Science.gov

Sample records for 20 db bandwidth

  1. Out-of-Band 40 DB Bandwidth of EESS (Active) Spaceborne SARS

    NASA Technical Reports Server (NTRS)

    Huneycutt, Bryan L.

    2005-01-01

    This document presents a study of out of band (OOB) 40 dB bandwidth requirements of spaceborne SARs in the Earth Exploration-Satellite Service (active) and Space Research Service (active). The purpose of the document is to study the OOB 40 dB bandwidth requirements and compare the 40 dB bandwidth B-40 as measured in simulations with that calculated using the ITU-R Rec SM.1541 equations. The spectra roll-off and resulting OOB 40 dB bandwidth of the linear FM signal is affected by the time-bandwidth product and the rise/fall times. Typical values of these waveform characteristics are given for existing EESS (active) sensors.

  2. A 10 GHz bandwidth, single transient, digitized oscilloscope with 20 GHz capability

    SciTech Connect

    Hudson, C.L.; Kocimski, S.M.; Spector, J.; Thomas, J.B.; Woodstra, R.R.

    1993-12-31

    EG&G/EM has developed an oscilloscope with a {minus}3 dB bandwidth greater than 10 GHz. Its rolloff characteristics are such that single-transient data greater than 20 GHz may be captured. A demountable CCD camera records the oscilloscope trace and is provided with PC-compatible capture and data processing software. The capabilities of the oscilloscope, camera, and its processing software are described and examples of the system`s performance is shown.

  3. JPL 2-to-the-20th-power channel 300 MHz bandwidth digital spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Morris, G. A., Jr.; Wilck, H. C.

    1978-01-01

    A million (two to the 20th power) channel, 300 MHz bandwidth, digital spectrum analyzer was considered. The design, fabrication, and maintenance philosophy of the modular, pipelined, fast fourier transform (FFT) hardware are described. The spectrum analyzer will be used to examine the region from 1.4 GHz to 26 GHz for radio frequency interference which may be harmful to present and future tracking missions of the Deep Space Network. The design has application to the search for extraterrestrial intelligence signals and radio science phenomena.

  4. A 20-dB quasi-integrated horn antenna

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    A multimode quasi-integrated dipole-fed horn antenna is presented with a performance comparable to that of waveguide-fed corrugated horn antennas. The antenna has been designed using fullwave analysis and has been fabricated and tested at 91 GHz. The horn has a gain of 20 dB with very symmetric patterns, a Gaussian coupling efficiency of 97 percent, and a cross-polarization level of -22.7 dB. The antenna provides a significant improvement in integrated antenna designs and is suitable for millimeter-wave communication and radar systems and as a Gaussian-beam launcher in quasi-optical receiver systems.

  5. A Fully Digital AGC System with 100MHz Bandwidth and 35dB Dynamic Range Power Detectors for DVB-S2 Application

    NASA Astrophysics Data System (ADS)

    Pu, Younggun; Lee, Kang-Yoon

    This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25dB to the desired level within 10µs. It is implemented in a 0.18µm CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8nV/\\\\!\\\\sqrt{Hz} input referred noise, and 5-dBm IIP3 at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100MHz input.

  6. A 83-dB SFDR 10-MHz Bandwidth Continuous-Time Delta-Sigma Modulator Employing a One-Element-Shifting Dynamic Element Matching

    NASA Astrophysics Data System (ADS)

    Ninh, Hong Phuc; Miyahara, Masaya; Matsuzawa, Akira

    This paper considers a simple type of Dynamic Element Matching (DEM), Clocked Averaging (CLA) method referred to as one-element-shifting (OES) and its effectiveness for the implementation of high spurious-free dynamic range (SFDR) multi-bit Delta-Sigma modulators (DSMs). Generic DEM techniques are successful at suppressing the mismatch error and increasing the SFDR of data converters. However, they will induce additional glitch energy in most cases. Some recent DEM methods achieve improvements in minimizing glitch energy but sacrificing their effects in harmonic suppression due to mismatches. OES technique discussed in this paper can suppress the effect of glitch while preserving the reduction of element mismatch effects. Hence, this approach achieves better SFDR performance over the other published DEM methods. With this OES, a 3rd order, 10MHz bandwidth continuous-time DSM is implemented in 90nm CMOS process. The measured SFDR attains 83dB for a 10MHz bandwidth. The measurement result also shows that OES improves the SFDR by higher than 10dB.

  7. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.

    PubMed

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  8. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0

    PubMed Central

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M.; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P.; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M.; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  9. Got Bandwidth?

    ERIC Educational Resources Information Center

    Villano, Matt

    2009-01-01

    Video-heavy distance learning programs can put a strain on the campus network. This article describes how three institutions are managing bandwidth to ensure high-quality service for eLearning students.

  10. SilkDB v2.0: a platform for silkworm (Bombyx mori ) genome biology.

    PubMed

    Duan, Jun; Li, Ruiqiang; Cheng, Daojun; Fan, Wei; Zha, Xingfu; Cheng, Tingcai; Wu, Yuqian; Wang, Jun; Mita, Kazuei; Xiang, Zhonghuai; Xia, Qingyou

    2010-01-01

    The SilkDB is an open-access database for genome biology of the silkworm (Bombyx mori). Since the draft sequence was completed and the SilkDB was first released 5 years ago, we have collaborated with other groups to make much remarkable progress on silkworm genome research, such as the completion of a new high-quality assembly of the silkworm genome sequence as well as the construction of a genome-wide microarray to survey gene expression profiles. To accommodate these new genomic data and house more comprehensive genomic information, we have reconstructed SilkDB database with new web interfaces. In the new version (v2.0) of SilkDB, we updated the genomic data, including genome assembly, gene annotation, chromosomal mapping, orthologous relationship and experiment data, such as microarray expression data, Expressed Sequence Tags (ESTs) and corresponding references. Several new tools, including SilkMap, Silkworm Chromosome Browser (SCB) and BmArray, are developed to access silkworm genomic data conveniently. SilkDB is publicly available at the new URL of http://www.silkdb.org. PMID:19793867

  11. Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product

    NASA Astrophysics Data System (ADS)

    Roy, Tanay; Kundu, Suman; Chand, Madhavi; Vadiraj, A. M.; Ranadive, A.; Nehra, N.; Patankar, Meghan P.; Aumentado, J.; Clerk, A. A.; Vijay, R.

    2015-12-01

    We present an impedance engineered Josephson parametric amplifier capable of providing bandwidth beyond the traditional gain-bandwidth product. We achieve this by introducing a positive linear slope in the imaginary component of the input impedance seen by the Josephson oscillator using a λ / 2 transformer. Our theoretical model predicts an extremely flat gain profile with a bandwidth enhancement proportional to the square root of amplitude gain. We experimentally demonstrate a nearly flat 20 dB gain over a 640 MHz band, along with a mean 1-dB compression point of -110 dBm and near quantum-limited noise. The results are in a good agreement with our theoretical model.

  12. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  13. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.

    PubMed

    Vázquez-Córdova, Sergio A; Dijkstra, Meindert; Bernhardi, Edward H; Ay, Feridun; Wörhoff, Kerstin; Herek, Jennifer L; García-Blanco, Sonia M; Pollnau, Markus

    2014-10-20

    Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied. PMID:25401633

  14. Compact antenna arrays with wide bandwidth and low sidelobe levels

    SciTech Connect

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  15. Evaluation of desired to undesired signal protection ratios of 14 dB versus 20 dB with frequency offset

    NASA Astrophysics Data System (ADS)

    Cushnan, Arthur; Vanhoang, Kiem; Truong, Y.

    1991-08-01

    This evaluation describes tests performed on eight avionics receivers at the Federal Aviation Administration (FAA) Technical Center to compare receiver performance when exposed to 14 and 20 decibel (dB) desired/undesired (D/U) co-channel interference. Testing was done with the undesired signal offset in frequency by small amounts to simulate real-world conditions. Test results indicate that at both D/U ratios, the receivers were able to reproduce clear, audible, and intelligible speech with or without the undesired frequency slightly offset.

  16. Ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Fan, Zhenkai; Li, Shu-Guang; Li, Jianshe; Wei, Zhiyi; Tian, Wenlong

    2015-08-01

    A novel ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber (DC-PCF) is designed in this paper, which is analyzed through the finite element method (FEM). The coupling characteristics of the designed DC-PCF can be enhanced by a high refractive index As2S3 core. Numerical results show the ultra-bandwidths of the x- and y-polarization modes can reach to 86 nm and 60 nm as the extinction ratios better than -20 dB and -30 dB at the vicinity of the wavelength of 1.31 μm. The length of the designed soft glass DC-PCF is 52.29 mm and the extinction ratios of the x- and y-polarization modes are -85.57 dB and -56.81 dB at the wavelength of 1.31 μm, respectively. In addition, the designed splitter has a tolerance of ±10 nm in its all structure parameters, which make the design not sensitive to the perturbation during the fabrication process.

  17. Broadband Josephson parametric amplifiers: Beyond the standard gain-bandwidth product

    NASA Astrophysics Data System (ADS)

    Roy, Tanay; Kundu, Suman; Chand, Madhavi; Vadiraj, A. M.; Ranadive, A.; Nehra, N.; Patankar, Meghan P.; Aumentado, J.; Clerk, A. A.; Vijay, R.

    Recent development of multiplexed qubit measurement schemes demand broadband quantum-limited amplifiers to enable high fidelity readout with minimal resources. We present a simple technique to enhance the bandwidth of a resonator based Josephson Parametric Amplifier (JPA) beyond the standard gain-bandwidth product. This is achieved by introducing a positive linear slope in the imaginary component of the input impedance seen by the JPA using a λ / 2 transformer. Our theoretical model predicts an extremely flat gain profile with a bandwidth enhancement proportional to the square root of the amplitude gain. Experimentally, we achieved a nearly flat 20 dB gain profile over a 640 MHz band, with a mean 1-dB compression point of -110 dBm along with nearly quantum-limited noise performance. The results are in excellent agreement with our theoretical model. We will then discuss strategies to further enhance the performance in terms of bandwidth and dynamic range of the JPA. Finally, we will consider the applicability of our technique to different parametric pumping methods and other parametric amplifier designs as well.

  18. MeltDB 2.0–advances of the metabolomics software system

    PubMed Central

    Kessler, Nikolas; Neuweger, Heiko; Bonte, Anja; Langenkämper, Georg; Niehaus, Karsten; Nattkemper, Tim W.; Goesmann, Alexander

    2013-01-01

    Motivation: The research area metabolomics achieved tremendous popularity and development in the last couple of years. Owing to its unique interdisciplinarity, it requires to combine knowledge from various scientific disciplines. Advances in the high-throughput technology and the consequently growing quality and quantity of data put new demands on applied analytical and computational methods. Exploration of finally generated and analyzed datasets furthermore relies on powerful tools for data mining and visualization. Results: To cover and keep up with these requirements, we have created MeltDB 2.0, a next-generation web application addressing storage, sharing, standardization, integration and analysis of metabolomics experiments. New features improve both efficiency and effectivity of the entire processing pipeline of chromatographic raw data from pre-processing to the derivation of new biological knowledge. First, the generation of high-quality metabolic datasets has been vastly simplified. Second, the new statistics tool box allows to investigate these datasets according to a wide spectrum of scientific and explorative questions. Availability: The system is publicly available at https://meltdb.cebitec.uni-bielefeld.de. A login is required but freely available. Contact: nkessler@cebitec.uni-bielefeld.de PMID:23918246

  19. Bandwidth efficient coding for satellite communications

    NASA Astrophysics Data System (ADS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-02-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  20. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  1. Tractor_DB (version 2.0): a database of regulatory interactions in gamma-proteobacterial genomes.

    PubMed

    Pérez, Abel González; Angarica, Vladimir Espinosa; Vasconcelos, Ana Tereza R; Collado-Vides, Julio

    2007-01-01

    The version 2.0 of Tractor_DB is now accessible at its three international mirrors: www.bioinfo.cu/Tractor_DB, www.tractor.lncc.br and http://www.ccg.unam.mx/tractorDB. This database contains a collection of computationally predicted Transcription Factors' binding sites in gamma-proteobacterial genomes. These data should aid researchers in the design of microarray experiments and the interpretation of their results. They should also facilitate studies of Comparative Genomics of the regulatory networks of this group of organisms. In this paper we describe the main improvements incorporated to the database in the past year and a half which include incorporating information on the regulatory networks of 13-increasing to 30-new gamma-proteobacteria and developing a new computational strategy to complement the putative sites identified by the original weight matrix-based approach. We have also added dynamically generated navigation tabs to the navigation interfaces. Moreover, we developed a new interface that allows users to directly retrieve information on the conservation of regulatory interactions in the 30 genomes included in the database by navigating a map that represents a core of the known Escherichia coli regulatory network. PMID:17088283

  2. Optical performance monitoring for OFDM using low bandwidth coherent receivers.

    PubMed

    Chen, Simin; Anderson, Trevor; Hewitt, Don; Tran, An V; Zhu, Chen; Du, Liang B; Lowery, Arthur J; Skafidas, Efstratios

    2012-12-17

    We propose using low bandwidth coherent receivers for distributed optical performance monitoring. We demonstrate optical signal-to-noise ratio (OSNR) monitoring of both 20-Gb/s single-polarization and 40-Gb/s polarization-multiplexed coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals with a 0.8-GHz receiver using both data-aided (DA) and non-data-aided (NDA) approaches. The sampling rate of the performance monitor is much lower than the signal baud rate, so provides a cost-effective solution for distributed optical performance monitoring. The proposed method is demonstrated experimentally and through simulation. The results show that after calibration the OSNR monitoring error is less than 1 dB and the two approaches are not affected by fiber dispersion after 800-km transmission and 30-ps differential group delay (DGD). PMID:23263110

  3. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins

    PubMed Central

    Potenza, Emilio; Domenico, Tomás Di; Walsh, Ian; Tosatto, Silvio C.E.

    2015-01-01

    MobiDB (http://mobidb.bio.unipd.it/) is a database of intrinsically disordered and mobile proteins. Intrinsically disordered regions are key for the function of numerous proteins. Here we provide a new version of MobiDB, a centralized source aimed at providing the most complete picture on different flavors of disorder in protein structures covering all UniProt sequences (currently over 80 million). The database features three levels of annotation: manually curated, indirect and predicted. Manually curated data is extracted from the DisProt database. Indirect data is inferred from PDB structures that are considered an indication of intrinsic disorder. The 10 predictors currently included (three ESpritz flavors, two IUPred flavors, two DisEMBL flavors, GlobPlot, VSL2b and JRONN) enable MobiDB to provide disorder annotations for every protein in absence of more reliable data. The new version also features a consensus annotation and classification for long disordered regions. In order to complement the disorder annotations, MobiDB features additional annotations from external sources. Annotations from the UniProt database include post-translational modifications and linear motifs. Pfam annotations are displayed in graphical form and are link-enabled, allowing the user to visit the corresponding Pfam page for further information. Experimental protein–protein interactions from STRING are also classified for disorder content. PMID:25361972

  4. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum... measurement instrumentation employing a peak detector function with an instrument resolution...

  5. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range

    SciTech Connect

    Karl, N.; Reichel, K.; Mendis, R.; Mittleman, D. M.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Benz, A.; Reno, J. L.

    2014-03-03

    We design and experimentally demonstrate a switchable diffraction grating for terahertz modulation based on planar active metamaterials, where a Schottky gate structure is implemented to tune the metamaterial resonances in real-time via the application of an external voltage bias. The diffraction grating is formed by grouping the active split-ring resonators into an array of independent columns with alternate columns biased. We observe off-axis diffraction over a wide frequency band in contrast to the narrow-band resonances, which permits operation of the device as a relatively high-speed, wide-bandwidth, high-contrast modulator, with more than 20 dB of dynamic range.

  6. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth.

    PubMed

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S; DenBaars, Steven P; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-09-01

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ~9 nm at 20 mW optical power. Owing to the fast recombination (τe<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10-3 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications. PMID:27607634

  7. Chemical Industry Bandwidth Study

    SciTech Connect

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  8. Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.

    2013-03-01

    Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.

  9. Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication.

    PubMed

    Kirchner, M S; Braje, D A; Fortier, T M; Weiner, A M; Hollberg, L; Diddams, S A

    2009-04-01

    Optical filtering of a stabilized 1 GHz optical frequency comb produces a 20 GHz comb with approximately 40 nm bandwidth (FWHM) at 960 nm. Use of a low-finesse Fabry-Pérot cavity in a double-pass configuration provides a broad cavity coupling bandwidth (Deltalambda/lambda approximately 10%) and large suppression (50 dB) of unwanted modes. Pulse durations shorter than 40 fs with less than 2% residual amplitude modulation are achieved. PMID:19340155

  10. Glass Industry Bandwidth Analysis

    SciTech Connect

    Rue, David M.

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  11. Industrial Glass Bandwidth Analysis

    SciTech Connect

    Rue, David M.; Servaites, James; Wolf, Warren

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  12. GreenPhylDB v2.0: comparative and functional genomics in plants.

    PubMed

    Rouard, Mathieu; Guignon, Valentin; Aluome, Christelle; Laporte, Marie-Angélique; Droc, Gaëtan; Walde, Christian; Zmasek, Christian M; Périn, Christophe; Conte, Matthieu G

    2011-01-01

    GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery. PMID:20864446

  13. StreptomeDB 2.0--an extended resource of natural products produced by streptomycetes.

    PubMed

    Klementz, Dennis; Döring, Kersten; Lucas, Xavier; Telukunta, Kiran K; Erxleben, Anika; Deubel, Denise; Erber, Astrid; Santillana, Irene; Thomas, Oliver S; Bechthold, Andreas; Günther, Stefan

    2016-01-01

    Over the last decades, the genus Streptomyces has stirred huge interest in the scientific community as a source of bioactive compounds. The majority of all known antibiotics is isolated from these bacterial strains, as well as a variety of other drugs such as antitumor agents, immunosuppressants and antifungals. To the best of our knowledge, StreptomeDB was the first database focusing on compounds produced by streptomycetes. The new version presented herein represents a major step forward: its content has been increased to over 4000 compounds and more than 2500 host organisms. In addition, we have extended the background information and included hundreds of new manually curated references to literature. The latest update features a unique scaffold-based navigation system, which enables the exploration of the chemical diversity of StreptomeDB on a structural basis. We have included a phylogenetic tree, based on 16S rRNA sequences, which comprises more than two-thirds of the included host organisms. It enables visualizing the frequency, appearance, and persistence of compounds and scaffolds in an evolutionary context. Additionally, we have included predicted MS- and NMR-spectra of thousands of compounds for assignment of experimental data. The database is freely accessible via http://www.pharmaceutical-bioinformatics.org/streptomedb. PMID:26615197

  14. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  15. Mid-bandwidth loudness depression in hearing-impaired listeners.

    PubMed

    Hots, Jan; Jarzombek, Katrin; Verhey, Jesko L

    2016-05-01

    The loudness of a bandpass-filtered noise depends on its bandwidth. For bandwidths larger than a critical bandwidth, loudness increases as the bandwidth increases, an effect commonly referred to as spectral loudness summation. For bandwidths smaller than the critical bandwidth, it was shown recently for normal-hearing listeners that loudness decreases as the bandwidth increases. This study investigated if listeners with a hearing impairment of primarily cochlear origin also showed this effect. Levels at equal loudness between a 1500-Hz pure-tone reference and noise-band targets centered at 1500 Hz were measured for bandwidths in the range from 15 to 1620 Hz. The reference level was adjusted individually on the basis of the audiogram. The average level difference at equal loudness increased from 0 dB at 15 Hz up to a maximum of about 4 dB at 810 Hz. Thus, the mid-bandwidth loudness depression is also observed for hearing-impaired listeners. PMID:27250129

  16. Low-bandwidth authentication.

    SciTech Connect

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  17. Broad Bandwidth Telecommunications Systems.

    ERIC Educational Resources Information Center

    Sodolski, John

    Broad bandwidth transmission systems have been around for years. They include microwave, assorted cable systems, and recently, satellites. With the exception of some privately owned systems, broadband services have been furnished by the common carriers. Recently, a new element has been added--Cable Antenna Television (CATV) distribution systems.…

  18. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  19. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance. PMID:23125372

  20. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennett, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approximately 7 degrees full width at half maximum (FWHM) is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A return loss better than -28 dB was measured across the band.

