both agents significantly reduced the production of hydrogen peroxide, but only MnTBAP significantly reduced superoxide elevation after SCI. In vitro experiments further demonstrated that MnTBAP scavenged both of the preceding ROS, whereas methylprednisolone had no effect on either. By counting the immuno-positive neurons in the spinal cord sections immunohistochemically stained with anti-nitrotyrosine and anti-4-hydroxy-nonenal antibodies as the markers of protein nitration and membrane lipid peroxidation, we demonstrated that MnTBAP significantly reduced the numbers of 4-hydroxy-nonenal-positive and nitrotyrosine-positive neurons in the sections at 1.55 to 2.55 mm and 1.1 to 3.1 mm, respectively, rostral to the injury epicenter compared to the vehicle-treated animals. By behavioral tests (open field and inclined plane tests), we demonstrated that at 4 hours post-SCI treatment with MnTBAP and the standard methylprednisolone regimen both significantly increased test scores compared to those produced by vehicle treatment. However, the outcomes for MnTBAP-treated rats were significantly better than those for methylprednisolone-treated animals

  8. Effect of reactive bed mineralogy on arsenic retention and permeability of synthetic arsenic-containing acid mine drainage.

    PubMed

    Liu, Jing; Cheng, Hongfei; Zhao, Fenghua; Dong, Faqing; Frost, Ray L

    2013-03-15

    Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arsenic-containing AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.

  9. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts

    PubMed Central

    Comito, Giuseppina; Segura, Coral Pons; Taddei, Maria Letizia; Lanciotti, Michele; Serni, Sergio; Morandi, Andrea; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment. PMID:27223431

  10. Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus.

    PubMed

    Martinez-De Luna, Reyna I; Ku, Ray Y; Aruck, Alexandria M; Santiago, Francesca; Viczian, Andrea S; San Mauro, Diego; Zuber, Michael E

    2016-03-17

    Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.

  11. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  12. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption.

    PubMed

    Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng

    2017-06-01

    Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn2Al-Met-LDHs, identified with the formula of Zn0.7Al0.3(OH)2(Met)0.3·0.32H2O, has good thermal stability. Adsorption experiments with Zn2Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn2Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn2Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs.

  13. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments

    PubMed Central

    2014-01-01

    Background Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were followed over time for the same range of total enzyme protein loadings to provide comparative data on glucose and xylose yields of monomers and oligomers from the pretreated solids. The composition of pretreated solids and enzyme adsorption on each substrate were also measured to determine. The extent glucose release could be related to these features. Results Corn stover solids from pretreatment by DA, AFEX, and IL were enzymatically digested over a range of low to moderate loadings of commercial cellulase, xylanase, and pectinase enzyme mixtures, the proportions of which had been previously optimized for each pretreatment. Avicel® cellulose, regenerated amorphous cellulose (RAC), and beechwood xylan were also subjected to enzymatic hydrolysis as controls. Yields of glucose and xylose and their oligomers were followed for times up to 120 hours, and enzyme adsorption was measured. IL pretreated corn stover displayed the highest initial glucose yields at all enzyme loadings and the highest final yield for a low enzyme loading of 3 mg protein/g glucan in the raw material. However, increasing the enzyme loading to 12 mg/g glucan or more resulted in DA pretreated corn stover attaining the highest longer-term glucose yields. Hydrolyzate from AFEX pretreated corn stover had the highest proportion of xylooligomers, while IL produced the most glucooligomers. However, the amounts of both oligomers dropped with increasing enzyme loadings and hydrolysis times. IL pretreated corn stover had the highest enzyme adsorption capacity. Conclusions Initial hydrolysis yields were highest

  14. Arachidonic acid enhances TPA-induced differentiation in human leukemia HL-60 cells via reactive oxygen species-dependent ERK activation.

    PubMed

    Chien, Chih-Chiang; Wu, Ming-Shun; Shen, Shing-Chuan; Yang, Liang-Yo; Wu, Wen-Shin; Chen, Yen-Chou

    2013-04-01

    The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.

  15. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids.

    PubMed

    Niehaus, Thomas D; Nguyen, Thuy N D; Gidda, Satinder K; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A; McCarty, Donald R; Downs, Diana M; Cooper, Arthur J L; Fiehn, Oliver; Mullen, Robert T; Hanson, Andrew D

    2014-07-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.

  16. Epoxyeicosatrienoic Acids Attenuate Reactive Oxygen Species Level, Mitochondrial Dysfunction, Caspase Activation, and Apoptosis in Carcinoma Cells Treated with Arsenic TrioxideS⃞

    PubMed Central

    Liu, Liu; Chen, Chen; Gong, Wei; Li, Yuanjing; Edin, Matthew L.; Zeldin, Darryl C.

    2011-01-01

    Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxygen species (ROS), impaired mitochondrial function, and induced apoptosis. 11,12-EET pretreatment increased expression of the antioxidant enzymes superoxide dismutase and catalase and inhibited ATO-induced apoptosis. 11,12-EET also prevented the ATO-induced activation of p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, caspase-3, and caspase-9. Therefore, 11,12-EET-pretreatment attenuated the ROS generation, loss of mitochondrial function, and caspase activation observed after ATO treatment. Moreover, the CYP2J2-specific inhibitor compound 26 enhanced arsenic cytotoxicity to a clinically relevant concentration of ATO (1–2 μM). Both the thiol-containing antioxidant, N-acetyl-cysteine, and 11,12-EET reversed the synergistic effect of the two agents. Taken together, these data indicate that 11,12-EET inhibits apoptosis induced by ATO through a mechanism that involves induction of antioxidant proteins and attenuation of ROS-mediated mitochondrial dysfunction. PMID:21846841

  17. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  18. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil.

    PubMed

    Tremblay, B L; Rudkowska, I; Couture, P; Lemieux, S; Julien, P; Vohl, M C

    2015-12-01

    This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation.

  19. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    PubMed Central

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  20. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria.

    PubMed

    Xu, Yan; Sheng, Sheng; Liu, Xi; Wang, Chao; Xiao, Wei; Wang, Jun; Wu, Fu-An

    2017-01-02

    It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO) as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE) production from methyl caffeate (MC) and 2-phenylethanol (PE) catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf₂N] (1:1, v/v); the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17-0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.

  1. Effect of metal ions on the reactions of the cumyloxyl radical with hydrogen atom donors. Fine control on hydrogen abstraction reactivity determined by Lewis acid-base interactions.

    PubMed

    Salamone, Michela; Mangiacapra, Livia; DiLabio, Gino A; Bietti, Massimo

    2013-01-09

    A time-resolved kinetic study on the effect of metal ions (M(n+)) on hydrogen abstraction reactions from C-H donor substrates by the cumyloxyl radical (CumO(•)) was carried out in acetonitrile. Metal salt addition was observed to increase the CumO(•) β-scission rate constant in the order Li(+) > Mg(2+) > Na(+). These effects were explained in terms of the stabilization of the β-scission transition state determined by Lewis acid-base interactions between M(n+) and the radical. When hydrogen abstraction from 1,4-cyclohexadiene was studied in the presence of LiClO(4) and Mg(ClO(4))(2), a slight increase in rate constant (k(H)) was observed indicating that interaction between M(n+) and CumO(•) can also influence, although to a limited extent, the hydrogen abstraction reactivity of alkoxyl radicals. With Lewis basic C-H donors such as THF and tertiary amines, a decrease in k(H) with increasing Lewis acidity of M(n+) was observed (k(H)(MeCN) > k(H)(Li(+)) > k(H)(Mg(2+))). This behavior was explained in terms of the stronger Lewis acid-base interaction of M(n+) with the substrate as compared to the radical. This interaction reduces the degree of overlap between the α-C-H σ* orbital and a heteroatom lone-pair, increasing the C-H BDE and destabilizing the carbon centered radical formed after abstraction. With tertiary amines, a >2-order of magnitude decrease in k(H) was measured after Mg(ClO(4))(2) addition up to a 1.5:1 amine/Mg(ClO(4))(2) ratio. At higher amine concentrations, very similar k(H) values were measured with and without Mg(ClO(4))(2). These results clearly show that with strong Lewis basic substrates variations in the nature and concentration of M(n+) can dramatically influence k(H), allowing for a fine control of the substrate hydrogen atom donor ability, thus providing a convenient method for C-H deactivation. The implications and generality of these findings are discussed.

  2. Amino acid sequence diversity within the family of antibodies bearing the major antiarsonate cross-reactive idiotype of the A strain mouse

    PubMed Central

    1983-01-01

    VH region amino acid sequences are described for five A/J anti-p- azophenylarsonate (anti-Ars) hybridoma antibodies for which the VL region sequences have previously been determined, thus completing the V domain sequences of these molecules. These antibodies all belong to the family designated Ars-A which bears the major anti-arsonate cross- reactive idiotype (CRI) of the A strain mouse. However, they differ in the degree to which they express the CRI in standard competition radioimmunoassays. Although the sequences are closely related, all are different from each other. Replacements are distributed throughout the VH region and occur in positions of the chain encoded by all three gene segments, VH, DH, and JH. It is likely that somatic diversification processes play a dominant role in producing the sequence variability in each of these segments. The number of differences from the sequence encoded by the germline is smallest for antibodies that express the CRI most strongly, suggesting that somatic diversification is responsible for loss of the CRI in members of the Ars-A antibody family. There is an unusual degree of clustering of differences in both CDR2 and CDR3 and many of the substitutions are located in "hot spots" of variation. The large number of differences between the chains prohibits the unambiguous identification of positions at which alterations play a major role in reducing the expression of the CRI. However, the data suggest that the loss of the CRI is associated with a definable repertoire of somatic changes at a restricted number of highly variable sites. PMID:6415209

  3. Photocatalytic degradation of clofibric acid by g-C3N4/P25 composites under simulated sunlight irradiation: The significant effects of reactive species.

    PubMed

    Chen, Ping; Wang, Fengliang; Zhang, Qianxin; Su, Yuehan; Shen, Lingzhi; Yao, Kun; Chen, Zhi-Feng; Liu, Yang; Cai, Zongwei; Lv, Wenying; Liu, Guoguang

    2017-04-01

    Pharmaceutically emerging micropollutants have become an environmental concern in recent years. In the present paper, the reactive species (RSs)-induced degradation mechanism of clofibric acid (CA) was investigated using a newly sunlight-driven g-C3N4/P25 photocatalyst. A very low g-C3N4 content of 8.0 weight percent resulted in a 3.36 and a 2.29 times faster reaction rate for CA photodegradation than for pristine g-C3N4 and P25, respectively. Electron spin resonance and quenching experiments demonstrated the participation of HO, h(+), e(-), (1)O2 and O2(·-) in the photocatalytic system, and the contribution rates were calculated to 73.3%, 15.3%, 5.1%, 6.7% and 33.1%, respectively. According to the pulse radiolysis measurements and the competitive kinetics approaches, the bimolecular reaction rate constants for HO, e(-), and (1)O2 with CA were (8.47 ± 0.33) × 10(9) M(-1)s(-1), (6.41 ± 0.48) × 10(9) M(-1)s(-1) and (6.6 ± 0.37) × 10(6) M(-1)s(-1), respectively. RSs were found to significantly influence the degradation of CA, and the degradation pathways occurred primarily via e(-) reduction, HO addition and (1)O2 attack reactions on the basis of mass spectrometry and theoretical calculations.

  4. Increased high-sensitivity C-reactive protein, erythrocyte sedimentation rate and lactic acid in stroke patients with internal carotid artery occlusion

    PubMed Central

    Xie, Dan; Hu, Di; Zhang, Qin; Sun, Yufang; Li, Jimei

    2015-01-01

    Introduction Internal carotid artery occlusion (ICAO) causes high annual rates of mortality and morbidity. It has been established that atherosclerosis is the normal cause of ICAO. As the pathogenesis of atherosclerosis may involve blood lipids, inflammatory factors and other biomarkers, the aim of this study was to assess the changes in these biomarkers and investigate the relationship between these biomarkers and the development of ICAO in stroke patients. Material and methods A total of 89 ischaemic stroke inpatients with ICAO (ICAO group) and 89 without ICAO (control group) were studied, retrospectively. The serum was collected from each patient on the 3rd day of admission, to measure the lipid parameters and biomarkers, e.g. high-sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and lactic acid (LA). Histories were taken including age, gender, smoking history, and disease history. Additional analysis was carried out to compare between the genders and evaluate the association between certain biomarkers and ICAO. Results Among the 89 ICAO cases in this study, the serum levels of hs-CRP, ESR and LA were significantly higher than those in the control group (p ≤ 0.001). No significant differences were found in the mean levels of total cholesterol, triacylglycerol, HDL cholesterol or glucose, or the known risk factors. Gender also had no influence on these biomarkers. Logistic regression analysis indicated that hs-CRP, ESR and LA were significantly associated with ICAO (p ≤ 0.05). Conclusions These results suggest that hs-CRP, ESR and LA are associated with ICAO in ischaemic stroke patients, but gender has no effect. Therefore, Hs-CRP, ESR and LA may be useful in the early detection of patients with ICAO. PMID:27279846

  5. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors.

    PubMed

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-11-01

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.

  6. The Effects of Molecular Hydrogen and Suberoylanilide Hydroxamic Acid on Paraquat-Induced Production of Reactive Oxygen Species and TNF-α in Macrophages.

    PubMed

    Li, Jiaoyang; Wu, Xizi; Chen, Yao; Zeng, Renqing; Zhao, Yangzi; Chang, Panpan; Wang, Danna; Zhao, Qianwen; Deng, Yunlei; Li, Yongqing; Alam, Hasan B; Chong, Wei

    2016-12-01

    The aim of this study is to investigate the effects of molecular hydrogen (H2) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on paraquat (PQ)-stimulated production of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) in macrophages. First, the PQ optimal concentration was determined in RAW264.7 macrophage by treating serum-starved cells with PQ at 0, 0.001, 0.01, 0.1, 1, and 10 mM. We evaluated at 1, 2 and 8 h (1) cell viability (by means of trypan blue exclusion method), (2) intracellular ROS levels (with a fluorescent DCFH-DA probe), and (3) TNF-α level in the culture media (determined by enzyme-linked immunosorbent assay, ELISA). Subsequently, mouse RAW267.4 macrophages were treated with PQ in combination with SAHA and/or H2 for 8 h. PQ exerted a significant stimulatory but nontoxic effect on RAW267.4 macrophages at 0.1 mM. This PQ concentration was used in the subsequent experiments. H2 and H2 combined with SAHA evoked a greater reduction in PQ-induced ROS production than SAHA alone, especially at 2 and 8 h. At 1 and 2 h, treatments involving H2 caused a greater decrease in PQ-induced production of TNF-α than the corresponding treatments without H2. However, at 8 h, treatment with SAHA evoked more pronounced effects on TNF-α than treatment without SAHA. H2 decreases PQ-induced ROS production and attenuates early PQ-induced TNF-α production whereas SAHA reduces the late phase of the PQ-induced TNF-α production in macrophages. The effects are enhanced by the combination of H2 and SAHA.

  7. Effect of dietary Satureja khuzistanica powder on semen characteristics and thiobarbituric acid reactive substances concentration in testicular tissue of Iranian native breeder rooster

    PubMed Central

    Heydari, M. J.; Mohammadzadeh, S.; Kheradmand, A.; Alirezaei, M.

    2015-01-01

    Because of a paucity of information on the effect of Satureja khuzistanica in male chickens, this study was undertaken to determine the influence of dietary S. khuzistanica powder (SKP) on seminal characteristics and testes thiobarbituric acid reactive substances (TBARS) content in Iranian native breeder rooster. Thirty-six 40-week-old roosters were randomly allotted to 3 equal groups and received either a basal diet without SKP (T1 or control), or a diet containing 20 g/kg (T2) and 40 g/kg (T3) of SKP for 8-week-long experimental period. Semen samples were obtained weekly by abdominal massage to evaluate the seminal characteristics. At the end of the eighth week 18 birds (6 birds per each group) were randomly slaughtered, and sample was taken from right testes for TBARS evaluation. Administration of SKP improved all semen traits, except for sperm concentration. Likewise, TBARS content in SKP treatments did not significantly differ from the control (P>0.05). Seminal volume, live sperm percentage and plasma membrane integrity percentage in SKP-treated groups were higher than the control. Conversely, abnormal sperm percentages reduced in SKP-treated groups (P<0.05). Plasma membrane integrity in experimental treatments was significantly higher than the control in 2nd, 3rd and 7th weeks. However, at 6th and 8th weeks only T3 treatment was significantly different from the control. Notably, there was an increase in total sperm concentration in SKP-treated groups in compared to the control birds. In conclusion, this study indicated that addition of SKP in rooster diet improves sperm quality and also reduces their sperm membrane lipid peroxidation, which may lead to higher fertilization rate. PMID:27175185

  8. Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats.

    PubMed

    Cirillo, Giovanni; Maggio, Nicola; Bianco, Maria Rosaria; Vollono, Cecilia; Sellitti, Stefania; Papa, Michele

    2010-01-01

    Reactive astrocytosis seems to be strongly implicated in the development and maintenance of inflammatory and neurodegenerative disorders. We design a new toxic model treatment with 3-nitropropionic acid (3-NP), a mitochondrial complex II irreversible inhibitor, to induce in rats Huntington's disease (HD) like syndrome, characterized by hindlimb dystonia, involuntary choreiform movements and reduced global activity. In an attempt to find out whether molecular and morphological changes in the neuro-glial network could be involved in the pathogenesis of this disease, we developed a protocol of subchronic intra-peritoneal 3-NP intoxication. Moreover we set up specific, highly discriminative, behavioral tests to detect very early mild motor disabilities in 3-NP treated rats. This treatment did not cause severe cell death. However, in the Caudate-Putamen (CPu) of all 3-NP treated animals we found a massive astrogliosis, revealed by increased GFAP levels, paralleled by changes of the glial glutamate transporter GLAST distribution. To these glial changes we detected a transcriptional upregulation of c-fos and Sub-P in the striatal medium spiny neurons (MSN). We propose that this model of 3-NP intoxication along with the designed set of behavioral analyses allow to unmask in a very early phase the motor deficits and the underlying morpho-molecular changes associated to the onset of motor disabilities in the HD-like syndrome. Therefore this model unveil the key role played by the different components of the tripartite synapse in the pathogenesis of the HD, a putative non-cell-autonomous disease.

  9. Apple flavonols and n-3 polyunsaturated fatty acid-rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation.

    PubMed

    Sekhon-Loodu, Satvir; Catalli, Adriana; Kulka, Marianna; Wang, Yanwen; Shahidi, Fereidoon; Rupasinghe, H P Vasantha

    2014-06-01

    Both quercetin glycosides and omega-3 polyunsaturated fatty acids (n-3 PUFA) are well established for their individual health benefits in ameliorating metabolic disease. However, their combined effects are not well documented. It was hypothesized that the beneficial properties of quercetin glycosides can be enhanced when provided in combination with n-3 PUFA. Therefore, the aim of the present study was to investigate the effects of apple flavonols (AF) and fish oil (FO), alone and in combination, on proinflammatory biomarkers and lipid profiles in rats fed a high-fat diet. Sixty male Wistar rats were randomly divided into 5 groups (n = 12) and fed a high-fat diet for 4 weeks. One of the 5 groups of rats was used as the high-fat control. The other 4 groups of rats were injected with lipopolysaccharide (LPS) (5 mg/kg body weight) intraperitoneally, 5 hours before euthanization. One of these 4 groups was used as the hypercholerolemic and inflammatory control (high-fat with lipopolysaccharide [HFL]), and the other 3 received AF (HFL + 25 mg/kg per day AF), FO (HFL + 1 g/kg per day FO), or the combination (HFL + AF + FO). Compared to the HFL group, the AF, FO, and AF + FO groups showed lower serum concentrations of interleukin-6 and C-reactive protein (CRP) levels. The AF, FO, and AF + FO also had lowered serum triacylglycerol and non-high-density lipoprotein cholesterol (HDL-C) concentrations, but higher HDL-C levels relative to the HFL group. An additive effect was observed on serum CRP in the AF + FO group as compared with the AF or FO groups. The results demonstrated that AF and FO inhibited the production of proinflammatory mediators and showed an improved efficacy to lower serum CRP when administered in combination, and they significantly improved blood lipid profiles in rats with diet-induced hyperlipidemia and LPS-induced acute inflammation.

