Science.gov

Sample records for 2-way crossover phase

  1. Lubiprostone improves visualization of small bowel for capsule endoscopy: a double-blind, placebo-controlled 2-way crossover study

    PubMed Central

    Matsuura, Mizue; Inamori, Masahiko; Inou, Yumi; Kanoshima, Kenji; Higurashi, Takuma; Ohkubo, Hidenori; Iida, Hiroshi; Endo, Hiroki; Nonaka, Takashi; Kusakabe, Akihiko; Maeda, Shin; Nakajima, Atsushi

    2017-01-01

    Background and study aims  Lubiprostone has been reported to be an anti-constipation drug. The aim of the study was to investigate the usefulness of lubiprostone both for bowel preparation and as a propulsive agent in small bowel endoscopy. Patients and methods  This was a double-blind, placebo-controlled, 2-way crossover study of subjects who volunteered to undergo capsule endoscopy (CE). A total of 20 subjects (16 male and 4 female volunteers) were randomly assigned to receive a 24-μg tablet of lubiprostone 120 minutes prior to capsule ingestion for CE (L regimen), or a placebo tablet 120 minutes prior to capsule ingestion for CE (P regimen). Main outcome was gastric transit time (GTT) and small-bowel transit time (SBTT). Secondary outcome was adequacy of small-bowel cleansing and the fluid score in the small bowel. The quality of the capsule endoscopic images and fluid in the small bowel were assessed on 5-point scale. Results  The capsule passed into the small bowel in all cases. Median GTT was 57.3 (3 – 221) minutes for the P regimen and 61.3 (10 – 218) minutes for the L regimen ( P  = 0.836). Median SBTT was 245.0 (164 – 353) minutes for the P regimen and 228.05 (116 – 502) minutes for the L regimen ( P  = 0.501). The image quality score in the small bowel was 3.05 ± 1.08 for the P regimen and 3.80 ± 0.49 for the L regimen ( P  < 0.001). The fluid score in the small bowel was 2.04 ± 1.58 for the P regimen and 2.72 ± 1.43 for the L regimen ( P  < 0.001). There was a significant difference between the 2 regimens with regard to image quality. The fluid score was more plentiful for the L regimen than for the P regimen. There were no cases of capsule retention or serious adverse events in this study. Conclusion  Our study showed that use of lubiprostone prior to CE significantly improved visualization of the small bowel during CE as a result of inducing fluid secretion into the small bowel. PMID

  2. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study.

    PubMed

    Suzuki, Takashi; Morita, Masahiko; Kobayashi, Yoshinori; Kamimura, Ayako

    2016-01-01

    Many human studies report that nitric oxide (NO) improves sport performance. This is because NO is a potential modulator of blood flow, muscle energy metabolism, and mitochondrial respiration during exercise. L-Citrulline is an amino acid present in the body and is a potent endogenous precursor of L-arginine, which is a substrate for NO synthase. Here, we investigated the effect of oral L-citrulline supplementation on cycling time trial performance in humans. A double-blind randomized placebo-controlled 2-way crossover study was employed. Twenty-two trained males consumed 2.4 g/day of L-citrulline or placebo orally for 7 days. On Day 8 they took 2.4 g of L-citrulline or placebo 1 h before a 4-km cycling time trial. Time taken to complete the 4 km cycle, along with power output/VO2 ratio (PO/VO2), plasma nitrite and nitrate (NOx) and amino acid levels, and visual analog scale (VAS) scores, was evaluated. L-Citrulline supplementation significantly increased plasma L-arginine levels and reduced completion time by 1.5 % (p < 0.05) compared with placebo. Moreover, L-citrulline significantly improved subjective feelings of muscle fatigue and concentration immediately after exercise. Oral L-citrulline supplementation reduced the time take to complete a cycle ergometer exercise trial. Current Controlled Trials UMIN000014278.

  3. Comparative fasting bioavailability of 2 bepotastine formulations in healthy male Chinese volunteers: an open-label, randomized, single-dose, 2-way crossover study.

    PubMed

    Shentu, Jianzhong; Zhou, Huili; Hu, Xingjiang; Wu, Guolan; Wu, Lihua; Zhu, Meixiang; Zhai, You; Zheng, Yunliang; Liu, Jian

    2014-04-01

    Bepotastine is a second-generation histamine1 receptor antagonist that is used in the treatment of allergic rhinitis, urticaria, and pruritus associated with skin disease. A new generic formulation of bepotastine has been developed in China, and information concerning bioavailability and pharmacokinetic properties in the Chinese population has not been reported. The aim of the present study was to compare the bioavailability and pharmacokinetic properties of 2 tablet formulations of bepotastine, the 10-mg generic formulation (test) and a branded formulation (reference), in healthy male Chinese volunteers to obtain registration approval of the test formulation. A single-center, open-label, randomized, 2-way crossover study with a 1-week washout period was conducted in 24 healthy male volunteers. Blood samples were collected for 16 hours after a single dose of the 10-mg bepotastine test formulation or the reference formulation. Plasma bepotastine concentrations were determined using a validated LC-MS/MS method. Cmax, Tmax, AUC₀-t, AUC₀-∞, and t½ were determined using noncompartmental analysis. The formulations were considered bioequivalent if the 90% CIs for the log-transformed Cmax and AUC values were within the predetermined interval of 75% to 133% and 80% to 125%, respectively, according to the guidelines of the China Food and Drug Administration. No significant differences were found in mean (SD) pharmacokinetic parameters between the test and reference drugs, including Cmax (74.81 [9.91] ng/mL vs 78.60 [29.58] ng/mL), AUC₀-t (295.55[115.29] ng·h/mL vs 299.17[109.29] ng·h/mL), and AUC0-∞ (305.28 [118.50] ng·h/mL vs 310.90 [112.20] ng·h/mL). The mean (SD) t½ values of the test and reference formulations were 2.53 (0.50) hours and 2.62 (0.41) hours, respectively. The 90% CIs of the treatment ratios for the logarithmic transformed values of Cmax, AUC₀-t, and AUC₀-∞ were 86.96% to 101.80%, 93.22% to 104.13%, and 92.66% to 103.30%, respectively

  4. Cascading dynamics on random networks: crossover in phase transition.

    PubMed

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  5. Cascading dynamics on random networks: Crossover in phase transition

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  6. Charge crossover at the U(1)-Higgs phase transition

    SciTech Connect

    Freire, Filipe; Litim, Daniel F.

    2001-08-15

    The type-I region of phase transitions at finite temperature of the U(1)-Higgs theory in 3+1 dimensions is investigated in detail using a Wilsonian renormalization group. We consider, in particular, the quantitative effects induced through the crossover of the scale-dependent Abelian charge from the Gaussian to a nontrivial Abelian fixed point. As a result, the strength of the first-order phase transition is weakened. Analytical solutions to approximate flow equations are obtained, and all characteristics of the phase transition are discussed and compared to the results obtained from perturbation theory. In addition, we present a detailed quantitative study regarding the dependence of the physical observables on the coarse-graining scheme. This results in error bars for the regularization scheme (RS) dependence. We find quantitative evidence for an intimate link between the RS dependence and truncations of flow equations.

  7. Holographic entanglement entropy close to crossover/phase transition in strongly coupled systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Jun

    2017-03-01

    We investigate the behavior of entanglement entropy in the holographic QCD model proposed by Gubser et al. By choosing suitable parameters of the scalar self-interaction potential, this model can exhibit various types of phase structures: crossover, first order and second order phase transitions. We use entanglement entropy to probe the crossover/phase transition, and find that it drops quickly/suddenly when the temperature approaches the critical point which can be seen as a signal of confinement. Moreover, the critical behavior of the entanglement entropy suggests that we may use it to characterize the corresponding phase structures.

  8. Phase transition and crossover in diffusion-limited aggregation with reaction times

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Stanley, H. Eugene

    1990-09-01

    A generalized diffusion-limited aggregation (DLA) with reaction times that has been proposed by Bunde and Miyazima [Phys. Rev. A 38, 2099 (1988)] is considered. Crossover from the DLA to the diffusion-limited self-avoiding walk (DLSAW) is investigated by using the two-parameter position-space renormalization-group method. The crossover exponent and the crossover radius are calculated. The geometrical phase transition between DLA and DLSAW found by Bunde and Miyajima is analyzed by making use of the three-parameter position-space renormalization-group method. A global flow diagram in the three-parameter space is obtained. Above the percolation threshold all the renormalization flows are merged into the DLA point. Below the threshold all the renormalization flows are merged into the DLSAW point. When the reaction time is large, the double-crossover phenomenon occurs below the threshold.

  9. Detecting phase transitions and crossovers in Hubbard models using the fidelity susceptibility

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Wang, Lei; Werner, Philipp

    2016-12-01

    A generalized version of the fidelity susceptibility of single-band and multiorbital Hubbard models is systematically studied using single-site dynamical mean-field theory in combination with a hybridization expansion continuous-time quantum Monte Carlo impurity solver. We find that the fidelity susceptibility is extremely sensitive to changes in the state of the system. It can be used as a numerically inexpensive tool to detect and characterize a broad range of phase transitions and crossovers in Hubbard models, including (orbital-selective) Mott metal-insulator transitions, magnetic phase transitions, high-spin to low-spin transitions, Fermi-liquid to non-Fermi-liquid crossovers, and spin-freezing crossovers.

  10. Examining the Crossover from the Hadronic to Partonic Phase in QCD

    SciTech Connect

    Xu Mingmei; Yu Meiling; Liu Lianshou

    2008-03-07

    A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.

  11. BCS-BEC crossover at finite temperature in the broken-symmetry phase

    NASA Astrophysics Data System (ADS)

    Pieri, P.; Pisani, L.; Strinati, G. C.

    2004-09-01

    The BCS-BEC crossover is studied in a systematic way in the broken-symmetry phase between zero temperature and the critical temperature. This study bridges two regimes where quantum and thermal fluctuations are, respectively, important. The theory is implemented on physical grounds, by adopting a fermionic self-energy in the broken-symmetry phase that represents fermions coupled to superconducting fluctuations in weak coupling and to bosons described by the Bogoliubov theory in strong coupling. This extension of the theory beyond mean field proves important at finite temperature, to connect with the results in the normal phase. The order parameter, the chemical potential, and the single-particle spectral function are calculated numerically for a wide range of coupling and temperature. This enables us to assess the quantitative importance of superconducting fluctuations in the broken-symmetry phase over the whole BCS-BEC crossover. Our results are relevant to the possible realizations of this crossover with high-temperature cuprate superconductors and with ultracold fermionic atoms in a trap.

  12. Crossover Leung-Griffiths model and the phase behavior of dilute aqueous ionic solutions

    NASA Astrophysics Data System (ADS)

    Belyakov, M. Yu.; Kiselev, S. B.; Rainwater, J. C.

    1997-08-01

    A new parametric crossover model for the phase behavior of a binary mixture is presented that corresponds to the Leung-Griffiths model in the critical region and is transformed into the regular classical expansion far away from the critical point. The model is optimized to, and leads to excellent agreement with, isothermal vapor-liquid equilibrium data for dilute aqueous solutions of sodium chloride by Bischoff and co-workers. It then accurately predicts constant-composition phase equilibrium loci as measured by independent workers. This crossover model is therefore capable of representing the thermodynamic surface of ionic solutions in a large range of temperatures and densities around the critical points of vapor-liquid equilibrium.

  13. Gas-liquid phase coexistence and crossover behavior of binary ionic fluids with screened Coulomb interactions.

    PubMed

    Patsahan, O

    2014-06-01

    We study the effects of an interaction range on the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluids: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using the collective variables theory, we find explicit expressions for the relevant coefficients of the effective φ{4} Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid phase diagrams for varying inverse screening length z. Both the critical temperature scaled by the Yukawa potential contact value and the critical density rapidly decrease with an increase of the interaction range (a decrease of z) and then for z<0.05 they slowly approach the values found for a restricted primitive model (RPM). We find that gas-liquid coexistence region reduces with an increase of z and completely vanishes at z≃2.78. Our results clearly show that an increase in the interaction range leads to a decrease of the crossover temperature. For z≃0.01, the crossover temperature is the same as for the RPM.

  14. Diffusionless phase transition with two order parameters in spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Ivashko, Victor; Linares, Jorge

    2014-11-01

    The quantitative analysis of the interface boundary motion between high-spin and low-spin phases is presented. The nonlinear effect of the switching front rate on the temperature is shown. A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on interaction integral is considered. These considerations led to examination of the relation between the order parameters during temperature changes. Starting from the phenomenological Hamiltonian, entropy has been derived using the mean field approach. Finally, the phase diagram, which characterizes the system, is numerically analyzed.

  15. Pharmacokinetic comparison study of a combination containing 500 mg of Naproxen and 20 mg of Esomeprazole: a randomized, single-dose, 2-way crossover, open-label study in healthy Korean men.

    PubMed

    Choi, Hyun-Gyu; Jeon, Ji-Young; Kwak, Seong-Shin; Kim, Hyunil; Jin, Changyun; Im, Yong-Jin; Kim, Eun-Young; Wang, Hye Min; Kim, Yunjeong; Lee, Sun Young; Kim, Min-Gul

    2015-01-01

    Nonsteroidal anti-inflammatory drugs have been used for analgesic, anti-inflammatory, and antithrombotic effects, but they carry a risk of major gastrointestinal damage. This risk can be greatly reduced by the coadministration of inhibitors of gastric acid secretion, such as proton pump inhibitors. This study was performed for the subsequent marketing of a combination drug that contained 500 mg of naproxen and 20 mg of esomeprazole in Korea. We evaluated the comparative bioavailability and tolerability of the test and reference formulations in healthy men. A total of 60 healthy men were enrolled in this single-dose, randomized, open-label, 2-period, 2-sequence, crossover study. During each period, men received a combination of 500 mg of naproxen and 20 mg of esomeprazole for test or reference, and between each period, there was a 1-week washout period. Blood samples were obtained 21 times throughout each period before dosing and 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 24, 48, and 72 hours after oral administration. Plasma concentrations were determined using LC-MS/MS. The pharmacokinetic parameters, including Cmax, AUC0-t, AUC0-∞, and Tmax, were measured, and all treatment-emergent adverse events and their associations with the study medications were recorded throughout the entire study. A total of 59 men completed the study. No significant differences were found in the prevalence of AEs between the 2 formulations. In addition, there were no serious or unexpected AEs during the study. Both formulations had very similar Cmax, AUC, and t½ values, but the Tmax of naproxen appeared earlier in the test formulation than in the reference formulation and that of esomeprazole appeared later in the test formulation than in the reference formulation. This study suggests that the test and reference formulations of a combination of 500 mg of naproxen and 20 mg of esomeprazole are bioequivalent in the extent of absorption and peak concentration

  16. First-principles study of iron spin crossover in the new hexagonal aluminous phase

    NASA Astrophysics Data System (ADS)

    Hsu, Han

    2017-01-01

    The new hexagonal aluminous (NAL) phase, chemical formula A B2C6O12 (A = Na+, K+, Ca2 +; B = Mg2 +, Fe2 +, Fe3 +; C = Al3 +, Si4 +, Fe3 +), is considered a major component (˜20 vol%) of mid-ocean ridge basalt (MORB) under the lower-mantle condition. As MORB can be transported back into the Earth's lower mantle via subduction, a thorough knowledge of the NAL phase is essential to fully understand the fate of subducted MORB and its role in mantle dynamics and heterogeneity. In this Rapid Communication, the complicated spin crossover of the Fe-bearing NAL phase is revealed by a series of local density approximation + self-consistent Hubbard U (LDA+Us c) calculations. Only the ferric iron (Fe3 +) substituting Al/Si in the octahedral (C ) site undergoes a crossover from the high-spin (HS) to the low-spin (LS) state at ˜40 GPa, while iron substituting Mg in the trigonal-prismatic (B ) site remains in the HS state, regardless of its oxidation state (Fe2 + or Fe3 +). The volume/elastic anomalies and the iron nuclear quadrupole splittings determined by calculations are in great agreement with room-temperature experiments. The calculations further predict that the HS-LS transition pressure of the NAL phase barely increases with temperature due to the three nearly degenerate LS states of Fe3 +, suggesting that the elastic anomalies of this mineral can occur at the top lower mantle.

  17. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  18. Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover

    PubMed Central

    Park, Sang Tae; van der Veen, Renske M.

    2017-01-01

    In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics. PMID:28653019

  19. Phase diagram of Ti50-xNi50+x : Crossover from martensite to strain glass

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Wang, Yu; Wang, Dong; Zhou, Yumei; Otsuka, Kazuhiro; Ren, Xiaobing

    2010-06-01

    We systematically investigated the variation in transition behavior and physical properties over a wide excess Ni (acting as defect) concentration range (x=0-2.5) in Ti50-xNi50+x alloys. This enables the establishment of an updated quantitative phase diagram for this important system. The phase diagram shows not only the well-known parent phase and martensite phase but also a premartensitic state and a strain glass state. Our experiments were able to determine quantitatively the borders of these states, the latter two having been unclear so far. The new phase diagram shows that a crossover from martensite to strain glass occurs at x=1.3 , and the appearance of a “premartensitic phase” below a critical temperature Tnd for defect-containing compositions (x>0) . We propose that point defects (excess Ni here) play two roles in a ferroelastic/martensitic system: (i) changing the thermodynamic driving force for the formation of long-range strain order (martensite) and (ii) creating random local stress that favors a premartensitic nanostructure and strain glass. Our work enables a simple explanation for several long-standing puzzles, such as the appearance of premartensitic nanostructure, the vanishing of transition latent heat with increasing Ni content and the anomalous negative temperature coefficient of electrical resistivity in Ni-rich Ti-Ni alloys.

  20. Confinement-Higgs phase crossover as a lattice artifact in 1 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Cubero, Axel Cortés

    2015-12-01

    We examine the phase structure of massive Yang-Mills theory in 1+1 dimensions. This theory is equivalent to a gauged principal chiral sigma model. It has been previously shown that the gauged theory has only a confined phase, and no Higgs phase in the continuum, and at infinite volume. There are no massive gluons, but only hadron-like bound states of sigma-model particles. The reason is that the gluon mass diverges, being proportional to the two-point correlation function of the renormalized field of the sigma model at x = 0. We use exact large- N results to show that after introducing a lattice regularization and typical values of the coupling constants used in Monte Carlo simulations, the gluon mass becomes finite, and even sometimes small. A smooth crossover into a Higgs phase can then appear. For small volumes and large N , we find an analytic expression for the gluon mass, which depends on the coupling constants and the volume. We argue that this Higgs phase is qualitatively similar to the one observed in lattice computations at N = 2.

  1. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Nevidomskyy, Andriy H.

    2015-12-01

    The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.

  2. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    NASA Astrophysics Data System (ADS)

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-01

    We apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models—the square- and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-1 Ising (BSI) model, and the two-dimensional X Y model—and we examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow the exploration of different phases and symmetry-breaking, but they can distinguish phase-transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which is particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the "charge" correlations (vorticity) in the BSI model (X Y model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the "autoencoder method," and we demonstrate that it too can be trained to capture phase transitions and critical points.

  3. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination

    DOE PAGES

    Hu, Wenjian; Singh, Rajiv R. P.; Scalettar, Richard T.

    2017-06-19

    Here, we apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models - the square and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) model, and the 2D XY model, and examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow exploration of different phases and symmetry-breaking, but can distinguish phase transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which ismore » particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the 'charge' correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the 'antoencoder method', and demonstrate that it too can be trained to capture phase transitions and critical points.« less

  4. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination.

    PubMed

    Hu, Wenjian; Singh, Rajiv R P; Scalettar, Richard T

    2017-06-01

    We apply unsupervised machine learning techniques, mainly principal component analysis (PCA), to compare and contrast the phase behavior and phase transitions in several classical spin models-the square- and triangular-lattice Ising models, the Blume-Capel model, a highly degenerate biquadratic-exchange spin-1 Ising (BSI) model, and the two-dimensional XY model-and we examine critically what machine learning is teaching us. We find that quantified principal components from PCA not only allow the exploration of different phases and symmetry-breaking, but they can distinguish phase-transition types and locate critical points. We show that the corresponding weight vectors have a clear physical interpretation, which is particularly interesting in the frustrated models such as the triangular antiferromagnet, where they can point to incipient orders. Unlike the other well-studied models, the properties of the BSI model are less well known. Using both PCA and conventional Monte Carlo analysis, we demonstrate that the BSI model shows an absence of phase transition and macroscopic ground-state degeneracy. The failure to capture the "charge" correlations (vorticity) in the BSI model (XY model) from raw spin configurations points to some of the limitations of PCA. Finally, we employ a nonlinear unsupervised machine learning procedure, the "autoencoder method," and we demonstrate that it too can be trained to capture phase transitions and critical points.

  5. Duality Crossover in Cuprate Stripe Phase at 1/8 Doping

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert

    2000-03-01

    A model (cond- mat/9911108) is presented for an ordered stripe array in the cuprates, and the doping dependence of its electronic dispersion is compared with photoemission. The experimentally observed peak and hump features in Bi_2Sr_2CaCu_2O8 are identified as charged stripe pseudogap and magnetic stripe Mott gap respectively, while analogous features are seen in La_2-xSr_xCuO_4. The 1/8 anomaly is associated with a duality crossover, from a phase of minority charged stripes at low doping to minority magnetic stripes at high doping. This explains the complementary doping dependences of the charge pseudogap and the magnetic spin gap seen in neutron scattering. Analysis of the doping dependence of the spin gap in YBCO confirms a prediction that high-Tc superconductivity is optimal near the termination of the stripe phase (Refs. [199] and [656] of cond- mat/9611238).

  6. Crossover from capillary fingering to compact invasion for two-phase drainage with stable viscosity ratios

    SciTech Connect

    Ferer, M.V.; Bromhal, G.S.; Smith, D.H

    2007-02-01

    Motivated by a wide range of applications from enhanced oil recovery to carbon dioxide sequestration, we have developed a two-dimensional, pore-level model of immiscible drainage, incorporating viscous, capillary, and gravitational effects. This model has been validated quantitatively, in the very different limits of zero viscosity ratio and zero capillary number; flow patterns from modeling agree well with experiment. For a range of stable viscosity ratios (μinjected/μdisplaced 1), we have increased the capillary number, Nc, and studied the way in which the flows deviate from capillary fingering (the fractal flow of invasion percolation) and become compact for realistic capillary numbers. Results exhibiting this crossover from capillary fingering to compact invasion are presented for the average position of the injected fluid, the fluid–fluid interface, the saturation and fractional flow profiles, and the relative permeabilities. The agreement between our results and earlier theoretical predictions [Blunt M, King MJ, Scher H. Simulation and theory of two-phase flow in porous media. Phys Rev A 1992;46:7680–99; Lenormand R. Flow through porous media: limits of fractal patterns. Proc Roy Soc A 1989;423:159–68; Wilkinson D. Percolation effects in immiscible displacement. Phys Rev A 1986;34:1380–90; Xu B, Yortsos YC, Salin D. Invasion Percolation with viscous forces. Phys Rev E 1998;57:739–51] supports the validity of these general theoretical arguments, which were independent of the details of the porous media in both two and three dimensions.

  7. Mesoscopic phase behavior in a quantum dot around crossover between single-level and multilevel transport regimes

    NASA Astrophysics Data System (ADS)

    Takada, S.; Yamamoto, M.; Bäuerle, C.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2017-06-01

    The transmission phase across a quantum dot (QD) is expected to show mesoscopic behavior, where the appearance of a phase lapse between Coulomb peaks (CPs) as a function of the gate voltage depends on the orbital parity relation between the corresponding CPs. On the other hand, such mesoscopic behavior has been observed only in a limited QD configuration (a few-electron and single-level transport regime) and universal phase lapses by π between consecutive CPs have been reported for all the other configurations. Here, we report on the measurement of a transmission phase across a QD around the crossover between single-level and multilevel transport regimes employing an original two-path quantum interferometer. We find mesoscopic behavior for the studied QD. Our results show that the universal phase lapse, a longstanding puzzle of the phase shift, is absent for a standard QD, where several tens of successive well-separated CPs are observed.

  8. Nanoscale self-hosting of molecular spin-states in the intermediate phase of a spin-crossover material.

    PubMed

    Bréfuel, Nicolas; Collet, Eric; Watanabe, Hiroshi; Kojima, Masaaki; Matsumoto, Naohide; Toupet, Loic; Tanaka, Koichiro; Tuchagues, Jean-Pierre

    2010-12-17

    A new spin-crossover (SC) complex [Fe(II)H(2)L(2-Me)][AsF(6)](2) has been synthesized, in which H(2)L(2-Me) denotes the chirogenic hexadentate N(6) Schiff-base ligand bis{[(2-methylimidazol-4-yl)methylidene]-3-aminopropyl}ethylenediamine. This complex has revealed a rich variety of phases during its two-step thermal crossover, as well as photoinduced spin-state switching. A high-symmetry high-spin (HS, S=2) phase, a low-symmetry low-spin (LS, S=0) phase, an intermediate phase characterized by an unprecedented lozenge pattern of 12 predominantly HS molecular crystallographic sites confining 18 predominantly LS molecular crystallographic sites, and a photoinduced low-symmetry HS phase have been accurately evidenced by temperature-dependent magnetic susceptibility, Mössbauer spectroscopy, and crystallographic studies. This variety of phases illustrates the multi-stability of this system, which results from coupling between the electronic states and structural instabilities.

  9. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over.

    PubMed

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-11-18

    Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

  10. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over

    PubMed Central

    Kasahara, Shigeru; Watashige, Tatsuya; Hanaguri, Tetsuo; Kohsaka, Yuhki; Yamashita, Takuya; Shimoyama, Yusuke; Mizukami, Yuta; Endo, Ryota; Ikeda, Hiroaki; Aoyama, Kazushi; Terashima, Taichi; Uji, Shinya; Wolf, Thomas; von Löhneysen, Hilbert; Shibauchi, Takasada; Matsuda, Yuji

    2014-01-01

    Fermi systems in the cross-over regime between weakly coupled Bardeen–Cooper–Schrieffer (BCS) and strongly coupled Bose–Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF∼1(∼0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime. PMID:25378706

  11. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    SciTech Connect

    Lan, S.; Ma, J. L.; Fan, J.; Blodgett, M.; Kelton, K. F.; Wang, X.-L.

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  12. Theoretical analysis of photoinduced first order phase transition in spin-crossover complexes under noise action

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii V.; Maksymov, Artur I.

    2012-01-01

    In this work the macroscopic phenomenological model of spin-crossover compounds in term of relaxation rate in mean field approach have been comprehensive analyzed. It is given the more accurate description of spin-crossover model, which take into consideration environmental noise influence modeled as interaction with a heath bath. Also we have obtained the distribution of probability density function for different values of multiplicative and additive noise intensity. The correlation between the noises is considered. The calculations of mean first passage time of metastable state for correlated case have been performed.

  13. Theoretical analysis of photoinduced first order phase transition in spin-crossover complexes under noise action

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii V.; Maksymov, Artur I.

    2011-09-01

    In this work the macroscopic phenomenological model of spin-crossover compounds in term of relaxation rate in mean field approach have been comprehensive analyzed. It is given the more accurate description of spin-crossover model, which take into consideration environmental noise influence modeled as interaction with a heath bath. Also we have obtained the distribution of probability density function for different values of multiplicative and additive noise intensity. The correlation between the noises is considered. The calculations of mean first passage time of metastable state for correlated case have been performed.

  14. Randomized phase 1 crossover study assessing the bioequivalence of capsule and tablet formulations of dovitinib (TKI258) in patients with advanced solid tumors.

    PubMed

    Sarantopoulos, John; Goel, Sanjay; Chung, Vincent; Munster, Pamela; Pant, Shubham; Patel, Manish R; Infante, Jeffrey; Tawbi, Hussein; Becerra, Carlos; Bruce, Justine; Kabbinavar, Fairooz; Lockhart, A Craig; Tan, Eugene; Yang, Shu; Carlson, Gary; Scott, Jeffrey W; Sharma, Sunil

    2016-11-01

    A capsule formulation of the tyrosine kinase inhibitor dovitinib (TKI258) was recently studied in a phase 3 renal cell carcinoma trial; however, tablets are the planned commercial formulation. Therefore, this randomized 2-way crossover study evaluated the bioequivalence of dovitinib tablet and capsule formulations in pretreated patients with advanced solid tumors, excluding breast cancer. In this 2-part study, eligible patients received dovitinib 500 mg once daily on a 5-days-on/2-days-off schedule. During the 2-period bioequivalence phase, patients received their initial formulation (capsule or tablet) for 3 weeks before being switched to the alternative formulation in the second period. Patients could continue to receive dovitinib capsules on the same dosing schedule during the post-bioequivalence phase. A total of 173 patients were enrolled into the bioequivalence phase of the study (capsule → tablet, n = 88; tablet → capsule, n = 85), and 69 patients had evaluable pharmacokinetics (PK) for both periods. PK analyses showed similar exposure and PK profiles for the dovitinib capsule and tablet formulations and supported bioequivalence [geometric mean ratios: AUClast, 0.95 (90 % CI 0.88-1.01); C max, 0.98 (90 % CI 0.91-1.05)]. The most common adverse events, suspected to be study drug related, included diarrhea (60 %), nausea (53 %), fatigue (45 %), and vomiting (43 %). Of 168 patients evaluable for response, 1 achieved a partial response, and stable disease was observed in 32 % of patients. Dovitinib capsules and tablets were bioequivalent, with a safety profile similar to that observed in other dovitinib studies of patients with heavily pretreated advanced solid tumors.

  15. Coexistence of ferromagnetism and superconductivity close to a quantum phase transition: the Heisenberg- to Ising-type crossover.

    PubMed

    Nevidomskyy, Andriy H

    2005-03-11

    A microscopic mean-field theory of the phase coexistence between ferromagnetism and superconductivity in the weakly ferromagnetic itinerant electron system is constructed, while incorporating a realistic mechanism for superconducting pairing due to the exchange of critical spin fluctuations. The self-consistent solution of the resulting equations determines the superconducting transition temperature which is shown to depend strongly on the exchange splitting. The effect of phase crossover from isotropic (Heisenberg-like) to uniaxial (Ising-like) spin fluctuations near the quantum phase transition is analyzed and the generic phase diagram is obtained. This scenario is then applied to the case of itinerant ferromagnet ZrZn2, which sheds light on the proposed phase diagram of this compound. A possible explanation of superconductivity in UGe2 is also discussed.

  16. Phase diagram of mixtures of colloids and polymers in the thermal crossover from good to θ solvent.

    PubMed

    D'Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo

    2014-07-14

    We determine the phase diagram of mixtures of spherical colloids and neutral nonadsorbing polymers in the thermal crossover region between the θ point and the good-solvent regime. We use the generalized free-volume theory, which takes into account the polymer-concentration dependence of the depletion thickness and of the polymer compressibility. This approach turns out to be quite accurate as long as q = Rg/Rc ≲ 1 (Rg is the radius of gyration of the polymer and Rc is the colloid radius). We find that, close to the θ point, the phase diagram is not very sensitive to solvent quality, while, close to the good-solvent region, changes of the solvent quality modify significantly the position of the critical point and of the binodals. We also analyze the phase behavior of aqueous solutions of charged colloids and polymers, using the approach proposed by Fortini et al. [J. Phys.: Condens. Matter 17, 7783 (2005)].

  17. Molecular dynamics of spin crossover: The (P, T) phase diagram of [Fe(PM-BIA)2(NCS)2

    NASA Astrophysics Data System (ADS)

    Marbeuf, A.; Matar, S. F.; Négrier, P.; Kabalan, L.; Létard, J. F.; Guionneau, P.

    2013-07-01

    The spin crossover properties and the domains of existence of the different phases for the [Fe(PM-BIA)2(NCS)2] complex are obtained from combining DFT and classical molecular dynamics (MD). The potential energy surfaces expressed in the Morse form for Fe-N interactions are deduced from molecular DFT calculations and they allow producing Infra Red and Raman frequencies. These Fe-N potentials inserted in a classical force field lead from MD calculations to the relative energies of the high spin and low spin configurations of the orthorhombic structure. The MD investigations have also allowed assessing the experimental (P, T) phase diagram by showing the monoclinic polymorph in its two spin-states, and generating two triple points.

  18. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition.

    PubMed

    Xu, Limei; Kumar, Pradeep; Buldyrev, S V; Chen, S-H; Poole, P H; Sciortino, F; Stanley, H E

    2005-11-15

    We investigate, for two water models displaying a liquid-liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid-liquid critical point. We find a correlation between the dynamic crossover and the locus of specific heat maxima C(P)(max) ("Widom line") emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between C(P)(max) and dynamic crossover is not limited to the case of water, a hydrogen bond network-forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically symmetric two-scale potential known to possess a liquid-liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.

  19. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition

    PubMed Central

    Xu, Limei; Kumar, Pradeep; Buldyrev, S. V.; Chen, S.-H.; Poole, P. H.; Sciortino, F.; Stanley, H. E.

    2005-01-01

    We investigate, for two water models displaying a liquid–liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid–liquid critical point. We find a correlation between the dynamic crossover and the locus of specific heat maxima \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}C_{P}^{{\\mathrm{max}}}\\end{equation*}\\end{document} (“Widom line”) emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid–liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}C_{P}^{{\\mathrm{max}}}\\end{equation*}\\end{document} and dynamic crossover is not limited to the case of water, a hydrogen bond network-forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically symmetric two-scale potential known to possess a liquid–liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions. PMID:16267132

  20. One-dimensional analysis of maximum performance in a closed two-phase thermosyphon with a crossover flow separator

    SciTech Connect

    Lin, L.; Groll, M.; Roesler, S.

    1996-07-01

    A comprehensive model is developed to calculate the maximum performance of a thermosyphon with a built-in crossover separator. Mechanisms limiting performance are considered to be a flow instability in a natural-circulation two-phase flow system at low reduced pressures (e.g., for Freon-11, p{sub r} < 0.126) and at low total mass flux and wave film spalling at moderate reduced pressures, respectively. Which limit becomes dominant depends on the operating conditions, as shown by the experimental data. In systematic experiments, various working fluids are used, viz., water, ethanol, Freon-11, and Freon-113. Operating temperature and liquid fill ratio are varied. The present model for maximum performance agrees well (within {+-} 15%) with experimental data.

  1. Monte Carlo simulation of the crossover from Bose glass to Bragg glass phase in layered BSCCO with columnar defects

    NASA Astrophysics Data System (ADS)

    Queiroz, L. M.; Coutinho-Filho, M. D.

    2017-01-01

    Monte Carlo simulations of layered BSCCO samples are used to investigate the behavior of vortex matter at low fields, particularly in connection with the possible occurrence of a Bragg glass (BrG) phase at low density of columnar defects, a phenomenon characterized by the prevalence of short-range over long-range order. In this dislocation-free topological phase the translational order correlation function displays a power law decay. For magnetic induction B  =  0.1 kG the analysis of the data for the first Bragg peak of the planar structure factor, the hexatic order parameter, and the Delaunay triangulation shows that, as the density of columnar defects is lowered, a crossover (or transition) from Bose glass to BrG phase takes place in this highly anisotropic high-T{{}\\text{c}} superconductor. Most importantly, an analysis of the low-temperature 3D vortex–vortex correlation function in terms of the structure factor, calculated via a saddle point approach and the use of the numerical data as input, provides clear-cut evidence of the power law decay of the divergent Bragg peaks in the BrG phase, a fundamental feature that was inequivocally verified only in isotropic compounds.

  2. A randomized phase II crossover study of imatinib or rituximab for cutaneous sclerosis after hematopoietic cell transplantation

    PubMed Central

    Arai, Sally; Pidala, Joseph; Pusic, Iskra; Chai, Xiaoyu; Jaglowski, Samantha; Khera, Nandita; Palmer, Jeanne; Chen, George L; Jagasia, Madan H; Mayer, Sebastian A; Wood, William A; Green, Michael; Hyun, Teresa S.; Inamoto, Yoshihiro; Storer, Barry E; Miklos, David B; Shulman, Howard M.; Martin, Paul J; Sarantopoulos, Stefanie; Lee, Stephanie J; Flowers, Mary E D

    2015-01-01

    Purpose Cutaneous sclerosis (CS) occurs in 20% of patients with chronic graft-versus-host disease (GVHD) and can compromise mobility and quality of life. Experimental design We conducted a prospective, multi-center, randomized, two-arm phase II crossover trial of imatinib (200 mg daily) or rituximab (375 mg/m2 intravenously weekly × 4 doses, repeatable after 3 months) for treatment of CS diagnosed within 18 months (NCT01309997). The primary endpoint was significant clinical response (SCR) at 6 months, defined as quantitative improvement in skin sclerosis or joint range of motion. Treatment success was defined as SCR at 6 months without crossover, recurrent malignancy or death. Secondary end points included changes of B cell profiles in blood (BAFF levels and cellular subsets), patient-reported outcomes, and histopathology between responders and non-responders with each therapy. Results SCR was observed in 9 of 35 (26%, 95% CI 13-43%) participants randomized to imatinib and 10 of 37 (27%, 95% CI 14-44%) randomized to rituximab. Six (17%, 95% CI 7-34%) patients in the imatinib arm and 5 (14%, 95% CI 5-29%) in the rituximab arm had treatment success. Higher percentages of activated B cells (CD27+) were seen at enrollment in rituximab-treated patients who had treatment success (p = 0.01), but not in imatinib-treated patients. Conclusion These results support the need for more effective therapies for CS and suggest that activated B cells define a subgroup of patients with CS who are more likely to respond to rituximab. PMID:26378033

  3. A Randomized Phase II Crossover Study of Imatinib or Rituximab for Cutaneous Sclerosis after Hematopoietic Cell Transplantation.

    PubMed

    Arai, Sally; Pidala, Joseph; Pusic, Iskra; Chai, Xiaoyu; Jaglowski, Samantha; Khera, Nandita; Palmer, Jeanne; Chen, George L; Jagasia, Madan H; Mayer, Sebastian A; Wood, William A; Green, Michael; Hyun, Teresa S; Inamoto, Yoshihiro; Storer, Barry E; Miklos, David B; Shulman, Howard M; Martin, Paul J; Sarantopoulos, Stefanie; Lee, Stephanie J; Flowers, Mary E D

    2016-01-15

    Cutaneous sclerosis occurs in 20% of patients with chronic graft-versus-host disease (GVHD) and can compromise mobility and quality of life. We conducted a prospective, multicenter, randomized, two-arm phase II crossover trial of imatinib (200 mg daily) or rituximab (375 mg/m(2) i.v. weekly × 4 doses, repeatable after 3 months) for treatment of cutaneous sclerosis diagnosed within 18 months (NCT01309997). The primary endpoint was significant clinical response (SCR) at 6 months, defined as quantitative improvement in skin sclerosis or joint range of motion. Treatment success was defined as SCR at 6 months without crossover, recurrent malignancy or death. Secondary endpoints included changes of B-cell profiles in blood (BAFF levels and cellular subsets), patient-reported outcomes, and histopathology between responders and nonresponders with each therapy. SCR was observed in 9 of 35 [26%; 95% confidence interval (CI); 13%-43%] participants randomized to imatinib and 10 of 37 (27%; 95% CI, 14%-44%) randomized to rituximab. Six (17%; 95% CI, 7%-34%) patients in the imatinib arm and 5 (14%; 95% CI, 5%-29%) in the rituximab arm had treatment success. Higher percentages of activated B cells (CD27(+)) were seen at enrollment in rituximab-treated patients who had treatment success (P = 0.01), but not in imatinib-treated patients. These results support the need for more effective therapies for cutaneous sclerosis and suggest that activated B cells define a subgroup of patients with cutaneous sclerosis who are more likely to respond to rituximab. ©2015 American Association for Cancer Research.

  4. Gas Bubbles and Slugs Crossover in Air-Water Two-phase Flow by Multifractals

    NASA Astrophysics Data System (ADS)

    Gorski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2017-05-01

    Slugs and bubbles two-phase flow patterns dynamics in a minichannel are analysed. During the experiment, the volume flow rates of air and water were changed. We study transition of bubbles to slugs two-phase flow patterns using Fourier and multifractal approaches to optical transitivity signal. The sequences of light transmission time series are recorded by a laser-phototransistor sensor. Multifractal analysis helps to identify the two-phase structure and estimate the signal complexity. Especially, we discuss occurrence and identification of a self-aggregation phenomenon. These results are compared to corresponding Fourier spectra. The results indicate that the fractality is a an important factor influencing the distribution of the gas phase in water.

  5. Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity.

    PubMed

    Ishiba, Keita; Morikawa, Masa-Aki; Chikara, Chie; Yamada, Teppei; Iwase, Katsunori; Kawakita, Mika; Kimizuka, Nobuo

    2015-01-26

    Ionic crystals (ICs) of the azobenzene derivatives show photoinduced IC-ionic liquid (IL) phase transition (photoliquefaction) upon UV-irradiation, and the resulting cis-azobenzene ILs are reversibly photocrystallized by illumination with visible light. The photoliquefaction of ICs is accompanied by a significant increase in ionic conductivity at ambient temperature. The photoliquefaction also brings the azobenzene ICs further significance as photon energy storage materials. The cis-IL shows thermally induced crystallization to the trans-IC phase. This transition is accompanied by exothermic peaks with a total ΔH of 97.1 kJ mol(-1) , which is almost double the conformational energy stored in cis-azobenzene chromophores. Thus, the integration of photoresponsive ILs and self-assembly pushes the limit of solar thermal batteries.

  6. Dimensional crossover in a spin liquid to helimagnet quantum phase transition.

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Habicht, Klaus; Meissner, Michael; Grenier, B.; Regnault, L.-P.; Ressouche, E.

    2009-01-01

    Neutron scattering is used to study magnetic field induced ordering in the quasi-1D quantum spin-tube compound Sul-Cu2Cl4 that in zero field has a non-magnetic spin-liquid ground state. The experiments reveal an incommensurate chiral high-field phase stabilized by a geometric frustration of the magnetic interactions. The measured critical exponents \\beta= 0.235 and \

  7. Robust spin crossover platforms with synchronized spin switch and polymer phase transition

    PubMed Central

    Novio, F.; Evangelio, E.; Vazquez-Mera, N.; González-Monje, P.; Bellido, E.; Mendes, S.; Kehagias, N.; Ruiz-Molina, D.

    2013-01-01

    The idea of developing magnetic molecular materials into real functional electronic devices with low-cost and scalable techniques appeared with the emergence of the field several years ago. Today, even though great advances have been done with this aim, the promise of a functional device working at the micro-/nanoscale and at room temperature has unfortunately not completely materialized yet, as their use still strongly depends on the fabrication methodology of a robust device that can be handled and integrated without compromising their functionality. Here we propose the use of polymeric matrices as a platform for the development of such robust switchable structures exhibiting reproducible results independently of the dimension -from macro to micro-/nanoscale- and morphology -from thin-films to nanoparticles and nanoimprinted motives- while allowing to induce an irreversible hysteresis, reminiscent of a non-volatile memory, by synchronization with the polymer phase transition.

  8. Crossover from crossing to tilted vortex phase in Bi2Sr2CaCu2O8+δ single crystals near ab-plane

    NASA Astrophysics Data System (ADS)

    Mirkovic, Jovan; Buzdin, Alexandre; Kashiwagi, Takanari; Yamamoto, Takashi; Kadowaki, Kazuo

    2013-01-01

    In extremely anisotropic layered superconductors of Bi2Sr2CaCu2O8+δ the stacks of vortex pancakes (PV) and the Josephson vortex (JV) interpenetrate, and due to PV-JV mutual pinning energy, weakly interact and form various tilted and crossing lattice structures including vortex chains, stripes, mixed chain + lattice phases, etc. In order to study these phenomena, it is decisive to have excellent quality of samples and the ideal experimental techniques. The vortex phases in high-quality Bi2Sr2CaCu2O8+δ single crystals were studied by in-plane resistivity measurement and local ac magnetic permeability. The sharp crossover was shown by both techniques, deep in the vortex solid state separating the Abrikosov dominant ‘strong pinning’ phase from the Josephson dominant ‘weak pinning’ phase. Those two vortex states were recognized as the mixed chain + lattice vortex phase and chains (tilted) vortex phase, respectively.

  9. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  10. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    PubMed

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  11. Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases.

    PubMed

    Moussa, N Ould; Molnár, G; Bonhommeau, S; Zwick, A; Mouri, S; Tanaka, K; Real, J A; Bousseksou, A

    2005-03-18

    The low-spin (LS-LS, S = 0) diamagnetic form of the binuclear spin crossover complex {[Fe(bt)(NCS)(2)](2)(bpm)} was selectively photoconverted into two distinct macroscopic phases at different excitation wavelengths (1342 or 647.1 nm). These long-lived metastable phases have been identified, respectively, as the symmetry-broken paramagnetic form (HS-LS, S = 2) and the antiferromagnetically coupled (HS-HS, S = 0) high-spin form of the compound. The selectivity may be explained by the strong coupling of the primary excited states to the paramagnetic state.

  12. Antiemetic Corticosteroid Rotation from Dexamethasone to Methylprednisolone to Prevent Dexamethasone-Induced Hiccup in Cancer Patients Treated with Chemotherapy: A Randomized, Single-Blind, Crossover Phase III Trial.

    PubMed

    Go, Se-Il; Koo, Dong-Hoe; Kim, Seung Tae; Song, Haa-Na; Kim, Rock Bum; Jang, Joung-Soon; Oh, Sung Yong; Lee, Kyung Hee; Lee, Soon Il; Kim, Seong-Geun; Park, Lee Chun; Lee, Sang-Cheol; Park, Byeong-Bae; Ji, Jun Ho; Yi, Seong Yoon; Lee, Yun-Gyoo; Yun, Jina; Bruera, Eduardo; Hwang, In Gyu; Kang, Jung Hun

    2017-07-07

    To assess whether the rotation of dexamethasone to methylprednisolone decreases the intensity of dexamethasone-induced hiccup (DIH) in cancer patients treated with chemotherapy. Adult patients who experienced DIH within 3 days after the administration of dexamethasone as an antiemetic were screened. Eligible patients were randomly assigned to receive dexamethasone (n = 33) or methylprednisolone (n = 32) as an antiemetic (randomization phase). In the next cycle of chemotherapy, the dexamethasone group received methylprednisolone and vice versa in the methylprednisolone group (crossover phase). The primary endpoint was the difference in hiccup intensity as measured using the numeric rating scale (NRS) between two groups. No female patients were enrolled, although the study did not exclude them. At the randomization phase, hiccup frequency was 28/33 (84.8%) in the dexamethasone group versus 20/32 (62.5%) in the methylprednisolone group (p = .04). Intensity of hiccup was significantly higher in the dexamethasone group than that in the methylprednisolone group (mean NRS, 3.5 vs. 1.4, p < .001). At the crossover phase, hiccup intensity was further decreased after the rotation of dexamethasone to methylprednisolone in the dexamethasone group (mean NRS, 3.5 to 0.9, p < .001), while it was increased by rotating methylprednisolone to dexamethasone in the methylprednisolone group (mean NRS, 1.4 to 3.3, p = .025). There were no differences in emesis intensity between the two groups at either the randomization or crossover phases. Clinicaltrials.gov identifier: NCT01974024. Dexamethasone-induced hiccup is a male-predominant phenomenon that can be ameliorated by rotating dexamethasone to methylprednisolone without compromising the antiemetic efficacy. In this randomized, multicenter, phase III trial, hiccup intensity was significantly lower when the antiemetic corticosteroid was rotated from dexamethasone to methylprednisolone without a change in emesis

  13. Population-imbalanced lattice fermions near the BCS-BEC crossover: Thermal physics of the breached pair and Fulde-Ferrell-Larkin-Ovchinnikov phases

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Majumdar, Pinaki

    2016-05-01

    We study s -wave superconductivity in the two-dimensional attractive Hubbard model in an applied magnetic field, assume the extreme Pauli limit, and examine the role of spatial fluctuations in the coupling regime corresponding to BCS-BEC crossover. We use a decomposition of the interaction in terms of an auxiliary pairing field, retain the static mode, and sample the pairing field via a Monte Carlo approach. The method requires iterative solution of the Bogoliubov-de-Gennes equations for amplitude- and phase-fluctuating configurations of the pairing field. We establish the full thermal phase diagram of this strong-coupling problem. At low field we observe the magnetized but homogeneous "breached pair" superfluid phase. It reveals that Tc scales an order of magnitude below the mean-field estimate, spontaneous inhomogeneity in the field-induced magnetization, and a strong nonmonotonicity in the temperature dependence of the low-energy density of states. We compare our results to the experimental phase diagram of the imbalanced Fermi gas at unitarity. At higher field we obtain the modulated Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases. The thermal transition from the FFLO phases to the normal state is strongly first order. We track the fermionic momentum distribution, the density of states, and the pairing structure factor deep into the normal state. The pairing structure factor retains weak signature of finite momentum pairing to a high temperature despite the low Tc itself, while the spin-resolved density of states changes from the "pseudogapped" FFLO character to gapless and pseudogapped again with increasing temperature.

  14. The BCS BE crossover phase diagram at T = 0 K for a d-wave superconductor: the importance of the Debye frequency and the tight binding band structure

    NASA Astrophysics Data System (ADS)

    Rodríguez-Núñez, J. J.; Schmidt, A. A.; Alvarez-Llamoza, O.; Orozco, E.