  1. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennette, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approx. 14deg FWHM beam is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band.

  2. Asymmetric MQW semiconductor optical amplifier with low-polarization sensitivity of over 90-nm bandwidth

    NASA Astrophysics Data System (ADS)

    Nkanta, Julie E.; Maldonado-Basilio, Ramón; Abdul-Majid, Sawsan; Zhang, Jessica; Hall, Trevor J.

    2013-12-01

    An exhausted capacity of current Passive Optical Networks has been anticipated as bandwidth-hungry applications such as HDTV and 3D video become available to end-users. To enhance their performance, the next generation optical access networks have been proposed, using optical carriers allocated within the E-band (1360-1460 nm). It is partly motivated by the low-water peak fiber being manufactured by Corning. At these wavelengths, choices for low cost optical amplifiers, with compact size, low energy consumption and feasibility for integration with other optoelectronic components are limited, making the semiconductor optical amplifiers (SOA) a realistic solution. An experimental characterization of a broadband and low polarization sensitive asymmetric multi quantum well (MQW) SOA operating in the E-band is reported. The SOA device is composed of nine 6 nm In1-xGaxAsyP1-y 0.2% tensile strained asymmetric MQW layers sandwiched between nine latticed matched 6 nm InGaAsP barrier layers. The active region is grown on an n-doped InP substrate and buried by p-doped InGaAsP layers. The SOA devices have 7-degrees tilt anti-reflected coated facets, with 2 μm ridge width, and a cavity length of 900 μm. For input powers of -10 dBm and -20 dBm, a maximum gain of 20 dB at 1360 nm with a polarization insensitivity under 3 dB for over 90 nm bandwidth is measured. Polarization sensitivity of less than 0.5 dB is observed for some wavelengths. Obtained results indicate a promising SOA with broadband amplification, polarization insensitivity and high gain. These SOAs were designed and characterized at the Photonics Technology Laboratory, University of Ottawa, Canada.

  3. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz. PMID:26520960

  4. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  5. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-07-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  6. Monolithically integrated 20-channel optical add/drop multiplexer subsystem with hybrid-integrated 40-channel photodetector array

    NASA Astrophysics Data System (ADS)

    Schumacher, Andreas B.; Krabe, Detlef; Dieckroeger, Jens; Spott, Thorsten; Kraeker, Tobias; Martins, Evely; Zavrsnik, Miha; Schneider, Hartmut W.; Baumann, Ingo

    2003-03-01

    We built a 20 channel, 200 GHz, fully reconfigurable optical add-/drop multiplexer with integrated variable optical attenuators and power monitor diodes. A single planar lightwave circuit chip contains demultiplexer, switch array, attenuators and multiplexers. It also serves as an "optical motherboard" for a hybrid, flip-chip assembly containing four 10-channel photo detector arrays. A thermal management concept which considers both microscopic and macroscopic aspects of the device was developed. The final device exhibits an insertion loss of 9 dB from "in"- to "through"-port, a 1 dB bandwidth of >50 GHz and switch extinction ratios in excess of 40 dB.

  7. HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants.

    PubMed

    Draizen, Eli J; Shaytan, Alexey K; Mariño-Ramírez, Leonardo; Talbert, Paul B; Landsman, David; Panchenko, Anna R

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. 'HistoneDB 2.0--with variants' is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0. PMID:26989147

  8. ABB: active bandwidth broker

    NASA Astrophysics Data System (ADS)

    Wong, Kason; Law, Eddie

    2001-07-01

    In this paper, we shall discuss a novel design on the policy-based management for the Internet. This design deploys the concept of active networking. As opposed to the traditional network design, active network empowers network node with the ability to manipulate data and program code in packets, and configure the network properties according to the needs of different applications. The policy-based management can control network routers in order to realize end-to-end Quality of Service (QoS), such as differentiated and integrated services, across the Internet. For the moment, the Internet Engineering Task Force (IETF) has defined the framework of the policy-based management. It employs a simple client/server model that uses Common Open Policy Service (COPS) protocol to facilitate policy management and control. Our design of Active Bandwidth Broker (ABB) belongs to an active application. Our goals are to distribute centralized workload of the policy-based management over multiple active nodes in the active networks, introduce mobility of the bandwidth brokers, and allows load sharing to the policy-based management. This results a network-wide intelligent, highly available, and consistent QoS control that allows performance protection for voice, video and Internet business application while reducing costs for growing networks.

  9. Loudness of subcritical sounds as a function of bandwidth, center frequency, and level.

    PubMed

    Hots, J; Rennies, J; Verhey, J L

    2014-03-01

    Level differences at equal loudness between band-pass noise and pure tones with a frequency equal to the center frequency of the noise were measured in normal-hearing listeners using a loudness matching procedure. The center frequencies were 750, 1500, and 3000 Hz and noise bandwidths from 5 to 1620 Hz were used. The level of the reference pure tone was 30, 50, or 70 dB. For all center frequencies and reference levels, the level at equal loudness was close to 0 dB for the narrowest bandwidth, increased with bandwidth for bandwidths smaller than the critical bandwidth, and decreased for bandwidths larger than the critical bandwidth. For bandwidths considerably larger than the critical bandwidth, the level difference was negative. The maximum positive level difference was measured for a bandwidth close to the critical bandwidth. This maximum level difference decreased with increasing reference level. A similar effect was found when the level differences were derived from data of an additional categorical loudness scaling experiment. The results indicate that the decrease of loudness at equal level with increasing subcritical bandwidth is a common property of the auditory system which is not taken into account in current loudness models. PMID:24606270

  10. IMPATT power building blocks for 20 GHz spaceborne transmit amplifier

    NASA Technical Reports Server (NTRS)

    Asmus, J.; Cho, Y.; Degruyl, J.; Ng, E.; Giannakopoulos, A.; Okean, H. C.

    1982-01-01

    Single-stage circulator coupled IMPATT building block constituents of a 20-GHz solid state power amplifier (SSPA) currently under development for spaceborne downlink transmitter usage have been demonstrated as providing 1.5 to 2.0W RF power output at 4 to 5 dB operating gain over a 1 GHz bandwidth. Using either commercially available or recently developed in-house GaAs Schottky Read-profile IMPATT diodes, DC/RF power added efficiencies of 14 to 15% were achieved in these amplifier stages. A two stage IMPATT driver amplifier with similar RF output power capability exhibited 13 + or - 0.5 dB operating gain over a 1 GHz bandwidth.

  11. A scanning SQUID microscope with 200 MHz bandwidth

    NASA Astrophysics Data System (ADS)

    Talanov, Vladimir V.; Lettsome, Nesco M., Jr.; Borzenets, Valery; Gagliolo, Nicolas; Cawthorne, Alfred B.; Orozco, Antonio

    2014-04-01

    We developed a scanning DC SQUID microscope with novel readout electronics capable of wideband sensing of RF magnetic fields from 50 to 200 MHz and simultaneously providing closed-loop response at kHz frequencies. To overcome the 20 MHz bandwidth limitation of traditional closed-loop SQUIDs, a flux-modulated closed-loop simultaneously locks the SQUID quasi-static flux and flux-biases the SQUID for amplification of the RF flux up to Φ0/4 in amplitude. Demodulating the SQUID voltage with a double lock-in technique yields a signal representative of both the amplitude and phase of the RF flux. This provides 80 dB of a linear dynamic range with a flux noise density of 4 μΦ0 Hz-1/2 at 200 MHz for a Y Ba2Cu3O7 bi-crystal SQUID at 77 K. We describe the electronics’ performance and present images for RF magnetic field of the travelling wave in a coplanar waveguide, the standing wave in an open-circuited microstrip, and a surface mounted device antenna.

  12. Continuous control of phase-locked-loop bandwidth

    NASA Technical Reports Server (NTRS)

    Motal, G. W.; Vanelli, J. C.

    1980-01-01

    Tracking loop filter with continuous bandwidth control smooths transition from wide to narrow band. Circuit was designed for Space Shuttle where bandwidth varied between 320 Hz for acquisition and 20 Hz for tracking. Field-effect transitor (FET) acts as voltage controlled variable resistance, changing time constant of filter between phase detector and voltage-controlled oscillator in phase-locked loop.

  13. Bandwidth analysis of all-optical turbo-switch

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Yang, Xuelin; Hu, Xiaonan; Hu, Weisheng

    2015-01-01

    We propose and develop a frequency-domain model to analyze the bandwidth of all-optical turbo-switch. The model has taken the spatial inhomogeneity of semiconductor optical amplifier (SOA) into consideration for the first time. The simulations based on the model show that the 3-dB bandwidth of turbo-switch could reach up to ~270 GHz when the second SOA is oversaturated. However, the overshoot will be higher, which may result in the distortion of the output signal. There is a trade-off between the bandwidth and the flatness of frequency response characteristics for turbo-switch operation. In addition, the optimum position of the delay-interferometer (DI) is investigated, showing that the level of the overshoot is relatively lower if the DI is placed between the two SOAs.

  14. Fabry-Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth

    NASA Astrophysics Data System (ADS)

    Steinmetz, T.; Wilken, T.; Araujo-Hauck, C.; Holzwarth, R.; Hänsch, T. W.; Udem, T.

    2009-08-01

    We use low-finesse Fabry-Pérot cavities in series to generate frequency combs with a large mode spacing in a way that allows its application to a large optical bandwidth. The attenuation of laser modes closest to the pass bands of the cavity exceeds 70 dB for a filter ratio of m=20 relative to the resonant modes centered within the pass bands. We also identify the best cavity geometry to suppress spurious transmission of higher order transversal modes. Such a thinned out frequency comb can be used to calibrate traditional spectrographs for precision astronomy. In the time domain mode filtering generates a pulse train with a multiplied repetition rate. High-fidelity filtering, as described here, implies small variations of the pulse energies.

  15. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  16. Estimating Bottleneck Bandwidth using TCP

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  17. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Xu, Xue-Jun; Li, Zhi-Yong; Zhou, Liang; Han, Wei-Hua; Fan, Zhong-Chao; Yu, Yu-De; Yu, Jin-Zhong

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss.

  18. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  19. Comparison of steering angle and bandwidth for various phased array antenna concepts

    NASA Astrophysics Data System (ADS)

    Bonjour, Romain; Singleton, Matthew; Leuchtmann, Pascal; Leuthold, Juerg

    2016-08-01

    In this paper we compare different integratable ultra-fast tunable true-time delay concepts with respect to their performances in a phased array system. The performances of the schemes are assessed with respect to the supported range, i.e. the range within which beam steering for a given fractional bandwidth can be achieved with a gain flatness better than 3 dB. We also compare the array gain as of function of steering angle and fractional bandwidth.

  20. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants

    PubMed Central

    Draizen, Eli J.; Shaytan, Alexey K.; Mariño-Ramírez, Leonardo; Talbert, Paul B.; Landsman, David; Panchenko, Anna R.

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. ‘HistoneDB 2.0 – with variants’ is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0 PMID:26989147

  1. A 60-dB linear VGA with novel exponential gain approximation

    NASA Astrophysics Data System (ADS)

    Jiaye, Zhou; Xi, Tan; Junyu, Wang; Zhangwen, Tang; Hao, Min

    2009-06-01

    A CMOS variable gain amplifier (VGA) that adopts a novel exponential gain approximation is presented. No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver. A wide gain control voltage from 0.4 to 1.8 V and a high linearity performance are achieved. The three-stage VGA with automatic gain control (AGC) and DC offset cancellation (DCOC) is fabricated in a 0.18-μm CMOS technology and shows a linear gain range of more than 58-dB with a linearity error less than ±1 dB. The 3-dB bandwidth is over 8 MHz at all gain settings. The measured input-referred third intercept point (IIP3) of the proposed VGA varies from -18.1 to 13.5 dBm, and the measured noise figure varies from 27 to 65 dB at a frequency of 1 MHz. The dynamic range of the closed-loop AGC exceeds 56 dB, where the output signal-to-noise-and-distortion ratio (SNDR) reaches 20 dB. The whole circuit, occupying 0.3 mm2 of chip area, dissipates less than 3.7 mA from a 1.8-V supply.

  2. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  3. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  4. A 5.4-9.2 GHz 19.5 dB Complementary Metal-Oxide-Semiconductor Ultrawide-Band Receiver Front-End Low-Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kubota, Shinichi; Toya, Akihiro; Sasaki, Nobuo; Kikkawa, Takamaro

    2011-04-01

    In this work, we present an ultrawide-band (UWB) complementary metal-oxide-semiconductor (CMOS) low-noise amplifier (LNA) for wireless communication in the upper UWB band, that is, from 5.4-9.2 GHz bandwidth with a wide-band 50 Ω input matching network in front of the LNA. A three-stage cascode-topology-based LNA with high-transconductance MOS transistors, was employed to improve the voltage gain up to 23 dB at 7.5 GHz, with 4.5-9.2 GHz 3 dB bandwidth. The maximum output power S21 was 19.5 dB at 7.3 GHz, with 5.4-9.2 GHz 3 dB bandwidth. The input matching circuit was designed with a reduced number of passive elements, resulting in an input reflection coefficient S11 of less than -10 dB from 4.5-9.2 GHz. The noise figure of the LNA was as low as 3.5 dB and the input-referred third-order intercept point (IIP3) was -8 dBm. The LNA has output reflection coefficient S22 of less than -10 dB from 5-7 GHz and a good reverse isolation, that is, S12 of < -45 dB in the entire UWB, due to a cascode topology. The LNA was fabricated using 180 nm CMOS technology, which consumes 56 mW power at 1.8 V power supply. In this paper, we also demonstrate a wireless communication of 7 GHz Gaussian monocycle pulse (GMP) by horn antennas and the LNA from 20 cm transmission distance.

  5. Adaptive low-bandwidth tracking of Galileo and Pioneer 10 carriers

    NASA Technical Reports Server (NTRS)

    Watola, D. A.

    1992-01-01

    In the Deep Space Network, tracking of residual carrier phase typically occurs with a fixed-bandwidth phase-locked loop using a bandwidth sufficiently wide to prevent loss of lock under worst-case conditions of signal dynamics, received signal phase noise, and receiver phase noise. Much of the time, however, such a high bandwidth is not required and may inflict unnecessarily heavy penalties on loop signal-to-noise ratios. This article describes a technique for improving tracking performance by permitting initial tracking at narrow bandwidths and gradually widening the loop as needed. The cost is a requirement for signal buffering, which is relatively inexpensive for low data rate applications. Results based on off-line processing of recorded carrier data from Galileo and Pioneer 10 are presented, and show potential 10-16 dB gains in loop SNR over worst-case fixed-bandwidth tracking.

  6. A 32-GHz reflected-wave maser amplifier with wide instantaneous bandwidth

    NASA Technical Reports Server (NTRS)

    Shell, J.; Neff, D.

    1988-01-01

    An eight stage, 32 GHz reflected wave ruby maser was built. The maser operates in a 3 watt closed cycle refrigerator at 4.5 K and is capable of 21 dB of net gain with an instantaneous bandwidth of 400 MHz. The input noise temperature referred to the room temperature flange is approximately 21 K.

  7. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  8. Bandwidth efficient block codes for M-ary PSK modulation

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    A class of bandwidth efficient block codes for M-ary PSK modulation is presented. A soft-decision decoding for this class of codes is devised. Some specific short codes for Quad Phase Shift Key (QPSK), 8-PSK and 16-PSK modulations are constructed. These codes have good minimum squared Euclidean distances and provide 2 to 5.8 dB coding gains over uncoded QPSK modulation without (or with little) bandwidth expansion. The complete weight distributions of these specific codes are determined. Based on these weight distributions, their error probabilities are evaluated. Some of these codes have simple trellis structures and hence can be decoded by Viterbi decoding algorithm with relatively simple implementation. Moreover, the codes are very suitable for use as inner codes for various cascaded coding schemes with Reed-Solomon codes as outer codes.

  9. StreptomeDB 2.0—an extended resource of natural products produced by streptomycetes

    PubMed Central

    Klementz, Dennis; Döring, Kersten; Lucas, Xavier; Telukunta, Kiran K.; Erxleben, Anika; Deubel, Denise; Erber, Astrid; Santillana, Irene; Thomas, Oliver S.; Bechthold, Andreas; Günther, Stefan

    2016-01-01

    Over the last decades, the genus Streptomyces has stirred huge interest in the scientific community as a source of bioactive compounds. The majority of all known antibiotics is isolated from these bacterial strains, as well as a variety of other drugs such as antitumor agents, immunosuppressants and antifungals. To the best of our knowledge, StreptomeDB was the first database focusing on compounds produced by streptomycetes. The new version presented herein represents a major step forward: its content has been increased to over 4000 compounds and more than 2500 host organisms. In addition, we have extended the background information and included hundreds of new manually curated references to literature. The latest update features a unique scaffold-based navigation system, which enables the exploration of the chemical diversity of StreptomeDB on a structural basis. We have included a phylogenetic tree, based on 16S rRNA sequences, which comprises more than two-thirds of the included host organisms. It enables visualizing the frequency, appearance, and persistence of compounds and scaffolds in an evolutionary context. Additionally, we have included predicted MS- and NMR-spectra of thousands of compounds for assignment of experimental data. The database is freely accessible via http://www.pharmaceutical-bioinformatics.org/streptomedb. PMID:26615197

  10. A reflected-wave ruby maser with K-band tuning range and large instantaneous bandwidth

    NASA Technical Reports Server (NTRS)

    Moore, C. R.; Clauss, R. C.

    1979-01-01

    A novel maser concept is outlined and a unique design described which permits wide bandwidth and waveguide tuning range by employing four stages cascaded via cryogenically cooled circulators. Theoretical considerations for gain, bandwidth, gain ripple, and noise temperature are included. Operated on a closed-cycle helium refrigerator with a superconducting persistence-mode magnet, the four-stage amplifier is tunable from 18.3 to 26.6 GHz with 30 dB of net gain and achieves 240 MHz of 3-dB bandwidth near the center of this band. The measured noise temperature is 13 + or - 2 K referred to the room-temperature input flange. Applications are foreseen utilizing cooled parametric downconverters and upconverters with this amplifier at IF to extend the low-noise performance up to millimeter frequencies and down to L-band for radio astronomy and planetary spacecraft communications.

  11. Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Khym, S.; Park, J. Y.

    2013-07-01

    This paper presents an impact based frequency up-converted wide bandwidth piezoelectric energy harvester in which two high frequency piezoelectric generating beams are struck at the same time by a low frequency driving beam having horizontally extended tip mass. Change of driving beam's effective stiffness during coupled vibration after impact allows the device to broaden the -3dB bandwidth to approximately 170% and to acquire more than 61% of the maximum power generation in the vicinity (from 7 to 10.5 Hz) of the -3 dB bandwidth region as well. The efficiency of electrical power transfer is increased to approximately 85%. Each generating beam produces 377 μW peak power at 14.5 Hz under 0.6 g acceleration with corresponding power density 58.8 μW cm-3.

  12. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  13. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    NASA Technical Reports Server (NTRS)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  14. Mining Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  15. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emission bandwidth. 95.633 Section 95.633... SERVICES Technical Regulations Technical Standards § 95.633 Emission bandwidth. (a) The authorized bandwidth (maximum permissible bandwidth of a transmission) for emission type H1D, J1D, R1D, H3E, J3E or...

  16. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Bandwidths. 2.202 Section 2.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.202 Bandwidths. (a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its...

  17. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Bandwidths. 2.202 Section 2.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.202 Bandwidths. (a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its...

  18. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Bandwidths. 2.202 Section 2.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.202 Bandwidths. (a) Occupied bandwidth. The frequency bandwidth such that, below its lower and above its...

  19. Experimental studies of bandwidth and power production in a three-cavity, 35 GHz gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Calame, J. P.; Garven, M.; Choi, J. J.; Nguyen, K.; Wood, F.; Blank, M.; Danly, B. G.; Levush, B.

    1999-01-01

    The operating characteristics of a three-cavity, Ka-Band gyroklystron employing a large amount of stagger-tuning are reported. Particular attention is given to examining how the frequency response (peak power, bandwidth, and overall shape) is altered by changes in operating parameters. A peak power of 225 kW at 34.90 GHz, with a 2 μs pulse length, 32% efficiency, 30.3 dB saturated gain, and a 3 dB bandwidth of 0.82% (286 MHz) was obtained with a 70.2 kV, 10.0 A beam at a magnetic field of 13.07 kG. This operating point represents a compromise between the output power and the bandwidth. The operating magnetic field was found to have a dramatic influence on the power-bandwidth tradeoff; a lower field of 12.91 kG produced 245 kW with 0.63% bandwidth, while a higher field of 13.39 kG increased the bandwidth to 0.94% at a lower power of 200 kW. The results are in excellent agreement with large signal simulations.