  10. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  11. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidi none to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  12. A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials.

    PubMed

    Stankevich, Ksenia S; Danilenko, Nadezhda V; Gadirov, Ruslan M; Goreninskii, Semen I; Tverdokhlebov, Sergei I; Filimonov, Victor D

    2017-02-01

    A new approach for the immobilization of poly(acrylic) acid (PAA) as a chemically reactive cross-linker on the surface of poly(lactic) acid-based (PLA) biomaterials is described. The proposed technique includes non-covalent attachment of a PAA layer to the surface of PLA-based biomaterial via biomaterial surface treatment with solvent/non-solvent mixture followed by the entrapment of PAA from its solution. Surface morphology and wettability of the obtained PLA-PAA composite materials were investigated by AFM and the sitting drop method respectively. The amount of the carboxyl groups on the composites surface was determined by using the fluorescent compounds (2-(5-aminobenzo[d]oxazol-2-yl)phenol (ABO) and its acyl derivative N-(2-(2-hydroxyphenyl)benzo[d]oxazol-5-yl)acetamide (AcABO)). It was shown that it is possible to obtain PLA-PAA composites with various surface relief and tunable wettability (57°, 62° and 66°). The capacity of the created PAA layer could be varied from 1.5nmol/cm(2) to 0.1μmol/cm(2) depending on the modification conditions. Additionally, using bovine serum albumin (BSA) it was demonstrated that such composites could be modified with proteins with high binding density (around 0.18nmol/cm(2)). Obtained fluoro-labeled PLA-PAA materials, as well as PLA-PAA composites themselves, are valuable since they can be used for biodegradable polymer implants tracking in living systems and as drug delivery systems.

  13. Reactive sintering and reactive hot

    NASA Astrophysics Data System (ADS)

    Murray, J. C.; German, R. M.

    1992-09-01

    NbAl3 has been synthesized from elemental powders by reactive sintering (RS) and reactive hot isostatic pressing (RHIP). Both processes involve a self-propagating exothermic reaction between the constituent powders to form an intermetallic compound. The RHIP approach uses simultaneous external pressurization to make a higher density product. This study focused on developing a method to use reactive synthesis to form high-density NbAl3 compacts. High RS and RHIP densities were possible with the appropriate raw materials and processing parameters. These include powder purity, particle sizes, degassing, heating rate, furnace temperature, and compaction pressures. Near full density was attained with RHIP, and up to 95 pct density was attained with RS.

  14. Reactivity of chemical sensitizers toward amino acids in cellulo plays a role in the activation of the Nrf2-ARE pathway in human monocyte dendritic cells and the THP-1 cell line.

    PubMed

    Migdal, Camille; Botton, Jérémie; El Ali, Zeina; Azoury, Marie-Eliane; Guldemann, Joan; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre; Kerdine-Römer, Saadia; Pallardy, Marc

    2013-06-01

    Allergic contact dermatitis resulting from skin sensitization is an inflammatory skin disease linked to the use of chemicals termed haptens. Chemical reactivity is necessary for a chemical to be a sensitizer, allowing both covalent binding to proteins and maturation of dendritic cells (DCs) by mimicking "danger signals." The aim of this study was to evaluate how the reactivity of chemical sensitizers toward amino acids translates into a biological response using the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway, which was assessed by the induction of three Nrf2 target genes (ho-1, nqo1, and il-8) and Nrf2 protein accumulation. Nrf2 activation is known to play a role in numerous detoxification mechanisms that could regulate danger signal outcomes in myeloid cells. Monocyte-derived DCs and THP-1 cells were exposed to (a) haptens with cysteine, lysine, or cysteine/lysine reactivity, (b) pro-/prehaptens, and (c) nonsensitizing molecules with reducing or oxidative properties (17 molecules in total). Chemicals were classified as "Nrf2 pathway activators" when at least two Nrf2 target genes associated with Nrf2 protein expression were induced. Results showed that most chemical sensitizers having cysteine and cysteine/lysine affinities were inducers of the Nrf2 pathway in both cell models, whereas lysine-reactive chemicals were less efficient. In THP-1 cells, the Nrf2 pathway was also activated by pro-/prehaptens. Regression analysis revealed that ho-1 and nqo1 expressions were found to be associated with chemical sensitizer reactivity to cysteine, providing evidence of the importance of chemical reactivity, as a part of danger signals, in DC biology.

  15. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.

    PubMed

    Shi, Zhimin; Feng, Yixing; Wang, Jianshe; Zhang, Hongxia; Ding, Lina; Dai, Jiayin

    2010-04-01

    Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Leydig cells. The effects of PFDoA on steroid synthesis in Leydig cells were assessed by radioimmunoassay. The expression of key genes and proteins in steroid biosynthesis was determined by real-time PCR and Western blot analysis. Reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) levels were determined using bioluminescence assays. PFDoA inhibited adenosine 3',5'-cyclophosphate (cAMP)-stimulated steroidogenesis in mouse Leydig tumor cells (mLTC-1) and primary rat Leydig cells in a dose-dependent manner. However, PFDoA (1-100 microM) did not exhibit effects on cell viability and cellular ATP levels in mLTC-1 cells. PFDoA inhibited steroidogenic acute regulatory protein (StAR) promoter activity and StAR expression at the messenger RNA (mRNA) and protein levels but did not affect mRNA levels of peripheral-type benzodiazepine receptor, cholesterol side-chain cleavage enzyme, or 3beta-hydroxysteroid dehydrogenase in cAMP-stimulated mLTC-1 cells. PFDoA treatment also resulted in increased levels of mitochondrial ROS and H(2)O(2). After excessive ROS and H(2)O(2) were eliminated in PFDoA-treated mLTC-1 cells by MnTMPyP (a superoxide dismutase analog), progesterone production was partially restored and StAR mRNA and protein levels were partially recovered. These data show that PFDoA inhibits steroidogenesis in cAMP-stimulated Leydig cells by reducing the expression of StAR through a model of action involving oxidative stress.

  16. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  17. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α: A Meta-Analysis

    PubMed Central

    Li, Kelei; Huang, Tao; Zheng, Jusheng; Wu, Kejian; Li, Duo

    2014-01-01

    Background Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Methods and Findings A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m2. The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Conclusions Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended. PMID:24505395

  18. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  19. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  20. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background:N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers.Objective:We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acid...

  1. Disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical as a model of reactive oxygen species catalysed by Lewis and/or Brønsted acids.

    PubMed

    Nakanishi, Ikuo; Kawashima, Tomonori; Ohkubo, Kei; Waki, Tsukasa; Uto, Yoshihiro; Kamada, Tadashi; Ozawa, Toshihiko; Matsumoto, Ken-Ichiro; Fukuzumi, Shunichi

    2014-01-25

    Electron-transfer disproportionation of a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) occurred in the presence of Sc(3+) acting as a strong Lewis acid in deaerated acetonitrile. In contrast, in the case of weaker Lewis acids than Sc(3+), such as Mg(2+) and Li(+), external protons from acetic acid were required for the disproportionation of DPPH˙ to occur.

  2. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    PubMed

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  3. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.

    PubMed

    Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M

    2015-10-30

    The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used.

  4. Comparison of Reactive Inkjet Printing and Reactive Sintering to Fabricate Metal Conductive Patterns

    NASA Astrophysics Data System (ADS)

    Kheawhom, Soorathep; Foithong, Kamolrat

    2013-05-01

    Two methods to fabricate metal conductive patterns including reactive inkjet printing and reactive sintering were investigated. The silver printed lines were prepared from reactive inkjet printing of silver nitrate and L-ascorbic acid. Alternatively, the silver lines were prepared by the reactive sintering process of ethylene glycol vapor at 250 °C and formic acid vapor at 150 °C. In reactive printing, we investigated the effect of the number of printing cycles and the effect of silver nitrate concentration on the properties of the conductive patterns obtained. In reactive sintering, we investigated the usage of formic acid and ethylene glycol as reducing agents. The effect of reactive sintering time on the properties of the conductive patterns obtained was studied. As compared to reactive inkjet printing, the reactive sintering process gives more smooth and contiguous pattern resulting in lower resistivity. The resistivity of the silver line obtained by ethylene glycol vapor reduction at 250 °C for 30 min was 12 µΩ cm, which is about eight times higher than that of bulk silver. In contrast, the copper lines were fabricated by reactive inkjet printing and reactive sintering using various conditions of formic acid, ethylene glycol and hydrogen atmosphere, the copper lines printed have no conductivity due to the formation of copper oxide.

  5. Effect of synbiotic supplementation and dietary fat sources on broiler performance, serum lipids, muscle fatty acid profile and meat quality.

    PubMed

    Ghasemi, H A; Shivazad, M; Mirzapour Rezaei, S S; Karimi Torshizi, M A

    2016-01-01

    A 42-d trial was conducted to investigate the effect of adding a synbiotic supplement to diets containing two different types of fat on performance, blood lipids and fatty acid (FA) composition and oxidative stability of breast and thigh meat in broilers. A total of 800 one-d-old male broiler chickens were randomly assigned into 1 of 8 treatments with 4 replicates of 25 birds per treatment. The experiment consisted of a 4 × 2 factorial arrangement of treatments including 4 concentrations of synbiotic (0, 0.5, 1 or 1.5 g/kg diet) and 2 types of fat [sunflower oil (SO) or canola oil (CO)] at an inclusion rate of 50 g/kg diet. Dietary fat type did not affect body weight gain (BWG) or feed conversion ratio (FCR) during the overall experimental period (0-42 d). However, fat type modified serum lipid profile and FA composition and 2-thiobarbituric acid-reactive substances (TBARS) content in breast and thigh meat. The addition of synbiotic to the diet linearly improved overall BWG and FCR and also decreased serum cholesterol and low-density lipoprotein cholesterol concentrations. The TBARS value in thigh meat after 30 d of storage at 4°C was linearly decreased as the synbiotic inclusion concentrations in the diets increased. Dietary synbiotic also decreased the proportion of monounsaturated fatty acids and increased n-6 polyunsaturated fatty acid (PUFA) concentration in thigh meat, whereas the FA profile of breast meat was not affected by synbiotic supplementation. Moreover, the PUFA/SFA ratio in the breast meat was linearly increased when synbiotic was included in the CO-containing diets. In conclusion, the addition of synbiotic to broiler diets had a positive effect on growth performance, blood lipid profile and meat quality. The results also support the use of synbiotic to increase the capacity of canola oil for enhancing PUFA/SFA ratio of breast meat in broilers.

  6. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.

    PubMed

    Mak, Mark S H; Lo, Irene M C; Liu, Tongzhou

    2011-12-01

    A column study was conducted using a combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) for removing Cr(VI) and As(V) from groundwater. The removal efficiency and mechanism of Cr(VI) and As(V), the effects of humic acid (HA), and the various configurations of Fe(0) and IOCS were investigated. The results showed that the use of an Fe(0) and IOCS mixture in a completely mixed configuration can achieve the highest removal of both Cr(VI) and As(V), whilst the effects of HA were marginal in using these reactive materials. The solid phase analysis revealed the occurrence of the synergistic effect in these reactive materials as Fe(2+) can be adsorbed onto the IOCS and transform the iron oxides to magnetite, providing more reactive surface area for Cr(VI) reduction and reducing the passivation on the Fe(0). As(V) can then be removed by adsorption onto these iron corrosion products. HA can be adsorbed onto the IOCS so that the impacts of the deposition of HA aggregates on the Fe(0) surface can be reduced, thus enhancing the Fe(0) corrosion.

  7. Fat accumulation, fatty acids and melting point changes in broiler chick abdominal fat as affected by time of dietary fat feeding and slaughter age.

    PubMed

    Carmona, J M; Lopez-Bote, C J; Daza, A; Rey, A I

    2017-03-23

    1. This work aims to quantify changes in fatty acid profile, melting point, abdominal fat accumulation and 2-thiobarbituric acid-reactive substances production depending on dietary fat source and age at slaughter, and to estimate the optimal date for the change from an unsaturated fat to a saturated fat diet or vice versa. 2. Treatments established were (1) birds fed 8% tallow from 21 to 49 d (TTT); (2) birds fed 8% tallow from 21 to 37 d and 8% sunflower oil from d 38 to 49 (TSS); (3) birds fed 8% sunflower oil from 21 to 37 d and 8% tallow from d 38 to 49 (STT); (4) birds fed 8% sunflower oil from 21 to 41 d and 8% tallow from d 42 to 49 (SST); (5) birds fed 8% sunflower oil from 21 to 49 d (SSS). Birds from each group were slaughtered on d 21, 29, 38, 40, 42, 44, 46 and 49. 3. The polyunsaturated fatty acids (PUFAs) proportion in the SSS group reached maximum values at d 40 and fitted a quadratic response. This group also showed a decrease in saturated fatty acids (SATs) and monounsaturated fatty acids (MUFAs) of lower intensity than the PUFA increase. The highest synthesis of SAT + MUFA was found in the SSS and TSS groups, whereas these had the lowest body-to-dietary PUFA ratio. 4. A high and quadratic increase in the MUFA proportion was observed during the first 10 d of feeding with the tallow-enriched diet at the expenses of the proportion of PUFA that quadratically decreased (minimum values at d 38). 5. Lipogenic and desaturation capacity decreased with age. 6. The TSS group increased tissue PUFA content faster that the SST group decreased PUFA content after the change in diet which indicates that the earlier feeding has to be taken into consideration for obtaining higher or lower changes in quality parameters. 7. The melting point of the SSS group showed a lower response to the dietary treatment in the initial period when compared to the TTT treatment. 8. The TTT, STT, SST and TSS groups showed similar fat accumulation, and changes in lipid

  8. Reactivity and selectivity patterns in hydrogen atom transfer from amino acid C-H bonds to the cumyloxyl radical: polar effects as a rationale for the preferential reaction at proline residues.

    PubMed

    Salamone, Michela; Basili, Federica; Bietti, Massimo

    2015-04-03

    Absolute rate constants for hydrogen atom transfer (HAT) from the C-H bonds of N-Boc-protected amino acids to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. With glycine, alanine, valine, norvaline, and tert-leucine, HAT occurs from the α-C-H bonds, and the stability of the α-carbon radical product plays a negligible role. With leucine, HAT from the α- and γ-C-H bonds was observed. The higher kH value measured for proline was explained in terms of polar effects, with HAT that predominantly occurs from the δ-C-H bonds, providing a rationale for the previous observation that proline residues represent favored HAT sites in the reactions of peptides and proteins with (•)OH. Preferential HAT from proline was also observed in the reactions of CumO(•) with the dipeptides N-BocProGlyOH and N-BocGlyGlyOH. The rate constants measured for CumO(•) were compared with the relative rates obtained previously for the corresponding reactions of different hydrogen-abstracting species. The behavior of CumO(•) falls between those observed for the highly reactive radicals Cl(•) and (•)OH and the significantly more stable Br(•). Taken together, these results provide a general framework for the description of the factors that govern reactivity and selectivity patterns in HAT reactions from amino acid C-H bonds.

  9. Phytate, reactive oxygen species and colorectal cancer.

    PubMed

    Owen, R W; Spiegelhalder, B; Bartsch, H

    1998-05-01

    Reproducible high-performance liquid chromatography methods have been developed and validated which allow an accurate quantification of phytic acid in faeces and food and reactive oxygen species in an in vitro model system and in faecal specimens. When applied to the evaluation of reactive oxygen species generation by faeces, this method has shown that 1:100 dilutions of matrix obtained from stool samples of adenoma patients are capable of generating significant quantities of reactive oxygen species as evinced by the production of diphenols from salicylic acid. Moreover, it has been shown that the major product of HO. attack on salicylic acid is 2,5-dihydroxy benzoic acid and not 2, 3-dihydroxy benzoic acid as previously reported. In the presence of the antioxidant ascorbic acid the inhibitory capacity of phytic acid on the generation of reactive oxygen species is completely subverted. Therefore, the kinetics of reactive oxygen species production by faeces is currently under further investigation by high-performance liquid chromatography and chemiluminescence in various patient groups and may give an insight into the role of reactive oxygen species in the aetiology of colorectal cancer.

  10. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  11. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  12. Investigation on the reactivity of α-azidochalcones with carboxylic acids: Formation of α-amido-1,3-diketones and highly substituted 2-(trifluoromethyl)oxazoles

    PubMed Central

    Rajaguru, Kandasamy; Mariappan, Arumugam; Suresh, Rajendran; Manivannan, Periasamy

    2015-01-01

    Summary The reaction of α-azidochalcones with carboxylic acids has been investigated resulting in the formation of α-amido-1,3-diketones under microwave irradiation via in situ formation of 2H-azirine intermediates. An interesting reaction is described wherein, with trifluoroacetic acid at lower temperature, it affords highly substituted 2-(trifluoromethyl)oxazoles. These flexible transformations proceed under solvent free conditions in good to excellent yields without any catalyst. PMID:26664623

  13. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  14. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  15. The carcinogen 1-methylpyrene forms benzylic DNA adducts in mouse and rat tissues in vivo via a reactive sulphuric acid ester.

    PubMed

    Bendadani, Carolin; Meinl, Walter; Monien, Bernhard H; Dobbernack, Gisela; Glatt, Hansruedi

    2014-03-01

    The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analysed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo.

  16. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  17. Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials

    NASA Astrophysics Data System (ADS)

    Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

    2012-12-01

    Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The

  18. The acid-base and redox reactivity of CeO2 nanoparticles: Influence of the Hubbard U term in DFT + U studies

    NASA Astrophysics Data System (ADS)

    Boronat, Mercedes; López-Ausens, Tirso; Corma, Avelino

    2016-06-01

    The interaction of small molecules with acid-base and redox centers in small Ce21O42 nanoparticles has been theoretically investigated using the DFT + U approach with the PW91 functional and U = 0.2 and 4 eV, in order to determine the influence of the U value on the trends observed in selected properties describing such interactions. CO adsorption at low coordinated Ce4 + Lewis acid centers, water adsorption and dissociation at acid-base pairs, formation of oxygen vacancy defects by removal of an oxygen atom from the system, and interaction of molecular O2 with such defects have been considered. The largest effect of the value of U is found for the description of the reduced Ce21O41 nanoparticle. In all other cases involving stoichiometric and oxidized Ce21O42 and Ce21O43 systems, the trends in the calculated adsorption and reaction energies, optimized geometries, charge distribution, and vibrational frequencies are quite similar at the three levels considered.

  19. Suppression of lithium chloride-induced conditioned gaping (a model of nausea-induced behaviour) in rats (using the taste reactivity test) with metoclopramide is enhanced by cannabidiolic acid.