    2004-06-01

    We consider the phase diagram of the BCS (Bardeen-Cooper-Schrieffer)-BE (Bose-Einstein) crossover in the ground state (T = 0 K) of a dx2-y2-wave superconductor, with a nearest neighbour tight binding structure, when we take into account the Debye (phononic) frequency around the chemical potential, mgr. This approach is a continuation of the work of den Hertog (1999 Phys. Rev. B 60 559) and that of Soares et al (2002 Phys. Rev. B 65 174506). The latter authors considered the influence of the second-nearest neighbours, but neither set of authors took into account the effect of the Debye frequency, ohgrD, or the influence of the next nearest neighbour matrix hopping element. We have found the following results: (1) there is not a metallic phase—that is, \\Delta /4t \\rightarrow 0 when V/4t \\rightarrow 0 , \\forall \\, \\omega_{\\mathrm {D}}/4t , \\forall \\, \\alpha ' \\in (-1/2,+1/2) , and \\forall \\,n , where n is the carrier density per site, V is the attractive interaction, t is the nearest neighbour hopping integral, and \\alpha ' is the next nearest neighbour hopping ratio; (2) the BCS-BE crossover line is strongly affected by the presence of ohgrD/4t and that of \\alpha ' —actually, the values of V/4t needed to achieve the Bose-Einstein regime become extremely large for small values of ohgrD/4t; and (3) both Dgr/4t and mgr/4t strongly depend on the values of ohgrD/4t and \\alpha ' . The results (1) are in agreement with the ones found by Perali et al (2003 Phys. Rev. B 68 066501 (Preprint cond-mat/0211132)) and Rodríguez-Núñez et al (2003 Phys. Rev. B 68 066502), and in disagreement with those of den Hertog and Soares et al.

  15. Critical behavior in one dimension: Unconventional pairing, phase separation, BEC-BCS crossover, and magnetic Lifshitz transition

    NASA Astrophysics Data System (ADS)

    Ptok, Andrzej; Cichy, Agnieszka; Rodríguez, Karen; Kapcia, Konrad Jerzy

    2017-03-01

    We study the superconducting properties of population-imbalanced ultracold Fermi mixtures in one-dimensional optical lattices that can be effectively described by the spin-imbalanced attractive Hubbard model in the presence of a Zeeman magnetic field. We use the mean-field theory approach to obtain the ground-state phase diagrams including some unconventional superconducting phases such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, and the η phase (an extremal case of the FFLO phase), both for the case of a fixed chemical potential and for a fixed number of particles. It allows us to determine optimal regimes for the FFLO phase as well as η -pairing stability. We also investigate the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (BEC) with increasing attraction, at T =0 . Finally, the obtained results show that in spite of the occurrence of the Lifshitz transition induced by an external magnetic field, the superconducting state can still exist in the system, at higher magnetic field values.

  16. Sixfold bond orientational properties of a model liquid crystal in the dimensional crossover of B phases: A computer simulation study

    NASA Astrophysics Data System (ADS)

    De Gaetani, Luca; Tani, Alessandro

    2007-02-01

    A wide range of NPT simulations of a bead necklace liquid crystal model in the crystal B, smectic B, smectic A, and nematic phases have been performed. Systems with up to 21600molecules have been studied to observe the behavior of slowly decaying spatial correlation functions. The pair correlation function and its in-plane restriction are consistent with a crystalline phase made of independent two-dimensional crystalline layers. Smectic B phase is studied by the bond orientational pair correlation functions g6 and its extension g6ext. The first reaches a constant value, which seems to rule out a classical hexatic phase. The latter shows a power-law decay within the layers: its typical decay exponent (η6ext) is evaluated. Relationships between multiple harmonics of the C6n order parameter have been evaluated through the whole range of existence of B phases (crystalline and smectic): the extension to the crystalline phase holds and provides an excellent fit of the simulation data.

  17. Crossover of persistent photoconductivity in a phase-separated La0.325Pr0.3Ca0.375MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Hu, Ling; Sheng, Zhigao; Luo, Xuan; Liu, Yu; Huang, Zhonghao; Song, Wenhai; Sun, Yuping

    2013-05-01

    A crossover from positive to negative persistent photoconductivity (PPC) has been observed in the thermal hysteresis region of a La0.325Pr0.3Ca0.375MnO3 thin film. In the cooling process, the resistance shows downward relaxation in darkness. Light illumination induces a resistance drop and positive PPC is observed. However, upon warming, the resistance exhibits upward relaxation without illumination. Moreover, the response of the film to light illumination shows distinct behavior. The resistance decreases to a lower value when the illumination is switched on and then shows upward relaxation during illumination. It recovers to a higher value when the illumination is stopped, which characterizes negative PPC. The PPC ratio is -30.2% at 125 K with a light intensity of 3.06 mW mm-2. These results are discussed based on the phase competition and phase stability switch between ferromagnetic metal and charge/orbital-ordered insulator states. The results may be important for practical applications in photoelectric devices.

  18. Space-Time Vortex Driven Crossover and Vortex Turbulence Phase Transition in One-Dimensional Driven Open Condensates.

    PubMed

    He, Liang; Sieberer, Lukas M; Diehl, Sebastian

    2017-02-24

    We find a first-order transition driven by the strength of nonequilibrium conditions of one-dimensional driven open condensates. Associated with this transition is a new stable nonequilibrium phase, space-time vortex turbulence, whose vortex density and quasiparticle distribution show strongly nonthermal behavior. Below the transition, we identify a new time scale associated with noise-activated unbound space-time vortices, beyond which, the temporal coherence function changes from a Kardar-Parisi-Zhang-type subexponential to a disordered exponential decay. Experimental realization of the nonequilibrium vortex turbulent phase is facilitated in driven open condensates with a large diffusion rate.

  19. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial.

    PubMed

    Hovorka, Roman; Allen, Janet M; Elleri, Daniela; Chassin, Ludovic J; Harris, Julie; Xing, Dongyuan; Kollman, Craig; Hovorka, Tomas; Larsen, Anne Mette F; Nodale, Marianna; De Palma, Alessandra; Wilinska, Malgorzata E; Acerini, Carlo L; Dunger, David B

    2010-02-27

    Closed-loop systems link continuous glucose measurements to insulin delivery. We aimed to establish whether closed-loop insulin delivery could control overnight blood glucose in young people. We undertook three randomised crossover studies in 19 patients aged 5-18 years with type 1 diabetes of duration 6.4 years (SD 4.0). We compared standard continuous subcutaneous insulin infusion and closed-loop delivery (n=13; APCam01); closed-loop delivery after rapidly and slowly absorbed meals (n=7; APCam02); and closed-loop delivery and standard treatment after exercise (n=10; APCam03). Allocation was by computer-generated random code. Participants were masked to plasma and sensor glucose. In APCam01, investigators were masked to plasma glucose. During closed-loop nights, glucose measurements were fed every 15 min into a control algorithm calculating rate of insulin infusion, and a nurse adjusted the insulin pump. During control nights, patients' standard pump settings were applied. Primary outcomes were time for which plasma glucose concentration was 3.91-8.00 mmol/L or 3.90 mmol/L or lower. Analysis was per protocol. This trial is registered, number ISRCTN18155883. 17 patients were studied for 33 closed-loop and 21 continuous infusion nights. Primary outcomes did not differ significantly between treatment groups in APCam01 (12 analysed; target range, median 52% [IQR 43-83] closed loop vs 39% [15-51] standard treatment, p=0.06;

  20. Delayed sleep phase syndrome: A placebo-controlled cross-over study on the effects of melatonin administered five hours before the individual dim light melatonin onset.

    PubMed

    Nagtegaal, J E; Kerkhof, G A; Smits, M G; Swart, A C; Van Der Meer, Y G

    1998-06-01

    In a double-blind placebo-controlled cross-over study, 30 patients with Delayed Sleep Phase Syndrome (DSPS) were included, of whom 25 finished the study. Melatonin 5 mg was administered during two weeks in a double-blind setting and two weeks in an open setting successively or interrupted by two week of placebo. The study's impact was assessed by measurements of the 24-h curves of endogenous melatonin production and rectal temperature (n = 14), polysomnography (n = 22), actigraphy (n = 13), sleep log (n = 22), and subjective sleep quality (n = 25). Mean dim light melatonin onset (DLMO) (+/- SD), before treatment, occurred at 23.17 hours (+/- 138 min). Melatonin was administered five hours before the individual DLMO. After treatment, the onset of the nocturnal melatonin profile was significantly advanced by approximately 1.5 hour. Body temperature trough did not advance significantly. During melatonin use, actigraphy showed a significant advance of sleep onset and polysomnography, a significant decreased sleep latency. Sleep architecture was not influenced. During melatonin treatment patients felt significantly more refreshed in the morning. These results show that analysis of DLMO of patients suffering from DSPS is important both for diagnosis and therapy. These results are discussed in terms of the biochemistry of the pineal.

  1. Microscopic analysis of the superconducting quantum critical point: Finite-temperature crossovers in transport near a pair-breaking quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shah, Nayana; Lopatin, Andrei

    2007-09-01

    A microscopic analysis of the superconducting quantum critical point realized via a pair-breaking quantum phase transition is presented. Finite-temperature crossovers are derived for the electrical conductivity, which is a key probe of superconducting fluctuations. By using the diagrammatic formalism for disordered systems, we are able to incorporate the interplay between fluctuating Cooper pairs and electrons, that is outside the scope of a time-dependent Ginzburg-Landau or effective bosonic action formalism. It is essential to go beyond the standard approximation in order to capture the zero-temperature correction which results purely from the (dynamic) quantum fluctuations and dictates the behavior of the conductivity in an entire low-temperature quantum regime. All dynamic contributions are of the same order and conspire to add up to a negative total, thereby inhibiting the conductivity as a result of superconducting fluctuations. On the contrary, the classical and the intermediate regimes are dominated by the positive bosonic channel. Our theory is applicable in one, two, and three dimensions and is relevant for experiments on superconducting nanowires, doubly connected cylinders, thin films, and bulk in the presence of magnetic impurities, magnetic field, or other pair breakers. A window of nonmonotonic behavior is predicted to exist as either the temperature or the pair-breaking parameter is swept.

  2. A randomized, double-blind, cross-over, phase IV trial of oros-methylphenidate (CONCERTA®) and generic novo-methylphenidate ER-C (NOVO-generic)

    PubMed Central

    Fallu, Angelo; Dabouz, Farida; Furtado, Melissa; Anand, Leena; Katzman, Martin A.

    2016-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a common neurobehavioral disorder with onset during childhood. Multiple aspects of a child’s development are hindered, in both home and school settings, with negative impacts on social, emotional, and cognitive functioning. If left untreated, ADHD is commonly associated with poor academic achievement and low occupational status, as well as increased risk of substance abuse and delinquency. The objective of this study was to evaluate adult ADHD subject reported outcomes when switched from a stable dose of CONCERTA® to the same dose of generic Novo-methylphenidate ER-C®. Methods: Randomized, double-blind, cross-over, phase IV trial consisted of two phases in which participants with a primary diagnosis of ADHD were randomized in a 1:1 ratio to 3 weeks of treatment with CONCERTA or generic Novo-Methylphenidate ER-C. Following 3 weeks of treatment, participants were crossed-over to receive the other treatment for an additional 3 weeks. Primary efficacy was assessed through the use of the Treatment Satisfaction Questionnaire for Medication, Version II (TSQM-II). Results: Participants with ADHD treated with CONCERTA were more satisfied in terms of efficacy and side effects compared to those receiving an equivalent dose of generic Novo-Methylphenidate ER-C. All participants chose to continue with CONCERTA treatment at the conclusion of the study. Conclusion: Although CONCERTA and generic Novo-Methylphenidate ER-C have been deemed bioequivalent, however the present findings demonstrate clinically and statistically significant differences between generic and branded CONCERTA. Further investigation of these differences is warranted. PMID:27536342

  3. Survival Outcomes of Sipuleucel-T Phase III Studies: Impact of Control-Arm Cross-Over to Salvage Immunotherapy.

    PubMed

    George, Daniel J; Nabhan, Chadi; DeVries, Todd; Whitmore, James B; Gomella, Leonard G

    2015-09-01

    Sipuleucel-T is an autologous cellular immunotherapy for asymptomatic/minimally symptomatic metastatic castrate-resistant prostate cancer (CRPC). After disease progression, control-arm patients on three double-blind, randomized phase III sipuleucel-T trials were offered, in nonrandomized open-label protocols, APC8015F, an autologous immunotherapy made from cells cryopreserved at the time of control manufacture. These exploratory analyses evaluated potential effects on survival outcomes associated with such treatment. Of 249 control-treated patients, 165 (66.3%) received APC8015F. We explored the effects of APC8015F on the overall survival (OS; Cox regression) of control-arm patients and treatment effects of sipuleucel-T versus control adjusted for APC8015F treatment [iterative parameter estimation model (IPE)]. The median time to first APC8015F infusion was 5.2 months (range, 1.8-33.1) after randomization and 2.2 months (0.5-14.6) after progression. After disease progression, median survival was longer for APC8015F-treated versus control-only treated patients [20.0 vs. 9.8 months; HR, 0.53; 95% confidence interval (CI), 0.38-0.74; P < 0.001]; however, baseline characteristics were more favorable for APC8015F-treated patients. Multivariate regression analyses identified lactate dehydrogenase, alkaline phosphatase, hemoglobin, ECOG status, age, and number of bone metastases as potential (P < 0.1) independent predictors of postprogression survival. After adjusting for these predictors, APC8015F (HR, 0.78; 95% CI, 0.54-1.11; P = 0.17) treatment trended toward improved survival. Estimated median OS benefit for sipuleucel-T versus control adjusted for APC8015F treatment was 3.9 months if APC8015F had no effect and was 8.1 months if APC8015F was equally as effective as sipuleucel-T. Exploratory analyses indicate that APC8015F treatment may have extended patient survival, suggesting the sipuleucel-T OS advantage in CRPC may be more robust than previously estimated.

  4. Applications of the First-principles LDA+Usc Method to Spin-crossover Minerals: the NAL Phase and (Mg,Fe)CO3 ferromagnesite

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2016-12-01

    Spin crossover (SCO) in iron-bearing minerals has attracted tremendous attention in recent years, as SCO usually leads to anomalous changes of the elastic, conducting, and thermodynamic properties of these minerals. Possible geophysical effects of SCO have been anticipated as well. With the development of the local density approximation + self-consistent Hubbard U (LDA+Usc) method, first-principles calculations have elucidated SCO in many lower-mantle minerals. The success of LDA+Usc lies in its capability to correctly identify the ground state in a wide pressure range and to accurately determine the mechanism of SCO, including the transition pressure PT. In this talk, two recent LDA+Usc studies of SCO minerals are presented: the "new aluminous (NAL) phase" [1] and (Mg,Fe)CO3 ferromagnesite [2]. The former is considered as a main host of aluminum in the subducted basalt and may be related to the seismic heterogeneities, and the latter is believed to be the major carbon carrier in the Earth's lower mantle and play a key role in the deep carbon cycle. For both minerals, the abrupt change of iron quadrupole splitting and the volume/elastic anomalies accompanying the SCO obtained in our calculations are in great agreement with experiments. Our calculations also suggest that the spin transition pressure PT in the NAL phase is not very sensitive to temperature, due to its nearly degenerate low-spin (LS) states, in contrast with (Mg,Fe)O ferropericlase and (Mg,Fe)CO3 systems, in which PT significantly increases with temperature. By examining the overall performance of the LDA+Usc method in the NAL phase and ferromagnesite, along with our previous calculations for ferropericlase and Fe-bearing MgSiO3 bridgmanite [3-5], we have established LDA+Usc a highly reliable method to study iron-bearing minerals and related materials under high pressure. [1] H. Hsu, in preparation. [2] S.-C. Huang and H. Hsu, Phys. Rev. B (Rapid Comm.), in press. [3] H. Hsu and R. M. Wentzcovitch

  5. Pharmacokinetics and Safety of Triple Therapy with Vonoprazan, Amoxicillin, and Clarithromycin or Metronidazole: A Phase 1, Open-Label, Randomized, Crossover Study.

    PubMed

    Sakurai, Yuuichi; Shiino, Madoka; Okamoto, Hiroyuki; Nishimura, Akira; Nakamura, Koki; Hasegawa, Setsuo

    2016-09-01

    Vonoprazan (TAK-438) is a novel potassium-competitive acid blocker that inhibits gastric H(+), K(+)-ATPase. The objectives of this study were to evaluate the influence of triple therapy with vonoprazan-amoxicillin-clarithromycin or vonoprazan-amoxicillin-metronidazole on the pharmacokinetics of each component of the triple therapies (primary) and to evaluate the safety and tolerability of vonoprazan-based triple therapies (secondary) in healthy adults. In this single-center, phase 1, open-label, randomized, four-way crossover study, Helicobacter pylori-negative, healthy Japanese male subjects were randomly assigned to 1 of 4 treatment sequences in two cohorts (12 subjects per cohort). Each treatment sequence comprised four treatment periods separated by a washout period of 7 or 14 days. Pharmacokinetic parameters for vonoprazan, amoxicillin, clarithromycin and metronidazole in single therapy or triple therapies were assessed. All adverse events were recorded. Compared with single therapy, triple therapy with vonoprazan-amoxicillin-clarithromycin increased the area under the plasma concentration-time curve from time 0-12 h (AUC0-12) and maximum plasma concentration (C max) of plasma vonoprazan free base by 1.846- and 1.868-fold, respectively, and increased the AUC0-12 and C max of plasma clarithromycin by 1.450- and 1.635-fold, respectively. Triple therapy with vonoprazan-amoxicillin-metronidazole had no influence on the pharmacokinetics of vonoprazan or metronidazole. The pharmacokinetics of amoxicillin was not influenced by vonoprazan-based triple therapies. Seven adverse events were reported. Two subjects discontinued because of an adverse event (rash, liver function test abnormal); both events were considered to be study drug-related. In healthy Japanese male subjects, triple therapy with vonoprazan-amoxicillin-clarithromycin increased vonoprazan and clarithromycin exposure. The safety and tolerability profile of triple therapy with vonoprazan

  6. Treatment efficacy of sacral nerve stimulation in slow transit constipation: a two-phase, double-blind randomized controlled crossover study.

    PubMed

    Dinning, Phil G; Hunt, Linda; Patton, Vicki; Zhang, Teng; Szczesniak, Michal; Gebski, Val; Jones, Mike; Stewart, Peter; Lubowski, David Z; Cook, Ian J

    2015-05-01

    Sacral nerve stimulation (SNS) is a potential treatment for constipation refractory to standard therapies. However, there have been no randomized controlled studies examining its efficacy. In patients with slow transit constipation, we evaluated the efficacy of suprasensory and subsensory SNS compared with sham, in a prospective, 18-week randomized, double-blind, placebo-controlled, two-phase crossover study. The primary outcome measure was the proportion of patients who, on more than 2 days/week for at least 2 of 3 weeks, reported a bowel movement associated with a feeling of complete evacuation. After 3 weeks of temporary peripheral nerve evaluation (PNE), all patients had permanent implantation and were randomized to subsensory/sham (3 weeks each) and then re-randomized to suprasensory/sham (3 weeks each) with a 2-week washout period between each arm. Daily stool dairies were kept, and quality of life (QoL; SF36) was measured at the end of each arm. Between November 2006 and March 2012, 234 constipated patients were assessed, of whom 59 were willing and deemed eligible to participate (4 male; median age 42 years). Of the 59 patients, 16 (28%) responded to PNE. Fifty-five patients went on to permanent SNS implantation. The proportion of patients satisfying the primary outcome measure did not differ between suprasensory (30%) and sham (21%) stimulations, nor between subsensory (25%) and sham (25%) stimulations. There were no significant changes in QoL scores. In patients with refractory slow transit constipation, SNS did not improve the frequency of complete bowel movements over the 3-week active period.

  7. Effects of Food on the Pharmacokinetics of Omega-3-Carboxylic Acids in Healthy Japanese Male Subjects: A Phase I, Randomized, Open-label, Three-period, Crossover Trial.

    PubMed

    Shimada, Hitoshi; Nilsson, Catarina; Noda, Yoshinori; Kim, Hyosung; Lundström, Torbjörn; Yajima, Toshitaka

    2017-09-01

    Omega-3-carboxylic acids (OM3-CA) contain omega-3 free fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as carboxylic acids. Food intake is known to affect the bioavailability of ethyl ester fatty acid formulations. We conducted a phase I study to investigate the effects of the timing of OM3-CA administration relative to food intake on the pharmacokinetics of EPA and DHA. In this randomized, open-label, three-period crossover study, Japanese healthy male subjects were administered 4×1 g OM3-CA capsules with continued fasting, before a meal, or after a meal. All subjects fasted for ≥10 h prior to drug/meal administration. The primary objective was to examine the effect of meal timing on the pharmacokinetics of EPA and DHA after OM3-CA administration. The secondary objectives were to examine the safety and tolerability of OM3-CA. A total of 42 Japanese subjects was enrolled in the study. The baseline-adjusted maximum concentration and area under the concentration-time curve from 0 to 72 h for EPA, DHA, and EPA +DHA were lower in the fasting and before meal conditions than in the after meal condition. The maximum total EPA, total DHA, and total EPA+DHA concentrations were reached later when administered in fasting conditions than in fed conditions, indicating slower absorption in fasting conditions. Diarrhea was reported by five, six, and no subjects in the fasting, before meal, and after meal conditions, respectively. The timing of OM3-CA administration relative to food intake influences the systemic bioavailability of EPA and DHA in healthy Japanese male subjects. NCT02372344.

  8. Recombinant human C1 esterase inhibitor for prophylaxis of hereditary angio-oedema: a phase 2, multicentre, randomised, double-blind, placebo-controlled crossover trial.

    PubMed

    Riedl, Marc A; Grivcheva-Panovska, Vesna; Moldovan, Dumitru; Baker, James; Yang, William H; Giannetti, Bruno M; Reshef, Avner; Andrejevic, Sladjana; Lockey, Richard F; Hakl, Roman; Kivity, Shmuel; Harper, Joseph R; Relan, Anurag; Cicardi, Marco

    2017-09-30

    Hereditary angio-oedema is a recurrent, oedematous disorder caused by deficiency of functional C1 inhibitor. Infusions of plasma-derived C1 esterase inhibitor deter attacks of hereditary angio-oedema, but the prophylactic effect of recombinant human C1 esterase inhibitor has not been rigorously studied. We aimed to assess the efficacy of recombinant human C1 esterase inhibitor for prophylaxis of hereditary angio-oedema. We conducted this phase 2, multicentre, randomised, double-blind, placebo-controlled crossover trial at ten centres in Canada, the Czech Republic, Israel, Italy, Macedonia, Romania, Serbia, and the USA. We enrolled patients aged 13 years or older with functional C1-inhibitor concentrations of less than 50% of normal and a history of four or more attacks of hereditary angio-oedema per month for at least 3 months before study initiation. Patients were randomly assigned centrally (1:1:1:1:1:1), via an interactive response technology system with fixed allocation, to receive one of six treatment sequences. During each sequence, patients received intravenous recombinant human C1 esterase inhibitor (50 IU/kg; maximum 4200 IU) twice weekly, recombinant human C1 esterase inhibitor once weekly and placebo once weekly, and placebo twice weekly, each for 4 weeks with a 1 week washout period between crossover. All patients, investigators, and study personnel who participated in patient care were masked to group allocation during the study. The primary efficacy endpoint was the number of attacks of hereditary angio-oedema observed in each 4 week treatment period. Attack symptoms were recorded daily. The primary efficacy analysis was done in the intention-to-treat population. Safety was assessed in all patients who received at least one injection of study medication. This study is registered with ClinicalTrials.gov, number NCT02247739. Between Dec 29, 2014, and May 3, 2016, we enrolled 35 patients, of whom 32 (91%) underwent randomisation (intention

  9. The effects of breakfast on short-term cognitive function among Chinese white-collar workers: protocol for a three-phase crossover study.

    PubMed

    Tang, Zhenchuang; Zhang, Na; Liu, Ailing; Luan, Dechun; Zhao, Yong; Song, Chao; Ma, Guansheng

    2017-01-18

    As the first meal of the day, breakfast plays an important role in supplying energy and nutrients, which are critical to working and learning activities. A three-phase crossover study was designed to investigate the effects of breakfast on cognitive function among Chinese white-collar workers. The planned study protocol is presented. A total of 264 participants aged 25-45 years will be recruited from Shenyang and Chongqing. Self-administered questionnaires will be used to collect information on age, gender, marital status, education level, occupation, smoking habits, drinking habits, and breakfast behaviours. The participants will be randomly assigned to 3 equal-sized groups (Groups A, B, and C) and will be provided with a nutrition-adequate breakfast, a nutrition-inadequate breakfast, or no breakfast, respectively. Each participant will receive the breakfast treatment on the basis of assignment to one of three sequences (ABC/BCA/CAB). Each participant will complete a battery of cognitive tests assessing short-term memory, attention, and working memory 120 minutes after breakfast. Mood will be measured through a self-administered questionnaire assessing the dimensions of positive and negative frames of mind. Additionally, fasting blood glucose and postprandial 2-hour blood glucose levels will be tested with a blood-glucose meter (Roche ACCU-CHEK®-Performa). All the participants will take all the tests in three successive weeks, and the order of presentation will be counter-balanced across groups. The present study will be the first investigation of the effect of breakfast food type and quality on cognitive function amongst white-collar workers in China. We predict that a nutrition-adequate breakfast, compared with a nutrition-inadequate breakfast and no breakfast, will significantly improve short-term cognitive function. The results of this study should provide scientific evidence of the effect of breakfast quality on cognitive function and provide scientific

  10. Effects of acetyl-DL-leucine on cerebellar ataxia (ALCAT trial): study protocol for a multicenter, multinational, randomized, double-blind, placebo-controlled, crossover phase III trial.

    PubMed

    Feil, Katharina; Adrion, Christine; Teufel, Julian; Bösch, Sylvia; Claassen, Jens; Giordano, Ilaria; Hengel, Holger; Jacobi, Heike; Klockgether, Thomas; Klopstock, Thomas; Nachbauer, Wolfgang; Schöls, Ludger; Stendel, Claudia; Uslar, Ellen; van de Warrenburg, Bart; Berger, Ingrid; Naumann, Ivonne; Bayer, Otmar; Müller, Hans-Helge; Mansmann, Ulrich; Strupp, Michael

    2017-01-10

    Cerebellar ataxia (CA) is a frequent and often disabling condition that impairs motor functioning and impacts on quality of life (QoL). No medication has yet been proven effective for the symptomatic or even causative treatment of hereditary or non-hereditary, non-acquired CA. So far, the only treatment recommendation is physiotherapy. Therefore, new therapeutic options are needed. Based on three observational studies, the primary objective of the acetyl-DL-leucine on ataxia (ALCAT) trial is to examine the efficacy and tolerability of a symptomatic therapy with acetyl-DL-leucine compared to placebo on motor function measured by the Scale for the Assessment and Rating of Ataxia (SARA) in patients with CA. An investigator-initiated, multicenter, European, randomized, double-blind, placebo-controlled, 2-treatment 2-period crossover phase III trial will be carried out. In total, 108 adult patients who meet the clinical criteria of CA of different etiologies (hereditary or non-hereditary, non-acquired) presenting with a SARA total score of at least 3 points will be randomly assigned in a 1:1 ratio to one of two different treatment sequences, either acetyl-DL-leucine (up to 5 g per day) followed by placebo or vice versa. Each sequence consists of two 6-week treatment periods, separated by a 4-week wash-out period. A follow-up examination is scheduled 4 weeks after the end of treatment. The primary efficacy outcome is the absolute change in the SARA total score. Secondary objectives are to demonstrate that acetyl-DL-leucine is effective in improving (1) motor function measured by the Spinocerebellar Ataxia Functional Index (SCAFI) and SARA subscore items and (2) QoL (EuroQoL 5 dimensions and 5 level version, EQ-5D-5 L), depression (Beck Depression Inventory, BDI-II) and fatigue (Fatigue Severity Score, FSS). Furthermore, the incidence of adverse events will be investigated. The results of this trial will inform whether symptomatic treatment with the modified amino

  11. [Cross-over studies].

    PubMed

    Bonten, Tobias N; Siegerink, Bob; van der Bom, Johanna G

    2013-01-01

    Randomized, parallel group clinical trials often require large groups of patients; this is expensive and takes time. A randomized cross-over trial can be an efficient and more affordable alternative. A cross-over design can be used to study chronic disorders in which treatments have temporary effects. Participants receive all treatments in consecutive periods and outcomes are measured after every period. In general, only a quarter of the total group size is needed for cross-over studies compared with parallel group studies. Results can be affected by period-effects and carry-over-effects, which can be prevented through randomization and a wash-out period of sufficient length. The dropping-out of participants has more negative consequences for cross-over studies than for parallel group studies.

  12. A Phase 1, Open-Label, Randomized, Crossover Study Evaluating the Bioavailability of TAS-102 (Trifluridine/Tipiracil) Tablets Relative to an Oral Solution Containing Equivalent Amounts of Trifluridine and Tipiracil.

    PubMed

    Becerra, Carlos R; Yoshida, Kenichiro; Mizuguchi, Hirokazu; Patel, Manish; Von Hoff, Daniel

    2017-06-01

    TAS-102 (trifluridine/tipiracil) is composed of an antineoplastic thymidine-based nucleoside analogue trifluridine (FTD), and a thymidine phosphorylase inhibitor, tipiracil (TPI), at a molar ratio of 1:0.5 (weight ratio, 1:0.471). A phase 1 study evaluated relative bioavailability of TAS-102 tablets compared with an oral solution containing equivalent amounts of FTD and TPI. In an open-label, 2-sequence, 3-period, crossover bioavailability study (part 1), patients 18 years or older with advanced solid tumors were randomized to receive TAS-102 tablets (60 mg; 3 × 20-mg tablets) on day 1 and TAS-102 oral solution (60 mg) on days 8 and 15, or the opposite sequence. In an extension (part 2), all patients received TAS-102 tablets. Of the 46 patients treated in the crossover study, 38 were evaluable in the crossover bioavailability pharmacokinetic population. For area under the concentration-time curve (AUC)0-∞ and AUC0-last for FTD and TPI, and maximum plasma concentration (Cmax ) for TPI, the 90% confidence intervals (CIs) of the geometric mean ratios were within the 0.80 to 1.25 boundary for demonstration of bioequivalence; for FTD Cmax , the lower limit of the 90%CI was 0.786. The most frequently reported treatment-related grade 3 or 4 adverse events were neutropenia (7 patients) and decreased neutrophil count (3 patients). Although the lower limit of the 90%CI for the geometric mean ratio of FTD Cmax was slightly lower than 0.80, the bioavailability of the TAS-102 tablet is considered clinically similar to that of a TAS-102 oral solution. TAS-102 was well tolerated in this population of patients with advanced solid tumors. © 2016, The American College of Clinical Pharmacology.

  13. Making crossovers during meiosis.

    PubMed

    Whitby, M C

    2005-12-01

    Homologous recombination (HR) is required to promote both correct chromosome segregation and genetic variation during meiosis. For this to be successful recombination intermediates must be resolved to generate reciprocal exchanges or 'crossovers' between the homologous chromosomes (homologues) during the first meiotic division. Crossover recombination promotes faithful chromosome segregation by establishing connections (chiasmata) between the homologues, which help guide their proper bipolar alignment on the meiotic spindle. Recent studies of meiotic recombination in both the budding and fission yeasts have established that there are at least two pathways for generating crossovers. One pathway involves the resolution of fully ligated four-way DNA junctions [HJs (Holliday junctions)] by an as yet unidentified endonuclease. The second pathway appears to involve the cleavage of the precursors of ligated HJs, namely displacement (D) loops and unligated/nicked HJs, by the Mus81-Eme1/Mms4 endonuclease.

  14. Phase III double-blind, randomized, placebo-controlled crossover trial of black cohosh in the management of hot flashes: NCCTG Trial N01CC1.

    PubMed

    Pockaj, Barbara A; Gallagher, James G; Loprinzi, Charles L; Stella, Philip J; Barton, Debra L; Sloan, Jeff A; Lavasseur, Beth I; Rao, Radha M; Fitch, Tom R; Rowland, Kendrith M; Novotny, Paul J; Flynn, Patrick J; Richelson, Elliott; Fauq, Abdul H

    2006-06-20

    Hot flashes can cause significant morbidity in postmenopausal women undergoing or finished with breast cancer treatment. Black cohosh has been used to treat hot flashes, but definitive clinical data about efficacy have been equivocal. A double-blind, randomized, cross-over clinical trial with two 4-week periods, was used to study the efficacy of black cohosh (1 capsule, Cimicifuga racemosa 20 mg BID) for the treatment of hot flashes in women. Participants kept a daily hot flash diary during a baseline week and then during two 4-week crossover treatment periods. Hot flash scores were measured by assigning points (1 to 4 for mild to very severe) to each hot flash based on severity and then adding the points for a given time period. Between October 31, 2003, to March 4, 2004, 132 patients were randomly assigned. Toxicity was minimal and not different by treatment group. Patients receiving black cohosh reported a mean decrease in hot flash score of 20% (comparing the fourth treatment week to the baseline week) compared with a 27% decrease for patients on placebo (P = .53). Mean hot flash frequency was reduced 17% on black cohosh and 26% on placebo (P = .36). Patient treatment preferences were measured after completion of both treatment periods by ascertaining which treatment period, if any, the patient preferred. Thirty-four percent of patients preferred the black cohosh treatment, 38% preferred the placebo, and 28% did not prefer either treatment. This trial failed to provide any evidence that black cohosh reduced hot flashes more than the placebo.

  15. Crossover behavior in interface depinning.

    PubMed

    Chen, Y J; Zapperi, Stefano; Sethna, James P

    2015-08-01

    We study the crossover scaling behavior of the height-height correlation function in interface depinning in random media. We analyze experimental data from a fracture experiment and simulate an elastic line model with nonlinear couplings and disorder. Both exhibit a crossover between two different universality classes. For the experiment, we fit a functional form to the universal crossover scaling function. For the model, we vary the system size and the strength of the nonlinear term and describe the crossover between the two universality classes with a multiparameter scaling function. Our method provides a general strategy to extract scaling properties in depinning systems exhibiting crossover phenomena.

  16. Crossover and thermodynamic representation in the extended η model for fractal growth

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Stanley, H. Eugene

    1990-10-01

    The η model for the dielectric breakdown is extended to the case where double power laws apply. It is shown that a crossover phenomenon between the diffusion-limited aggregation (DLA) fractal and the η fractal occurs in the extended η model. Through the use of the dimensional analysis, a dimensionless parameter is found to govern the crossover. It is shown that when η<1 the crossover from the DLA fractal to the η fractal occurs with increasing size, and if η>1 the inverse crossover from the η fractal to the DLA fractal appears. It is also shown that the crossover radius is controlled by changing the applied field. The global flow diagram in the two-parameter space is obtained by using a two-parameter position-space renormalization-group approach. The crossover exponent and the crossover radius are calculated. The crossover phenomenon is described in terms of a thermodynamic representation of the two-phase equilibrium.

  17. The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yin-Yang overset grid-based control volume model

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Peltier, W. R.

    2015-08-01

    High-resolution seismic tomographic images from several subduction zones provide evidence for the inhibition of the downwelling of subducting slabs at the level of the 660 km depth seismic discontinuity. Furthermore, the inference of old (~140 Myr) sinking slabs below fossil subduction zones in the lower mantle has yet to be explained. We employ a control volume methodology to develop a new anelastically compressible model of three-dimensional thermal convection in the "mantle" of a terrestrial planet that fully incorporates the influence of large variations in material properties. The model also incorporates the influence of (1) multiple solid-solid pressure-induced phase transitions, (2) transformational superplasticity at 660 km depth, and (3) the high spin-low spin iron spin transition in ferropericlase at midmantle pressures. The message passing interface-parallelized code is successfully tested against previously published benchmark results. The high-resolution control volume models exhibit the same degree of radial layering as previously shown to be characteristic of otherwise identical 2-D axisymmetric spherical models. The layering is enhanced by the presence of moderate transformational superplasticity, and in the presence of the spin crossover in ferropericlase, stagnation of cold downwellings occurs in the range of spin crossover depths (~1700 km). Although this electronic spin transition has been suggested to be invisible seismically, recent high-pressure ab initio calculations suggest it to have a clear signature in body wave velocities which could provide an isochemical explanation of a seismological signature involving the onset of decorrelation between Vp and Vs that has come to be interpreted as requiring compositional layering.

  18. Spin- and phase transition in the spin crossover complex [Fe(ptz) 6](BF 4) 2 studied by nuclear inelastic scattering of synchrotron radiation and by DFT calculations

    NASA Astrophysics Data System (ADS)

    Böttger, Lars H.; Chumakov, Aleksandr I.; Matthias Grunert, C.; Gütlich, Philipp; Kusz, Joachim; Paulsen, Hauke; Ponkratz, Ulrich; Rusanov, Ventzislav; Trautwein, Alfred X.; Wolny, Juliusz A.

    2006-09-01

    Nuclear inelastic scattering (NIS) spectra of [Fe(ptz) 6](BF 4) 2 (ptz = 1- n-propyl-tetrazole) have been measured for five phases differing in spin state and crystallographic structure. Different spectral patterns have been found for the low-spin and high-spin phases and are described in terms of normal coordinate analysis of the complex molecule. For both low-spin and high-spin phases the conversion from ordered to disordered phase results in splitting of the observed NIS bands. Packing becomes visible in the NIS spectra via coupling of the Fe-N stretching vibrations with those of the terminal n-propyl groups. The DFT-based normal coordinate analysis also reveals the character of Raman markers.

  19. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas

    PubMed Central

    Widemann, Brigitte C.; Dombi, Eva; Gillespie, Andrea; Wolters, Pamela L.; Belasco, Jean; Goldman, Stewart; Korf, Bruce R.; Solomon, Jeffrey; Martin, Staci; Salzer, Wanda; Fox, Elizabeth; Patronas, Nicholas; Kieran, Mark W.; Perentesis, John P.; Reddy, Alyssa; Wright, John J.; Kim, AeRang; Steinberg, Seth M.; Balis, Frank M.

    2014-01-01

    Background RAS is dysregulated in neurofibromatosis type 1 (NF1) related plexiform neurofibromas (PNs). The activity of tipifarnib, which blocks RAS signaling by inhibiting its farnesylation, was tested in children and young adults with NF1 and progressive PNs. Methods Patients aged 3–25 years with NF1-related PNs and imaging evidence of tumor progression were randomized in a double-blinded fashion to receive tipifarnib (200 mg/m2 orally every 12 h) or placebo (phase A) and crossed over to the opposite treatment arm at the time of tumor progression (phase B). PN volumes were measured with MRI, and progression was defined as ≥20% volume increase. Time to progression (TTP) in phase A was the primary endpoint, and the trial was powered to detect whether tipifarnib doubled TTP compared with placebo. Toxicity, response, and quality of life were also monitored. Results Sixty-two patients were enrolled. Tipifarnib and placebo were well tolerated. On phase A, the median TTP was 10.6 months on the placebo arm and 19.2 months on the tipifarnib arm (P = .12; 1-sided). Quality of life improved significantly compared with baseline on the tipifarnib arm but not on the placebo arm. Volumetric tumor measurement detected tumor progression earlier than conventional 2-dimensional (WHO) and 1-dimensional (RECIST) methods. Conclusions Tipifarnib was well tolerated but did not significantly prolong TTP of PNs compared with placebo. The randomized, flexible crossover design and volumetric PN assessment provided a feasible and efficient means of assessing the efficacy of tipifarnib. The placebo arm serves as an historical control group for phase 2 single-arm trials directed at progressive PNs. PMID:24500418

  20. Efficacy, safety, and tolerability of once-daily abediterol in patients with stable, persistent asthma: a Phase II, randomized, 7-day, crossover study.

    PubMed

    Beier, Jutta; Fuhr, Rainard; Seoane, Beatriz; Massana, Eric; de Miquel, Gonzalo; Pujol, Helena; Ruiz, Sandrine

    2017-10-01

    Abediterol is a once-daily, long-acting β2 -adrenergic agonist in development for the treatment of asthma and chronic obstructive pulmonary disease. We assessed the efficacy, safety, and tolerability of three dose levels of abediterol, given once daily for 7 days in patients with stable, persistent asthma. This was an ascending-dose, three-period incomplete crossover study design investigating three dose levels of abediterol versus placebo (EudraCT No. 2008-003732-38). Twenty-eight male patients (25-59 years) were randomized to one of four treatment sequences (1:1:1:1). Follow-up was 7 days after final treatment. Spirometry was performed regularly up to 24 h postdose Day 1, up to 36 h postdose Day 7, and at follow-up. Vital signs, 12-lead electrocardiogram, and clinical laboratory tests were recorded throughout. Abediterol 2.5, 5, and 10 μg provided clinically and statistically significant improvements from baseline (predose, Day 1) in trough forced expiratory volume in 1 sec (FEV1 ) versus placebo on Day 7 (primary endpoint) of 334, 365, and 294 mL, respectively (all P < 0.01), and peak FEV1 versus placebo on Day 7 of 364 (P < 0.001), 403 (P < 0.001), and 375 mL (P < 0.01), respectively. Days 1 and 7 area under the curve (AUC) parameters within each abediterol group were similar for AUC0-6 , AUC0-12 , AUC0-24 , and AUC12-24 , with dose-dependent effects observed on Day 1. Abediterol (2.5-10 μg) demonstrated a good safety and tolerability profile. Abediterol 2.5, 5, and 10 μg once daily achieved statistically and clinically significant improvements in pulmonary function versus placebo over 7 days and demonstrated a safety and tolerability profile comparable with placebo. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  1. Decomposing Multifractal Crossovers

    PubMed Central

    Nagy, Zoltan; Mukli, Peter; Herman, Peter; Eke, Andras

    2017-01-01

    Physiological processes—such as, the brain's resting-state electrical activity or hemodynamic fluctuations—exhibit scale-free temporal structuring. However, impacts common in biological systems such as, noise, multiple signal generators, or filtering by transport function, result in multimodal scaling that cannot be reliably assessed by standard analytical tools that assume unimodal scaling. Here, we present two methods to identify breakpoints or crossovers in multimodal multifractal scaling functions. These methods incorporate the robust iterative fitting approach of the focus-based multifractal formalism (FMF). The first approach (moment-wise scaling range adaptivity) allows for a breakpoint-based adaptive treatment that analyzes segregated scale-invariant ranges. The second method (scaling function decomposition method, SFD) is a crossover-based design aimed at decomposing signal constituents from multimodal scaling functions resulting from signal addition or co-sampling, such as, contamination by uncorrelated fractals. We demonstrated that these methods could handle multimodal, mono- or multifractal, and exact or empirical signals alike. Their precision was numerically characterized on ideal signals, and a robust performance was demonstrated on exemplary empirical signals capturing resting-state brain dynamics by near infrared spectroscopy (NIRS), electroencephalography (EEG), and blood oxygen level-dependent functional magnetic resonance imaging (fMRI-BOLD). The NIRS and fMRI-BOLD low-frequency fluctuations were dominated by a multifractal component over an underlying biologically relevant random noise, thus forming a bimodal signal. The crossover between the EEG signal components was found at the boundary between the δ and θ bands, suggesting an independent generator for the multifractal δ rhythm. The robust implementation of the SFD method should be regarded as essential in the seamless processing of large volumes of bimodal fMRI-BOLD imaging data for

  2. A crossover in the mechanical response of nanocrystalline ceramics.

    PubMed

    Szlufarska, Izabela; Nakano, Aiichiro; Vashishta, Priya

    2005-08-05

    Multimillion-atom molecular dynamics simulation of indentation of nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, resulting from the coexistence of brittle grains and soft amorphous grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth. The crossover arises from the interplay between cooperative grain sliding, grain rotations, and intergranular dislocation formation similar to stick-slip behavior. The crossover is also manifested in switching from deformation dominated by indentation-induced crystallization to deformation dominated by disordering, leading to amorphization. This interplay between deformation mechanisms is critical for the design of ceramics with superior mechanical properties.

  3. Phase I single dose, two-period and two-sequence cross-over trial to evaluate the relative bioavailability of two oral pimasertib formulations in advanced cancer patients.

    PubMed

    Mahadevan, D; Mita, Monica; Richards, Donald; McClay, Edward; Heist, Rebecca Suk; Kumar, A; Sundararajan, S; Naing, Aung

    2017-04-01

    A phase I two-period two sequence cross-over study compared the bioavailability of two pimasertib (MSC1936369B/AS703026) formulations (capsule versus tablet) in advanced cancer patients. Patients with advanced solid tumors were randomized to one of two treatment sequences utilizing pimasertib tablet (test; 3 × 20 mg, PO QD) and capsule (standard; 2 × 30 mg, PO QD). The trial comprised a screening and baseline period, two time periods or parts A and B, and a trial extension phase. N = 38 patients were randomized to two treatment sequences S1 and S2. PK parameters t 1/2, CL/f, and V z/f were within the same range for the two formulations. Tablet had bioavailability comparable to capsule based on the analysis of AUC0-t, however, tablet administration resulted in an increase of ~25% in C max versus capsule. Common predicted adverse events of pimasertib included ocular events, diarrhea and creatine phosphokinase elevation. Disease control rate was ~29% with 1 partial response and 4 of 10 patients with stable disease >4 months. Pimasertib tablet was overall well tolerated, had a similar safety and efficacy profile to standard capsule formulation and had bioavailability comparable to capsule.

  4. Birefringence in the vicinity of the smectic-A to smectic-C phase transition: Crossover from X Y critical to tricritical behavior

    NASA Astrophysics Data System (ADS)

    Das, Malay Kumar; Chakraborty, Susanta; Dabrowski, Roman; Czerwiński, Michał

    2017-01-01

    High-resolution birefringence (Δ n ) measurements are carried out to probe the critical behavior at the smectic-A -smectic-C (Sm-A -Sm-C ) phase transition in a binary system. The critical behavior of this transition is explored with the aid of a differential quotient extracted from the Δ n values. The results obtained reveal that the Sm-A -Sm-C and nematic-smectic-A (N -Sm-A ) transitions exhibit nonuniversal behaviors with effective exponents lying between the tricritical and three-dimensional X Y values and follow two distinctly different curves with decreasing width of the Sm-A and N phases, respectively. The origin of such critical behavior is a unique feature for the respective phase transitions.

  5. Critical behavior of La0.7Ca0.3Mn1-xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Tran, Q. T.; Thanh, P. Q.; Yen, P. D. H.; Thanh, T. D.; Yu, S. C.

    2014-04-01

    We used Banerjee's criteria, modified Arrott plots, and the scaling hypothesis to analyze magnetic-field dependences of magnetization near the ferromagnetic-paramagnetic (FM-PM) phase-transition temperature (TC) of perovskite-type manganites La0.7Ca0.3Mn1-xNixO3 (x=0.09, 0.12 and 0.15). In the FM region, experimental results for the critical exponent β (=0.171 and 0.262 for x=0.09 and 0.12, respectively) reveal two first samples exhibiting tricriticality associated with the crossover of first- and second-order phase transitions. Increasing Ni-doping content leads to the shift of the β value (=0.320 for x=0.15) towards that expected for the 3D Ising model (β=0.325). This is due to the fact that the substitution of Ni ions into the Mn site changes structural parameters and dilutes the FM phase, which act as fluctuations and influence the FM-interaction strength of double-exchange Mn3+-Mn4+ pairs, and the phase-transition type. For the critical exponent γ (=0.976-0.990), the stability in its value demonstrates the PM behavior above TC of the samples. Particularly, around TC of La0.7Ca0.3Mn1-xNixO3 compounds, magnetic-field dependences of the maximum magnetic-entropy change can be described by a power law of |ΔSmax|∝Hn, where values n=0.55-0.77 are quite far from those (n=0.33-0.48) calculated from the theoretical relation n=1+(β-1)/(β+γ). This difference is related to the use of the mean-field theory for the samples exhibiting the magnetic inhomogeneity.

  6. Crossovers from parity conserving to directed percolation universality.

    PubMed

    Odor, Géza; Menyhárd, Nóra

    2008-10-01

    The crossover behavior of various models exhibiting phase transition to absorbing phase with parity conserving class has been investigated by numerical simulations and cluster mean-field method. In case of models exhibiting Z_2 symmetric absorbing phases (the cellular automaton version of the nonequilibrium kinetic Ising model (NEKIMCA) and a stochastic cellular automaton invented by Grassberger, Krause, and von der Twer [J. Phys. A 17, L105 (1984)]) the introduction of an external symmetry breaking field causes a crossover to kink parity conserving models characterized by dynamical scaling of the directed percolation (DP) and the crossover exponent: 1/phi approximately equal to 0.53(2) . In the case of a branching and annihilating random walk model with an even number of offspring (dual to NEKIMCA) the introduction of spontaneous particle decay destroys the parity conservation and results in a crossover to the DP class characterized by the crossover exponent: 1/phi approximately equal to 0.205(5) . The two different kinds of crossover operators cannot be mapped onto each other and the resulting models show a diversity within the DP universality class in one dimension. These subclasses differ in cluster scaling exponents.

  7. FANCM limits meiotic crossovers.

    PubMed

    Crismani, Wayne; Girard, Chloé; Froger, Nicole; Pradillo, Mónica; Santos, Juan Luis; Chelysheva, Liudmila; Copenhaver, Gregory P; Horlow, Christine; Mercier, Raphaël

    2012-06-22

    The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major factor limiting meiotic CO formation. The fancm mutant has a threefold-increased CO frequency as compared to the wild type. These extra COs arise not from the pathway that accounts for most of the COs in wild type, but from an alternate, normally minor pathway. Thus, FANCM is a key factor imposing an upper limit on the number of meiotic COs, and its manipulation holds much promise for plant breeding.

  8. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    PubMed

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  9. Evaluation of the effect of food and age on the pharmacokinetics of oral netupitant and palonosetron in healthy subjects: A randomized, open-label, crossover phase 1 study.