  20. Developing Strategies for Affordable Bandwidth.

    ERIC Educational Resources Information Center

    Educause Quarterly, 2000

    2000-01-01

    Written by Educause's Net@EDU Broadband Pricing Working Group, this article discusses what institutions of higher education can do to develop good partnerships with broadband vendors in order to negotiate affordable pricing for increased bandwidth. Describes problems with the marketplace, examples from a few universities, and points to remember…

  1. Series-fed circularly polarized microstrip antennas with broad bandwidth

    NASA Astrophysics Data System (ADS)

    Mao, Shau-Gang; Chen, Shiou-Li; Yeh, Jen-Chun; Lin, Tien-Min

    2007-08-01

    A new series-fed circularly polarized antenna (SFCPA) in microstrip configuration, which consists of a traveling-wave-type crank-line antenna (CLA) and a resonant-type square-ring slot antenna (SRSA), is developed. Unlike the conventional crank-line (CL) antenna array with an open end or a resistive load, the proposed SFCPA uses the SRSA at the termination of the CLA and thus exhibits not only a broad circularly polarized (CP) bandwidth but also a large antenna gain. The characteristics of the SFCPA, including the leaky-wave radiation and the circular polarization, are examined in terms of the dispersion diagram and the current distribution. The SFCPA with the two-cell CLA and the terminated SRSA is fabricated and measured to demonstrate the 10-dB return loss and 3-dB axial ratio (AR) bandwidths of 34.3% and 30.5%, respectively. The frequency-scanning radiation patterns with a 5-7 dBi antenna gain are also presented in the operating band.

  2. Algorithms and Requirements for Measuring Network Bandwidth

    SciTech Connect

    Jin, Guojun

    2002-12-08

    This report unveils new algorithms for actively measuring (not estimating) available bandwidths with very low intrusion, computing cross traffic, thus estimating the physical bandwidth, provides mathematical proof that the algorithms are accurate, and addresses conditions, requirements, and limitations for new and existing algorithms for measuring network bandwidths. The paper also discusses a number of important terminologies and issues for network bandwidth measurement, and introduces a fundamental parameter -Maximum Burst Size that is critical for implementing algorithms based on multiple packets.

  3. Design of a demonstration experiment on the wide-bandwidth high-power dielectric Cherenkov maser amplifier

    SciTech Connect

    Harin, V.; Melnikov, G.; Shlapapkovskii, A.

    1995-12-31

    Bandwidth dependences on the parameters of an electron beam and dielectric-fined waveguide have been calculated from the system dispersion relation, and the optimal set of parameters yielding large value of the bandwidth has been chosen. One-dimensional nonlinear simulations have been carried out. The output power of 60 MW at the peak gain of 27 dB is planned to be achieved. The wide-bandwidth input coupler has been constructed, and the results of microwave transmission measurements through the no-beam system are presented.

  4. Bandwidth Efficient Baseband Multi-Modulator

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Gray, Andrew; Yeh, Pen-Shu

    2003-01-01

    The High Rate Baseband Multi-Modulator (HRBM) ASIC is being developed to provide High-speed Bandwidth Efficient Modulations to NASA missions. Bandwidth efficiencies from 2.0 bits/symbol/Hz to 2.75 bits/symbl/Hz are selectable from three CCSDS modulations: Gaussian Minimum Shift Keying (GMSK), Filter Offset Quadrature Phase Shift Keying (Filtered- OQSK) and 8-Phase Shift Keying Trellis Coded Modulation (8-PSK TCM). An FPGA version of the HRBM is developed first to verify the individual modulation designs and characterize timing and performance issues involved with digital baseband modulation synthesis. A Finite Input Response (FIR) filter is included to provided baseband pulse shaping to reduce out-of-band spectral emissions. This is filter is programmable and can be tailored to meet system requirements. The ASIC is targeted to provide up to 600 Mbps throughput and will provide serial as well as parallel input. This paper provides an overview of the technology development and current status.

  5. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 15.35 Section 15.35 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY... emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency... through 15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the...

  6. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 15.35 Section 15.35 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY... emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency..., the limit on peak radio frequency emissions is 20 dB above the maximum permitted average...

  7. Learning to Classify Organic and Conventional Wheat - A Machine Learning Driven Approach Using the MeltDB 2.0 Metabolomics Analysis Platform.

    PubMed

    Kessler, Nikolas; Bonte, Anja; Albaum, Stefan P; Mäder, Paul; Messmer, Monika; Goesmann, Alexander; Niehaus, Karsten; Langenkämper, Georg; Nattkemper, Tim W

    2015-01-01

    We present results of our machine learning approach to the problem of classifying GC-MS data originating from wheat grains of different farming systems. The aim is to investigate the potential of learning algorithms to classify GC-MS data to be either from conventionally grown or from organically grown samples and considering different cultivars. The motivation of our work is rather obvious nowadays: increased demand for organic food in post-industrialized societies and the necessity to prove organic food authenticity. The background of our data set is given by up to 11 wheat cultivars that have been cultivated in both farming systems, organic and conventional, throughout 3 years. More than 300 GC-MS measurements were recorded and subsequently processed and analyzed in the MeltDB 2.0 metabolomics analysis platform, being briefly outlined in this paper. We further describe how unsupervised (t-SNE, PCA) and supervised (SVM) methods can be applied for sample visualization and classification. Our results clearly show that years have most and wheat cultivars have second-most influence on the metabolic composition of a sample. We can also show that for a given year and cultivar, organic and conventional cultivation can be distinguished by machine-learning algorithms. PMID:25853128

  8. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    PubMed

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-01

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%. PMID:27505764

  9. Circularly Polarized Double Layered Printed Hemispherical Helical Antenna with a Parasitic Wire for Bandwidth Enhancement

    NASA Astrophysics Data System (ADS)

    Latef, T. A.; Khamas, S. K.; Reza, Ahmed Wasif

    2014-07-01

    A helical antenna that is printed on a layered dielectric hemisphere has been studied when a parasitic helical wire is incorporated in the structure. Experimental and theoretical results demonstrate that the 3 dB axial ratio (AR) bandwidth can be enhanced by approximately 100% for optimized length and position of the parasitic wire. The analysis has been implemented using the method of moments (MoM), and good agreement has been achieved between computations and measurements.

  10. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Rui, He; Jianfei, Xu; Na, Yan; Jie, Sun; Liqian, Bian; Hao, Min

    2014-10-01

    A high speed inductorless limiting amplifier (LA) in an optical communication receiver with the working speed up to 20 Gb/s is presented. The LA includes an input matching network, a four-stage 3rd order amplifier core, an output buffer for the test and a DC offset cancellation (DCOC). It uses the active interleaving feedback technique both to broaden the bandwidth and achieve the flatness response. Based on our careful analysis of the DCOC and stability, an error amplifier is added to the DCOC loop in order to keep the offset voltage reasonable. Fabricated in the 65 nm CMOS technology, the LA only occupies an area of 0.45 × 0.25 mm2 (without PAD). The measurement results show that the LA achieves a differential voltage gain of 37 dB, and a 3-dB bandwidth of 16.5 GHz. Up to 26.5 GHz, the Sdd11 and Sdd22 are less than -16 dB and -9 dB. The chip excluding buffer is supplied by 1.2 V VDD and draws a current of 50 mA.

  11. Writing wide bandwidth nonchirped fiber Bragg gratings with high sidelobe suppression ratio by linearly scaling apodization

    NASA Astrophysics Data System (ADS)

    Zhao, Yunfei; Hou, Rujie; Zhou, Changzun

    2010-08-01

    A linearly scaling optical apodization method for laser beam power profile modulation is induced. Changing an amplitude mask position between the beam-focusing cylindrical lens and the fiber can linearly scale the vertical apodization profile; this, in turn, enables the optimization of the grating apodization. By using this method, an apodized fiber Bragg grating (FBG) that is designed as an uncooled pump laser diode stabilizer with the specifications of 4.5% reflectivity, 1.6 nm bandwidth, and the side-lobe suppression ratio (SLSR) of 30 dB was UV-imprinted with a tiny Gaussian amplitude mask. Using the same apodization method, a nonchirped-type FBG edge filter was written with a very smooth spectrum. The grating specifications of 0.5-dB attenuation bandwidth of 3.6 nm and 96.5% reflectivity were achieved. The half-spectrum ascending bandwidth in the longer wavelength side is 2.2 nm with 27-dB SLSR. The linearly scaling apodization method is highly beneficial for optimizing the apodization process of UV-writing shorter FBGs with strong apodization.

  12. Bandwidth requirements for fine resolution squinted SAR

    SciTech Connect

    DOERRY,ARMIN W.

    2000-03-01

    The conventional rule-of-thumb for Synthetic Aperture Radar is that an RF bandwidth of c/(2{rho}{sub r}) is required to image a scene at the desired slant-range resolution {rho}{sub r}, and perhaps a little more to account for window functions and sidelobe control. This formulation is based on the notion that the total bandwidth required is the same bandwidth that is required for a single pulse. What is neglected is that efficient processing of an entire synthetic aperture of pulses will often require different frequency content for each of the different pulses that makeup a synthetic aperture. Consequently, the total RF bandwidth required of a Synthetic Aperture Radar may then be substantially wider than the bandwidth of any single pulse. The actual RF bandwidth required depends strongly on flight geometry, owing to the desire for a radar to maintain a constant projection of the Fourier space collection surface onto the {omega}{sub y} axis. Long apertures required for fine azimuth resolution, and severe squint angles with steep depression angles may require total RF bandwidths well beyond the minimum bandwidth required of any single transmitted pulse, perhaps even by a factor of two or more. Accounting for this is crucial to designing efficient versatile high-performance imaging radars. This paper addresses how a data set conducive to efficient processing might increase the total RF bandwidth, and presents examples of how a fixed RF bandwidth might then limit SAR geometries.

  13. Optimal dynamic bandwidth allocation for complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liang, Man-Gui; Li, Qian; Guo, Dong-Chao

    2013-03-01

    Traffic capacity of one network strongly depends on the link’s bandwidth allocation strategy. In previous bandwidth allocation mechanisms, once one link’s bandwidth is allocated, it will be fixed throughout the overall traffic transmission process. However, the traffic load of every link changes from time to time. In this paper, with finite total bandwidth resource of the network, we propose to dynamically allocate the total bandwidth resource in which each link’s bandwidth is proportional to the queue length of the output buffer of the link per time step. With plenty of data packets in the network, the traffic handling ability of all links of the network achieves full utilization. The theoretical analysis and the extensive simulation results on complex networks are consistent. This work is valuable for network service providers to improve network performance or to do reasonable network design efficiently.

  14. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  15. Circularly polarised printed antenna with wide axial-ratio bandwidth using strip dipoles and slots

    NASA Astrophysics Data System (ADS)

    Ito, K.

    1983-10-01

    A circularly polarised series-fed printed-array antenna having a wide axial-ratio bandwidth (for an axial ratio of less than 3 dB) is realised by combining strip dipoles with slots. To form a free-space dipole, i.e. a complementary radiator to a slot, the strip dipole is constructed by modifying the strip radiator of a circularly polarised antenna. Several experiments verify that the strip dipole behaves like a free-space dipole. A design procedure of the circularly polarised printed antenna with a wide axial-ratio bandwidth is described. On the basis of the design procedure, two types of the array antenna having different strip-dipole spacings are made and measured at S-band. An axial-ratio bandwidth of about 27 percent is obtained for the three sets of the radiators, although the actual gain is less than 0 dBi because the impedance matching is neglected.

  16. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  17. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  18. Comparison of effects of sonar bandwidth for underwater target classification

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, Mahmood R.; Yao, De; Li, Donghui; Jamshidi, Arta A.; Dobeck, Gerald J.

    2000-08-01

    In this paper, two different data sets which use linear FM incident signals with different bandwidths, namely 40 KHz and 80 KHz, are used for benchmarking. The goal is to study the effects of using larger bandwidth for underwater target classification. The classification system is formed of several subsystems including preprocessing, a subband decomposition suing wavelet packets, linear predictive coding in subbands, feature selection and neural network classifier. The classification performance is demonstrated on ten noisy realizations of the data sets formed by adding synthesized reverberation effects with 12 dB signal-to- reverberation ratio. The ROC and the error location plots for these dat sets are generated. To compare the generalization and robustness of the system on these data sets, the error and classification rate statistics are generated using Monte Carlo simulations on a large set of noisy data. The results point to the fact that the wideband sonar provides better robustness property. Three-aspect fusion is also adopted which yields almost perfect classification performance. These issues will be thoroughly studied and analyzed in this paper.

  19. Multiple-bandwidth photoacoustic tomography.

    PubMed

    Ku, Geng; Wang, Xueding; Stoica, George; Wang, Lihong V

    2004-04-01

    Photoacoustic tomography, also referred to as optoacoustic tomography, employs short laser pulses to generate ultrasonic waves in biological tissues. The reconstructed images can be characterized by the convolution of the structure of samples, the laser pulse and the impulse response of the ultrasonic transducer used for detection. Although the laser-induced ultrasonic waves cover a wide spectral range, a single transducer can receive only part of the spectrum because of its limited bandwidth. To systematically analyse this problem, we constructed a photoacoustic tomographic system that uses multiple ultrasonic transducers simultaneously, each at a different central frequency. The photoacoustic images associated with the different transducers were compared and analysed. The system was tested by imaging both mouse brains and phantom samples. The vascular vessels in the brain were revealed by all of the transducers, but the image resolutions differed. The higher frequency detectors provided better image resolution while the lower frequency detectors delineated the major structural traits with a higher signal-noise ratio. PMID:15128208

  20. 30/20 GHz spacecraft GaAs FET solid state transmitter for trunking and customer-premise-service application

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Nelson, S.

    1983-01-01

    Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.

  1. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-11-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  2. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  3. Directing Traffic: Managing Internet Bandwidth Fairly

    ERIC Educational Resources Information Center

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  4. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... quality desired Speech and music, M=4000, Bandwidth: 8000 Hz= 8 kHz 8K00A3E Sound broadcasting, single... desired Speech and music, M=4000, Bandwidth: 4000 Hz= 4 kHz 4K00R3E Sound broadcasting, single-sideband, suppressed carrier Bn=M−lowest modulation frequency Speech and music, M=4500, lowest modulation...

  5. Energy Bandwidth for Petroleum Refining Processes

    SciTech Connect

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  6. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. Link to an amendment published at 76 FR 59572, Sept....

  7. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these...

  8. Bandwidth enhancement of dielectric resonator antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.

  9. GyDB mobilomics

    PubMed Central

    Muñoz-Pomer, Alfonso; Domínguez-Escribá, Laura; Covelli, Laura; Bernad, Lucía; Ramasamy, Sukanya; Futami, Ricardo; Sempere, Jose M; Moya, Andrés; Llorens, Carlos

    2011-01-01

    The Gypsy Database concerning Mobile Genetic Elements (release 2.0) is a wiki-style project devoted to the phylogenetic classification of LTR retroelements and their viral and host gene relatives characterized from distinct organisms. Furthermore, GyDB 2.0 is concerned with studying mobile elements within genomes. Therefore, an in-progress repository was created for databases with annotations of mobile genetic elements from particular genomes. This repository is called Mobilomics and the first uploaded database contains 549 LTR retroelements and related transposases which have been annotated from the genome of the Pea aphid Acyrthosiphon pisum. Mobilomics is accessible from the GyDB 2.0 project using the URL: http://gydb.org/index.php/Mobilomics. PMID:22016855

  10. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  11. Relaxor-PT single crystals for broad bandwidth, high power sonar projectors

    NASA Astrophysics Data System (ADS)

    Sherlock, Nevin P.

    2010-06-01

    showed twice the dynamic strain of unmodified PMNT as a function of electric field, and in many cases also showed greater maximum strain at failure (0.3% compared to 0.15% for unmodified PMNT). When QM was measured as a function of drive level, it was shown to sharply decrease under high dynamic strain. Modified single crystals with greater small signal QM values than unmodified PMNT maintain higher QM values under high drive, with Q M = 50--150 immediately prior to sample failure (Q M = 20 for base PMNT immediately prior to failure). The temperature dependence of modified PMNT single crystal electromechanical properties was also determined, and it was shown that modified crystals possess greater property stability than unmodified PMNT. While the base composition shows a limiting rhombohedral-tetragonal transition at 95 °C, modified single crystals using ternary PIN and PZT components show increased transition temperatures of 125 °C and 144 °C, respectively. The greater phase stability of the PIN ternary crystal was also examined through the coercive field, which was shown to be much greater than that of unmodified PMNT over the temperature range of interest (Ec = 5 kV/cm and 2 kV/cm, respectively, at room temperature). From the combined set of property measurements, the heat generation of each material was predicted for an arbitrary projector device. As a consequence of the lower losses, modified single crystals showed as little as 25% of the heat generation value for unmodified PMNT single crystals. Using this prediction as a performance metric, the crystals with the lowest heat generation were selected for device testing. Transducers with base PMNT and modified single crystals were designed using a finite element modeling approach. This model predicted approximately two octaves of bandwidth for the transducer geometry under investigation. A 5 dB decrease in acoustic output was observed when moving from base PMNT to highly modified crystals, but that result does not

  12. Bandwidth limitation in QPSK optical coherent receiver with DAML carrier phase estimation

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Tianping; Fan, Yuanwei; Ma, Zhaohui; You, Xiaodi

    2015-08-01

    We study the limitation of electrical bandwidth in QPSK optical coherent receiver with decision-aided maximum likelihood (DAML) carrier phase estimation. Before signal sampling, a low-pass rectangular filter is utilized to model the bandwidth limitation of electronic devices in the receiver. On one hand the limited bandwidth can reduce the power of additive noise, on the other hand it would distort the signal since inter-symbol interference (ISI) between adjacent symbols occurs. In this paper we discuss the effects on signal amplitude and phase caused by ISI and find original distribution of QPSK constellation points will shift due to ISI. When adjacent symbol interference, that is, the ISI effect of one previous symbol, is taken into account, the distribution changes into the form of 16-QAM, while changing as 4K+1-QAM if K previous symbols are considered. The impact on the subsequent DAML algorithm and the final bit error rate (BER) calculation due to constellation points shifts are analyzed intensively. Monte-Carlo (MC) simulation results show that 0.7 to 0.9 times symbol rate is a reasonable bandwidth range for different optical signal to noise ratios (OSNRs), and optimum bandwidth is often inside this range. Results also reveal that filter-induced ISI would degrade the BER performance of DAML receiver when OSNR is over 10 dB.

  13. A Wide-Bandwidth, Low-Noise SIS Receiver Design for Millimeter and Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; LeDuc, Henry G.; Miller, David; Rice, Frank; Weinreb, Sander; Zmuidzinas, Jonas

    2004-01-01

    In principle, millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We are applying modem design tools, such as 3D electromagnetic simulators and Caltech's SuperMix SIS analysis package, to develop a new generation of waveguide SIS mixers with very broad RF and IF bandwidths. Our initial design consists of a double-sideband mixer targeted for the 180- 300 GHz band that uses a single SIS junction excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output band, limited by the MMIC low-noise IF preamplifier, is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss is predicted to be no more than 1-2 dB (single-sideband) with mixer noise temperatures across the band within 10 Kelvin of the quantum limit. The single-sideband receiver noise temperature goal is 70 Kelvin. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and a demonstration on the CSO should occur in the spring of 2003.

  14. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light

  15. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  16. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  17. A bandwidth enhancement method for microstrip antennas

    NASA Astrophysics Data System (ADS)

    Katehi, Pisti B.; Alexopoulos, Nicolaos G.; Hsia, I. Y.

    1987-01-01

    Bandwidth enhancement methods for electromagnetically coupled microstrip dipoles are discussed. It is demonstrated that if parasitic metallic strips are incorporated in the structure either co-planar and parallel to the embedded microstrip transmission line open end, or between the transmission line and the microstrip dipole, then substantial bandwidth enhancement results. Experimental verification of this model is introduced for a bandwidth definition based on the frequency range which satisfies a voltage standing-wave ratio of less than 2 criterion. The theoretical model which accounts for radiation from the microstrip dipole, the parasitics, and the transmission line is verified.