    PubMed

    Rock, E M; Parker, L A

    2013-10-01

    We aimed to determine the potential of various doses of metoclopramide (MCP, a dopamine antagonist) to reduce lithium chloride (LiCl)-induced conditioned gaping (a nausea-induced behaviour) in rats, using the taste reactivity test. We then evaluated whether an ineffective low dose of cannabidiolic acid (CBDA, 0.1 μg/kg, Rock and Parker, 2013), the potent acidic precursor of cannabidiol (CBD, a non-psychoactive component of cannabis) could enhance the anti-nausea effects of an ineffective low dose of MCP. MCP (3.0 mg/kg) reduced conditioned gaping responses. Coadministration of ineffective doses of MCP (0.3 mg/kg) and CBDA (0.1 μg/kg) enhanced the suppression of conditioned gaping, over that of either drug alone, without interfering with conditioned taste avoidance. MCP dose-dependently reduced nausea-induced conditioned gaping in rats. As well, the suppression of conditioned gaping was enhanced when ineffective doses of MCP and CBDA were coadministered. These data suggest that CBDA could be a powerful adjunct treatment to anti-emetic regimens for chemotherapy-induced nausea.

  20. Specific Inhibition of Acyl-CoA Oxidase-1 by an Acetylenic Acid Improves Hepatic Lipid and Reactive Oxygen Species (ROS) Metabolism in Rats Fed a High Fat Diet.

    PubMed

    Zeng, Jia; Deng, Senwen; Wang, Yiping; Li, Ping; Tang, Lian; Pang, Yefeng

    2017-03-03

    A chronic high fat diet results in hepatic mitochondrial dysfunction and induction of peroxisomal fatty acid oxidation (FAO); whether specific inhibition of peroxisomal FAO benefits mitochondrial FAO and reactive oxygen species (ROS) metabolism remains unclear. In this study a specific inhibitor for the rate-limiting enzyme involved in peroxisomal FAO, acyl-CoA oxidase-1 (ACOX1) was developed and used for the investigation of peroxisomal FAO inhibition upon mitochondrial FAO and ROS metabolism. Specific inhibition of ACOX1 by 10,12-tricosadiynoic acid increased hepatic mitochondrial FAO via activation of the SIRT1-AMPK (adenosine 5'-monophosphate-activated protein kinase) pathway and proliferator activator receptor α and reduced hydrogen peroxide accumulation in high fat diet-fed rats, which significantly decreased hepatic lipid and ROS contents, reduced body weight gain, and decreased serum triglyceride and insulin levels. Inhibition of ACOX1 is a novel and effective approach for the treatment of high fat diet- or obesity-induced metabolic diseases by improving mitochondrial lipid and ROS metabolism.

  1. Resistance to neutralization by broadly reactive antibodies to the human immunodeficiency virus type 1 gp120 glycoprotein conferred by a gp41 amino acid change.

    PubMed Central

    Thali, M; Charles, M; Furman, C; Cavacini, L; Posner, M; Robinson, J; Sodroski, J

    1994-01-01

    A neutralization-resistant variant of human immunodeficiency virus type 1 (HIV-1) that emerged during in vitro propagation of the virus in the presence of neutralizing serum from an infected individual has been described. A threonine-for-alanine substitution at position 582 in the gp41 transmembrane envelope glycoprotein of the variant virus was responsible for the neutralization-resistant phenotype (M.S. Reitz, Jr., C. Wilson, C. Naugle, R. C. Gallo, and M. Robert-Guroff, Cell 54:57-63, 1988). The mutant virus also exhibited reduced sensitivity to neutralization by 30% of HIV-1-positive sera that neutralized the parental virus, suggesting that a significant fraction of the neutralizing activity within these sera can be affected by the amino acid change in gp41 (C. Wilson, M. S. Reitz, Jr., K. Aldrich, P. J. Klasse, J. Blomberg, R. C. Gallo, and M. Robert-Guroff, J. Virol. 64:3240-3248, 1990). It is shown here that the change of alanine 582 to threonine specifically confers resistance to neutralizing by antibodies directed against both groups of discontinuous, conserved epitopes related to the CD4 binding site on the gp120 exterior envelope glycoprotein. Only minor differences in binding of these antibodies to wild-type and mutant envelope glycoproteins were observed. Thus, the antigenic structure of gp120 can be subtly affected by an amino acid change in gp41, with important consequences for sensitivity to neutralization. Images PMID:7507184

  2. Cytotoxic effect of p-Coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy.

    PubMed

    Shailasree, S; Venkataramana, M; Niranjana, S R; Prakash, H S

    2015-02-01

    p-Coumaric acid (p-CA), an ubiquitous plant phenolic acid, has been proven to render protection against pathological conditions. In the present study, p-CA was evaluated for its capacity to induce cytotoxic effect to neuroblastoma N2a cells and we report here the possible mechanism of its action. p-CA at a concentration of 150 μmol/L, upon exposure for 72 h, stimulated 81.23 % of cells to apoptosis, as evidenced by flow cytometer studies mediated through elevated levels of ROS (7.5-fold over control). Excess ROS production activated structural injury to mitochondrial membrane, observed as dissipation of its membrane potential and followed by the release of cytochrome c (8.73-fold). Enhanced generation of intracellular ROS correlated well with the decreased levels (~60 %) of intracellular GSH. Sensitizing neuroblastoma cells for induction of apoptosis by p-CA identified p53-mediated upregulated accumulation of caspase-8 messenger RNA (2.8-fold). Our data report on autophagy, representing an additional mechanism of p-CA to induce growth arrest, detected by immunoblotting and fluorescence, correlated with accumulation of elevated levels (1.2-fold) of the LC3-II protein and acridine orange-stained autophagosomes, both autophagy markers. The present study indicates p-CA was effective in production of ROS-dependent mitochondrial damage-induced cytotoxicity in N2a cells.

  3. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    SciTech Connect

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping; and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  4. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  5. Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones.

    PubMed

    Kim, Kyung-Hee; Akiyama, Takahiko; Cheon, Cheol-Hong

    2016-01-01

    Described herein are differences in behavior between a Hantzsch ester and a benzothiazoline as hydrogen donors in the chiral phosphoric acid catalyzed asymmetric reductive amination of ketones with p-anisidine. The asymmetric reductive amination of ketones with a Hantzsch ester as a hydrogen donor provided the corresponding chiral amines exclusively, regardless of the structures of the ketones, whereas a similar transformation with a benzothiazoline provided chiral amines and p-methoxyphenyl-protected primary amines in variable yields, depending on the structures of both the ketones and benzothiazolines. Because a benzothiazoline has an N,S-acetal moiety that is vulnerable to p-anisidine, the primary amine can be formed through transimination of the benzothiazoline with p-anisidine followed by reduction of the resulting aldimine with remaining benzothiazoline.

  6. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    SciTech Connect

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  7. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.

    PubMed

    Gibert, Oriol; de Pablo, Joan; Cortina, José Luis; Ayora, Carlos

    2005-08-01

    The efficiency of the sulphate reducing bacteria-based in situ treatment of acid mine drainage is often limited by the low degradability of the current carbon sources, typically complex plant-derived materials. In such non-sulphate-reducing conditions, field and laboratory experiences have shown that mechanisms other than sulphide precipitation should be considered in the metal removal, i.e. metal (oxy)hydroxides precipitation, co-precipitation with these precipitates, and sorption onto the organic matter. The focus of the present paper was to present some laboratory data highlighting the Zn and Cu sorption on vegetal compost and to develop a general and simple model for the prediction of their distribution in organic-based passive remediation systems. The model considers two kinds of sorption sites ( succeeds SO(2)H(2)) and the existence of monodentate and bidentate metal-binding reactions, and it assumes that only free M(2+) species can sorb onto the compost surface. The acid-base properties of the compost were studied by means of potentiometric titrations in order to identify the nature of the involved surface functional groups and their density. The distribution coefficient (K(D)) for both Zn and Cu were determined from batch experiments as a function of pH and metal concentration. The model yielded the predominant surface complexes at the experimental conditions, being succeeds SO(2)Zn for Zn and succeeds SO(2)HCu(+) and ( succeeds SO(2)H)(2)Cu for Cu, with log K(M) values of -2.10, 3.36 and 4.65, respectively. The results presented in this study have demonstrated that the proposed model provides a good description of the sorption process of Zn and Cu onto the vegetal compost used in these experiments.

  8. Reactivity and acid-base behavior of ring-methoxylated arylalkanoic acid radical cations and radical zwitterions in aqueous solution. Influence of structural effects and pH on the benzylic C-H deprotonation pathway.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2006-07-07

    A product and time-resolved kinetic study of the one-electron oxidation of ring-methoxylated phenylpropanoic and phenylbutanoic acids (Ar(CH2)nCO2H, n = 2, 3) has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations (Ar.+(CH2)nCO2H) or radical zwitterions (Ar.+(CH2)nCO2-) depending on pH, and pKa values for the corresponding acid-base equilibria have been measured. In the radical cation, the acidity of the carboxylic proton decreases by increasing the number of methoxy ring substituents and by increasing the distance between the carboxylic group and the aromatic ring. At pH 1.7 or 6.7, the radical cations or radical zwitterions undergo benzylic C-H deprotonation as the exclusive side-chain fragmentation pathway, as clearly shown by product analysis results. At pH 1.7, the first-order deprotonation rate constants measured for the ring-methoxylated arylalkanoic acid radical cations are similar to those measured previously in acidic aqueous solution for the alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations. In basic solution, the second-order rate constants for reaction of the radical zwitterions with (-)OH (k-OH)) have been obtained. These values are similar to those obtained previously for the (-)OH-induced alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations, indicating that under these conditions the radical zwitterions undergo benzylic C-H deprotonation. Very interestingly, with 3,4-dimethoxyphenylethanoic acid radical zwitterion, that was previously observed to undergo exclusive decarboxylation up to pH 10, competition between decarboxylation and benzylic C-H deprotonation is observed above pH 11.

  9. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  10. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  11. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  12. Electronic structures of bare and terephthalic acid adsorbed TiO2(110)-(1 × 2) reconstructed surfaces: origin and reactivity of the band gap states.

    PubMed

    Zhang, Wenhua; Liu, Liming; Wan, Li; Liu, Lingyun; Cao, Liang; Xu, Faqiang; Zhao, Jin; Wu, Ziyu

    2015-08-21

    Combined core level spectroscopy, valence spectroscopy and density functional theory studies have probed the terephthalic acid (TPA) adsorption behavior and the electronic structure of the rutile TiO2(110)-(1 × 2) reconstructed surface at room temperature. The TiO2(110)-(1 × 2) reconstructed surface exhibits an electron rich nature owing to the unsaturated coordination of the surface terminated Ti2O3 rows. Deprotonation of TPA molecules upon adsorption produces both surface bridging hydroxyl (ObH) and bidentate terephthalate species with a saturation coverage of nearly 0.5 monolayers (ML). In contrast to the TiO2(110)-(1 × 1) surface, the band gap states (BGSs) on the bare (1 × 2) surface exhibit an asymmetric spectral feature, which is originated from integrated contributions of the Ti2O3 termination and the defects in the near-surface region. The Ti2O3 originated BGSs are found to be highly sensitive to the TPA adsorption, a phenomenon well reproduced by the density functional theory (DFT) calculations. Theoretical simulations of the adsorption process also suggest that the redistribution of the electronic density on the (1 × 2) reconstructed surface accompanying the hydroxyl formation promotes the disappearance of the Ti2O3-row derived BGS.

  13. Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine

    PubMed Central

    Yang, Jihyun; Shim, Sang-Mu; Nguyen, Thi Quyen; Kim, Eun-Ha; Kim, Kwang; Lim, Yong Taik; Sung, Moon-Hee; Webby, Richard; Poo, Haryoung

    2017-01-01

    In 2009, the global outbreak of an influenza pandemic emphasized the need for an effective vaccine adjuvant. In this study, we examined the efficacy of poly-γ-glutamic acid/chitosan (PC) nanogel as an adjuvant for the influenza vaccine. PC nanogel significantly enhanced antigen-specific cross-presentation and cytotoxic T lymphocyte (CTL) activity. Compared with alum, the protective efficacy of the pandemic H1N1 influenza (pH1N1) vaccine was substantially increased by PC nanogel, with increased hemagglutination-inhibition titers, CTL activity, and earlier virus clearance after homologous and heterosubtypic [A/Philippines/2/82 (H3N2)] virus challenges. However, CD8+ T cell-depleted mice displayed no protection against the heterosubtypic virus challenge after immunization with PC nanogel-adjuvanted pH1N1 vaccine. We also observed that using PC nanogel as a vaccine adjuvant had a dose-sparing effect and significantly enhanced the long-lasting protection of the pH1N1 vaccine. Together, these results suggest that PC nanogel is a promising vaccine adjuvant that could broadly prevent influenza virus infection. PMID:28322289

  14. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L2Cu(II)2(O2(2-)) Species to Form L2Cu(III)2(O)2 Cores with Enhanced Oxidative Reactivity.

    PubMed

    Garcia-Bosch, Isaac; Cowley, Ryan E; Díaz, Daniel E; Peterson, Ryan L; Solomon, Edward I; Karlin, Kenneth D

    2017-03-01

    Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O2-dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L2Cu(II)2(O2(2-)) either side-on peroxo, (S)P, or end-on trans-peroxo, (T)P) and dicopper(III)-bis(μ-oxo) (L2Cu(III)2(O(2-))2: O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual (S)P species [(MeAN)2Cu(II)2(O2(2-))](2+) ((S)P(MeAN), MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that (S)P(MeAN) can be activated to generate O(MeAN) and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound O(MeAN)-RPhO(-) species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (O(MeAN)-LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the (S)P(MeAN) core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes such as

  15. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III).

    PubMed

    Zhou, Lei; Zhang, Ya; Wang, Qi; Ferronato, Corinne; Yang, Xi; Chovelon, Jean-Marc

    2016-10-01

    The photochemical activities of three kinds of carbon nanotubes (CNTs) were investigated in the present study. Efficient procedures of dispersing the three kinds of carbon nanotubes in water were established, and the quantitative analysis methods were also developed by TOC-absorbance method. High pH value or low ionic strength of the colloidal solutions facilitated the dispersion of CNTs. The suspensions of three kinds of CNTs could generate singlet oxygen ((1)O2) and hydroxyl radical (•OH) under irradiation of simulated sunlight, while superoxide radical (O2 (•-)) was not detected. The steady-state concentrations of (1)O2 and •OH generated by these CNTs were also determined. The presence of CNTs in natural waters can affect the photochemical behavior of water constituents, such as nitrate, dissolved organic matter, and Fe(3+). Specifically, in nitrate solution, the presence of CNTs could inhibit the generation of •OH by nitrate through light screening effect, while the quenching effect of hydroxyl radicals by CNTs was not observed. Besides light screening effect, the three kinds of CNTs used in the experiments also have a strong inhibiting effect on the ability of DOM to produce •OH by binding to the active sites. Moreover, the adsorption of Fe(3+) on MWCNT-OH and MWCNT-COOH could lead to its inactivation of formation of •OH in acidic conditions. However, the presence of the three kinds of CNTs did not affect the ligand-to-metal charge transfer (LMCT) reaction of DOM-Fe (III) complex.

  16. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production.

    PubMed

    Reyes-Ocampo, J; Ramírez-Ortega, D; Cervantes, G I Vázquez; Pineda, B; Balderas, Pavel Montes de Oca; González-Esquivel, D; Sánchez-Chapul, L; Lugo-Huitrón, R; Silva-Adaya, D; Ríos, C; Jiménez-Anguiano, A; Pérez-de la Cruz, V

    2015-09-01

    The kynurenines 3-hydroxyanthranilic acid (3-HANA) and its precursor 3-hydroxykynurenine (3-HK) are metabolites derived from tryptophan degradation. 3-HK, has been related to diverse neurodegenerative diseases including Huntington's, Alzheimer's and Parkinson's diseases that share mitochondrial metabolic dysregulation. Nevertheless, the direct effect of these kynurenines on mitochondrial function has not been investigated despite it could be regulated by their redox properties that are controversial. A body of literature has suggested a ROS mediated cell death induced by 3-HK and 3-HANA. On the other hand, some works have supported that both kynurenines have antioxidant effects. Therefore, the aim of this study was to investigate 3-HK and 3-HANA effects on mitochondrial and cellular function in rat cultured cortical astrocytes (rCCA) and in animals intrastriatally injected with these kynurenines as well as to determinate the ROS role on these effects. First, we evaluated 3-HK and 3-HANA effect on cellular function, ROS production and mitochondrial membrane potential in vivo and in vitro in rCCA. Our results show that both kynurenines decreased MTT reduction in a concentration-dependent manner together with mitochondrial membrane potential. These observations were accompanied with increased cell death in rCCA and in circling behavior and morphological changes of injected animals. Interestingly, we found that ROS production was not increased in both in vitro and in vivo experiments, and accordingly lipid peroxidation (LP) was neither increased in striatal tissue of animals injected with both kynurenines. The lack of effect on these oxidative markers is in agreement with the ·OH and ONOO(-) scavenging capacity of both kynurenines detected by chemical combinatorial assays. Altogether, these data indicate that both kynurenines exert toxic effects through mechanisms that include impairment of cellular energy metabolism which are not related to early ROS production.

  17. Complete amino acid sequence of heavy chain variable regions derived from two monoclonal anti-p-azophenylarsonate antibodies of BALB/c mice expressing the major cross-reactive idiotype of the A/J strain

    PubMed Central

    1984-01-01

    The primary structure of A/J anti-p-azophenylarsonate (anti-Ars) antibodies expressing the major A-strain cross-reactive idiotype (CRIA) has provided important insights into issues of antibody diversity and the molecular basis of idiotypy in this important model system. Until recently, this idiotype was thought to be rarely, if ever, expressed in BALB/c mice. Indeed, it has been reported that BALB/c mice lack the heavy chain variable segment (VH) gene that is utilized by the entire family of anti-Ars antibodies expressing the A/J CRI. Recently, however, it has been possible to elicit CRIA+, Ars binding antibodies in the BALB/c strain by immunizing first with anti-CRI and then with antigen. Such BALB/c, CRIA+ anti-Ars antibodies can be induced occasionally with antigen alone. VH region amino acid sequences are described for two CRIA+ hybridoma products derived from BALB/c mice. While remarkably similar to each other, their VH segments (1-98) differ from the VH segments of A/J CRIA+, anti-Ars antibodies in over 40 positions. Rather than the usual JH2 gene segment used by most A/J CRIA+ anti-Ars antibodies, one BALB/c CRIA+ hybridoma utilizes a JH1 gene segment, while the other uses a JH4. However, the D segments of both of the BALB/c antibodies are remarkably homologous to the D segments of several A/J CRIA+ antibodies sequenced previously, as are the amino terminal amino acid sequences of their light chains. These data imply that BALB/c mice express the A/J CRIA by producing antibodies with very similar, if not identical, light chain and heavy chain D segments, but in the context of different VH and JH gene segments than their A/J counterparts. The results document that molecules that share serologic specificities can have vastly different primary structures. PMID:6207261

  18. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics.

    PubMed

    Bhagan, Salome; Wayland, Bradford B

    2011-11-07

    Aqueous solutions of group nine metal(III) (M = Co, Rh, Ir) complexes of tetra(3,5-disulfonatomesityl)porphyrin [(TMPS)M(III)] form an equilibrium distribution of aquo and hydroxo complexes ([(TMPS)M(III)(D(2)O)(2-n)(OD)(n)]((7+n)-)). Evaluation of acid dissociation constants for coordinated water show that the extent of proton dissociation from water increases regularly on moving down the group from cobalt to iridium, which is consistent with the expected order of increasing metal-ligand bond strengths. Aqueous (D(2)O) solutions of [(TMPS)Ir(III)(D(2)O)(2)](7-) react with dihydrogen to form an iridium hydride complex ([(TMPS)Ir-D(D(2)O)](8-)) with an acid dissociation constant of 1.8(0.5) × 10(-12) (298 K), which is much smaller than the Rh-D derivative (4.3 (0.4) × 10(-8)), reflecting a stronger Ir-D bond. The iridium hydride complex adds with ethene and acetaldehyde to form organometallic derivatives [(TMPS)Ir-CH(2)CH(2)D(D(2)O)](8-) and [(TMPS)Ir-CH(OD)CH(3)(D(2)O)](8-). Only a six-coordinate carbonyl complex [(TMPS)Ir-D(CO)](8-) is observed for reaction of the Ir-D with CO (P(CO) = 0.2-2.0 atm), which contrasts with the (TMPS)Rh-D analog which reacts with CO to produce an equilibrium with a rhodium formyl complex ([(TMPS)Rh-CDO(D(2)O)](8-)). Reactivity studies and equilibrium thermodynamic measurements were used to discuss the relative M-X bond energetics (M = Rh, Ir; X = H, OH, and CH(2)-) and the thermodynamically favorable oxidative addition of water with the (TMPS)Ir(II) derivatives.