    PubMed

    Calcagnile, Selma; Lanzarotti, Corinna; Gutacker, Michaela; Jakob-Rodamer, Verena; Peter Kammerer, Klaus; Timmer, Wolfgang

    2015-09-01

    Antiemetic treatment compliance is important to prevent chemotherapy-induced nausea and vomiting, a feared chemotherapy side effect. NEPA, a new oral fixed combination of netupitant, a highly selective NK1 receptor antagonist (RA), and palonosetron, a second-generation 5-HT3 RA, targets dual antiemetic pathways with a single dose. This study investigated the effect of food intake and age on NEPA pharmacokinetics (PK) and safety. In this open-label, single-center, randomized, phase 1 study, 24 adults (18-45 years) received NEPA in a fed or fasted state during the first treatment period and in the alternative state in the next treatment period. Twelve elderly subjects (≥65 years) received NEPA in a fasted state. Blood samples were taken for netupitant and palonosetron PK analysis. In the fed condition, netupitant plasma exposure increased, whereas palonosetron PK parameters were not affected. Furthermore, elderly subjects showed increased netupitant and palonosetron exposure compared with adults. All adverse events were mild/moderate, with constipation and headache the most common. Although food intake and age altered NEPA PK, dose adjustments were not needed, as netupitant and palonosetron exposure increases did not lead to safety concerns in healthy subjects.

  10. Crossover studies with survival outcomes.

    PubMed

    Buyze, Jozefien; Goetghebeur, Els

    2013-12-01

    Crossover designs are well known to have major advantages when comparing the effect of two treatments which do not interact. With a right-censored survival endpoint, however, this design is quickly abandoned in favour of the more costly parallel design. Motivated by human immunodeficiency virus (HIV) prevention studies which lacked power, we evaluate what may be gained in this setting and compare parallel with crossover designs. In a heterogeneous population, we find and explain a substantial increase in power for the crossover study using a non-parametric logrank test. With frailties in a proportional hazards model, crossover designs equally lead to substantially smaller variance for the subject-specific hazard ratio (HR), while the population-averaged HR sees negligible gain. Its efficiency benefit is recovered when the population-averaged HR is reconstructed from estimated subject-specific hazard rates. We derive the time point for treatment crossover that optimizes efficiency and end with the analysis of two recent HIV prevention trials. We find that a Cellulose sulphate trial could have hardly gained efficiency from a crossover design, while a Nonoxynol-9 trial stood to gain substantial power. We conclude that there is a role for effective crossover designs in important classes of survival problems.

  11. Y-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions

    SciTech Connect

    Phan, The-Long; Jung, C. U.; Lee, B. W.; Ho, T. A.; Manh, T. V.; Dang, N. T.; Thanh, T. D.

    2015-10-14

    We prepared orthorhombic La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} samples (x = 0, 0.04, 0.06, and 0.08) by conventional solid-state reaction and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field measurements, M(T, H). The experimental results revealed that an x increase in La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} reduced the ferromagnetic-paramagnetic transition temperature (T{sub C}) from 260 K (for x = 0) to ∼126 K (for x = 0.08). Around the T{sub C}, maximum magnetic-entropy changes for a magnetic-field variation interval H = 50 kOe are about 10.7, 8.5, 7.4, and 5.8 J·kg{sup −1}·K{sup −1} for x = 0, 0.04, 0.06, and 0.08, respectively, corresponding to refrigerant capacities RC = 250–280 J·kg{sup −1}. These values are comparable to those of some conventional MC materials, revealing the applicability of La{sub 0.7−x}Y{sub x}Ca{sub 0.3}MnO{sub 3} in magnetic refrigeration. Using the Arrott method and scaling hypothesis as analyzing high-field M(H, T) data, and the universal-curve construction of the magnetic entropy change, we found a magnetic-phase separation. While the samples x = 0−0.06 exhibit a first-order magnetic phase transition, x = 0.08 exhibits the crossover of the first-to-second-order phase transformation (with its critical-exponent values close to those expected for the tricritical mean-field theory) and has the presence of ferromagnetic clusters even above the T{sub C}. Such the variations in the magnetism and MC effect are related to the changes in structural parameters caused by the Y substitution for La because Y doping does not change the concentration ratio of Mn{sup 3+}/Mn{sup 4+}.

  12. Topological crossovers near a quantum critical point

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.; Clark, J. W.; Zverev, M. V.

    2011-09-01

    We study the temperature evolution of the single-particle spectrum ɛ-( p) and quasiparticle momentum distribution n( p) of homogeneous strongly correlated Fermi systems beyond a point where the necessary condition for stability of the Landau state is violated, and the Fermi surface becomes multi-connected by virtue of a topological crossover. Attention is focused on the different non-Fermi-liquid temperature regimes experienced by a phase exhibiting a single additional hole pocket compared with the conventional Landau state. A critical experiment is proposed to elucidate the origin of NFL behavior in dense films of liquid 3He.

  13. Crossover assessment of cardiolocomotor synchronization during running.

    PubMed

    Cerqueira, Lucenildo Silva; D'Affonsêca Netto, Aluizio; Mello, Roger Gomes Tavares; Nadal, Jurandir

    2017-02-01

    This study aimed at testing the hypothesis that positive cardiolocomotor coordination (CLC) measure occurs by chance during a running task where the heart rate (HR) is approximated to the step frequency (StepF). The electrocardiogram and electromyogram from the right gastrocnemius lateralis muscle were continuously recorded from ten healthy young men running at a paced rhythm of 152 step/min, to monitor HR and StepF. CLC was evaluated by phase synchrograms and the index of conditional probability (iCP). Results were validated with surrogate data and a crossover approach, where the HR of one subject was related to the StepF of another one, and comparisons were made combining subjects two by two. Six subjects showed synchrogram structures and high iCP values (≥0.8), suggesting the occurrence of physiological entrainment, when the HR reached the SF range. In crossover analysis, phase synchrograms and iCP presented similar behavior of original data when the HR from one subject was close enough to the SF from another one. Significant iCP values in 46 of 90 comparisons (51%) were observed, including all cases crossing signals among the six positive cases. Synchrogram and iCP tools currently employed for measuring CLC are not appropriate because they indicate the occurrence of this phenomenon even among subjects who ran on different days and times of each other.

  14. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1994-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

  15. Tunneling above the crossover temperature.

    PubMed

    Alvarez-Barcia, Sonia; Flores, Jesús R; Kästner, Johannes

    2014-01-09

    Quantum mechanical tunneling of atoms plays a significant role in many chemical reactions. The crossover temperature between classical and quantum movement is a convenient preliminary indication of the importance of tunneling for a particular reaction. Here we show, using instanton theory, that quantum tunneling is possible significantly above this crossover temperature for specific forms of the potential energy surface. We demonstrate the effect on an analytic potential as well as a chemical system. While protons move asynchronously along a Grotthuss chain in the classical high-temperature range, the onset of tunneling results in a synchronization of their movement.

  16. The BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.

    2015-09-01

    This chapter presents the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly correlated pairs of fermions to the Bose-Einstein condensation (BEC) of diatomic molecules in the atomic Fermi gas. Our aim is to provide a pedagogical review of the BCS-BEC crossover, with an emphasis on the basic concepts, particularly those that are not generally known or are difficult to find in the literature. We shall not attempt to give an exhaustive survey of current research in the limited space here; where possible, we will direct the reader to more extensive reviews.

  17. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  18. The dynamics of the metabolism of acetate and bicarbonate associated with use of hemodialysates in the ABChD trial: a phase IV, prospective, single center, single blind, randomized, cross-over, two week investigation.

    PubMed

    Smith, William B; Gibson, Sandy; Newman, George E; Hendon, Kendra S; Askelson, Margarita; Zhao, James; Hantash, Jamil; Flanagan, Brigid; Larkin, John W; Usvyat, Len A; Thadhani, Ravi I; Maddux, Franklin W

    2017-08-29

    In the United States, hemodialysis (HD) is generally performed via a bicarbonate dialysate. It is not known if small amounts of acid used in dialysate to buffer the bicarbonate can meaningfully contribute to overall buffering administered during HD. We aimed to investigate the metabolism of acetate with use of two different acid buffer concentrates and determine if it effects blood bicarbonate concentrations in HD patients. The Acid-Base Composition with use of hemoDialysates (ABChD) trial was a Phase IV, prospective, single blind, randomized, cross-over, 2 week investigation of peridialytic dynamics of acetate and bicarbonate associated with use of acid buffer concentrates. Eleven prevalent HD patients participated from November 2014 to February 2015. Patients received two HD treatments, with NaturaLyte® and GranuFlo® acid concentrates containing 4 and 8 mEq/L of acetate, respectively. Dialysate order was chosen in a random fashion. The endpoint was to characterize the dynamics of acetate received and metabolized during hemodialysis, and how it effects overall bicarbonate concentrations in the blood and dialysate. Acetate and bicarbonate concentrations were assessed before, at 8 time points during, and 6 time points after the completion of HD. Data from 20 HD treatments for 11 patients (10 NaturaLyte® and 10 GranuFlo®) was analyzed. Cumulative trajectories of arterialized acetate were unique between NaturaLyte® and GranuFlo® (p = 0.003), yet individual time points demonstrated overlap without remarkable differences. Arterialized and venous blood bicarbonate concentrations were similar at HD initiation, but by 240 min into dialysis, mean arterialized bicarbonate concentrations were 30.2 (SD ± 4.16) mEq/L in GranuFlo® and 28.8 (SD ± 4.26) mEq/L in NaturaLyte®. Regardless of acid buffer concentrate, arterial blood bicarbonate was primarily dictated by the prescribed bicarbonate level. Subjects tolerated HD with both acid buffer concentrates without

  19. Efficacy and safety of 400 and 800 mg etodolac vs. 1,000 mg paracetamol in acute treatment of migraine: a randomized, double-blind, crossover, multicenter, phase III clinical trial.

    PubMed

    Öztürk, Vesile; Ertaş, Mustafa; Baykan, Betül; Sirin, Hadiye; Özge, Aynur

    2013-03-01

    We aimed to determine the efficacy and safety of etodolac, in acute migraine attacks in comparison with paracetamol (acetaminophen). We designed a randomized, double-blind, crossover phase III clinical trial for patients diagnosed with migraine for at least 1 year, according to ICHD-II criteria. Two hundred and twenty-nine adult patients having 2 to 8 attacks monthly from 17 centers were included. The patients were instructed to use 3 attack treatment packages consisting of 1,000 mg paracetamol, 400 mg etodolac, and 800 mg etodolac on 3 migraine attacks of moderate-severe intensity each in a 3-month treatment period, interchangeably. Any pain medication was used in 1,570 migraine attacks while study treatments were used in 1,047 attacks. The results for 1,000 mg paracetamol, 400 mg etodolac, and 800 mg etodolac were as follows: response of headache at 2 hours 44.9%, 48.3% and 46.1%; pain-free at 2 hours 19.2%, 19.3% and 24.1%; sustained pain-free from 2 to 24 hours 34.3%, 38.3% and 41.1%; relapse rates in 2 to 24 hours 7.3%, 14.3% and 9.7%. There were no statistically significant differences between the groups regarding the headache response, pain-free, sustained pain-free, and relapse rates. Nausea, vomiting, phonophobia, or photophobia decreased similarly in all groups within 24 hours of treatment administration. Drug-related adverse events were noted in 8 patients with 1,000 mg paracetamol, in 9 patients with 400 mg etodolac and in 9 patients for 800 mg etodolac during the study. Our study showed that etodolac is a safe and effective alternative in acute migraine treatment and showed comparable efficacy to paracetamol 1,000 mg. Etodolac may be considered as an alternative option for acute treatment of migraine. © 2012 The Authors. Pain Practice © 2012 World Institute of Pain.

  20. Investigating dirty crossover through fidelity susceptibility and density of states

    NASA Astrophysics Data System (ADS)

    Khan, Ayan; Basu, Saurabh; Tanatar, B.

    2014-03-01

    We investigate the BCS-BEC crossover in an ultracold atomic gas in the presence of disorder. The disorder is incorporated in the mean-field formalism through Gaussian fluctuations. We observe evolution to an asymmetric line-shape of fidelity susceptibility (FS) as a function of interaction coupling with increasing disorder strength which may point to an impending quantum phase transition (QPT). The asymmetric line-shape is further analyzed using the statistical tools of skewness and kurtosis. We extend our analysis to density of states (DOS) for a better understanding of the crossover in the disordered environment.

  1. Magnetic tuning of the relativistic BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Cheng; de La Incera, Vivian; Ferrer, Efrain J.; Wang, Qun

    2011-09-01

    The effect of an applied magnetic field in the crossover from Bose-Einstein condensate (BEC) to Bardeen-Cooper-Schrieffer (BCS) pairing regimes is investigated. We use a model of relativistic fermions and bosons inspired by those previously used in the context of cold fermionic atoms and in the magnetic-color-flavor-locking phase of color superconductivity. It turns out that, as with cold atom systems, an applied magnetic field can also tune the BCS-BEC crossover in the relativistic case. We find that no matter what the initial state is at B=0, for large enough magnetic fields the system always settles into a pure BCS regime. In contrast to the atomic case, the magnetic field tuning of the crossover in the relativistic system is not connected to a Feshbach resonance, but to the relative numbers of Landau levels with either BEC or BCS type of dispersion relations that are occupied at each magnetic field strength.

  2. Multiferroic crossover in perovskite oxides

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-04-01

    The coexistence of ferroelectricity and magnetism in A B O3 perovskite oxides is rare, a phenomenon that has become known as the ferroelectric "d0 rule." Recently, the perovskite BiCoO3 has been shown experimentally to be isostructural with PbTiO3, while simultaneously the d6Co3 + ion has a high-spin ground state with C -type antiferromagnetic ordering. It has been suggested that the hybridization of Bi 6 s states with the O 2 p valence band stabilizes the polar phase, however, we have recently demonstrated that Co3 + ions in the perovskite structure can facilitate a ferroelectric distortion via the Co 3 d -O 2 p covalent interaction [L. Weston, et al., Phys. Rev. Lett. 114, 247601 (2015), 10.1103/PhysRevLett.114.247601]. In this paper, using accurate hybrid density functional calculations, we investigate the atomic, electronic, and magnetic structure of BiCoO3 to elucidate the origin of the multiferroic state. To begin with, we perform a more general first-principles investigation of the role of d electrons in affecting the tendency for perovskite materials to exhibit a ferroelectric distortion; this is achieved via a qualitative trend study in artificial cubic and tetragonal La B O3 perovskites. We choose La as the A cation so as to remove the effects of Bi 6 s hybridization. The lattice instability is identified by the softening of phonon modes in the cubic phase, as well as by the energy lowering associated with a ferroelectric distortion. For the La B O3 series, where B is a d0-d8 cation from the 3 d block, the trend study reveals that increasing the d orbital occupation initially removes the tendency for a polar distortion, as expected. However, for high-spin d5-d7 and d8 cations a strong ferroelectric instability is recovered. This effect is explained in terms of increased pseudo-Jahn-Teller (PJT) p -d vibronic coupling. The PJT effect is described by the competition between a stabilizing force (K0) that favors the cubic phase, and a vibronic term that

  3. Geometric crossovers for multiway graph partitioning.

    PubMed

    Moraglio, Alberto; Kim, Yong-Hyuk; Yoon, Yourim; Moon, Byung-Ro

    2007-01-01

    Geometric crossover is a representation-independent generalization of the traditional crossover defined using the distance of the solution space. By choosing a distance firmly rooted in the syntax of the solution representation as a basis for geometric crossover, one can design new crossovers for any representation. Using a distance tailored to the problem at hand, the formal definition of geometric crossover allows us to design new problem-specific crossovers that embed problem-knowledge in the search. The standard encoding for multiway graph partitioning is highly redundant: each solution has a number of representations, one for each way of labeling the represented partition. Traditional crossover does not perform well on redundant encodings. We propose a new geometric crossover for graph partitioning based on a labeling-independent distance that filters out the redundancy of the encoding. A correlation analysis of the fitness landscape based on this distance shows that it is well suited to graph partitioning. A second difficulty with designing a crossover for multiway graph partitioning is that of feasibility: in general recombining feasible partitions does not lead to feasible offspring partitions. We design a new geometric crossover for permutations with repetitions that naturally suits partition problems and we test it on the graph partitioning problem. We then combine it with the labeling-independent crossover and obtain a much superior geometric crossover inheriting both advantages.

  4. 30 CFR 57.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Conveyor crossovers. 57.11013 Section 57.11013... Escapeways Travelways-Surface and Underground § 57.11013 Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  5. 30 CFR 57.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conveyor crossovers. 57.11013 Section 57.11013... Escapeways Travelways-Surface and Underground § 57.11013 Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  6. 30 CFR 56.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Conveyor crossovers. 56.11013 Section 56.11013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  7. 30 CFR 57.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Conveyor crossovers. 57.11013 Section 57.11013... Escapeways Travelways-Surface and Underground § 57.11013 Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  8. 30 CFR 56.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Conveyor crossovers. 56.11013 Section 56.11013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  9. 30 CFR 56.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Conveyor crossovers. 56.11013 Section 56.11013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  10. 30 CFR 57.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Conveyor crossovers. 57.11013 Section 57.11013... Escapeways Travelways-Surface and Underground § 57.11013 Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  11. 30 CFR 56.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveyor crossovers. 56.11013 Section 56.11013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  12. 30 CFR 56.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conveyor crossovers. 56.11013 Section 56.11013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  13. 30 CFR 57.11013 - Conveyor crossovers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveyor crossovers. 57.11013 Section 57.11013... Escapeways Travelways-Surface and Underground § 57.11013 Conveyor crossovers. Crossovers shall be provided where it is necessary to cross conveyors....

  14. Dimensional crossover in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  15. Dimensional crossover in semiconductor nanostructures

    PubMed Central

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-01-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5–10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies. PMID:27577091

  16. The dynamical crossover in attractive colloidal systems

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  17. The dynamical crossover in attractive colloidal systems.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H Eugene; Mallamace, Domenico; Chen, Sow-Hsin

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (φ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T - φ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and φ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of φ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  18. Spin crossover phenomenon accompanying order-disorder phase transition in the ligand of [FeII(DAPP)(abpt)](ClO4)2 compound (DAPP = bis(3-aminopropyl)(2-pyridylmethyl)amine, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) and its successive self-grinding effect.

    PubMed

    Miyazaki, Yuji; Nakamoto, Tadahiro; Ikeuchi, Satoaki; Saito, Kazuya; Inaba, Akira; Sorai, Michio; Tojo, Takeo; Atake, Tooru; Matouzenko, Galina S; Zein, Samir; Borshch, Serguei A

    2007-11-01

    The spin crossover phenomenon of the recently described spin crossover complex [FeII(DAPP)(abpt)](ClO4)2 [DAPP = bis(3-aminopropyl)(2-pyridylmethyl)amine, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] accompanying an order-disorder phase transition of the ligand was investigated by adiabatic heat capacity calorimetry, far-IR, IR, and Raman spectroscopies, and normal vibrational mode calculation. A large heat capacity peak due to the spin crossover transition was observed at T(trs) = 185.61 K. The transition enthalpy and entropy amounted to Delta(trs)H = 15.44 kJ mol-1 and Delta(trs)S = 83.74 J K-1 mol-1, respectively. The transition entropy is larger than the expected value 60.66 J K-1 mol-1, which is contributed from the spin multiplicity (R ln 5; R: the gas constant), disordering of the carbon atom of the six-membered metallocycle in the DAPP ligand, and one of the two perchlorate anions (2R ln 2), and change of the normal vibrational modes between the high-spin (HS) and low-spin (LS) states (35.75 J K-1 mol-1). The remaining entropy would be ascribed to changes of the lattice vibrations and molecular librations between the HS and LS states. Furthermore, [Fe(DAPP)(abpt)](ClO4)2 crystals disintegrated and became smaller crystallites whenever they experienced the phase transition. This may be regarded as a successive self-grinding effect, evidenced by adiabatic calorimetry, DSC, magnetic susceptibility, and microscope observation. The relationship between the crystal size and the physical quantities is discussed.

  19. Crossover behavior in driven cascades.

    PubMed

    Burridge, James

    2013-09-01

    We propose a model which explains how power-law crossover behavior can arise in a system which is capable of experiencing cascading failure. In our model the susceptibility of the system to cascades is described by a single number, the propagation power, which measures the ease with which cascades propagate. Physically, such a number could represent the density of unstable material in a system, its internal connectivity, or the mean susceptibility of its component parts to failure. We assume that the propagation power follows an upward drifting Brownian motion between cascades, and drops discontinuously each time a cascade occurs. Cascades are described by a continuous state branching process with distributional properties determined by the value of the propagation power when they occur. In common with many cascading models, pure power-law behavior is exhibited at a critical level of propagation power, and the mean cascade size diverges. This divergence constrains large systems to the subcritical region. We show that as a result, crossover behavior appears in the cascade distribution when an average is performed over the distribution of propagation power. We are able to analytically determine the exponents before and after the crossover.

  20. Nanoconfinement crystallization of frustrated alkyl groups: crossover of mesophase to crystalline structure.

    PubMed

    Shi, Haifeng; Wang, Haixia; Xin, John H; Zhang, Xingxiang; Wang, Dujin

    2011-04-07

    Crossover of mesophase to crystalline structure in the nanoconfinement crystallization process of frustrated side groups elucidates the critical crystal thickness d(c) or the length scale of side groups, which defines the transition process from mesophase (hexagonal and monoclinic phase) to crystalline phase (orthorhombic phase) of confined CH(2) sequences in a given crystal size restriction.

  1. The BCS Bose crossover theory

    NASA Astrophysics Data System (ADS)

    Adhikari, S. K.; de Llano, M.; Sevilla, F. J.; Solís, M. A.; Valencia, J. J.

    2007-03-01

    We contrast four distinct versions of the BCS-Bose statistical crossover theory according to the form assumed for the electron-number equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the Bose-Einstein condensation (GBEC) statistical theory that includes not boson-boson interactions but rather 2e- and also (without loss of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model. The GBEC theory is essentially an extension of the Friedberg-Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equation for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all couplings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the two crossover versions ignoring either kind of CPs. We show how critical temperatures Tc from the original BCS-Bose crossover theory in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the Tcs of ordinary BCS theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy).

  2. Crossover Designs in Nutrition and Dietetics Research.

    PubMed

    Harris, Jeffrey E; Raynor, Hollie A

    2017-07-01

    This article is the 12th installment in a statistical series exploring the importance of research design, epidemiologic methods, and statistical analysis as applied to nutrition and dietetics research. The purpose of this series is to assist registered dietitian nutritionists in interpreting nutrition research and aid nutrition researchers in applying scientific principles to produce high-quality nutrition research. This article focuses on the use of crossover designs in nutrition and dietetics research. The purpose is to distinguish the crossover design from the randomized clinical trial, define important terms, illustrate a 2×2 crossover design, discuss potential confounding variables in the crossover design, describe the analysis and interpretation of crossover data, present sample size considerations, provide examples of the use of the crossover design in nutrition and dietetics, and discuss additional considerations when the independent variable has more than two levels. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Crossover and parallel study of oral analgesics.

    PubMed

    Wang, R I; Waite, E

    1981-04-01

    Ten years ago, analgesics were studied using crossover designs. In recent years, analgesics have been studied only in parallel designs primarily because biostatisticians do not like crossover studies. The advantages of crossover studies are numerous: (1) patients serve as their own control; (2) there is less variability of responses among patients; and (3) a smaller number of patients is needed to provide statistically significant data. As long as crossover of treatment medications does not occur within 4 to 6 hours, the problem of carryover effect of the previous medication is insignificant or negligible. Two studies will be presented. One is a crossover study of Percodan with and without naloxone to placebo. The other is a parallel study comparing the effects of propoxyphene with naloxone to those of propoxyphene alone. The results of these studies reaffirm the value of the crossover method of evaluating analgesics.

  4. Dimensional crossover in the torque in a layered superconductor

    NASA Astrophysics Data System (ADS)

    Klemm, R. A.

    1993-04-01

    The procedure of Bulaevski, Ledvij, and Kogan for evaluating the line energy of single, straight vortex in the Lawrence-Doniach model in the linearized phase-only approximation is modified to take accurate account of the vortex core cross-sections. Dimensional crossover effects are found to be pronounced, with oscillations in the regular dependence of the torque for theta approximately = pi/2 and T approximately = T* less than Tc.

  5. Flow equations for the BCS-BEC crossover

    SciTech Connect

    Diehl, S.; Gies, H.; Pawlowski, J. M.; Wetterich, C.

    2007-08-15

    The functional renormalization group is used for the BCS-BEC crossover in gases of ultracold fermionic atoms. In a simple truncation, we see how universality and an effective theory with composite bosonic diatom states emerge. We obtain a unified picture of the whole phase diagram. The flow reflects different effective physics at different scales. In the BEC limit as well as near the critical temperature, it describes an interacting bosonic theory.

  6. Direct observation in 3d of structural crossover in binary hard sphere mixtures

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Pinchaipat, Rattachai; Turci, Francesco; Evans, Robert; Royall, C. Patrick

    2016-04-01

    For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon et al., J. Chem. Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl et al., Phys. Rev. Lett. 98, 198303 (2007)], where a correspondence was drawn between crossover and percolation of both species, in our 3d study we find that structural crossover is unrelated to percolation.

  7. Becoming a crossover-competent DSB.

    PubMed

    Lake, Cathleen M; Hawley, R Scott

    2016-06-01

    The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.

  8. NMR-NQR study of the crossover from the spin-glass to the superconducting phase in La{sub 2{minus}x}Sr{sub x}CuO{sub 4}

    SciTech Connect

    Julien, M.H.; Carretta, P.; Borsa, F.; Rigamonti, A.

    1999-04-20

    {sup 139}La and {sup 63}Cu NQR relaxation rates are used to obtain insights on the effects of itinerant holes on the magnetic in-plane correlation length, for x {le} 0.04 in La{sub 2{minus}x}Sr{sub x}CuO{sub 4}. For these concentrations, corresponding to spin-glass behavior at low temperature, evidence for the microsegregation of holes along stripes is presented. Preliminary relaxation results for an amount of Sr doping leading to superconductivity are also presented and discussed in terms of the crossover from the spin-glass to the underdoped superconducting regime: for x = 0.06 a slowing down of spin fluctuations is evidenced and superconductivity is found to coexist with spin-freezing.

  9. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-03-01

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) "CRover", which interpolates the two phases at around 3 times the nuclear matter density (ρ0, it is found that the cold NSs with the gravitational mass larger than 2M_{odot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M_{odot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated.

  10. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  11. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  12. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  13. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  14. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  15. Meiotic crossover patterns: Obligatory crossover, interference and homeostasis in a single process

    PubMed Central

    Wang, Shunxin; Zickler, Denise; Kleckner, Nancy; Zhang, Liangran

    2015-01-01

    During meiosis, crossover recombination is tightly regulated. A spatial patterning phenomenon known as interference ensures that crossovers are well-spaced along the chromosomes. Additionally, every pair of homologs acquires at least one crossover. A third feature, crossover homeostasis, buffers the system such that the number of crossovers remains steady despite decreases or increases in the number of earlier recombinational interactions. Here we summarize recent work from our laboratory supporting the idea that all 3 of these aspects are intrinsic consequences of a single basic process and suggesting that the underlying logic of this process corresponds to that embodied in a particular (beam-film) model. PMID:25590558

  16. Hot Neutron Stars with Hadron-Quark Crossover

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-12-01

    The effects of the hadron-quark crossover on the bulk properties of cold and hot neutron stars (NSs) are studied. We suggested a new phenomenological equation of state (EOS), which interpolates the two phases at around 3 times the nuclear matter density (ρ0), and found that the cold NSs with the gravitational mass larger than 2M⊙ can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition where the quark matter inevitably leads to soft EOS. The interpolated EOS is also generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition due to the color degrees of freedom.

  17. Chiral relaxation time at the crossover of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Peng, G. X.; Chernodub, M.

    2016-09-01

    We study microscopic processes responsible for chirality flips in the thermal bath of quantum chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely, T ≃(150 ,200 ) MeV . The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and σ meson; hence we refer to these processes simply as one-pion (one-σ ) exchanges. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time τ . We find τ ≃0.1 ÷1 fm /c around the chiral crossover.

  18. Tuning the quantum critical crossover in quantum dots

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  19. Crossover from capillary fingering to viscous fingering for immiscible unstable flow:Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Ferer, M.; Ji, Chuang; Bromhal, Grant S.; Cook, Joshua; Ahmadi, Goodarz; Smith, Duane H.

    2004-07-01

    Invasion percolation with trapping (IPT) and diffusion-limited aggregation (DLA) are simple fractal models, which are known to describe two-phase flow in porous media at well defined, but unphysical limits of the fluid properties and flow conditions. A decade ago, Fernandez, Rangel, and Rivero predicted a crossover from IPT (capillary fingering) to DLA (viscous fingering) for the injection of a zero-viscosity fluid as the injection velocity was increased from zero. [J. F. Fernandez, R. Rangel, and J. Rivero, Phys. Rev. Lett. 67, 2958 (1991)]. We have performed experiments in which air is injected into a glass micromodel to displace water. These experiments clearly demonstrate this crossover as the injection velocity of the air is increased. Furthermore, simulations, using our standard pore-level model, also support the predicted IPT-to-DLA crossover, as well as the predicted power-law behavior of the characteristic crossover length.

  20. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle.

    PubMed

    Wu, Zhongqing; Wentzcovitch, Renata M

    2014-07-22

    Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.

  1. The choice in meiosis - defining the factors that influence crossover or non-crossover formation.

    PubMed

    Youds, Jillian L; Boulton, Simon J

    2011-02-15

    Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale - in addition to current models for the generation of interference - is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over.

  2. Standard Model thermodynamics across the electroweak crossover

    NASA Astrophysics Data System (ADS)

    Laine, M.; Meyer, M.

    2015-07-01

    Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.

  3. Standard Model thermodynamics across the electroweak crossover

    SciTech Connect

    Laine, M.; Meyer, M. E-mail: meyer@itp.unibe.ch

    2015-07-01

    Even though the Standard Model with a Higgs mass m{sub H} = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a 'soft point' at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial 'structure' visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.

  4. Standard Model thermodynamics across the electroweak crossover

    SciTech Connect

    Laine, M.; Meyer, M.

    2015-07-22

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.

  5. Crossover critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Kostrowicka Wyczalkowska, Anna Judyta

    In fluids the effects of critical density fluctuations remain significant over a large range of temperatures and densities. The nonanalytical behavior observed in real fluids in the vicinity of the critical point is well described by renormalization-group theory. This theory accounts properly for the influence of the critical fluctuations in density which are entirely neglected by the classical equations. Specifically, fluids asymptotically close to the critical point belong to the universality class of the 3-dimensional Ising model and their behavior near the critical point is governed by scaling laws with critical exponents appropriate for this universality class. The validity of the asymptotic power laws is, however, restricted to a very small region near the critical point. An approach to deal with the nonasymptotic behavior of fluids including the crossover from Ising behavior in the immediate vicinity of the critical point to classical behavior far away from the critical point has been developed by Chen and coworkers and is further improved in this thesis. This approach is based on earlier work of Nicoll and coworkers and it leads to a transformation of a classical Landau expansion to incorporate the effects of critical fluctuations. Here we show how this transformation applies to real fluids: water and sulfurhexafluoride. Nevertheless, even such a crossover Landau expansion still fails to make a connection with the behavior of the fluid very far away from the critical point like the ideal-gas limit at low densities. We demonstrate how a procedure, earlier developed to include the effects of critical fluctuations into a classical Landau expansion of the Helmholtz-energy density, can also be applied to a closed-form classical equation of state like the equation of van der Waals. One of the consequences of accounting for the presence of the critical fluctuations is a shift in the location of the critical point. The resulting equation incorporates the

  6. 1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-12-01

    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6Li atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate t with respect to the pair binding energy ɛB, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of t˜c=0.025 (7 ).

  7. Psychomotor and subjective effects of bilastine, hydroxyzine, and cetirizine, in combination with alcohol: a randomized, double-blind, crossover, and positive-controlled and placebo-controlled Phase I clinical trials.

    PubMed

    García-Gea, Consuelo; Martínez, Joan; Ballester, Maria Rosa; Gich, Ignasi; Valiente, Román; Antonijoan, Rosa Maria

    2014-03-01

    The aim of this study was to compare the effects of concomitant administration of alcohol and bilastine versus alcohol alone on the central nervous system. Twenty-four healthy young volunteers of both sexes participated in a randomized, double-blind, double-dummy, crossover, and positive-controlled and placebo-controlled clinical trials. At 1-week intervals, subjects received six different treatments: (i) placebo; (ii) alcohol 0.8 g/kg alone (ALC); (iii) ALC in combination with: bilastine 20 mg (B20 + A); (iv) bilastine 80 mg (B80 + A); (v) cetirizine 10 mg (CET + A); and (vi) hydroxyzine 25 mg (HYD + A). Psychomotor performance tests (fine motor, finger tapping, nystagmus, critical flicker-fusion frequency, temporal estimation, 'd2' cancellation, and simple reaction time) and subjective self-reports (drunkenness, drowsiness, mental slowness, clumsiness, anger, attentiveness, competence, happiness, hostility, interest, and extroversion) were carried out at baseline and multiple points thereafter. All active treatments induced a significant psychomotor impairment. The greatest and most lasting impairment was observed with HYD + A followed by B80 + A and CET + A. In contrast, objective measures showed less impairment with B20 + A and ALC, both with a similar magnitude. Self-reports showed a subjective perception of performance impairment in all active treatments. Concomitant administration of bilastine (at therapeutic dose) and alcohol does not produce greater central nervous system depressant effects than ACL alone. Copyright © 2014 John Wiley & Sons, Ltd.

  8. An open-label, phase 2, single centre, randomized, crossover design bioequivalence study of AndroForte 5 testosterone cream and Testogel 1% testosterone gel in hypogonadal men: study LP101.

    PubMed

    Wittert, G A; Harrison, R W; Buckley, M J; Wlodarczyk, J

    2016-01-01

    We compared a novel 5% testosterone (T) cream (AndroForte 5, Lawley Pharmaceuticals, Australia) with a 1% T gel (Testogel, Besins Healthcare, Australia). Using an open-label crossover design, subjects were randomized to one of two treatment sequences using either the T gel or T cream first in a 1 : 1 ratio. Each treatment period was 30 days with a 7-14 days washout period between them. On Days 1 and 30 of each treatment period blood was sampled at -15, -5 min, 0, 2, 4, 5, 6, 7, 8, 9, 10, 12 and 16 h post study drug administration. Sixteen men with established androgen deficiency aged between 29 and 73 years, who had undertaken a washout from prior testosterone therapy participated in the study. One subject failed to complete both arms and another was excluded post-completion because of a major protocol violation. Bioequivalence was established based on key pharmacokinetic (PK) variables: AUC, C(avg), C(max), T(max), % fluctuation (with and without baseline correction) for the two formulations of testosterone on Day 1 and Day 30. The ratio and 90% CI of AUC 0.99 (0.86-1.14), C(max) 1.02 (0.84-1.24) and C(avg) 0.99 (0.86-1.14) for T cream/T gel were within the predetermined bio-equivalence criteria of 80% to 125% at Day 30. There were no statistically significant differences between secondary biochemical markers: serum dihydrotestosterone (DHT), oestradiol (E2), sex hormone-binding globulin (SHBG), luteinizing hormone (LH) and (FSH). The two testosterone formulations were shown to be bioequivalent.

  9. Comparison of the efficacy and safety of 2% lidocaine HCl with different epinephrine concentration for local anesthesia in participants undergoing surgical extraction of impacted mandibular third molars: A multicenter, randomized, double-blind, crossover, phase IV trial.

    PubMed

    Karm, Myong-Hwan; Park, Fiona Daye; Kang, Moonkyu; Kim, Hyun Jeong; Kang, Jeong Wan; Kim, Seungoh; Kim, Yong-Deok; Kim, Cheul-Hong; Seo, Kwang-Suk; Kwon, Kyung-Hwan; Kim, Chul-Hwan; Lee, Jung-Woo; Hong, Sung-Woon; Lim, Mi Hyoung; Nam, Seung Kwan; Cho, Jae Min

    2017-05-01

    The most commonly impacted tooth is the third molar. An impacted third molar can ultimately cause acute pain, infection, tumors, cysts, caries, periodontal disease, and loss of adjacent teeth. Local anesthesia is employed for removing the third molar. This study aimed to evaluate the efficacy and safety of 2% lidocaine with 1:80,000 or 1:200,000 epinephrine for surgical extraction of bilateral impacted mandibular third molars. Sixty-five healthy participants underwent surgical extraction of bilateral impacted mandibular third molars in 2 separate visits while under local anesthesia with 2% lidocaine with different epinephrine concentration (1:80,000 or 1:200,000) in a double-blind, randomized, crossover trial. Visual analog scale pain scores obtained immediately after surgical extraction were primarily evaluated for the 2 groups receiving different epinephrine concentrations. Visual analog scale pain scores were obtained 2, 4, and 6 hours after administering an anesthetic. Onset and duration of analgesia, onset of pain, intraoperative bleeding, operator's and participant's overall satisfaction, drug dosage, and hemodynamic parameters were evaluated for the 2 groups. There were no statistically significant differences between the 2 groups in any measurements except hemodynamic factors (P >.05). Changes in systolic blood pressure and heart rate following anesthetic administration were significantly greater in the group receiving 1:80,000 epinephrine than in that receiving 1:200,000 epinephrine (P ≤.01). The difference in epinephrine concentration between 1:80,000 and 1:200,000 in 2% lidocaine liquid does not affect the medical efficacy of the anesthetic. Furthermore, 2% lidocaine with 1:200,000 epinephrine has better safety with regard to hemodynamic parameters than 2% lidocaine with 1:80,000 epinephrine. Therefore, we suggest using 2% lidocaine with 1:200,000 epinephrine rather than 2% lidocaine with 1:80,000 epinephrine for surgical extraction of impacted

  10. Evaluation of Bioequivalence Between the New Procaterol Hydrochloride Hydrate Dry Powder Inhaler and the Approved Dry Powder Inhaler in Patients With Asthma in a Randomized, Double-Blind, Double-Dummy, Crossover Comparison Study: A Phase 3 Study.

    PubMed

    Shirai, Ryo; Suzaki, Yuki; Sato, Kyoko; Takeuchi, Yuko; Tokimatsu, Issei; Koga, Nobuyuki; Kadota, Junichi; Ohashi, Kyoichi

    2017-09-08

    Procaterol hydrochloride hydrate (procaterol) is a β2 -adrenergic receptor agonist that induces a strong bronchodilatory effect. The procaterol dry powder inhaler (DPI) has been frequently used in patients with bronchial asthma or chronic obstructive pulmonary disease. We evaluated the bioequivalence and safety between the new procaterol DPI (new DPI) and the approved procaterol DPI (approved DPI). This study was a randomized, double-blind, double-dummy, crossover comparison to evaluate the pharmacodynamic equivalence of the new DPI and the approved DPI in patients with bronchial asthma. Primary efficacy variables were area under the concentration-time curve (AUC) forced expiratory volume in the first second (FEV1 )/h and maximum FEV1 during the 480-minute measurement period. Patients were divided into 2 groups, New-DPI-First (n = 8) and Approved-DPI-First (n = 8), according to the investigational medical product that was administered first. Patients inhaled 20 μg of procaterol in each period. FEV1 was measured by a spirometer at predose and at 15, 30, 60, 90, 120, 180, 240, 360, and 480 minutes after each investigational medical product administration. Equivalence was evaluated by confirming that the 2-sided 90%CIs for the difference between the new and the approved DPI in means of AUC (FEV1 )/h and maximum FEV1 were within the acceptance criteria of -0.15 to 0.15 L. The difference in means of AUC (FEV1 )/h and maximum FEV1 was 0.041 L and 0.033 L, respectively, and the 90%CI was 0.004 to 0.078 L and -0.008 to 0.074 L, respectively. These CIs were both within the acceptance criteria. The new DPI was assessed as being bioequivalent to the approved DPI. © 2017 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  11. A Ferroelectric Iron(II) Spin Crossover Material.

    PubMed

    Jornet-Mollá, Verónica; Duan, Yan; Giménez-Saiz, Carlos; Tang, Yuan-Yuan; Li, Peng-Fei; Romero, Francisco M; Xiong, Ren-Gen

    2017-09-07

    A dual-function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well-known iron(II) spin crossover complex [Fe(bpp)2 ](2+) (bpp=2,6-bis(pyrazol-3-yl)pyridine), a four-fold noncentrosymmetric H-bond donor, was combined with a disymmetric H-bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)2 ](isonic)2 ⋅2 H2 O. This low-spin iron(II) compound crystallizes in the acentric nonpolar I4‾ space group and shows piezoelectricity and SHG properties. Upon dehydration, it undergoes a single-crystal to single-crystal structural rearrangement to a monoclinic polar Pc phase that is ferroelectric and exhibits spin crossover. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crossover of critical Casimir forces between different surface universality classes.

    PubMed

    Mohry, T F; Maciołek, A; Dietrich, S

    2010-06-01

    In confined systems near a continuous phase transition the long-ranged fluctuations of the corresponding order parameter are subject to boundary conditions. These constraints result in so-called critical Casimir forces acting as effective forces on the confining surfaces. For systems belonging to the Ising bulk universality class corresponding to a scalar order parameter the critical Casimir force is studied for the film geometry in the crossover regime characterized by different surface fields at the two surfaces. The scaling function of the critical Casimir force is calculated within mean-field theory. Within our approach, the scaling functions of the critical Casimir force and of the order parameter profile for finite surface fields can be mapped by rescaling, except for a narrow crossover regime, onto the corresponding scaling function of the so-called normal fixed point of strong surface fields. In the crossover regime, the critical Casimir force as function of temperature exhibits more than one extremum and for certain ranges of surface field strengths it changes sign twice upon varying temperature. Monte Carlo simulation data obtained for a three-dimensional Ising film show similar trends. The sign of the critical Casimir force can be inferred from the comparison of the order parameter profiles in the film and in the semi-infinite geometry.

  13. The Misguided Ethics of Crossover Trials

    PubMed Central

    Prasad, Vinay; Grady, Christine

    2014-01-01

    Crossover is increasingly favored in trials of cancer therapies; even those that seek to establish the basic efficacy of novel drugs. Crossover is done in part for trial recruitment, but also out of a sense of doing the right thing—offering the investigational agent to more patients. In this paper, we argue that this ethical feeling—that crossover is a preferred trial choice—is misguided. In seeking to sate the desires of participants, we might undermine a trial’s ability to answer a meaningful clinical question. When a trial is incapable of answering a question, it becomes unethical. Using a crossover strategy in oncology clinical trials can make trials less ethical, not more. L’enfer est plein de bonnes volontés et désirs (Hell is full of good wishes and desires)--Saint Bernard of Clairvaux (c.1150) PMID:24365533

  14. Thermodynamics of Forming a Parallel DNA Crossover

    PubMed Central

    Spink, Charles H.; Ding, Liang; Yang, Qingyi; Sheardy, Richard D.; Seeman, Nadrian C.

    2009-01-01

    Abstract The process of genetic recombination involves the formation of branched four-stranded DNA structures known as Holliday junctions. The Holliday junction is known to have an antiparallel orientation of its helices, i.e., the crossover occurs between strands of opposite polarity. Some intermediates in this process are known to involve two crossover sites, and these may involve crossovers between strands of identical polarity. Surprisingly, if a crossover occurs at every possible juxtaposition of backbones between parallel DNA double helices, the molecules form a paranemic structure with two helical domains, known as PX-DNA. Model PX-DNA molecules can be constructed from a variety of DNA molecules with five nucleotide pairs in the minor groove and six, seven or eight nucleotide pairs in the major groove. A topoisomer of the PX motif is the juxtaposed JX1 molecule, wherein one crossover is missing between the two helical domains. The JX1 molecule offers an outstanding baseline molecule with which to compare the PX molecule, so as to measure the thermodynamic cost of forming a crossover in a parallel molecule. We have made these measurements using calorimetric and ultraviolet hypochromicity methods, as well as denaturing gradient gel electrophoretic methods. The results suggest that in relaxed conditions, a system that meets the pairing requirements for PX-DNA would prefer to form the PX motif relative to juxtaposed molecules, particularly for the 6:5 structure. PMID:19619467

  15. Design, analysis, and presentation of crossover trials

    PubMed Central

    Mills, Edward J; Chan, An-Wen; Wu, Ping; Vail, Andy; Guyatt, Gordon H; Altman, Douglas G

    2009-01-01

    Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identified 526 randomized controlled trials, of which 116 were crossover trials. Trials were drug efficacy (48%), pharmacokinetic (28%), and nonpharmacologic (30%). The median sample size was 15 (interquartile range 8–38). Most (72%) trials used 2 treatments and had 2 periods (64%). Few trials reported allocation concealment (17%) or sequence generation (7%). Only 20% of trials reported a sample size calculation and only 31% of these considered pairing of data in the calculation. Carry-over issues were addressed in 29% of trial's methods. Most trials reported and defended a washout period (70%). Almost all trials (93%) tested for treatment effects using paired data and also presented details on by-group results (95%). Only 29% presented CIs or SE so that data could be entered into a meta-analysis. Conclusion Reports of crossover trials frequently omit important methodological issues in design, analysis, and presentation. Guidelines for the conduct and reporting of crossover trials might improve the conduct and reporting of studies using this important trial design. PMID:19405975

  16. A matched crossover design for clinical trials.

    PubMed

    Simon, Laura J; Chinchilli, Vernon M

    2007-09-01

    Two design principles are used frequently in clinical trials: 1) A subject is "matched" or "paired" with a similar subject to reduce the chance that other variables obscure the primary comparison of interest. 2) A subject serves as his/her own control by "crossing over" from one treatment to another during the course of an experiment. There are situations in which it may be advantageous to use the two design principles - crossing over and matching - simultaneously. That is, it may be advantageous to conduct a "paired crossover design," in which each subject, while paired with a similar subject, crosses over and receives each experimental treatment. In this paper, we describe two clinical trials conducted by the National Heart, Lung and Blood Institute's Asthma Clinical Research Network that used a paired 2x2 crossover design. The Beta Adrenergic Response by GEnotype (BARGE) Study compared the effects of regular use of inhaled albuterol on mildly asthmatic patients with different genotypes at the 16th position of the beta-agonist receptor gene. The Smoking Modulates Outcomes of Glucocorticoid (SMOG) Therapy in Asthma Study evaluated the hypothesis that smoking reduces the response to inhaled corticosteroids. For such paired crossover designs, the primary parameter of interest is typically the treatment-by-pairing interaction term. In evaluating the relative efficiency of the paired 2x2 crossover design to two independent crossover designs with respect to this interaction term, we show that the paired 2x2 crossover design is more efficient if the correlations between the paired members on the same treatments are greater than their correlations on different treatments. This condition should hold in most circumstances, and therefore the paired crossover design deserves serious consideration for any clinical trial in which the crossing over and matching of subjects is deemed simultaneously beneficial.

  17. Pharmacokinetics of two 6-day frovatriptan dosing regimens used for the short-term prevention of menstrual migraine: A phase I, randomized, double-blind, placebo-controlled, two-period crossover, single-centre study in healthy female volunteers.

    PubMed

    Wade, Andrew; Pawsey, Stephen; Whale, Holly; Boyce, Malcolm; Warrington, Steve

    2009-01-01

    This study aimed to assess the pharmacokinetics and tolerability of once- and twice-daily frovatriptan given for 6 days, a regimen that has previously been reported to reduce the incidence and severity of menstrual migraine when administered during the perimenstrual period. This was a double-blind, placebo-controlled, two-period crossover study carried out in healthy premenopausal female volunteers aged >or=18 years (equal number taking or not taking estrogen-containing contraceptives [ECCs]) who were admitted to a clinical pharmacology unit. Women alternately received frovatriptan once daily (day 1: 5 mg; days 2-6: 2.5 mg) and twice daily (day 1: 5 mg [10 mg total]; days 2-6: 2.5 mg [5 mg total]) in a randomized treatment sequence. Dosing was also random with respect to the menstrual cycle. Whole blood samples were obtained on days 1 and 6 (predose and at 0.5, 1, 2, 4, 6, 8, 12 [before evening dose], 13, 14, 16 and 18 hours post-dose) and on days 2-5 (samples were taken before the morning dose). A final sample was drawn at 24 hours after the last treatment on day 6. A fully validated liquid chromatography assay coupled to a tandem mass spectroscopy assay measured drug concentrations (simultaneous measurement of frovatriptan and its metabolites). Pharmacokinetic parameters were determined using a noncompartmental approach. Safety and tolerability were measured by monitoring adverse events, haematology and biochemistry, vital signs, ECG results and physical examination findings. Twenty-six healthy women participated in the study and 24 (12 ECC users and 12 ECC nonusers) completed the study. One ECC user during period 1 and one nonuser during period 2 withdrew before completion; both were taking frovatriptan once daily. Most women were White (n = 21), three were Black, and one each was Hispanic or Asian; mean +/- SD age was 25.4 +/- 4.9 years; and mean +/- SD weight was 61.9 +/- 6.5 kg. For both once- and twice-daily dosing, time to reach maximum blood concentration

  18. BEC-BCS crossover driven by the axial anomaly in the NJL model

    NASA Astrophysics Data System (ADS)

    Abuki, Hiroaki; Baym, Gordon; Hatsuda, Tetsuo; Yamamoto, Naoki

    2010-12-01

    We study the QCD phase structure in the three-flavor Nambu-Jona-Lasinio model, incorporating the chiral-diquark interplay due to the axial anomaly. We demonstrate that for a certain range of model parameters, the low temperature critical point predicted by a Ginzburg-Landau analysis appears in the phase diagram. In addition, we show that the axial anomaly presents a new scenario for a possible BEC-BCS crossover in the color-flavor locked phase of QCD.