  18. A dynamic bandwidth allocation scheme for EPON

    NASA Astrophysics Data System (ADS)

    Li, Xiuyuan; Wu, Xiaojuan; Ma, Maode; Li, Wenming; Zhang, Yuanyuan

    2008-11-01

    This paper analyses current bandwidth schemes and proposes a novel dynamic bandwidth allocation scheme for EPON. According the scheme, we define four kinds of multimedia services such as Unsolicited Request Service (URS), Realtime Service (rt-S), Non-Real-time Service (nrt-S) and Best Effort (BE). Different kinds of services have different Quality of Service (QoS) requirements. Our scheme considers the diverse QoS request, e.g., delay for rt-S, throughput for nrt-S and fairness for BE. The simulation results show this novel scheme can ensure the quality of service (QoS) and improve bandwidth utilization.

  19. Mode-size converter with high coupling efficiency and broad bandwidth.

    PubMed

    Fang, Qing; Song, Junfeng; Luo, Xianshu; Yu, Mingbin; Lo, Guoqiang; Liu, Yuliang

    2011-10-24

    An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO(2) waveguide and a-Si nano-tapers by removing the adjacent SiO(2) layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO(2) waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively. PMID:22109007

  20. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber. PMID:25321794

  1. Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height.

    PubMed

    Haffouz, S; Barrios, P J; Normandin, R; Poitras, D; Lu, Z

    2012-03-15

    An ultrawide-bandwidth, superluminescent light-emitting diode (SLED) utilizing multiple layers of dots of tuned height is reported. Due to thermal effect, the superluminescent phenomenon is observed only under pulse-mode operation. The device exhibits a 3 dB bandwidth of 190 nm with central wavelength of 1020 nm under continuous-wave (cw) conditions. The maximum corresponding output power achieved in this device under cw and pulsed operation conditions are 0.54 mW and 17 mW, respectively. PMID:22446239

  2. Realization of low frequency and controllable-bandwidth squeezing based on a four-wave-mixing amplifer in rubidium vapor

    SciTech Connect

    Liu, Cunjin; Jing, Jietai; Zhou, Zhifan; Pooser, Raphael C; Hudelist, Florian; Zhang, Weiping

    2011-01-01

    We experimentally demonstrate the creation of two correlated beams generated by a nondegenerate four-wave-mixing amplifier at {lambda} = 795 nm in hot rubidium vapor. We achieve intensity difference squeezing at frequencies as low as 1.5 kHz which is so far the lowest frequency to observe squeezing in an atomic system. The squeezing spans from 5.5 to 16.5 MHz with a maximum squeezing of {approx}5 dB at 1 MHz. We can control the squeezing bandwidth by changing the pump power. Both low frequency and controllable bandwidth squeezing show great potential in sensitivity detection and precise control of the atom optics measurement.

  3. High bandwidth control of precision motion instrumentation

    NASA Astrophysics Data System (ADS)

    Bristow, Douglas A.; Dong, Jingyan; Alleyne, Andrew G.; Ferreira, Placid; Salapaka, Srinivas

    2008-10-01

    This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances.

  4. A broadband 47-67 GHz LNA with 17.3 dB gain in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Chong, Wang; Zhiqun, Li; Qin, Li; Yang, Liu; Zhigong, Wang

    2015-10-01

    A broadband 47-67 GHz low noise amplifier (LNA) with 17.3 dB gain in 65-nm CMOS technology is proposed. The features of millimeter wave circuits are illustrated first and design methodologies are discussed. The wideband input matching of the LNA was achieved by source inductive degeneration, which is narrowband in the low-GHz range but wideband at millimeter-wave frequencies due to the existence of gate-drain capacitance, Cgd. In order to minimize the noise figure (NF), the LNA used a common-source (CS) structure rather than cascode in the first stage, and the noise matching principle is explored. The last two stages of the LNA used a cascode structure to increase the power gain. Analysis of the gain boost effect of the gate inductor at the common-gate (CG) transistor is also performed. T-shape matching networks between stages are intended to enlarge the bandwidth. All on-chip inductors and transmission lines are modeled and simulated with a 3-dimensional electromagnetic (EM) simulation tool to guarantee the success of the design. Measurement results show that the LNA achieves a maximum gain of 17.3 dB at 60 GHz, while the 3-dB bandwidth is 20 GHz (47-67 GHz), including the interested band of 59-64 GHz, and the minimum noise figure is 4.9 dB at 62 GHz. The LNA absorbs a current of 19 mA from a 1.2 V supply and the chip occupies an area of 900 × 550 μm2 including pads. Project supported by the National High Technology Research and Development Program of China (No. 2011AA010202).

  5. The minimum bandwidths of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Baumback, M. M.; Calvert, W.

    1987-01-01

    The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.

  6. H-infinity control with bandwidth and H2 constraints

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Zong, R.; Fischl, Robert

    1991-01-01

    A discussion is presented of practical issues associated with H-infinity controller design based on the results presented by Doyle et al. (1989). First, the optimal H-infinity controller based on these results is discussed from a practical application point of view. Then, tradeoffs between the H-infinity norm and other performance characteristics, specifically bandwidth and the H2 norm, are considered. It is shown that when the optimal H-infinity norm is relaxed by only 10-20 percent and the central controller from Doyle et al. is used, significant benefits in both the controller bandwidth and the H2 norm of the closed-loop system can be achieved.

  7. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser.

    PubMed

    Zhao, Qilai; Xu, Shanhui; Zhou, Kaijun; Yang, Changsheng; Li, Can; Feng, Zhouming; Peng, Mingying; Deng, Huaqiu; Yang, Zhongmin

    2016-04-01

    A significant broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser is demonstrated based on a semiconductor optical amplifier (SOA) with optoelectronic feedback. By exploiting the gain saturation effect of the SOA and the intensity feedback loop, a maximum noise suppression of over 50 dB around the relaxation oscillation frequencies and a suppression bandwidth of up to 50 MHz are obtained. The relative intensity noise of -150  dB/Hz in the frequency range from 0.8 kHz to 50 MHz is achieved, which approaches the shot-noise limit. The obtained optical signal-to-noise ratio is more than 70 dB. This near-shot-noise-limited laser source shows important implications for the advanced fields of high-precision frequency stabilization, quantum key distribution, and gravitational wave detection. PMID:27192229

  8. An advanced 500-MHZ-bandwidth fiber-optic signal link for EMP and general laboratory applications

    NASA Astrophysics Data System (ADS)

    Blackburn, J. C.

    1981-07-01

    Means have been found to control modal noise in a fiber-optic system using single-mode lasers. Laser coherence is reduced by dithering, and careful attention is given to fiber connections. These techniques, in combination with miniaturization, have produced a compact wideband analog fiber-optic link that is well suited to signal transmission where dielectric transmission is dictated by electrical noise, need for complete isolation, TEMPEST considerations, or a requirement for wide bandwidth. The optical transmitter has a volume of 550 cc, contains an optically remote-controlled 0- to 45-dB input attenuator and calibrator, and will operate for 2 hr on its internal batteries. Maximum input sensitivity is a few millivolts into 50 ohms, system risetime in 0.8 ns, and dynamic range is greater than 30 dB. Transmission distances up to kilometers are possible, although fiber dispersion will reduce bandwidth at long distances.

  9. Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers.

    PubMed

    Coles, J B; Kuo, B P-P; Alic, N; Moro, S; Bres, C-S; Chavez Boggio, J M; Andrekson, P A; Karlsson, M; Radic, S

    2010-08-16

    Two novel bandwidth efficient pump-dithering Stimulated Brillouin Scattering (SBS) suppression techniques are introduced. The techniques employ a frequency-hopped chirp and an RF noise source to impart phase modulation on the pumps of a two pump Fiber Optical Parametric Amplifier (FOPA). The effectiveness of the introduced techniques is confirmed by measurements of the SBS threshold increase and the associated improvements relative to the current state of the art. Additionally, the effect on the idler signal integrity is presented as measured following amplification from a two pump FOPA employing both techniques. The measured 0.8 dB penalty with pumps dithered by an RF noise source, after accruing 160 ps/nm of dispersion with 38 dB conversion gain in a two-pump FOPA is the lowest reported to date. PMID:20721202

  10. Towards optimum demodulation of bandwidth-limited and low SNR square-wave subcarrier signals

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Hurd, W.

    1995-01-01

    The optimum phase detector is presented for tracking square-wave subcarriers that have been bandwidth limited to a finite number of harmonics. The phase detector is optimum in the sense that the loop signal-to-noise ratio (SNR) is maximized and, hence, the rms phase tracking error is minimized. The optimum phase detector is easy to implement and achieves substantial improvement. Also presented are the optimum weights to combine the signals demodulated from each of the harmonics. The optimum weighting provides SNR improvement of 0.1 to 0.15 dB when the subcarrier loop SNR is low (15 dB) and the number of harmonics is high (8 to 16).

  11. Early results from the Army Research Laboratory ultrawide-bandwidth foliage penetration SAR

    NASA Astrophysics Data System (ADS)

    McCorkle, John W.

    1993-11-01

    The U.S. Army is interested in demonstrating a capability of detecting and discriminating tactical targets concealed in foliage. To investigate foliage and ground penetration phenomena, a fully polarimetric laboratory Synthetic Aperture Radar system has been built on a rooftop rail. The system uses impulse technology covering a bandwidth of 40 MHz to 1 GHz. The first image from the system showed the -3 db beamwidths to be 5 inches in range and 11 inches in cross-range measured to an 8-ft triangular plate corner reflector. This paper will briefly describe the measurement system and present images made of canonical targets in winter foliage.

  12. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  13. Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

    SciTech Connect

    SERKLAND, DARWIN K.; GEIB, KENT M.; BLANSETT, ETHAN L.; KARPEN, GARY D.; PEAKE, GREGORY M.; HARGETT, TERRY; MONTANO, VICTORIA; SULLIVAN, CHARLES T.; ALLERMAN, ANDREW A.; RIENSTRA, JEFFREY L.

    2003-04-01

    This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

  14. dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation.

    PubMed

    Chen, Yi-Ju; Lu, Cheng-Tsung; Su, Min-Gang; Huang, Kai-Yao; Ching, Wei-Chieh; Yang, Hsiao-Hsiang; Liao, Yen-Chen; Chen, Yu-Ju; Lee, Tzong-Yi

    2015-01-01

    Given the increasing number of proteins reported to be regulated by S-nitrosylation (SNO), it is considered to act, in a manner analogous to phosphorylation, as a pleiotropic regulator that elicits dual effects to regulate diverse pathophysiological processes by altering protein function, stability, and conformation change in various cancers and human disorders. Due to its importance in regulating protein functions and cell signaling, dbSNO (http://dbSNO.mbc.nctu.edu.tw) is extended as a resource for exploring structural environment of SNO substrate sites and regulatory networks of S-nitrosylated proteins. An increasing interest in the structural environment of PTM substrate sites motivated us to map all manually curated SNO peptides (4165 SNO sites within 2277 proteins) to PDB protein entries by sequence identity, which provides the information of spatial amino acid composition, solvent-accessible surface area, spatially neighboring amino acids, and side chain orientation for 298 substrate cysteine residues. Additionally, the annotations of protein molecular functions, biological processes, functional domains and human diseases are integrated to explore the functional and disease associations for S-nitrosoproteome. In this update, users are allowed to search a group of interested proteins/genes and the system reconstructs the SNO regulatory network based on the information of metabolic pathways and protein-protein interactions. Most importantly, an endogenous yet pathophysiological S-nitrosoproteomic dataset from colorectal cancer patients was adopted to demonstrate that dbSNO could discover potential SNO proteins involving in the regulation of NO signaling for cancer pathways. PMID:25399423

  15. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  16. Relative loudness of low- and high-frequency bands of speech-shaped babble, including the influence of bandwidth and input level

    NASA Astrophysics Data System (ADS)

    Keidser, Gitte; Katsch, Richard; Dillon, Harvey; Grant, Frances

    2002-02-01

    In a balancing test, ten normal-hearing listeners adjusted filtered speech-shaped babble-noise to equally loud levels. On average, they selected about 10 dB less gain for bands below 1 kHz than for bands above and including 1 kHz. The findings applied to two bandwidths (octave and equivalent rectangular bandwidth) and two levels (65 and 85 dB SPL). The outcome suggests that hearing aid fitting procedures aiming to equalize loudness of speech bands should prescribe less low-frequency gain than procedures aiming to normalize loudness of speech bands. A significant interaction was found between bandwidth and input level for the high-frequency bands.

  17. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P., Tran, V., Chau, R.

    2012-10-01

    We developed a high bandwidth differential amplifier for gas gun shock experiments. The circuit has a bandwidth up to 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. Various amplifying designs are shown, although the increased amplification decreases bandwidth. Bench tests show that the amplifier can withstand significant common mode DC voltage and measure 10 ns, and 50 mV signals.

  18. Frequency doubling of fiber laser radiation of large spectral bandwidths

    NASA Astrophysics Data System (ADS)

    Nyga, Sebastian; Geiger, Jens; Jungbluth, Bernd

    2010-02-01

    In this work the reduction of conversion efficiency due to spectral bandwidth of fiber laser radiation is investigated. Subsequently, compensation optics to correct the spectral phase mismatching inside the nonlinear crystal is dimensioned and tested. For the experimental study a laboratory fiber laser setup is used consisting of a seed diode and a three stage fiber amplifier. The laser delivers an average output power of up to 100 W at 1 MHz. Even below the Raman threshold the output is far away from Fourier limit, providing a nearly Lorentzian spectral shape and a temporal pulse width of 800 ps. As the bandwidth increases nearly linearly with the pump power of the third amplifier stage, this parameter could be controlled for the experiments. All conversion experiments are conducted with a moderate load of the nonlinear crystals, i.e. intensity less than 150 MW/cm2. Without compensation of the spectral phase mismatch, a maximum conversion efficiency of 15 % is attained for a Type I configuration with a 20mm long LBO crystal. Using the compensation setup 27 W of green light are obtained from 60 W infrared light at a bandwidth of 4.7 nm. Therefore the efficiency rises to 44% at the same load.

  19. High resolution, high bandwidth global shutter CMOS area scan sensors

    NASA Astrophysics Data System (ADS)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  20. Antenna array bandwidth enhancement using polymeric nanocomposite substrate

    NASA Astrophysics Data System (ADS)

    Muhamad, W. A. W.; Ngah, R.; Jamlos, M. F.; Soh, P. J.; Jamlos, M. A.; Lago, H.

    2016-04-01

    A 4 × 2 array antenna is developed using a new nanocomposite polymeric magneto-dielectric substrate. The permittivity and permeability factors have been accounted in designing the proposed array antenna at the frequency of 2.6 GHz. A pure polydimethylsiloxane (P-PDMS) (ɛ r = 2.7) solution is mixed with ferrite III oxide (μ r = 1.2) to generate this new nanocomposite polymeric magneto-dielectric (NPMD) substrate. The NPMD surface is then hardened and located in between two P-PDMS layers. The 4 × 2 radiating elements are immersed to the top of P-PDMS layer, while SMA coaxial feeder is fed from underneath the ground layer. This sealing technique enabled the proposed antenna to be waterproof and flexible. This combination contributes to bandwidth enhancement of 52.65 %, size miniaturization of 176 × 156 mm2 and high gain of 10.8 dB. The measured results show a good agreement with simulations.

  1. Improved Cross Polarization and Broad Impedance Bandwidth from Simple Single Element Shorted Rectangular Microstrip Patch: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Poddar, Rakshapada; Chakraborty, Subhradeep; Chattopadhyay, Sudipta

    2016-01-01

    A simple, compact and single element rectangular microstrip antenna with three pairs of shorting plates has been proposed and investigated experimentally for broad impedance bandwidth and improved cross polarized (XP) radiation compared to maximum co-polarized (CO) gain without affecting the co-polarized radiation pattern. Around 25-40 dB isolation between copolarized radiation to cross polarized radiation (CO-XP isolation) along with 1.32 GHz impedance bandwidth is achieved with the proposed structure. The present structure is very simple and easy to manufacture and provides high CO-XP isolation over entire angular range around the broadside direction. Moreover, the present structure is free from back radiation in terms of XP fields. The present investigation provides an insightful, visualization-based understanding of concurrent improvement in impedance bandwidth and the XP radiation characteristics with the present structure.

  2. 47 CFR 87.135 - Bandwidth of emission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth of emission. 87.135 Section 87.135... Technical Requirements § 87.135 Bandwidth of emission. (a) Occupied bandwidth is the width of a frequency... equal to 0.5 percent of the total mean power of a given emission. (b) The authorized bandwidth is...

  3. Systems for measuring response statistics of gigahertz bandwidth photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.

  4. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  5. Power and bandwidth efficient modulation techniques

    NASA Astrophysics Data System (ADS)

    Le-Ngoc, T.; Feher, K.

    In this invited paper, a literature survey of power and bandwidth efficient modulation techniques is presented in historical progression from the widely known QPSK, OQPSK, and MSK to recently developed digital 4-phase modulation schemes. This historical review provides some insight into understanding the motivation, evolution and results of the development of new digital 4-phase modulation schemes applied to nonlinear channels.

  6. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... good engineering practice, except that Type B, damped-wave emission will not be authorized. (c)...

  7. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... good engineering practice, except that Type B, damped-wave emission will not be authorized. (c)...

  8. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE..., consistent with efficient use of the spectrum and good engineering practice, except that Type B,...

  9. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emission I. NO MODULATING SIGNAL Continuous wave emission N0N (zero) II. AMPLITUDE MODULATION 1. Signal With Quantized or Digital Information Continuous wave telegraphy Bn=BK, K=5 for fading circuits, K=3... channels) Bn=sum of M for each sideband 2 channels, M=3000, Bandwidth: 6000 Hz=6 kHz 6K00B8E 3....

  10. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  11. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  12. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  13. Bandwidth, Broadband, and Planning for Public Access

    ERIC Educational Resources Information Center

    Blowers, Helene

    2012-01-01

    Broadband and bandwidth allocation is an essential technology planning activity that libraries should address on a continual basis. There are five key factors that will impact your network's performance: 1. infrastructure, 2. network load, 3. workstation performance, 4. prioritization of services, and 5. network management. The author thinks it's…

  14. Physiological Effects of Superoxide Dismutase on Altered Visual Function of Retinal Ganglion Cells in db/db Mice

    PubMed Central

    Nan, Yan; Zhang, Dongjuan; Chen, Baiyu; Guan, Youfei; Pu, Mingliang

    2012-01-01

    Background The C57BLKS/J db/db (db/db) mouse is a widely used type 2 diabetic animal model, and this model develops early inner retinal neuronal dysfunction beginning at 24 weeks. The neural mechanisms that mediate early stage retinal dysfunction in this model are unknown. We evaluated visual response properties of retinal ganglion cells (RGCs) during the early stage of diabetic insult (8, 12, and 20 wk) in db/db mice and determined if increased oxidative stress plays a role in impaired visual functions of RGCs in 20 wk old db/db mice. Methodology/Principal Findings In vitro extracellular single-unit recordings from RGCs in wholemount retinas were performed. The receptive field size, luminance threshold, and contrast gain of the RGCs were investigated. Although ON- and OFF-RGCs showed a different time course of RF size reduction, by 20 wk, the RF of ON- and OFF-RGCs were similarly affected. The LT of ON-RGCs was significantly elevated in 12 and 20 wk db/db mice compared to the LT of OFF-RGCs. The diabetic injury also affected contrast gains of ON- and OFF-RGCs differently. The generation of reactive oxidative species (ROS) in fresh retina was estimated by dihydroethidium. Superoxide dismutase (SOD) (300 unit/ml) was applied in Ames medium to the retina, and visual responses of RGCs were recorded for five hours. ROS generation in the retinas of db/db mice increased at 8wk and continued to progress at 20 wk of ages. In vitro application of SOD improved visual functions in 20 wk db/db mice but the SOD treatment affected ON- and OFF-RGCs differently in db/m retina. Conclusions/Significance The altered visual functions of RGCs were characterized by the reduced RF center size, elevated LT, and attenuated contrast gain in 12 and 20 wk db/db mice, respectively. These altered visual functions could, at least partly, be due to oxidative stress since in vitro application of SOD effectively improves visual functions. PMID:22272340

  15. Real-time monitoring in passive optical access networks using L-band ASE and varied bandwidth and reflectivity of fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2016-05-01

    This paper presents a passive optical access network monitoring approach using an L-band amplified spontaneous emission source and varied bandwidths, reflectivity and Bragg wavelengths of fiber Bragg gratings (FBGs). In this technique, the reflection spectra of dedicated FBGs are used as the branch identifier to monitor the integrity of the distribution fiber in a point-to-multipoint network. FBGs with different bandwidths, reflectivity and Bragg wavelengths were used to monitor an increased number of optical network units within the limited bandwidth of the monitoring source. Simulations and experimental testing have been conducted to ensure the feasibility of this system. An experimental setup using four FBGs was conducted for different types of splitters. The signal processing to determine the faulty branches is presented. This system is capable of monitoring up to 32 distribution fibers using a limited monitoring source bandwidth of 10.8 nm with a power margin of 2 dB.