  19. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production.

    PubMed

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P

    2015-10-01

    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  20. An investigation into the antigenic cross-reactivity of Ophiophagus hannah (king cobra) venom neurotoxin, phospholipase A2, hemorrhagin and L-amino acid oxidase using enzyme-linked immunosorbent assay.

    PubMed

    Tan, N H; Lim, K K; Jaafar, M I

    1993-07-01

    The antigenic cross-reactivity of four Ophiophagus hannah (king cobra) venom components, the neurotoxin (OH-NTX), phospholipase A2 (OH-PLA2), hemorrhagin (OH-HMG) and L-amino acid oxidase (OH-LAAO) were examined by indirect and double sandwich ELISAs. The indirect ELISAs for OH-NTX, OH-PLA2 and OH-HMG were very specific when assayed against the various heterologous snake venoms and O. hannah venom components, at 25 ng/ml antigen level. At higher antigen concentrations (100-400 ng/ml), there were moderate to strong indirect ELISA cross-reactions between anti-O. hannah neurotoxin and venoms from various species of cobra as well as two short neurotoxins. However, anti-O. hannah hemorrhagin did not cross-react with any of the venoms tested, even at these high antigen concentrations, indicating that O. hannah hemorrhagin is antigenically very different from other venom hemorrhagins. Examination of the indirect ELISA cross-reactions between anti-O. hannah PLA2 and several elapid PLA2 enzymes suggests that the elapid PLA2 antigenic class has more than two subgroups. The antibodies to O. hannah L-amino acid oxidase, however, yielded indirect ELISA cross-reactions with many venoms as well as with OH-NTX, OH-PLA2 and OH-HMG, indicating that OH-LAAO shares common epitopes even with unrelated proteins. The double sandwich ELISAs for the four anti-O. hannah venom components, on the other hand, generally exhibited a higher degree of selectivity than the indirect ELISA procedure.

  1. Evaluating Anti-SmD1-amino-acid 83-119 Peptide Reactivity in Children with Systemic Lupus Erythematosus and Other Immunological Diseases

    PubMed Central

    Yang, Hai-Ou; Zhang, Xiao-Qing; Fu, Qi-Hua

    2016-01-01

    Background: SmD1-amino-acid 83-119 peptide (SmD183-119) is the major epitope of Smith (Sm) antigen, which is specific for adult systemic lupus erythematosus (SLE). The anti-SmD183-119 antibody has exhibited higher sensitivity and specificity than anti-Sm antibody in diagnosing adult SLE. However, the utility of anti-SmD183-119 antibodies remains unclear in children with SLE (cSLE). This study aimed to assess the characteristics of anti-SmD183-119 antibody in the diagnosis of cSLE. Methods: Samples from 242 children with different rheumatological and immunological disorders, including autoimmune diseases (SLE [n = 46] and ankylosing spondylitis [AS, n = 11]), nonautoimmune diseases (Henoch-Schonlein purpura [HSP, n = 60], idiopathic thrombocytopenia purpura [n = 27], hematuria [n = 59], and arthralgia [n = 39]) were collected from Shanghai Children's Medical Center from March 6, 2012 to February 27, 2014. Seventy age- and sex-matched patients were enrolled in this study as the negative controls. All the patients' sera were analyzed for the anti-SmD183-119, anti-Sm, anti-U1-nRNP, anti-double-stranded DNA (dsDNA), anti-nucleosome, anti-SSA/Ro60, anti-SSA/Ro52, anti-SSB, anti-Scl-70, and anti-histone antibodies using the immunoblotting assay. The differences in sensitivity and specificity between anti-SmD183-119 and anti-Sm antibodies were compared by Chi-square test. The correlations between anti-SmD183-119 and other auto-antibodies were analyzed using the Spearman's correlation analysis. A value of P < 0.05 was considered statistically significant. Results: Thirty-six out of 46 patients with cSLE were found to be positive for anti-SmD183-119, while 12 patients from the cSLE cohort were found to be positive for anti-Sm. Compared to cSLE, it has been shown that anti-SmD183-119 was only detected in 27.3% of patients with AS and 16.7% of patients with HSP. In comparison with anti-Sm, it has been demonstrated that anti-SmD183-119 had a higher sensitivity (78.3% vs. 26

  2. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    PubMed

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  3. HLA-DR-restricted T cell lines from newly diagnosed type 1 diabetic patients specific for insulinoma and normal islet beta cell proteins: lack of reactivity to glutamic acid decarboxylase.

    PubMed Central

    Huang, G C; Tremble, J; Bailyes, E; Arden, S D; Kaye, T; McGregor, A M; Banga, J P

    1995-01-01

    T cells reacting with pancreatic islet beta cell proteins play a pivotal role in the pathogenesis of type 1 diabetes in experimental animal models and man, although the islet cell autoantigens against which these T cells are directed remain to be characterized. We have previously shown the presence of disease-related antigens residing in the transplantable RIN insulinoma membranes which are recognized by T cells from diabetic NOD mice. We now report on the establishment of CD4+, T cell lines reacting with insulinoma membranes from six newly diagnosed type 1 diabetic patients. Detailed examination of T cell lines from two patients revealed that both the lines continued to react with normal islet cell proteins and, interestingly, were also stimulated by antigens present in brain microsomes. The two T cell lines showed reactivity with different molecular weight proteins of the insulinoma membranes and both the lines were histocompatibility-linked antigen (HLA)-DR restricted. Although the insulinoma membrane preparation is known to contain glutamic acid decarboxylase (GAD), none of the six T cell lines proliferates in response to purified GAD. These T cell lines will be valuable in characterizing novel islet beta cell antigens which are likely to be implicated in type 1 diabetes. PMID:7554382

  4. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  5. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  6. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    PubMed

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  7. Effect of electron beam irradiation and storage at 5 degrees C on thiobarbituric acid reactive substances and carbonyl contents in chicken breast meat infused with antioxidants and selected plant extracts.

    PubMed

    Rababah, Taha; Hettiarachchy, Navam; Horax, Ronny; Eswaranandam, Satchithanandam; Mauromoustakos, Andronikos; Dickson, James; Niebuhr, Steven

    2004-12-29

    This study evaluated the effectiveness of synthetic and natural antioxidants, green tea, commercial grape seed extracts/combinations, and TBHQ, with varying concentrations of lipid oxidation of nonirradiated and irradiated chicken breast meats stored at 5 degrees C for 12 days. Fresh boneless and skinless chicken breast meats were vacuum-infused with varying concentrations of antioxidants: green tea, grape seed extracts alone/in combination, and TBHQ. The irradiation dosage was 3.0 kGy. Carbonyl values of raw chicken meat and thiobarbituric acid reactive substances (TBARS) values of raw and cooked chicken meat were determined for 0-12 days at 5 degrees C storage. TBARS values for 0-12 days of storage at 5 degrees C ranged from 1.21 to 7.3 and 1.22 to 8.51 mg malondialdehyde/100 g chicken for nonirradiated and irradiated raw chicken, respectively. TBARS values of cooked chicken ranged from 2.19 to 35.83 and 2.45 to 45.72 mg malondialdehyde/100 g chicken for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS values of both controls and plant extracts. The carbonyl content in meat lipid ranged from 1.7 to 2.9 and 1.7 to 4.41 micromol acetophenone/10 g of nonirradiated and irradiated chicken meat, respectively, and meat protein ranged from 1.4 to 2.07 and 1.41 to 2.72 micromol/10 g meat. Infusion of chicken meat with selected plant extracts is an effective method to minimize lipid oxidation and volatiles developments caused by irradiation.

  8. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  9. Taste reactivity in the hamster.

    PubMed

    Brining, S K; Belecky, T L; Smith, D V

    1991-06-01

    Taste reactivity, which was first described in the rat, consists of ingestive and aversive response components, the latter seen mostly to bitter-tasting stimuli. The present experiment characterized the hamster's taste reactivity to an array of stimuli (sugars: 1 M sucrose, d-fructose and d-glucose; sodium salts: 1 M NaCl, Na2SO4 and NaNO3; acids: 30 mM HCl, tartaric acid and citric acid; bitter-tasting stimuli: 100 mM quinine hydrochloride and nicotine sulfate and 10 mM denatonium benzoate). These 12 stimuli were chosen to represent 3 examples each of stimuli that taste sweet, salty, sour, or bitter to humans; they were presented in random order via an intraoral fistula, one stimulus each day per animal (n = 10). Infusions of 0.6 ml were delivered over a 1-min period from a syringe pump. Orofacial and somatic motor responses were recorded on videotape for later analysis and were also coded online into a computer. Ingestive responses included forward and lateral tongue protrusions and aversive responses included gaping, chin rubbing, forelimb flailing, fluid rejection, increased locomotion, and aversive posturing. Each stimulus group produced a characteristic pattern of these behaviors, with sugars eliciting only ingestive behaviors and the bitter stimuli evoking predominantly aversive responses. Both sodium salts and acids produced ingestive responses, as seen previously in the rat, although these stimuli also elicited aversive behaviors in the hamster, including apes. The patterns of responses were characterized using multivariate procedures; the stimuli fell into distinct groups that were separated primarily along an hedonic dimension.

  10. Low aggregation state diminishes ferrihydrite reactivity

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Heister, Katja; Meckenstock, Rainer U.

    2013-04-01

    Ferrihydrite is an abundant iron(oxy)hydroxide in soils and sediments and plays an important role in microbial iron cycling due to its high reactivity. Therefore, it is often synthesized and used in geomicrobiological and mineralogical studies. The reactivities of synthetic ferrihydrites vary between different studies and synthesis protocols. Hence, we synthesized five different ferrihydrites and characterized them with XRD, FTIR, XPS, and BET specific surface area. The reactivity of the ferrihydrite samples towards ascorbic acid was examined and compared with microbial reduction rates by Geobacter sulfurreducens. FTIR and XRD results show the presence of secondary, higher crystalline iron oxide phases like goethite and akaganeite for two samples. Consequently, those samples revealed lower biotic and abiotic reduction rates compared to pure ferrihydrite. Comparison of reduction rates with the specific surface area of all ferrihydrites showed neither correlation with abiotic reductive dissolution nor with microbial reduction. Especially one sample, characterized by a very low aggregation state and presence of secondary minerals, revealed a poor reactivity. We speculate that apart from the occurring secondary minerals also the low aggregation state played an important role. Decreasing aggregation diminishes the amount of kinks and edges on the surfaces, which are produced at contact sites in aggregates. According to dissolution theories, dissolution mainly starts at those surface defects and slows down with decreasing amount of defects. Furthermore, the non-aggregated ferrihydrite is free of micropores, a further stimulant for dissolution. Independent repetitions of experiments and syntheses according to the same protocol but without formation of secondary minerals, confirmed the low reactivity of the non-aggregated ferrihydrite. In summary, our results indicate that a decreasing aggregation state of ferrihydrite to a certain size does increase the reactivity

  11. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  12. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  13. When is arthritis reactive?

    PubMed Central

    Hamdulay, S S; Glynne, S J; Keat, A

    2006-01-01

    Reactive arthritis is an important cause of lower limb oligoarthritis, mainly in young adults. It is one of the spondyloarthropathy family; it is distinguishable from other forms of inflammatory arthritis by virtue of the distribution of affected sites and the high prevalence of characteristic extra‐articular lesions. Many terms have been used to refer to this and related forms of arthritis leading to some confusion. Reactive arthritis is precipitated by an infection at a distant site and genetic susceptibility is marked by possession of the HLA‐B27 gene, although the mechanism remains uncertain. Diagnosis is a two stage process and requires demonstration of a temporal link with a recognised “trigger” infection. The identification and management of “sexually acquired” and “enteric” forms of reactive arthritis are considered. Putative links with HIV infection are also discussed. The clinical features, approach to investigation, diagnosis, and management of reactive arthritis are reviewed. PMID:16822921

  14. Human salivary α-amylase (EC.3.2.1.1) activity and periodic acid and schiff reactive (PAS) staining: A useful tool to study polysaccharides at an undergraduate level.

    PubMed

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosália; Prudêncio, Cristina

    2006-07-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically valuable (J. R. Rudland, S. C. Rennie (2003) The determination of the relevance of basic sciences learning objectives to clinical practice using a questionnaire survey, Med. Educ. (Oxf.) 37, 962-965; E. C. Wragg (2003) How can we determine the relevance of basic sciences learning objectives to clinical practice?, Med. Educ. (Oxf.) 37, 948-949). Thus, nowadays teachers are compelled to use their imagination to be able to elaborate laboratory sessions aiming for the understanding of theoretical concepts that are also clinically related: in other words, basic concepts and skills that underlie the competencies demanded of the future health professional. In the present work, we describe a set of laboratory sessions implemented in the discipline of biochemistry, belonging to the first year of several courses of allied health professionals, which can also be implemented in other health sciences courses. These sessions focus on the characteristics and properties of carbohydrates. The exercises we propose include two different laboratory practical sessions based on a histopathological routine technique known as periodic acid and Schiff reactive that is currently used to detect sugar metabolic and tumor diseases (J. M. T. Rivera, C. T. López, B. C. Segui (2001) Bioquímica Estructural: Conceptos y Tests, Tebar Flores, Madrid). The methodology described enables the demonstration of some biochemical properties of polysaccharides, namely animal and vegetable, and the catalytic activity of the human salivary α-amylase (EC.3.2.1.1) enzyme. A further comparison between α-amylase activity in vitro and in situ is also possible by the

  15. Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs.

    PubMed

    Hay, Douglas W P; Giardina, Giuseppe A M; Griswold, Don E; Underwood, David C; Kotzer, Charles J; Bush, Brian; Potts, William; Sandhu, Punam; Lundberg, Dave; Foley, James J; Schmidt, Dulcie B; Martin, Lenox D; Kilian, David; Legos, Jeffrey J; Barone, Frank C; Luttmann, Mark A; Grugni, Mario; Raveglia, Luca F; Sarau, Henry M

    2002-01-01

    In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.

  16. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  17. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  18. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  19. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-07-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  20. In silico prediction of acyl glucuronide reactivity

    NASA Astrophysics Data System (ADS)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  1. Reactivity of the Monoterpenoid Nerol with p-Toluenesulfonic and Chlorosulfonic Acids: Selective Syntheses of alpha-Terpineol and alpha-Cyclogeraniol. An Activity for the Undergraduate Organic Lab

    ERIC Educational Resources Information Center

    Linares-Palomino, Pablo J.; Salido, Sofia; Altarejos, Joaquin; Nogueras, Manuel; Sanchez, Adolfo

    2006-01-01

    The selective syntheses of the cyclic monoterpenoids alpha-terpineol or alpha-cyclogeraniol from the acyclic monoterpenoid nerol using p-toluenesulfonic acid or chlorosulfonic acid as cyclizing agents, respectively, are described. The different behavior of nerol under diverse experimental conditions such as nature of the acid agents, solvents, and…

  2. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  3. Interactive chemical reactivity exploration.

    PubMed

    Haag, Moritz P; Vaucher, Alain C; Bosson, Maël; Redon, Stéphane; Reiher, Markus

    2014-10-20

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the samson programming environment.

  4. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    the desired rheological and structural characteristics of the final products for potential applications such as low density extrusion foaming or compatibilization of immiscible polymer blends. Important modification conditions through coagents are identified and reaction mechanisms are proposed. A high MW saturated polyester, PET, can also be rheologically modified in extruders through low MW multifunctional anhydride and epoxy compounds by chain extension/branching. Several such modifiers were successfully screened in terms of their reactivity towards PET under controlled reactive extrusion conditions. A dianhydride with medium reactivity was then successfully used in a one-step reactive modification/extrusion foaming process to produce low density foams. A similar process was successfully used to produce small cell size foams from a four component system containing PET, PP and lesser amounts of a low molecular weight multifunctional epoxy compound and an acid functionalized polyolefin, the latter acting as compatibilizers.

  5. Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages.

    PubMed

    Chien, Chih-Chiang; Shen, Shing-Chuan; Yang, Liang-Yo; Chen, Yen-Chou

    2012-11-01

    Although prostaglandins (PGs) were reported to exert proinflammatory and anti-inflammatory effects in macrophages, their action mechanisms remain unclear. The effects of PGs including PGJ2 (J2), Δ-PGJ2 (Δ), 15-deoxy-Δ PGJ2 (15d), PGE2 (E2), and PGF2α (F2α) on lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and peptidoglycan (PGN)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production by RAW264.7 macrophages were investigated. First, we found that induction of cyclooxygenase 2 (COX-2) protein occurred at a time earlier than that of heme oxygenase 1 (HO-1) protein, and the addition of the COX-2 inhibitor NS398 reduced HO-1 protein expression in LPS-, LTA-, and PGN-treated RAW264.7 macrophages. Incubation of RAW264.7 macrophages with the indicated PGs showed that J2, Δ, and 15d significantly induced HO-1 protein expression; however, E2 and F2α did not. Heme oxygenase 1 protein induced by J2, Δ, and 15d was inhibited by the transcriptional inhibitor, actinomycin (Act) D; the translational inhibitor, cycloheximide; and the antioxidant, N-acetyl cysteine (NAC). Increases in intracellular peroxide levels by J2, Δ, and 15d were detected via a 2',7'™-dichlorofluorescein diacetate (DCFH-DA) analysis, and they were prevented by the addition of NAC. In addition, J2, Δ, and 15d produced significant inhibition of LPS-, LTA-, and PGN-induced iNOS protein and NO production by RAW264.7 cells, in accordance with increased HO-1 protein expression. Reductions of LPS-, LTA-, and PGN-induced phosphorylated c-Jun N-terminal kinase, c-Jun protein, and activator protein 1 luciferase activity by J2, Δ, and 15d were identified, and the addition of the HO-1 inhibitor, tin protoporphyrin, reversed the inhibitory effects of Δ and 15d on LPS- and LTA-induced iNOS/NO, phosphorylated c-Jun N-terminal kinase, and c-Jun protein expressions by macrophages. Knockdown of HO-1 protein expression by HO-1 small interfering RNA blocked Δ and 15d inhibition of LPS- and LTA

  6. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  7. Chemical Reactivity Test (CRT)

    SciTech Connect

    Zaka, F.

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  8. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  9. Reactive Sensor Networks (RSN)

    DTIC Science & Technology

    2003-10-01

    Networks,” Distributed Autonomous Robotic Systems DARS 2000, pp. 471-472, Springer Verlag, Tokyo. R. R. Brooks. “Stigmergy an intelligence metric...Paper, March 2003. • R. Brooks, et al. “Reactive Sensor Networks: Mobile Code Support for Autonomous Sensor Networks,” Distributed Autonomous Robotic Systems DARS

  10. Reactive transport modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special section in the Vadose Zone Journal focusing on reactive transport modeling was developed from a special symposium jointly sponsored by the Soil Physics and Soil Chemistry Divisions of the Soil Science Society of America at the 2010 annual meetings held in Long Beach, CA. It contains eig...