  19. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-07-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation

  20. Mobile workers in healthcare and their information needs: are 2-way pagers the answer?

    PubMed

    Eisenstadt, S A; Wagner, M M; Hogan, W R; Pankaskie, M C; Tsui, F C; Wilbright, W

    1998-01-01

    The ability to have access to information relevant to patient care is essential within the healthcare environment. To meet the information needs of its workers, healthcare information systems must fulfill a variety of functional requirements. One of these requirements is to define how workers will interact with the system to gain the information they need. Currently, most healthcare information systems rely on users querying the system via a fixed terminal for the information they desire; a method that is inefficient because there is no guarantee the information will be available at the time of their query and it interrupts their work flow. In general, clinical event monitors--systems whose efficacy relies on the delivery of time-critical information--have used e-mail and numeric pagers as their methods to deliver information. Each of these methods, however, still requires the user to perform additional steps, i.e., log into an information system in order to attain the information about which the system is alerting them. In this paper we describe the integration and use of 2-way alphanumeric pagers in CLEM, the UPMC Health System's Clinical Event Monitor, and how the use of these pagers addresses the information needs of mobile workers in healthcare.

  1. Spin-crossover molecule based thermoelectric junction

    SciTech Connect

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  2. Relaxor-ferroelectric crossover in (B i1 /2K1 /2)Ti O3 : Origin of the spontaneous phase transition and the effect of an applied external field

    NASA Astrophysics Data System (ADS)

    Hagiwara, Manabu; Ehara, Yoshitaka; Novak, Nikola; Khansur, Neamul H.; Ayrikyan, Azatuhi; Webber, Kyle G.; Fujihara, Shinobu

    2017-07-01

    The temperature evolution of polar order in an A -site complex perovskite (B i1 /2K1 /2)Ti O3 (BKT) has been investigated by measurements of dielectric permittivity, depolarization current, and stress-stain curves at elevated temperatures. Upon cooling from high temperatures, BKT first enters a relaxor state and then spontaneously transforms into a ferroelectric state. The analyses of temperature and frequency dependence of permittivity have revealed that polar nanoregions of the relaxor phase appear at temperatures higher than 560°C, and also that their freezing at 296°C triggers the spontaneous relaxor-ferroelectric transition. We discuss the key factors determining the development of long-range polar order in A -site complex perovskites through a comparison with the relaxor (B i1 /2N a1 /2)Ti O3 . We also show that application of biasing electric fields and compressive stresses to BKT favors its ferroelectric phase, resulting in a significant shift of the relaxor-ferroelectric transition temperature towards higher temperatures. Based on the obtained results, electric field-temperature and stress-temperature phase diagrams are firstly determined for BKT.

  3. Ordering and dimensional crossovers in metallic glasses and liquids

    NASA Astrophysics Data System (ADS)

    Chen, David Z.; An, Qi; Goddard, William A.; Greer, Julia R.

    2017-01-01

    The atomic-level structures of liquids and glasses are amorphous, lacking long-range order. We characterize the atomic structures by integrating radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: C u46Z r54 , N i80A l20 , N i33.3Z r66.7 , and P d82S i18 . Resulting cumulative coordination numbers (CN) show that metallic liquids have a dimension of d =2.55 ±0.06 from the center atom to the first coordination shell and metallic glasses have d =2.71 ±0.04 , both less than 3. Between the first and second coordination shells, both phases crossover to a dimension of d =3 , as for a crystal. Observations from discrete atom center-of-mass position counting are corroborated by continuously counting Cu glass- and liquid-phase atoms on an artificial grid, which accounts for the occupied atomic volume. Results from Cu grid analysis show short-range d =2.65 for Cu liquid and d =2.76 for Cu glass. Cu grid structures crossover to d =3 at ξ ˜8 Å (˜3 atomic diameters). We study the evolution of local structural dimensions during quenching and discuss its correlation with the glass transition phenomenon.

  4. Does Crossover Interference Count in Saccharomyces cerevisiae?

    PubMed Central

    Stahl, Franklin W.; Foss, Henriette M.; Young, Lisa S.; Borts, Rhona H.; Abdullah, M. F. F.; Copenhaver, Gregory P.

    2004-01-01

    We previously proposed a “counting model” for meiotic crossover interference, in which double-strand breaks occur independently and a fixed number of noncrossovers occur between neighboring crossovers. Whereas in some organisms (group I) this simple model alone describes the crossover distribution, in other organisms (group II) an additional assumption—that some crossovers lack interference—improves the fit. Other differences exist between the groups: Group II needs double-strand breaks and some repair functions to achieve synapsis, while repair in group I generally occurs after synapsis is achieved; group II, but not group I, has recombination proteins Dmc1, Mnd1, and Hop2. Here we report experiments in msh4 mutants that are designed to test predictions of the revised model in a group II organism. Further, we interpret these experiments, the above-mentioned differences between group I and II meiosis, and other data to yield the following proposal: Group II organisms use the repair of leptotene breaks to promote synapsis by generating double-Holliday-junction intermediates that lock homologs together (pairing pathway). The possible crossover or noncrossover resolution products of these structures lack interference. In contrast, for both group I and group II, repair during pachytene (disjunction pathway) is associated with interference and generates only two resolution types, whose structures suggest that the Holliday junctions of the repair intermediates are unligated. A crossover arises when such an intermediate is stabilized by a protein that prevents its default resolution to a noncrossover. The protein-binding pattern required for interference depends on clustering of sites that have received, or are normally about to receive, meiotic double-strand breaks. PMID:15454525

  5. Magnetic crossover realized by electrical methods

    NASA Astrophysics Data System (ADS)

    Hao, Hua; Zheng, XiaoHong; Jia, Ting; Zeng, Zhi

    2017-05-01

    Electrical control of molecular-scale magnetisms is a greatly important topic in molecular spintronics. This enables the ultimate-limit manipulation of magnetisms, and has the potential to revolutionize computer technologies. Two mechanisms related to electrical control of molecular-scale magnetisms are concerned in this review. One is the magnetic crossover realized by the electrostatic Stark effect. The other is the magnetic crossover induced by the electron tunneling through the lowest unoccupied molecular orbital under bias voltages or one added electron under gate voltages.

  6. Cross-over to quasi-condensation: mean-field theories and beyond

    NASA Astrophysics Data System (ADS)

    Henkel, Carsten; Sauer, Tim-O.; Proukakis, N. P.

    2017-06-01

    We analyze the cross-over of a homogeneous, weakly interacting Bose gas in one dimension from the ideal gas into the dense quasi-condensate phase. We review a number of mean-field theories, perturbative or self-consistent, and provide accurate evaluations of equation of state, density fluctuations, and correlation functions. A smooth crossover is reproduced by classical-field simulations based on the stochastic Gross-Pitaevskii equation and the Yang-Yang solution to the one-dimensional Bose gas.

  7. Crossover from nucleation to spinodal decomposition in a condensing vapor.

    PubMed

    Wedekind, Jan; Chkonia, Guram; Wölk, Judith; Strey, Reinhard; Reguera, David

    2009-09-21

    The mechanism controlling the initial step of a phase transition has a tremendous influence on the emerging phase. We study the crossover from a purely nucleation-controlled transition toward spinodal decomposition in a condensing Lennard-Jones vapor using molecular dynamics simulations. We analyze both the kinetics and at the same time the thermodynamics by directly reconstructing the free energy of cluster formation. We estimate the location of the spinodal, which lies at much deeper supersaturations than expected. Moreover, the nucleation barriers we find differ only by a constant from the classical nucleation theory predictions and are in very good agreement with semiempirical scaling relations. In the regime from very small barriers to the spinodal, growth controls the rate of the transition but not its nature because the activation barrier has not yet vanished. Finally, we discuss in detail the influence of the chosen reaction coordinate on the interpretation of such simulation results.

  8. Continuous and Discontinuous Dynamic Crossover in Supercooled Water in Computer Simulations

    PubMed Central

    2016-01-01

    The dynamic crossover behavior of supercooled water as described by the first-principle based WAIL potential was investigated. Below the second liquid–liquid critical point, the viscosity shows a discontinuous jump consistent with a first-order phase transition between the high density liquid and the low density liquid. Above the critical point, a continuous transition occurs with only the first derivative of viscosity being discontinuous, and the dynamic crossover temperature is about 8 K below the thermodynamic switchover temperature. The 8 K shift can be explained by a delay in dynamic crossover, which does not occur until the more viscous liquid starts to dominate the population and jams the flow. On the basis of finite-size effects observed in our simulations, we believe that dynamic discontinuity may be observable above the critical point in confined water when the confinement is on a length scale shorter than the spatial correlation. PMID:27476514

  9. Preventing oxaliplatin-induced neurotoxicity: rationale and design of phase Ib randomized, double-blind, placebo-controlled, cross-over trials for early clinical evaluation of investigational therapeutics.

    PubMed

    Han, Catherine H; Kilfoyle, Dean H; Hill, Andrew G; Jameson, Michael B; McKeage, Mark J

    2016-12-01

    Oxaliplatin-based chemotherapy has become the standard treatment for colorectal cancer and other gastrointestinal tumor types. Oxaliplatin-induced neurotoxicity is a major treatment-limiting side effect that compromizes the delivery of cancer treatment and causes long-standing neurological deficits that negatively impact upon patient quality of life Areas covered: The prevention of oxaliplatin-induced neurotoxicity represents an important opportunity for new therapeutic product development to address this major unmet medical need. In this article, we describe a phase Ib clinical trial design, and study procedures and protocols, that we have developed and now propose for the early clinical evaluation of investigational therapeutics for preventing oxaliplatin-induced neurotoxicity. Expert opinion: Recently, several advances have been made in the development of research methodologies applicable to the clinical evaluation of investigational drugs for preventing oxaliplatin-induced neurotoxicity. As we gain better understanding of the mechanisms of oxaliplatin-induced neurotoxicity, we will be able to use these methods to develop and test more effective and targeted neuroprotective agents that may not only improve patients' quality of life but also improve treatment delivery and survival outcomes.

  10. The Design of Cluster Randomized Crossover Trials

    ERIC Educational Resources Information Center

    Rietbergen, Charlotte; Moerbeek, Mirjam

    2011-01-01

    The inefficiency induced by between-cluster variation in cluster randomized (CR) trials can be reduced by implementing a crossover (CO) design. In a simple CO trial, each subject receives each treatment in random order. A powerful characteristic of this design is that each subject serves as its own control. In a CR CO trial, clusters of subjects…

  11. Cedarwood: cross-over pressure research

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to determine the cross-over pressure for cedarwood oil in carbon dioxide. A closed stirrer reactor with an in-line loop connected to the injector of a GC was used to measure the concentration of cedarwood oil in the carbon dioxide. Both neat cedarwood oil as ...

  12. The Design of Cluster Randomized Crossover Trials

    ERIC Educational Resources Information Center

    Rietbergen, Charlotte; Moerbeek, Mirjam

    2011-01-01

    The inefficiency induced by between-cluster variation in cluster randomized (CR) trials can be reduced by implementing a crossover (CO) design. In a simple CO trial, each subject receives each treatment in random order. A powerful characteristic of this design is that each subject serves as its own control. In a CR CO trial, clusters of subjects…

  13. Critical Crossover Functions for Simple Fluids: Towards the Crossover Modelling Uniqueness

    NASA Astrophysics Data System (ADS)

    Garrabos, Yves; Lecoutre, Carole; Marre, Samuel; LeNeindre, Bernard; Hahn, Inseob

    2016-11-01

    Based on a single non-universal temperature scaling factor present in a simple fluid case, a detailed analysis of non-universal parameters involved in different critical-to-classical crossover models is given. For the infinite limit of the cutoff wave number, a set of three scaling-parameters is defined for each model such that it shows all the shapes of the theoretical crossover functions overlap on the mean crossover function shapes close to the non-trivial fixed point. The analysis of corresponding links between their fluid-dependent parameters opens a route to define a parametric model of crossover equation-of-state, closely satisfying the universal features calculated from the Ising-like limit in the massive renormalization scheme.

  14. A phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor Selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumors.

    PubMed

    Leijen, Suzanne; Soetekouw, Patricia M M B; Jeffry Evans, T R; Nicolson, Marianne; Schellens, Jan H M; Learoyd, Maria; Grinsted, Lynda; Zazulina, Victoria; Pwint, Thinn; Middleton, Mark

    2011-12-01

    This Phase I study assessed whether food influences the rate and extent of selumetinib absorption in patients with advanced solid malignancies and determined the safety, tolerability, and pharmacokinetic (PK) profile of selumetinib and its active metabolite N-desmethyl-selumetinib in fed and fasted states. A single dose of 75 mg selumetinib was to be taken with food on Day 1 followed by a single dose of 75 mg after fasting for at least 10 h on Day 8, or vice versa, followed by twice daily dosing of 75 mg selumetinib from Day 10. Plasma concentrations and PK parameters were determined on Days 1 and 8. Patients could continue to receive selumetinib for as long as they benefitted from treatment. In total, 31 patients were randomized to receive selumetinib; 15 to fed/fasted sequence and 16 to fasted/fed sequence. Comprehensive PK sampling was performed on 11 and 10 patients, respectively. The geometric least-squares means of C(max) and AUC for selumetinib were reduced by 62% (ratio 0.38 90% CI 0.29, 0.50) and 19% (ratio 0.81 90% CI 0.74, 0.88), respectively, under fed compared with fasting conditions. The rate of absorption (t(max)) of selumetinib (fed) was delayed by approximately 2.5 h (median). The food effect was also observed for the active metabolite N-desmethyl-selumetinib. Selumetinib was well tolerated. The presence of food decreased the extent of absorption of selumetinib. It is recommended that for further clinical studies, selumetinib be taken on an empty stomach. Selumetinib demonstrated an acceptable safety profile in the advanced cancer population.

  15. The vacuum tunnelling and the crossover of deconfinement in Friedberg-Lee model

    NASA Astrophysics Data System (ADS)

    Shu, Song; Li, Jia-Rong

    2013-03-01

    We have discussed the vacuum tunnelling in Friedberg-Lee model. The tunnelling coefficient is derived in the field configuration space by calculating the transition amplitude using the path integral under the stationary phase approximation and the dilute instanton gas approximation. By studying the tunnelling effect between the two degenerating vacuums at the critical temperature and chemical potential, we find that the system could be deconfined by tunnelling, which could possibly change the first order deconfinement phase transition to crossover.

  16. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers.

    PubMed

    Stott, Colin; White, Linda; Wright, Stephen; Wilbraham, Darren; Guy, Geoffrey

    2013-12-01

    This Phase I study aimed to assess the potential drug-drug interactions (pharmacokinetic [PK] and safety profile) of Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (Sativex (®), nabiximols) in combination with cytochrome P450 (CYP450) inducer (rifampicin) or inhibitors (ketoconazole or omeprazole). Thirty-six healthy male subjects were divided into three groups of 12, and then randomized to one of two treatment sequences per group. Subjects received four sprays of THC/CBD (10.8/10 mg) alongside single doses of the CYP3A and 2C19 inducer rifampicin (600 mg), CYP3A inhibitor ketoconazole (400 mg) or CYP2C19 inhibitor omeprazole (40 mg). Plasma samples were analyzed for CBD, THC and its metabolite 11-hydroxy-THC (11-OH-THC). A single dose of four sprays of THC/CBD spray (10.8/10 mg) following repeated doses of rifampicin (600 mg) reduced the Cmax and AUC of all analytes. Cmax reduced from 2.94 to 1.88 ng/mL (-36%), 1.03 to 0.50 ng/mL (-52%) and 3.38 to 0.45 ng/mL (-87%) for THC, CBD and 11-OH-THC, respectively compared to single dose administration of THC/CBD spray alone. Ketoconazole co-administration with THC/CBD spray had the opposite effect, increasing the Cmax of the respective analytes from 2.65 to 3.36 ng/mL (+27%), 0.66 to 1.25 ng/mL (+89%) and 3.59 to 10.92 ng/mL (+204%). No significant deviations in Cmax or AUC for any analyte were observed when THC/CBD spray was co-administered with omeprazole. THC/CBD spray was well tolerated by the study subjects both alone and in combination with rifampicin, ketoconazole and omeprazole. Evaluation of the PKs of THC/CBD spray alone and in combination with CYP450 inhibitors/inducers suggests that all analytes are substrates for the isoenzyme CYP3A4, but not CYP2C19. On the basis of our findings, there is likely to be little impact on other drugs metabolized by CYP enzymes on the PK parameters of THC/CBD spray, but potential effects should be taken into consideration when co-administering THC/CBD spray

  17. Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer

    PubMed Central

    Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent

    2016-01-01

    Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776

  18. Superconductor-insulator transition and Fermi-Bose crossovers

    DOE PAGES

    Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; ...

    2016-05-31

    The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less

  19. Crossover by Line Length and Spatial Location

    PubMed Central

    Mennemeier, Mark; Rapcsak, Steven Z.; Pierce, Chris; Vezey, Elsie

    2015-01-01

    It is well known that line length has a systematic influence on line bisection error in neglect. Most patients with neglect misbisect long lines on the same side of true center as their brain lesion but then cross over on short lines, misbisecting them on the opposite side (i.e., crossover by line length). What is less recognized is that the spatial location of lines relative to the viewer can similarly induce a crossover effect when one considers line bisection error scores that have been averaged across individual line lengths. Patients with right hemisphere injury and neglect classically make averaged line bisection errors that fall right of true center on lines located either at midline or to the left of the viewer; however, we observed that the averaged line bisection error can fall left of true center when lines are located to the right of the viewer (i.e., crossover by spatial location). We hypothesized that crossover by both line length and spatial location stem from systematic errors in magnitude estimation, i.e., perceived line length. We tested predictions based on this hypothesis by examining how the crossover effect by line length is altered by the spatial location of lines along a horizontal axis relative to the viewer. Participants included patients with unilateral lesions of the right and left cerebral hemispheres and age-appropriate normal subjects. All groups demonstrated a crossover effect by line length at the midline location but the effect was altered by placing lines to the right and left of the viewer. In particular, patients with right hemisphere injury and neglect crossed-over across a hroader range of line lengths when the lines were located to the right of the viewer rather than at either midline or left of the viewer. It is proposed that mental representations of stimulus magnitude are altered in neglect, in addition to mental representations of space, and that traditional accounts of neglect can be enhanced by including the

  20. Dimensional crossover in fluids under nanometer-scale confinement.

    PubMed

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  1. Topological superfluids and the BEC-BCS crossover in the attractive Haldane-Hubbard model

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Cai; Xu, Zhihao; Zhang, Shizhong

    2017-04-01

    Motivated by the recent realization of the Haldane model in a shaking optical lattice, we investigate the effects of attractive interaction and the BEC-BCS crossover in this model at and away from half-filling. We show that, contrary to the usual s -wave BEC-BCS crossover in the lattice, a topological superfluid with Chern number C =2 appears in an extended region of the phase space for intermediate strength of the attractive interaction on the interaction-density plane. When inversion symmetry is broken, a gapless weak topological state is realized. We also investigate the fluctuations in these superfluid phases and show that the Anderson-Bogoliubov mode is quadratic due to time-reversal symmetry breaking and the existence of an undamped Leggett mode in the strong-coupling limit. Near the topological phase transition, the damping of the Leggett mode reaches its maximum.

  2. Crossover from first-order to second-order phase transitions and magnetocaloric effect in La{sub 0.7}Ca{sub 0.3}Mn{sub 0.91}Ni{sub 0.09}O{sub 3}

    SciTech Connect

    Phan, The-Long; Zhang, P.; Yu, S. C.; Thanh, T. D.

    2014-05-07

    We have prepared La{sub 0.7}Ca{sub 0.3}Mn{sub 0.91}Ni{sub 0.09}O{sub 3} and then studied its critical behavior and magnetocaloric effect. Analyzing temperature and field dependences of magnetization around the ferromagnetic-paramagnetic transition reveals the sample undergoing the second-order magnetic phase transition with the critical parameters T{sub C} ≈ 199.4 K, β = 0.171 ± 0.006, and γ = 0.976 ± 0.012. A considerable difference of these critical exponents compared with those expected for the standard models is due to the sample exhibiting the crossover property (tricriticality); its exponent values are more close to those expected for the tricritical mean-field theory with β = 0.25 and γ = 1. Under the field 40 kOe, the maximum magnetic entropy change (−ΔS{sub max}) around T{sub C} is about 7.1 J·kg{sup −1}·K{sup −1}, corresponding to a refrigerant capacity RC ≈ 170 J/kg. Particularly, its magnetic-field dependence obeys a power law |ΔS{sub max}| ∝ H{sup n}, where n = 0.55 is quite far from the value calculated from the relation n = 1 + (β − 1)/(β + γ)

  3. Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-05-01

    Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.

  4. Exchangeability in the case-crossover design.

    PubMed

    Mittleman, Murray A; Mostofsky, Elizabeth

    2014-10-01

    In cohort and case-control studies, confounding that arises as a result of differences in the distribution of determinants of the outcome between exposure groups leading to non-exchangeability are addressed by restriction, matching or with statistical models. In case-only studies, this issue is addressed by comparing each individual with his/herself. Although case-only designs use self-matching and only include individuals who develop the outcome of interest, issues of non-exchangeability are identical to those that arise in traditional case-control and cohort studies. In this review, we describe one type of case-only design, the case-crossover design, and discuss how the concept of exchangeability can be used to understand issues of confounding, carryover effects, period effects and selection bias in case-crossover studies.

  5. Dimensional crossover in dipolar magnetic layers

    NASA Astrophysics Data System (ADS)

    Bulenda, M.; Täuber, U. C.; Schwabl, F.

    2000-01-01

    We investigate the static critical behaviour of a uniaxial magnetic layer, with finite thickness L in one direction, yet infinitely extended in the remaining d dimensions. The magnetic dipole-dipole interaction is taken into account. We apply a variant of Wilson's momentum shell renormalization group approach to describe the crossover between the critical behaviour of the 3D Ising, 2D Ising, 3D uniaxial dipolar, and the 2D uniaxial dipolar universality classes. The corresponding renormalization group fixed points are in addition to different effective dimensionalities characterized by distinct analytic structures of the propagator, and are consequently associated with varying upper critical dimensions. While the limiting cases can be discussed by means of dimensional icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> expansions with respect to the appropriate upper critical dimensions, respectively, the crossover features must be addressed in terms of the renormalization group flow trajectories at fixed dimensionality d .

  6. Crossover from quantum to classical transport

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.

    2016-01-01

    Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.

  7. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  8. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wentzcovitch, R. M.

    2014-12-01

    Ferropericlase (Fp) is believed to be the second most abundant phase in the lower mantle. Since the discovery of the high spin (HS) to low spin (LS) crossover in iron in Fp [1], this phenomenon has been investigated extensively experimentally and theoretically. This is a broad and smooth crossover that takes place throughout most of the lower mantle and does not produce an obvious signature in radial velocity or density profiles [2]. Therefore, the spin transition has been generally considered to be invisible to seismic waves. This study, however, shows that it can produce a peculiar effect on lateral velocity heterogeneities at certain depths[3]. Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron introduces unfamiliar effects on seismic velocities. First principles calculations indicate that anti-correlation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in VP but not in VS. This effect is observed in tomographic models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P () heterogeneity ratio might be a useful "fingerprint" to detect the presence of Fp in the lower mantle. [1] Badro J, et al. (2003) Science 300(5620):789-791. [2] Wu Z, Justo J. F., and Wentzcovitch R. M., (2013). Phys. Rev. Lett. 110. 228501-5 [3]Wu Z., and Wentzcovitch R. M., (2014) Proc Natl Acad Sci USA. www.pnas.org/cgi/doi/10.1073/pnas.1322427111

  9. Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice

    SciTech Connect

    Small, Eran; Pugatch, Rami; Silberberg, Yaron

    2011-01-15

    We show that a periodic two-dimensional (2D) photonic lattice with Kerr nonlinearity exhibits a Berezinskii-Kosterlitz-Thouless (BKT) crossover associated with a vortex-unbinding transition. We find that averaging over random initial conditions is equivalent to Boltzmann thermal averaging with the discrete nonlinear Schro{center_dot}{center_dot}dinger Hamiltonian. By controlling the initial randomness we can continuously vary the effective temperature. Since this Hamiltonian is in the 2D XY universality class, a BKT transition ensues. We verify this prediction using experimentally accessible observables and find good agreement between theory and simulations. This opens the possibility of experimental access to interesting phase transitions known in condensed matter using nonlinear optics.

  10. Quantum-classical crossover in electrodynamics

    SciTech Connect

    Polonyi, Janos

    2006-09-15

    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in the macroscopic or the microscopic side, respectively. The functional form of the quantum renormalization group, the generalization of the renormalization group method for the density matrix, is proposed to follow the scale dependence through the quantum-classical crossover in a systematical manner.

  11. Geosat crossover analysis in the tropical Pacific. Part 1: Constrained sinusoidal crossover adjustment

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    A new method (constrained sinusoidal crossover adjustment) for removing the orbit error in satellite altimetry is tested (using crossovers accumulated in the first 91 days of the Geosat non-repeat era in the tropical Pacific) and found to have excellent qualities. Two features distinguish the new method from the conventional bias-and-tilt crossover adjustment. First, a sine wave (with wavelength equaling the circumference of the Earth) is used to represent the orbit error for each satellite revolution, instead of the bias-and-tilt (and curvature, if necessary) approach for each segment of the satellite ground track. Secondly, the indeterminacy of the adjustment process is removed by a simple constraint minimizing the amplitudes of the sine waves, rather than by fixing selected tracks. Overall the new method is more accurate, more efficient, and much less cumbersome than the old. The idea of restricting the crossover adjustment to crossovers between tracks that are less than certain days apart in order to preserve the large-scale long-term oceanic variability is also tested with inconclusive results because the orbit error was unusually nonstationary in the initial 91 days of the GEOSAT mission.

  12. A new crossover operator in genetic programming for object classification.

    PubMed

    Zhang, Mengjie; Gao, Xiaoying; Lou, Weijun

    2007-10-01

    The crossover operator has been considered "the centre of the storm" in genetic programming (GP). However, many existing GP approaches to object recognition suggest that the standard GP crossover is not sufficiently powerful in producing good child programs due to the totally random choice of the crossover points. To deal with this problem, this paper introduces an approach with a new crossover operator in GP for object recognition, particularly object classification. In this approach, a local hill-climbing search is used in constructing good building blocks, a weight called looseness is introduced to identify the good building blocks in individual programs, and the looseness values are used as heuristics in choosing appropriate crossover points to preserve good building blocks. This approach is examined and compared with the standard crossover operator and the headless chicken crossover (HCC) method on a sequence of object classification problems. The results suggest that this approach outperforms the HCC, the standard crossover, and the standard crossover operator with hill climbing on all of these problems in terms of the classification accuracy. Although this approach spends a bit longer time than the standard crossover operator, it significantly improves the system efficiency over the HCC method.

  13. Quantum mechanical toolbox to study the dirty crossover in cold atomic gases

    NASA Astrophysics Data System (ADS)

    Tanatar, B.; Khan, Ayan; Basu, Saurabh

    2013-03-01

    We consider an ultracold atomic gas exhibiting the BCS-BEC crossover as the short-range interaction strength (characterized by the scattering length) is increased. In particular, we investigate the dirty crossover (for a disoredered gas) by means of the fidelity susceptibility (FS). Fidelity susceptibility is related to the overlap between the ground states of different phases. The disorder is incorporated in the mean-field formalism through Gaussian fluctuations. We observe a rise of asymmetric nature in the FS with increasing disorder which might be an indication for an impending quantum phase transition (QPT). We analyze our results for the FS and the density of states using the statistical tools such as skewness and kurtosis. Supported by TUBITAK

  14. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle

    PubMed Central

    Wu, Zhongqing; Wentzcovitch, Renata M.

    2014-01-01

    Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂⁡ln⁡VS/∂⁡ln⁡VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle. PMID:25002507

  15. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.; ...

    2016-11-10

    In this paper, we report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θA = TA/Tg in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θA ≈ 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θA ≈ 1.4 and usually in their supercooled states. The θA values for strong network liquids spans amore » wide range higher than 2. Intriguingly, the high-temperature activation barrier E∞ is universally found to be ~11kBTg and uncorrelated with the fragility or the reduced crossover temperature θA for metallic and molecular liquids. Finally, these observations provide a way to estimate the low-temperature glassy characteristics (Tg and m) from the high-temperature liquid quantities (E∞ and θA).« less

  16. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.; Schweizer, Kenneth S.; Zhang, Yang

    2016-11-01

    We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θA=TA/Tg in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θA≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θA≈1.4 and usually in their supercooled states. The θA values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E∞ is universally found to be ˜11 kBTg and uncorrelated with the fragility or the reduced crossover temperature θA for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (Tg and m ) from the high-temperature liquid quantities (E∞ and θA).

  17. Influence of the spin crossover in ferropericlase on the lower mantle geotherm

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, J. J.; Shukla, G.; Qian, C.; Wu, Z.; Wentzcovitch, R. M.

    2015-12-01

    The spin crossover in ferropericlase introduces anomalies in its thermodynamics and thermoelastic properties. Here we investigate the influence of this spin crossover in the lower mantle adiabatic geotherm. The effect is investigated for lower mantle compositions consisting of mixtures of bridgmanite, ferropericlase, and CaSiO3-perovskite, for several Mg/Si ratios varying from perovskitic to pyrolitic compositions. The thermodynamics properties of (Mg,Fe)SiO3 bridgmanite and of (Mg,Fe)O ferropericlase were obtained using LDA+U plus quasiharmonic approximation QHA while LDA and the Mie-Debye-Grüneisen approach were used for Ca-perovskite. This spin crossover essentially increases the adiabatic gradient producing temperatures between those obtained by Anderson [1] and Brown and Shankland [2]. We show that aggregate moduli and seismic velocities are sensitive to the alteration in the adiabatic geotherm caused by this spin crossover, which can influence analyses of lower mantle velocities in terms of composition. [1] O. L. Anderson (1982), The Earths core and phase diagram of iron, Phil. Trans. R. Soc. Lond. A, 306, 2135. [2] J.M. Brown and T.J. Shankland (1981), Thermodynamic parameters in the Earth as determined from seismic profiles, Geophys. J. R. astr. Soc., 66, 579596.

  18. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids

    SciTech Connect

    Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.; Schweizer, Kenneth S.; Zhang, Yang

    2016-11-10

    In this paper, we report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θA = TA/Tg in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θA ≈ 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θA ≈ 1.4 and usually in their supercooled states. The θA values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E is universally found to be ~11kBTg and uncorrelated with the fragility or the reduced crossover temperature θA for metallic and molecular liquids. Finally, these observations provide a way to estimate the low-temperature glassy characteristics (Tg and m) from the high-temperature liquid quantities (E and θA).

  19. Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS-BEC crossover.

    PubMed

    Kasahara, S; Yamashita, T; Shi, A; Kobayashi, R; Shimoyama, Y; Watashige, T; Ishida, K; Terashima, T; Wolf, T; Hardy, F; Meingast, C; Löhneysen, H V; Levchenko, A; Shibauchi, T; Matsuda, Y

    2016-09-30

    The physics of the crossover between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein condensate (BEC) limits gives a unified framework of quantum-bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature Tc=8.5 K has been found to be deep inside the BCS-BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below T*∼20 K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance and transport data give evidence of pseudogap formation at ∼T*. The multiband superconductivity along with electron-hole compensation in FeSe may highlight a novel aspect of the BCS-BEC crossover physics.

  20. Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS–BEC crossover

    PubMed Central

    Kasahara, S.; Yamashita, T.; Shi, A.; Kobayashi, R.; Shimoyama, Y.; Watashige, T.; Ishida, K.; Terashima, T.; Wolf, T.; Hardy, F.; Meingast, C.; Löhneysen, H. v.; Levchenko, A.; Shibauchi, T.; Matsuda, Y.

    2016-01-01

    The physics of the crossover between weak-coupling Bardeen–Cooper–Schrieffer (BCS) and strong-coupling Bose–Einstein condensate (BEC) limits gives a unified framework of quantum-bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature Tc=8.5 K has been found to be deep inside the BCS–BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below T*∼20 K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance and transport data give evidence of pseudogap formation at ∼T*. The multiband superconductivity along with electron–hole compensation in FeSe may highlight a novel aspect of the BCS–BEC crossover physics. PMID:27687782

  1. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids.

    PubMed

    Jaiswal, Abhishek; Egami, Takeshi; Kelton, K F; Schweizer, Kenneth S; Zhang, Yang

    2016-11-11

    We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).

  2. Crossover Equation of State Models Applied to the Critical Behavior of Xenon

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Guillaument, R.; Beysens, D.; Hahn, I.

    2015-03-01

    The turbidity () measurements of Güttinger and Cannell (Phys Rev A 24:3188-3201, 1981) in the temperature range along the critical isochore of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compressibility () and the correlation length () predicted from the master crossover functions are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev Lett 25:143-146, 1970). We show that the turbidity data are thus well represented by the Ornstein-Zernike approximant, within 1 % precision. We also introduce a new crossover master model (CMM) of the parametric equation of state for a simple fluid system with no adjustable parameter. The CMM model and the phenomenological crossover parametric model are compared with the turbidity data and the coexisting liquid-gas density difference (). The excellent agreement observed for , , , and in a finite temperature range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical crossover behavior of xenon can be described in conformity with the universal features estimated by the renormalization-group methods. Only 4 critical coordinates of the vapor-liquid critical point are needed in the (pressure, temperature, molecular volume) phase surface of xenon.

  3. Topological measure locating the effective crossover between segregation and integration in a modular network.

    PubMed

    Adjari Rad, A; Sendiña-Nadal, I; Papo, D; Zanin, M; Buldú, J M; del Pozo, F; Boccaletti, S

    2012-06-01

    We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intracluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed topological measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity and total integration, and shows how this affects the capability of the network to perform both local and distributed dynamical tasks.

  4. Thermal equation of state of lower-mantle ferropericlase across the spin crossover

    SciTech Connect

    Mao, Zhu; Lin, Jung-Fu; Liu, Jin; Prakapenka, Vitali B.

    2012-10-23

    The thermal equation of state of ferropericlase [(Mg{sub 0.75}Fe{sub 0.25})O] has been investigated by synchrotron X-ray diffraction up to 140 GPa and 2000 K in a laser-heated diamond anvil cell. Based on results at high pressure-temperature conditions, the derived phase diagram shows that the spin crossover widens at elevated temperatures. Along the lower-mantle geotherm, the spin crossover occurs between 1700 km and 2700 km depth. Compared to the high-spin state, thermoelastic modeling of the data shows a {approx}1.2% increase in density, a factor of two increase in thermal expansion coefficient over a range of 1000 km, and a maximum decrease of 37% and 13% in bulk modulus and bulk sound velocity, respectively, at {approx}2180 km depth across the spin crossover. These anomalous behaviors in the thermoelastic properties of ferropericlase across the spin crossover must be taken into account in order to understand the seismic signatures and geodynamics of the lower mantle.

  5. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events.

  6. A quantum genetic algorithm with quantum crossover and mutation operations

    NASA Astrophysics Data System (ADS)

    SaiToh, Akira; Rahimi, Robabeh; Nakahara, Mikio

    2013-11-01

    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm that has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.

  7. Design and numerical characterization of a crossover EBIS

    SciTech Connect

    Geyer, Sabrina Langbein, A. Meusel, Oliver; Kester, Oliver

    2015-01-09

    For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10{sup −7} A/V{sup 3/2} for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm{sup 2} and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×10{sup 8} charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar{sup 16+}, Kr{sup 30+} and Xe{sup 35+}. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.

  8. Design and numerical characterization of a crossover EBIS

    NASA Astrophysics Data System (ADS)

    Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver

    2015-01-01

    For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.

  9. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover.

    PubMed

    Orava, J; Weber, H; Kaban, I; Greer, A L

    2016-05-21

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance.

  10. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover

    NASA Astrophysics Data System (ADS)

    Orava, J.; Weber, H.; Kaban, I.; Greer, A. L.

    2016-05-01

    The temperature-dependent viscosity η(T) is measured for the equilibrium liquid of the chalcogenide Ag-In-Sb-Te (AIST), the first time this has been reported for a material of actual interest for phase-change memory. The measurements, in the range 829-1254 K, are made using an oscillating-crucible viscometer, and show a liquid with high fragility and low viscosity, similar to liquid pure metals. Combining the high-temperature viscosity measurements with values inferred from crystal growth rates in the supercooled liquid allows the form of η(T) to be estimated over the entire temperature range from above the melting point down to the glass transition. It is then clear that η(T) for liquid AIST cannot be described with a single fragility value, unlike other phase-change chalcogenides such as liquid Ge-Sb-Te. There is clear evidence for a fragile-to-strong crossover on cooling liquid AIST, similar to that analyzed in Te85Ge15. The change in fragility associated with the crossover in both these cases is rather weak, giving a broad temperature range over which η(T) is near-Arrhenius. We discuss how such behavior may be beneficial for the performance of phase-change memory. Consideration of the fragile-to-strong crossover in liquid chalcogenides may be important in tuning compositions to optimize the device performance.

  11. Linear combinations come alive in crossover designs.

    PubMed

    Shuster, Jonathan J

    2017-10-30

    Before learning anything about statistical inference in beginning service courses in biostatistics, students learn how to calculate the mean and variance of linear combinations of random variables. Practical precalculus examples of the importance of these exercises can be helpful for instructors, the target audience of this paper. We shall present applications to the "1-sample" and "2-sample" methods for randomized short-term 2-treatment crossover studies, where patients experience both treatments in random order with a "washout" between the active treatment periods. First, we show that the 2-sample method is preferred as it eliminates "conditional bias" when sample sizes by order differ and produces a smaller variance. We also demonstrate that it is usually advisable to use the differences in posttests (ignoring baseline and post washout values) rather than the differences between the changes in treatment from the start of the period to the end of the period ("delta of delta"). Although the intent is not to provide a definitive discussion of crossover designs, we provide a section and references to excellent alternative methods, where instructors can provide motivation to students to explore the topic in greater detail in future readings or courses. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Blinded placebo crossover study of gabapentin in primary orthostatic tremor.

    PubMed

    Rodrigues, Julian P; Edwards, Dylan J; Walters, Susan E; Byrnes, Michelle L; Thickbroom, Gary W; Stell, Rick; Mastaglia, Frank L

    2006-07-01

    Primary orthostatic tremor (OT) is a rare but disabling condition characterized by leg tremor and feelings of instability during stance. Previous studies have reported a reduction in OT symptoms with gabapentin treatment. In this study, we report on the benefits of gabapentin treatment in a double-blind placebo-controlled crossover study of 6 OT patients. First, the maximally effective gabapentin dosage (600-2,700 mg/day) for each patient was determined during an initial dose-titration phase. Patients were then studied 7 days after drug withdrawal and again after two 2-week periods of treatment with either gabapentin or placebo, using force platform posturography to quantify postural sway and tremor. Other medications for OT were continued unchanged. Symptomatic response was assessed by a patient-rated severity scale and quality of life (QOL) questionnaire. All patients reported an increase in symptoms during the washout phase and symptom reduction (50%-75%) during gabapentin treatment. Tremor amplitude was reduced to 79% +/- 11% and sway area to 71% +/- 11% of the placebo state. QOL improved in all patients, no adverse drug effects were noted, and symptomatic benefit was maintained at follow-up (mean = 19 months). The findings confirm that gabapentin is an effective treatment for OT, reducing both tremor and postural instability and improving quality of life, and support its use as add-on or first-line therapy for OT.

  13. Density response of a trapped Fermi gas: A crossover from the pair vibration mode to the Goldstone mode

    SciTech Connect

    Korolyuk, A.; Kinnunen, J. J.; Toermae, P.

    2011-09-15

    We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single-particle excitations. Calculating the density response across a wide range of interactions, we observe a crossover from a weakly interacting pair vibration mode to a strongly interacting Goldstone mode. The crossover is associated with a depressed collective mode frequency and an increased damping rate, in agreement with density response experiments performed in strongly interacting atomic gases.

  14. Research Update: The mechanocaloric potential of spin crossover compounds

    NASA Astrophysics Data System (ADS)

    Sandeman, Karl G.

    2016-11-01

    We present a first evaluation of the potential for spin crossover (SCO) compounds to be considered as a new class of giant mechanocaloric effect materials. From literature data on the variation of the spin crossover temperature with pressure, we estimate the maximum available adiabatic temperature change for several compounds and the relatively low pressures that may be required to observe these effects.

  15. Numerical simulation of bromine crossover behavior in flow battery

    NASA Astrophysics Data System (ADS)

    Jia, Yaobin; Cheng, Shijian; Chu, Dandan; Li, Xin

    2017-03-01

    Br2 and HBr has its own series of advantages as the positive electrolyte solution, so some batteries select the Br2/Br- as the positive electrolyte solution, such as sodium polysulfide/bromine flow battery, zinc/bromine flow battery, vanadium/ bromine flow batteries and hydrogen/bromine flow batteries. But the crossover benavior of bromine occurs in these batteries too, resulting in cross-contamination, capacity loss and affecting battery's performance. In this work, we build numerical models to study the influence of bromine crossover phenomenon on the three forms of bromine crossover, the concentration of electrolyte on the cathode side and the flow rate of the negative side in the quinone bromine flow battery, to find the main models affecting the bromine crossover and the impact of bromine crossover on battery performance. It was found that the three ways of crossover through the membranes was mainly by diffusion. By reducing the concentration of positive electrolyte solution, the bromine crossover can be reduced and Coulomb Efficiency can be improved. Rising the flow rate of the electrolyte solution on the negative side and reducing the differential between positive side's pressure and negative side's pressure can also reduce the amount of bromine crossover to improve Coulomb efficiency in the battery.

  16. A spin crossover ferrous complex with ordered magnetic ferric anions.

    PubMed

    Roubeau, Olivier; Evangelisti, Marco; Natividad, Eva

    2012-08-07

    The first tetrahaloferrate spin crossover compound, [Fe(Metz)(6)](FeBr(4))(2) (Metz = 1-methyltetrazole), is reported. The FeBr(4)(-) ions form ferromagnetically coupled 1D stacks and exhibit an antiferromagnetic order at 2.2 K, which coexists with the gradual spin crossover centred at 165 K.

  17. Electromagnetic pump stator frame having power crossover struts

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1995-01-01

    A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

  18. Stress Crossover in Newlywed Marriage: A Longitudinal and Dyadic Perspective

    ERIC Educational Resources Information Center

    Neff, Lisa A.; Karney, Benjamin R.

    2007-01-01

    Studies of stress and marital quality often assess stress as an intrapersonal phenomenon, examining how spouses' stress may influence their own relationship well-being. Yet spouses' stress also may influence partners' relationship evaluations, a phenomenon referred to as stress crossover. This study examined stress crossover, and conditions that…

  19. Crossover ensembles of random matrices and skew-orthogonal polynomials

    SciTech Connect

    Kumar, Santosh; Pandey, Akhilesh

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  20. Orbital Transfer Rocket Engine Technology High Velocity Ratio Diffusing Crossover

    DTIC Science & Technology

    1992-12-01

    Inducer Tip Seal ......................... 21 Figure 13 - Crossover Tester Thrust Balance Disk...Crossover Tester Rotor Mode Shapes for 500 Kibin ............ ,.....2 9 Figure 18 - Inducer Deflections In Wattr . 0 ’Figure 19 - Impeller Tip...Inducer and Impeller subassembly cantilevered on a shalt supported by two ball bearings. The finite element model of the rotor Is shown in Figure 14

  1. Stress Crossover in Newlywed Marriage: A Longitudinal and Dyadic Perspective

    ERIC Educational Resources Information Center

    Neff, Lisa A.; Karney, Benjamin R.

    2007-01-01

    Studies of stress and marital quality often assess stress as an intrapersonal phenomenon, examining how spouses' stress may influence their own relationship well-being. Yet spouses' stress also may influence partners' relationship evaluations, a phenomenon referred to as stress crossover. This study examined stress crossover, and conditions that…

  2. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Lü, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia-Ji

    2015-08-01

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2 D. We find aB≃0.56 a2 D , in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  3. Decay of correlation functions in hard-sphere mixtures: structural crossover.

    PubMed

    Grodon, C; Dijkstra, M; Evans, R; Roth, R

    2004-10-22

    We investigate the decay of pair correlation functions in a homogeneous (bulk) binary mixture of hard spheres. At a given state point the asymptotic decay r-->infinity of all three correlation functions is governed by a common exponential decay length and a common wavelength of oscillations. Provided the mixture is sufficiently asymmetric, size ratios q less than or approximately 0.7, we find that the common wavelength reflects either the size of the small or that of the big spheres. By analyzing the (complex) poles of the partial structure factors we find a sharp structural crossover line in the phase diagram. On one side of this line the common wavelength is approximately the diameter of the smaller sized spheres whereas on the other side it is approximately the diameter of the bigger ones; the wavelength of the longest ranged oscillations changes discontinuously at the structural crossover line. Using density functional theory and Monte Carlo simulations we show that structural crossover also manifests itself in the intermediate range behavior of the pair correlation functions and we comment on the relevance of this observation for real (colloidal) mixtures. In highly asymmetric mixtures, q< or =0.1, where there is metastable fluid-fluid transition, we find a Fisher-Widom line with two branches. This line separates a region of the phase diagram where the decay of pair correlations is oscillatory from one in which it is monotonic. (c) 2004 American Institute of Physics.

  4. Inverted crossover resonance within one Zeeman manifold

    NASA Astrophysics Data System (ADS)

    Salter, L. A.; de Clercq, E.; McFerran, J. J.

    2017-08-01

    We carry out investigations of inverted crossover resonances (ICRs) in π-driven four-level systems where {{Δ }}F can be zero. Through the use of sub-Doppler frequency modulation spectroscopy of the (6{s}2) {}1{S}0 - (6s6p) {}3{P}1 transition in 171Yb the resonance becomes manifest. The centre frequency is inherently insensitive to first-order Zeeman shifts and equates to the two-level resonance frequency in the absence of a magnetic field. A rate equation model is used to help validate the nature of the resonance. Optical frequency measurements of the F\\prime =1/2 hyperfine line recorded over two months demonstrate a statistical uncertainty of 2 × 10-11. The ICR found with the F\\prime =3/2 line is used for 556 nm laser frequency stabilisation, which is an alternative means when applied to magneto-optical trapping of 171Yb.

  5. Neutrino dynamics below the electroweak crossover

    SciTech Connect

    Ghiglieri, J.; Laine, M.

    2016-07-12

    We estimate the thermal masses and damping rates of active (m< eV) and sterile (M∼ GeV) neutrinos with thermal momenta k∼3T at temperatures below the electroweak crossover (5 GeV 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

  6. Neutrino dynamics below the electroweak crossover

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Laine, M.

    2016-07-01

    We estimate the thermal masses and damping rates of active (m < eV) and sterile (M ~ GeV) neutrinos with thermal momenta k~ 3T at temperatures below the electroweak crossover (5 GeV < T < 160 GeV) . These quantities fix the equilibration or ``washout'' rates of Standard Model lepton number densities. Sterile neutrinos interact via direct scatterings mediated by Yukawa couplings, and via their overlap with active neutrinos. Including all leading-order reactions we find that the washout rate generally exceeds the Hubble rate for 5 GeV < T < 30 GeV . Therefore it is challenging to generate a large lepton asymmetry facilitating dark matter computations operating at T < 5 GeV, whereas the generation of a baryon asymmetry at T > 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

  7. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  8. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  9. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  10. An efficient algorithm for computing the crossovers in satellite altimetry

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    An efficient algorithm has been devised to compute the crossovers in satellite altimetry. The significance of the crossovers is twofold. First, they are needed to perform the crossover adjustment to remove the orbit error. Secondly, they yield important insight into oceanic variability. Nevertheless, there is no published algorithm to make this very time consuming task easier, which is the goal of this report. The success of the algorithm is predicated on the ability to predict (by analytical means) the crossover coordinates to within 6 km and 1 sec of the true values. Hence, only one interpolation/extrapolation step on the data is needed to derive the crossover coordinates in contrast to the many interpolation/extrapolation operations usually needed to arrive at the same accuracy level if deprived of this information.

  11. Crossover between Abrikosov vortex lattice and superconducting droplet state in superconductors with modulated disorder

    NASA Astrophysics Data System (ADS)

    Kopasov, A. A.; Savinov, D. A.; Mel'nikov, A. S.

    2017-03-01

    We suggest a simple model describing the temperature-driven crossover between Abrikosov vortex lattice and superconducting droplet state in dirty superconductors with fluctuations either in the impurity concentration or in the crystal axes orientation. Our analysis is based on the Usadel-type theory with a spatially modulated diffusion coefficient. This modulation appears to break a regular vortex lattice into a random set of weakly coupled superconducting droplets emerging below the fluctuating upper critical field Hc 2(T ) . These droplets cause the resistivity drop at the onset of superconducting transition, being responsible for the increasing broadening of the resistive transition in the increasing magnetic field. The above crossover reveals itself in a positive curvature of the Hc 2(T ) curves, allowing us, thus, to explain the phase diagrams observed in a wide class of disordered superconducting materials.

  12. Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model.

    PubMed

    Hohenadler, M; Assaad, F F

    2013-01-09

    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order-2k(F) charge correlations-to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localized in the Peierls phase, and 'condense' with increasing phonon frequency to generate dominant pairing correlations.

  13. Motion of a solitonic vortex in the BEC-BCS crossover.

    PubMed

    Ku, Mark J H; Ji, Wenjie; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Cheuk, Lawrence W; Yefsah, Tarik; Zwierlein, Martin W

    2014-08-08

    We observe a long-lived solitary wave in a superfluid Fermi gas of (6)Li atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

  14. Quantum Fluctuations along Symmetry Crossover in a Kondo-Correlated Quantum Dot

    NASA Astrophysics Data System (ADS)

    Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaëlle; Deblock, Richard; Teratani, Yoshimichi; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke

    2017-05-01

    Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover. Our achievement demonstrates that nonlinear noise constitutes a measure of quantum fluctuations that can be used to tackle quantum phase transitions.