  16. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  17. Low-cost 20-22 GHz MIC active receiver/radiometer

    NASA Technical Reports Server (NTRS)

    Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-01-01

    A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.

  18. Extended high-frequency bandwidth improves reception of speech in spatially separated masking speech

    PubMed Central

    Levy, Suzanne Carr; Freed, Daniel J.; Nilsson, Michael; Moore, Brian C.J.; Puria, Sunil

    2015-01-01

    Objectives The hypothesis that extending the audible frequency bandwidth beyond the range currently implemented in most hearing aids can improve speech understanding was tested for normal-hearing and hearing-impaired participants using target sentences and spatially separated masking speech. Design The Hearing in Noise Test (HINT) speech corpus was re-recorded and four masking talkers were recorded at a sample rate of 44.1 kHz. All talkers were male native speakers of American English. Reception threshold for Sentences (RTS) were measured in two spatial configurations. In the asymmetric configuration, the target was presented from −45° azimuth and two colocated masking talkers were presented from +45° azimuth. In the diffuse configuration, the target was presented from 0° azimuth and four masking talkers were each presented from a different azimuth: +45°, +135°, −135°, and −45°. The new speech sentences, masking materials and configurations, collectively termed the ‘Hearing in Speech Test (HIST)’, were presented using lowpass filter cutoff frequencies of 4, 6, 8, and 10 kHz. For the normal-hearing participants, stimuli were presented in the sound field using loudspeakers. For the hearing-impaired participants, the spatial configurations were simulated using earphones, and a multi-band wide dynamic range compressor with a modified CAM2 fitting algorithm was used to compensate for each participant’s hearing loss. Results For the normal-hearing participants (N=24, mean age 40 years), the RTS improved significantly by 3.0 dB when the bandwidth was increased from 4 to 10 kHz, and a significant improvement of 1.3 dB was obtained from extending the bandwidth from 6 to 10 kHz, in both spatial configurations. Hearing-impaired participants (N=25, mean age 71 years) also showed a significant improvement in RTS with extended bandwidth, but the effect was smaller than for the normal-hearing participants. The mean decrease in RTS when the bandwidth was

  19. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-12-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed by Feldhaus et al. (Opt. Commun. 140 (1997) 341) and named "two-stage SASE FEL". The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator can be realized using Bragg reflections from crystals. We propose a scheme of monochromator with a bandwidth of 20 meV for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is determined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  20. 20 MHz/40 MHz Dual Element Transducers for High Frequency Harmonic Imaging

    PubMed Central

    Kim, Hyung Ham; Cannata, Jonathan M.; Liu, Ruibin; Chang, Jin Ho; Silverman, Ronald H.; Shung, K. Kirk

    2009-01-01

    Concentric annular type dual element transducers for second harmonic imaging at 20 MHz / 40 MHz were designed and fabricated to improve spatial resolution and depth of penetration for ophthalmic imaging applications. The outer ring element was designed to transmit the 20 MHz signal and the inner circular element was designed to receive the 40 MHz second harmonic signal. Lithium niobate (LiNbO3), with its low dielectric constant, was used as the piezoelectric material to achieve good electrical impedance matching. Double matching layers and conductive backing were used and optimized by KLM modeling to achieve high sensitivity and wide bandwidth for harmonic imaging and superior time-domain characteristics. Prototype transducers were fabricated and evaluated quantitatively and clinically. The average measured center frequency for the transmit ring element was 21 MHz and the one-way –3 dB bandwidth was greater than 50%. The 40 MHz receive element functioned at 31 MHz center frequency with acceptable bandwidth to receive attenuated and frequency downshifted harmonic signal. The lateral beam profile for the 20 MHz ring elements at the focus matched the Field II simulated results well, and the effect of outer ring diameter was also examined. Images of a posterior segment of an excised pig eye and a choroidal nevus of human eye were obtained both for single element and dual element transducers and compared to demonstrate the advantages of dual element harmonic imaging. PMID:19126492

  1. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  2. Low Bandwidth Robust Controllers for Flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  3. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  4. Bandwidth and SIMDUCE as simulator fidelity criteria

    NASA Technical Reports Server (NTRS)

    Key, David

    1992-01-01

    The potential application of two concepts from the new Handling Qualities Specification for Military Rotorcraft was discussed. The first concept is bandwidth, a measure of the dynamic response to control. The second is a qualitative technique developed for assessing the visual cue environment the pilot has in bad weather and at night. Simulated Day Usable Cue Environment (SIMDUCE) applies this concept to assessing the day cuing fidelity in the simulator.

  5. On the bandwidth of the plenoptic function.

    PubMed

    Do, Minh N; Marchand-Maillet, Davy; Vetterli, Martin

    2012-02-01

    The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates. PMID:21827973

  6. Effective File I/O Bandwidth Benchmark

    SciTech Connect

    Rabenseifner, R.; Koniges, A.E.

    2000-02-15

    The effective I/O bandwidth benchmark (b{_}eff{_}io) covers two goals: (1) to achieve a characteristic average number for the I/O bandwidth achievable with parallel MPI-I/O applications, and (2) to get detailed information about several access patterns and buffer lengths. The benchmark examines ''first write'', ''rewrite'' and ''read'' access, strided (individual and shared pointers) and segmented collective patterns on one file per application and non-collective access to one file per process. The number of parallel accessing processes is also varied and well-formed I/O is compared with non-well formed. On systems, meeting the rule that the total memory can be written to disk in 10 minutes, the benchmark should not need more than 15 minutes for a first pass of all patterns. The benchmark is designed analogously to the effective bandwidth benchmark for message passing (b{_}eff) that characterizes the message passing capabilities of a system in a few minutes. First results of the b{_}eff{_}io benchmark are given for IBM SP and Cray T3E systems and compared with existing benchmarks based on parallel Posix-I/O.

  7. Ultra-wide Bandwidth Inter-Chip Interconnects for Heterogeneous Millimeter-Wave and THz Circuits

    NASA Astrophysics Data System (ADS)

    Fay, Patrick; Bernstein, Gary H.; Lu, Tian; Kulick, Jason M.

    2016-09-01

    Heterogeneous chip-to-chip interconnects with low loss and ultra-wide bandwidths have been demonstrated. Coplanar waveguide-based interconnects between GaAs and Si die have been fabricated and characterized and the results compared to expectations from full-wave electromagnetic simulation. Broadband transmission characteristics were obtained, with insertion losses below 0.3 dB at 100 GHz and below 0.8 dB at frequencies up to 220 GHz demonstrated experimentally. The measured return loss exceeded 11.5 dB at all frequencies up to 220 GHz. The interconnects offer low latency, with a measured group delay of 0.69 ps. The measured results are in good agreement with full-wave simulations, indicating that the measured results do not suffer from significant impairments compared to theoretical predictions. The demonstrated interconnects offer an alternative to conventional approaches to millimeter-wave circuit and system integration, by enabling the compact realization of circuits in the microwave, millimeter-wave, sub-millimeter-wave, and THz frequency regimes in heterogeneous device technologies with very low chip-to-chip insertion loss.

  8. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth. PMID:27270944

  9. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    NASA Astrophysics Data System (ADS)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  10. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers

    PubMed Central

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30–58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< −10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth. PMID:27270944

  11. Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene

    NASA Astrophysics Data System (ADS)

    Wang, Renxin; Liu, Yuan; Bai, Bing; Guo, Nan; Guo, Jing; Wang, Xubo; Liu, Mengran; Zhang, Guojun; Zhang, Binzhen; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2016-02-01

    In order to eliminate polyurethane hat resonance frequency intervention and reduce fluid influence, a whisker-inspired MEMS vector hydrophone (WIVH) encapsulated with parylene is proposed to broaden frequency bandwidth and improve sensitivity-frequency response performance, compared to the lateral line-inspired MEMS vector hydrophone (LLIVH). Parylene that is conformally deposited on the device surface replaces polyurethane encapsulating hat and silicone oil existing in current encapsulation technology. The main advantage of WIVH as demonstrated by modelling and characterization is the enhanced bandwidth response, which is the critical factor in hydrophone design. Acoustic pressure gradient properties of the WIVH and LLIVH are analyzed to demonstrate the influence of the polyurethane hat. The interactions of the parylene membrane with fluid and the influences on vibrating performance are also investigated. Resonance measurement and sensitivity-frequency response analysis demonstrate the frequency bandwidth of the WIVH could be extended twice compared to that of the LLIVH. Moreover, the WIVH is proved to act as a typical pressure gradient hydrophone with an increment of 6 dB per octave in the linear region.

  12. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  13. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  14. Gastric carcinogenesis by N-Methyl-N-nitrosourea is enhanced in db/db diabetic mice.

    PubMed

    Yoshizawa, Nao; Yamaguchi, Hirokazu; Yamamoto, Masami; Shimizu, Nobuyuki; Furihata, Chie; Tatematsu, Masae; Seto, Yasuyuki; Kaminishi, Michio

    2009-07-01

    In 2005, a Japanese epidemiological study showed that increase in plasma glucose levels is a risk factor for gastric cancer. However, no animal model has hitherto shown any association between diabetes mellitus and neoplasia in the stomach. Diabetic (db/db) mice have obese and diabetic phenotypes, including hyperglycemia, because of disruption of the leptin receptor. In the present study, effects of hyperglycemia and/or hyperinsulinemia on the development of proliferative lesions were therefore examined in db/db mice given N-methyl-N-nitrosourea (MNU). A total of 120 mice were assigned to four groups: Group A, 40 db/db mice with MNU; Group B, 40 + /db mice with MNU; Group C, 30 misty (wild-type) mice with MNU; Group D, 10 db/db mice without MNU. MNU was given at 60 ppm in drinking water for 20 weeks. Subgroups of animals were sacrificed at weeks 21 and 30 and blood samples were collected to measure glucose, insulin, leptin, and adiponectin concentrations. The removed stomachs were fixed in formalin, and embedded in paraffin for histological examination and immunohistochemistry. At week 30 in Groups A, B, C and D, hyperplasia was observed in 100, 79, 57, and 0%, and dysplasia in 91, 43, 71, and 0%, respectively. Adenocarcinomas and pepsinogen-altered pyloric glands (PAPG), putative preneoplastic lesions, were observed only in Group A, at an incidence of 45%. The serum levels of insulin and leptin were also elevated in Group A. Gastric carcinogenesis by MNU was enhanced in db/db mice, possibly in association with hyperinsulinemia and hyperleptinemia. PMID:19432903

  15. A -90 dBc@ 10 kHz Phase Noise Fractional-N Frequency Synthesizer with Accurate Loop Bandwidth Control Circuit

    NASA Astrophysics Data System (ADS)

    Dosho, Shiro

    2006-06-01

    This paper describes a -90 dBc@10 kHz phase noise fractional-N frequency synthesizer of 110 M-180 MHz output with accurate loop bandwidth control. Stable phase noise characteristics are achieved by controlling the bandwidth correctly, even if the PLL uses a noisy but small ring oscillator. Digital controller adjusts voltage controlled oscillator (VCO) gain and time constant of the loop filter. Analog controller compensates temperature variance. Test chip fabricated on 0.13 μm CMOS process shows stable and 6.8 dB improvement of the phase noise performance is achieved against process and environmental variations.

  16. 47 CFR 78.104 - Authorized bandwidth and emission designator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designator. (a) The authorized bandwidth permitted to be used by a CARS station and specified in the station... bandwidth for the station on the lesser of the occupied or necessary bandwidth where a persuasive showing is... with § 78.103(b)(1) and, additionally, will permit 99 percent of the total radiated power to be...

  17. 47 CFR 78.104 - Authorized bandwidth and emission designator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designator. (a) The authorized bandwidth permitted to be used by a CARS station and specified in the station... bandwidth for the station on the lesser of the occupied or necessary bandwidth where a persuasive showing is... with § 78.103(b)(1) and, additionally, will permit 99 percent of the total radiated power to be...

  18. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice.

    PubMed

    Liu, Qingpu; Li, Xuan; Li, Cunyu; Zheng, Yunfeng; Wang, Fang; Li, Hongyang; Peng, Guoping

    2016-01-01

    The present study investigated the effect of 1-Deoxynojirimycin (DNJ) on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg(-1)·day(-1)), DNJ-40 (DNJ 40 mg·kg(-1)·day(-1)) and DNJ-80 (DNJ 80 mg·kg(-1)·day(-1)). All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and liver TG, as well as activities of serum alanine aminotransferase (ALT), and aspartate transaminase (AST); DNJ also alleviated macrovesicular steatosis and decreased tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) levels in liver tissue. Furthermore, DNJ treatment significantly increased hepatic glycogen content, the activities of hexokinase (HK), pyruvate kinase (PK) in liver tissue, and decreased the activities of glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, DNJ increased the phosphorylation of phosphatidylinositol 3 kinase (PI3K) on p85, protein kinase B (PKB) on Ser473, glycogen synthase kinase 3β (GSK-3β) on Ser9, and inhibited phosphorylation of glycogen synthase (GS) on Ser645 in liver tissue of db/db mice. These results demonstrate that DNJ can increase hepatic insulin sensitivity via strengthening of the insulin-stimulated PKB/GSK-3β signal pathway and by modulating glucose metabolic enzymes in db/db mice. Moreover, DNJ also can improve lipid homeostasis and attenuate hepatic steatosis in db/db mice. PMID:26927057

  19. A broadband DC to 20 GHz 3-bit MEMS digital attenuator

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Zhu, Jian; Jiang, Lili; Yu, Yuanwei; Li, Zhiqun

    2016-05-01

    A 3-bit microelectromechanical system (MEMS) digital attenuator is designed with 0–20 GHz bandwidth. The attenuation ranges from 0 to 35 dB with 5 dB step. The attenuator, with the coplanar waveguide (CPW), is implemented by surface sacrificial layer technology. The DC-contact MEMS switches with three contact dimples are symmetrically placed around the T type resistor network, making the switches minimum in number and the structure compact. Through the lumped parameter method, the attenuator has good terminal matches in different attenuation states. The test results show that eight different attenuation states are realized within 0–20 GHz. The attenuation deviation is less than  ±5%, the insertion loss is less than 1.7 dB and the voltage standing wave rations is less than 1.4 under most of the attenuation states. With the MEMS switches and CPW being adopted, the attenuator has the advantages of higher linearity, lower insertion loss and power consumption. The chip size is about 3.2 mm2 including the pad. This work was supported by the International Science & Technology Cooperation Program of China (2013DFB10300).

  20. Bandwidth Constrained Multi-interface Networks

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gianlorenzo; di Stefano, Gabriele; Navarra, Alfredo

    In heterogeneous networks, devices can communicate by means of multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost, and provides a communication bandwidth. In this paper, we consider the problem of activating the cheapest set of interfaces among a network G = (V,E) in order to guarantee a minimum bandwidth B of communication between two specified nodes. Nodes V represent the devices, edges E represent the connections that can be established. In practical cases, a bounded number k of different interfaces among all the devices can be considered. Despite this assumption, the problem turns out to be NP-hard even for small values of k and Δ, where Δ is the maximum degree of the network. In particular, the problem is NP-hard for any fixed k ≥ 2 and Δ ≥ 3, while it is polynomially solvable when k = 1, or Δ ≤ 2 and k = O(1). Moreover, we show that the problem is not approximable within ηlogB or Ω(loglog|V|) for any fixed k ≥ 3, Δ ≥ 3, and for a certain constant η, unless P={NP}. We then provide an approximation algorithm with ratio guarantee of b max , where b max is the maximum communication bandwidth allowed among all the available interfaces. Finally, we focus on particular cases by providing complexity results and polynomial algorithms for Δ ≤ 2.

  1. Molecular dissociation of HD^+ by broad bandwidth chirped laser pulses: a molecular bandwidth filter

    NASA Astrophysics Data System (ADS)

    Zohrabi, M.; Ablikim, U.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2012-06-01

    We employ a coincidence 3D momentum imaging method to study the fragmentation of HD^+ following interaction with an intense, 800 nm, 25 fs Fourier transform-limited (FTL) laser pulse. The broad bandwidth of our FTL pulse prevents us from observing vibrational peaks that one would expect to see using longer FTL laser pulses ˜100 fs. However, by chirping the pulse either positively or negatively, while maintaining a fixed bandwidth, we were able to measure vibrational structure. The kinetic energy release of these vibrational peaks are shifted up or down depending on the sign of the chirp.ootnotetextV. S. Prabhudesai et al., Phys. Rev. A 81, 023401 (2010). We will address the question of why the vibrational structure is observed in spite of the broad bandwidth of the chirped laser pulses.

  2. Confocal microscopy via multimode fibers: fluorescence bandwidth

    NASA Astrophysics Data System (ADS)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  3. Bandwidth reconfigurable microwave photonic filter based on stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Xiao, Yongchuan; Wang, Xin; Zhang, Youdi; Dong, Wei; Zhang, Xindong; Liu, Caixia; Ruan, Shengping; Chen, Weiyou

    2015-01-01

    A bandwidth reconfigurable microwave photonic filter is proposed and numerically analyzed employing Brillouin gain spectrum narrowing and broadening. The stimulated Brillouin scattering (SBS) process is used to convert the phase modulation to intensity modulation to generate filter passband. Due to the fact that the passband is formed by mapping the Brillouin gain spectrum, bandwidth reconfiguration can be implemented by changing Brillouin gain linewidth. In this paper, both bandwidth reduction and increase are included in a single system and the details of gain spectrum narrowing and broadening are demonstrated. Theoretically, nearly 60% bandwidth reduction and hundreds times of bandwidth increase are achieved as compared to the case without gain spectrum process.

  4. Variable bandwidth broadcasting protocol for video-on-demand

    NASA Astrophysics Data System (ADS)

    Paris, Jehan-Francois; Long, Darrell D. E.

    2003-01-01

    We present the first broadcasting protocol that can alter the number of channels allocated to a given video without inconveniencing the viewer and without causing any temporary bandwidth surge. Our variable bandwidth broadcasting (VBB) protocol assigns to each video a minimum number of channels whose bandwidths are all equal to the video consumption rate. Additional channels can be assigned to the video at any time to reduce the customer waiting time or retaken to free server bandwidth. The cost of this additional flexibility is quite reasonable as the bandwidth requirements of our VBB fall between those of the fast broadcasting protocol and the new pagoda broadcasting protocol.

  5. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  6. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  7. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1992-01-01

    During the final reporting period (Jun. - Dec. 1992), analyses of the longitudinal and lateral flying qualities were made for propulsive-only flight control (POFC) of a Boeing 720 aircraft model. Performance resulting from compensators developed using Quantitative Feedback Theory (QFT) is documented and analyzed. This report is a first draft of a thesis to be presented by graduate student Hwei-Lan Chou. The final thesis will be presented to NASA when it is completed later this year. The latest landing metrics related to bandwidth criteria and based on the Neal-Smith approach to flying qualities prediction were used in developing performance criteria for the controllers. The compensator designs were tested on the NASA simulator and exhibited adequate performance for piloted flight. There was no significant impact of QFT on performance of the propulsive-only flight controllers in either the longitudinal or lateral modes of flight. This was attributed to the physical limits of thrust available and the engine rate of response, both of whiih severely limited the available bandwidth of the closed-loop system.

  8. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  9. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    NASA Astrophysics Data System (ADS)

    Vaughn, Israel Jacob

    Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is

  10. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  11. A new theoretical basis for the bandwidth method and optimal power ratios for the damping estimation

    NASA Astrophysics Data System (ADS)

    Yin, H. P.