  11. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  12. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  13. Reactivity Network: Secondary Sources for Inorganic Reactivity Information.

    ERIC Educational Resources Information Center

    Mellon, E. K.

    1989-01-01

    Provides an eclectic annotated bibliography of secondary sources for inorganic reactivity information of interest to reactivity network review authors and to anyone seeking information about simple inorganic reactions in order to develop experiments and demonstrations. Gives 119 sources. (MVL)

  14. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  15. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  16. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  17. Nonquaternary Cholinesterase Reactivators.

    DTIC Science & Technology

    1982-08-30

    Methylphosphonyl-AChE by la, lb, 2, and 3 . .............................................. 83 Chapter III 1 Lineweaver - Burke Plot for Compound 3a...Not determined. I11 ................ ."--..-. . . .S . -. -.. .i.,...,. _. o, . ’._ -. .-. . , , I I 1 .. .! 8.08.O 1I i i 7.0 LINEWEAVER - BURKE ...10 15 20 25 30 35 40 [AcSCh] - 1 , M -1 x 10 -4 JA-1 043-23 FIGURE 1 LINEWEAVER - BURKE PLOT FOR COMPOUND 3a 112 nonquaternary reactivators with ethyl

  18. Skylab reactivation mission report

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1980-01-01

    On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.

  19. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  20. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  1. Generation of reactive oxygen species by the faecal matrix

    PubMed Central

    Owen, R; Spiegelhalder, B; Bartsch, H

    2000-01-01

    BACKGROUND—Reactive oxygen species are implicated in the aetiology of a range of human diseases and there is increasing interest in their role in the development of cancer.
AIM—To develop a suitable method for the detection of reactive oxygen species produced by the faecal matrix.
METHODS—A refined high performance liquid chromatography system for the detection of reactive oxygen species is described.
RESULTS—The method allows baseline separation of the products of hydroxyl radical attack on salicylic acid in the hypoxanthine/xanthine oxidase system, namely 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, and catechol. The increased efficiency and precision of the method has allowed a detailed evaluation of the dynamics of reactive oxygen species generation in the faecal matrix. The data show that the faecal matrix is capable of generating reactive oxygen species in abundance. This ability cannot be attributed to the bacteria present, but rather to a soluble component within the matrix. As yet, the nature of this soluble factor is not entirely clear but is likely to be a reducing agent.
CONCLUSIONS—The soluble nature of the promoting factor renders it amenable to absorption, and circumstances may exist in which either it comes into contact with either free or chelated iron in the colonocyte, leading to direct attack on cellular DNA, or else it initiates lipid peroxidation processes whereby membrane polyunsaturated fatty acids are attacked by reactive oxygen species propagating chain reactions leading to the generation of promutagenic lesions such as etheno based DNA adducts.


Keywords: colorectal cancer; faecal matrix; hypoxanthine; phytic acid; reactive oxygen species; xanthine oxidase PMID:10644317

  2. Reactivity of dicoordinated stannylones (Sn0) versus stannylenes (SnII): an investigation using DFT-based reactivity indices.

    PubMed

    Broeckaert, Lies; Frenking, Gernot; Geerlings, Paul; De Proft, Frank

    2013-10-07

    The reactivity of dicoordinated Sn(0) compounds, stannylones, is probed using density functional theory (DFT)-based reactivity indices and compared with the reactivity of dicoordinated Sn(II) compounds, stannylenes. For the former compounds, the influence of different types of electron-donating ligands, such as cyclic and acyclic carbenes, stannylenes and phosphines, on the reactivity of the central Sn atom is analyzed in detail. Sn(0) compounds are found to be relatively soft systems with a high nucleophilicity, and the plots of the Fukui function f(-) for an electrophilic attack consistently predict the highest reactivity on the Sn atom. Next, complexes of dicoordinated Sn compounds with different Lewis acids of variable hardness are computed. In a first part, the double-base character of stannylones is demonstrated in interactions with the hardest Lewis acid H(+). Both the first and second proton affinities (PAs) are high and are well correlated with the atomic charge on the Sn atom, probing its local hardness. These observations are also in line with electrostatic potential plots that demonstrate that the tin atom in Sn(0) compounds bears a higher negative charge in comparison to Sn(II) compounds. Stannylones and stannylenes can be distinguished from each other by the partial charges at Sn and by various reactivity indices. It also becomes clear that there is a smooth transition between the two classes of compounds. We furthermore demonstrate both from DFT-based reactivity indices and from energy decomposition analysis, combined with natural orbitals for chemical valence (EDA-NOCV), that the monocomplexed stannylones are still nucleophilic and as reactive towards a second Lewis acid as towards the first one. The dominating interaction is a strong σ-type interaction from the Sn atom towards the Lewis acid. The interaction energy is higher for complexes with the cation Ag(+) than with the non-charged electrophiles BH(3), BF(3), and AlCl(3).

  3. Isolation and Reactivity of Trifluoromethyl Iodonium Salts

    PubMed Central

    2016-01-01

    The strategic incorporation of the trifluoromethyl (CF3) functionality within therapeutic or agrochemical agents is a proven strategy for altering their associated physicochemical properties (e.g., metabolic stability, lipophilicity, and bioavailability). Electrophilic trifluoromethylation has emerged as an important methodology for installing the CF3 moiety onto an array of molecular architectures, and, in particular, CF3 λ3-iodanes have garnered significant interest because of their unique reactivity and ease of handling. Trifluoromethylations mediated by these hypervalent iodine reagents often require activation through an exogenous Lewis or Brønsted acid; thus, putative intermediates invoked in these transformations are cationic CF3 iodoniums. These iodoniums have, thus far, eluded isolation and investigation of their innate reactivity (which has encouraged speculation that such species cannot be accessed). A more complete understanding of the mechanistic relevance of CF3 iodoniums is paramount for the development of new trifluoromethylative strategies involving λ3-iodanes. Here, we demonstrate that CF3 iodonium salts are readily prepared from common λ3-iodane precursors and exhibit remarkable persistence under ambient conditions. These reagents are competent electrophiles for a variety of trifluoromethylation reactions, and their reactivity is reminiscent of that observed when CF3 iodanes are activated using Lewis acids. As such, our results suggest the mechanistic relevance of CF3 iodonium intermediates in trifluoromethylative processes mediated by λ3-iodanes. The isolation of CF3 iodonium salts also presents the unique opportunity to employ them more generally as mechanistic probes. PMID:27280169

  4. Xurography for microfluidics on a reactive solid.

    PubMed

    Neuville, Amélie; Renaud, Louis; Luu, Thi Thuy; Minde, Mona Wetrhus; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel; Dysthe, Dag Kristian

    2017-01-17

    In this paper, we propose a simple method to embed transparent reactive materials in a microfluidic cell, and to observe in situ the dissolution of the material. As an example, we show how to obtain the dissolution rate of a calcite window of optical quality, dissolved in water and hydrochloric acid (HCl). These fluids circulate at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the calcite window and a non-reactive support. While the calcite window reacts in contact with the acid, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 μm and a vertical resolution of 50 nm. In order to avoid inlet influence on the reaction, a thin layer of photoresist is added on the calcite surface at the inlet and outlet. This layer is also used as a non reactive reference surface.

  5. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  6. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  7. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  8. Formation and Reactivity of Biogenic Iron Minerals

    SciTech Connect

    Ferris, F. Grant

    2003-06-01

    In the current study we aimed to determine how the cell surface polymers, such as lipopolysaccharide (LPS) and capsular material, of a number of strains of Shewanella influenced surface proton binding behavior. An investigation of this kind is pertinent as surface proton binding site reactivity may influence a number of important eco-physiological factors. For example, proton binding sites may sequester Fe2+, as well as other metals like Ni2+, and thus inhibit the supply and metabolic reduction of Fe3+.(Parmar et al. 2001) Further understanding the cell surface reactivity of Shewanella is also important as this may influence the ability of the microorganism to adhere and interact with metal oxides and hydroxides. This study combined acid-base titration analyses to determine proton binding behavior with SDS-PAGE analysis of LPS.

  9. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  10. Bacterial responses to reactive chlorine species.

    PubMed

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research.

  11. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to

  12. Introducing new reactivity descriptors: "Bond reactivity indices." Comparison of the new definitions and atomic reactivity indices

    NASA Astrophysics Data System (ADS)

    Sánchez-Márquez, Jesús

    2016-11-01

    A new methodology to obtain reactivity indices has been defined. This is based on reactivity functions such as the Fukui function or the dual descriptor and makes it possible to project the information of reactivity functions over molecular orbitals instead of the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecule's natural bond orbitals (bond reactivity indices) because these orbitals (with physical meaning) have the advantage of being very localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology gives a reactivity index for every Natural Bond Orbital (NBO), and we have verified that they have equivalent information to the reactivity functions. A representative set of molecules has been used to test the new definitions. Also, the bond reactivity index has been related with the atomic reactivity one, and complementary information has been obtained from the comparison. Finally, a new atomic reactivity index has been defined and compared with previous definitions.

  13. Reactive attachment disorder.

    PubMed

    Hornor, Gail

    2008-01-01

    Child abuse and neglect affects the lives of many American children and can result in physical injury and disability as well as psychological trauma. Reactive attachment disorder (RAD) is one possible psychological consequence of child abuse and neglect for very young children, younger than 5 years of age. RAD is described as markedly disturbed and developmentally inappropriate social relatedness usually beginning before age 5 years. These behavioral manifestations are the direct result of and come after pathogenic care. To better understand RAD, it is first necessary to understand attachment; therefore, attachment theory is examined. Risk factors for the development of RAD are presented. Implications for pediatric nurse practitioner practice are explored. The pediatric nurse practitioner can play a vital role in recognizing RAD and ensuring that children with this disorder receive prompt mental health assessment and therapy.

  14. Reactive flow in solids

    NASA Astrophysics Data System (ADS)

    Brassart, Laurence; Suo, Zhigang

    2013-01-01

    When guest atoms diffuse into a host solid and react, the host may flow inelastically. Often a reaction can stimulate flow in a host too brittle to flow under a mechanical load alone. We formulate a theory of reactive flow in solids by regarding both flow and reaction as nonequilibrium processes, and placing the driving forces for flow and reaction on equal footing. We construct chemomechanical rate-dependent kinetic models without yield strength. In a host under constant stress and chemical potential, flow will persist indefinitely, but reaction will arrest. We also construct chemomechanical yield surface and flow rule by extending the von Mises theory of plasticity. We show that the host under a constant deviatoric stress will flow gradually in response to ramp chemical potential, and will ratchet in response to cyclic chemical potential.

  15. Farewell to the HSAB treatment of ambident reactivity.

    PubMed

    Mayr, Herbert; Breugst, Martin; Ofial, Armin R

    2011-07-11

    The concept of hard and soft acids and bases (HSAB) proved to be useful for rationalizing stability constants of metal complexes. Its application to organic reactions, particularly ambident reactivity, has led to exotic blossoms. By attempting to rationalize all the observed regioselectivities by favorable soft-soft and hard-hard as well as unfavorable hard-soft interactions, older treatments of ambident reactivity, which correctly differentiated between thermodynamic and kinetic control as well as between different coordination states of ionic substrates, have been replaced. By ignoring conflicting experimental results and even referring to untraceable experimental data, the HSAB treatment of ambident reactivity has gained undeserved popularity. In this Review we demonstrate that the HSAB as well as the related Klopman-Salem model do not even correctly predict the behavior of the prototypes of ambident nucleophiles and, therefore, are rather misleading instead of useful guides. An alternative treatment of ambident reactivity based on Marcus theory will be presented.

  16. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.

    PubMed

    Tittmann, Kai; Schröder, Kathrin; Golbik, Ralph; McCourt, Jennifer; Kaplun, Alexander; Duggleby, Ronald G; Barak, Ze'ev; Chipman, David M; Hübner, Gerhard

    2004-07-13

    Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)-ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

  17. Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens-methionine aminopeptidase 2 and acid phosphatase.

    PubMed

    Zheng, Minghui; Hu, Kunhua; Liu, Wei; Li, Hongyu; Chen, Jingfang; Yu, Xinbing

    2013-03-01

    The excretory secretory products (ESP) of Clonorchis sinensis are the causative agents of clonorchiasis and biliary diseases. The parasites' ESP play important roles in host-parasite interactions. The protein compositions of ESP at different secretory times are different and have not been systemically investigated so far. In this study, we collected ESP from six different periods (0-3 h, 3-6 h, 6-12 h, 12-24 h, 24-36 h, and 36-48 h) from C. sinensis adults. Using a shotgun LC-MS/MS analysis, we found 187, 80, 103, 58, 248, and 383 proteins, respectively. Among these proteins, we selected methionine aminopeptidase 2 (MAP-2, presented in 24-36 h and 36-48 h ESP) and acid phosphatase (AP, presented in 3-6 h, 12-24 h, 24-36 h, and 36-48 h ESP) for further study. Bioinformatics analysis showed that CsMAP-2 has metallopeptidase family M24, unique lysine residue-rich and acidic residue-rich domain, SGTS motif, and auto-cleavage point; and that CsAP has possible signal sequence cleavage site, acid phosphate domain, and two histidine acid phosphatases active regions. CsMAP-2 and CsAP's cDNA have 1,425 bp and1,410 bp ORF, encoding 475 and 470 amino acid proteins and weighing 55.3840 kDa and 55.2875 kDa, respectively. MAP-2 and AP were identified as antigens present in the ESP and circulating antigens by immunoblot analysis, which were also found expressing in the eggs, metacercaria, and adult stages of C. sinensis. Immunofluorescence analysis showed that they were located in tegument and intestinal cecum of adult. MTT assay showed that they could inhibit hepatic stellate cell line (LX-2) proliferation. These findings presented the compositions of different period excretory secretary products from C. sinensis adults.

  18. Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment.

    PubMed

    Cocos, Ioana A; Zagury, Gerald J; Clément, Bernard; Samson, Réjean

    2002-01-01

    Sulfate-reducing reactive walls installed in situ in the path of acid mine drainage contaminated groundwater, present a promising passive treatment technology. However, a rigorous and methodical selection of the most appropriate reactive mixture composition still needs to be investigated. The aim of this study was the selection of the most reactive medium using a multiple factor design and the modeling of the sulfate-reduction rate. Reactivity of 17 mixtures was assessed in batch reactors (in duplicates) using a synthetic AMD. Results indicate that within 41 days, sulfate concentrations decreased from initial concentrations of 2,000-3,200 mg/l to final concentrations of <90 mg/l. Metal removal efficiencies ranged between 51-84% for Ni and 73-93% for Zn. Generated sulfate-reduction rate predictive models which had very satisfactory parameters (R2 = 0.86, F = 62.38 (p-level < 10(-13)) and R2 = 0.90. F = 62.30 (p-level < 10(-13))) identified poultry manure and two other carbon sources as the critical variables for sulfate-reduction rate.

  19. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  20. Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C-H bond functionalization.

    PubMed

    Musaev, Djamaladdin G; Figg, Travis M; Kaledin, Alexey L

    2014-07-21

    The widely used C-H functionalization strategies and some complexities in the Pd-catalyzed chemical transformations were analyzed. It was emphasized that in the course of catalysis various Pd-intermediates (including nano-scale Pd-clusters) could act as active catalysts. However, both identification of these catalytically active species and determination of factors controlling the overall catalytic process require more comprehensive and multi-disciplinary approaches. Recent joint computational and experimental approaches were instrumental in: (1) demonstrating that the addition of Pd(OAc)2 as a catalyst precursor to RSeH and RSH reagents forms the [Pd(SeR)2]n and [Pd(SR)2]n clusters, respectively, which show an unprecedented ability for selective synthesis of Markovnikov-type products starting with a mixture of reagents RSH/RSeH and acetylenic hydrocarbons; (2) predicting a valid mechanism of the amino acid ligand-assisted Pd(II)-catalyzed C-H activation that is shown to proceed via the formation of the catalytically active Pd(II) intermediate with a bidentately coordinated dianionic amino acid ligand; (3) demonstrating that the amino acid ligand plays crucial roles in the ligand-assisted Pd(II)-catalyzed C-H activation by acting as: (a) a weakly coordinating ligand to stabilize the desirable Pd(II)-precatalyst, (b) a soft proton donor and a bidentately coordinated dianionic ligand in the catalytically active Pd(II) intermediate, and (c) a proton acceptor accelerating the C-H deprotonation via the CMD mechanism; and (4) revealing the roles of the CsF base (and "cesium effect") in the Pd(0)/PCy3-catalyzed intermolecular arylation of the terminal β-C(sp(3))-H bond of aryl amide and predicting the unprecedented "Cs2-I-F cluster" assisted mechanism for this reaction.

  1. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  2. The [2 + 2] Cycloaddition-Retroelectrocyclization and [4 + 2] Hetero-Diels-Alder Reactions of 2-(Dicyanomethylene)indan-1,3-dione with Electron-Rich Alkynes: Influence of Lewis Acids on Reactivity.

    PubMed

    Donckele, Etienne J; Finke, Aaron D; Ruhlmann, Laurent; Boudon, Corinne; Trapp, Nils; Diederich, François

    2015-07-17

    The reaction of electrophilic 2-(dicyanomethylene)indan-1,3-dione (DCID) with substituted, electron-rich alkynes provides two classes of push-pull chromophores with interesting optoelectronic properties. The formal [2 + 2] cycloaddition-retroelectrocyclization reaction at the exocyclic double bond of DCID gives cyanobuta-1,3-dienes, and the formal [4 + 2] hetero-Diels-Alder (HDA) reaction at an enone moiety of DCID generates fused 4H-pyran heterocycles. Both products can be obtained in good yield and excellent selectivity by carefully tuning the reaction conditions; in particular, the use of Lewis acids dramatically enhances formation of the HDA adduct.

  3. Reactive uptake of NO3 by liquid and frozen organics

    NASA Astrophysics Data System (ADS)

    Moise, T.; Talukdar, R. K.; Frost, G. J.; Fox, R. W.; Rudich, Y.

    2002-01-01

    The reactive uptake of the NO3 radical by liquid and frozen organics was studied in a rotating wall flow tube coupled to a White cell. The organic liquids used included alkanes, alkenes, an alcohol, and carboxylic acids with conjugated and nonconjugated unsaturated bonds.. The reactive uptake coefficients, γ, of NO3 on n-hexadecane, 1-octadecene, 1-hexadecene, cis + trans 7-tetradecene, n-octanoic acid, 2,2,4,4,6,8,8 heptamethyl nonane, 1-octanol, cis, trans 9,11 and 10,12 octadecadienoic acid, cis-9, cis-12 octadecadienoic acid were determined. The reactive uptake coefficients measured with the organic liquids varied from 1.4 × 10-3 to 1.5 × 10-2. The uptake coefficients of NO3 by n-hexadecane and n-octanoic acid decreased by a factor of ~5 upon freezing. This behavior is explained by reaction occurring in the bulk of the organic liquid as well as on the surface. For the rest of the compounds the change in values of γ upon freezing of the liquids was within the experimental uncertainty. This is attributed to predominant uptake of NO3 by the top few molecular surface layers of the organic substrate and continuous replenishment of the surface layer by evaporation and/or mobility of the surface. These conclusions are corroborated by estimation of the diffuso-reactive length and solubility constant of NO3 in these liquids. The reactivity of NO3 with the organic surfaces is shown to correlate well with the known gas-phase chemistry of NO3. The effect on the atmospheric chemistry of the NO3 radical due to its interaction with organic aerosols is studied using an atmospheric box model applying realistic atmospheric scenarios. The inclusion of NO3 uptake on organic aerosol can decrease the NO3 lifetime by 10% or more.