  15. BCS-BEC crossover induced by a shallow band: Pushing standard superconductivity types apart

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Perali, A.; Aguiar, J. Albino

    2017-03-01

    The appearance of a shallow band(s) drives a superconductor towards the BCS-BEC crossover, conventionally associated with notable changes in single-particle properties and an elevated critical temperature. Here we demonstrate that the proximity to the crossover induced by a shallow band has also a dramatic effect on the phase diagram of the superconducting magnetic properties. When the system passes from the BCS to BEC regime, the intertype domain between superconductivity types I and II enlarges systematically, being inversely proportional to the square of the Cooper-pair radius, the main parameter that controls the BCS-BEC superconductivity. We also show that despite the presence of a shallow band, the condensate fluctuations are suppressed when it coexists in one material with standard deep bands, as in recent iron chalcogenides FeSe xTe1 -x and FeSe .

  16. Nucleation of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Roberts, H. L. L.; Aranson, I. S.; Levin, K.

    2011-11-01

    We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time-dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents toward the center of the condensate as well as possible condensate volume oscillations.

  17. Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds.

    PubMed

    Yamaoka, Hitoshi; Tsujii, Naohito; Suzuki, Michi-To; Yamamoto, Yoshiya; Jarrige, Ignace; Sato, Hitoshi; Lin, Jung-Fu; Mito, Takeshi; Mizuki, Jun'ichiro; Sakurai, Hiroya; Sakai, Osamu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding; Giovannini, Mauro; Bauer, Ernst

    2017-07-19

    A pressure-induced anomalous valence crossover without structural phase transition is observed in archetypal cubic YbCu5 based heavy Fermion systems. The Yb valence is found to decrease with increasing pressure, indicating a pressure-induced crossover from a localized 4f (13) state to the valence fluctuation regime, which is not expected for Yb systems with conventional c-f hybridization. This result further highlights the remarkable singularity of the valence behavior in compressed YbCu5-based compounds. The intermetallics Yb2Pd2Sn, which shows two quantum critical points (QCP) under pressure and has been proposed as a potential candidate for a reentrant Yb(2+) state at high pressure, was also studied for comparison. In this compound, the Yb valence monotonically increases with pressure, disproving a scenario of a reentrant non-magnetic Yb(2+) state at the second QCP.

  18. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  19. A Pilot Comparison of a Smartphone App With or Without 2-Way Messaging Among Chronic Pain Patients

    PubMed Central

    Jurcik, Dylan C.; Edwards, Robert R.; Huang, Chuan-Chin; Ross, Edgar L.

    2017-01-01

    Objectives: The overall aim of this study was to determine the effect of introducing a smartphone pain application (app), for both Android and iPhone devices that enables chronic pain patients to assess, monitor, and communicate their status to their providers. Methods: This study recruited 105 chronic pain patients to use a smartphone pain app and half of the patients (N=52) had 2-way messaging available through the app. All patients completed baseline measures and were asked to record their progress every day for 3 months, with the opportunity to continue for 6 months. All participants were supplied a Fitbit to track daily activity. Summary line graphs were posted to each of the patients’ electronic medical records and physicians were notified of their patient’s progress. Results: Ninety patients successfully downloaded the pain app. Average age of the participants was 47.1 (range, 18 to 72), 63.8% were female and 32.3% reported multiple pain sites. Adequate validity and reliability was found between the daily assessments and standardized questionnaires (r=0.50) and in repeated daily measures (pain, r=0.69; sleep, r=0.83). The app was found to be easily introduced and well tolerated. Those patients assigned to the 2-way messaging condition on average tended to use the app more and submit more daily assessments (95.6 vs. 71.6 entries), but differences between groups were not significant. Pain-app satisfaction ratings overall were high. Discussion: This study highlights some of the challenges and benefits in utilizing smartphone apps to manage chronic pain patients, and provides insight into those individuals who might benefit from mHealth technology. PMID:27898460

  20. A randomized crossover clinical trial of sertraline for intradialytic hypotension.

    PubMed

    Razeghi, Effat; Dashti-Khavidaki, Simin; Nassiri, Samira; Abolghassemi, Rozita; Khalili, Hossein; Hashemi Nazari, Seyed Saeed; Mansournia, Mohammad Ali; Taraz, Mohammad

    2015-07-01

    Intradialytic hypotension (IDH) has been reported in 15% to 50% of hemodialysis patients and increases patients morbidity and mortality. Some small noncontrolled studies evaluated the effect of sertraline on IDH with conflicting results. This study is a randomized crossover controlled trial on the effectiveness of sertraline to reduce IDH. Patients on hemodialysis who suffered IDH in at least 50% of their dialysis sessions were enrolled. Each patient received either sertraline or placebo for 4 weeks and after a 4-week washout period, was switched to the other arm of the trial. All patients started sertraline at a daily dose of 50 mg that increased to 100 mg after 1 week. Twelve patients completed all phases of the study. Sertraline therapy increased nadir intradialysis diastolic and systolic blood pressure by 3.8 mm Hg and 4.9 mm Hg at the end of the intervention, respectively. Sertraline therapy also significantly increased postdialysis diastolic and systolic blood pressure by 6.0 mm Hg and 8.7 mm Hg. Sertraline therapy significantly reduced the risk of hypotension episodes by 43%. The improvement of intradialysis and postdialysis diastolic and systolic blood pressure were only significant in nondiabetic patients. Sertraline therapy significantly increases intradialysis and postdialysis blood pressure. These effects of sertraline can result in significant decrease in hypotension episodes during dialysis treatment and the number of interventions required to manage IDH. However, not all patients may benefit from sertraline depending on comorbidities such as diabetes mellitus.

  1. Quantum-to-classical crossover near quantum critical point

    DOE PAGES

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  2. Control in the Middle (CIM) for Three Period Crossover Studies

    PubMed Central

    Shuster, Jonathan; Anton, Stephen D.; Theriaque, Douglas; Yoon, Saunjoo

    2012-01-01

    Three period crossover studies can be efficient and convenient methods of conducting Phase II clinical trials. Non-randomly placing control in the middle (CIM) has not been practiced, but may be extremely useful in studies testing herbal products for which placebos are not available, or for distinguishing between behavioral and biological effects. Furthermore, this design can serve as a valuable addition to classical studies of either (a) two competing treatments or (b) treatment versus placebo versus an open label “nothing” as the control. Therefore, we propose rigorous designs that will help practitioners efficiently answer research questions where (1) two active treatments need to be compared against each other with treatment vs. placebo comparisons of secondary importance; (2) a single active treatment needs to be tested where no placebo is available; or (3) the placebo effect is of interest in a treatment vs. placebo trial. For studies where no placebo is available, deception will be required, with participants told that in one randomly selected period (#1 or #3) they will receive the active treatment, and that they will receive a new experimental inert placebo in the other period. Assuming this design is approved by an ethics committee, it can be very useful in biomedical research. PMID:21509714

  3. Quantum-to-classical crossover near quantum critical point

    PubMed Central

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-01-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102

  4. Quantum-to-classical crossover near quantum critical point.

    PubMed

    Vasin, M; Ryzhov, V; Vinokur, V M

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  5. Quantum-to-classical crossover near quantum critical point

    SciTech Connect

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  6. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  7. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    PubMed Central

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-01-01

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663

  8. Crossover Invariance Determined by Partner Choice for Meiotic DNA Break Repair

    PubMed Central

    Hyppa, Randy W.; Smith, Gerald R.

    2010-01-01

    SUMMARY Crossovers between meiotic homologs are crucial for their proper segregation, and crossover number and position are carefully controlled. Crossover homeostasis in budding yeast maintains crossovers at the expense of non-crossovers when double-strand DNA break (DSB) frequency is reduced. The mechanism of maintaining constant crossover levels in other species has been unknown. Here we investigate in fission yeast a different aspect of crossover control – the near invariance of crossover frequency per kb of DNA despite large variations in DSB intensity across the genome. Crossover invariance involves the choice of sister chromatid vs. homolog for DSB repair. At strong DSB hotspots, intersister repair outnumbers interhomolog repair ~3:1, but our genetic and physical data indicate the converse in DSB-cold regions. This unanticipated mechanism of crossover control may operate in many species and explain, for example, the large excess of DSBs over crossovers and the repair of DSBs on unpaired chromosomes in diverse species. PMID:20655467

  9. Thermodynamic Properties of Fluids and Fluid Mixtures: Crossover from Singular Critical to Regular Classical Behavior.

    NASA Astrophysics Data System (ADS)

    Chen, Zheng-Yu.

    According to the modern phase-transition theory, thermodynamic properties of a system near a critical point exhibit singular scaled behavior and universal critical exponents and universal scaling functions. Fluids near the vapor-liquid critical point are assumed to belong to the universality class of three-dimensional Ising-like systems. However, the region where the asymptotic power -law behavior applies is quite small, and correction-to -scaling terms have to be introduced in order to compare theory and experimental results in a finite range around the critical point. On the other hand, outside the critical region various analytic equations of state are being used to represent the thermodynamic surface of a fluid from the ideal-gas limit to the high-density limit. These analytic equations of state have a mean-field Landau-Ginzburg expansion near the critical point and fail to describe the singular thermodynamic behavior of fluids in the critical region. In this dissertation, we propose and discuss a theoretical procedure for the crossover from the asymptotic to the analytic behavior based on a further development of the work of Nicoll and Albright (1985a) for both one -component fluids and fluid mixtures. The theory is based on the following observations. The singular behavior in the critical region is produced by the enormous critical fluctuations which extend over distances much larger than the range of the intermolecular interactions. The detailed molecular nature of the system becomes unimportant near the critical point in such a way that the critical system looks "similar" at different length-scales and hence the system becomes renormalizable. The universal features of a critical system disappear in the classical limit far away from the critical point where the fluctuations become unimportant. We also present in this dissertation a crossover theory for fluid mixtures in the critical region. Except for the crossover phenomena which have been briefly described

  10. A scaling theory for the long-range to short-range crossover and an infrared duality

    NASA Astrophysics Data System (ADS)

    Behan, Connor; Rastelli, Leonardo; Rychkov, Slava; Zan, Bernardo

    2017-09-01

    We study the second-order phase transition in the d-dimensional Ising model with long-range interactions decreasing as a power of the distance 1/rd+s . For s below some known value s* , the transition is described by a conformal field theory without a local stress tensor operator, with critical exponents varying continuously as functions of s. At s=s* , the phase transition crosses over to the short-range universality class. While the location s* of this crossover has been known for 40 years, its physics has not been fully understood, the main difficulty being that the standard description of the long-range critical point is strongly coupled at the crossover. In this paper we propose another field-theoretic description which, on the contrary, is weakly coupled near the crossover. We use this description to clarify the nature of the crossover and make predictions about the critical exponents. That the same long-range critical point can be reached from two different UV descriptions provides a new example of infrared duality. Dedicated to John Cardy on the occasion of his 70th birthday.

  11. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  12. Laser frequency stabilization using bichromatic crossover spectroscopy

    SciTech Connect

    Jeong, Taek; Seb Moon, Han

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  13. Electrostatically-tuned dimensional crossover in nanowires

    NASA Astrophysics Data System (ADS)

    Tomczyk, Michelle; Cheng, Guanglei; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    The electron system at the interface of two complex oxides, LaAlO3 and SrTiO3, exhibits a number of interesting strongly-correlated electronic properties, such as superconductivity and spin-orbit coupling. Reduced dimensionality is made accessible through nanowire devices created with conducting AFM lithography. Here, we describe an electrostatically-controlled dimensionality crossover in weak antilocalization behavior of LaAlO3/SrTiO3 nanowires at low temperature. These measurements give insight to the interplay of spin-orbit coupling and dimensionality. Characterizing the behavior of the strongly-correlated electronic properties in these reduced dimensions is necessary in order to develop this system as a multifunctional nanoelectronics platform. We gratefully acknowledge financial support from the following agencies and grants: ARO (W911NF-08-1-0317), AFOSR FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE), and NSF (DMR-1104191, DMR-1124131 (JL), ONR N00014-15-1-2847 (JL) and DMR-1234096 (CBE).

  14. Microelectromechanical systems integrating molecular spin crossover actuators

    SciTech Connect

    Manrique-Juarez, Maria D.; Rat, Sylvain; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine E-mail: azzedine.bousseksou@lcc-toulouse.fr; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu E-mail: azzedine.bousseksou@lcc-toulouse.fr

    2016-08-08

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H{sub 2}B(pz){sub 2}){sub 2}(phen)] (H{sub 2}B(pz){sub 2} = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δf{sub r} = −0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  15. Estimating efficacy in trials with selective crossover.

    PubMed

    Brentnall, Adam R; Sasieni, Peter; Cuzick, Jack

    2017-03-15

    When one arm in a trial has a worse early endpoint such as recurrence, a data-monitoring committee might recommend that all participants are offered the apparently superior treatment. The resultant crossover makes it difficult to measure differences between arms thereafter, including for longer-term endpoints such as mortality and disease-specific mortality. In this paper, we consider estimators of the efficacy of treatment on those who would not cross over if randomised to the apparently inferior arm. Binomial and proportional hazards maximum likelihood estimators are developed. The binomial estimator is applied to analysis of a breast cancer treatment trial and compared with intention-to-treat and inverse probability weighting estimators. Full and partial likelihood proportional-hazard model estimators are assessed through computer simulations, where they had similar bias and variance. The new efficacy estimators extend those for all-or-none compliance to this important problem. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  16. Electronic Spin Crossover of Iron in Ferroperclase in Earth?s Lower Mantle

    SciTech Connect

    Lin, J F; Vanko, G; Jacobsen, S D; Iota, V; Struzhkin, V V; Prakapenka, V B; Kuznetsov, A; Yoo, C S

    2007-01-25

    Pressure-induced electronic spin-pairing transitions of iron and associated effects on the physical properties have been reported to occur in the lower-mantle ferropericlase, silicate perosvkite, and perhaps in post silicate perovskite at high pressures and room temperature. These recent results are motivating geophysicists and geodynamicists to reevaluate the implications of spin transitions on the seismic heterogeneity, composition, as well as the stability of the thermal upwellings of the Earth's lower mantle. Here we have measured the spin states of iron in ferropericlase and its crystal structure up to 95 GPa and 2000 K using a newly constructed X-ray emission spectroscopy and diffraction with the laser-heated diamond cell. Our results show that an isosymmetric spin crossover occurs over a pressure-temperature range extending from the upper part to the lower part of the lower mantle, and low-spin ferropericlase likely exists in the lowermost mantle. Although continuous changes in physical and chemical properties are expected to occur across the spin crossover, the spin crossover results in peculiar behavior in the thermal compression and sound velocities. Therefore, knowledge of the fraction of the spin states in the lower-mantle phases is thus essential to correctly evaluate the composition, geophysics, and dynamics of the Earth's lower mantle.

  17. The dynamic crossover in dielectric relaxation behavior of ice I(h).

    PubMed

    Popov, Ivan; Puzenko, Alexander; Khamzin, Airat; Feldman, Yuri

    2015-01-14

    The main mechanism of the dielectric relaxation process of ordinary hexagonal ice (ice Ih) and its temperature dependence remains unclear. The most interesting and as yet unexplained feature of ice is the presence of the dynamical crossover in relaxation time behavior around Tc = 230 ± 3 K. Since there are no phase transitions in the ice at this temperature (first or second order), we cannot correlate the origin of this crossover with any structural change. Here we present a model according to which the temperature of the crossover is defined by the polarization mechanism. The dielectric relaxation driven by the diffusion of L-D orientational Bjerrum defects (at high temperature, T > Tc) is transformed into a dielectric relaxation dominated by the diffusion of intrinsic ionic H3O(+)/OH(-) defects (at low temperature, T < Tc). In the framework of the model, we propose an analytical equation for the complex dielectric permittivity that takes into account the contribution of both types of defects.

  18. Crossover Cutting During Hamstring Fatigue Produces Transverse Plane Knee Control Deficits

    PubMed Central

    Nyland, John A.; Caborn, David N.M.; Shapiro, Robert; Johnson, Darren L.

    1999-01-01

    Objective: To assess the effects of eccentric work-induced hamstring fatigue on sagittal and transverse plane (axial) knee and ankle biodynamics and kinetics during a running crossover cut directional change (functional pivot shift). Design and Setting: A pretest-posttest, single-group intervention experimental design was employed. All data were collected in a biodynamics laboratory. Subjects: Twenty healthy athletic females were trained for 3 weeks in crossover cutting before testing. Measurements: Data were sampled during 3 unfatigued and 3 fatigued (20% eccentric isokinetic knee-flexor torque reduction) crossover cut trials. Three-dimensional kinematic and ground reaction-force data were sampled at 200 Hz and 1000 Hz, respectively, and joint moment estimates were calculated. Data were standardized to initial force-plate heelstrike for comparisons of mean differences between conditions using paired t tests with Bonferroni adjustments. Pearson product-moment correlations compared kinematic and eccentric hamstring-torque relationships. Results: During internal rotation phase 1, between heelstrike and impact absorption, mean internal rotation velocity increased by 21.2°/s ± 114°/s. During internal rotation phase II, mean peak transverse plane knee rotation during propulsion decreased by 3.1° ± 9°. During internal rotation phase II, mean peak ankle plantar flexor moment onsets occurred 12.7 ± 53 milliseconds earlier, and this activation demonstrated a moderately positive relationship with the onset of mean peak knee internal rotation during propulsion and a weak negative relationship with mean peak hamstring torque/lean body weight. Conclusions: The increased knee internal rotation velocity during phase I indicates transverse plane dynamic knee-control deficits during hamstring fatigue. Earlier peak ankle plantar-flexor moments and decreased internal rotation during phase II in the presence of hamstring fatigue may represent compensatory attempts at dynamic

  19. Comparative Evaluation of Neem Mouthwash on Plaque and Gingivitis: A Double-blind Crossover Study.

    PubMed

    Jalaluddin, Md; Rajasekaran, U B; Paul, Sam; Dhanya, R S; Sudeep, C B; Adarsh, V J

    2017-07-01

    The present study aimed at evaluating the impact of neem-containing mouthwash on plaque and gingivitis. This randomized, double-blinded, crossover clinical trial included 40 participants aged 18 to 35 years with washout period of 1 week between the crossover phases. A total of 20 participants, each randomly allocated into groups I and II, wherein in the first phase, group I was provided with 0.2% chlorhexidine gluconate and group II with 2% neem mouthwash. After the scores were recorded, 1-week time period was given to the participants to carry over the effects of the mouthwashes and then the second phase of the test was performed. The participants were instructed to use the other mouthwash through the second test phase. There was a slight reduction of plaque level in the first phase as well as in the second phase. When comparison was made between the groups, no statistically significant difference was seen. Both the groups showed reduction in the gingival index (GI) scores in the first phase, and there was a statistically significant difference in both groups at baseline and after intervention (0.005 and 0.01 respectively). In the second phase, GI scores were reduced in both groups, but there was a statistically significant difference between the groups only at baseline scores (0.01). In the present study, it has been concluded that neem mouthwash can be used as an alternative to chlorhexidine mouthwash based on the reduced scores in both the groups. Using neem mouthwash in maintaining oral hygiene might have a better impact in prevention as well as pervasiveness of oral diseases as it is cost-effective and easily available.

  20. Self-affinity and Crossover of A Clay Deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Huru Bergene, H.; Hansen, A.; Manificat, G.

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic 2:1 smectite clay laponite have been studied by means of Atomic Force Microscopy. AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM software, and wavelet methods. The deposited surfaces show an anti-persistent to persistent crossover with a clay concentration dependent crossover length. It is thus concluded that the investigated electrolyte concentrations play a minor role

  1. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  2. In-network processing of an iceberg join query in wireless sensor networks based on 2-way fragment semijoins.

    PubMed

    Kang, Hyunchul

    2015-03-12

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one.

  3. The kinetochore prevents centromere-proximal crossover recombination during meiosis

    PubMed Central

    Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair RW; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L

    2015-01-01

    During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10850.001 PMID:26653857

  4. Dimensional crossover of hard parallel cylinders confined on cylindrical surfaces.

    PubMed

    Martínez-Ratón, Yuri; Velasco, Enrique

    2013-05-01

    We derive, from the dimensional-crossover criterion, a fundamental-measure density functional for parallel hard curved rectangles moving on a cylindrical surface. We derive it from the density functional of circular arcs of length σ with centers of mass located on an external circumference of radius R(0). The latter functional in turn is obtained from the corresponding two-dimensional functional for a fluid of hard disks of radius R on a flat surface with centers of mass confined onto a circumference of radius R(0). Thus the curved length of closest approach between the two centers of mass of hard disks on this circumference is σ=2R(0)sin(-1)(R/R(0)), the length of the circular arcs. From the density functional of circular arcs, and by applying a dimensional expansion procedure to the spatial dimension orthogonal to the plane of the circumference, we finally obtain the density functional of curved rectangles of edge lengths σ and L. Along with the derivation, we show that, when the centers of mass of the disks are confined to the exterior circumference of a circle of radius R(0),(i) for R(0)>R, the exact Percus one-dimensional (1D) density functional of circular arcs of length 2R(0)sin(-1)(R/R(0)) is obtained, and (ii) for R(0)R, the obtained functional is equivalent to that of parallel hard rectangles on a flat surface of the same lengths, except that now the density profile of curved rectangles is a periodic function of the azimuthal angle, ρ(φ,z)=ρ(φ+2π,z). The phase behavior of a fluid of aligned curved rectangles is obtained by calculating the free-energy branches of smectic, columnar, and crystalline phases for different values of the ratio R(0)/R in the range 1phase turns out to be the most stable except for R(0)/R=4, where the crystalline phase becomes reentrant in a small range of packing fractions. When R

  5. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis

    PubMed Central

    Voelkel-Meiman, Karen; Johnston, Cassandra; Thappeta, Yashna; Subramanian, Vijayalakshmi V.; Hochwagen, Andreas; MacQueen, Amy J.

    2015-01-01

    Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data

  6. The Internet- and Digital Signature-Based Prescription Order Communication System Using Synchronized Smart Cards in the 2-Way Type Terminal

    DTIC Science & Technology

    2007-11-02

    smart card tinder the network- and...and using their individually master smart cards are applied to all contents of the prescription stored on a patient’s slave smart card at the synchronized status in the 2-way type

  7. Transport in thin insulating films close to the Boson-Fermion Crossover

    NASA Astrophysics Data System (ADS)

    Joy, J. C.; Zhang, X.; Hollen, S. M.; Zhao, C.; Fernandes, G.; Xu, J. M.; Valles, J. M., Jr.

    2015-03-01

    In two-dimensional systems, sufficient levels of disorder are known to localize Cooper Pairs into a phase incoherent insulating state. While many theoretical and experimental works have shown this state's existence, its ubiquity close to the disorder tuned Superconductor to Insulator transition is still an open problem. Recent experiments on nanopatterned Pb0.9Bi0.1 films have suggested a crossover from Bosonic to Fermionic transport deep in the insulating phase, indicating that the Cooper Pair Insulator (CPI) only persists to a finite level of microscopic disorder. The normal state resistance at which this crossover occurs is governed by the extent coupling constant inhomogeneities on the scale of the coherence length, which allow the formation of locally phase coherent superconducting islands in the insulating state. By tuning the scale of these inhomogeneities and examining the extent of the CPI state, we argue that the disorder tuned Superconductor to Insulator transition proceeds via pair breaking and Anderson localization of fermions when the level spacing in the islands approaches the size of the mean field gap. This work was supported by the NSF through grants No. DMR-1307290 and DMR-0907357 and by the AFRL, the ONR, and the AFOSR. Currently at the Center for Emergent Materials, Ohio State University.

  8. Growth Performance, Carcass Yield, and Quality and Chemical Traits of Meat from Commercial Korean Native Ducks with 2-Way Crossbreeding

    PubMed Central

    Heo, K. N.; Hong, E. C.; Kim, C. D.; Kim, H. K.; Lee, M. J.; Choo, H. J.; Choi, H. C.; Mushtaq, M. M. H.; Parvin, R.; Kim, J. H.

    2015-01-01

    This work was conducted to investigate the performance and meat characteristics of commercial Korean native duck (KND). A total of 180 1-d-old ducklings of 2-way crossbreds from A and B lines (from National Institute of Animal Science) were used in this work and divided into 4 groups (3 replicates/group, 15 birds/replicate). The four groups were 4 crossbreds as AA (A line [♀]×A line [♂]), AB (A line [♀]×B line [♂]), BB (Pure line B strains) and BA (B strains [♀]×A strain [♂]). Ducks were fed diets based on corn-soybean meal for 0 to 3 wk (22.4% crude protein [CP], 2,945 kcal/kg metabolizable energy [ME]) and 3 to 8 wk (18.4% CP, 3,047 kcal/kg ME). As a result of this study, average body weight of 4 crossbreds were 625, 1,617, 2,466, and 2,836 g at 2, 4, 6, and 8 weeks, respectively, and significantly increased over the period of time (p<0.05). Body weight of BB group was greater than other crossbreds at the age of 6 weeks (p<0.05). There was a significant difference in weekly body weight gains (p<0.05), which were 573, 991, 850, and 371 g at 2, 4, 6, and 8 weeks old, respectively. Uniformity of 4 crossbreds was 84.9%, 80.5%, and 72.5% at 6, 7, and 8 weeks, respectively, and there was no difference among crossbreds. Body weight gain of BB crossbred was highest among crossbreds (p<0.05). Weekly feed intake significantly increased with weeks as 669, 1,839, 2,812, and 3,381 g at 2, 4, 6, and 8 weeks respectively (p<0.05). Feed intakes of AA and BB crossbreds were higher at 2 to 4 weeks old than others and that of BB crossbred was highest at 4 to 6 weeks old (p<0.05). Weekly feed conversion ratios were 1.17, 1.86, 3.32, and 9.37 at 0 to 2, 2 to 4, 4 to 6, and 6 to 8 weeks old, respectively, and it increased with age (p<0.05). There was no significant difference in feed conversion ratio among crossbreds. Carcass yields of 4 crossbreds were 73.6%, 71.6%, 73.5%, and 71.7%, respectively, so there was no significant difference among crossbreds. There was no

  9. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    SciTech Connect

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.

  10. [Case-crossover design: Basic essentials and applications].

    PubMed

    Carracedo-Martínez, Eduardo; Tobías, Aurelio; Saez, Marc; Taracido, Margarita; Figueiras, Adolfo

    2009-01-01

    Case-crossover analysis is an observational epidemiological design that was proposed by Maclure in 1991 to assess whether a given intermittent or unusual exposure may have triggered an immediate short-term, acute event. The present article outlines the basics of case-crossover designs, as well as their applications and limitations. The case-crossover design is based on exclusively selecting case subjects. To calculate relative risk, exposure during the period of time prior to the event (case period) is compared against the same subject's exposure during one or more control periods. This method is only appropriate when the exposures are transient in time and have acute short-term effects. For exposures in which there is no trend, a unidirectional approach is the most frequent and consists of selecting one or more control periods prior to the case period. When the exposure displays a time trend (e.g., air pollution), a unidirectional approach will yield biased estimates, and therefore bidirectional case-crossover designs are used, which select control time intervals preceding and subsequent to that of the event. The case-crossover design is being increasingly used across a wide range of fields, including factors triggering traffic, occupational and domestic accidents and acute myocardial infarction, and those involved in air pollution and health and pharmacoepidemiology, among others. Insofar as data-analysis is concerned, case-crossover designs can generally be regarded as matched case-control studies and consequently conditional logistic regression can be applied. Lastly, this study analyzes practical examples of distinct applications of the case-crossover design.

  11. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  12. Randomized crossover comparison of adhesively coupled colostomy pouching systems.

    PubMed

    Berg, Kirsten; Seidler, Heidi

    2005-03-01

    Ostomy pouching systems affect well being and quality of life, making selection of the appropriate system a key element of ostomy care. Several innovative adhesively coupled, two-piece systems are on the market. They feature flexible low profiles, allowing pouch removal/replacement without changing the skin barrier or wafer. This facilitates inspection or pouch changes without disrupting peristomal skin. Because few controlled trials compare pouching system effectiveness, a prospective, randomized open-label, crossover study was conducted. Under the supervision of ostomy care nurses in six outpatient clinics in Germany, clinical performance of and patient preferences for two adhesively coupled, closed-end pouching systems were compared during normal use. One is a gelatin/pectin-based skin barrier sealed to the pouch with a company-specific adhesive coupling technology (System E); the other, a grooved base plate wafer adhesive pouch coupling system (System F). Seventeen attributes and seven end-of-study measures that included comfort, flexibility, wear time, ease of removal, and overall performance were assessed. Informed, consenting participants were randomly assigned to use one system for five skin barrier/wafer changes or up to 15 days and subsequently switched to the alternative system for a similar period. The 39 participants used a total of 1,645 pouches and 342 skin barriers. All were found safe as determined by incidence and nature of the reported peristomal skin problems, subject withdrawals, and adverse events for both systems. However, System E provided longer pouch wear times (P < 0.01). End-phase ratings favored System E on 10 of the 17 attributes (P < 0.04) and System Fon none. More participants preferred System E on all seven end-of-study measures, five significantly (comfort, flexibility, wear time, ease of removal, and overall performance; (P < 0.02). These participant-reported, ostomy-related outcomes underscore the importance of product evaluation

  13. Macrocycle-based spin-crossover materials.

    PubMed

    El Hajj, Fatima; Sebki, Ghania; Patinec, Véronique; Marchivie, Mathieu; Triki, Smail; Handel, Henri; Yefsah, Said; Tripier, Raphaël; Gómez-García, Carlos J; Coronado, Eugenio

    2009-11-02

    New iron(II) complexes of formula [Fe(L1)](BF(4))(2) (1) and [Fe(L2)](BF(4))(2) x H(2)O (2) (L1 = 1,7-bis(2'-pyridylmethyl)-1,4,7,10-tetraazacyclododecane; L2 = 1,8-bis(2'-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by infrared spectroscopy, variable-temperature single-crystal X-ray diffraction, and variable-temperature magnetic susceptibility measurements. The crystal structure determinations of 1 and 2 reveal in both cases discrete iron(II) monomeric structures in which the two functionalized tetraazamacrocycles (L1 and L2) act as hexadentate ligands; the iron(II) ions are coordinated with six nitrogen atoms: four from the macrocycle and two from two pyridine groups occupying two cis positions around the metal ion. In 1, the N-Fe-N bond angles indicate that the Fe(II) ion adopts an unusual distorted trigonal prismatic geometry. In agreement with the observed paramagnetic behavior, the average of the six Fe-N distances at 293 K (2.218(6) A) and at 90 K (2.209(2) A) correspond well with distances observed for high-spin (HS) Fe(II) complexes with a coordination index of 6. For 2, the Fe(II) ion adopts a distorted octahedral geometry for which the six Fe-N distances (average 2.197(4) A) at room temperature are in the range expected for HS Fe(II) complexes. The crystal structure solved at 90 K showed a strong modification of the iron coordination sphere, suggesting the presence of a spin-crossover transition from HS to low spin (LS). Surprisingly, the averaged Fe-N value (2.077(4) A) at this temperature is not in agreement with the magnetic measurements since the chi(m)T product versus T showed a full LS state at 90 K. This may be explained by the presence of important distortions arising from the macrocycle constraints. To understand how the crystal and the lattice parameters were affected by the magnetic transition, the temperature dependence of the lattice parameters of 2 was determined in the range 293-90 K: the a and

  14. Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerroudj, Salim; Caballero, Rafael; De Zela, Francisco; Jureschi, Catalin; Linares, Jorge; Boukheddaden, Kamel

    2016-08-01

    The Ising like model, taking into account short-, long-range interaction as well as surface effects is used to investigate size and shape effects on the thermal behaviour of 2D and 3D spin crossover (SCO) nanoparticles embedded in a matrix. We analyze the role of the parametert, representing the ratio between the number of surface and volume molecules, on the unusual thermal hysteresis behaviour (appearance of the hysteresis and a re-entrance phase transition) at small scales.

  15. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    SciTech Connect

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; Hu, Hui; Liu, Xia -Ji

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  16. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE PAGES

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing; ...

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length aB to the fermion scattering length a2D. We find aB ≃ 0.56a2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  17. Interference-mediated synaptonemal complex formation with embedded crossover designation.

    PubMed

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E

    2014-11-25

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites ("crossover interference"). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object.

  18. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  19. Solving the Traveling Salesman Problem through Extended Changing Crossover Operators

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryouei

    In order to efficiently obtain an approximate solution of the traveling salesman problem (TSP), extended changing crossover operators (ECXOs) which can substitute any crossover operator of genetic algorithms (GAs) and ant colony optimization (ACO) for another crossover operator at any time is proposed. In this investigation our ECXO uses both EX (or ACO) and EXX (Edge Exchange Crossover) in early generations to create local optimum sub-paths, and it uses EAX (Edge Assembly Crossover) to create a global optimum solution after generations. With EX or ACO any individual or any ant determines the next city he visits from lengths of edges or tours' lengths deposited on edges as pheromone, and he generates local optimum paths. With EXX the generated path converges to a provisional optimal path. With EAX a parent exchanges his edges with another parent's ones reciprocally to create sub-cyclic paths, before restructuring a cyclic path by combining the sub-cyclic paths with making distances between them minimum. In this paper validity of ECXO is verified by our C experiments using medium-sized problems in TSPLIB, and it is shown that ECXO can find the best solution earlier than EAX.

  20. Orbital transfer vehicle engine technology high velocity ratio diffusing crossover

    NASA Astrophysics Data System (ADS)

    Lariviere, Brian W.

    1992-12-01

    High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.

  1. Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.

  2. A Link between Meiotic Prophase Progression and CrossoverControl

    SciTech Connect

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  3. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    SciTech Connect

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  4. Spin-Polarized Fermi Gases in 1D, 3D, and Crossover Regimes

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Olsen, Ben A.; Hulet, Randall G.

    2015-05-01

    We report recent results on mapping the superfluid transition as a function of atomic interaction and global spin polarization in a two-component, 3D gas of fermionic lithium. The atomic interactions are controlled using a Feshbach resonance to tune between the strongly interacting BEC regime and the weakly interacting BCS regime. Previously, a 3D gas was found to have an unpolarized superfluid core that is enclosed by polarized shells. By applying a 2D optical lattice we confine our gas in one-dimensional tubes. In this 1D gas, in contrast to the 3D gas, we found a partially polarized superfluid core and either fully polarized or fully paired wings depending on the overall spin polarization. In the current experiment, we have mapped the phase diagram of the 1D/3D crossover by increasing the inter-tube coupling. The exotic superfluid state, FFLO, is predicted to occupy a large portion of the phase diagram in the crossover regime, making it an ideal location in parameter space for its detection. ARO, NSF, ONR, and The Welch Foundation.

  5. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments.

    PubMed

    Corradini, D; Rovere, M; Gallo, P

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  6. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    NASA Astrophysics Data System (ADS)

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-01

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  7. Crossover from equilibration to aging: Nonequilibrium theory versus simulations

    NASA Astrophysics Data System (ADS)

    Mendoza-Méndez, P.; Lázaro-Lázaro, E.; Sánchez-Díaz, L. E.; Ramírez-González, P. E.; Pérez-Ángel, G.; Medina-Noyola, M.

    2017-08-01

    Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite waiting-time window, the simulations confirm the general trends predicted by the theory.

  8. Influence analysis on crossover design experiment in bioequivalence studies.

    PubMed

    Huang, Yufen; Ke, Bo-Shiang

    2014-01-01

    Crossover designs are commonly used in bioequivalence studies. However, the results can be affected by some outlying observations, which may lead to the wrong decision on bioequivalence. Therefore, it is essential to investigate the influence of aberrant observations. Chow and Tse in 1990 discussed this issue by considering the methods based on the likelihood distance and estimates distance. Perturbation theory provides a useful tool for the sensitivity analysis on statistical models. Hence, in this paper, we develop the influence functions via the perturbation scheme proposed by Hampel as an alternative approach on the influence analysis for a crossover design experiment. Moreover, the comparisons between the proposed approach and the method proposed by Chow and Tse are investigated. Two real data examples are provided to illustrate the results of these approaches. Our proposed influence functions show excellent performance on the identification of outlier/influential observations and are suitable for use with small sample size crossover designs commonly used in bioequivalence studies.

  9. Self-affine crossover length in a layered silicate deposit.

    PubMed

    Fossum, J O; Bergene, H H; Hansen, Alex; O'Rourke, B; Manificat, G

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  10. Self-affine crossover length in a layered silicate deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Bergene, H. H.; Hansen, Alex; O'Rourke, B.; Manificat, G.

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  11. Effects of crossover hydrogen on platinum dissolution and agglomeration

    NASA Astrophysics Data System (ADS)

    Cheng, Tommy T. H.; Rogers, Erin; Young, Alan P.; Ye, Siyu; Colbow, Vesna; Wessel, Silvia

    2011-10-01

    The durability of catalysts in the polymer-electrolyte membrane fuel cell (PEMFC) is identified as a critical limiting factor for wide commercialization of fuel cells. Even though much progress has been made in understanding the degradation mechanisms, the phenomena of Pt dissolution and agglomeration and their contributing factors are not fully understood. In the present investigation, the effects of crossover hydrogen on Pt degradation are studied using an accelerated stress test (AST). The end-of-test (EOT) membrane-electrode-assemblies (MEAs) were characterized by X-ray diffraction (XRD), scanning-electron microscopy (SEM), and energy-dispersive X-ray (EDX). The results provided mechanistic understanding of Pt dissolution and agglomeration: Pt growth and agglomeration were found to be less severe with more crossover hydrogen due likely to the chemical reduction of Pt oxides by crossover hydrogen and the subsequently decrease in the amount of Pt ions formed via the oxide pathway.

  12. The Distribution of Crossovers along Unreplicated Lambda Bacteriophage Chromosomes

    PubMed Central

    Stahl, Franklin W.; McMilin, Kenneth D.; Stahl, Mary M.; Crasemann, Jean M.; Lam, Stephen

    1974-01-01

    The distribution of crossovers along unreplicated chromosomes of bacteriophage lambda has been examined by determining the density distributions and genotypes of particles in the progenies of crosses of density-labeled by ordinary parents in the presence of genetic blocks to replication. The Red and Rec systems combined produce crossovers primarily near the ends (especially the right end) of the chromosome. Removal of the generalized lambda recombination functions by red and gam mutations results in loss of these terminal crossovers; coupled with this loss is a disappearance of the differential dependence of recombination frequencies in terminal and central intervals on DNA synthesis. Removal of the bacterial system by a recA mutation results in severe depression of crossing over among unreplicated phage, with the few recombinants produced by the lambda system occurring near the right end. PMID:4416166

  13. Dimensional crossover of the dephasing time in disordered mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Treiber, M.; Yevtushenko, O. M.; Marquardt, F.; von Delft, J.; Lerner, I. V.

    2009-11-01

    We study dephasing by electron interactions in a small disordered quasi-one-dimensional (1D) ring weakly coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the dephasing time τφ(T) from diffusive or ergodic 1D (τφ-1∝T2/3,T1) to zero-dimensional (0D) behavior (τφ-1∝T2) as T drops below the Thouless energy. The crossover to 0D, predicted earlier for two-dimensional and three-dimensional systems, has so far eluded experimental observation. The ring geometry holds promise of meeting this long-standing challenge, since the crossover manifests itself not only in the smooth part of the magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures of dephasing in the ring to be cleanly extracted by filtering out those of the leads.

  14. Pediatric functional constipation treatment with Bifidobacterium-containing yogurt: A crossover, double-blind, controlled trial

    PubMed Central

    Guerra, Paula VP; Lima, Luiza N; Souza, Tassia C; Mazochi, Vanessa; Penna, Francisco J; Silva, Andreia M; Nicoli, Jacques R; Guimarães, Elizabet V

    2011-01-01

    AIM: To evaluate the treatment of pediatric functional chronic intestinal constipation (FCIC) with a probiotic goat yogurt. METHODS: A crossover double-blind formula-controlled trial was carried out on 59 students (age range: 5-15 years) of a public school in Belo Horizonte, MG, Brazil, presenting a FCIC diagnostic, according to Roma III criteria. The students were randomized in two groups to receive a goat yogurt supplemented with 109 colony forming unit/mL Bifidobacterium longum (B. longum) (probiotic) daily or only the yogurt for a period of 5 wk (formula). Afterwards, the groups were intercrossed for another 5 wk. Defecation frequency, stool consistency and abdominal and defecation pain were assessed. RESULTS: Both treatment groups demonstrated improvement in defecation frequency compared to baseline. However, the group treated with probiotic showed most significant improvement in the first phase of the study. An inversion was observed after crossing over, resulting in a reduction in stool frequency when this group was treated by formula. Probiotic and formula improved stool consistency in the first phase of treatment, but the improvement obtained with probiotic was significantly higher (P = 0.03). In the second phase of treatment, the group initially treated with probiotic showed worseningstool consistency when using formula. However, the difference was not significant. A significant improvement in abdominal pain and defecation pain was observed with both probiotic and formula in the first phase of treatment, but again the improvement was more significant for the group treated with B. longum during phase I (P < 0.05). When all data of the crossover study were analyzed, significant differences were observed between probiotic yogurt and yogurt only for defecation frequency (P = 0.012), defecation pain (P = 0.046) and abdominal pain (P = 0.015). CONCLUSION: An improvement in defecation frequency and abdominal pain was observed using both supplemented and non

  15. Pediatric functional constipation treatment with Bifidobacterium-containing yogurt: a crossover, double-blind, controlled trial.

    PubMed

    Guerra, Paula V P; Lima, Luiza N; Souza, Tassia C; Mazochi, Vanessa; Penna, Francisco J; Silva, Andreia M; Nicoli, Jacques R; Guimarães, Elizabet V

    2011-09-14

    To evaluate the treatment of pediatric functional chronic intestinal constipation (FCIC) with a probiotic goat yogurt. A crossover double-blind formula-controlled trial was carried out on 59 students (age range: 5-15 years) of a public school in Belo Horizonte, MG, Brazil, presenting a FCIC diagnostic, according to Roma III criteria. The students were randomized in two groups to receive a goat yogurt supplemented with 10(9) colony forming unit/mL Bifidobacterium longum (B. longum) (probiotic) daily or only the yogurt for a period of 5 wk (formula). Afterwards, the groups were intercrossed for another 5 wk. Defecation frequency, stool consistency and abdominal and defecation pain were assessed. Both treatment groups demonstrated improvement in defecation frequency compared to baseline. However, the group treated with probiotic showed most significant improvement in the first phase of the study. An inversion was observed after crossing over, resulting in a reduction in stool frequency when this group was treated by formula. Probiotic and formula improved stool consistency in the first phase of treatment, but the improvement obtained with probiotic was significantly higher (P = 0.03). In the second phase of treatment, the group initially treated with probiotic showed worsening stool consistency when using formula. However, the difference was not significant. A significant improvement in abdominal pain and defecation pain was observed with both probiotic and formula in the first phase of treatment, but again the improvement was more significant for the group treated with B. longum during phase I (P < 0.05). When all data of the crossover study were analyzed, significant differences were observed between probiotic yogurt and yogurt only for defecation frequency (P = 0.012), defecation pain (P = 0.046) and abdominal pain (P = 0.015). An improvement in defecation frequency and abdominal pain was observed using both supplemented and non-supplemented yogurt, but an

  16. Subcritical-supercritical bifurcation crossover in directional solidification

    SciTech Connect

    Liu, D.; Williams, L.; Cummins, H. )

    1994-12-01

    The Mullins-Sekerka planar-cellular instability in directional solidification should be subcritical when the partition coefficient [ital k][lt]0.45 and latent heat is ignored. However, Merchant and Davis [Phys. Rev. Lett. [bold 63], 573 (1989)] predicted that as the solute concentration is reduced, the increasingly important thermal diffusion field would lead to a crossover from a subcritical to a supercritical bifurcation. We have performed directional solidification experiments on a series of succinonitrile samples containing different concentrations of Coumarin 152, and have found preliminary evidence for the predicted crossover at a concentration [ital C][sub [ital t

  17. Surface-environment effects in spin crossover solids

    NASA Astrophysics Data System (ADS)

    Gudyma, Iu.; Maksymov, A.

    2017-06-01

    The impact of surface effects on thermal induced spin crossover phenomenon is a subject of a broad and current interest. Using the modified Ising-like model of spin crossover solids with the ligand field as function of the molecule' positions and random component on surface by means of Metropolis Monte Carlo algorithm the thermal spin transition curves were calculated. The analysis of spin configuration during transition gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuations strength has been described.

  18. Fractal-to-nonfractal crossover for viscous fingers

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Coniglio, Antonio; Stanley, H. Eugene

    1990-04-01

    We propose a position-space renormalization-group approach to the problem of viscous fingering in the absence of surface tension, with arbitrary viscosity ratio between the injected and displaced fluid. We find there are only two fixed points, the Eden and the diffusion-limited aggregation (DLA) points. The Eden point, which corresponds to a compact cluster with nonfractal surface, is stable in all directions, while the DLA fixed point is a saddle point. Hence if the viscosity of the injected fluid is not zero, the system must eventually cross over to a compact cluster. We also calculate the crossover exponent φ and crossover radius R×, and discuss possible experimental measurements.

  19. Stochastic resonance in photo-switchable spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Maksymov, Artur

    2017-07-01

    The stochastic kinetic in photo-switchable spin-crossover materials with periodic driving force in the context of stochastic resonance (SR) was studied. The resonance phenomena in spin-crossover system have been analyzed by means of spectral power amplification (SPA) function. The influence of the parameters of harmonic signal (amplitude and frequency) together with changes of noise intensity have been considered. The SPA is characterized by double peak curve with qualitatively different mechanisms of amplification of the peaks and is examined by Fourier analysis.

  20. A phase IV, two-armed, randomized, cross-over study comparing compliance with once-a-month administration of vitamin D3 to compliance with daily administration of a fixed-dose combination of vitamin D3 and calcium during two 6-month periods.

    PubMed

    Bruyère, O; Deroisy, R; Dardenne, N; Cavalier, E; Coffiner, M; Da Silva, S; De Niet, S; Reginster, J-Y

    2015-12-01

    In a randomized, cross-over study, once monthly administration of vitamin D3 was preferred over a once daily administration of a fixed-dose combination of vitamin D3 and calcium, with a better compliance but without any significant difference in the increase in vitamin D levels. The aim of the present study was to compare a once-monthly administration of vitamin D3 to a daily administration of a fixed-dose combination of vitamin D3 and calcium during two treatment periods of 6 months. One hundred volunteers aged 50 years old or older were randomized to receive either one drinkable ampoule containing 25,000 IU vitamin D3 (D-Cure®, SMB) once monthly (group VD) or one chewable tablet containing 1000 mg calcium carbonate + 800 IU vitamin D3 (Steovit Forte®, Takeda) once daily (group VDCa) during 6 months. After the first 6 months of treatment, the groups were reversed according to the randomized cross-over design. Treatment compliance (i.e. the primary outcome), preference, acceptability and vitamin D levels and adverse events were all collected. For the two periods, the patients had a significantly higher compliance in the VD group than in the VDCa group (p < 0.0001). During the study, 50 (56.8 %) patients preferred the VD treatment, 16 (18.2 %) patients preferred the VDCa, and for 22 (25.0 %) patients, neither treatment was preferred. At the end of the first 6 months of treatment, the mean (SD) increase of 25(OH)D was 6.57 ng/mL (8.19) in the VD group and 3.88 ng/mL (10.0) in the VDCa group (p = 0.16 between groups). In this study, a once-monthly administration of vitamin D3 was preferred over a once-daily administration of a fixed-dose combination of vitamin D3 and calcium, with a better compliance but without any significant difference in the increase in vitamin D levels.

  1. Participation ratio and fidelity analyses as tools to study BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Dey, P.; Sarkar, D.; Khan, A.; Basu, S.

    2011-05-01

    Solving Bogoliubov-de Gennes (BdG) equations for a two dimensional Hubbard model with random on-site disorder, we compute the participation ratio and fidelity to establish conviction for a BCS-BEC crossover scenario at intermediate values of disorder proposed earlier [P. Dey, S. Basu, J. Phys.: Condens. Matter 20, 485205 (2008)]. The participation ratio analysis suggests the onset of a phase with shrunk pairs extending over moderate number of lattice sites, which however preserves the superfluid character. The fidelity or the ground state overlap for two different (but closely lying) values of the disorder strength shows an abrupt drop at the immediate neighbourhood of the disorder strength where an onset of a paired (bose-like) phase occurs.

  2. Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin state crossover in ferropericlase: Stresses and HS-LS Crossover in (Mg,Fe)O

    DOE PAGES

    Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; ...

    2016-05-30

    Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostaticstresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) uponcompression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). Here, we observe aninfluence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirablestresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects ofintergrain interaction. And while the former leads to a pressure overestimation, the latter one lowers the pressure ofthe onset for the high-spin to low-spin electronic transition in Fe2+ inmore » ferropericlase (Mg, Fe)O with respect tohydrostatic conditions.« less

  3. Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin state crossover in ferropericlase: Stresses and HS-LS Crossover in (Mg,Fe)O

    SciTech Connect

    Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; Lee, Kanani K. M.

    2016-05-30

    Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostaticstresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) uponcompression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). Here, we observe aninfluence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirablestresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects ofintergrain interaction. And while the former leads to a pressure overestimation, the latter one lowers the pressure ofthe onset for the high-spin to low-spin electronic transition in Fe2+ in ferropericlase (Mg, Fe)O with respect tohydrostatic conditions.

  4. Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets.