    2008-11-01

    Using the well-known bandwidth formula and the half power bandwidth formula [R.E.D. Bishop, G.M.L. Gladwell, An investigation into the theory of resonance testing, Philosophical Transactions of the Royal Society of London A 255 (1963) 241-280], in particular, is the simplest way to estimate modal damping for engineers. By using the half power bandwidth formula, the damping factor is estimated to be approximately the half bandwidth at the half power points. One of the major limitations that restrict the use of this method is the coupling effect between closely spaced modes. In this paper, the dependence of the damping estimation accuracy on the selected power ratios is studied with both analytical and experimental data of frequency response functions. The results show that by selecting adequate power ratio values, the coupling effect can be minimized and the estimation accuracy can be significantly improved for closely spaced modes. A further improvement of accuracy can be obtained by applying the algorithm of mode isolation [H.P. Yin, D. Duhamel, Substraction technique and finite difference formulas for modal parameter estimation, Mechanical Systems and Signal Processing 18 (2004) 1497-1503; M.S. Allen, J.H. Ginsberg, A global, single-input-multi-output (SIMO) implementation of the algorithm of mode isolation and application to analytical and experimental data, Mechanical Systems and Signal Processing 20 (2006) 1090-1111]. Also an exact bandwidth formula in case of a single degree of freedom system is presented and the link between the exact formula and the classical approximated formula is indicated. The exact bandwidth formula provides a new theoretical basis of the bandwidth method for the damping estimation from frequency response functions.

  12. An impulsive source with variable output and stable bandwidth for underwater acoustic experiments.

    PubMed

    McNeese, Andrew R; Wilson, Preston S; Sagers, Jason D; Knobles, David P

    2014-07-01

    The Combustive Sound Source (CSS) is being developed as an environmentally friendly source to be used in ocean acoustics research and surveys. It has the ability to maintain the same wide bandwidth signal over a 20 dB drop in source level. The CSS consists of a submersible combustion chamber filled with a fuel/oxidizer mixture. The mixture is ignited and the ensuing combustion and bubble activity radiates an impulsive, thus broadband, acoustic pulse. The ability to control pulse amplitude while maintaining bandwidth is demonstrated. PMID:24993239

  13. Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks.

    PubMed

    Van Campenhout, Joris; Green, William M J; Assefa, Solomon; Vlasov, Yurii A

    2009-12-21

    We present an ultra-broadband Mach-Zehnder based optical switch in silicon, electrically driven through carrier injection. Crosstalk levels lower than -17 dB are obtained for both the 'on' and 'off' switching states over an optical bandwidth of 110 nm, owing to the implementation of broadband 50% couplers. Full 2 x 2 switching functionality is demonstrated, with low power consumption (approximately 3 mW) and a fast switching time (< 4 ns). The utilization of standard CMOS metallization results in a low drive voltage (approximately 1 V) and a record-low V(pi)L (approximately 0.06 V x mm). The wide optical bandwidth is maintained for temperature variations up to 30 K. PMID:20052114

  14. Comparative study on the performance of power and bandwidth efficient modulations in LMSS under fading and interference

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.

    1991-01-01

    Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.

  15. High power fiber MOPA based QCW laser delivering pulses with arbitrary duration on demand at high modulation bandwidth.

    PubMed

    Petkovšek, Rok; Novak, Vid; Agrež, Vid

    2015-12-28

    We report on a concept of a fiber MOPA based quasi-CW laser working at high modulation bandwidths up to 40 MHz capable of producing arbitrary pulse durations at arbitrary repetition rates. An output power of over 100 W was achieved and an on-off contrast of 25 dB. The laser features a dual-channel (dual-wavelength) seed source, a double stage YDF amplifier and a volume-Bragg-grating-based signal de-multiplexer. Minimization of transients was conducted through experiment and model analysis. PMID:26831982

  16. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    PubMed

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth. PMID:27128069

  17. Bandwidth Efficient Wireless Digital Modem Developed

    NASA Technical Reports Server (NTRS)

    Kifle, Muli

    1999-01-01

    NASA Lewis Research Center has developed a digital approach for broadcasting highfidelity audio (nearly compact disk (CD) quality sound) in the commercial frequencymodulated (FM) broadcast band. This digital approach provides a means of achieving high data transmission rates with low hardware complexity--including low mass, size, and power consumption. Lewis has completed the design and prototype development of a bandwidth-efficient digital modem (modulator and demodulator) that uses a spectrally efficient modulation scheme: 16-ary rectangular quadrature amplitude modulation, or 16- ary QAM. The digital implementation is based strictly on inexpensive, commercial off-theshelf digital signal processing (DSP) hardware to perform up and down conversions and pulse shaping. The digital modem transmits data at rates up to 76 kilobits per second (kbps), which is almost 3 times faster than standard 28.8-kbps telephone modems. In addition, the modem offers improved power and spectral performance, flexible operation, and low-cost implementation.

  18. Ptychography with broad-bandwidth radiation

    SciTech Connect

    Enders, B. Dierolf, M.; Stockmar, M.; Pfeiffer, F.; Cloetens, P.; Thibault, P.

    2014-04-28

    Ptychography, a scanning Coherent Diffractive Imaging (CDI) technique, has quickly gained momentum as a robust method to deliver quantitative images of extended specimens. A current conundrum for the development of X-ray CDI is the conflict between a need for higher flux to reach higher resolutions and the requirement to strongly filter the incident beam to satisfy the tight coherence prerequisite of the technique. Latest developments in algorithmic treatment of ptychographic data indicate that the technique is more robust than initially assumed, so that some experimental limitations can be substantially relaxed. Here, we demonstrate that ptychography can be conducted in conditions that were up to now considered insufficient, using a broad-bandwidth X-ray beam and an integrating scintillator-based detector. Our work shows the wide applicability of ptychography and paves the way to high-throughput, high-flux diffractive imaging.

  19. High bandwidth magnetically isolated signal transmission circuit

    NASA Technical Reports Server (NTRS)

    Repp, John Donald (Inventor)

    2005-01-01

    Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.

  20. RAID Disk Arrays for High Bandwidth Applications

    NASA Technical Reports Server (NTRS)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  1. PEP Deployment and Bandwidth Management Issues

    NASA Astrophysics Data System (ADS)

    Younghusband, Charles; Slade, Peter; Weaver, Jeff

    This paper will discuss current deployment scenarios for Performance Enhancement Proxies (PEP) technologies in broadband satellite access systems from the perspective of one PEP technology provider. Recent improvements such as DVB-S2 can provide substantial gains at the link layer. In order to achieve further efficiency gains, the satellite industry is now forced to look elsewhere - namely other layers in the data communications network stack. Satellite terminal manufacturers are now moving beyond basic TCP acceleration techniques to more comprehensive optimization techniques that incorporate advances in data compression and flexibility for more deployment scenarios. Some of the advances for PEP technology are in part due to CPU and memory technology advances, resulting in increasingly affordable access to computing power, allowing PEP manufacturers deliver substantial performance and bandwidth savings gains.

  2. Optimal filter bandwidth for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  3. Method of achieving phase delay with wide optical bandwidth in multimode interference devices.

    PubMed

    Lorenzo, R M; Llorente, C; Abril, E J; Aguado, J C; López, M

    1998-11-15

    A completely passive method of achieving phase delays inside multimode interference devices is presented. The desired relative phase is obtained by adjustment of the width of the waveguides in conjunction with the tapers to avoid interference inside the multimode section. One can generally apply the delay lines to avoid the use of active elements, and they are less sensitive to changes in wavelength than the traditional method with bends. Using this method, we have designed and analyzed a zero-to-one mode converter. The converter exhibits minimum excess loss of 0.100 and 0.102 for TE and TM polarization, respectively. A very large 1-dB bandwidth exceeding 350 nm is achieved. PMID:18091902

  4. Performance measurements of turbo-coded bandwidth efficient modulations in the presence of a nonlinear TWTA

    NASA Astrophysics Data System (ADS)

    Grayver, E.; Dafesh, P.; Muha, M.; Moulthrop, A.

    2005-08-01

    This paper presents results obtained from an end-to-end, proof-of-concept system for a GOES-R series satellite communication system, that integrates a multilevel modulator, turbo coding, and a nonlinear traveling wave tube amplifier (TWTA). Multilevel modulation schemes allow high-speed data communications in a limited amount of spectrum, enabling higher data rates for GOES-R user downlink, as compared to the GOES user downlinks within the existing L-band allocation. Bandwidth-efficient modulations, such as 8-PSK and 16-QAM allow transmission of 3 or 4 times more data in the same amount of bandwidth than a standard BPSK modulation. This improvement, however, comes at the price of increased linearity requirements for the end-to-end link. This constraint is especially important for the power amplifier, which is typically a nonlinear device. TWTAs are frequently used on satellites for transmitter power amplification. These high-power devices operate at highest efficiency when in saturation mode. However, their transfer function is highly nonlinear in this mode, causing significant degradation in the link bit error rate (BER). Applying forward error correction based on turbo codes improves the BER by providing an additional noise margin of up to 5 dB. This paper presents measured BER curves for different Turbo codes, taken at different power levels relative to saturation. The results demonstrate that very low BER (below 10-10)can be achieved when using 8-PSK even when operating within 1 dB of saturation. This research and study was done by the Aerospace corporation in support of NOAA, and its future GOES-R series satellites.

  5. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.

    PubMed

    Jiang, Fan; Yu, Yuan; Cao, Tong; Tang, Haitao; Dong, Jianji; Zhang, Xinliang

    2016-07-15

    We propose a flat-top bandpass microwave photonic filter (MPF) with flexible tunability of the bandwidth and center frequency based on optical nonlinearities in a Fabry-Pérot semiconductor optical amplifier (FP-SOA). Phase-inverted modulation induced by cross-gain modulation (XGM) and optical spectral broadening induced by self-phase modulation (SPM) are exploited to achieve flat-top and bandwidth tuning, respectively. Wideband and continuous tuning of the center frequency is achieved by altering the bias current of the FP-SOA. Experimental results demonstrate a flat-top single-passband MPF with its center frequency tunable from 6.0 to 18.3 GHz by adjusting the bias current from 54.05 to 107.85 mA. The 3-dB bandwidth of the passband when centered at 10.0 GHz is shown to be variable from 680 to 1.43 GHz, by increasing the injected optical power from -1 to +5  dBm. During the bandwidth tuning, the amplitude ripple within the passband is maintained at less than ±0.5  dB. Excellent main to secondary sidelobe ratio exceeding 45 dB is achieved when the MPF is centered at 18.3 GHz. PMID:27420520

  6. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  7. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  8. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  9. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications. PMID:24723832

  10. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  11. Protective Effects of Astragaloside IV on db/db Mice with Diabetic Retinopathy

    PubMed Central

    Mao, Pingan; Zhao, Chen; Huang, Qiong; Zhang, Rihua; Fang, Yuan; Song, Qinglu; Yuan, Dongqing; Xie, Ping; Liu, Yun; Liu, Qinghuai

    2014-01-01

    Objectives Diabetic retinopathy (DR) is a common diabetic eye disease which is well-known as the result of microvascular retinal changes. Although the potential biological functions of astragaloside IV (AS IV) have long been described in traditional system of medicine, its protective effect on DR remains unclear. This study aims to investigate the function and mechanism of AS IV on type 2 diabetic db/db mice. Methods Db/db mice were treated with AS IV (4.5 mg/kg or 9 mg/kg) or physiological saline by oral gavage for 20 weeks along with db/m mice. In each group, retinal ganglion cell (RGC) function was measured by pattern electroretinogram (ERG) and apoptosis was determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Blood and retina aldose reductase (AR) activity were quantified by chemiluminescence analysis. The expressions of phosporylated-ERK1/2, NF-κB were determined by Western blot analysis. Furthermore, the expression of related downstream proteins were quantified by Label-based Mouse Antibody Array. Results Administration of AS IV significantly improved the amplitude in pattern ERG and reduced the apoptosis of RGCs.in db/db mice. Furthermore, downregulation of AR activity, ERK1/2 phosphorylation, NF-κB and related cytokine were observed in AS IV treatment group. Conclusions Our study indicated that AS IV, as an inhibitor of AR, could prevent the activation of ERK1/2 phosporylation and NF-kB and further relieve the RGCs disfunction in db/db mice with DR. It has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing DR. PMID:25411784

  12. Reduced bandwidth video for remote vehicle operations

    SciTech Connect

    Noell, T.E.; DePiero, F.W.

    1993-08-01

    Oak Ridge National Laboratory staff have developed a video compression system for low-bandwidth remote operations. The objective is to provide real-time video at data rates comparable to available tactical radio links, typically 16 to 64 thousand bits per second (kbps), while maintaining sufficient quality to achieve mission objectives. The system supports both continuous lossy transmission of black and white (gray scale) video for remote driving and progressive lossless transmission of black and white images for remote automatic target acquisition. The average data rate of the resulting bit stream is 64 kbps. This system has been demonstrated to provide video of sufficient quality to allow remote driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds up to 15 mph (24.1 kph) on a moguled dirt track. The nominal driving configuration provides a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approximately}1s. This paper reviews the system approach and implementation, and further describes some of our experiences when using the system to support remote driving.

  13. Bandwidth efficient CCSDS coding standard proposals

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan

    1992-01-01

    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.

  14. Bandwidth efficient CCSDS coding standard proposals

    NASA Astrophysics Data System (ADS)

    Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan

    1992-05-01

    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.

  15. Remote driving with reduced bandwidth communication

    SciTech Connect

    DePiero, F.W.; Noell, T.E.; Gee, T.F.

    1992-08-06

    Oak Ridge National Laboratory has developed a real-time video transmission system for lowbandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high-mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of{approx}4 Hz, a compression per frame of {approx}125:1, and a resulting latency of < 1s.

  16. 1.5-GHz voltage controlled oscillator with 3% tuning bandwidth using a two-pole DSBAR filter.

    PubMed

    Avramov, Ivan; Gilbert, Stephen R; Ruby, Rich

    2011-05-01

    First results on a novel voltage controlled oscillator (VCO) in the lower gigahertz range, featuring excellent phase noise and high power efficiency are presented. The heart of the VCO is a recently reported novel miniature two-pole decoupled stacked bulk acoustic resonator (DSBAR) filter. With its single 180° phase transition over the 1 dB bandwidth, linear phase, and maximum 1 dB insertion loss, it provides stable single-mode operation over 45 MHz (≈3%) of tuning bandwidth and has negligible heat dissipation when operated at incident power levels of 100 mW or greater. The 1.55-GHz laboratory VCO prototypes operate at 5 V supply voltage, 50 mA supply current, 15 dBm of output power, and >13% efficiency, demonstrating -84 and < -180 dBc/Hz phase noise suppression at 1 kHz carrier offset and in the thermal noise region, respectively. VCOs with cascaded DSBAR filters for further phase noise reduction are also demonstrated. PMID:21622047

  17. 47 CFR 74.535 - Emission and bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Emission and bandwidth. 74.535 Section 74.535 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.535 Emission and bandwidth....

  18. 47 CFR 101.515 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the...

  19. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... established at the frequency of maximum response of the audio modulating circuit. (2) Single sideband....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the...

  20. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... established at the frequency of maximum response of the audio modulating circuit. (2) Single sideband....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the...

  1. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and...

  2. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and...

  3. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  4. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and...

  5. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and...

  6. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and...

  7. Matrix bandwidth and profile reduction. [computer programs/permutations

    NASA Technical Reports Server (NTRS)

    Crane, H. L., Jr.; Gibbs, N. E.; Poole, W. G., Jr.; Stockmeyer, P. K.

    1975-01-01

    This program, REDUCE, reduces the bandwidth and profile of sparse symmetric matrices, using row and corresponding column permutations. It is a realization of the algorithm described by the authors elsewhere. It was extensively tested and compared with several other programs and was found to be considerably faster than the others, superior for bandwidth reduction and as satisfactory as any other for profile reduction.

  8. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths. 15.35 Section 15.35 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission limits shown in this part are based on...

  9. The effect of stimulus bandwidth on binaural loudness summation.

    PubMed

    Shao, Zhiyue; Mo, Fangshuo; Mao, Dongxing

    2015-09-01

    Binaural loudness summation is an important property of the human auditory system. This paper presents an experimental investigation of how binaural loudness summation varies with stimulus bandwidth. Loudness matches were obtained between dichotic stimuli, with interaural level differences (ILDs) of 2-12 dB, and diotic stimuli. The stimuli were noise bands with seven center frequencies and four bandwidths. Results showed that the loudness of dichotic stimuli increased nonlinearly with ILD, the increase being slightly less with broader bandwidths. There was a bandwidth-dependent difference between the listening tests results and the predictions of Moore and Glasberg's [(2007) J. Acoust. Soc. Am. 121, 1604-1612] loudness model. The size of the difference was, however, small. A characteristic function was derived describing how overall loudness depends on stimulus bandwidth and ILD. PMID:26428788

  10. Sonar feature-based bandwidth compression

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Tescher, Andrew G.

    1992-07-01

    A sonar bandwidth compression (BWC) technique which, unlike conventional methods, adaptively varies the coding resolution in the compression process based on a priori information is described. This novel approach yields a robust compression system whose performance exceeds the conventional methods by factors of 2-to-1 and 1.5-to-1 for display- formatted and time series sonar data, respectively. The data is first analyzed by a feature extraction routine to determine those pixels of the image that collectively comprise intelligence-bearing signal features. The data is then split into a foreground image which contains the extracted source characteristic and a larger background image which is the remainder. Since the background image is highly textured, it suffices to code only the local statistics rather than the actual pixels themselves. This results in a substantial reduction of the bit rate required to code the background image. The feature-based compression algorithm developed for sonar imagery data is also extended to the sonar time series data via a novel approach involving an initial one-dimensional DCT transformation of the time series data before the actual compression process. The unique advantage of this approach is that the coding is done in an alternative two-dimensional image domain where, unlike the original time domain, it is possible to observe, differentiate, and prioritize essential features of data in the compression process. The feature-based BWC developed for sonar data is potentially very useful for applications involving highly textured imagery. Two such applications are synthetic aperture radar and ultrasound medical imaging.

  11. A megahertz bandwidth dual amplifier for driving piezoelectric actuators and other highly capacitive loads.

    PubMed

    Fleming, Andrew J

    2009-10-01

    Due to their high stiffness, small dimensions, and low mass, piezoelectric stack actuators are capable of developing large displacements over bandwidths of greater than 100 kHz. However, due to their large electrical capacitance, the associated driving amplifier is usually limited in bandwidth to a few kilohertz or less. In this paper the limiting characteristics of piezoelectric drives are identified as the small-signal bandwidth, output impedance, cable inductance, and power dissipation. A new dual amplifier is introduced that exhibits a small-signal bandwidth of 2 MHz with a 100 nF capacitive load. The dual amplifier is comprised of a standard high-voltage amplifier combined with a fast low-voltage amplifier to improve performance at higher frequencies. Experiments demonstrate a 300 kHz sine wave of 20 Vp-p amplitude being applied to a 100 nF load with negligible phase delay and a peak-to-peak current of 3.8 A. With a voltage range of 200 V and peak current of 1.9 A a standard amplifier would require a worst-case power dissipation of 380 W. However, the dual-amplifier arrangement has a worst-case power dissipation of only 30 W. The penalty is reduced range at high frequencies and slower operation from the high-voltage stage. PMID:19895079

  12. A megahertz bandwidth dual amplifier for driving piezoelectric actuators and other highly capacitive loads

    NASA Astrophysics Data System (ADS)

    Fleming, Andrew J.

    2009-10-01

    Due to their high stiffness, small dimensions, and low mass, piezoelectric stack actuators are capable of developing large displacements over bandwidths of greater than 100 kHz. However, due to their large electrical capacitance, the associated driving amplifier is usually limited in bandwidth to a few kilohertz or less. In this paper the limiting characteristics of piezoelectric drives are identified as the small-signal bandwidth, output impedance, cable inductance, and power dissipation. A new dual amplifier is introduced that exhibits a small-signal bandwidth of 2 MHz with a 100 nF capacitive load. The dual amplifier is comprised of a standard high-voltage amplifier combined with a fast low-voltage amplifier to improve performance at higher frequencies. Experiments demonstrate a 300 kHz sine wave of 20 Vp-p amplitude being applied to a 100 nF load with negligible phase delay and a peak-to-peak current of 3.8 A. With a voltage range of 200 V and peak current of 1.9 A a standard amplifier would require a worst-case power dissipation of 380 W. However, the dual-amplifier arrangement has a worst-case power dissipation of only 30 W. The penalty is reduced range at high frequencies and slower operation from the high-voltage stage.