  4. Nitro-thiocyanobenzoic acid (NTCB) reactivity of cysteines beta100 and beta110 in porcine luteinizing hormone: metastability and hypothetical isomerization of the two disulfide bridges of its beta-subunit seatbelt.

    PubMed

    Belghazi, Maya; Klett, Danièle; Cahoreau, Claire; Combarnous, Yves

    2006-03-09

    Luteinizing hormone (LH) like all other glycoprotein hormones is composed of two dissimilar subunits, alpha and beta, that are non-covalently associated. The heterodimer is stabilized by a region of the beta-subunit called the "seatbelt" because it wraps around the alpha-subunit and it is fastened by a disulfide bridge between cysteines beta26 and beta110. Although all 22 cysteines of porcine LH (pLH) are engaged in disulfide bridges, we previously showed that the free cysteine-specific reagent NTCB could react with pLH: it slowly cyanylated two cysteines in pLH and there was a close relationship between NTCB reaction with pLH and association/dissociation kinetics of its subunits. Therefore, cysteines beta26 and beta110 were considered as the best candidates for NTCB reaction. In order to identify the NTCB-reactive cysteines in pLH we have performed a mass spectroscopic analysis of the peptides released after mild basic hydrolysis of S-cyanylated pLH and its subunits. Only cysteines beta100 and beta110 were found to react with NTCB. Since these residues are not linked by a disulfide bridge in the crystallographic 3D structure of gonadotropins, it is proposed that their respective counterparts (Cysbeta93 and beta26) do not react with NTCB either because they are shielded from solvent or because they form a transient bridge. In the first hypothesis, both seatbelt bridges would be independently metastable; in the second one, a fast reversible isomerization between bridges beta26-beta110 and beta93-beta100 would occur. Such a reaction could be catalyzed by the previously recognized intrinsic protein disulfide isomerase (PDI) activity of gonadotropins.

  5. Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity.

    PubMed

    Zermeño-Macías, María de Los Ángeles; González-Chávez, Marco Martín; Méndez, Francisco; González-Chávez, Rodolfo; Richaud, Arlette

    2017-03-08

    Chemical reactivity descriptors of indol-4-ones obtained via density functional theory (DFT) and hard-soft acid-base (HSAB) principle were calculated to prove their contribution in antifungal activity [...].

  6. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) limitations, if any, in mixtures or solutions for the self-reactive material. Limitations are given as...-diethylaminobenzenediazonium zinc chloride 3226 100 OP7 2-Diazo-1-Naphthol sulphonic acid ester mixture 3226 mixtures of esters of...

  7. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) limitations, if any, in mixtures or solutions for the self-reactive material. Limitations are given as...-diethylaminobenzenediazonium zinc chloride 3226 100 OP7 2-Diazo-1-Naphthol sulphonic acid ester mixture 3226 mixtures of esters of...

  8. Acquired reactive perforating collagenosis

    PubMed Central

    Fei, Chengwen; Wang, Yao; Gong, Yu; Xu, Hui; Yu, Qian; Shi, Yuling

    2016-01-01

    Abstract Background: Reactive perforating collagenosis (RPC) is a rare form of transepithelial elimination, in which altered collagen is extruded through the epidermis. There are 2 types of RPC, acquired RPC (ARPC) and inherited RPC, while the latter is extremely rare. Here we report on 1 case of ARPC. Methods: A 73-year-old female was presented with strongly itchy papules over her back and lower limbs for 3 months. She denied the history of oozing or vesiculation. A cutaneous examination showed diffusely distributed multiple well-defined keratotic papules, 4 to 10 mm in diameter, on the bilateral lower limbs and back as well as a few papules on her chest and forearm. Scratching scars were over the resolved lesions while Koebner phenomenon was negative. The patient had a history of type 2 diabetes for 15 years. Laboratory examinations showed elevated blood glucose level. Skin lesion biopsy showed a well-circumscribed area of necrosis filled with a keratotic plug. Parakeratotic cells and lymphocytic infiltration could be seen in the necrosed area. In dermis, sparse fiber bundles were seen perforating the epidermis. These degenerated fiber bundles were notarized as collagen fiber by elastic fiber stain, suggesting a diagnosis of RPC. Results: Then a diagnosis of ARPC was made according to the onset age and the history of diabetes mellitus. She was treated with topical application of corticosteroids twice a day and oral antihistamine once a day along with compound glycyrrhizin tablets 3 times a day. And the blood glucose was controlled in a satisfying range. Two months later, a significant improvement was seen in this patient. Conclusion: Since there is no efficient therapy to RPC, moreover, ARPC is considered to be associated with some systemic diseases, the management of the coexisting disease is quite crucial. The patient in this case received a substantial improvement due to the control of blood glucose and application of compound glycyrrhizin tablets. PMID

  9. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.

  10. Acute administration of 3-nitropropionic acid, a reactive oxygen species generator, boosts ethanol-induced locomotor stimulation. New support for the role of brain catalase in the behavioural effects of ethanol.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2006-12-01

    The antioxidant enzyme catalase by reacting with H(2)O(2), forms the compound known as compound I (catalase-H(2)O(2)). This compound is able to oxidise ethanol to acetaldehyde in the CNS. It has been demonstrated that 3-nitropropionic acid (3-NPA) induces the activity of the brain catalase-H(2)O(2) system. In this study, we tested the effect of 3-NPA on both the brain catalase-H(2)O(2) system and on the acute locomotor effect of ethanol. To find the optimal interval for the 3-NPA-ethanol interaction mice were treated with 3-NPA 0, 45, 90 and 135min before an ethanol injection (2.4mg/kg). In a second study, 3-NPA (0, 15, 30 or 45mg/kg) was administered SC to animals 90min before saline or several doses of ethanol (1.6 or 2.4g/kg), and the open-field behaviour was registered. The specificity of the effect of 3-NPA (45mg/kg) was evaluated on caffeine (10mg/kg IP) and cocaine (4mg/kg)-induced locomotion. The prevention of 3-NPA effects on both ethanol-induced locomotion and brain catalase activity by L-carnitine, a potent antioxidant, was also studied. Nitropropionic acid boosted ethanol-induced locomotion and brain catalase activity after 90min. The effect of 3-NPA was prevented by l-carnitine administration. These results indicate that 3-NPA enhanced ethanol-induced locomotion by increasing the activity of the brain catalase system.

  11. [Formation of reactive oxygen species during pollen grain germination].

    PubMed

    Smirnova, A V; Matveeva, N P; Polesskaia, O G; Ermakov, I P

    2009-01-01

    The formation of reactive oxygen species in pollen at the early germination stage, which precedes the formation of the pollen tube, was studied. During this period, pollen grain is being hydrated, abruptly increasing its volume, and it passes from the resting state to active metabolism. Fluorescent methods have made it possible to reveal reactive oxygen species in the cytoplasm and inner layer of the pollen wall, intine. The cytoplasmic reactive oxygen species were mostly found in mitochondria, while extracellular ones were localized in aperture zones of intine, as well as in the solution surrounding pollen grains in vitro. The content of extracellular reactive oxygen species decreased after superoxide dismutase (100 units per ml) and diphenylene iodonium (100 microM), which indicates NADPH oxidase as one of possible producent of them. In conditions of suppression of extracellular reactive oxygen species production (100 microM diphenilene iodonium) or their promoted removal (after addition of 10 to 100 microM ascorbic acid), the number of germinating pollen grains increased. This effect disappeared after further increase in the concentration of the listed reagents. The result is evidence of the significance of processes of generation/removal of extracellular reactive oxygen species for pollen germination.

  12. Using Protein-Confined Proximity To Determine Chemical Reactivity.

    PubMed

    Kobayashi, Tomonori; Hoppmann, Christian; Yang, Bing; Wang, Lei

    2016-11-16

    Chemical reactivity is essential for functional modification of biomolecules with small molecules and the development of covalent drugs. The reactivity between a chemical functional group of a small molecule and that of a large biomolecule cannot be reliably predicted from the reactivity of the corresponding functional groups separately installed on two small molecules, because the proximity effect on reactivity resulting from the binding of the small molecule to the biomolecule is challenging to achieve by mixing two small molecules. Here we present a new strategy to determine the chemical reactivity of two functional groups in the context of close proximity afforded by proteins. The functional groups to be tested were separately installed at the interface of two interacting proteins in the format of amino acid side chains via the expansion of the genetic code. Reaction of the two functional groups resulted in covalent cross-linking of interacting proteins, readily detectable by gel electrophoresis. Using this strategy, we evolved new synthetases to genetically encode N(ε)-fluoroacetyllysine (FAcK), an isosteric fluorine analogue of acetyllysine. We demonstrated that fluoroacetamide installed on FAcK, previously thought inert to biological functional groups, actually reacted with the thiol group of cysteine when in proximity. This strategy should be valuable for accurately evaluating chemical reactivity of small molecules toward large biomolecules, which will help avoid undesired side reactions of drugs and expand the repertoire of functional groups to covalently target biomolecules.

  13. [Reactivity of the limestone in wet flue gas desulfurization].

    PubMed

    Zhu, Tian-le; Li, Yao; Ling, Xuan; Liu, Hong-ju; Xu, Feng-gang; Liu, Han-qiang

    2005-11-01

    On the basis of the analysis of chemical components of the natural limestones from different deposits in China, the pore structures of the typical limestones, with the different CaCO3 content, were examined. The reactivity of the limestones was investigated by sulfuric acid titration and gas-liquid absorption methods. The research results showed that the specific surface area of the natural limestones studied in this work was about 1.8 m2/g. It was seen that the pH of the limestone slurry rapidly decreased and then back up when the sulfuric acid was added. The higher the CaCO3 content was, or the smaller the particle size was, the larger the pH back-up rate was, and similarly the faster the SO2 concentration of the reactor outlet increased. The Reactivity of the limestone obtained by the sulfuric acid titration had the same features as that obtained by the gas liquid absorption. Compared with the specific surface area, the CaCO3 content had more effect on the reactivity of the limestones. The particle size of the limestones had a significant effect on the reactivity when the particle size was relatively large, that is less than 300-360 mesh, vice versa.

  14. Chemical Reactivity Theory Study of Advanced Glycation Endproduct Inhibitors.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-02-02

    Several compounds with the known ability to perform as inhibitors of advanced glycation endproducts (AGE) have been studied with Density Functional Theory (DFT) through the use of anumberofdensityfunctionalswhoseaccuracyhasbeentestedacrossabroadspectrumofdatabases in Chemistry and Physics. The chemical reactivity descriptors for these systems have been calculated through Conceptual DFT in an attempt to relate their intrinsic chemical reactivity with the ability to inhibit the action of glycating carbonyl compounds on amino acids and proteins. This knowledge could be useful in the design and development of new drugs which can be potential medicines for diabetes and Alzheimer's disease.

  15. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  16. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    SciTech Connect

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  17. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation.

    PubMed

    Chacón-López, Alejandra; Ibarra-Laclette, Enrique; Sánchez-Calderón, Lenin; Gutiérrez-Alanis, Dolores; Herrera-Estrella, Luis

    2011-03-01

    Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation.

  18. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  19. Mapping Proteome-Wide Targets of Environmental Chemicals using Reactivity-Based Chemoproteomic Platforms

    PubMed Central

    Medina-Cleghorn, Daniel; Bateman, Leslie A.; Ford, Breanna; Heslin, Ann; Fisher, Karl J.; Dalvie, Esha D.; Nomura, Daniel K.

    2015-01-01

    We are exposed to a growing number of chemicals in our environment, most of which have not been characterized in terms of their toxicological potential or mechanisms. Here, we employ a chemoproteomic platform to map the cysteine reactivity of environmental chemicals using reactivity-based probes to mine for hyper-reactive hotspots across the proteome. We show that environmental contaminants such as monomethylarsonous acid and widely used pesticides such as chlorothalonil and chloropicrin possess common reactivity with a distinct set of proteins. Many of these proteins are involved in key metabolic processes, suggesting that these targets may be particularly sensitive to environmental electrophiles. We show that the widely used fungicide chlorothalonil specifically inhibits several metabolic enzymes involved in fatty acid metabolism and energetics, leading to dysregulated lipid metabolism in mice. Our results underscore the utility of using reactivity-based chemoproteomic platforms to uncover novel mechanistic insights into the toxicity of environmental chemicals. PMID:26496688

  20. One-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic and 1-(4-methoxyphenyl)cyclopropanecarboxylic acids in aqueous solution. the involvement of radical cations and the influence of structural effects and pH on the side-chain fragmentation reactivity.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2008-01-18

    A product and time-resolved kinetic study on the one-electron oxidation of 2-(4-methoxyphenyl)-2-methylpropanoic acid (2), 1-(4-methoxyphenyl)cyclopropanecarboxylic acid (3), and of the corresponding methyl esters (substrates 4 and 5, respectively) has been carried out in aqueous solution. With 2, no direct evidence for the formation of an intermediate radical cation 2*+ but only of the decarboxylated 4-methoxycumyl radical has been obtained, indicating either that 2*+ is not formed or that its decarboxylation is too fast to allow detection under the experimental conditions employed (k > 1 x 10(7) s(-1)). With 3, oxidation leads to the formation of the corresponding radical cation 3*+ or radical zwitterion -3*+ depending on pH. At pH 1.0 and 6.7, 3*+ and -3*+ have been observed to undergo decarboxylation as the exclusive side-chain fragmentation pathway with rate constants k = 4.6 x 10(3) and 2.3 x 10(4) s(-1), respectively. With methyl esters 4 and 5, direct evidence for the formation of the corresponding radical cations 4*+ and 5*+ has been obtained. Both radical cations have been observed to display a very low reactivity and an upper limit for their decay rate constants has been determined as k < 10(3) s(-1). Comparison between the one-electron oxidation reactions of 2 and 3 shows that the replacement of the C(CH3)2 moiety with a cyclopropyl group determines a decrease in decarboxylation rate constant of more than 3 orders of magnitude. This large difference in reactivity has been qualitatively explained in terms of three main contributions: substrate oxidation potential, stability of the carbon-centered radical formed after decarboxylation, and stereoelectronic effects. In basic solution, -3*+ and 5*+ have been observed to react with -OH in a process that is assigned to the -OH-induced ring-opening of the cyclopropane ring, and the corresponding second-order rate constants (k-OH) have been obtained. With -3*+, competition between decarboxylation and -OH

  1. Acidic domains around nucleic acids.

    PubMed Central

    Lamm, G; Pack, G R

    1990-01-01

    The hydrogen ion concentration in the vicinity of DNA was mapped out within the Poisson-Boltzmann approximation. Experimental conditions were modeled by assuming Na-DNA to be solvated in a buffer solution containing 45 mM Tris and 3 mM Mg cations at pH 7.5. Three regions of high H+ concentration (greater than 10 microM) are predicted: one throughout the minor groove of DNA and two localized in the major groove near N7 of guanine and C5 of cytosine for a G.C base pair. These acidic domains correlate well with the observed covalent binding sites of benzo[a]pyrene epoxide (N2 of guanine) and of aflatoxin B1 epoxide (N7 of guanine), chemical carcinogens that presumably undergo acid catalysis to form highly reactive carbocations that ultimately bind to DNA. It is suggested that these regions of high H+ concentration may also be of concern in understanding interactions involving proteins and noncarcinogenic molecules with or near nucleic acids. PMID:2123348

  2. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis.

    PubMed

    Hseu, You-Cheng; Senthil Kumar, K J; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25-200μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease.

  3. Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment

    SciTech Connect

    Shams, K.G.; Miller, R.L.; Baldwin, R.M.

    1992-07-13

    In this paper, we describe results from a study in which mild chemical pretreatment of coal has been used to enhance low severity liquefaction reactivity. We have found that ambient pretreatment of eight Argonne coals using methanol and a trace amount of hydrochloric acid improves THF-soluble conversions 24.5 wt% (maf basis) for Wyodak subbituminous coal and 28.4 wt% for Beulah-Zap lignite with an average increase of 14.9 wt% for liquefaction of the eight coals at 623 K (350{degree}C) reaction temperature and 30 min. reaction time. Similar enhancement results occurred using, hexane or acetone in place of methanol. Pretreatment with methanol and HCI separately indicated that both reagents were necessary to achieve maximum liquefaction improvement. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol%. No appreciable effect on reactivity was observed at higher acid concentrations. Although vapor phase alcohol/HCI mixtures have been shown to partially alkylate bituminous coals, analysis of Wyodak and Illinois {number sign}6 coal samples indicated that no organic phase alteration occurred during pretreatment; however, over 90 wt% of the calcium was removed from each coal. Calcium is thought to catalyze retrogressive reactions during coal pyrolysis, and thus calcium removal prior to low severity liquefaction minimizes the rate of THF-insoluble product formation.

  4. Euphorbia Kansui Reactivates Latent HIV

    PubMed Central

    Cary, Daniele C.; Fujinaga, Koh; Peterlin, B. Matija

    2016-01-01

    While highly active anti-retroviral therapy has greatly improved the lives of HIV infected individuals, these treatments are unable to eradicate the virus. Current approaches to reactivate the virus have been limited by toxicity, lack of an orally available therapy, and limited responses in primary CD4+ T cells and in clinical trials. The PKC agonist ingenol, purified from Euphorbia plants, is a potent T cell activator and reactivates latent HIV. Euphorbia kansui itself has been used for centuries in traditional Chinese medicine to treat ascites, fluid retention, and cancer. We demonstrate that an extract of this plant, Euphorbia kansui, is capable of recapitulating T cell activation induced by the purified ingenol. Indeed, Euphorbia kansui induced expression of the early T cell activation marker CD69 and P-TEFb in a dose-dependent manner. Furthermore, Euphorbia kansui reactivated latent HIV in a CD4+ T cell model of latency and in HIV+ HAART suppressed PBMC. When combined with the other latency reversing agents, the effective dose of Euphorbia kansui required to reactive HIV was reduced 10-fold and resulted in synergistic reactivation of latent HIV. We conclude that Euphorbia Euphorbia kansui reactivates latent HIV and activates CD4+ T cells. When used in combination with a latency reversing agent, the effective dose of Euphorbia kansui is reduced; which suggests its application as a combination strategy to reactivate latent HIV while limiting the toxicity due to global T cell activation. As a natural product, which has been used in traditional medicine for thousands of years, Euphorbia kansui is attractive as a potential treatment strategy, particularly in resource poor countries with limited treatment options. Further clinical testing will be required to determine its safety with current anti-retroviral therapies. PMID:27977742

  5. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion.

    PubMed

    Vandemoortele, Angelique; Babat, Pinar; Yakubu, Mariam; De Meulenaer, Bruno

    2017-03-15

    An aqueous buffer, a saturated glycerol triheptanoate oil, and a Tween 20 stabilized fully hydrogenated coconut oil-in-water emulsion, all spiked with malondialdehyde, were subjected to in vitro digestion. A dynamic equilibrium between malondialdehyde, its aldol self-condensation products, and its hydrolytic cleavage products was observed. This equilibrium depended upon the kind of sample and the temperature at which these samples were preincubated during 24 h. The presence of oil during gastric digestion protected the aldol self-condensation and cleavage products from conversion to malondialdehyde, which occurred in the aqueous acidic gastric chyme. In parallel, the presence of oil enhanced the reactivity of malondialdehyde throughout the gastrointestinal digestion process. Malondialdehyde recoveries after digestion varied between 42 and 90%, depending upon the model system studied, with the aldol self-condensation as the main reaction pathway. In conclusion, this study revealed that malondialdehyde is a very reactive molecule whose reactivity does not stop at the point of ingestion.