    PubMed

    Berchowitz, Luke E; Copenhaver, Gregory P

    2008-01-01

    In most organisms, one crossover (CO) event inhibits the chances of another nearby event. The term used to describe this phenomenon is 'CO interference'. Here, we describe a protocol for quickly generating large data sets that are amenable to CO interference analysis in the flowering plant, Arabidopsis thaliana. We employ a visual assay that utilizes transgenic marker constructs encoding pollen-expressed fluorescent proteins of three colors in the quartet mutant background. In this genetic background, male meiotic products--the pollen grains--remain physically attached thereby facilitating tetrad analysis. We have developed a library of mapped marker insertions that, when crossed together, create adjacent intervals that can be rapidly and simultaneously screened for COs. This assay system is capable of detecting and differentiating single COs as well as two-, three- and four-strand double COs. We also describe how to analyze the data that are produced by this method. To generate and score a double interval in a wild-type and mutant background using this protocol will take 22-27 weeks.

  5. Locking and Unlocking the Molecular Spin Crossover Transition.

    PubMed

    Zhang, Xin; Costa, Paulo S; Hooper, James; Miller, Daniel P; N'Diaye, Alpha T; Beniwal, Sumit; Jiang, Xuanyuan; Yin, Yuewei; Rosa, Patrick; Routaboul, Lucie; Gonidec, Mathieu; Poggini, Lorenzo; Braunstein, Pierre; Doudin, Bernard; Xu, Xiaoshan; Enders, Axel; Zurek, Eva; Dowben, Peter A

    2017-08-28

    The Fe(II) spin crossover complex [Fe{H2 B(pz)2 }2 (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2 O3 , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C6 H2 (-⋯ NH2 )2 (-⋯ O)2 . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H2 B(pz)2 }2 (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crossover dynamics at large metastability in gas-liquid nucleation.

    PubMed

    Santra, Mantu; Bagchi, Biman

    2011-03-01

    We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k= 1 is the largest cluster in the system, k= 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability [P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments.

  7. 50 CFR 660.120 - Trawl fishery-crossover provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Trawl fishery-crossover provisions. 660.120 Section 660.120 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West...

  8. Academic Crossover Study, University of Hawaii Community Colleges, Fall 1999.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu. Office of the Chancellor for Community Colleges.

    The academic crossover study was developed to answer two questions: (1) What is the course-taking pattern of the different groups of academic majors? (e.g. what is proportion of academic load taken outside the major); and (2) What is the client-serving pattern of the different subject disciplines? (e.g. what are the groups of students served by…

  9. Design and analysis of crossover trials for absorbing binary endpoints.

    PubMed

    Nason, Martha; Follmann, Dean

    2010-09-01

    The crossover is a popular and efficient trial design used in the context of patient heterogeneity to assess the effect of treatments that act relatively quickly and whose benefit disappears with discontinuation. Each patient can serve as her own control as within-individual treatment and placebo responses are compared. Conventional wisdom is that these designs are not appropriate for absorbing binary endpoints, such as death or HIV infection. We explore the use of crossover designs in the context of these absorbing binary endpoints and show that they can be more efficient than the standard parallel group design when there is heterogeneity in individuals' risks. We also introduce a new two-period design where first period "survivors" are rerandomized for the second period. This design combines the crossover design with the parallel design and achieves some of the efficiency advantages of the crossover design while ensuring that the second period groups are comparable by randomization. We discuss the validity of the new designs and evaluate both a mixture model and a modified Mantel-Haenszel test for inference. The mixture model assumes no carryover or period effects while the Mantel-Haenszel approach conditions out period effects. Simulations are used to compare the different designs and an example is provided to explore practical issues in implementation.

  10. Crossover Improvement for the Genetic Algorithm in Information Retrieval.

    ERIC Educational Resources Information Center

    Vrajitoru, Dana

    1998-01-01

    In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…

  11. Crossover Improvement for the Genetic Algorithm in Information Retrieval.

    ERIC Educational Resources Information Center

    Vrajitoru, Dana

    1998-01-01

    In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…

  12. The critical crossover at the n-hexane-water interface

    SciTech Connect

    Tikhonov, A. M.

    2010-06-15

    According to estimates of the parameters of the critical crossover in monolayers of long-chain alcohol molecules adsorbed at the n-hexane-water interface, all systems in which this phenomenon is observed are characterized by the same value of the critical exponent {nu} {approx} 1.8.

  13. Perturbation of spin crossover behavior by covalent post-synthetic modification of a porous metal-organic framework.

    PubMed

    Clements, John E; Price, Jason R; Neville, Suzanne M; Kepert, Cameron J

    2014-09-15

    Covalent post-synthetic modification is a versatile method for gaining high-level synthetic control over functionality within porous metal-organic frameworks and for generating new materials not accessible through one-step framework syntheses. Here we apply this topotactic synthetic approach to a porous spin crossover framework and show through detailed comparison of the structures and properties of the as-synthesised and covalently modified phases that the modification reaction proceeds quantitatively by a thermally activated single-crystal-to-single-crystal transformation to yield a material with lowered spin-switching temperature, decreased lattice cooperativity, and altered color. Structure-function relationships to emerge from this comparison show that the approach provides a new route for tuning spin crossover through control over both outer-sphere and steric interactions.

  14. Acceptance and usability of different sunscreen formulations among outdoor workers: a randomized, single-blind, cross-over study.

    PubMed

    Bauer, Andrea; Hault, Kathrin; Püschel, Andrea; Rönsch, Henriette; Knuschke, Peter; Beissert, Stefan

    2014-03-01

    Adequate sun protection is often neglected during occupational outdoor work. To investigate the acceptance and usability of sunscreens during outdoor work a single-blind, randomized-controlled, cross-over trial was performed in 40 subjects. Two sunscreen formulations were used daily on working days for 4 weeks at a time, with a wash-out phase before crossover. The primary outcome was overall acceptance of the products with daily application. More than 80% of the outdoor workers were fully satisfied with the cosmetic properties, sweat resistance, performance and usability of both products under outdoor working conditions. With respect to overall performance, the milk was rated slightly better than the gel. In terms of ease of application, the milk was preferred (p<0.05). Sunscreens for those working outdoors must contain very high, broad-spectrum, photostable filters for both UVB and UVA, they must be easy to apply and sweat resistant, and should not irritate the eyes.

  15. Electronic crossover in the normal state of YBa{sub 2}Cu{sub 4}O{sub 8}

    SciTech Connect

    Suter, A.; Mali, M.; Roos, J.; Brinkmann, D.; Karpinski, J.; Kaldis, E.

    1997-09-01

    By performing nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR), respectively, with Cu, O, and Y isotopes in the normal state of the high-temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8}, we have found the following major results: (i) The Y, Cu, and O shift data support, for planes and chains, the validity of the {open_quotes}single-spin fluid model.{close_quotes} (ii) Around T{sup {dagger}}=180 K, {open_quotes}anomalies{close_quotes} in the temperature behavior of several NMR/NQR quantities have been detected. (iii) The anomalies do not arise from a structural phase transition; instead they reflect an electronic crossover which involves enhanced charge fluctuations in planes and chains accompanied by a charge (hole) transfer from chain to plane. (iv) As a possible mechanism of the crossover, a charge-density-wave instability is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  16. Estimating crossover frequencies and testing for numerical interference with highly polymorphic markers

    SciTech Connect

    Ott, J.

    1996-12-31

    Interference maybe viewed as having two aspects, numerical interference referring to the numbers of crossovers occurring, and positional interference referring to the positions of crossovers. Here, the focus is on numerical interference and on methods of testing for its presence. A dense map of highly polymorphic markers is assumed so that each crossover can be observed. General relationships are worked out between crossover distributions and underlying chiasma distributions. It is shown that crossover distributions may be invalid, and methods are developed to estimate valid crossover distributions from observed counts of crossovers. Based on valid estimates of crossover distributions, tests for interference and development of empirical map functions are outlined. The methods are applied to published data on human chromosomes 9 and 19. 16 refs., 1 fig., 3 tabs.

  17. Geodetic constraints from multi-beam laser altimeter crossovers

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Neumann, G. A.; Rowlands, D. D.; Smith, D. E.

    2010-06-01

    The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric “crossovers”, to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those “swath crossovers”. They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO.

  18. Gene Conversion Tracts Associated with Crossovers in Rhizobium etli

    PubMed Central

    Santoyo, Gustavo; Martínez-Salazar, Jaime M.; Rodríguez, César; Romero, David

    2005-01-01

    Gene conversion has been defined as the nonreciprocal transfer of information between homologous sequences. Despite its broad interest for genome evolution, the occurrence of this mechanism in bacteria has been difficult to ascertain due to the possible occurrence of multiple crossover events that would mimic gene conversion. In this work, we employ a novel system, based on cointegrate formation, to isolate gene conversion events associated with crossovers in the nitrogen-fixing bacterium Rhizobium etli. In this system, selection is applied only for cointegrate formation, with gene conversions being detected as unselected events. This minimizes the likelihood of multiple crossovers. To track the extent and architecture of gene conversions, evenly spaced nucleotide changes were made in one of the nitrogenase structural genes (nifH), introducing unique sites for different restriction endonucleases. Our results show that (i) crossover events were almost invariably accompanied by a gene conversion event occurring nearby; (ii) gene conversion events ranged in size from 150 bp to 800 bp; (iii) gene conversion events displayed a strong bias, favoring the preservation of incoming sequences; (iv) even small amounts of sequence divergence had a strong effect on recombination frequency; and (v) the MutS mismatch repair system plays an important role in determining the length of gene conversion segments. A detailed analysis of the architecture of the conversion events suggests that multiple crossovers are an unlikely alternative for their generation. Our results are better explained as the product of true gene conversions occurring under the double-strand break repair model for recombination. PMID:15937174

  19. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia

    PubMed Central

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  20. Comparison of different pairing fluctuation approaches to BCS-BEC crossover

    SciTech Connect

    Levin, Kathryn Chen Qijin Chien, C.-C. He Yan

    2010-02-15

    The subject of BCS-Bose-Einstein condensation (BEC) crossover is particularly exciting because of its realization in ultracold atomic Fermi gases and its possible relevance to high temperature superconductors. In this paper we review the body of theoretical work on this subject, which represents a natural extension of the seminal papers by Leggett and by Nozieres and Schmitt-Rink (NSR). The former addressed only the ground state, now known as the 'BCS-Leggett' wave-function, and the key contributions of the latter pertain to calculations of the superfluid transition temperature T{sub c}. These two papers have given rise to two main and, importantly, distinct, theoretical schools in the BCS-BEC crossover literature. The first of these extends the BCS-Leggett ground state to finite temperature and the second extends the NSR scheme away from T{sub c} both in the superfluid and normal phases. It is now rather widely accepted that these extensions of NSR produce a different ground state than that first introduced by Leggett. This observation provides a central motivation for the present paper which seeks to clarify the distinctions in the two approaches. Our analysis shows how the NSR-based approach views the bosonic contributions more completely but treats the fermions as 'quasi-free'. By contrast, the BCS-Leggett based approach treats the fermionic contributions more completely but treats the bosons as 'quasi-free'. In a related fashion, the NSR-based schemes approach the crossover between BCS and BEC by starting from the BEC limit and the BCS-Leggett based scheme approaches this crossover by starting from the BCS limit. Ultimately, one would like to combine these two schemes. There are, however, many difficult problems to surmount in any attempt to bridge the gap in the two theory classes. In this paper we review the strengths and weaknesses of both approaches. The flexibility of the BCS-Leggett based approach and its ease of handling make it widely used in T=0

  1. Two-dimensional metal-insulator transition as a strong localization induced crossover phenomenon

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.

    2014-06-01

    Low-disorder and high-mobility two-dimensional (2D) electron (or hole) systems confined in semiconductor heterostructures undergo an apparent metal-insulator transition (MIT) at low temperatures as the carrier density (n) is varied. In some situations, the 2D MIT can be caused at a fixed low carrier density by changing an externally applied in-plane magnetic field parallel to the 2D layer. The goal of the current work is to obtain the critical density (nc) for the 2D MIT with the system being an effective metal (Anderson insulator) for density n above (below) nc. We study the 2D MIT phenomenon theoretically as a possible strong localization induced crossover process controlled by the Ioffe-Regel criterion, kFl=1, where kF(n) is the 2D Fermi wave vector and l (n) is the disorder-limited quantum mean free path on the metallic side. Calculating the quantum mean free path in the effective metallic phase from a realistic Boltzmann transport theory including disorder scattering effects, we solve the integral equation (with l depending on n through multidimensional integrals) defined by the Ioffe-Regel criterion to obtain the nonuniversal critical density nc as a function of the applicable physical experimental parameters including disorder strength, in-plane magnetic field, spin and valley degeneracy, background dielectric constant and carrier effective mass, and temperature. The key physics underlying the nonuniversal parameter dependence of the critical density is the density dependence of the screened Coulomb disorder. Our calculated results for the crossover critical density nc appear to be in qualitative and semiquantitative agreement with the available experimental data in different 2D semiconductor systems lending credence to the possibility that the apparent 2D MIT signals the onset of the strong localization crossover in disordered 2D systems. We also compare the calculated critical density obtained from the Ioffe-Regel criterion with that obtained from a

  2. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. The crossover provisions listed at § 660.60(h)(7), apply to vessels fishing in the open access fishery. ...

  3. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. The crossover provisions listed at § 660.60(h)(7), apply to vessels fishing in the open access fishery. ...

  4. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. The crossover provisions listed at § 660.60(h)(7), apply to vessels fishing in the open access fishery. ...

  5. What's Mine Is Yours: The Crossover of Day-Specific Self-Esteem

    ERIC Educational Resources Information Center

    Neff, Angela; Sonnentag, Sabine; Niessen, Cornelia; Unger, Dana

    2012-01-01

    This diary study examines the daily crossover of self-esteem within working couples. By integrating self-esteem research into the crossover framework, we hypothesized that the day-specific self-esteem experienced by one partner after work crosses over to the other partner. Furthermore, we proposed that this daily crossover process is moderated by…

  6. What's Mine Is Yours: The Crossover of Day-Specific Self-Esteem

    ERIC Educational Resources Information Center

    Neff, Angela; Sonnentag, Sabine; Niessen, Cornelia; Unger, Dana

    2012-01-01

    This diary study examines the daily crossover of self-esteem within working couples. By integrating self-esteem research into the crossover framework, we hypothesized that the day-specific self-esteem experienced by one partner after work crosses over to the other partner. Furthermore, we proposed that this daily crossover process is moderated by…

  7. An exercise program to prevent falls in institutionalized elderly with cognitive deficits: a crossover pilot study.

    PubMed

    DeSure, Ariell R; Peterson, Karen; Gianan, Faith V; Pang, Lorrin

    2013-11-01

    Falls are the leading cause of injury among older adults in the United States, with the institutionalized elderly at elevated risk for injury and death. Physical weakness and mental frailty, prevalent in institutionalized elderly, are major risk factors for falls. The purpose of this study was to evaluate a program that addresses both the physical and mental aspects of exercise to reduce falls in institutionalized elderly. Twenty-seven volunteer subjects residing in an assisted living facility participated in the 24 week randomized crossover study. After demographic, fall history, and mental status examinations, subjects were randomly assigned first to ten weeks of either an exercise class or a control group, followed by a four week "washout period" of no activity, then cross assigned to ten weeks as either a control group or exercise class, respectively. Falls as well as mental status changes were monitored during the study. After adjusting for differences in baseline risk between the control and treatment groups, and for potential residual effects of the treatment during the crossover phase, a statistically significant (P = .025) reduction in falls was found during treatment compared to the control periods. No change in mental status was seen. This small, pilot study shows that exercise programs, which emphasize mental strengthening as well as physical fitness, have the potential to reduce falls among mentally impaired, institutionalized seniors.

  8. An Exercise Program to Prevent Falls in Institutionalized Elderly with Cognitive Deficits: A Crossover Pilot Study

    PubMed Central

    Peterson, Karen; Gianan, Faith V; Pang, Lorrin

    2013-01-01

    Falls are the leading cause of injury among older adults in the United States, with the institutionalized elderly at elevated risk for injury and death. Physical weakness and mental frailty, prevalent in institutionalized elderly, are major risk factors for falls. The purpose of this study was to evaluate a program that addresses both the physical and mental aspects of exercise to reduce falls in institutionalized elderly. Twenty-seven volunteer subjects residing in an assisted living facility participated in the 24 week randomized crossover study. After demographic, fall history, and mental status examinations, subjects were randomly assigned first to ten weeks of either an exercise class or a control group, followed by a four week “washout period” of no activity, then cross assigned to ten weeks as either a control group or exercise class, respectively. Falls as well as mental status changes were monitored during the study. After adjusting for differences in baseline risk between the control and treatment groups, and for potential residual effects of the treatment during the crossover phase, a statistically significant (P = .025) reduction in falls was found during treatment compared to the control periods. No change in mental status was seen. This small, pilot study shows that exercise programs, which emphasize mental strengthening as well as physical fitness, have the potential to reduce falls among mentally impaired, institutionalized seniors. PMID:24251085

  9. Numerical Evidence of Quantum Melting of Spin Ice: Quantum-to-Classical Crossover

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Onoda, Shigeki

    2015-08-01

    Unbiased quantum Monte Carlo simulations are performed on the nearest-neighbor spin-1/2 pyrochlore X X Z model with an antiferromagnetic longitudinal and the weak ferromagnetic transverse exchange couplings, J and J⊥ . The specific heat exhibits a broad peak at TCSI˜0.2 J associated with a crossover to a classical Coulomb liquid regime showing a suppressed spin-ice monopole density, a broadened pinch-point singularity, and the Pauling entropy for |J⊥|≪J , as in classical spin ice. On further cooling, the entropy restarts decaying for J⊥>J⊥c˜-0.104 J , producing another broad specific heat peak for a crossover to a bosonic quantum Coulomb liquid, where the spin correlation contains both photon and quantum spin-ice monopole contributions. With negatively increasing J⊥ across J⊥c, a first-order thermal phase transition occurs from the quantum Coulomb liquid to an X Y ferromagnet. Relevance to magnetic rare-earth pyrochlore oxides is discussed.

  10. A real space auxiliary field approach to the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Tarat, Sabyasachi; Majumdar, Pinaki

    2015-03-01

    The BCS to BEC crossover in attractive Fermi systems is a prototype of weak to strong coupling evolution in many body physics. While extensive numerical results are available, and several approximate methods have been developed, most of these schemes are unsuccessful in the presence of spatial inhomogeneity. Such situations call for a real space approach that can handle large spatial scales and retain the crucial thermal fluctuations. With this in mind we present comprehensive results of a real space auxiliary field approach to the BCS to BEC crossover in the attractive Hubbard model in two dimensions. The scheme reproduces the Hartree-Fock-Bogoliubov ground state, and leads to a T c scale that agrees with quantum Monte Carlo estimates to within a few percent. We provide results on the T c , amplitude and phase fluctuations, density of states, and the momentum resolved spectral function, over the entire interaction and temperature window. We suggest how the method generalises successfully to the presence of disorder, trapping, and population imbalance.

  11. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    dynamics of the water molecules in the solution is observed in the single-particle relaxational dynamics in the μeV (nanosecond) time scale, but not in the collective dynamics on the meV (picosecond) time scale. Mallamace et al discuss the dynamic crossover phenomenon in both bulk water and protein hydration water. They collect previous and new experimental data from different experimental techniques and molecular dynamic simulations, and are able to develop a unified picture for the different dynamical findings. Gallo et al present a MD study of confined water in MCM-41S-15 in order to test the applicability of Mode Coupling Theory (MCT) to the dynamics of the hydration water confined in the cylindrical pores of nominal diameter 15 Å. They find that the self dynamics of the hydration water is well described by MCT down to the crossover temperature TC. However, below TC the predictions of idealized MCT no longer apply, since hopping processes intervene and water turns into a strong liquid. Soper raises some questions as to the validity of the analysis method employed to determine the density of water confined in porous silica material MCM-41-S15 from recent neutron scattering experiments. Professors Stanley, Franzese and his collaborators describe an efficient Monte Carlo simulation of a coarse-grained model of water to study the phase diagram of a water monolayer confined in a fixed disordered matrix of hydrophobic nanoparticles between two hydrophobic plates. They find a drastic change of phase behavior of the confined water, such as shortening of the liquid-liquid phase transition line, upon increasing the concentration of the hydrophobic nano-particles. Sciortino and collaborators compute the equilibrium phase diagram of two simple models for patchy particles with three and five patches in a very broad range of pressure and temperature. The three-patch model produces a stable gas-liquid critical point. Yun Liu et al investigate, via small angle neutron scattering and

  12. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.

    PubMed

    Smith, Aynsley M; Krause, David A; Stuart, Michael J; Montelpare, William J; Sorenson, Matthew C; Link, Andrew A; Gaz, Daniel V; Twardowski, Casey P; Larson, Dirk R; Stuart, Michael B

    2013-12-01

    Ice hockey requires frequent skater crossovers to execute turns. Our investigation aimed to determine the effectiveness of training crossovers on a motorized, polyethylene high-resistance flywheel. We hypothesized that high school hockey players training on the flywheel would perform as well as their peers training on ice. Participants were 23 male high-school hockey players (age 15-19 years). The study used an experimental prospective design to compare players who trained for 9 sessions on the 22-foot flywheel with players who trained for 9 sessions on a similarly sized on-ice circle. Both groups were compared with control subjects who were randomly selected from the same participant pool as those training on ice. All players were tested before and after their 3-week training regimens, and control subjects were asked to not practice crossovers between testing. Group 1 trained in a hockey training facility housing the flywheel, and group 2 trained in the ice hockey arena where testing occurred. Primary outcome measures tested in both directions were: (a) speed (time in seconds) required to skate crossovers for 3 laps of a marked face-off circle, (b) cadence of skating crossovers on the similarly sized circles, and (c) a repeat interval speed test, which measures anaerobic power. No significant changes were found between groups in on-ice testing before and after training. Among the group 1 players, 7 of 8 believed they benefited from flywheel training. Group 2 players, who trained on ice, did not improve performance significantly over group 1 players. Despite the fact that no significant on-ice changes in performance were observed in objective measures, players who trained on the flywheel subjectively reported that the flywheel is an effective cost-effective alternative to training on ice. This is a relevant finding when placed in context with limited availability of on-ice training.

  13. Deqi Sensation in Placebo Acupuncture: A Crossover Study on Chinese Medicine Students

    PubMed Central

    Liang, Zhao-hui; Xie, Chang-cai; Li, Zi-ping; Zhu, Xiao-ping; Lu, Ai-ping; Fu, Wen-bin

    2013-01-01

    Objective. To evaluate the similarity of deqi sensation of real and noninvasive placebo acupuncture in healthy people with knowledge of Chinese medicine. Methods. In a crossover design, volunteers recruited from Chinese medicine college students were randomized to two groups to receive two phases of intervention with a one-week washout interval. In Group A, the participants were firstly treated by real acupuncture and then by sham needle, and the treatment sequence was reversed in Group B. VAS for pain intensity and deqi sensation was evaluated as outcomes. Results. Sixty-three volunteers were recruited and 60 were included and finished the study. In Group A, VAS was higher in Phase I than in Phase II (P = 0.017). Only treatment methods were selected as factor to VAS difference (P = 0.046) in ANOVA test. More positive deqi was reported in Group A in Phase I when treated by real acupuncture (P = 0.039), but the difference was not significant in Phase II (P = 0.301). Conclusion. The noninvasive placebo acupuncture device can effetely simulate the deqi sensation as real acupuncture, but it is less likely to evoke the active effect of deqi in real practice. This trial is registered with Chinese Clinical Trial Registry: ChiCTR-ORC-09000505. PMID:23983794

  14. Deqi sensation in placebo acupuncture: a crossover study on chinese medicine students.

    PubMed

    Liang, Zhao-Hui; Xie, Chang-Cai; Li, Zi-Ping; Zhu, Xiao-Ping; Lu, Ai-Ping; Fu, Wen-Bin

    2013-01-01

    Objective. To evaluate the similarity of deqi sensation of real and noninvasive placebo acupuncture in healthy people with knowledge of Chinese medicine. Methods. In a crossover design, volunteers recruited from Chinese medicine college students were randomized to two groups to receive two phases of intervention with a one-week washout interval. In Group A, the participants were firstly treated by real acupuncture and then by sham needle, and the treatment sequence was reversed in Group B. VAS for pain intensity and deqi sensation was evaluated as outcomes. Results. Sixty-three volunteers were recruited and 60 were included and finished the study. In Group A, VAS was higher in Phase I than in Phase II (P = 0.017). Only treatment methods were selected as factor to VAS difference (P = 0.046) in ANOVA test. More positive deqi was reported in Group A in Phase I when treated by real acupuncture (P = 0.039), but the difference was not significant in Phase II (P = 0.301). Conclusion. The noninvasive placebo acupuncture device can effetely simulate the deqi sensation as real acupuncture, but it is less likely to evoke the active effect of deqi in real practice. This trial is registered with Chinese Clinical Trial Registry: ChiCTR-ORC-09000505.

  15. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B.; Tyagi, Madhusudan; Chen, Sow-Hsin

    2015-09-01

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  16. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    SciTech Connect

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin; Leão, Juscelino B.; Tyagi, Madhusudan

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  17. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  18. Analysis of first order reversal curves in the thermal hysteresis of spin-crossover nanoparticles within the mechanoelastic model

    SciTech Connect

    Stoleriu, Laurentiu E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru; Enachescu, Cristian E-mail: cristian.enachescu@uaic.ro; Chakraborty, Pradip; Hauser, Andreas

    2015-05-07

    The recently obtained spin-crossover nanoparticles are possible candidates for applications in the recording media industry as materials for data storage, or as pressure and temperature sensors. For these applications, the intermolecular interactions and interactions between spin-crossover nanoparticles are extremely important, as they may be essential factors in triggering the transition between the two stable phases: the high-spin and low-spin ones. In order to find correlations between the distributions in size and interactions and the transition temperatures distribution, we apply the FORC (First Order Reversal Curves) method, using simulations based on a mechanoelastic model applied to 2D triangular lattices composed of molecules linked by springs and embedded in a surfactant. We consider two Gaussian distributions: one is the size of the nanoparticles and another is the elastic interactions between edge spin-crossover molecules and the surfactant molecules. In order to disentangle the kinetic and non-kinetic parts of the FORC distributions, we compare the results obtained for different temperature sweeping rates. We also show that the presence of few larger particles in a distribution centered around much smaller particles dramatically increases the hysteresis width.

  19. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multicomponent metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamical aspects of a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulations with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (self diffusion coefficient, self relaxation time, and shear viscosity) bordered at Tx˜1300 K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs well above the melting point of the system (Tm˜900 K) in the equilibrium liquid state; and the crossover temperature Tx is roughly twice of the glass-transition temperature of the system (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a nonparametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter α2 and the four-point correlation function χ4.

  20. Effect of sex, age and genetics on crossover interference in cattle

    PubMed Central

    Wang, Zhiying; Shen, Botong; Jiang, Jicai; Li, Jinquan; Ma, Li

    2016-01-01

    Crossovers generated by homologous recombination ensure proper chromosome segregation during meiosis. Crossover interference results in chiasmata being more evenly distributed along chromosomes, but the mechanism underlying crossover interference remains elusive. Based on large pedigrees of Holstein and Jersey cattle with genotype data, we extracted three-generation families, including 147,327 male and 71,687 female meioses in Holstein, and 108,163 male and 37,008 female meioses in Jersey, respectively. We identified crossovers in these meioses and fitted the Housworth-Stahl “interference-escape” model to study crossover interference patterns in the cattle genome. Our result reveals that the degree of crossover interference is stronger in females than in males. We found evidence for inter-chromosomal variation in the level of crossover interference, with smaller chromosomes exhibiting stronger interference. In addition, crossover interference levels decreased with maternal age. Finally, sex-specific GWAS analyses identified one locus near the NEK9 gene on chromosome 10 to have a significant effect on crossover interference levels. This locus has been previously associated with recombination rate in cattle. Collectively, this large-scale analysis provided a comprehensive description of crossover interference across chromosome, sex and age groups, identified associated candidate genes, and produced useful insights into the mechanism of crossover interference. PMID:27892966

  1. Thermodynamics of ultracold Bose gases at a dimensional crossover

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Vogler, Andreas; Guarrera, Vera; Ott, Herwig

    2013-05-01

    We have studied the thermodynamics of ultracold Bose gases in the crossover from a three-dimensional to a one-dimensional regime. In our experiment, we use a focused electron-beam to probe in situ atomic density distributions with high temporal and spatial resolution. Starting with a Bose-Einstein-Condensate in a single beam optical dipole trap we can create one-dimensional systems by loading the atoms in a two-dimensional blue-detuned optical lattice. With increasing strength of the lattices we go from a three-dimensional into a one-dimensional system. Furthermore we tune the interaction strengths of the one-dimensional quantum-gases from weak (quasi-condensate) to strong (Tonks-Girardeau). By measuring the density profiles and applying an inverse Abel-Transformation we extract the equation of states of these systems and characterize the crossover from the three-dimensional to the one-dimensional regime.

  2. Net baryon fluctuations from a crossover equation of state

    NASA Astrophysics Data System (ADS)

    Kapusta, J.; Albright, M.; Young, C.

    2016-08-01

    We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.

  3. 3D Framework DNA Origami with Layered Crossovers.

    PubMed

    Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao

    2016-10-04

    Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks.

  4. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  5. Single-crossover recombination and ancestral recombination trees.

    PubMed

    Baake, Ellen; von Wangenheim, Ute

    2014-05-01

    We consider the Wright-Fisher model for a population of [Formula: see text] individuals, each identified with a sequence of a finite number of sites, and single-crossover recombination between them. We trace back the ancestry of single individuals from the present population. In the [Formula: see text] limit without rescaling of parameters or time, this ancestral process is described by a random tree, whose branching events correspond to the splitting of the sequence due to recombination. With the help of a decomposition of the trees into subtrees, we calculate the probabilities of the topologies of the ancestral trees. At the same time, these probabilities lead to a semi-explicit solution of the deterministic single-crossover equation. The latter is a discrete-time dynamical system that emerges from the Wright-Fisher model via a law of large numbers and has been waiting for a solution for many decades.

  6. A Bistable Microelectromechanical System Actuated by Spin-Crossover Molecules.

    PubMed

    Manrique-Juarez, Maria D; Mathieu, Fabrice; Shalabaeva, Victoria; Cacheux, Jean; Rat, Sylvain; Nicu, Liviu; Leïchlé, Thierry; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2017-07-03

    We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3 )2 ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high-spin state as well as by the drop in the quality factor around the spin transition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crossover behavior in hydrogen sensing mechanism for palladium ultrathin films.

    SciTech Connect

    Darling, S. B.; Ramanathan, M.; Skudlarek, G.; Wang, H. H.; Illinois Math and Science Academy

    2010-01-01

    Palladium has been extensively studied as a material for hydrogen sensors because of the simplicity of its reversible resistance change when exposed to hydrogen gas. Various palladium films and nanostructures have been used, and different responses have been observed with these diverse morphologies. In some cases, such as with nanowires, the resistance will decrease, whereas in others, such as with thick films, the resistance will increase. Each of these mechanisms has been explored for several palladium structures, but the crossover between them has not been systematically investigated. Here we report on a study aimed at deciphering the nanostructure-property relationships of ultrathin palladium films used as hydrogen gas sensors. The crossover in these films is observed at a thickness of {approx} 5 nm. Ramifications for future sensor developments are discussed.

  8. Assestment of correlations and crossover scale in electroseismic time series

    NASA Astrophysics Data System (ADS)

    Guzman-Vargas, L.; Ramírez-Rojas, A.; Angulo-Brown, F.

    2009-04-01

    Evaluating complex fluctuations in electroseismic time series is an important task not only for earthquake prediction but also for understanding complex processes related to earthquake preparation. Previous studies have reported alterations, as the emergence of correlated dynamics in geoelectric potentials prior to an important earthquake (EQ). In this work, we apply the detrended fluctuation analysis and introduce a statistical procedure to characterize the presence of crossovers in scaling exponents, to analyze the fluctuations of geoelectric time series monitored in two sites located in Mexico. We find a complex behavior characterized by the presence of a crossover in the correlation exponents in the vicinity of a M=7.4 EQ occurred on Sept. 14, 1995. Finally, we apply the t-student test to evaluate the level of significance between short and large scaling exponents.

  9. Excitonic correlation in the Mott crossover regime in Ge

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Fumiya; Shimano, Ryo

    2015-04-01

    Exciton Mott transition (EMT) in Ge was investigated by using optical-pump and terahertz-probe spectroscopy. From the quantitative analysis of optical conductivity and dielectric function, we evaluated the densities of unbound electron-hole pairs and excitons after the photoexcitation, from which we determined the ionization ratio of excitons α. The Mott crossover density region in Ge was elucidated from the density dependence of α in the temperature range above the critical temperature of electron-hole droplets. The 1 s -2 p excitonic transition energy hardly shifted with increasing density toward the EMT. Combined with the similar results recently observed in bulk Si, we suggest that the robustness of excitonic correlation against the Coulomb screening is a universal feature in bulk semiconductors in the Mott crossover regime.

  10. Dynamical Crossover in Complex Networks near the Percolation Transition

    NASA Astrophysics Data System (ADS)

    Kawasaki, Fumiya; Yakubo, Kousuke

    2011-10-01

    The return probability P0(t) of random walkers is investigated numerically for several scale-free fractal networks. Our results show that P0(t) is proportional to t-ds/2 with the non-integer spectral dimension ds as in the case of non-scale free fractal networks. We also study how the diffusion process is affected by the structural crossover from a fractal to a small-world architecture in a network near the percolation transition. It is elucidated that the corresponding dynamical crossover is scaled only by the unique characteristic time tξ regardless of whether the network is scale free or not. In addition, the scaling relation ds= 2Df/dw is found to be valid even for scale-free fractal networks, where Df and dw are the fractal and the walk dimensions. These results suggest that qualitative properties of P0(t) are irrelevant to the scale-free nature of networks.

  11. Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation

    PubMed Central

    Gray, Stephen

    2017-01-01

    Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation. PMID:27648641

  12. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    PubMed

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.

  13. The case-crossover study design in pharmacoepidemiology.

    PubMed

    Delaney, Joseph A 'Chris'; Suissa, Samy

    2009-02-01

    In the study of the association of transient drug exposures with acute outcomes, the case-crossover design is an efficient alternative to the case-control approach. This design based exclusively on the case series uses within-subject comparisons of drug exposures over time to estimate the rate ratio of the outcome associated with the drug under study. This design inherently removes the biasing effects of unmeasured, time-invariant confounding factors from the estimated rate ratio, but is sensitive to several assumptions. We illustrated the case-crossover design and explored its sensitivity using data from 4028 cases of gastrointestinal bleeding from the General Practice Research Database in assessing the effects of the drug warfarin. We compared the use of different time window lengths to assess exposure and considered the use of a case-time-control design to account for exposure time trends. The case-crossover approach found no excess risk of bleeding with warfarin exposure [rate ratio 0.98; 95% confidence interval (CI): 0.74-1.28] using a 1-month time window. When we restricted the analysis to subjects with truly transient drug exposure, defined by 1 to 3 prescriptions in the previous year, the rate ratio was 2.59 (95% CI: 1.42-4.74). To consider the longer 1-year exposure time window, the case-time-control approach was used and resulted in a rate ratio of 1.72 (95% CI: 1.08-2.43). In conclusion, the case-crossover design is potentially a powerful approach to assess the risk of drugs. This design is, however, highly sensitive to assumptions about intermittency of drug use and the length of the exposure time window, as demonstrated with the example of bleeding associated with warfarin use.

  14. Persistent User Bias in Case-Crossover Studies in Pharmacoepidemiology.

    PubMed

    Hallas, Jesper; Pottegård, Anton; Wang, Shirley; Schneeweiss, Sebastian; Gagne, Joshua J

    2016-10-25

    Studying the effect of chronic medication exposure by means of a case-crossover design may result in an upward-biased odds ratio. In this study, our aim was to assess the occurrence of this bias and to evaluate whether it is remedied by including a control group (the case-time-control design). Using Danish data resources from 1995-2012, we conducted case-crossover and case-time-control analyses for 3 medications (statins, insulin, and thyroxine) in relation to 3 outcomes (retinal detachment, wrist fracture, and ischemic stroke), all with assumed null associations. Controls were matched on age, sex, and index date, and exposure over the preceding 12 months was ascertained. For retinal detachment, the case-crossover odds ratio was 1.60 (95% confidence interval (CI): 1.42, 1.80) for statins, 1.40 (95% CI: 1.02, 1.92) for thyroxine, and 1.53 (95% CI: 1.04, 2.24) for insulin. Estimates for the retinal detachment controls were similar, leading to near-null case-time-control estimates for all 3 medication classes. For wrist fracture and stroke, the odds ratios were higher for cases than for controls, and case-time-control odds ratios were consistently above unity, thus implying significant residual bias. In case-crossover studies of medications, contamination by persistent users confers a moderate bias upward, which is partly remedied by using a control group. The optimal strategy for dealing with this problem is currently unknown.

  15. Surface and Size Effects in Spin-Crossover Nanocrystals.

    PubMed

    Gudyma, Iurii; Ivashko, Victor; Bobák, Andrej

    2017-12-01

    We perform Monte Carlo simulations to analyze the surface and size effects in spin-crossover nanocrystals using an Ising-like model including surface and core intermolecular interactions. The consequences of downsizing effect on the transition temperature and the width of hysteresis as finger of the system cooperativity are discussed. The critical temperature is calculated using the real-space renormalization method. The obtained results are in agreement with the experimental data.

  16. Surface and Size Effects in Spin-Crossover Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Ivashko, Victor; Bobák, Andrej

    2017-02-01

    We perform Monte Carlo simulations to analyze the surface and size effects in spin-crossover nanocrystals using an Ising-like model including surface and core intermolecular interactions. The consequences of downsizing effect on the transition temperature and the width of hysteresis as finger of the system cooperativity are discussed. The critical temperature is calculated using the real-space renormalization method. The obtained results are in agreement with the experimental data.

  17. Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2

    DOE PAGES

    Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...

    2016-11-29

    Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe 2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232more » K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages.« less

  18. Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2

    NASA Astrophysics Data System (ADS)

    Chen, P.; Chan, Y.-H.; Fang, X.-Y.; Mo, S.-K.; Hussain, Z.; Fedorov, A.-V.; Chou, M. Y.; Chiang, T.-C.

    2016-11-01

    Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232 K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages.

  19. Dimensional crossover and weak localization in a 90 nm n-GaAs thin film

    PubMed Central

    Gilbertson, A. M.; Newaz, A. K. M.; Chang, Woo-Jin; Bashir, R.; Solin, S. A.; Cohen, L. F.

    2009-01-01

    We report on the magnetotransport in a 90 nm thick n-type GaAs epitaxial thin film in the weak localization (WL) regime. Low temperature (T≤50 K) magnetotransport data are fit with WL theory, from which the phase coherence time, τϕ∝T−p (p=1.22±0.01), are extracted. We conclude that the dominant dephasing mechanism at these temperatures is electron-electron (e-e) scattering in the Nyquist limit. Evidence of a crossover from two-dimensional to three-dimensional behavior with respect to both coherent transport (WL) and e-e interactions is observed in the temperature dependence of the zero-field conductivity and τϕ, respectively. PMID:19668705

  20. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    SciTech Connect

    Galle, G.; Degert, J.; Freysz, E.; Etrillard, C.; Letard, J.-F.; Guillaume, F.

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  1. Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2

    PubMed Central

    Chen, P.; Chan, Y.-H.; Fang, X.-Y.; Mo, S.-K.; Hussain, Z.; Fedorov, A.-V.; Chou, M. Y.; Chiang, T.-C.

    2016-01-01

    Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232 K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages. PMID:27897228

  2. Widom line and dynamical crossovers as routes to understand supercritical water.

    PubMed

    Gallo, P; Corradini, D; Rovere, M

    2014-12-16

    Supercritical water is fundamental in many fields of applications and a precise characterization of the supercritical state is of uttermost importance for this liquid. In a fluid, when moving from the critical point into the single-phase region, the thermodynamic response functions show maxima reminiscent of the critical divergence. Here we study the thermodynamic properties of water in the supercritical region by analysing both available experimental data and our computer simulation results. We find that the lines connecting the maxima of the response functions converge on approaching the critical point in a single line, the Widom line. We further show that the Widom line coincides with a crossover from a liquid-like to a gas-like behaviour clearly visible in the transport properties. These thermodynamic and dynamic features show that the supercritical state in water is far more complex than what was so far believed, indicating a new perspective in the characterization of the thermodynamics of this state.

  3. Widom line and dynamical crossovers as routes to understand supercritical water

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Corradini, D.; Rovere, M.

    2014-12-01

    Supercritical water is fundamental in many fields of applications and a precise characterization of the supercritical state is of uttermost importance for this liquid. In a fluid, when moving from the critical point into the single-phase region, the thermodynamic response functions show maxima reminiscent of the critical divergence. Here we study the thermodynamic properties of water in the supercritical region by analysing both available experimental data and our computer simulation results. We find that the lines connecting the maxima of the response functions converge on approaching the critical point in a single line, the Widom line. We further show that the Widom line coincides with a crossover from a liquid-like to a gas-like behaviour clearly visible in the transport properties. These thermodynamic and dynamic features show that the supercritical state in water is far more complex than what was so far believed, indicating a new perspective in the characterization of the thermodynamics of this state.

  4. Impurity effects on BCS-BEC crossover in ultracold atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Che, Yanming; Zhang, Leifeng; Wang, Jibiao; Chen, Qijin

    2017-01-01

    We present a systematic investigation of the effects of "nonmagnetic" impurities on the s -wave BCS-BEC crossover in atomic Fermi gases within a pairing fluctuation theory. Both pairing and impurity scattering T matrices are treated self-consistently at the same time. While the system is less sensitive to impurity scattering in the Born limit, for strong impurity scatterers, both the frequency and the gap function are highly renormalized, leading to significant suppression of the superfluid Tc, the order parameter, and the superfluid density. We also find the formation of impurity bands and smearing of coherence peak in the fermion density of states, leading to a spectrum weight transfer and finite lifetime of Bogoliubov quasiparticles. In the BCS regime, the superfluidity may be readily destroyed by the impurity of high density, leading to a superfluid-insulator quantum phase transition at zero temperature. In comparison, the superfluidity in unitary and BEC regimes is relatively more robust.

  5. Master crossover functions for one-component fluids.

    PubMed

    Garrabos, Yves; Lecoutre, Carole; Palencia, Fabien; Le Neindre, Bernard; Erkey, Can

    2008-02-01

    By introducing three well-defined dimensionless numbers, we establish the link between the scale dilatation method able to estimate master (i.e., unique) singular behaviors of the one-component fluid subclass and the universal crossover functions recently estimated [Garrabos and Bervillier, Phys. Rev. E 74, 021113 (2006)] from the bounded results of the massive renormalization scheme applied to the Phi(d)(4)(n) model of scalar order parameter (n=1) and three dimensions (d=3), representative of the Ising-like universality class. The master (i.e., rescaled) crossover functions are then able to fit the singular behaviors of any one-component fluid without adjustable parameter, using only one critical energy scale factor, one critical length scale factor, and two dimensionless asymptotic scale factors, which characterize the fluid critical interaction cell at its liquid-gas critical point. An additional adjustable parameter accounts for quantum effects in light fluids at the critical temperature. The effective extension of the thermal field range along the critical isochore where the master crossover functions seems to be valid corresponds to a correlation length greater than three times the effective range of the microscopic short-range molecular interaction.

  6. Case-crossover design and its implementation in R.

    PubMed

    Zhang, Zhongheng

    2016-09-01

    Case-crossover design is a variation of case-control design that it employs persons' history periods as controls. Case-crossover design can be viewed as the hybrid of case-control study and crossover design. Characteristic confounding that is constant within one person can be well controlled with this method. The relative risk and odds ratio, as well as their 95% confidence intervals (CIs), can be estimated using Cochran-Mantel-Haenszel method. R codes for the calculation are provided in the main text. Readers may adapt these codes to their own task. Conditional logistic regression model is another way to estimate odds ratio of the exposure. Furthermore, it allows for incorporation of other time-varying covariates that are not constant within subjects. The model fitting per se is not technically difficult because there is well developed statistical package. However, it is challenging to convert original dataset obtained from case report form to that suitable to be passed to clogit() function. R code for this task is provided and explained in the text.

  7. Automatic identification of vessel crossovers in retinal images

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Barreira, N.; Penedo, M. G.; Cancela, B.

    2015-02-01

    Crossovers and bifurcations are interest points of the retinal vascular tree useful to diagnose diseases. Specifically, detecting these interest points and identifying which of them are crossings will give us the opportunity to search for arteriovenous nicking, this is, an alteration of the vessel tree where an artery is crossed by a vein and the former compresses the later. These formations are a clear indicative of hypertension, among other medical problems. There are several studies that have attempted to define an accurate and reliable method to detect and classify these relevant points. In this article, we propose a new method to identify crossovers. Our approach is based on segmenting the vascular tree and analyzing the surrounding area of each interest point. The minimal path between vessel points in this area is computed in order to identify the connected vessel segments and, as a result, to distinguish between bifurcations and crossovers. Our method was tested using retinographies from public databases DRIVE and VICAVR, obtaining an accuracy of 90%.

  8. Residuals and outliers in replicate design crossover studies.

    PubMed

    Schall, Robert; Endrenyi, Laszlo; Ring, Arne

    2010-07-01

    Outliers in bioequivalence trials may arise through various mechanisms, requiring different interpretation and handling of such data points. For example, regulatory authorities might permit exclusion from analysis of outliers caused by product or process failure, while exclusion of outliers caused by subject-by-treatment interaction generally is not acceptable. In standard 2 x 2 crossover studies it is not possible to distinguish between relevant types of outliers based on statistical criteria alone. However, in replicate design (2-treatment, 4-period) crossover studies three types of outliers can be distinguished: (i) Subject outliers are usually unproblematic, at least regarding the analysis of bioequivalence, and may require no further action; (ii) Subject-by-formulation outliers may affect the outcome of the bioequivalence test but generally cannot simply be removed from analysis; and (iii) Removal of single-data-point outliers from analysis may be justified in certain cases. As a very simple but effective diagnostic tool for the identification and classification of outliers in replicate design crossover studies we propose to calculate and plot three types of residual corresponding to the three different types of outliers that can be distinguished. The residuals are obtained from four mutually orthogonal linear contrasts of the four data points associated with each subject. If preferred, outlier tests can be applied to the resulting sets of residuals after suitable standardization.

  9. Crossover among structural motifs in Pd-Au nanoalloys.

    PubMed

    Zhu, Beien; Guesmi, Hazar; Creuze, Jérôme; Legrand, Bernard; Mottet, Christine

    2015-11-14

    The crossovers among the most abundant structural motifs (icosahedra, decahedra and truncated octahedra) of Pd-Au nanoalloys have been determined theoretically in a size range between 2 and 7 nm and for three compositions equivalent to Pd3Au, PdAu and PdAu3. The chemical ordering and segregation optimisation are performed via Monte Carlo simulations using semi-empirical tight-binding potentials fitted to ab initio calculations. The chemical configurations are then quenched via molecular dynamic simulations in order to compare their energy and characterize the equilibrium structures as a function of the cluster size. For the smaller sizes (of around 300 atoms and fewer) the structures are also optimized at the electronic level within ab initio calculations in order to validate the semi-empirical potential. The predictions of the crossover sizes for the nanoalloys cannot be simply extrapolated from the crossover of the pure nanoparticles but imply stress release phenomena related to the size misfit between the two metals. Indeed, alloying extends the range of stability of the icosahedron beyond that of the pure systems and the energy differences between decahedra and truncated octahedra become asymptotic, around the sizes of 5-6 nm. Nevertheless, such equilibrium results should be modulated regarding kinetic considerations or possible gas adsorption under experimental conditions.

  10. Spin crossover in ferropericlase and some consequences for mantle velocities

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.

    2015-12-01

    The spin crossover in ferropericlase ((Mg,Fe)O) introduces anomalies in its thermodynamics and thermoelastic properties [1] with impactful consequences on lower mantle velocities. These anomalies fundamentally change the interpretation of the origin of lateral heterogeneities in the mid lower mantle. In particular, SCF reduces the sensitivity of longitudinal velocity (VP) to lateral temperature variations around 1700 km [2]. It also dramatically impacts the manifestation of two important types of compositional heterogeneities, i.e., change in iron concentration in Fp or in molar fraction of Fp in the aggregate. It enhances the sensitivity of Vϕ and VP to these compositional variations by several-fold. In addition, it affects the mantle adiabatic geotherm, altering the radial velocity profile. Here I will review these effects and relate them to some potential features observed in seismic tomography models. [1] Wu, Z.Q., Justo, J. F., & Wentzcovitch, R.M. (2013). Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions, Phys. Rev. Lett. 110, 228501 (2013). [2] Wu, Z.Q., & Wentzcovitch, R.M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111: 10468-10472.

  11. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    PubMed Central

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  12. Viscous fingering near the percolation threshold: Double-crossover phenomena

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Stanley, H. Eugene

    1991-03-01

    Viscous fingering at a nonzero viscosity ratio on percolating clusters is considered to study morphological changes of patterns formed by the injected fluid in porous media. A fraction P of bonds is filled by the displaced fluid, while the others (1-P) are blocked, where P is the usual percolation probability. Fluid with a low viscosity is injected into the percolating cluster filled by the displaced fluid with high viscosity. Morphological changes of patterns of the injected fluid are described in terms of crossover phenomena by making use of a four-parameter position-space renormalization-group method. It is found that when μI/μD<<(P-Pc)<<1 the double crossover occurs from the diffusion-limited aggregation (DLA) on an incipient percolation cluster through the DLA on the perfect lattice to the dense structure, and when 1>>μI/μD>>(P-Pc) the other double crossover appears from the DLA on an incipient percolation cluster through the invasion percolation to the dense structure, where μI/μD is the viscosity ratio and Pc the critical percolation probability.