  13. CottonDB enhancement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CottonDB (www.cottondb.org) was initiated in 1995. It is a database that contains genomic, genetic, and taxonomic information for cotton (Gossypium spp.). It serves both as an archival database and as a dynamic database, which incorporates new data and user resources. CottonDB is maintained at th...

  14. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice.

    PubMed

    Lee, Hyunah; Jang, Ik-Soon; Park, Junsoo; Kim, Seol-Hee; Baek, So-Young; Go, Sung-Ho; Lee, Seung-Hoon

    2013-03-01

    Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases. PMID:23261674

  15. New ultrawide-bandwidth horn-fed dipole GPR antenna design

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Chih; Higgins, Matthew B.

    2000-04-01

    A novel broad bandwidth dual-polarization GPR antenna was also developed for collecting fully polarimetric data over a wide frequency range (20 MHz to approximately 800 MHz). This new design was improved from its single-polarization version introduced by Chen (1997). The new design features improved stability and directivity over conventional surface-based GPR antennas. Such antenna is currently applied to discriminate buried UXO's from other false alarm reduction.

  16. Antenna of adjustable bandwidth based on a pentagonal array

    NASA Astrophysics Data System (ADS)

    Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Cabello Ruiz, R.; García-García, O.; Escobedo-Alatorre, J.; Sanchez-Mondragon, J.; Torres-Cisneros, M.; Varona, J.; Vargas-Bernal, R.

    2011-09-01

    Antenna characteristics are chosen according to the features determined by the systems where they will be used. While some systems require a very narrow bandwidth, others may operate with a much wider bandwidth. Some techniques used for increasing the bandwidth of a given antenna have considered mechanical adjustment of the air layer thickness, with the consequent change on the effective permittivity and performance. Some other systems consider a suitable choice of feeding techniques and impedance matching network. However, approaches for reducing the bandwidth have not received the same level of attention. Narrow bandwidth antennas are of particular interest in security and surveillance systems. In this work we present a technique, based on the design of a pentagonal antenna array, which allows for adjusting the bandwidth in either direction. The array is formed by an inner patch designed at the desired operating frequency of the system and a gap coupled external ring centered at a different frequency (lower or very near the operating frequency), which determines the potential bandwidth increment or decrement. The feed point is located on the inner patch. As a proof-of-concept, this work offers a tuning range that goes from -40% of the center frequency up to +50% of the center operating frequency of the patch antenna. The single patch antenna of this work was designed and simulated at an operating frequency of 4.9 GHz on RT/Duroid 5880.

  17. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  18. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-03-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  19. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed in [1] and named two-stage SASE FEL. The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator could be realized using Bragg reflections from crystals. Proposed scheme of monochromator is illustrated for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is defined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are by three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  20. High bandwidth piezoresistive force probes with integrated thermal actuation

    PubMed Central

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  1. The effect of recording and analysis bandwidth on acoustic identification of delphinid species.

    PubMed

    Oswald, Julie N; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours. PMID:15603163

  2. The effect of recording and analysis bandwidth on acoustic identification of delphinid species

    NASA Astrophysics Data System (ADS)

    Oswald, Julie N.; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n=484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours..

  3. Ultra-broad bandwidth parametric amplification at degeneracy.

    PubMed

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  4. Phase locking and bandwidth in a gyrotron oscillator

    NASA Technical Reports Server (NTRS)

    Latham, P. E.; Granatstein, V. L.; Carmel, Y.

    1993-01-01

    For imaging radar and for satellite and space communication (e.g. NASA's deep space network), it is important that the bandwidth be as large as possible. Here we derive a formalism for computing the phase locking bandwidth that can be achieved in a gyrotron oscillator while varying the beam voltage. As an example, a second harmonic TE02/03 gyrotron is considered. For this device, the effective bandwidth can be increased by a factor of about 3 compared with the fixed voltage case by allowing the beam voltage to change together with the input locking signal.

  5. Microwave photonic bandstop filter with wide tunability and adjustable bandwidth.

    PubMed

    Li, Wei; Yang, Chengwu; Wang, Ling; Yuan, Zhilin; Liu, Jianguo; Li, Ming; Zhu, Ninghua

    2015-12-28

    A microwave photonic bandstop filter is proposed and experimentally demonstrated in this work. The filter exhibits promising performance combination of reconfigurability, frequency tunability, and bandwidth adjustment. The phase modulation on two orthogonal polarization states produces a bandpass and a lowpass MPF, respectively. The key concept of destructive interference between the bandpass and lowpass MPF enables the reconfiguration of MPF from bandpass to bandstop. By adjusting the wavelength of two orthogonally polarized optical carriers and the bandwidth of an optical bandpass filter, the bandstop filter is tunable in terms of center frequency and bandwidth. PMID:26832021

  6. Bandwidth auction for SVC streaming in dynamic multi-overlay

    NASA Astrophysics Data System (ADS)

    Xiong, Yanting; Zou, Junni; Xiong, Hongkai

    2010-07-01

    In this paper, we study the optimal bandwidth allocation for scalable video coding (SVC) streaming in multiple overlays. We model the whole bandwidth request and distribution process as a set of decentralized auction games between the competing peers. For the upstream peer, a bandwidth allocation mechanism is introduced to maximize the aggregate revenue. For the downstream peer, a dynamic bidding strategy is proposed. It achieves maximum utility and efficient resource usage by collaborating with a content-aware layer dropping/adding strategy. Also, the convergence of the proposed auction games is theoretically proved. Experimental results show that the auction strategies can adapt to dynamic join of competing peers and video layers.

  7. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  8. A terahertz broadband 3 dB directional coupler based on bridged PPDW.

    PubMed

    Ye, Longfang; Zhang, Yong; Xu, Ruimin; Lin, Weigan

    2011-09-26

    In this paper, a novel broadband 3 dB directional coupler with very flat coupling based on bridged parallel plate dielectric waveguide (PPDW) is proposed and demonstrated. In the uniform coupling section, a bridge structure between the two PPDWs is employed to obtain accurate coupling value and achieve a broadband coupling. It is found that this new type of coupling structure exhibits excellent performance at terahertz frequencies. In order to achieve strong isolation between the adjacent ports and reduce the power reflection in all ports, two quarter-circle bend arms are introduced as the curved transition sections to connect the uniform coupling section. For this bridged coupler, it only needs the value of the uniform coupling length as short as 400 μm to achieve a broadband 3 dB coupling. In this case, the coupler's average return loss is greater than 28 dB, average isolation is better than 27 dB and average coupler loss is only 0.9 dB, over a percentage bandwidth of 12.5% at 1 THz. Compared to the conventional PPDW coupler, the bridged PPDW coupler shows significantly greater bandwidth (about 4.2 times), compact and mechanically stable with a much shorter uniform coupling length (reduced about 61%), which may have potential applications for terahertz integrated circuits and systems. PMID:21996833

  9. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or...

  10. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or...

  11. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or...

  12. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or...

  13. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or...

  14. Bandwidth broker architecture for VoIP QoS

    NASA Astrophysics Data System (ADS)

    Kim, Keith; Mouchtaris, Petros; Samtani, Sunil; Talpade, Rajesh; Wong, Larry

    2001-07-01

    We present a scalable architecture for assuring Quality of Service to VoIP applications in an Internet Service Provider's network. This architecture is based on the Differentiated Services and Bandwidth Broker models, and can also be used by other resource-sensitive applications. In this paper, we elaborate on a number of significant issues involved in the design, implementation, deployment and use of the Bandwidth Broker. The Call Agent architecture is used as the VoIP application. We describe the Bandwidth Broker prototype that is used to validate our approach. Our findings suggest that it is feasible to use the Bandwidth Broker architecture for assuring QoS, and a trade-off exists between the granularity of resource requests and call-setup delay.

  15. Increase of the grating coupler bandwidth with a graphene overlay

    SciTech Connect

    Cheng, Zhenzhou; Li, Zhen; Xu, Ke; Tsang, Hon Ki

    2014-03-17

    We present theoretical and experimental results that demonstrate an increase in the grating bandwidth by placing a graphene on the chip. A focusing subwavelength grating with coupling efficiency of −4.3 dB and 1 dB bandwidth of ∼60 nm was demonstrated. After a graphene sheet was transferred onto the chip, the maximum 1 dB bandwidth was increased to ∼72 nm. Experimental results are consistent with the calculated graphene induced waveguide refractive index and dispersion changes, and the bandwidth improvement may be attributed to the reduction of grating dispersion. This study may be of interest for graphene-on-silicon photonic integrated circuit applications.

  16. Bandwidth efficient coherent lidar based on phase-diversity detection.

    PubMed

    Liao, Tongqing; Hameed, Mahmood; Hui, Rongqing

    2015-04-10

    Bandwidth efficient coherent lidar based on phase-diversity detection is reported for the first time, to the best of our knowledge, which allows the doubling of bandwidth efficiency through the simultaneous utilization of the in-phase (I) and quadrature (Q) components. By maintaining RF phase continuity between linearly frequency-chirped I and Q components through digital signal processing, the range resolution of the lidar system can be improved. PMID:25967299

  17. Improved bandwidth of microstrip antennas using parasitic elements

    NASA Astrophysics Data System (ADS)

    Wood, C.

    1980-08-01

    A method is described of doubling the bandwidth of rectangular microstrip patch antennas by locating capacitively excited m-wavelength/4 short circuit parasitic elements at their radiating edges. The antenna characteristics are explained in terms of an antiphase mode of a pair of coupled resonators, and it is shown that the bandwidth improvement is independent of the coupling capacitance. Experimental results are presented for both linearly and circularly polarized antennas which support the theoretical predictions.

  18. Optical parametric amplification with a bandwidth exceeding an octave

    SciTech Connect

    Orlov, Sergei N; Polivanov, Yurii N; Pestryakov, Efim V

    2004-05-31

    The possibility of using various schemes of broadband optical parametric amplifiers (OPAs) for amplifying a supercontinuum with the spectral bandwidth exceeding an octave is analysed. Spectral gain profiles are calculated for some specific OPAs employing promising and available nonlinear optical crystals. The realisation of OPAs with spectral bandwidths exceeding an octave in the spectral region from the near-UV to the mid-IR is demonstrated by specific examples. (nonlinear optical phenomena)

  19. Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem

    NASA Technical Reports Server (NTRS)

    Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.

  20. A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS

    SciTech Connect

    Bergeron, P.; Wesemael, F.; Dufour, Pierre; Beauchamp, A.; Hunter, C.; Gianninas, A.; Limoges, M.-M.; Dufour, Patrick; Fontaine, G.; Saffer, Rex A.; Ruiz, M. T.; Liebert, James E-mail: wesemael@astro.umontreal.ca E-mail: limoges@astro.umontreal.ca E-mail: fontaine@astro.umontreal.ca E-mail: chris.hunter@yale.edu E-mail: mtruiz@das.uchile.cl

    2011-08-10

    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 M{sub sun} for our sample, with a dispersion of only 0.09 M{sub sun}. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 M{sub sun}) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green Survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above T{sub eff} {approx} 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer and a second channel where DB stars retain a helium atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no non-variables, if the hydrogen content of these stars is properly accounted for.

  1. Circadian phenotyping of obese and diabetic db/db mice.

    PubMed

    Grosbellet, Edith; Dumont, Stephanie; Schuster-Klein, Carole; Guardiola-Lemaitre, Beatrice; Pevet, Paul; Criscuolo, François; Challet, Etienne

    2016-05-01

    Growing evidence links metabolic disorders to circadian alterations. Genetically obese db/db mice, lacking the long isoform of leptin receptor, are a recognized model of type 2 diabetes. In this study, we aimed at characterizing the potential circadian alterations of db/db mice in comparison to db/+ control mice. By using telemetry devices, we first reported arrhythmicity in general activity of most db/db mice under both light-dark cycle and constant darkness, while their rhythm of body temperature is less dramatically disrupted. Water access restricted to nighttime restores significant rhythmicity in behaviorally arrhythmic db/db mice, indicating a masking effect of polydipsia when water is available ad libitum. Endogenous period of temperature rhythm under constant dark conditions is significantly increased (+30 min) in db/db compared with db/+ mice. Next, we studied the oscillations of clock proteins (PER1, PER2 and BMAL1) in the suprachiasmatic nuclei (SCN), the site of the master clock, and detected no difference according to the genotype. Furthermore, c-FOS and P-ERK1/2 expression in response to a light pulse in late night was significantly increased (+80 and +55%, respectively) in the SCN of these diabetic mice. We previously showed that, in addition to altered activity rhythms, db/db mice exhibit altered feeding rhythm. Therefore, we investigated daily patterns of clock protein expression in medial hypothalamic oscillators involved in feeding behavior (arcuate nucleus, ventro- and dorso-medial hypothalamic nuclei). Compared with db/+ mice, very subtle or no difference in oscillations of PER1 and BMAL1 is found in the medial hypothalamus. Although we did not find a clear link between altered hypothalamic clockwork and behavioral rhythms in db/db mice, our results highlight a lengthened endogenous period and altered photic integration in these genetically obese and diabetic mice. PMID:26144489

  2. Invariant bandwidth of erbium in ZnO-PbO-tellurite glasses: Local probe/model

    SciTech Connect

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2014-04-24

    A series of [(70TeO{sub 2}−(30−x)ZnO−xPbO){sub 0.99}−(Er{sub 2}O{sub 3}){sub 0.01}; where x = 5, 10, 15 and 20] tellurite glasses, were prepared using the melt quenching technique. Crucial emission bandwidth of erbium at 1.5 μm has been derived and found to be the same for all the glasses, irrespective of PbO content. This identical bandwidth in all tellurite glasses is attributed to the presence of erbium in tellurium rich disordered environments. This result has been complemented through XANES spectra and the obtained invariant first shell of 6.5 oxygen atoms, confirm the unchanged environment in these glasses for all PbO content.

  3. Wide-bandwidth silicon nitride membrane microphones

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian T.; Bernstein, Jonathan J.

    1997-09-01

    Small, low cost microphones with high sensitivity at frequencies greater than 20 KHz are desired for applications such as ultrasonic imaging and communication links. To minimize stray capacitance between the microphone and its amplifier circuit, process compatibility between the microphone and on-chip circuitry is also desired to facilitate integration. In this work, we have demonstrated micromachined microphones packaged with hybrid JFET amplifier circuitry with frequency response extending to 100 KHz, and voltage sensitivity of approximately 2.0 mV/Pa from 100 Hz to 10 KHz, and 16.5 mV/Pa at 30 KHz with a bias voltage of 8.0 V. The microphones are fabricated with membranes and fixed backplates made of low temperature plasma-enhanced chemical vapor deposited (PECVD) silicon nitride. Because the maximum temperature of the fabrication process is 300 degrees Celsius, microphones may be built on silicon wafers from any commercial CMOS foundry without affecting transistor characteristics, allowing integration with sophisticated amplifier circuitry. Low stress silicon nitride deposition was used to produce membranes up to 2.0 mm diameter and 0.5 micrometer thickness with plus or minus 0.10 micrometer flatness. The excellent planarity of both the diaphragm and the backplate, combined with a narrow sense gap (approximately 2 micrometers) results in high output capacitance (up to 6.0 pF). The high output capacitance results in noise spectral density which is approximately 3x lower than silicon diaphragms microphones previously fabricated by the authors. Diaphragms with corrugations were fabricated to relive tensile stress, to increase deflection per unit pressure and to increase deflection linearity with pressure.

  4. WebDB Component Builder - Lessons Learned

    SciTech Connect

    Macedo, C.

    2000-02-15

    Oracle WebDB is the easiest way to produce web enabled lightweight and enterprise-centric applications. This concept from Oracle has tantalized our taste for simplistic web development by using a purely web based tool that lives nowhere else but in the database. The use of online wizards, templates, and query builders, which produces PL/SQL behind the curtains, can be used straight ''out of the box'' by both novice and seasoned developers. The topic of this presentation will introduce lessons learned by developing and deploying applications built using the WebDB Component Builder in conjunction with custom PL/SQL code to empower a hybrid application. There are two kinds of WebDB components: those that display data to end users via reporting, and those that let end users update data in the database via entry forms. The presentation will also discuss various methods within the Component Builder to enhance the applications pushed to the desktop. The demonstrated example is an application entitled HOME (Helping Other's More Effectively) that was built to manage a yearly United Way Campaign effort. Our task was to build an end to end application which could manage approximately 900 non-profit agencies, an average of 4,100 individual contributions, and $1.2 million dollars. Using WebDB, the shell of the application was put together in a matter of a few weeks. However, we did encounter some hurdles that WebDB, in it's stage of infancy (v2.0), could not solve for us directly. Together with custom PL/SQL, WebDB's Component Builder became a powerful tool that enabled us to produce a very flexible hybrid application.

  5. Effects of Bandwidth, Compression Speed, and Gain at High Frequencies on Preferences for Amplified Music

    PubMed Central

    2012-01-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing “overshoot” effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  6. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    PubMed

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  7. Monolithic integration of high bandwidth waveguide coupled Ge photodiode in a photonic BiCMOS process

    NASA Astrophysics Data System (ADS)

    Lischke, S.; Knoll, D.; Zimmermann, L.

    2015-03-01

    Monolithic integration of photonic functionality in the frontend-of-line (FEOL) of an advanced microelectronics technology is a key step towards future communication applications. This combines photonic components such as waveguides, couplers, modulators, and photo detectors with high-speed electronics plus shortest possible interconnects crucial for high-speed performance. Integration of photonics into CMOS FEOL is therefore in development for quite some time reaching 90nm node recently [1]. However, an alternative to CMOS is high-performance BiCMOS, offering significant advantages for integrated photonics-electronics applications with regard to cost and RF performance. We already presented results of FEOL integration of photonic components in a high-performance SiGe:C BiCMOS baseline to establish a novel, photonic BiCMOS process. Process cornerstone is a local-SOI approach which allows us to fabricate SOI-based, thus low-loss photonic components in a bulk BiCMOS environment [2]. A monolithically integrated 10Gbit/sec Silicon modulator with driver was shown here [3]. A monolithically integrated 25Gbps receiver was presented in [4], consisting of 200GHz bipolar transistors and CMOS devices, low-loss waveguides, couplers, and highspeed Ge photo diodes showing 3-dB bandwidth of 35GHz, internal responsivity of more than 0.6A/W at λ= 1.55μm, and ~ 50nA dark current at 1V. However, the BiCMOS-given thermal steps cause a significant smearing of the Germanium photo diodes doping profile, limiting the photo diode performance. Therefore, we introduced implantation of non-doping elements to overcome such limiting factors, resulting in photo diode bandwidths of more than 50GHz even under the effect of thermal steps necessary when the diodes are integrated in a high performance BiCMOS process.

  8. Broad Bandwidth Laser and Nonlinear Optical Sources for OCT

    NASA Astrophysics Data System (ADS)

    Unterhuber, Angelika; Považay, Boris; Aguirre, Aaron D.; Chen, Yu; Kärtner, Franz X.; Fujimoto, James G.; Drexler, Wolfgang

    OCT achieves very high axial image resolutions independent of focusing conditions because the axial and transverse resolutions are determined independently by different physical mechanisms. This implies that axial OCT resolution can be enhanced using broad bandwidth, low coherence length light sources. The light source not only determines axial OCT resolution via its bandwidth and central emission wavelength but also determines the penetration in the sample (biological tissue), the contrast of the tomogram, and the OCT transverse resolution. A minimum output power with low amplitude noise is also necessary to enable high sensitivity and high-speed - real time - OCT imaging. Hence, it is obvious that the light source is the key technological parameter for an OCT system, and proper choice is imperative. Ultrabroad bandwidth light source technology enables ultrahigh-resolution OCT in the visible and near-infrared wavelength region. Kerr-lens mode-locked solid-state lasers can generate broad bandwidth spectra spanning up to one optical octave. Nonetheless they are restricted to the fluorescence bands of the laser crystal and have a complex architecture making them expensive and preventing widespread industrial use. Spectra far broader than one optical octave can be produced via nonlinear propagation of laser pulses having only moderate energies of a few nJ in microstructured fibers. Complex fibers with one, two, or even no zero-dispersion wavelength can be designed and fabricated to fulfill special requirements as large optical bandwidth and low noise.

  9. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.