  6. Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation

    NASA Astrophysics Data System (ADS)

    Maillot, Fabien; Morin, Guillaume; Juillot, Farid; Bruneel, Odile; Casiot, Corinne; Ona-Nguema, Georges; Wang, Yuheng; Lebrun, Sophie; Aubry, Emmanuel; Vlaic, Gilberto; Brown, Gordon E.

    2013-03-01

    Poorly ordered nanocrystalline hydroxysulfate minerals of microbial origin, such as schwertmannite, Fe8O8(OH)6SO4, are important arsenic scavengers in sulfate-rich acid mine drainage (AMD) environments. However, despite the fact that As(III) and As(V) have been shown to sorb on schwertmannite, little is known about the actual mechanism of arsenic scavenging processes after microbial Fe(II) oxidation in AMD environments. The major focus of the present study is to determine the molecular-level structure of poorly ordered As(III) and As(V) bearing Fe oxyhydroxysulfate minerals from the Carnoulès AMD, France, which exhibits exceptional As(III) concentrations. Powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to compare field samples with a large set of synthetic analogs prepared via biotic or abiotic pathways, with As/Fe ratios typical of minerals and mineraloids ranging from nanocrystalline schwertmannite to amorphous hydroxysulfate compounds. Our results yield further evidence for the poisoning effect of As(V) in limiting the nucleation of schwertmannite. For initial dissolved As(V)/Fe(III) molar ratios ⩾0.2, amorphous Fe(III)-As(V) hydroxysulfate forms, with a local structure consistent with that of amorphous ferric arsenate. EXAFS data for this amorphous material are consistent with corner-sharing FeO6 octahedra to which AsO4 tetrahedra attach via double-corner 2C linkages. For As(V)/Fe(III) molar ratios lower than 0.2, As(V) binds to schwertmannite via 2C surface complexes. In contrast with the As(V)-containing samples, As(III) has a lower affinity for schwertmannite following its nucleation, as this mineral phase persists up to an initial As(III)/Fe(III) molar ratio of 0.6. EXAFS data indicate that during the precipitation process, As(III) forms dominantly 2C surface complexes on schwertmannite surfaces, likely on the sides of double-chains of Fe(III)(O,OH)6 octahedra, with a smaller proportion of edge

  7. Reactivity to nicotine cues over repeated cue reactivity sessions.

    PubMed

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.

  8. The biology of reactive sulfur species (RSS).

    PubMed

    Gruhlke, Martin C H; Slusarenko, Alan J

    2012-10-01

    Sulfur is an essential and quantitatively important element for living organisms. Plants contain on average approximately 1 g S kg⁻¹ dry weight (for comparison plants contain approximately 15 g N kg⁻¹ dry weight). Sulfur is a constituent of many organic molecules, for example amino acids such as cysteine and methionine and the small tripeptide glutathione, but sulfur is also essential in the form of Fe-S clusters for the activity of many enzymes, particularly those involved in redox reactions. Sulfur chemistry is therefore important. In particular, sulfur in the form of thiol groups is central to manifold aspects of metabolism. Because thiol groups are oxidized and reduced easily and reversibly, the redox control of cellular metabolism has become an increasing focus of research. In the same way that oxygen and nitrogen have reactive species (ROS and RNS), sulfur too can form reactive molecular species (RSS), for example when a -SH group is oxidized. Indeed, several redox reactions occur via RSS intermediates. Several naturally occurring S-containing molecules are themselves RSS and because they are physiologically active they make up part of the intrinsic plant defence repertoire against herbivore and pathogen attack. Furthermore, RSS can also be used as redox-active pharmacological tools to study cell metabolism. The aim of this review is to familiarize the general reader with some of the chemical concepts, terminology and biology of selected RSS.

  9. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  10. Reactivity of hair cystine in microemulsion media.

    PubMed

    Erra, P; Solans, C; Azemar, N; Parra, J L; Touraud, D; Clausse, M

    1990-04-01

    Synopsis Reduction of keratin cystine by thioglycolic acid incorporated in microemulsions of the water/sodium dodecilsulphate/n-pentanol/n-dodecane system has been determined. The results obtained have been interpreted in relation to the properties of the reaction media. Microemulsions with constant oil-to-surface active mixture weight ratios (R(o/s)) and different concentrations of water were chosen as reaction media. At low water concentrations a steep increase in reactivity with the increase of water was observed at all values of R(o/s). However it was more pronounced the higher the oil content. A relation between maximum cysteine formation and percolative behaviour of the microemulsion was found at high R(o/s) values.

  11. Neurobehavioral foundation of environmental reactivity.

    PubMed

    Moore, Sarah R; Depue, Richard A

    2016-02-01

    Sensitivity to environmental context has been of interest for many years, but the nature of individual differences in environmental sensitivity has become of particular focus over the past 2 decades. What is particularly uncertain are the neural variables and processes that mediate the effects of environment on developmental outcomes. Accordingly, we provide a neurobehavioral foundation of reactivity to the environment in several steps. First, the different patterns of environmental sensitivity are defined to identify the significant factors involved in the manifestation of these patterns. Second, we focus on neurobiological reactivity as the construct underlying variation in sensitivity to the environment by (a) providing an organizing threshold model of elicitation of neurobiology by environmental context; and (b) integrating the literature on 2 sets of neuromodulators in terms of each modulator's (a) contribution to neural and behavioral reactivity to stimulation, and (b) relation to emotional-motivational systems (dopamine, opiates and oxytocin, corticotropin-releasing hormone) or the general modulation of those systems (serotonin, norepinephrine, and GABA). Discussion concludes with (a) a comprehensive neurobehavioral framework of environmental reactivity based on a combinatorial model of a supertrait, (b) methodological implications of the model, and (c) a developmental perspective on environmental reactivity.

  12. Formation and Reactivity of Biogenic Iron Minerals

    SciTech Connect

    Ferris, F. Grant

    2002-06-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals.

  13. Reactivity of transition metal solvates

    NASA Astrophysics Data System (ADS)

    Berezin, Boris D.

    1991-09-01

    Reactivity data are generalised for one of the most important classes of complexes, solvates, which are quantitatively nearly unstudied. Various approaches to studying and describing the reactivity are compared with respect to solvation of the reagents and the transition state. The specifics and mechanism of ligand substitution in pure and mixed organic solvents are found. The reactivity of simple (homoleptic) and mixed solvates toward macrocycles is examined in detail using porphyrins as an example. The kinetic method of indicator reactions is applied to porphyrins in order to study the state of transition metal salts in organic solvents and the stability of the coordination spheres of acidosalts (MXnn-2), acidosolvates (MX2Sn-2) and their transition states. The concentration dependence of the rate constant of an indicator reaction is demonstrated to be due to a change in the inner coordination sphere and a shift of equilibria between the various coordination complexes. The bibliography includes 38 references.

  14. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    PubMed

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  15. Reactive iron in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.

    1989-01-01

    The influence of reactive iron oxides on sediment pore-water chemistry is considered in detail. A carefully calibrated extraction scheme is used to determine the depth distributions of reactive iron phases at two very different localities: the relatively iron-rich Mississippi Delta and the relatively iron-poor FOAM site in Long Island Sound. Closed system incubations are used to characterize the rates of reaction between sulfide and both naturally occurring and pure iron mineral phases. Rates of iron liberation to pore solution are measured in the presence and absence of sulfate reduction, and the origin of dissolved iron in organic-rich sediments is speculated upon.

  16. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    NASA Astrophysics Data System (ADS)

    Ortiz Rivera, Lymaris; Bakaev, Victor A.; Banerjee, Joy; Mueller, Karl T.; Pantano, Carlo G.

    2016-05-01

    Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a 13C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC-MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H2O and CO2 without any contribution to chemical bonding at the interface.

  17. Influence of microemulsion structure on cystine reactivity with keratin fibres.

    PubMed

    Solans, C; Parra, J L; Erra, P; Azemar, N; Clausse, M; Touraud, D

    1987-10-01

    Summary The activity of thioglycolic acid, incorporated in a microemulsion, towards cystine residues present in keratin proteins has been investigated. In an attempt to relate the structural state of the microemulsions to cystine reactivity, an appropriate model system showing a large microemulsion domain with diverse structures was chosen. The realm of preferentially hydrocarbon-continuous microemulsion-type media was found to induce the highest activity.

  18. Structure, bonding, and reactivity of reactant complexes and key intermediates.

    PubMed

    Soriano, Elena; Marco-Contelles, José

    2011-01-01

    Complexes of Pt and Au (gold(III) and cationic gold(I)) have shown an exceptional ability to promote a variety of organic transformations of unsaturated precursors due to their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the π-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. In this chapter we summarize the computational data reported on the structure, bonding, and reactivity of the reactant π-complexes and also on the key intermediate species.

  19. Emotional Reactivity and Psychological Distress.

    ERIC Educational Resources Information Center

    Bartle-Haring, Suzanne; Rosen, Karen H.; Stith, Sandra M.

    2002-01-01

    This article reports on an empirical test of Bowen's hypothesized relationships between differentiation of self and psychological symptoms, and examines further evidence for the construct validity of a newly developed instrument, the Behavioral and Emotional Reactivity Index (BERI). Finds an indirect relationship between emotional reactivity…

  20. Quantitative reactive modeling and verification.

    PubMed

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness, which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  1. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY WORKSHOP

    EPA Science Inventory

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on Ju...

  2. Improving TCO-Conjugated Antibody Reactivity for Bioorthogonal Pretargeting

    NASA Astrophysics Data System (ADS)

    Chu, Tina Tingyi

    Cancer remains a major cause of death because of its unpredictable progression. Utilizing bioorthogonal chemistry between trans-cyclooctene (TCO) and tetrazine to target imaging agents to tumors in two subsequent steps offers a more versatile platform for molecular imaging. This is accomplished by pretargeting TCO-modified primary antibody to cell surface biomarkers, followed by delivery of tetrazine-modified imaging probes. In previous work, it has been established that TCO-tetrazine chemistry can be applied to in vivo imaging, resulting in precise tumor detection. However, most TCO modifications on an antibody are not reactive because they are buried within hydrophobic domains. To expose and improve the reactivity, Rahim et al. incorporated a polyethylene glycol (PEG) linker through a two-step reaction with DBCO-azide, which successfully maintained 100% TCO functionality. In this project, various types of linkers were studied to improve the reactivity in a single step. Three primary types of linkers were studied: hydrophilic PEG chains, hydrophobic short linkers, and amphiphilic linkers. Our results show that PEG chain alone can only maintain 40% TCO reactivity. Unexpectedly, a short alkyl chain (valeric acid) provided superior results, with 60% TCO reactivity. Lengthening the alkyl chain did not improve results further. Finally, an amphiphilic linker containing valeric acid and PEG performed worse than either linker type alone, at ˜30% functionality. We conclude that our previous 100% functional TCO result obtained with the two-step coupling may have stemmed from generation of the DBCO/azide cycloaddition product. Future work will explore factors such as rigidity of linker structure, polarity, or charges.

  3. Reactivity of Various Compound Classes Towards the Folin-Ciocalteu Reagent

    NASA Astrophysics Data System (ADS)

    Walker, Richard B.; Everette, Jace D.; Bryant, Quinton M.; Green, Ashlee M.; Abbey, Yvonne A.; Wangila, Grant W.

    2010-04-01

    The Folin-Ciocalteu assay has been used for over 80 years for the detection and quantitation of phenols. A modification of it, called the Lowry assay, is used for the quantitation of proteins. It has been commonly reported that the Folin-Ciocalteu reagent, which is a complex mixture containing sodium molybdate and sodium tungstate, is reactive towards other antioxidants besides phenols. However, until now, no one has done experiments to test this hypothesis. In our study, we tested the reactivity of the reagent towards over 70 compounds. Compound classes included phenols, thiols, vitamins, amino acids, proteins, nucleotide bases, unsaturated fatty acids, carbohydrates, organic acids, inorganic ions, aldehydes and ketones. All phenols, proteins and thiols tested were reactive towards the reagent. Other compounds which showed reactivity included guanine, glyceraldehyde, dihydroxyacetone, tyrosine, tryptophan, cysteine, ascorbic acid, Trolox, retinoic acid, pyridoxine, Fe+2, Mn+2, I- and SO3-2. In summary, our study showed that the Folin-Ciocalteu reagent is significantly reactive towards other compounds besides phenols. Therefore, it should be seen as a measure of total antioxidant capacity rather than phenolic content. It would be useful as a general antioxidant assay for measuring antioxidant capacities of compounds of biomedical interest.

  4. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes.

    PubMed

    Rodríguez-Bolaños, Monica; Cabrera, Nallely; Perez-Montfort, Ruy

    2016-10-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins.

  5. Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes

    PubMed Central

    Rodríguez-Bolaños, Monica; Cabrera, Nallely

    2016-01-01

    The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588

  6. Molecular structure, reactivity, and toxicity of the complete series of chlorinated benzenes.

    PubMed

    Padmanabhan, J; Parthasarathi, R; Subramanian, V; Chattaraj, P K

    2005-12-08

    The structure and chemical reactivity profiles of all 12 chlorobenzenes have been investigated using the density functional theory and ab initio molecular orbital calculations. Global and local reactivity descriptors such as electrophilicity index and local philicity, respectively, of the selected systems have been calculated in order to gain insights into the reactive nature and the reactive sites of these compounds. Also, the effects of chlorine substitution on the aromaticity of the compounds have been analyzed by calculating the nucleus-independent chemical shift. Interaction through charge transfer between chlorobenzenes and nucleic acid bases/selected base pairs are determined using Parr's formula. The results revealed that the chlorobenzenes act as electron acceptors in their interaction with biomolecules. Structure-toxicity analysis of this entire set of chlorobenzenes demonstrates the importance of the electrophilicity index in the prediction of reactivity/toxicity.

  7. Reactivity of phenolic compounds towards free radicals under in vitro conditions.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia; Zakaria, Zainul Akmar

    2015-09-01

    The free radical scavenging activity and reducing power of 16 phenolic compounds including four hydroxycinnamic acid derivatives namely ferulic acid, caffeic acid, sinapic acid and p-coumaric acid, benzoic acid and its derivatives namely protocatechuic acid, gallic acid and vanillic acid, benzene derivatives namely vanillin, vanillyl alcohol, veratryl alcohol, veratraldehyde, pyrogallol, guaiacol and two synthetic antioxidants, butylated hydroxy anisole (BHA) and propyl gallate were evaluated using 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH(•)), 2,2'-Azinobis-3- ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), Hydroxyl radical ((•)OH) and Superoxide radical (O2 (•-)) scavenging assays and reduction potential assay. By virtue of their hydrogen donating ability, phenolic compounds with multiple hydroxyl groups such as protocatechuic acid, pyrogallol, caffeic acid, gallic acid and propyl gallate exhibited higher free radical scavenging activity especially against DPPH(•) and O2 (•-). The hydroxylated cinnamates such as ferulic acid and caffeic acid were in general better scavengers than their benzoic acid counter parts such as vanillic acid and protocatechuic acid. All the phenolic compounds tested exhibited more than 85 % scavenging due to the high reactivity of the hydroxyl radical. Phenolic compounds with multiple hydroxyl groups also exhibited high redox potential. Exploring the radical scavenging and reducing properties of antioxidants especially those which are found naturally in plant sources are of great interest due to their protective roles in biological systems.

  8. Permeable Reactive Zones for Groundwater Remediation

    EPA Science Inventory

    The presentation will cover aspects of the application of permeable reactive zones to treat contaminated ground water. Specific field studies will be discussed covering both granular iron-based and organic carbon-based reactive barriers. Specific contaminants addressed include:...

  9. C-Reactive Protein (CRP) Test

    MedlinePlus

    ... Home Visit Global Sites Search Help? C-Reactive Protein (CRP) Share this page: Was this page helpful? Also known as: CRP Formal name: C-Reactive Protein Related tests: ESR , Complement , Procalcitonin , ANA , Rheumatoid Factor ...

  10. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  11. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  12. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  13. Perceptual basis for reactive teleoperation.

    SciTech Connect

    Park, Y. S.; Ewing, T. F.; Boyle, J. M.; Yule, T. J.

    2001-08-28

    To enhance task performance in partially structured environment, enhancement of teleoperation was proposed by introducing autonomous behaviors. Such autonomy is implemented based on reactive robotic architecture, where reactive motor agents that directly couples sensory inputs and motor actions become the building blocks. To this end, presented in this paper is a perceptual basis for the motor agents. The perceptual basis consists of perceptual agents that extracts environmental information from a structured light vision system and provide action oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms--sensor fission, fusion, and fashion--becomes basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.

  14. Reactive behavior, learning, and anticipation

    NASA Technical Reports Server (NTRS)

    Whitehead, Steven D.; Ballard, Dana H.

    1989-01-01

    Reactive systems always act, thinking only long enough to 'look up' the action to execute. Traditional planning systems think a lot, and act only after generating fairly precise plans. Each represents an endpoint on a spectrum. It is argued that primitive forms of reasoning, like anticipation, play an important role in reducing the cost of learning and that the decision to act or think should be based on the uncertainty associated with the utility of executing an action in a particular situation. An architecture for an adaptable reactive system is presented and it is shown how it can be augmented with a simple anticipation mechanism that can substantially reduce the cost and time of learning.

  15. Two forms of reactive arthritis?

    PubMed Central

    Toivanen, P.; Toivanen, A.

    1999-01-01

    Inflammatory arthritides developing after a distant infection have so far been called reactive or postinfectious, quite often depending on the microbial trigger and/or HLA-B27 status of the patient. For clarity, it is proposed that they all should be called reactive arthritis, which, according to the trigger, occurs as an HLA-B27 associated or non-associated form. In addition to the causative agents and HLA-B27, these two categories are also distinguished by other characteristics. Most important, HLA-B27 associated arthritis may occur identical to the Reiter's syndrome with accompanying uretheritis and/or conjunctivitis, whereas in the B27 non-associated form this has not been clearly described. Likewise, only the B27 associated form belongs to the group of spondyloarthropathies.

 PMID:10577958

  16. Reactive cutaneous cytophagocytosis in nocardiosis.

    PubMed Central

    Kim, Chi-Yeon; Kim, Tae-Heung; Lee, Won-Sup; Lee, Ai-Young

    2002-01-01

    Cutaneous nocardiosis, which usually manifests in the form of pustules, abscesses, or subcutaneous nodules, is occasionally found in immunocompromised patients. A 59-yr-old Korean man with myasthenia gravis and thymoma developed nodular skin lesions on his trunk. Histopathologically, abscess formation with a dense infiltrate of neutrophils and many cytophagic histiocytes were observed. Numerous filamentous organisms, which turned out to be Nocardia asteroides by culture, were also found. After sulfamethoxazole-trimethoprim therapy, all of the skin lesions rapidly decreased in size, with a marked diminution of the number of cytophagic histiocytes, and cleared up within four months. On reporting a case of cutaneous nocardiosis showing unusual histopathologic findings, we considered that reactive conditions should be included in the differential diagnosis of the cutaneous cytophagocytosis, and that nocardiosis could be one of the diseases showing reactive cytophagocytosis. PMID:11961320

  17. Perceptual basis for reactive teleoperation

    NASA Astrophysics Data System (ADS)

    Park, Young S.; Ewing, Thomas F.; Boyle, James M.; Yule, Thomas J.

    2001-10-01

    To improve task performance in partially structured environments, enhancements to teleoperation have been proposed by introducing autonomous behaviors. Such autonomy is implemented based on a reactive robotic architecture, where reactive motor agents that directly couple sensory inputs and motor actions become the building blocks. To this end, a perceptual basis for the motor agents is presented in this paper. The perceptual basis consists of perceptual agents that extract environmental information from a structured light vision system and provide action-oriented perception for the corresponding motor agents. Rather than performing general scene reconstruction, a perceptual agent directly provides the motion reference for the motor behavior. Various sensory mechanisms - sensor fission, fusion, and fashion - become basic building blocks of the perception process. Since perception is a process deeply intertwined with the motor actions, active perception may also incorporate motor behaviors as an integral perceptual process.