  13. Modafinil In Debilitating fatigue After Stroke (MIDAS): study protocol for a randomised, double-blinded, placebo-controlled, crossover trial.

    PubMed

    Lillicrap, Thomas; Krishnamurthy, Venkatesh; Attia, John; Nilsson, Michael; Levi, Christopher R; Parsons, Mark W; Bivard, Andrew

    2016-08-17

    Fatigue is a common symptom in stroke survivors for which there is currently no proven therapy. Modafinil is a wakefulness-promoting agent with established benefits in other disease models. We aim to test if modafinil will improve patient's self-reported fatigue scores when compared to placebo and if therapy results in increased quality of life. MIDAS is a phase II, single-centre, prospective, double-blinded, randomised, crossover trial of modafinil for the treatment of persistent fatigue in survivors of ischaemic stroke. The inclusion criteria will require an average score of 12 or more across all domains of the Multi-dimensional Fatigue Inventory (MFI-20) and the diagnosis of a stroke more than 6 months prior. Patients will be randomised 1:1 to receive either modafinil 200 mg daily or placebo for a period of 6 weeks, after which a crossover will occur where patients who are on modafinil will begin taking placebo and vice versa. The primary outcome will be improvement in fatigue as measured by the MFI-20. Secondary outcomes will include changes in the Fatigue Severity Scale, improved cognition measured using the Montreal Cognitive Assessment, improvement in mood as determined by the Depression, Anxiety and Stress Scale and improvement in each patient's stroke-specific quality of life score. All participants will also undergo magnetic resonance imaging (MRI) at baseline, crossover and study conclusion to measure cerebral blood flow on arterial spin labelling and brain activity on resting state functional MRI. This study will comply with the CONSORT guidelines. The projected sample size requirement is 36 participants in a crossover trial giving a power of 80 % and a type-1 error rate of 0.05. MIDAS seeks to enhance the quality of life in stroke survivors by assisting or resolving stroke-associated fatigue. ACTRN12615000350527 , registered on the 17 April 2015. Protocol version 3, approved 16 June 2015.

  14. Effect of sumatriptan on gastric emptying: A crossover study using the BreathID system

    PubMed Central

    Sakamoto, Yasunari; Sekino, Yusuke; Yamada, Eiji; Higurashi, Takuma; Ohkubo, Hidenori; Sakai, Eiji; Endo, Hiroki; Iida, Hiroshi; Nonaka, Takashi; Fujita, Koji; Yoneda, Masato; Koide, Tomoko; Takahashi, Hirokazu; Goto, Ayumu; Abe, Yasunobu; Gotoh, Eiji; Maeda, Shin; Nakajima, Atsushi; Inamori, Masahiko

    2012-01-01

    AIM: To determine the effect of oral sumatriptan on gastric emptying using a continuous 13C breath test (BreathID system). METHODS: Ten healthy male volunteers participated in this randomized, 2-way crossover study. The subjects fasted overnight and were randomly assigned to receive a test meal (200 kcal/200 mL) 30 min after pre-medication with sumatriptan 50 mg (sumatriptan condition), or the test meal alone (control condition). Gastric emptying was monitored for 4 h after administration of the test meal by the 13C-acetic acid breath test performed continually using the BreathID system. Then, using Oridion Research Software (β version), the time taken for emptying of 50% of the labeled meal (T1/2) similar to the scintigraphy lag time for 10% emptying of the labeled meal (Tlag), the gastric emptying coefficient (GEC), and the regression-estimated constants (β and κ) were calculated. The statistical significance of any differences in the parameters were analyzed using Wilcoxon’s signed-rank test. RESULTS: In the sumatriptan condition, significant differences compared with the control condition were found in T1/2 [median 131.84 min (range, 103.13-168.70) vs 120.27 min (89.61-138.25); P = 0.0016], Tlag [median 80.085 min (59.23-125.89) vs 61.11 min (39.86-87.05); P = 0.0125], and β [median 2.3374 (1.6407-3.8209) vs 2.0847 (1.4755-2.9269); P = 0.0284]. There were no significant differences in the GEC or κ between the 2 conditions. CONCLUSION: This study showed that oral sumatriptan significantly delayed gastric emptying of a liquid meal. PMID:22807611

  15. Effect of Albiglutide on Cholecystokinin-Induced Gallbladder Emptying in Healthy Individuals: A Randomized Crossover Study.

    PubMed

    Shaddinger, Bonnie C; Young, Malcolm A; Billiard, Julia; Collins, David A; Hussaini, Azra; Nino, Antonio

    2017-10-01

    The glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) exenatide and lixisenatide reduce cholecystokinin (CCK)-induced gallbladder emptying in healthy subjects. It is unknown if all GLP-1 RAs share this effect; therefore, the effect of the GLP-1 RA albiglutide on gallbladder function was assessed. In this randomized, double-blind, 2-way crossover study, a single dose of subcutaneous albiglutide 50 mg or placebo was administered to 17 healthy subjects, and CCK-induced gallbladder contractility was measured by ultrasonography. CCK (0.003 μg/kg) was infused intravenously over 50 minutes on study day 4 (3 days after dosing, to coincide with albiglutide's expected time to maximum concentration). Gallbladder volume, ejection fraction, and the main pancreatic and common bile-duct diameters were measured before, during, and following CCK infusion. Gallbladder volume was significantly greater in the albiglutide vs placebo groups before, during, and after CCK infusion, and the mean difference from placebo increased numerically during CCK infusion. The area under the volume-effect curve was significantly greater with albiglutide (P = .029). Starting at the 30-minute CCK infusion time point, the gallbladder ejection fraction was significantly lower with albiglutide than placebo. Changes in pancreatic duct diameter and common bile-duct diameter were not significantly different between albiglutide and placebo. Similar incidences of adverse events were observed between the albiglutide and placebo treatment periods. No new albiglutide safety signals were detected, and no serious adverse events were reported. In conclusion, similar to other GLP-1 RAs, albiglutide decreased CCK-induced gallbladder emptying compared with placebo in healthy individuals. Clinical implications of the gallbladder effects are unclear at this time. © 2017, The American College of Clinical Pharmacology.

  16. Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    PubMed Central

    Bessoltane, Nadia; Toffano-Nioche, Claire; Solignac, Michel; Mougel, Florence

    2012-01-01

    Background Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. Methodology We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. Conclusions Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals. PMID:22567142

  17. Phase Transition in Sexual Reproduction and Biological Evolution

    NASA Astrophysics Data System (ADS)

    Zawierta, Marta; Waga, Wojciech; Mackiewicz, Dorota; Biecek, Przemysław; Cebrat, Stanisław

    Using Monte Carlo model of biological evolution it is discovered that populations can switch between two different strategies of their genomes' evolution: Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.

  18. Spin Order and Phase Transitions in Chains of Polariton Condensates.

    PubMed

    Ohadi, H; Ramsay, A J; Sigurdsson, H; Del Valle-Inclan Redondo, Y; Tsintzos, S I; Hatzopoulos, Z; Liew, T C H; Shelykh, I A; Rubo, Y G; Savvidis, P G; Baumberg, J J

    2017-08-11

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  19. Spin Order and Phase Transitions in Chains of Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Ohadi, H.; Ramsay, A. J.; Sigurdsson, H.; del Valle-Inclan Redondo, Y.; Tsintzos, S. I.; Hatzopoulos, Z.; Liew, T. C. H.; Shelykh, I. A.; Rubo, Y. G.; Savvidis, P. G.; Baumberg, J. J.

    2017-08-01

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  20. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome

    PubMed Central

    Bernstein, Max R.; Rockman, Matthew V.

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  1. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  2. Dimensional crossover and cold-atom realization of topological Mott insulators.

    PubMed

    Scheurer, Mathias S; Rachel, Stephan; Orth, Peter P

    2015-02-11

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

  3. Crossover from coherent to incoherent electronic excitations in the normal state of Bi(2)Sr(2)CaCu(2)O(8+delta).

    PubMed

    Kaminski, A; Rosenkranz, S; Fretwell, H M; Li, Z Z; Raffy, H; Randeria, M; Norman, M R; Campuzano, J C

    2003-05-23

    Angle resolved photoemission spectroscopy (ARPES) and resistivity measurements are used to explore the overdoped region of the high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta). We find evidence for a new crossover line in the phase diagram between a coherent metal phase, for lower temperatures and higher doping, and an incoherent metal phase, for higher temperatures and lower doping. The former is characterized by two well-defined spectral peaks in ARPES due to coherent bilayer splitting and superlinear behavior in the resistivity, whereas the latter is characterized by a single broad spectral feature in ARPES and a linear temperature dependence of the resistivity.

  4. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  5. Extensive Interallelic Polymorphisms Drive Meiotic Recombination into a Crossover Pathway

    PubMed Central

    Dooner, Hugo K.

    2002-01-01

    Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products. PMID:12034905

  6. Control of cross-over by single-strand DNA resection.

    PubMed

    Prado, Félix; Aguilera, Andrés

    2003-08-01

    Control of DNA cross-overs is necessary for meiotic recombination and genome integrity. The frequency of cross-overs is dependent on homology length and the conversion tract, but the mechanisms underlying the regulation of cross-overs remain unknown. We propose that 5'-end resection, a key intermediate in double-strand break repair, could determine the formation of cross-overs. Extensive DNA resection might favor gene conversion without cross-over by channeling recombination events through synthesis-dependent strand-annealing. In reactions with short regions of homology, resection beyond the homologous sequence would impede Holliday junction formation and, consequently, cross-over. Extensive DNA resection could be an effective mechanism to prevent reciprocal exchanges between dispersed DNA sequences, and thus contribute to the genome stability.

  7. Crossover of marital dissatisfaction during military downsizing among Russian army officers and their spouses.

    PubMed

    Westman, Mina; Vinokur, Amiram D; Hamilton, V Lee; Roziner, Ilan

    2004-10-01

    This study examined mechanisms of strain crossover within couples and the moderating role of gender. Data were collected at a time of military downsizing from a sample of 1,250 Russian army officers and their spouses. The authors tested a model that incorporated 3 mechanisms for the crossover of marital dissatisfaction among dual-earner couples. The model provided support for 2 suggested crossover mechanisms: direct reactions of crossover and indirect mediated effects through social undermining. Strong evidence was also provided for gender asymmetry in the crossover process. Marital dissatisfaction crossed over from husbands to wives but not vice versa, and social undermining behavior played a role in the process of crossover of marital dissatisfaction for husbands but not for wives.

  8. Theoretical studies of carbon nanotube superconductivity and the BEC-BCS crossover

    NASA Astrophysics Data System (ADS)

    Sun, Mingyuan

    This thesis contains two parts. The first part is about superconductivity in 4-Angstrom carbon nanotubes (CNTs) embedded in linear, parallel pores of AFI zeolite crystals. In the second part, we study the pseudogap problem in the BEC-BCS crossover. The 4-Angstrom CNTs can be formed in the linear pores of AFI zeolite crystals. They exhibit quasi one-dimensional (1D) fluctuation superconductivity below a temperature of about 15 K. In samples with improved quality, three-dimensional (3D) superconducting behaviors were observed, which display a sharp resistance drop around the temperature 7.5 K. We build a simple model to explain this 1D-3D crossover. The system is inhomogeneous, and contains randomly situated bundles of small CNTs. We use the Ginzburg-Landau (GL) model, with weak Josephson-coupling between the bundles, to model the system. Monte Carlo (MC) simulations are employed to study the superconducting behaviors of this model. Owing to the weak Josephson-coupling, there exists a phase transition at a temperature around 7.5 K, which displays the signatures of the Berezinskii- Kosterlitz-Thouless (BKT) transition. Below this critical temperature, the phase fluctuations along the c-axis of the bundles are suppressed, and the whole system gradually approaches complete coherence as the temperature is lowered. This behavior is denoted a 1D to 3D crossover superconducting transition. The weak Josephson-coupling does not significantly contribute to the free energy of the system, thus the specific heat still exhibits quasi 1D characteristics, with a rounded peak between 7.5 K and 15 K. The results of numerical simulations are in good agreement with the experimental observations. The BEC-BCS crossover has been studied for decades. It is still controversial about whether there exists a pseudogap state above the critical temperature around the unitary limit, where Cooper pairs exist but do not condense. In this thesis, we study the Fermi gas with contact interaction at

  9. Meige syndrome: double-blind crossover study of sodium valproate.

    PubMed Central

    Snoek, J W; van Weerden, T W; Teelken, A W; van den Burg, W; Lakke, J P

    1987-01-01

    A double-blind crossover study of sodium valproate and placebo was conducted in five patients with Meige syndrome. CSF neurotransmitter studies were performed at the end of each treatment period. GABA levels were not influenced by the administration of sodium valproate. An increase in HVA levels was observed in every patient, which may reflect an increase in central dopaminergic activity. This finding may explain the trend towards clinical deterioration which was observed during treatment with sodium valproate. Sodium valproate appears to be ineffective in Meige syndrome. PMID:3121795

  10. Critical Temperature Curve in BEC-BCS Crossover

    SciTech Connect

    Burovski, Evgeni; Kozik, Evgeny |; Prokofev, Nikolay ||; Svistunov, Boris |; Troyer, Matthias

    2008-08-29

    The strongly correlated regime of the crossover from Bardeen-Cooper-Schrieffer pairing to Bose-Einstein condensation can be realized by diluting a system of two-component fermions with a short-range attractive interaction. We investigate this system via a novel continuous-space-time diagrammatic determinant Monte Carlo method and determine the universal curve T{sub c}/{epsilon}{sub F} for the transition temperature between the normal and the superfluid states as a function of the scattering length with the maximum on the Bose-Einstein condensation side. At unitarity, we confirm that T{sub c}/{epsilon}{sub F}=0.152(7)

  11. Computational approach to the study of thermal spin crossover phenomena

    SciTech Connect

    Rudavskyi, Andrii; Broer, Ria; Sousa, Carmen

    2014-05-14

    The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T{sub 1/2}, is estimated for different compounds.

  12. Crossover and scaling phenomena in a disordered Fermi liquid

    NASA Astrophysics Data System (ADS)

    Belitz, D.; Kirkpatrick, T. R.

    1989-09-01

    We consider Finkelshtein's model for a disordered Fermi liquid. We show that logarithmic terms at two-loop order suppress the fixed point proposed by Castellani et al. Spin transport slows down dramatically, and in d=2+ɛ a sizable scaling region exists. We show that in the scaling region the apparent conductivity exponent is zero to all orders in a loop expansion. This implies that the charge transport is unaffected by the crossover in the spin system. Experiments compare favorably with this scenario. Further measurements of the Wilson ratio are proposed.

  13. Analysis of cross-over studies with missing data.

    PubMed

    Rosenkranz, Gerd K

    2015-08-01

    This paper addresses some aspects of the analysis of cross-over trials with missing or incomplete data. A literature review on the topic reveals that many proposals provide correct results under the missing completely at random assumption while only some consider the more general missing at random situation. It is argued that mixed-effects models have a role in this context to recover some of the missing intra-subject from the inter-subject information, in particular when missingness is ignorable. Eventually, sensitivity analyses to deal with more general missingness mechanisms are presented.

  14. Free energy and configurational entropy of liquid silica: Fragile-to-strong crossover and polyamorphism

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H.

    2004-04-01

    Recent molecular dynamics (MD) simulations of liquid silica, using the “BKS” model [

    Van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)
    ], have demonstrated that the liquid undergoes a dynamical crossover from super-Arrhenius, or “fragile” behavior, to Arrhenius, or “strong” behavior, as temperature T is decreased. From extensive MD simulations, we show that this fragile-to-strong crossover (FSC) can be connected to changes in the properties of the potential energy landscape, or surface (PES), of the liquid. To achieve this, we use thermodynamic integration to evaluate the absolute free energy of the liquid over a wide range of density and T . We use this free energy data, along with the concept of “inherent structures” of the PES, to evaluate the absolute configurational entropy Sc of the liquid. We find that the temperature dependence of the diffusion coefficient and of Sc are consistent with the prediction of Adam and Gibbs, including in the region where we observe the FSC to occur. We find that the FSC is related to a change in the properties of the PES explored by the liquid, specifically an inflection in the T dependence of the average inherent structure energy. In addition, we find that the high T behavior of Sc suggests that the liquid entropy might approach zero at finite T , behavior associated with the so-called Kauzmann paradox. However, we find that the change in the PES that underlies the FSC is associated with a change in the T dependence of Sc that elucidates how the Kauzmann paradox is avoided in this system. Finally, we also explore the relation of the observed PES changes to the recently discussed possibility that BKS silica exhibits a liquid-liquid phase transition, a behavior that has been proposed to underlie the observed polyamorphism of amorphous solid silica.

  15. Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome.

    PubMed

    Poole, Angela C; Pischel, Lauren; Ley, Catherine; Suh, Gina; Goodrich, Julia K; Haggerty, Thomas D; Ley, Ruth E; Parsonnet, Julie

    2016-01-01

    Commonly prescribed antibiotics are known to alter human microbiota. We hypothesized that triclosan and triclocarban, components of many household and personal care products (HPCPs), may alter the oral and gut microbiota, with potential consequences for metabolic function and weight. In a double-blind, randomized, crossover study, participants were given triclosan- and triclocarban (TCS)-containing or non-triclosan/triclocarban (nTCS)-containing HPCPs for 4 months and then switched to the other products for an additional 4 months. Blood, stool, gingival plaque, and urine samples and weight data were obtained at baseline and at regular intervals throughout the study period. Blood samples were analyzed for metabolic and endocrine markers and urine samples for triclosan. The microbiome in stool and oral samples was then analyzed. Although there was a significant difference in the amount of triclosan in the urine between the TCS and nTCS phases, no differences were found in microbiome composition, metabolic or endocrine markers, or weight. Though this study was limited by the small sample size and imprecise administration of HPCPs, triclosan at physiologic levels from exposure to HPCPs does not appear to have a significant or important impact on human oral or gut microbiome structure or on a panel of metabolic markers. IMPORTANCE Triclosan and triclocarban are commonly used commercial microbicides found in toothpastes and soaps. It is unknown what effects these chemicals have on the human microbiome or on endocrine function. From this randomized crossover study, it appears that routine personal care use of triclosan and triclocarban neither exerts a major influence on microbial communities in the gut and mouth nor alters markers of endocrine function in humans.

  16. Systematics of high spin to low spin crossovers across the RCoO3 family

    NASA Astrophysics Data System (ADS)

    Topsakal, M.; Shukla, G.; Wentzcovitch, R. M.

    2016-12-01

    Using density functional theory plus self-consistent Hubbard U (DFT+Usc ) calculations, we have investigated the spin crossover phenomenon observed in rare-earth cobaltites RCoO3 (R = Pr - Lu). Previous DFT studies of this series focused on structural and electronic structure variations across the RCoO3 series in which all Co3+ ions are kept in low-spin (LS) state (S=0). Here we manage to stabilize Co3+ ions in the high-spin (HS) state and perform thermodynamics calculations to predict their HS to LS phase diagrams. We show that the early stage of thermally induced spin crossover in RCoO 3 can be successfully described by introducing a carefully and legitimately chosen Hubbard U for the HS Co3+. The spin excitation energy (ΔE), as the energy difference of HS and LS states, is calculated across the series. Our calculations show that ΔE increases from PrCoO3 to LuCoO3 in agreement with the increase of spin-state transition temperature observed in experiments. We also observed that the Co3+ octahedral volume (or Co-O bond lengths) significantly increases upon excitation into the HS state and we also relate this volume change to ΔE. The octahedral volume expansion (ΔV) increases from PrCoO3 to LuCoO3 : the larger the volume expansion to accommodate HS, the larger the energy required to excite from LS to HS. Furthermore, the Hubbard U parameters presented in this work allow more accurate predictive DFT+U studies on RCoO3 perovskites, especially their magnetic properties.

  17. Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome

    PubMed Central

    Poole, Angela C.; Pischel, Lauren; Ley, Catherine; Suh, Gina; Goodrich, Julia K.; Haggerty, Thomas D.; Ley, Ruth E.

    2016-01-01

    ABSTRACT Commonly prescribed antibiotics are known to alter human microbiota. We hypothesized that triclosan and triclocarban, components of many household and personal care products (HPCPs), may alter the oral and gut microbiota, with potential consequences for metabolic function and weight. In a double-blind, randomized, crossover study, participants were given triclosan- and triclocarban (TCS)-containing or non-triclosan/triclocarban (nTCS)-containing HPCPs for 4 months and then switched to the other products for an additional 4 months. Blood, stool, gingival plaque, and urine samples and weight data were obtained at baseline and at regular intervals throughout the study period. Blood samples were analyzed for metabolic and endocrine markers and urine samples for triclosan. The microbiome in stool and oral samples was then analyzed. Although there was a significant difference in the amount of triclosan in the urine between the TCS and nTCS phases, no differences were found in microbiome composition, metabolic or endocrine markers, or weight. Though this study was limited by the small sample size and imprecise administration of HPCPs, triclosan at physiologic levels from exposure to HPCPs does not appear to have a significant or important impact on human oral or gut microbiome structure or on a panel of metabolic markers. IMPORTANCE Triclosan and triclocarban are commonly used commercial microbicides found in toothpastes and soaps. It is unknown what effects these chemicals have on the human microbiome or on endocrine function. From this randomized crossover study, it appears that routine personal care use of triclosan and triclocarban neither exerts a major influence on microbial communities in the gut and mouth nor alters markers of endocrine function in humans. PMID:27303746

  18. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree

    PubMed Central

    Qvarnström, Anna; Ellegren, Hans

    2016-01-01

    Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of ‘strong’ (G, C) over ‘weak’ (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups. PMID:27219623

  19. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.

    PubMed

    Smeds, Linnéa; Mugal, Carina F; Qvarnström, Anna; Ellegren, Hans

    2016-05-01

    Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of 'strong' (G, C) over 'weak' (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.

  20. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.

    PubMed

    Yelina, Nataliya E; Lambing, Christophe; Hardcastle, Thomas J; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R

    2015-10-15

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.

  1. Crossover Interference on Nucleolus Organizing Region-Bearing Chromosomes in Arabidopsis

    PubMed Central

    Lam, Sandy Y.; Horn, Sarah R.; Radford, Sarah J.; Housworth, Elizabeth A.; Stahl, Franklin W.; Copenhaver, Gregory P.

    2005-01-01

    In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another—a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed. PMID:15802520

  2. Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis

    PubMed Central

    Ziolkowski, Piotr A; Berchowitz, Luke E; Lambing, Christophe; Yelina, Nataliya E; Zhao, Xiaohui; Kelly, Krystyna A; Choi, Kyuha; Ziolkowska, Liliana; June, Viviana; Sanchez-Moran, Eugenio; Franklin, Chris; Copenhaver, Gregory P; Henderson, Ian R

    2015-01-01

    During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination. DOI: http://dx.doi.org/10.7554/eLife.03708.001 PMID:25815584

  3. Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis.

    PubMed

    Lam, Sandy Y; Horn, Sarah R; Radford, Sarah J; Housworth, Elizabeth A; Stahl, Franklin W; Copenhaver, Gregory P

    2005-06-01

    In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another--a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed.

  4. Spin-Crossover Materials towards Microwave Radiation Switches

    PubMed Central

    Kucheriv, Olesia I.; Oliynyk, Viktor V.; Zagorodnii, Volodymyr V.; Launets, Vilen L.; Gural’skiy, Il’ya A.

    2016-01-01

    Microwave electromagnetic radiation that ranges from one meter to one millimetre wavelengths is finding numerous applications for wireless communication, navigation and detection, which makes materials able to tune microwave radiation getting widespread interest. Here we offer a new way to tune GHz frequency radiation by using spin-crossover complexes that are known to change their various physical properties under the influence of diverse external stimuli. As a result of electronic re-configuration process, microwave absorption properties differ for high spin and low spin forms of the complex. The evolution of a microwave absorption spectrum for the switchable compound within the region of thermal transition indicates that the high-spin and the low-spin forms are characterized by a different attenuation of electromagnetic waves. Absorption and reflection coefficients were found to be higher in the high-spin state comparing to the low-spin state. These results reveal a considerable potential for the implementation of spin-crossover materials into different elements of microwave signal switching and wireless communication. PMID:27910956

  5. Viscous to Inertial Crossover in Liquid Drop Coalescence

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Burton, Justin; Nagel, Sidney

    2010-11-01

    When two liquid drops coalesce, a dramatic topological transition occurs. We use an electrical method and high-speed imaging to probe the coalescence down to 10 ns after the drops touch. Immediately after contact, the resistance varies as t-1 and later crosses over to t-1/2. In the case of water drops [1], this behavior had been interpreted with a model in which coalescence occurs between slightly deformed interfaces. By varying the liquid viscosity over two decades, we conclude that at sufficiently low approach velocity where deformation is not present, the drops coalesce as spheres, but with an unexpectedly late crossover time between a regime dominated by viscous (i.e., t-1) and one dominated by inertial (i.e., t-1/2) effects. This interpretation is consistent with experiments in which we change the drop approach velocity and the surrounding gas pressure and molecular weight. We argue that the late crossover, not accounted for in the theory [2], is due to the flow field in the liquid and an additional length-scale present in the drop geometry. [1] S. C. Case, and S. R. Nagel, PRL 100, 084503 (2008). [2] J. Eggers, J. Lister, and H. A. Stone, JFM 401, 293 (1999).

  6. Crossover from attractive to repulsive Casimir forces and vice versa.

    PubMed

    Schmidt, Felix M; Diehl, H W

    2008-09-05

    Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.

  7. Dimensional crossover of a boson gas in multilayers

    SciTech Connect

    Salas, P.; Sevilla, F. J.; Fortes, M.; Solis, M. A.; Llano, M. de; Camacho, A.

    2010-09-15

    We obtain the thermodynamic properties for a noninteracting Bose gas constrained on multilayers modeled by a periodic Kronig-Penney delta potential in one direction and allowed to be free in the other two directions. We report Bose-Einstein condensation (BEC) critical temperatures, chemical potential, internal energy, specific heat, and entropy for different values of a dimensionless impenetrability P{>=}0 between layers. The BEC critical temperature T{sub c} coincides with the ideal gas BEC critical temperature T{sub 0} when P=0 and rapidly goes to zero as P increases to infinity for any finite interlayer separation. The specific heat C{sub V} as a function of absolute temperature T for finite P and plane separation a exhibits one minimum and one or two maxima in addition to the BEC, for temperatures larger than that of BEC T{sub c}. This highlights the effects due to particle confinement. We then discuss a distinctive dimensional crossover of the system through the specific heat behavior driven by the magnitude of P. For Tcrossover is revealed by a change in slope of logC{sub V}(T) and when T>T{sub c}, it is exhibited by a broad minimum in C{sub V}(T).

  8. Dimensional crossover and universal roughness distributions in Barkhausen noise.

    PubMed

    de Queiroz, S L A

    2004-02-01

    We investigate the dimensional crossover of scaling properties of avalanches (domain-wall jumps) in a single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the transverse aspect ratio A=L(y)/L(x) of simulated samples, the system dimensionality changes from two to three. We find that perturbing away from d=2 is a relevant field. The exponent tau characterizing the power-law scaling of avalanche distributions varies between 1.06(1) for d=2 and 1.275(15) for d=3, according to a crossover function f(x), x identical with (L-1x)(phi)/A, with phi=0.95(3). We discuss the possible relevance of our results to the interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime. Attempts to fit our data to the class of universality distributions associated to 1/f(alpha) noise give alpha approximately 1-1.1 for d=2 and 3 (provided that suitable boundary conditions are used in the latter case).

  9. Analysis of Poisson frequency data under a simple crossover trial.

    PubMed

    Lui, Kung-Jong; Chang, Kuang-Chao

    2016-02-01

    When the frequency of occurrence for an event of interest follows a Poisson distribution, we develop asymptotic and exact procedures for testing non-equality, non-inferiority and equivalence, as well as asymptotic and exact interval estimators for the ratio of mean frequencies between two treatments under a simple crossover design. Using Monte Carlo simulations, we evaluate the performance of these test procedures and interval estimators in a variety of situations. We note that all asymptotic test procedures developed here can generally perform well with respect to Type I error and can be preferable to the exact test procedure with respect to power if the number of patients per group is moderate or large. We further find that in these cases the asymptotic interval estimator with the logarithmic transformation can be more precise than the exact interval estimator without sacrificing the accuracy with respect to the coverage probability. However, the exact test procedure and exact interval estimator can be of use when the number of patients per group is small. We use a double-blind randomized crossover trial comparing salmeterol with a placebo in exacerbations of asthma to illustrate the practical use of these estimators.

  10. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  11. Metal-to-insulator crossover in alkali doped zeolite

    PubMed Central

    Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis

    2016-01-01

    We report a systematic nuclear magnetic resonance investigation of the 23Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role. PMID:26725368

  12. Recombination patterns in maize reveal limits to crossover homeostasis.

    PubMed

    Sidhu, Gaganpreet K; Fang, Celestia; Olson, Mischa A; Falque, Matthieu; Martin, Olivier C; Pawlowski, Wojciech P

    2015-12-29

    During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non-crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation. Their formation is tightly controlled so that there is at least one CO per pair of homologous chromosomes whereas the maximum number of COs per chromosome pair is fairly limited. One of the main mechanisms controlling the number of recombination events per meiosis is CO homeostasis, which maintains a stable CO number even when the DSB number is dramatically altered. The existence of CO homeostasis has been reported in several species, including mouse, yeast, and Caenorhabditis elegans. However, it is not known whether homeostasis exists in the same form in all species. In addition, the studies of homeostasis have been conducted using mutants and/or transgenic lines exhibiting fairly severe meiotic phenotypes, and it is unclear how important homeostasis is under normal physiological conditions. We found that, in maize, CO control is robust only to ensure one CO per chromosome pair. However, once this limit is reached, the CO number is linearly related to the DSB number. We propose that CO control is a multifaceted process whose different aspects have a varying degree of importance in different species.

  13. Chaos based crossover and mutation for securing DICOM image.

    PubMed

    Ravichandran, Dhivya; Praveenkumar, Padmapriya; Balaguru Rayappan, John Bosco; Amirtharajan, Rengarajan

    2016-05-01

    This paper proposes a novel encryption scheme based on combining multiple chaotic maps to ensure the safe transmission of medical images. The proposed scheme uses three chaotic maps namely logistic, tent and sine maps. To achieve an efficient encryption, the proposed chao-cryptic system employs a bio-inspired crossover and mutation units to confuse and diffuse the Digital Imaging and Communications in Medicine (DICOM) image pixels. The crossover unit extensively permutes the image pixels row-wise and column-wise based on the chaotic key streams generated from the Combined Logistic-Tent (CLT) system. Prior to mutation, the pixels of the crossed over image are decomposed into two images with reduced bit depth. The decomposed images are then mutated by XOR operation with quantized chaotic sequences from Combined Logistic-Sine (CLS) system. In order to validate the sternness of the proposed algorithm, the developed chao-cryptic scheme is subjected to various security analyses such as statistical, differential, key space, key sensitivity, intentional cropping attack and chosen plaintext attack analyses. The experimental results prove the proposed DICOM cryptosystem has achieved a desirable amount of protection for real time medical image security applications.

  14. Bcs-Bec Crossover Without Appeal to Scattering Length Theory

    NASA Astrophysics Data System (ADS)

    Malik, G. P.

    2014-01-01

    BCS-BEC (an acronym formed from Bardeen, Cooper, Schrieffer and Bose-Einstein condensation) crossover physics has customarily been addressed in the framework of the scattering length theory (SLT), which requires regularization/renormalization of equations involving infinities. This paper gives a frame by frame picture, as it were, of the crossover scenario without appealing to SLT. While we believe that the intuitive approach followed here will make the subject accessible to a wider readership, we also show that it sheds light on a feature that has not been under the purview of the customary approach: the role of the hole-hole scatterings vis-à-vis the electron-electron scatterings as one goes from the BCS to the BEC end. More importantly, we show that there are critical values of the concentration (n)and the interaction parameter (λ) at which the condensation of Cooper pairs takes place; this is a finding in contrast with the view that such pairs are automatically condensed.

  15. Speed behaviour in work zone crossovers. A driving simulator study.

    PubMed

    Domenichini, Lorenzo; La Torre, Francesca; Branzi, Valentina; Nocentini, Alessandro

    2017-01-01

    Reductions in speed and, more critically, in speed variability between vehicles are considered an important factor to reduce crash risk in work zones. This study was designed to evaluate in a virtual environment the drivers' behaviour in response to nine different configurations of a motorway crossover work zone. Specifically, the speed behaviour through a typical crossover layout, designed in accordance with the Italian Ministerial Decree 10 July 2002, was compared with that of eight alternative configurations which differ in some characteristics such as the sequence of speed limits, the median opening width and the lane width. The influence of variable message signs, of channelizing devices and of perceptual treatments based on Human Factor principles were also tested. Forty-two participants drove in driving simulator scenarios while data on their speeds and decelerations were collected. The results indicated that drivers' speeds are always higher than the temporary posted speed limits for all configurations and that speeds decreases significantly only within the by-passes. However the implementation of higher speed limits, together with a wider median opening and taller channelization devices led to a greater homogeneity of the speeds adopted by the drivers. The presence of perceptual measures generally induced both the greatest homogenization of speeds and the largest reductions in mean speed values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spin-Crossover Materials towards Microwave Radiation Switches.

    PubMed

    Kucheriv, Olesia I; Oliynyk, Viktor V; Zagorodnii, Volodymyr V; Launets, Vilen L; Gural'skiy, Il'ya A

    2016-12-02

    Microwave electromagnetic radiation that ranges from one meter to one millimetre wavelengths is finding numerous applications for wireless communication, navigation and detection, which makes materials able to tune microwave radiation getting widespread interest. Here we offer a new way to tune GHz frequency radiation by using spin-crossover complexes that are known to change their various physical properties under the influence of diverse external stimuli. As a result of electronic re-configuration process, microwave absorption properties differ for high spin and low spin forms of the complex. The evolution of a microwave absorption spectrum for the switchable compound within the region of thermal transition indicates that the high-spin and the low-spin forms are characterized by a different attenuation of electromagnetic waves. Absorption and reflection coefficients were found to be higher in the high-spin state comparing to the low-spin state. These results reveal a considerable potential for the implementation of spin-crossover materials into different elements of microwave signal switching and wireless communication.

  17. More than one dynamic crossover in protein hydration water

    PubMed Central

    Mazza, Marco G.; Stokely, Kevin; Pagnotta, Sara E.; Bruni, Fabio; Stanley, H. Eugene; Franzese, Giancarlo

    2011-01-01

    Studies of liquid water in its supercooled region have helped us better understand the structure and behavior of water. Bulk water freezes at its homogeneous nucleation temperature (approximately 235 K), but protein hydration water avoids this crystallization because each water molecule binds to a protein. Here, we study the dynamics of the hydrogen bond (HB) network of a percolating layer of water molecules and compare the measurements of a hydrated globular protein with the results of a coarse-grained model that successfully reproduces the properties of hydration water. Using dielectric spectroscopy, we measure the temperature dependence of the relaxation time of proton charge fluctuations. These fluctuations are associated with the dynamics of the HB network of water molecules adsorbed on the protein surface. Using Monte Carlo simulations and mean-field calculations, we study the dynamics and thermodynamics of the model. Both experimental and model analyses are consistent with the interesting possibility of two dynamic crossovers, (i) at approximately 252 K and (ii) at approximately 181 K. Because the experiments agree with the model, we can relate the two crossovers to the presence at ambient pressure of two specific heat maxima. The first is caused by fluctuations in the HB formation, and the second, at a lower temperature, is due to the cooperative reordering of the HB network. PMID:22135473

  18. More than one dynamic crossover in protein hydration water.

    PubMed

    Mazza, Marco G; Stokely, Kevin; Pagnotta, Sara E; Bruni, Fabio; Stanley, H Eugene; Franzese, Giancarlo

    2011-12-13

    Studies of liquid water in its supercooled region have helped us better understand the structure and behavior of water. Bulk water freezes at its homogeneous nucleation temperature (approximately 235 K), but protein hydration water avoids this crystallization because each water molecule binds to a protein. Here, we study the dynamics of the hydrogen bond (HB) network of a percolating layer of water molecules and compare the measurements of a hydrated globular protein with the results of a coarse-grained model that successfully reproduces the properties of hydration water. Using dielectric spectroscopy, we measure the temperature dependence of the relaxation time of proton charge fluctuations. These fluctuations are associated with the dynamics of the HB network of water molecules adsorbed on the protein surface. Using Monte Carlo simulations and mean-field calculations, we study the dynamics and thermodynamics of the model. Both experimental and model analyses are consistent with the interesting possibility of two dynamic crossovers, (i) at approximately 252 K and (ii) at approximately 181 K. Because the experiments agree with the model, we can relate the two crossovers to the presence at ambient pressure of two specific heat maxima. The first is caused by fluctuations in the HB formation, and the second, at a lower temperature, is due to the cooperative reordering of the HB network.

  19. Observation of a crossover in kinetic aggregation of Palladium colloids

    NASA Astrophysics Data System (ADS)

    Ghafari, M.; Ranjbar, M.; Rouhani, S.

    2015-10-01

    We use field emission scanning electron microscope (FE-SEM) to investigate the growth of palladium colloids over the surface of thin films of WO3/glass. The film is prepared by Pulsed Laser Deposition (PLD) at different temperatures. A PdCl2 (aq) droplet is injected on the surface and in the presence of steam hydrogen the droplet is dried through a reduction reaction process. Two distinct aggregation regimes of palladium colloids are observed over the substrates. We argue that the change in aggregation dynamics emerges when the measured water drop Contact Angel (CA) for the WO3/glass thin films passes a certain threshold value, namely CA ≈ 46°, where a crossover in kinetic aggregation of palladium colloids occurs. Our results suggest that the mass fractal dimension of palladium aggregates follows a power-law behavior. The fractal dimension (Df) in the fast aggregation regime, where the measured CA values vary from 27° up to 46° according to different substrate deposition temperatures, is Df = 1.75(± 0.02) - the value of Df is in excellent agreement with kinetic aggregation of other colloidal systems in fast aggregation regime. Whereas for the slow aggregation regime, with CA = 58°, the fractal dimension changes abruptly to Df = 1.92(± 0.03). We have also used a modified Box-Counting method to calculate fractal dimension of gray-level images and observe that the crossover at around CA ≈ 46° remains unchanged.

  20. Metal-to-insulator crossover in alkali doped zeolite

    NASA Astrophysics Data System (ADS)

    Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis

    2016-01-01

    We report a systematic nuclear magnetic resonance investigation of the 23Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role.

  1. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, C. I. N.; dos Santos, T. B.; Moreira, A. A.; Moreira, F. G. B.; Andrade, J. S.

    2016-05-01

    We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions of the majority-vote model taking place on spatially embedded networks. These structures are built from an underlying regular lattice over which directed long-range connections are randomly added according to the probability Pi j˜r-α , where ri j is the Manhattan distance between nodes i and j , and the exponent α is a controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000), 10.1038/35022643]. Our results show that the collective behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a decreasing function of the exponent α . Precisely, considering the scaling functions and the critical exponents calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α ≤3 the critical behavior is described by mean-field exponents, while for α ≥4 it belongs to the Ising universality class. Finally, in the region where the crossover occurs, 3 <α <4 , the critical exponents are dependent on α .

  2. Crossover Equation of State Compared to Lattice QCD and to Baryon Fluctuations in the RHIC Beam Energy Scan

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph; Albright, Michael; Young, Clint

    2015-10-01

    We match hadronic equations of state at low energy densities to a perturbatively computed equation of state of quarks and gluons at high energy densities. The hadronic equations of state include all known hadrons; repulsive interactions are taken into account via two versions of the excluded volume approximation. A switching function is employed to make the crossover transition from one phase to another without introducing a thermodynamic phase transition. A fit to accurate lattice calculations of the pressure and trace anomaly, with temperature 100 < T < 1000 MeV and μ = 0 , determines the parameters. These parameters quantify the behavior of the QCD running gauge coupling and the hard core radius of the nucleon. With no new parameters, the pressure and trace anomaly from lattice calculations for μ = 400 MeV are equally well reproduced, as is the speed of sound. We then compute the skewness and kurtosis and compare to measurements of the fluctuations of the proton number distribution in central Au-Au collisions as measured by the STAR collaboration in a beam energy scan at RHIC. The crossover equations of state can reproduce the data if the fluctuations are frozen at a temperature significantly lower than the average chemical freeze-out. This work was supported by the US Department of Energy under Grant No. DE-FG02-87ER40328.

  3. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes.

    PubMed

    Sampaio Filho, C I N; Dos Santos, T B; Moreira, A A; Moreira, F G B; Andrade, J S

    2016-05-01

    We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions of the majority-vote model taking place on spatially embedded networks. These structures are built from an underlying regular lattice over which directed long-range connections are randomly added according to the probability P_{ij}∼r^{-α}, where r_{ij} is the Manhattan distance between nodes i and j, and the exponent α is a controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000)NATUAS0028-083610.1038/35022643]. Our results show that the collective behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a decreasing function of the exponent α. Precisely, considering the scaling functions and the critical exponents calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α≤3 the critical behavior is described by mean-field exponents, while for α≥4 it belongs to the Ising universality class. Finally, in the region where the crossover occurs, 3<α<4, the critical exponents are dependent on α.

  4. Quantum shuttle in phase space.

    PubMed

    Novotný, Tomás; Donarini, Andrea; Jauho, Antti-Pekka

    2003-06-27

    We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise.

  5. Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates

    NASA Astrophysics Data System (ADS)

    Caplan, Yosef; Orgad, Dror

    2017-09-01

    Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa2 Cu3 O6 +x above a sharply defined crossover magnetic field. This order is more three-dimensional and is in-phase along the c axis. Here, we show that such behavior is a consequence of the conflicting ordering tendencies induced by the disorder potential and the Coulomb interaction, where the magnetic field acts to tip the scales from the former to the latter. We base our conclusion on analytic large-N analysis and Monte Carlo simulations of a nonlinear sigma model of competing superconducting and charge-density wave orders. Our results are in agreement with the observed phenomenology in the cuprates, and we discuss their implications to other members of this family, which have not been measured yet at high magnetic fields.

  6. Effective Hamiltonian based Monte Carlo for the BCS to BEC crossover in the attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Pasrija, Kanika; Chakraborty, Prabuddha B.; Kumar, Sanjeev

    2016-10-01

    We present an effective Hamiltonian based real-space approach for studying the weak-coupling BCS to the strong-coupling Bose-Einstein condensate crossover in the two-dimensional attractive Hubbard model at finite temperatures. We introduce and justify an effective classical Hamiltonian to describe the thermal fluctuations of the relevant auxiliary fields. Our results for Tc and phase diagrams compare very well with those obtained from more sophisticated and CPU-intensive numerical methods. We demonstrate that the method works in the presence of disorder and can be a powerful tool for a real-space description of the effect of disorder on superconductivity. From a combined analysis of the superconducting order parameter, the distribution of auxiliary fields, and the quasiparticle density of states, we identify the regions of metallic, insulating, superconducting, and pseudogapped behavior. Our finding of the importance of phase fluctuations for the pseudogap behavior is consistent with the conclusions drawn from recent experiments on NbN superconductors. The method can be generalized to study superconductors with nontrivial order-parameter symmetries by identifying the relevant auxiliary variables.

  7. Crossover of the Thermal Escape Problem in Annular Spatially Distributed Systems

    SciTech Connect

    Fedorov, Kirill G.; Pankratov, Andrey L.

    2009-12-31

    The computer simulations of fluctuational dynamics of an annular system governed by the sine-Gordon model with a white noise source are performed. It is demonstrated that the mean escape time (MET) of a phase string for an annular structure can be much larger than for a linear one and has a strongly pronounced maximum as a function of system's length. The location of the MET maximum roughly equals the size of the kink-antikink pair, which leads to evidence of a spatial crossover between two dynamical regimes: when the phase string escapes over the potential barrier as a whole and when the creation of kink-antikink pairs is the main mechanism of the escape process. For large lengths and in the limit of small noise intensity gamma, for both MET and inverse concentration of kinks, we observe the same dependence versus the kink energy E{sub k}: approxexp(2E{sub k}/gamma) for the annular structure and approxexp(E{sub k}/gamma) for the linear one.

  8. Crossover of the thermal escape problem in annular spatially distributed systems.

    PubMed

    Fedorov, Kirill G; Pankratov, Andrey L

    2009-12-31

    The computer simulations of fluctuational dynamics of an annular system governed by the sine-Gordon model with a white noise source are performed. It is demonstrated that the mean escape time (MET) of a phase string for an annular structure can be much larger than for a linear one and has a strongly pronounced maximum as a function of system's length. The location of the MET maximum roughly equals the size of the kink-antikink pair, which leads to evidence of a spatial crossover between two dynamical regimes: when the phase string escapes over the potential barrier as a whole and when the creation of kink-antikink pairs is the main mechanism of the escape process. For large lengths and in the limit of small noise intensity gamma, for both MET and inverse concentration of kinks, we observe the same dependence versus the kink energy E(k): approximately exp(2E(k)/gamma) for the annular structure and approximately exp(E(k)/gamma) for the linear one.

  9. A Pilot Comparison of a Smartphone App With or Without 2-Way Messaging Among Chronic Pain Patients: Who Benefits From a Pain App?

    PubMed

    Jamison, Robert N; Jurcik, Dylan C; Edwards, Robert R; Huang, Chuan-Chin; Ross, Edgar L

    2017-08-01

    The overall aim of this study was to determine the effect of introducing a smartphone pain application (app), for both Android and iPhone devices that enables chronic pain patients to assess, monitor, and communicate their status to their providers. This study recruited 105 chronic pain patients to use a smartphone pain app and half of the patients (N=52) had 2-way messaging available through the app. All patients completed baseline measures and were asked to record their progress every day for 3 months, with the opportunity to continue for 6 months. All participants were supplied a Fitbit to track daily activity. Summary line graphs were posted to each of the patients' electronic medical records and physicians were notified of their patient's progress. Ninety patients successfully downloaded the pain app. Average age of the participants was 47.1 (range, 18 to 72), 63.8% were female and 32.3% reported multiple pain sites. Adequate validity and reliability was found between the daily assessments and standardized questionnaires (r=0.50) and in repeated daily measures (pain, r=0.69; sleep, r=0.83). The app was found to be easily introduced and well tolerated. Those patients assigned to the 2-way messaging condition on average tended to use the app more and submit more daily assessments (95.6 vs. 71.6 entries), but differences between groups were not significant. Pain-app satisfaction ratings overall were high. This study highlights some of the challenges and benefits in utilizing smartphone apps to manage chronic pain patients, and provides insight into those individuals who might benefit from mHealth technology.

  10. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. (a) Operating in both limited entry and open access fisheries. See provisions at § 660.60, subpart C. (b...

  11. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fixed gear fishery-crossover provisions... West Coast Groundfish-Limited Entry Fixed Gear Fisheries § 660.220 Fixed gear fishery—crossover... fixed gear fishery....

  12. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

    PubMed Central

    Ziolkowski, Piotr A.; Underwood, Charles J.; Lambing, Christophe; Martinez-Garcia, Marina; Lawrence, Emma J.; Ziolkowska, Liliana; Griffin, Catherine; Choi, Kyuha; Franklin, F. Chris H.; Martienssen, Robert A.; Henderson, Ian R.

    2017-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection. PMID:28223312

  13. A Cross-Over Experimental Design for Testing Audiovisual Training Materials.

    ERIC Educational Resources Information Center

    Stolovitch, Harold D.; Bordeleau, Pierre

    This paper contains a description of the cross-over type of experimental design as well as a case study of its use in field testing audiovisual materials related to teaching handicapped children. Increased efficiency is an advantage of the cross-over design, while difficulty in selecting similar format audiovisual materials for field testing is a…

  14. Methods for adjusting for bias due to crossover in oncology trials.

    PubMed

    Ishak, K Jack; Proskorovsky, Irina; Korytowsky, Beata; Sandin, Rickard; Faivre, Sandrine; Valle, Juan

    2014-06-01

    Trials of new oncology treatments often involve a crossover element in their design that allows patients receiving the control treatment to crossover to receive the experimental treatment at disease progression or when sufficient evidence about the efficacy of the new treatment is achieved. Crossover leads to contamination of the initial randomized groups due to a mixing of the effects of the control and experimental treatments in the reference group. This is further complicated by the fact that crossover is often a very selective process whereby patients who switch treatment have a different prognosis than those who do not. Standard statistical techniques, including those that attempt to account for the treatment switch, cannot fully adjust for the bias introduced by crossover. Specialized methods such as rank-preserving structural failure time (RPSFT) models and inverse probability of censoring weighted (IPCW) analyses are designed to deal with selective treatment switching and have been increasingly applied to adjust for crossover. We provide an overview of the crossover problem and highlight circumstances under which it is likely to cause bias. We then describe the RPSFT and IPCW methods and explain how these methods adjust for the bias, highlighting the assumptions invoked in the process. Our aim is to facilitate understanding of these complex methods using a case study to support explanations. We also discuss the implications of crossover adjustment on cost-effectiveness results.

  15. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fixed gear fishery-crossover provisions... West Coast Groundfish-Limited Entry Fixed Gear Fisheries § 660.220 Fixed gear fishery—crossover... fixed gear fishery. ...

  16. 50 CFR 660.220 - Fixed gear fishery-crossover provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Fixed gear fishery-crossover provisions... West Coast Groundfish-Limited Entry Fixed Gear Fisheries § 660.220 Fixed gear fishery—crossover... fixed gear fishery. ...

  17. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of a...

  18. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of a...

  19. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of a...

  20. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of a...

  1. 49 CFR 218.107 - Additional operational requirements for hand-operated crossover switches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Additional operational requirements for hand... hand-operated crossover switches. (a) Each railroad shall adopt and comply with an operating rule which... requirements of this section. (b) Hand-operated crossover switches, generally. Both hand-operated switches of a...

  2. Spillover and Crossover of Exhaustion and Life Satisfaction among Dual-Earner Parents

    ERIC Educational Resources Information Center

    Demerouti, Evangelia; Bakker, Arnold B.; Schaufeli, Wilmar B.

    2005-01-01

    This study integrates spillover research of stress transferring from work to home and crossover research of strains transferring from one spouse to another. A spillover and crossover model was tested among 191 (couples of) dual-earner parents. For both males and females, it was hypothesized that (self-reported and partners' rating of)…

  3. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. (a) Operating in both limited entry and open access fisheries. See provisions at § 660.60, subpart C. (b...

  4. Biases in Attentional Orientation and Magnitude Estimation Explain Crossover: Neglect is a Disorder of Both

    PubMed Central

    Mennemeier, Mark; Pierce, Christopher A.; Chatterjee, Anjan; Anderson, Britt; Jewell, George; Dowler, Rachael; Woods, Adam J.; Glenn, Tannahill; Mark, Victor W.

    2015-01-01

    Crossover refers to a pattern of performance on the line bisection test in which short lines are bisected on the side opposite the true center of long lines. Although most patients with spatial neglect demonstrate crossover, contemporary theories of neglect cannot explain it. In contrast, we show that blending the psychophysical construct of magnitude estimation with neglect theory not only explains crossover, but also addresses a quantitative feature of neglect that is independent of spatial deficits. We report a prospective validation study of the orientation/estimation hypothesis of crossover. Forty subjects (17 patients with and without neglect following unilateral brain injury and 23 normal controls) completed four experiments that examined crossover using line bisection, line bisection with cueing, and reproducing line lengths from both memory and a standard. Replicating earlier findings, all except one subject group exhibited crossover on the standard line bisection test, all groups showed a spontaneous preference to orient attention to one end of the lines, and all groups overestimated the length of short lines and underestimated long lines. Biases in attentional orientation and magnitude estimation are exaggerated in patients with neglect. The truly novel finding of this study occurred when, after removing the line from the bisection task, the direction of crossover was completely reversed in all subject groups depending on where attention was oriented. These findings are consistent with our hypothesis of crossover: (1) crossover is a normal component of performance on line bisection; (2) crossover results from the interplay of biases in attentional orientation and magnitude estimation; and (3) attentional orientation predicts the direction of crossover, whereas a disorder of magnitude estimation, not previously emphasized in neglect, accounts for the quantitative changes in length estimation that make crossover more obvious in neglect subjects

  5. Biases in attentional orientation and magnitude estimation explain crossover: neglect is a disorder of both.

    PubMed

    Mennemeier, Mark; Pierce, Christopher A; Chatterjee, Anjan; Anderson, Britt; Jewell, George; Dowler, Rachael; Woods, Adam J; Glenn, Tannahill; Mark, Victor W

    2005-08-01

    Crossover refers to a pattern of performance on the line bisection test in which short lines are bisected on the side opposite the true center of long lines. Although most patients with spatial neglect demonstrate crossover, contemporary theories of neglect cannot explain it. In contrast, we show that blending the psychophysical construct of magnitude estimation with neglect theory not only explains crossover, but also addresses a quantitative feature of neglect that is independent of spatial deficits. We report a prospective validation study of the orientation/estimation hypothesis of crossover. Forty subjects (17 patients with and without neglect following unilateral brain injury and 23 normal controls) completed four experiments that examined crossover using line bisection, line bisection with cueing, and reproducing line lengths from both memory and a standard. Replicating earlier findings, all except one subject group exhibited crossover on the standard line bisection test, all groups showed a spontaneous preference to orient attention to one end of the lines, and all groups overestimated the length of short lines and underestimated long lines. Biases in attentional orientation and magnitude estimation are exaggerated in patients with neglect. The truly novel finding of this study occurred when, after removing the line from the bisection task, the direction of crossover was completely reversed in all subject groups depending on where attention was oriented. These findings are consistent with our hypothesis of crossover: (1) crossover is a normal component of performance on line bisection; (2) crossover results from the interplay of biases in attentional orientation and magnitude estimation; and (3) attentional orientation predicts the direction of crossover, whereas a disorder of magnitude estimation, not previously emphasized in neglect, accounts for the quantitative changes in length estimation that make crossover more obvious in neglect subjects

  6. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  7. Nature of the possible magnetic phases in a frustrated hyperkagome iridate

    NASA Astrophysics Data System (ADS)

    Shindou, Ryuichi

    2016-03-01

    Based on the Kitaev-Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions, we studied the nature of possible magnetic phases in the frustrated hyperkagome iridate, Na4Ir3O8 (Na-438). Using Monte Carlo simulation, we showed that the phase diagram is mostly covered by two competing magnetic ordered phases, the Z2 symmetry breaking (SB) phase and the Z6 SB phase, latter of which is stabilized by the classical order by disorder. These two phases are intervened by a first-order phase-transition line with Z8-like symmetry. The critical nature at the Z6 SB ordering temperature is characterized by the three-dimensional X Y universality class, below which U(1) to Z6 crossover phenomenon appears: the Z6 spin anisotropy becomes irrelevant in a length scale shorter than a crossover length Λ* while it becomes relevant otherwise. A possible phenomenology of polycrystalline Na-438 is discussed based on this crossover phenomenon.

  8. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    SciTech Connect

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  9. Crossover from BCS to Bose superconductivity: A functional integral approach

    SciTech Connect

    Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.

    1993-04-01

    We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum as a function of the coupling.

  10. Scaling and crossovers in models for thin film growth

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Jensen, Pablo; Larralde, Hernán Peyla, Philippe

    A self-contained review of the scaling arguments used for computing the maximum island density in adatom aggregation on a substrate during thin-film growth, is presented. We show how a general argument can be formulated, which applies to all physical situations, and allows to re-derive known results, as well as generalizations and new ones. When several processes, such as island aggregation, capture by pre-existing steps, adatom desorption, are in competition, this scaling argument allows to determine the appropriate scaling parameters, and yields approximate analytic forms of the crossover scaling functions. The scaling form of the growth velocity of a film when adatom desorption is present, is investigated. Surprisingly, a strict analogy between layer-by-layer growth on a high-symmetry substrate and step flow on a vicinal substrate, is found.

  11. Crossover from adiabatic to antiadiabatic quantum pumping with dissipation.

    PubMed

    Pellegrini, Franco; Negri, C; Pistolesi, F; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio

    2011-08-05

    Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the antiadiabatic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency ω. The solution allows following in a transparent way the evolution of pumped dc current from much smaller to much larger ω values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.

  12. Metal ion sensing solution containing double crossover DNA

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Dugasani, Sreekantha R.; Cho, Youngho; Oh, Juyeong; Kim, Chulki; Seo, Min Ah; Lee, Taikjin; Jhon, Young Miin; Woo, Deok Ha; Lee, Seok; Jun, Seong Chan; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    The current study describes metal ion sensing with double crossover DNAs (DX1 and DX2), artificially designed as a platform of doping. The sample for sensing is prepared by a facile annealing method to grow the DXs lattice on a silicon/silicon oxide. Adding and incubating metal ion solution with the sensor substrate into the micro-tube lead the optical property change. Photoluminescence (PL) is employed for detecting the concentration of metal ion in the specimen. We investigated PL emission for sensor application with the divalent copper. In the range from 400 to 650 nm, the PL features of samples provide significantly different peak positions with excitation and emission detection. Metal ions contribute to modify the optical characteristics of DX with structural and functional change, which results from the intercalation of them into hydrogen bonding positioned at the center of double helix. The PL intensity is decreased gradually after doping copper ion in the DX tile on the substrate.

  13. Optimal adaptive sequential designs for crossover bioequivalence studies.

    PubMed

    Xu, Jialin; Audet, Charles; DiLiberti, Charles E; Hauck, Walter W; Montague, Timothy H; Parr, Alan F; Potvin, Diane; Schuirmann, Donald J

    2016-01-01

    In prior works, this group demonstrated the feasibility of valid adaptive sequential designs for crossover bioequivalence studies. In this paper, we extend the prior work to optimize adaptive sequential designs over a range of geometric mean test/reference ratios (GMRs) of 70-143% within each of two ranges of intra-subject coefficient of variation (10-30% and 30-55%). These designs also introduce a futility decision for stopping the study after the first stage if there is sufficiently low likelihood of meeting bioequivalence criteria if the second stage were completed, as well as an upper limit on total study size. The optimized designs exhibited substantially improved performance characteristics over our previous adaptive sequential designs. Even though the optimized designs avoided undue inflation of type I error and maintained power at ≥ 80%, their average sample sizes were similar to or less than those of conventional single stage designs.

  14. Dimensionality crossover and frustrated spin dynamics on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Wikberg, J. M.; Dahbi, M.; Saadoune, I.; Gustafsson, T.; Edström, K.; Svedlindh, P.

    2010-06-01

    Investigations of the magnetic behavior of the layered oxide, LiNi0.65Co0.25Mn0.10O2 , through ac and time-dependent susceptibility, dc linear and nonlinear susceptibility as well as neutron-diffraction measurements are presented. A ferrimagneticlike spin ordering appears at 119 K with a spontaneous magnetization coexisting with spin frustration in two dimensions (2D). At lower temperature, a cluster-glass transition is found at 17.4 K indicating a transformation to a completely frustrated state in three dimensions (3D). A dimensionality crossover with temperature, from 2D to 3D, in a magnetically frustrated system has been demonstrated. The observed magnetic behavior is believed to originate from a percolating system of spin clusters defined by disordered and frustrated exchange interactions and the findings conform well with predictions of the percolation cluster model.

  15. Quantum Corrections Crossover and Ferromagnetism in Magnetic Topological Insulators

    PubMed Central

    Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian

    2013-01-01

    Revelation of emerging exotic states of topological insulators (TIs) for future quantum computing applications relies on breaking time-reversal symmetry and opening a surface energy gap. Here, we report on the transport response of Bi2Te3 TI thin films in the presence of varying Cr dopants. By tracking the magnetoconductance (MC) in a low doping regime we observed a progressive crossover from weak antilocalization (WAL) to weak localization (WL) as the Cr concentration increases. In a high doping regime, however, increasing Cr concentration yields a monotonically enhanced anomalous Hall effect (AHE) accompanied by an increasing carrier density. Our results demonstrate a possibility of manipulating bulk ferromagnetism and quantum transport in magnetic TI, thus providing an alternative way for experimentally realizing exotic quantum states required by spintronic applications. PMID:23928713

  16. Crossover behavior of conductivity in a discontinuous percolation model.

    PubMed

    Kim, Seongmin; Cho, Y S; Araújo, N A M; Kahng, B

    2014-03-01

    When conducting bonds are occupied randomly in a two-dimensional square lattice, the conductivity of the system increases continuously as the density of those conducting bonds exceeds the percolation threshold. Such a behavior is well known in percolation theory; however, the conductivity behavior has not been studied yet when the percolation transition is discontinuous. Here we investigate the conductivity behavior through a discontinuous percolation model evolving under a suppressive external bias. Using effective medium theory, we analytically calculate the conductivity behavior as a function of the density of conducting bonds. The conductivity function exhibits a crossover behavior from a drastically to a smoothly increasing function beyond the percolation threshold in the thermodynamic limit. The analytic expression fits well our simulation data.

  17. Crossover Phenomena in Detrended Fluctuation Analysis Used in Financial Markets

    NASA Astrophysics Data System (ADS)

    Ma, Shi-Hao

    2009-02-01

    A systematic analysis of Shanghai and Japan stock indices for the period of Jan. 1984 to Dec. 2005 is performed. After stationarity is verified by ADF (Augmented Dickey-Fuller) test, the power spectrum of the data exhibits a power law decay as a whole characterized by 1/fβ processes with possible long range correlations. Subsequently, by using the method of detrended fluctuation analysis (DFA) of the general volatility in the stock markets, we find that the long-range correlations are occurred among the return series and the crossover phenomena exhibit in the results obviously. Further, Shanghai stock market shows long-range correlations in short time scale and shows short-range correlations in long time scale. Whereas, for Japan stock market, the data behaves oppositely absolutely. Last, we compare the varying of scale exponent in large volatility between two stock markets. All results obtained may indicate the possibility of characteristic of multifractal scaling behavior of the financial markets.

  18. Electrostatic spin crossover effect in polar magnetic molecules

    NASA Astrophysics Data System (ADS)

    Baadji, Nadjib; Piacenza, Manuel; Tugsuz, Tugba; Sala, Fabio Della; Maruccio, Giuseppe; Sanvito, Stefano

    2009-10-01

    The magnetic configuration of a nanostructure can be altered by an external magnetic field, by spin-transfer torque or by its magnetoelastic response. Here, we explore an alternative route, namely the possibility of switching the sign of the exchange coupling between two magnetic centres by means of an electric potential. This general effect, which we name electrostatic spin crossover, occurs in insulating molecules with super-exchange magnetic interaction and inversion symmetry breaking. As an example we present the case of a family of di-cobaltocene-based molecules. The critical fields for switching, calculated from first principles, are of the order of 1Vnm-1 and can be achieved in two-terminal devices. More crucially, such critical fields can be engineered with an appropriate choice of substituents to add to the basic di-cobaltocene unit. This suggests that an easy chemical strategy for achieving the synthesis of suitable molecules is possible.

  19. Acupuncture for bronchial asthma? A double-blind crossover study.

    PubMed

    Tandon, M K; Soh, P F; Wood, A T

    1991-03-18

    The therapeutic effectiveness of classic Chinese acupuncture was compared with "placebo" acupuncture in 15 patients with stable bronchial asthma. The patients received treatments with real and placebo acupuncture in a randomly ordered, subject and evaluator-blind crossover fashion twice weekly for five weeks. Both real and placebo treatment periods were preceded by three week periods when no acupuncture was administered. Five patients felt better on real treatment, five patients preferred placebo and five did not feel any improvement on either of the two treatments. Treatment with real acupuncture when compared with no treatment and placebo treatment failed to provide any improvement in daily peak flow rates, asthma symptom scores, number of puffs of beta 2-agonist aerosol use, and pulmonary function results.

  20. Factors underlying restricted crossover localization in barley meiosis.

    PubMed

    Higgins, James D; Osman, Kim; Jones, Gareth H; Franklin, F Chris H

    2014-01-01

    Meiotic recombination results in the formation of cytological structures known as chiasmata at the sites of genetic crossovers (COs). The formation of at least one chiasma/CO between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division as well as for generating genetic variation. Although DNA double-strand breaks, which initiate recombination, are widely distributed along the chromosomes, this is not necessarily reflected in the chiasma distribution. In many species there is a tendency for chiasmata to be distributed in favored regions along the chromosomes, whereas in others, such as barley and some other grasses, chiasma localization is extremely pronounced. Localization of chiasma to the distal regions of barley chromosomes restricts the genetic variation available to breeders. Studies reviewed herein are beginning to provide an explanation for chiasma localization in barley. Moreover, they suggest a potential route to manipulating chiasma distribution that could be of value to plant breeders.

  1. Scaling of Memories and Crossover in Glassy Magnets.

    PubMed

    Samarakoon, A M; Takahashi, M; Zhang, D; Yang, J; Katayama, N; Sinclair, R; Zhou, H D; Diallo, S O; Ehlers, G; Tennant, D A; Wakimoto, S; Yamada, K; Chern, G-W; Sato, T J; Lee, S-H

    2017-09-21

    Glassiness is ubiquitous and diverse in characteristics in nature. Understanding their differences and classification remains a major scientific challenge. Here, we show that scaling of magnetic memories with time can be used to classify magnetic glassy materials into two distinct classes. The systems studied are high temperature superconductor-related materials, spin-orbit Mott insulators, frustrated magnets, and dilute magnetic alloys. Our bulk magnetization measurements reveal that most densely populated magnets exhibit similar memory behavior characterized by a relaxation exponent of [Formula: see text]. This exponent is different from [Formula: see text] of dilute magnetic alloys that was ascribed to their hierarchical and fractal energy landscape, and is also different from [Formula: see text] of the conventional Debye relaxation expected for a spin solid, a state with long range order. Furthermore, our systematic study on dilute magnetic alloys with varying magnetic concentration exhibits crossovers among the two glassy states and spin solid.

  2. Magic angle effects and angular magnetoresistance oscillations as dimensional crossovers.

    PubMed

    Lebed, A G; Bagmet, N N; Naughton, M J

    2004-10-08

    Interference effects between velocity and density of states, which occur as electrons move along open orbits in the extended Brillouin zone in anisotropic conductors, result in a change of wave functions' dimensionality at magic angle (MA) directions of a magnetic field. In particular, these 1D-->2D dimensional crossovers result in the appearance of sharp minima in a resistivity component rho perpendicular (H,alpha), perpendicular to conducting layers. This explains the main qualitative features of MA and angular magnetoresistance oscillations' phenomena observed due to the existence of quasi-one-dimensional sheets of Fermi surface in (TMTSF)2X, (DMET-TSeF)2X, and kappa-(ET)2Cu(NCS)(2) conductors.

  3. Economic crossover parameters for outsourcing water treatment equipment

    SciTech Connect

    Sinha, K.; Khan, S.

    1998-12-31

    Outsourcing water treatment systems is an attractive alternative to installing permanent systems. The current industry trend favors leased and outsourced systems for demineralized water applications when water demands are small and no pretreatment system is required. This paper provides economic crossover parameters for power plant applications, taking life cycle costs into consideration, including operation and maintenance (O and M) and capital costs, auxiliary load and heat rate penalties, O and M personnel requirements, and other economic considerations. Furthermore, the paper establishes ground rules for such comparisons between outsourced and permanent water treatment systems considering demineralization of water as well as impact on other power plant systems. Water production costs and $/1,000 gallon cost parameters for water production are presented, with graphical references to the economic parameters discussed.

  4. Crossover between magnetic and electric edges in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain; Mondal, Puja; Kumar, Ankip; Ghosh, Sankalpa; Beere, Harvey; Ritchie, David

    2017-08-01

    We report on the transition from magnetic edge to electric edge transport in a split magnetic gate device which applies a notch magnetic field to a two-dimensional electron gas. The gate bias allows tuning the overlap of magnetic and electric edge wave functions on the scale of the magnetic length. Conduction at the magnetic edges, in the two-dimensional bulk, is found to compete with conduction at the electric edges until the magnetic edges become depleted. Current lines then move to the electrostatic edges as in the conventional quantum Hall picture. The conductivity was modeled using the quantum Boltzmann equation in the exact hybrid potential. The theory predicts the features of the bulk-edge crossover, in good agreement with experiment.

  5. The crossover of strain from school principals to teachers and vice versa.

    PubMed

    Westman, M; Etzion, D

    1999-07-01

    The study investigated crossover of stress and strain in the workplace on a sample of 47 school principals and 183 teachers in Israeli elementary schools. The main goal of this study was to examine whether the crossover effect found among couples in the family also exists in the workplace. A 2nd aim of the study was to unravel the mechanisms that account for the crossover process. Using structural equation modeling, the authors found a significant crossover of job-induced tension but not of burnout from principals to teachers and vice versa. Being undermined by their principals elevated teachers' burnout and job-induced tension. This is the 1st study to demonstrate crossover of strain in the workplace and to discuss the implications of contagious job-induced tension in work environments.

  6. Crossover phenomena in non-Newtonian viscous fingers at a finite viscosity ratio

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1990-04-01

    A viscous fingering of non-Newtonian fluids at a finite viscosity ratio is considered in order to study the effect of non-Newtonian fluid on crossover phenomena. The crossover from the fractal pattern to the dense structure is investigated by using a two-parameter position-space renormalization-group method. The global flow diagrams in two-parameter space are obtained. It is found that there are two nontrivial fixed points: the fractal point and the Eden point. When the viscosity ratio is finite, the pattern must eventually cross over to the dense structure. The dependences of the crossover phenomena on the parameter k, which describes the different non-Newtonian fluids, are shown. It is found that the non-Newtonian fluids have important effects on the fractal point and the crossover line but the crossover exponent is independent of the non-Newtonian property.

  7. A luminescent Pt2Fe spin crossover complex.

    PubMed

    Schäfer, Bernhard; Bauer, Thomas; Faus, Isabelle; Wolny, Juliusz A; Dahms, Fabian; Fuhr, Olaf; Lebedkin, Sergei; Wille, Hans-Christian; Schlage, Kai; Chevalier, Katharina; Rupp, Fabian; Diller, Rolf; Schünemann, Volker; Kappes, Manfred M; Ruben, Mario

    2017-02-14

    A heterotrinuclear [Pt2Fe] spin crossover (SCO) complex was developed and synthesized employing a ditopic bridging bpp-alkynyl ligand L and alkynyl coordinated Pt(II) terpy units: [Fe(II)(L-Pt(II))2]2(BF4)2 (1). We identified two different types of crystals of 1 which differ in their molecular packing and the number of co-crystallized solvent molecules: 1H (1·3.5CH2Cl2 in P1[combining macron]) and 1L (1·10CH2Cl2 in C2/c); while 1L shows a reversible SCO with a transition temperature of 268 K, the analogous compound 1H does not show any SCO and remains blocked in the HS state. The temperature-dependent magnetic properties of 1H and 1L were complementarily studied by Mössbauer spectroscopy. It has been shown that 1L performs thermal spin crossover and that 1L can be excited to a LIESST state. The vibrational properties of 1 were investigated by experimental nuclear resonance vibrational spectroscopy. The experimentally determined partial density of vibrational states (pDOS) was compared to a DFT-based simulation of the pDOS. The vibrational modes of the different components were assigned and visualized. In addition, the photophysical properties of 1 and L-Pt were investigated in the solid state and in solution. The ultrafast transient absorption spectroscopy of 1 in solution was carried out to study the PL quenching channel via energy transfer from photoexcited Pt(II) terpy units to the Fe(II)-moiety.

  8. The crossover from single file to Fickian diffusion.

    PubMed

    Sané, Jimaan; Padding, Johan T; Louis, Ard A

    2010-01-01

    The crossover from single-file diffusion, where the mean-square displacement scales as (x2) to approximately t(1/2), to normal Fickian diffusion, where (x2) to approximately t, is studied as a function of channel width for colloidal particles. By comparing Brownian dynamics to a hybrid molecular dynamics and mesoscopic simulation technique, we can study the effect of hydrodynamic interactions on the single file mobility and on the crossover to Fickian diffusion for wider channel widths. For disc-like particles with a steep interparticle repulsion, the single file mobilities for different particle densities are well described by the exactly solvable hard-rod model. This holds both for simulations that include hydrodynamics, as well as for those that do not. When the single file constraint is lifted, then for particles of diameter sigma and pipe of width L such that (L - 2sigma)/sigma = deltac < 1, the particles can be described as hopping past one-another in an average time t(hop). For shorter times t < t(hop) the particles still exhibit sub-diffusive behaviour, but at longer times t > t(hop), normal Fickian diffusion sets in with an effective diffusion constant Dhop to approximately 1/ mean square root of t(hop). For the Brownian particles, t(hop) to approximately deltac(-2) when deltac < 1, but when hydrodynamic interactions are included, we find a stronger dependence than deltac(-2). We attribute this difference to short-range lubrication forces that make it more difficult for particles to hop past each other in very narrow channels.

  9. Force Display and Bi-Lateral Master-Slave Control with an Internal Model under the Consideration of Human Cross-Over Model

    NASA Astrophysics Data System (ADS)

    Kawahata, Nagakatsu; Nishizawa, Masanori; Itoh, Youichirou; Yoshida, Hiroaki

    Human behavior for controlling machines is quite adaptive but restrictive in gain, phase, frequency bandwidth and so on. It is often assumed by a cross-over model especially for compensatory tracking task. Force display system is increasingly important in robotics, remote manipulations, machine handling and etc. The control system design for force display and/or bi-lateral master-slave manipulator is not so easy because of gain limits, mechanical vibration, human-induced oscillation and others. Proposed is a control system design for force display and/or bi-lateral master-slave manipulator based on model-following control under the concept of human crossover model in compensatory tracking. Experimental results are also shown for an actual force display device designed by the proposed method.

  10. Epitaxial strain driven crossover from Drude to Drude-Smith terahertz conductivity dynamics in LaNiO3 thin films.

    PubMed

    Phanindra, V Eswara; Agarwal, Piyush; Rana, Dhanvir

    2017-09-01

    We investigate the hetero-epitaxial strain driven low-energy charge dynamics in compressive and tensile strained LaNiO3 thin films employing terahertz (THz) time-domain spectroscopy. The complex THz conductivity exhibits a crossover from Drude type metallic behavior for the compressive film to a Drude-Smith type disordered behavior for the tensile film. This demonstration of strain driven crossover in THz conductivity dynamics, while the two films have qualitatively similar dc conductivities, i) brings out the potential of THz technology in distinguishing between similar dc electronic phases and ii) suggests that LaNiO3 under compressive strain is a better candidate for applications as electrodes in oxides electronics. © 2017 IOP Publishing Ltd.

  11. 3D-xy critical properties of YBa2Cu4O8 and magnetic-field-induced 3D to 1D crossover

    NASA Astrophysics Data System (ADS)

    Weyeneth, S.; Schneider, T.; Bukowski, Z.; Karpinski, J.; Keller, H.

    2008-08-01

    We present reversible magnetization data of a YBa2Cu4O8 single crystal and analyze the evidence for 3D-xy critical behavior and a magnetic-field-induced 3D to 1D crossover. Remarkable consistency with these phenomena is observed in agreement with a magnetic-field-induced finite size effect, whereupon the correlation length transverse to the applied magnetic field cannot grow beyond the limiting magnetic length scale LH = (Φ0/(aH))1/2. By applying the appropriate scaling form we obtain the zero-field critical temperature, the 3D to 1D crossover, the vortex melting line and the universal ratios of the related scaling variables. Accordingly there is no continuous phase transition in the (H,T) plane along the Hc2 lines as predicted by the mean-field treatment.

  12. Difference in muscle activation patterns during high-speed versus standard-speed yoga: A randomized sequence crossover study.

    PubMed

    Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F

    2017-02-01

    To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (p<0.01). There was no significant interaction between speed×phase; however, greater normalized muscle activity was seen for highspeed yoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (Tc) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the Tc of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔEHL and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract Tc by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in Tc of the two phases. This study shows the applicability of the DFT+U approach for predicting Tc of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  14. Crossover comparison of atenolol, enalapril, hydrochlorothiazide and isradipine for isolated systolic systemic hypertension.

    PubMed

    Silagy, C A; McNeil, J J; McGrath, B P

    1992-11-15

    The benefit of antihypertensive therapy in reducing cardiovascular morbidity and mortality associated with isolated systolic hypertension has now been established by the Systolic Hypertension in the Elderly Program. However, there is little information about the relative effectiveness of different drug regimens in this condition. This study compared the efficacy and tolerability of 50 mg of atenolol, 10 mg of enalapril, 25 mg of hydrochlorothiazide and 2.5 mg of isradipine in the treatment of isolated systolic hypertension. After a 3-week placebo run-in phase, 24 subjects were randomized into a 4-period double-blind crossover study by use of an orthogonal latin square design. Treatment periods were of 6 weeks' duration with titration to a higher dose after 4 weeks in those not reaching goal blood pressure (BP). Each active treatment was followed by a 3-week placebo washout. Casual clinic and 24-hour ambulatory BP (Accutracker II) were measured at the end of each treatment phase. Routine biochemistry was also performed after the placebo run-in, at the end of each active treatment phase, and after the placebo run-out. Of the 24 subjects entered (mean age 72.3 years, 38% men) 20 completed the whole study. Mean +/- standard deviation of supine clinic and daytime ambulatory BP on entry were 181/79 +/- 21/9 mm Hg and 165/82 +/- 23/15 mm Hg, respectively. All drugs reduced mean casual and ambulatory BP significantly relative to placebo but only hydrochlorothiazide and enalapril produced a consistent hypotensive effect throughout the entire 24-hour period. Isradipine and enalapril exhibited a relatively greater effect on reducing systolic BP than either hydrochlorothiazide or atenolol.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  16. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  17. Indirect fuel cell based on a redox-flow battery with a new design to avoid crossover

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Yamazaki, Shin-ichi; Fujiwara, Naoko; Asahi, Masafumi; Nagai, Tsukasa; Ioroi, Tsutomu

    2013-11-01

    A new design of a redox flow battery (RFB), which is composed of two subcells separated by a gas phase of hydrogen, is proposed to eliminate the crossover of ionic species between the anolyte and catholyte. This idea not only increases the possible combinations of the two electrolytes, but also opens up the prospect of a revival of the old idea of an indirect fuel cell, which is composed of an RFB and two chemical reactors to regenerate the electrolytes using a fuel and oxygen. This paper describes the operation of a subcell as a component of an indirect fuel cell system. In the cycling test, oxidation/reduction of the electroactive species in each electrolyte were repeated with a hydrogen electrode as the counter electrode. This result demonstrates the possibility of this newly proposed RFB without crossover. In the operation of the subcell with a chemical reactor, a molecular catalyst (a rhodium porphyrin) was dissolved in the anolyte, and then a fuel was bubbled in the anolyte reservoir. As the electroactive species was reduced by the fuel, a steady-state oxidation current was observed at the cell. This demonstrates the negative half of the newly proposed indirect fuel cell.

  18. Systematic investigation of the effects of disorder at the lowest order throughout the BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Palestini, F.; Strinati, G. C.

    2013-11-01

    A systematic investigation of the effects of disorder on the BCS-BEC crossover at the lowest order in the impurity potential is presented for the normal phase above the critical temperature Tc. Starting with the t-matrix approach for the clean system, by which pairing correlations between opposite-spin fermions evolve from the weak-coupling (BCS) to the strong-coupling (BEC) limits by increasing the strength of the attractive interparticle interaction, all possible diagrammatic processes are considered where the effects of a disordered potential are retained in the self-energy at the lowest order. An accurate numerical investigation is carried out for all these diagrammatic terms, to determine which of them are mostly important throughout the BCS-BEC crossover. Explicit calculations for the values of Tc, the chemical potential, and the Tan's contact are carried out. In addition, the effect of disorder on the single-particle spectral function is analyzed, and a correlation is found between an increase of Tc and a widening of the pseudogap energy at Tc on the BCS side of unitarity in the presence of disorder, while on the BEC side of unitarity the presence of disorder favors the collapse of the underlying Fermi surface. The present investigation is meant to orient future studies when the effects of disorder will be considered at higher orders, with the purpose of limiting the proliferation of diagrammatic terms in which interaction and disorder are considered simultaneously.

  19. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Okumura, Ko; Yahashi, Misato; Kimoto, Natsuki

    2016-11-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. To be published as, Y. Yahashi, N. Kimoto and K. Okumura, Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell, Sci. Rep.(CC BY 4.0). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  20. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  1. Extra virgin olive oil phenols and markers of oxidation in Greek smokers: a randomized cross-over study.

    PubMed

    Moschandreas, J; Vissers, M N; Wiseman, S; van Putte, K P; Kafatos, A

    2002-10-01

    To examine the effect of a low phenol olive oil and high phenol olive oil on markers of oxidation and plasma susceptibility to oxidation in normolipaemic smokers. Randomized single-blind cross-over trial with two intervention periods. The Medical School and University Hospital of the University of Crete, Heraklion, Crete, Greece. Twenty-five healthy males and females completed the study. Each intervention was of three weeks duration and intervention periods were separated by a two week washout. Seventy grams of extra virgin olive oil was supplied to each subject per day in the intervention periods. The olive oils supplied differed in their phenol content by 18.6 mg/day. Two fasting venous blood samples were taken at the end of each intervention period. The markers of antioxidant capacity measured in fasting plasma samples (total plasma resistance to oxidation, concentrations of protein carbonyl as a marker of protein oxidation, malondialdehyde and lipid hydroperoxides as markers of lipid oxidation and the ferric reducing ability of plasma) did not differ significantly between the low and high phenol olive oil diets. No effect of olive oil phenols on markers of oxidation in smokers was detected. It may be that the natural concentrations of phenols in olive oil are too low to produce an effect in the post-absorptive phase. Possible reasons for period effects and interactions between diet and administration period need attention to aid further cross-over trials of this kind. Unilever Research Vlaardingen, The Netherlands.

  2. Physiological coxa varus-genu valgus influences internal knee and ankle joint moments in females during crossover cutting.

    PubMed

    Nyland, J A; Caborn, D N M

    2004-07-01

    This study evaluated the ankle and knee electromyographic, kinematic, and kinetic differences of 20 nonimpaired females with either neutral (group 1) or coxa varus-genu valgus (group 2) alignment during crossover cutting stance phase. Two-way mixed model ANOVA (group, session) assessed mean differences ( p<0.05) and correlation analysis further delineated relationships. During impact absorption, group 2 displayed earlier peak horizontal braking (anterior-posterior) ground reaction force timing, decreased and earlier peak internal knee extension moments (eccentric function), and earlier peak internal ankle dorsiflexion moment timing (eccentric function). During the pivot phase, group 2 displayed later and eccentrically-biased peak ankle plantar flexion moments, increased peak internal knee flexion moments (eccentric function), and later peak knee internal rotation timing. Correlation analysis revealed that during impact absorption, subjects with coxa varus-genu valgus alignment (group 2) displayed a stronger relationship between knee internal rotation velocity and peak internal ankle dorsiflexion moment onset timing ( r= -0.64 vs r = -0.26) and between peak horizontal braking ground reaction forces and peak internal ankle dorsiflexion moment onset timing ( r= 0.61 vs r= 0.24). During the pivot phase these subjects displayed a stronger relationship between peak horizontal braking ground reaction forces and peak internal ankle plantar flexion moment onset timing ( r= -0.63 vs r= -0.09) and between peak horizontal braking forces and peak internal ankle plantar flexion moments ( r= -0.72 vs r= -0.26). Group differences suggest that subjects with coxa varus-genu valgus frontal-plane alignment have an increased dependence on both ankle dorsiflexor and plantar flexor muscle group function during crossover cutting. Greater dependence on ankle muscle group function during the performance of a task that requires considerable 3D dynamic knee joint control suggests a greater

  3. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion.

    PubMed

    Winsor, James; Hackney, David D; Lee, Tina H

    2017-05-01

    The homotypic fusion of endoplasmic reticulum membranes is catalyzed by the atlastin GTPase. The mechanism involves trans-dimerization between GTPase heads and a favorable crossover conformational shift, catalyzed by GTP hydrolysis, that converts the dimer from a "prefusion" to "postfusion" state. However, whether crossover formation actually energizes fusion remains unclear, as do the sequence of events surrounding it. Here, we made mutations in atlastin to selectively destabilize the crossover conformation and used fluorescence-based kinetic assays to analyze the variants. All variants underwent dimerization and crossover concurrently, and at wild-type rates. However, certain variants were unstable once in the crossover dimer conformation, and crossover dimer stability closely paralleled lipid-mixing activity. Tethering, however, appeared to be unimpaired in all mutant variants. The results suggest that tethering and lipid mixing are catalyzed concurrently by GTP hydrolysis but that the energy requirement for lipid mixing exceeds that for tethering, and the full energy released through crossover formation is necessary for fusion. © 2017 Winsor et al.

  4. Effect of gas composition on Ru dissolution and crossover in polymer-electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheng, Tommy T. H.; Jia, Nengyou; Colbow, Vesna; Wessel, Silvia; Dutta, Monica

    Pt-Ru-based anodes are commonly used in polymer-electrolyte membrane fuel cells (PEMFCs) to provide improved CO tolerance for reformate fuel applications. However, Ru crossover from the anode to the cathode has been identified as a critical durability problem that has severe performance implications. In the present study, an anode accelerated stress test (AST) was used to simulate potential spikes that occur during fuel cell start-ups and shutdowns to induce Ru crossover. The effects of fuel gas composition, namely hydrogen and carbon dioxide concentrations, on Ru dissolution and crossover were investigated. The cell performance losses were correlated with the degree of Ru crossover as determined by the changes in cathode cyclic voltammetry (CV) characteristics and neutron activation analysis (NAA). It was found that higher hydrogen concentration in the fuel accelerated Ru crossover and that the presence of carbon dioxide hindered Ru crossover. In particular, the injection of 20 vol.% carbon dioxide during potential cycling resulted in very minor Ru crossover, which showed essentially identical performance losses and CV characteristic changes as a fuel cell composed of a Ru-free anode. The experimental results suggest that the Ru species in our Pt-Ru metal oxide catalysts need to go through a reduction step by hydrogen before dissolution. The presence of carbon dioxide may play a role in hindering the reduction step.

  5. Crossovers Get a Boost in Brassica Allotriploid and Allotetraploid Hybrids[W

    PubMed Central

    Leflon, Martine; Grandont, Laurie; Eber, Frédérique; Huteau, Virginie; Coriton, Olivier; Chelysheva, Liudmila; Jenczewski, Eric; Chèvre, Anne-Marie

    2010-01-01

    Meiotic crossovers are necessary to generate balanced gametes and to increase genetic diversity. Even if crossover number is usually constrained, recent results suggest that manipulating karyotype composition could be a new way to increase crossover frequency in plants. In this study, we explored this hypothesis by analyzing the extent of crossover variation in a set of related diploid AA, allotriploid AAC, and allotetraploid AACC Brassica hybrids. We first used cytogenetic methods to describe the meiotic behavior of the different hybrids. We then combined a cytogenetic estimation of class I crossovers in the entire genome by immunolocalization of a key protein, MutL Homolog1, which forms distinct foci on meiotic chromosomes, with genetic analyses to specifically compare crossover rates between one pair of chromosomes in the different hybrids. Our results showed that the number of crossovers in the allotriploid AAC hybrid was higher than in the diploid AA hybrid. Accordingly, the allotetraploid AACC hybrid showed an intermediate behavior. We demonstrated that this increase was related to hybrid karyotype composition (diploid versus allotriploid versus allotetraploid) and that interference was maintained in the AAC hybrids. These results could provide another efficient way to manipulate recombination in traditional breeding and genetic studies. PMID:20622148

  6. Role of open boundary conditions on the hysteretic behaviour of one-dimensional spin crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiruta, Daniel; Linares, Jorge; Miyashita, Seiji; Boukheddaden, Kamel

    2014-05-01

    In order to explain clearly the role of the open boundary conditions (OBCs) on phase transition in one dimensional system, we consider an Ising model with both short-range (J) and long-range (G) interactions, which has allowed us to study the cooperative nature of spin-crossover (SCO) materials at the nanometer scale. At this end, we developed a transfer-matrix method for one-dimensional (1D) SCO system with free boundary conditions, and we give numerical evidences for how the thermal spin transition curves vary as a function of the physical parameters (J, G) or an applied pressure. Moreover for OBCs case, we have derived the bulk, surface and finite-size contributions to the free energy and we have investigated the variation of these energies as function of J and system size. We have found that the surface free energy behaves like J⟨σ⟩2, where ⟨σ⟩ is the average magnetization per site. Since the properties of the nanometric scale are dramatically influenced by the system's size (N), our analytical outcomes for the size dependence represent a step to achieve new characteristic of the future devices and also a way to find various novel properties which are absent in the bulk materials.

  7. Hexagonal AlN: Dimensional-crossover-driven band-gap transition

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Sahin, H.; Ozaydin, H. D.; Horzum, S.; Senger, R. T.; Peeters, F. M.

    2015-02-01

    Motivated by a recent experiment that reported the successful synthesis of hexagonal (h ) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h -AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h -AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm-1 and an Eg mode at 703 cm-1, which are observable by Raman measurements. In addition, single-layer h -AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, A A' -type stacking is found to be the most favorable one, and interlayer interaction is strong. While N -layered h -AlN is an indirect-band-gap semiconductor for N =1 -9 , we predict that thicker structures (N ≥10 ) have a direct band gap at the Γ point. The number-of-layer-dependent band-gap transitions in h -AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.

  8. Negative lattice expansion from the superconductivity--antiferromagnetism crossover in ruthenium copper oxides.

    PubMed

    McLaughlin, A C; Sher, F; Attfield, J P

    2005-08-11

    The mechanism of high-transition-temperature (high-T(c)) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order, but the relationship between the two states in the intervening 'pseudogap' regime has become a central puzzle. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.

  9. Pressure-Driven Spin Crossover Involving Polyhedral Transformation in Layered Perovskite Cobalt Oxyfluoride

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari

    2016-11-01

    We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure.

  10. Parametric representation of open quantum systems and cross-over from quantum to classical environment.

    PubMed

    Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola

    2013-04-23

    The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field.

  11. Impact of a soy drink on climacteric symptoms: an open-label, crossover, randomized clinical trial

    PubMed Central

    Tranche, Salvador; Brotons, Carlos; Pascual de la Pisa, Beatriz; Macías, Ramón; Hevia, Eduardo; Marzo-Castillejo, Mercè

    2016-01-01

    Abstract Objectives: The objective of this study is to evaluate the effects of a soy drink with a high concentration of isoflavones (ViveSoy®) on climacteric symptoms. Methods: An open-label, controlled, crossover clinical trial was conducted in 147 peri- and postmenopausal women. Eligible women were recruited from 13 Spanish health centers and randomly assigned to one of the two sequence groups (control or ViveSoy®, 500 mL per day, 15 g of protein and 50 mg of isoflavones). Each intervention phase lasted for 12 weeks with a 6-week washout period. Changes on the Menopause Rating Scale and quality of life questionnaires, as well as lipid profile, cardiovascular risk and carbohydrate and bone metabolism were assessed. Statistical analysis was performed using a mixed-effects model. Results: A sample of 147 female volunteers was recruited of which 90 were evaluable. In both sequence groups, adherence to the intervention was high. Regular consumption of ViveSoy® reduced climacteric symptoms by 20.4% (p = 0.001) and symptoms in the urogenital domain by 21.3% (p < 0.05). It also improved health-related quality life by 18.1%, as per the MRS questionnaire (p <0.05). Conclusion: Regular consumption of ViveSoy® improves both the somatic and urogenital domain symptoms of menopause, as well as health-related quality of life in peri- and postmenopausal women. PMID:26806546

  12. The Hawking-Page crossover in noncommutative anti-deSitter space

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero; Torrieri, Giorgio

    2011-08-01

    We study the problem of a Schwarzschild-anti-deSitter black hole in a non-commutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.

  13. Role of open boundary conditions on the hysteretic behaviour of one-dimensional spin crossover nanoparticles

    SciTech Connect

    Chiruta, Daniel; Linares, Jorge E-mail: miya@spin.phys.s.u-tokyo.ac.jp; Boukheddaden, Kamel; Miyashita, Seiji E-mail: miya@spin.phys.s.u-tokyo.ac.jp

    2014-05-21

    In order to explain clearly the role of the open boundary conditions (OBCs) on phase transition in one dimensional system, we consider an Ising model with both short-range (J) and long-range (G) interactions, which has allowed us to study the cooperative nature of spin-crossover (SCO) materials at the nanometer scale. At this end, we developed a transfer-matrix method for one-dimensional (1D) SCO system with free boundary conditions, and we give numerical evidences for how the thermal spin transition curves vary as a function of the physical parameters (J, G) or an applied pressure. Moreover for OBCs case, we have derived the bulk, surface and finite-size contributions to the free energy and we have investigated the variation of these energies as function of J and system size. We have found that the surface free energy behaves like J〈σ〉{sup 2}, where 〈σ〉 is the average magnetization per site. Since the properties of the nanometric scale are dramatically influenced by the system's size (N), our analytical outcomes for the size dependence represent a step to achieve new characteristic of the future devices and also a way to find various novel properties which are absent in the bulk materials.

  14. Propagation of biochirality: crossovers and nonclassical crystallization kinetics of aspartic acid in water.

    PubMed

    Lee, Tu; Lin, Yu Kun; Tsai, Ya Chung; Lee, Hung Lin

    2013-11-01

    All experimental procedures discussed could be treated as a screening tool for probing the existence of molecular association among the chiral molecules and the solvent system. The molecular association phases of a racemic conglomerate solution (CS) and a racemic compound solution (RCS), and the templating effect of aspartic acid solid surface were observed to minimize the chance of redissolving racemic conglomerate and racemic compound aspartic acid in water and reforming an RCS in crossovers experiments. Only 1 %wt% of l-aspartic acid was adequate enough to induce a transformation from a racemic compound aspartic acid to a racemic conglomerate aspartic acid. This would make the propagation of biochirality more feasible and sound. However, tetrapeptide, (l-aspartic acid)4 , failed to induce enantioseparation as templates purely by crystallization. Nonclassical crystallization theory was needed to take into account the existence of a CS. Fundamental parameters of the crystallization kinetics such as the induction time, interfacial energy, Gibbs energetic barrier, nucleation rate, and critical size of stable nuclei of: (i) racemic compound aspartic acid, (ii) racemic compound aspartic acid seeded with 1 %wt% l-aspartic acid, (iii) racemic conglomerate aspartic acid, and (iv) l-aspartic acid were evaluated and compared with different initial supersaturation ratios. Morphological studies of crystals grown from the crystallization kinetics were also carried out. © 2013 Wiley Periodicals, Inc.

  15. Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design.

    PubMed

    Abdollahi, Farnaz; Case Lazarro, Emily D; Listenberger, Molly; Kenyon, Robert V; Kovic, Mark; Bogey, Ross A; Hedeker, Donald; Jovanovic, Borko D; Patton, James L

    2014-02-01

    Neurorehabilitation studies suggest that manipulation of error signals during practice can stimulate improvement in coordination after stroke. To test visual display and robotic technology that delivers augmented error signals during training, in participants with stroke. A total of 26 participants with chronic hemiparesis were trained with haptic (via robot-rendered forces) and graphic (via a virtual environment) distortions to amplify upper-extremity (UE) tracking error. In a randomized crossover design, the intervention was compared with an equivalent amount of practice without error augmentation (EA). Interventions involved three 45-minute sessions per week for 2 weeks, then 1 week of no treatment, and then 2 additional weeks of the alternate treatment. A therapist provided a visual cursor using a tracking device, and participants were instructed to match it with their hand. Haptic and visual EA was used with blinding of participant, therapist, technician-operator, and evaluator. Clinical measures of impairment were obtained at the beginning and end of each 2-week treatment phase as well as at 1 week and at 45 days after the last treatment. Outcomes showed a small, but significant benefit to EA training over simple repetitive practice, with a mean 2-week improvement in Fugl-Meyer UE motor score of 2.08 and Wolf Motor Function Test of timed tasks of 1.48 s. This interactive technology may improve UE motor recovery of stroke-related hemiparesis.

  16. Gender bias favors female nursing students in the written examination evaluation: Crossover study.

    PubMed

    Kiekkas, Panagiotis; Igoumenidis, Michael; Stefanopoulos, Nikolaos; Bakalis, Nick; Kefaliakos, Antonios; Aretha, Diamanto

    2016-10-01

    Gender discrimination against male nursing students has been reported and attributed to the female-dominated tradition of nursing profession. To investigate gender bias in the written examination evaluation of undergraduate nursing students. One-group crossover study with two phases. Four male and four female examiners provided 400 previously graded examination scripts (50 each) of nursing students. Participating examiners were asked to re-grade scripts after any information about student identity was covered to allow blind marking. Script degrees after non-blind and blind marking were compared within male and within female students, as well as between male and female students. Significantly more female students' degrees shifted downwards and less of them shifted upwards compared with male students' degrees after blind marking, while mean degree of female students was significantly lower. Among male examiners, significantly more female students' degrees shifted downwards and less of them shifted upwards compared with male students' degrees after blind marking, while mean degree of male students was significantly higher. Among female examiners, mean degree of both male and female students was significantly lower after blind marking. No central tendency bias was detected. Gender bias in favor of females was detected in the written examination evaluation of nursing students. This unequal treatment may prevent retention of males in nursing studies and profession. Copyright © 2016. Published by Elsevier Ltd.

  17. Nanoporosity, Inclusion Chemistry, and Spin Crossover in Orthogonally Interlocked Two-Dimensional Metal-Organic Frameworks.

    PubMed

    Romero-Morcillo, Tania; De la Pinta, Noelia; Callejo, Lorena M; Piñeiro-López, Lucía; Muñoz, M Carmen; Madariaga, Gotzon; Ferrer, Sacramento; Breczewski, Tomasz; Cortés, Roberto; Real, José A

    2015-08-17

    [Fe(tvp)2 (NCS)2 ] (1) (tvp=trans-(4,4'-vinylenedipyridine)) consists of two independent perpendicular stacks of mutually interpenetrated two-dimensional grids. This uncommon supramolecular conformation defines square-sectional nanochannels (diagonal≈2.2 nm) in which inclusion molecules are located. The guest-loaded framework 1@guest displays complete thermal spin-crossover (SCO) behavior with the characteristic temperature T1/2 dependent on the guest molecule, whereas the guest-free species 1 is paramagnetic whatever the temperature. For the benzene-guest derivatives, the characteristic SCO temperature T1/2 decreases as the Hammet σp parameter increases. In general, the 1@guest series shows large entropy variations associated with the SCO and conformational changes of the interpenetrated grids that leads to a crystallographic-phase transition when the guest is benzonitrile or acetonitrile/H2 O. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pressure-Driven Spin Crossover Involving Polyhedral Transformation in Layered Perovskite Cobalt Oxyfluoride

    PubMed Central

    Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari

    2016-01-01

    We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure. PMID:27805031

  19. Revealing the mechanism of the viscous-to-elastic crossover in liquids

    SciTech Connect

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; Stoupin, Stanislav; Cai, Yong Q.; Cunsolo, Alessandro

    2015-07-18

    In our work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. Our results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. Furthermore, the simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.

  20. Revealing the mechanism of the viscous-to-elastic crossover in liquids

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; ...

    2015-07-18

    In our work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. Our results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolvemore » consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. Furthermore, the simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.« less