  18. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  19. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  20. Stress Reactivity in Chronic Tinnitus

    PubMed Central

    Betz, Linda T.; Mühlberger, Andreas; Langguth, Berthold; Schecklmann, Martin

    2017-01-01

    Tinnitus is primarily an auditory symptom. Yet not only patients and clinicians, but also current pathophysiological models relate the onset and maintenance of tinnitus to stress. Here physiological and psychological stress reactivity was investigated in 19 patients with subjective chronic tinnitus and 19 comparable healthy controls. All participants underwent five consecutive measurements in one session including three resting conditions and two stress tasks in between (mental arithmetic and concentration on tinnitus/ear noise). Stress reactivity was assessed by heart rate (HR), heart rate variability (HRV) and subjective ratings for each of the five measurements. In patients with tinnitus, mean HR was overall decreased and blunted in response to acute stress induced by mental arithmetic compared to controls. HRV measures did not differ between both groups. Tinnitus sufferers indicated more subjective stress and increased awareness of tinnitus after the mental arithmetic task (during both resting and concentration on tinnitus measurements), but perceived similar levels of stress during mental arithmetic stress. In contrast to controls, HR and HRV were not correlated and also strain reports and physiological data were not associated in tinnitus. Our data show hints for a de-synchronization of physiological and psychological stress reactivity in chronic tinnitus. PMID:28134346

  1. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    PubMed

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  2. Carbohydrate-reactive, pore-forming outer membrane proteins of Aeromonas hydrophila.

    PubMed Central

    Quinn, D M; Atkinson, H M; Bretag, A H; Tester, M; Trust, T J; Wong, C Y; Flower, R L

    1994-01-01

    Two outer membrane proteins of Aeromonas hydrophila A6, isolated in a one-step affinity chromatography process based on carbohydrate reactivity, were found to be pore-forming molecules in artificial planar bilayer membranes. These carbohydrate-reactive outer membrane proteins (CROMPs; M(r)s, 40,000 and 43,000) were subjected to amino acid analysis. The amino acid profiles for these two outer membrane proteins were almost identical. A partial protein sequence of a 14-amino-acid fragment of the 40,000-Da protein revealed homology with outer membrane porins of Escherichia coli and A. hydrophila. CROMPs were compared with carbohydrate-reactive porins also extracted from outer membranes of A. hydrophila A6. These porins were isolated by using standard porin purification techniques (insolubility in 2% sodium dodecyl sulfate, solubility in 0.4 M NaCl, and Sephacryl S-200 gel filtration), and then Synsorb H type 2 affinity chromatography was done. The physical and functional properties of the carbohydrate-reactive porins and CROMPs were found to be identical. On the basis of pore-forming properties in planar lipid bilayers and channel inhibition with maltotriose solutions, a nonspecific, general diffusion porin and a LamB-like maltoporin were identified in both CROMP and carbohydrate-reactive porin preparations. To our knowledge, the use of carbohydrate reactivity to isolate channel-forming proteins from bacterial outer membranes has not been reported previously. Images PMID:7520425

  3. A structurally driven analysis of thiol reactivity in mammalian albumins.

    PubMed

    Spiga, Ottavia; Summa, Domenico; Cirri, Simone; Bernini, Andrea; Venditti, Vincenzo; De Chiara, Matteo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Di Simplicio, Paolo; Niccolai, Neri

    2011-04-01

    Understanding the structural basis of protein redox activity is still an open question. Hence, by using a structural genomics approach, different albumins have been chosen to correlate protein structural features with the corresponding reaction rates of thiol exchange between albumin and disulfide DTNB. Predicted structures of rat, porcine, and bovine albumins have been compared with the experimentally derived human albumin. High structural similarity among these four albumins can be observed, in spite of their markedly different reactivity with DTNB. Sequence alignments offered preliminary hints on the contributions of sequence-specific local environments modulating albumin reactivity. Molecular dynamics simulations performed on experimental and predicted albumin structures reveal that thiolation rates are influenced by hydrogen bonding pattern and stability of the acceptor C34 sulphur atom with donor groups of nearby residues. Atom depth evolution of albumin C34 thiol groups has been monitored during Molecular Dynamic trajectories. The most reactive albumins appeared also the ones presenting the C34 sulphur atom on the protein surface with the highest accessibility. High C34 sulphur atom reactivity in rat and porcine albumins seems to be determined by the presence of additional positively charged amino acid residues favoring both the C34 S⁻ form and the approach of DTNB.

  4. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  5. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  6. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.

    PubMed

    Vindedahl, Amanda M; Stemig, Melissa S; Arnold, William A; Penn, R Lee

    2016-02-02

    Natural organic matter (NOM) is ubiquitous in surface water and groundwater and interacts strongly with mineral surfaces. The details of these interactions, as well as their impacts on mineral surface reactivity, are not well understood. In this work, both the reactivity and aggregation of goethite (α-FeOOH) nanoparticles were quantified in the presence of well-characterized humic substances. Results from monitoring the kinetics of reductive degradation of 4-chloronitrobenzene (4-ClNB) by Fe(II) adsorbed onto the goethite nanoparticles with and without added humic substances demonstrates that, in all cases, humic substances suppressed Fe(II)-goethite reactivity. The ranking of the standards from the least to most inhibitive was Pahokee Peat humic acid, Elliot Soil humic acid, Suwannee River humic acid, Suwannee River NOM, Suwannee River fulvic acid I, Suwannee River fulvic acid II, and Pahokee Peat fulvic acid. Correlations between eight characteristics (molecular weight, carboxyl concentration, and carbon, oxygen, nitrogen, aliphatic, heteroaliphatic, and aromatic content) and 4-ClNB degradation rate constants were observed. Faster kinetic rates of reductive degradation were observed with increased molecular weight and nitrogen, carbon, and aromatic content, and slower rates were observed with increased carboxyl concentration and oxygen, heteroaliphatic, and aliphatic content. With these correlations, improved predictions of the reactivity of Fe(II)-goethite with pollutants based on properties of the humic substances are possible.

  7. Reactive composite compositions and mat barriers

    SciTech Connect

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  8. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  9. High-pressure reactivity of L,L-lactide.

    PubMed

    Ceppatelli, Matteo; Frediani, Marco; Bini, Roberto

    2011-03-17

    L,L-Lactide, a dimer of L-lactic acid, is the typical monomer used for the catalytic synthesis of poly(L-lactic acid) (PLLA). We studied its phase diagram and reactivity at high pressure and high temperature by means of a diamond anvil cell. FTIR and Raman spectroscopy were employed to probe the changes occurring in the sample. An increase of temperature at pressure higher than 0.1 GPa revealed a solid-solid phase transition before the melting. A reaction was observed immediately after the melting with the almost complete transformation of the starting reactant to an amorphous poly(lactic acid) (PLA). The increase of pressure was found to accelerate the process, suggesting the reaction rate to be limited in the diffusion step. A steeper acceleration, likely due to multiphoton absorption processes of the 647.1 nm laser light by PLA, was observed in the Raman experiments.

  10. Reactive nitrogen species in cellular signaling

    PubMed Central

    Adams, Levi; Franco, Maria C

    2015-01-01

    The transduction of cellular signals occurs through the modification of target molecules. Most of these modifications are transitory, thus the signal transduction pathways can be tightly regulated. Reactive nitrogen species are a group of compounds with different properties and reactivity. Some reactive nitrogen species are highly reactive and their interaction with macromolecules can lead to permanent modifications, which suggested they were lacking the specificity needed to participate in cell signaling events. However, the perception of reactive nitrogen species as oxidizers of macromolecules leading to general oxidative damage has recently evolved. The concept of redox signaling is now well established for a number of reactive oxygen and nitrogen species. In this context, the post-translational modifications introduced by reactive nitrogen species can be very specific and are active participants in signal transduction pathways. This review addresses the role of these oxidative modifications in the regulation of cell signaling events. PMID:25888647

  11. Compositions for acid treating subterranean formations

    SciTech Connect

    Clark, E. Jr.; Swanson, B.L.

    1991-03-05

    This patent describes a high viscosity acid composition. It comprises: an aqueous acid solution; one or more acrylamide polymers dissolved in the acid solution in an amount sufficient to increase the viscosity of the acid solution; a liquid hydrocarbon dispersed in the acid solution; and one or more nonionic surface active agents having at least one reactive hydroxyl group per molecule present in the composition in an amount sufficient to interact with the acrylamide polymer or polymers in the presence of the liquid hydrocarbon whereby the viscosity of the acid solution is further increased and stabilized.

  12. Sensing and Tactile Artificial Muscles from Reactive Materials

    PubMed Central

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V.; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires. PMID:22319265

  13. Sensing and tactile artificial muscles from reactive materials.

    PubMed

    Conzuelo, Laura Valero; Arias-Pardilla, Joaquín; Cauich-Rodríguez, Juan V; Smit, Mascha Afra; Otero, Toribio Fernández

    2010-01-01

    Films of conducting polymers can be oxidized and reduced in a reversible way. Any intermediate oxidation state determines an electrochemical equilibrium. Chemical or physical variables acting on the film may modify the equilibrium potential, so that the film acts as a sensor of the variable. The working potential of polypyrrole/DBSA (Dodecylbenzenesulfonic acid) films, oxidized or reduced under constant currents, changes as a function of the working conditions: electrolyte concentration, temperature or mechanical stress. During oxidation, the reactive material is a sensor of the ambient, the consumed electrical energy being the sensing magnitude. Devices based on any of the electrochemical properties of conducting polymers must act simultaneously as sensors of the working conditions. Artificial muscles, as electrochemical actuators constituted by reactive materials, respond to the ambient conditions during actuation. In this way, they can be used as actuators, sensing the surrounding conditions during actuation. Actuating and sensing signals are simultaneously included by the same two connecting wires.

  14. Effects of sodium selenite on vascular smooth muscle reactivity.

    PubMed

    Togna, G; Russo, P; Pierconti, F; Caprino, L

    2000-02-01

    The effects of sodium selenite (Na(2)SeO(3)) on the vascular smooth muscle reactivity of rabbit aorta were studied. In isolated rabbit aorta, Na(2)SeO(3) inhibited contractile response to phenylephrine and developed a lasting contracture in the vascular tissue. Relaxation in phenylephrine-precontracted aortic rings induced by sodium nitroprusside and 8-bromo-guanosine 3':5'-cyclic-monophosphate was also inhibited. Preliminary data obtained with ascorbic acid suggested a partial involvement of an oxidative mechanism. Excluding the possibility that Se damages actin or modifies its distribution (immunohistochemical evaluation), results indicate that Se alters vascular smooth muscle reactivity by inhibiting both its contracting and relaxing properties. Calcium-dependent mechanisms appear to be primarily involved and an interference with calcium re-uptake by sarcoplasmic reticulum as a possible site of Se vascular action could be hypothesized.

  15. Reactive Retinal Astrocytic Tumor (Focal Nodular Gliosis): A Case Report

    PubMed Central

    Hudson, Lauren E.; Mendoza, Pia R.; Yan, Jiong; Grossniklaus, Hans E.

    2017-01-01

    Purpose To report the clinical and histopathological findings of a reactive retinal astrocytic tumor (RRAT) that progressed to massive retinal gliosis. Observations The patient presented with an elevated, white-yellow retinal mass and extensive retinal exudation in the left eye. Progressive enlargement of the mass and proliferative vitreoretinopathy eventually led to phthisis bulbi and enucleation. Histologically, the mass showed a predominant astrocytic component with intense glial fibrillary acidic protein staining, hyperplasia, fibrous metaplasia, and osseous metaplasia of the retinal pigment epithelium. The Ki-67 proliferative index was <5%, and few scattered vascular channels were observed. Conclusions and Importance These findings show that this tumor is the result of a reactive glial process rather than of neoplastic vascular proliferation. Massive retinal gliosis probably represents the advanced stage of RRAT.

  16. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Wilkins, David E.; Myers, Karen L.

    1994-01-01

    Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.

  17. On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons

    NASA Astrophysics Data System (ADS)

    Ania, C. O.; Parra, J. B.; Arenillas, A.; Rubiera, F.; Bandosz, T. J.; Pis, J. J.

    2007-04-01

    The mechanism of reactive adsorption of dibenzothiophene (DBT) on a series of modified carbons derived from the recycled PET was investigated. The influence of the oxygen functionalities of the adsorbent on the DBT adsorption capacity was explored. The results revealed that adsorption of DBT on activated carbons is governed by two types of contributions: physisorption on the microporous network of the carbons and chemisorption. Introduction of surface acidic groups enhanced the performance of the carbons as a result of their specific interactions with DBT. The nature of the acidic groups is a decisive factor in the selectivity of the reactive adsorption process.

  18. Typical Reactive Armor Safety Tests

    DTIC Science & Technology

    1993-04-02

    way. etc.). c. Penetration measurements into the backup armor of the dynamic or static rounds (i.e., partial or comple e penetration, depth of...ZP Oe) Alberdeen Prc~ving Ground , MD 21005-5059 Aberdeen Proving Ground , HD 21005-5055 as NAVE 0ýu- TLD,%G 57ON5ORNG 16 (VEif N8 9...OPFJPATIONS PROCEDURE AMSTE-RP-702-10 Test Operatiuns Procedure (TOP) 2-2-623 AD No. 2 April 1993 TYPICAL REACTIVE ARMOR SAFETY TESTS Paragraph 1

  19. Permeable Reactive Barrier: Technology Update

    DTIC Science & Technology

    2011-06-01

    Contrary to laboratory findings, breakdown products like TAT from TNT have not been observed under field conditions. 4.3 Organic Substrates (Biowalls...low frequency of injection required, and lower product cost relative to other slow- release substrate types. There is an economy of scale in large...fatty acids Biodegradation breakdown products and fermentation substrates . Indicator of substrate distribution. Phospholipid fatty acids Indicator of

  20. Reactive nitrogen deposition to South East Asian rainforest

    NASA Astrophysics Data System (ADS)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  1. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health.

  2. Metallacyclopentadienes: synthesis, structure and reactivity.

    PubMed

    Ma, Wangyang; Yu, Chao; Chen, Tianyang; Xu, Ling; Zhang, Wen-Xiong; Xi, Zhenfeng

    2017-02-20

    Metallacyclopentadienes, which possess two M-C(sp(2)) bonds and feature the structure of M(C[upper bond 1 start]R(1)[double bond, length as m-dash]CR(2)-CR(3)[double bond, length as m-dash]C[upper bond 1 end]R(4)), are an important class of five-membered metallacycles. They are considered as both reactive intermediates in the stoichiometric and catalytic transformations of organic molecules and useful precursors to main group element compounds, and have received considerable attention in organometallic chemistry, coordination chemistry and synthetic organic chemistry over the past six decades because of their unique metallacyclic structure. This review comprehensively presents the synthesis, structure and reactivity of the s-, p-, d- and f-block metallacyclopentadienes distributed in the whole periodic table. In addition, their application in synthetic organic chemistry and polymer chemistry is summarized. This review aims to be beneficial for the design and synthesis of novel metallacyclopentadienes, and for promoting the rapid development of metallacyclic chemistry.

  3. [Biodegradation of reactive turquoise blue].

    PubMed

    Fu, L; Wen, X; Xu, L; Qian, Y

    2001-07-01

    In this study, the anaerobic degradation and the aerobic degradation of a kind of reactive dye--Reactive Turquoise Blue(RTB) were compared. The results proved that anaerobic sludge could only decompose RTB in the presence of glucose while aerobic sludge decomposed RTB with or without the presence of glucose (RTB of 20 mg/L was reduced by 37.4% through 24 hours' aerobic treatment with RTB as sole carbon source). The enhancement of glucose concentration was beneficial for both anaerobic and aerobic degradation of RTB: the anaerobic and the aerobic removal efficiencies were respectively 81.5% and 73.6% with RTB of 20 mg/L and glucose of 1200 mg/L. In the influent RTB concentration also had influence on the activity of anaerobic and aerobic microorganisms. When glucose concentration was 800 mg/L or 1200 mg/L and RTB concentration was 20 mg/L to 100 mg/L, anaerobic removal efficiency of RTB was higher than aerobic removal efficiency by 4.9%-27.2%, which meant that anaerobic bacteria is more powerful than aerobic bacteria in terms of RTB removal.

  4. Geophysical Characterization and Reactive Transport Modeling to Quantify Plume Behavior

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Wainwright, H.; Bea, S. A.; Spycher, N.; Li, L.; Sassen, D.; Chen, J.

    2012-12-01

    Predictions of subsurface contaminant plume mobility and remediation often fail due to the inability to tractably characterize heterogeneous flow-and-transport properties and monitor critical geochemical transitions over plume-relevant scales. This study presents two recently developed strategies to quantify and predict states and processes across scales that govern plume behavior. Development of both strategies takes advantage of multi-scale and disparate datasets and has involved the use of reactive transport models, geophysical methods, and stochastic integration approaches. The first approach, called reactive facies, exploits coupled physiochemical heterogeneity to characterize subsurface flow and transport properties that impact plume sorption and thus mobility. We develop and test the reactive facies concept within uranium contaminated Atlantic Coastal Plain sediments that underlie the U.S. Department of Energy Savannah River Site, F-Area, South Carolina. Through analysis of field data (core samples, geophysical well logs, and cross-hole ground penetrating radar and seismic datasets) coupled with laboratory sorption studies, we have identified two reactive facies that have unique distributions of mineralogy, texture, porosity, hydraulic conductivity and geophysical attributes. We develop and use facies-based relationships with geophysical data in a Bayesian framework to spatially distribute reactive facies and their associated transport properties and uncertainties along local and plume-scale geophysical transects. To illustrate the value of reactive facies, we used the geophysically-obtained reactive facies properties to parameterize reactive transport models and simulate the migration of an acidic-U(VI) plume through the 2D domains. Modeling results suggest that each identified reactive facies exerts control on plume evolution, highlighting the usefulness of the reactive facies concept and approach for spatially distributing properties that control flow and

  5. Super Brønsted acid catalysis.

    PubMed

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2011-03-21

    Brønsted acid catalysis has emerged as a new class of catalysis in modern organic synthesis. However, in order to make the utility of the Brønsted acid catalysis as broad as the well-developed Lewis acid catalysis, it is desirable to develop Brønsted acids demonstrating both high reactivities and selectivities. In this feature article, we will present our achievement in the design and development of strong Brønsted acids and their application to organic reactions. Furthermore, we will describe the Tf(2)NH-catalyzed Mukaiyama aldol reaction of super silyl enol ethers. We also will highlight the differences in reactivity and chemo- and stereo-selectivity between Brønsted and Lewis acid catalysis.

  6. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  7. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    SciTech Connect

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  8. Extensive CD4 and CD8 T-cell cross-reactivity between alphaherpesviruses1

    PubMed Central

    Dong, Lichun; Russell, Ronnie M.; Barlow, Russell S.; Haas, Juergen G.; Ramchandani, Meena S.; Johnston, Christine; Buus, Soren; Redwood, Alec J.; White, Katie D.; Mallal, Simon A.; Phillips, Elizabeth J.; Posavad, Christine M.; Wald, Anna; Koelle, David M.

    2015-01-01

    The alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole virus, protein, and peptide levels, consistent with bi-directional cross-reactivity. HSV-specific CD4 T cells recovered from HSV seronegative persons can be partially explained by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, and kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T-cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both