    2006-06-01

    We report on the generation of high power superbroad spectrum bunched noise-like pulses from a passively mode-locked erbium-doped fiber ring laser without using the stretched-pulse technique. The maximum 3-dB spectral bandwidth of the noise-like pulses is about 93 nm with an energy of about 15 nJ. We further show numerically that the superbroad spectrum of the pulses is caused by the transform-limited feature of the pulses together with the Raman self-frequency shift effect.

  10. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  11. Adaptive Broadcasting Mechanism for Bandwidth Allocation in Mobile Services

    PubMed Central

    Horng, Gwo-Jiun; Wang, Chi-Hsuan; Chou, Chih-Lun

    2014-01-01

    This paper proposes a tree-based adaptive broadcasting (TAB) algorithm for data dissemination to improve data access efficiency. The proposed TAB algorithm first constructs a broadcast tree to determine the broadcast frequency of each data and splits the broadcast tree into some broadcast wood to generate the broadcast program. In addition, this paper develops an analytical model to derive the mean access latency of the generated broadcast program. In light of the derived results, both the index channel's bandwidth and the data channel's bandwidth can be optimally allocated to maximize bandwidth utilization. This paper presents experiments to help evaluate the effectiveness of the proposed strategy. From the experimental results, it can be seen that the proposed mechanism is feasible in practice. PMID:25057509

  12. Electromagnetic waves with large relative bandwidth (Invited paper)

    NASA Astrophysics Data System (ADS)

    Harmuth, H. F.

    1985-09-01

    The history of the use of sinusoidal functions and the suitability of these functions for the transmission of information are discussed, taking into account also possibilities for a use of nonsinusoidal functions. It is shown that the available technology is capable of radiating and selectively receiving nonsinusoidal waves. As a basis for an evaluation of the application possibilities for nonsinusoidal electromagnetic waves, attention is given to a concept which makes it possible to distinguish quantitatively between theoretical sinusoidal waves, practical (almost) sinusoidal waves, and nonsinusoidal waves. A suitable measure is provided by the concept of the relative bandwidth. It is pointed out that semiconductor technology has made it possible to use radio signals with large relative bandwidth or nonsinusoidal signals, instead of conventional signals with small relative bandwidth or (almost) sinusoidal signals. The practical level of this new development was reached with the ground-probing radar. Many more applications are possible.

  13. Benefits of Bandwidth Feedback in Learning a Complex Gymnastic Skill

    PubMed Central

    Sadowski, Jerzy; Mastalerz, Andrzej; Niznikowski, Tomasz

    The aim of this study was to examine the effects of two different frequencies of feedback during the process of learning a complex gymnastic skill, the round-off salto backward tucked. Thirty male acrobats participated in the study. They were randomly assigned to two groups: B - bandwidth feedback (n=15) or C - 100% feedback (n=15). Group B was provided with error information regarding the key elements of movement techniques only (bandwidth feedback). Our research demonstrates the advantage of augmented feedback information related to errors in the key elements. Information about errors in the key elements during learning a complex gymnastic skill prevents the gymnast from becoming overwhelmed, which promotes better motor control. These results provide support for the generalisation of bandwidth feedback principles to a complex task. Our research shows that the guidance hypothesis can also be tested in practical settings for a complex movement task. PMID:24146719

  14. An octave-bandwidth negligible-loss radiofrequency metamaterial.

    PubMed

    Lier, Erik; Werner, Douglas H; Scarborough, Clinton P; Wu, Qi; Bossard, Jeremy A

    2011-03-01

    Metamaterials provide an unprecedented ability to manipulate electromagnetic waves and are an enabling technology for new devices ranging from flat lenses that focus light beyond the diffraction limit to coatings capable of cloaking an object. Nevertheless, narrow bandwidths and high intrinsic losses arising from the resonant properties of metamaterials have raised doubts about their usefulness. New design approaches seek to turn the perceived disadvantages of dispersion into assets that enhance a device's performance. Here we employ dispersion engineering of metamaterial properties to enable specific device performance over usable bandwidths. In particular, we design metamaterials that considerably improve conventional horn antennas over greater than an octave bandwidth with negligible loss and advance the state of the art in the process. Fabrication and measurement of a metahorn confirm its broadband, low-loss performance. This example illustrates the power of clever implementation combined with dispersion engineering to bring metamaterials into their full potential for revolutionizing practical devices. PMID:21278741

  15. Delivery of very high bandwidth with ATM switches and SONET

    SciTech Connect

    Gossage, S.A.

    1993-08-01

    To deliver high bandwidth, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the ``glue`` to transport and interconnect distributed LANs with central facility resources over a pervasive cable plant is the focus of this paper. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories. Other methods for distributing high data rates are compared and contrasted. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  16. A new bandwidth compression system of picture signals - The TAT

    NASA Astrophysics Data System (ADS)

    Tanimoto, M.; Chiba, N.; Yasui, H.; Murakami, M.

    A new bandwidth compression system of picture signals called the Time-Axis Transform (TAT) system is presented. It can be applied to the various fields of transmission and recording of picture signals such as the satellite broadcast of high-definition televison. The TAT compresses the bandwidth by reducing the number of transmitted pixels. The transmitted pixels consist of two kinds of pixels: the basic pixels and the additional pixels. The location of the former is fixed and that of the latter varies from picture to picture to minimize the interpolation error in the reconstructed picture. It compresses the bandwidth of the picture signal to one half or less, keeping high picture quality. Both the average power and the peak value of the distortion due to the interpolation error of the deleted pixels are greatly improved.

  17. Correlation and image compression for limited-bandwidth CCD.

    SciTech Connect

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  18. An octave-bandwidth negligible-loss radiofrequency metamaterial

    NASA Astrophysics Data System (ADS)

    Lier, Erik; Werner, Douglas H.; Scarborough, Clinton P.; Wu, Qi; Bossard, Jeremy A.

    2011-03-01

    Metamaterials provide an unprecedented ability to manipulate electromagnetic waves and are an enabling technology for new devices ranging from flat lenses that focus light beyond the diffraction limit to coatings capable of cloaking an object. Nevertheless, narrow bandwidths and high intrinsic losses arising from the resonant properties of metamaterials have raised doubts about their usefulness. New design approaches seek to turn the perceived disadvantages of dispersion into assets that enhance a device’s performance. Here we employ dispersion engineering of metamaterial properties to enable specific device performance over usable bandwidths. In particular, we design metamaterials that considerably improve conventional horn antennas over greater than an octave bandwidth with negligible loss and advance the state of the art in the process. Fabrication and measurement of a metahorn confirm its broadband, low-loss performance. This example illustrates the power of clever implementation combined with dispersion engineering to bring metamaterials into their full potential for revolutionizing practical devices.

  19. Delivery of very high bandwidth with ATM switches and SONET

    SciTech Connect

    Gossage, S.A.

    1992-10-01

    The choice of technologies for the delivery of very high bandwidth throughout a facility capable of ultimately achieving gigabits per second performance, is a crucial one for any high technology facility. The components of a high bandwidth delivery system include high performance sources and sinks in the form of central facilities (major mainframes, large file storage and specialized peripherals) and powerful, full bandwidth distributed local area networks (LANs). In order to deliver bandwidth among the sources and sinks, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the ``glue`` to transport and interconnect the LANs with the central facility over the pervasive cable plant is the focus of this paper. A design philosophy for high performance communications systems is proposed. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The advantages of ATM switching and SONET physical transport are explored in the structured design presentation. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories as a context to examine the suitability of those technologies. The synergy and utility of ATM and SONET in the campus network are explored. Other methods for distributing high data rates are compared and contrasted to ATM and SONET with respect to cable plant impact, reliability/availability, maintainability, and capacity. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  20. A 15 GSa/s, 1.5 GHz bandwidth waveform digitizing ASIC

    NASA Astrophysics Data System (ADS)

    Oberla, Eric; Genat, Jean-Francois; Grabas, Hervé; Frisch, Henry; Nishimura, Kurtis; Varner, Gary

    2014-01-01

    The PSEC4 custom integrated circuit was designed for the recording of fast waveforms for use in large-area time-of-flight detector systems. The ASIC has been fabricated using the IBM-8RF 0.13 μm CMOS process. On each of the six analog channels, PSEC4 employs a switched capacitor array (SCA) of 256 samples deep, a ramp-compare ADC with 10.5 bits of DC dynamic range, and a serial data readout with the capability of region-of-interest windowing to reduce dead time. The sampling rate can be adjusted between 4 and 15 Gigasamples/second (GSa/s) on all channels and is servo-controlled on-chip with a low-jitter delay-locked loop (DLL). The input signals are passively coupled on-chip with a -3 dB analog bandwidth of 1.5 GHz. The power consumption in quiescent sampling mode is less than 50 mW/chip; at a sustained trigger and a readout rate of 50 kHz the chip draws 100 mW. After fixed-pattern pedestal subtraction, the uncorrected integral non-linearity is 0.15% over a 750 mV dynamic range. With a linearity correction, a full 1 V signal voltage range is available. The sampling timebase has a fixed-pattern non-linearity with an RMS of 13%, which can be corrected for precision waveform feature extraction and timing.

  1. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  2. TDX: A high-bandwidth crossbar-switched communication paradigm

    SciTech Connect

    Pierce, P.E.; Eilers, D.L.; Schreiber, A.L.

    1994-08-01

    Digital signal processing systems under development today require scalable and reconfigurable high bandwidth communication resources between processing elements. Shared memory architectures require the ability to transfer data from one processor node to another, as well as maintaining data coherency such as provided by the Scalable Coherent Interface (SCI). Signal processing systems that must move large amounts of data between processor nodes, are best served by a communication system that allows reconfigurable streams of data to flow at deterministic rates with minimal overhead. A Time Domain Crossbar (TDX) communication system providing scalable, programmable, high-bandwidth, streaming communication has been developed and is described in this paper.

  3. Smart Sand—a wide bandwidth vibration energy harvesting platform

    NASA Astrophysics Data System (ADS)

    Marinkovic, Bozidar; Koser, Hur

    2009-03-01

    We propose a concept for true wide bandwidth vibration energy harvesting. Our approach exploits nonlinear stretching of fixed-fixed beams in an off-resonance mode, effectively expanding the operational frequency range well beyond the narrow bandwidth of linear resonators. Our initial prototype demonstrates operation between 160-400 Hz, without the need for frequency tuning. A simple dynamic model shows good agreement with measurements. Optimized device geometry will allow for even lower frequency operation (starting at 60 Hz) at strain levels above 1e-3 (ideal for piezoelectric transduction).

  4. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  5. Programmable bandwidth management in software-defined EPON architecture

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming

    2016-07-01

    This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.

  6. Variable bandwidth birefringent filter for tunable femtosecond lasers

    SciTech Connect

    Naganuma, K.; Lenz, G.; Ippen, E.P. )

    1992-10-01

    A design for a birefringent filter is described, which is suitable for tunable femtosecond lasers. Using a single plate, which has a steeply diving optic axis, two-octave tunability is attained with negligible deterioration of the stopband rejection. For a specific wavelength region, it means that the filter's bandwidth can be changed by a factor of four. Another characteristic of the design is that, for the same bandwidth, the proposed plate is five times thicker than a conventional plate in which the optic axis is parallel to the surface. Thus, etalon effects can be avoided. Tuning characteristics of color center lasers utilizing the new filter are also presented. 18 refs.

  7. Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance

    NASA Astrophysics Data System (ADS)

    Li, Jin; Xiong, Bing; Sun, Chang-Zheng; Luo, Yi; Wang, Jian; Hao, Zhi-Biao; Han, Yan-Jun; Wang, Lai; Li, Hong-Tao

    2015-07-01

    A backside illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) with wide bandwidth and high saturation power is fabricated and investigated. The device structure is optimized to reduce the capacitance and resistance. For the 22-μm-diameter device, the maximum responsivity at 1.55 μm is 0.5 A/W, and the 3-dB cutoff frequency reaches up to 28 GHz. The output photocurrent at the 1-dB compression point is measured to be 54 mA at 25 GHz, with a corresponding output radio frequency (RF) power of up to 15.5 dBm. The saturation characteristics of the MUTC-PD are also verified by the electric field simulation, and electric field collapse is found to be the cause of the saturation phenomenon. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB315605 and 2014CB340002), the National Natural Science Foundation of China (Grant Nos. 61176015, 61176059, 61210014, 61321004, and 61307024), and the Open Fund of State Key Laboratory on Integrated Optoelectronics, China (Grant Nos. IOSKL2012KF08 and IOSKL2014KF09).

  8. 47 CFR 74.1236 - Emission and bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Emission and bandwidth. 74.1236 Section 74.1236 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations...

  9. Numerical Models of Broad Bandwidth Nanosecond Optical Parametric Oscillators

    SciTech Connect

    Bowers, M.S.; Gehr, R.J.; Smith, A.V.

    1998-10-14

    We describe results from three new methods of numerically modeling broad-bandwidth, nanosecond OPO's in the plane-wave approximate ion. They account for differences in group velocities among the three mixing waves, and also include a qutt~ttun noise model.

  10. Bandwidth based electrical-analogue battery modeling for battery modules

    NASA Astrophysics Data System (ADS)

    Li, Jianwei; Mazzola, Michael S.; Gafford, James; Jia, Bin; Xin, Ming

    2012-11-01

    A technique for building a high fidelity electrical-analogue battery model by identifying the model parameters at the module level, as opposed to the cell level, is proposed in this paper. The battery model, which is represented by electrical circuit components, can be easily integrated into popular simulation environments for system level design and predictive analysis. A novel bandwidth based time-domain procedure is introduced for identifying the model parameters by selective assignment of the limited bandwidth of the battery model approximation according to the natural bandwidth of the system that uses the battery. The aim of this paper is to provide an accurate off-line electrical-analogue battery model for simulation of larger systems containing large-format batteries, as opposed to a detailed electrochemical model suitable for simulation of internal battery processes. The proposed procedure has been experimentally verified on a 6.8 Ah Ultralife UBBL10 Li-ion battery module which is a “microcosm” for a modern large-format battery pack. A maximum 0.25% error was observed during a performance test with arbitrary but bandwidth-limited charging and discharging intervals characteristic of a typical battery application.

  11. The Learning Computer: Low Bandwidth Tool that Bridges Digital Divide

    ERIC Educational Resources Information Center

    Johnson, Russell; Kemp, Elizabeth; Kemp, Ray; Blakey, Peter

    2007-01-01

    This article reports on a project that explores strategies for narrowing the digital divide by providing a practicable e-learning option for the millions living outside the ambit of high performance computing and communication technology. The concept is introduced of a "learning computer," a low bandwidth tool that provides a simplified,…

  12. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurements required: Occupied bandwidth. 2.1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1049 Measurements required:...

  13. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Occupied bandwidth. 2.1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1049 Measurements required:...

  14. Bandwidth utilization maximization of scientific RF communication systems

    SciTech Connect

    Rey, D.; Ryan, W.; Ross, M.

    1997-01-01

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

  15. Effective Communication and File-I/O Bandwidth Benchmarks

    SciTech Connect

    Koniges, A E; Rabenseifner, R

    2001-05-02

    We describe the design and MPI implementation of two benchmarks created to characterize the balanced system performance of high-performance clusters and supercomputers: b{_}eff, the communication-specific benchmark examines the parallel message passing performance of a system, and b{_}eff{_}io, which characterizes the effective 1/0 bandwidth. Both benchmarks have two goals: (a) to get a detailed insight into the Performance strengths and weaknesses of different parallel communication and I/O patterns, and based on this, (b) to obtain a single bandwidth number that characterizes the average performance of the system namely communication and 1/0 bandwidth. Both benchmarks use a time driven approach and loop over a variety of communication and access patterns to characterize a system in an automated fashion. Results of the two benchmarks are given for several systems including IBM SPs, Cray T3E, NEC SX-5, and Hitachi SR 8000. After a redesign of b{_}eff{_}io, I/O bandwidth results for several compute partition sizes are achieved in an appropriate time for rapid benchmarking.

  16. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Occupied bandwidth. 2.1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Certification § 2.1049 Measurements required:...

  17. Highly Scaled InP/InGaAs DHBTs Beyond 1 THz Bandwidth

    NASA Astrophysics Data System (ADS)

    Rode, Johann Christian

    This work examines the efforts pursued to extend the bandwidth of InP-based DHBTs above 1 THz. Aggressive lithographic and epitaxial scaling of key device dimensions and simultaneous reduction of contact resistivities have enabled increased RF bandwidths by reduction of device RC and transit delays. A fabrication process for forming base electrodes and base/collector mesas of highly scaled transistors has been developed that exploits superior resolution (10nm) and alignment (<30nm) of electron beam lithography. Ultra-low resistance, thermally stable base contacts are critical for extended fmax bandwidth: a novel dual-deposition base metalization technique is presented that removes contaminating lithographic processes from the formation of the base contact, thereby enabling low resistivity contacts (4 Ω-microm2) to ultra-thin base layers (20 nm). The composite base metal stack exploits an ultra-thin layer of platinum that controllably reacts with base, yielding low contact resistivity, as well as a thick refractory diffusion barrier which permits stable operation at high current densities and elevated temperatures. Reduction in emitter-base surface leakage and subsequent increase of current gain was achieved by passivating emitter-base semiconductor surfaces with conformally grown ALD Al2O3. RF bandwidth limiting parasitics associated to the perimeter of highly scaled transistors have been identified and significantly reduced, among which are high sheet resistance of base electrodes, excess undercut of emitter stripes and improperly scaled base posts. At 100nm collector thickness, the breakdown voltage of the transistor BVCEO has been increased to more than 4.1V by passivating base/collector surfaces. With the technology improvements discussed, transistors with ftau of 480 GHz and fmax in excess of 1 THz have been demonstrated at 200nm emitter width and 80nm single-sided base contact width. Transistors at the same emitter width, but 30nm base contact width exhibit

  18. CottonDB Enhancement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton genome database, CottonDB, was developed under a United States Department of Agriculture (USDA) Agricultural Research Service (ARS) project as part of a national program to develop plant genome databases for all agricultural commodities. This first and most extensively used database for ...

  19. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice

    PubMed Central

    Xue, Mei; Zhang, Liang; Yang, Ming-xing; Zhang, Wei; Li, Xiu-min; Ou, Zhi-min; Li, Zhi-peng; Liu, Su-huan; Li, Xue-jun; Yang, Shu-yu

    2015-01-01

    Berberine (BBR) shows very low plasma levels after oral administration due to its poor absorption by the gastrointestinal tract. We have previously demonstrated that BBR showed increased gastrointestinal absorption and enhanced antidiabetic effects in db/db mice after being entrapped into solid lipid nanoparticles (SLNs). However, whether BBR-loaded SLNs (BBR-SLNs) also have beneficial effects on hepatosteatosis is not clear. We investigated the effects of BBR-SLNs on lipid metabolism in the liver using histological staining and reverse transcription polymerase chain reaction analysis. The results showed that oral administration of BBR-SLNs inhibited the increase of body weight and decreased liver weight in parallel with the reduction of serum alanine transaminase and liver triglyceride levels in db/db mice. The maximum drug concentration in the liver was 20-fold higher than that in the blood. BBR-SLNs reduced fat accumulation and lipid droplet sizes significantly in the liver, as indicated by hematoxylin and eosin and Oil Red O staining. The expression of lipogenic genes, including fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding protein 1c (SREBP1c) were downregulated, while lipolytic gene carnitine palmitoyltransferase-1 (CPT1) was upregulated in BBR-SLN-treated livers. In summary, we have uncovered an unexpected effect of BBR-SLNs on hepatosteatosis treatment through the inhibition of lipogenesis and the induction of lipolysis in the liver of db/db mice. PMID:26346310

  20. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent

  1. Effects of phlorizin on diabetic retinopathy according to isobaric tags for relative and absolute quantification–based proteomics in db/db mice

    PubMed Central

    Zhang, Shi-yang; Li, Bao-ying; Li, Xiao-li; Cheng, Mei; Cai, Qian; Yu, Fei; Wang, Wei-dong; Tan, Min; Yan, Guang; Hu, Shi-lian

    2013-01-01

    Purpose Diabetic retinopathy (DR) is a leading cause of vision loss in working-age people. To retard the development and progression of retina lesions, effective therapeutic strategies directed toward key molecular targets are desired. Phlorizin is effective in treating diabetic complications, but little is known about functional protein changes that may mediate its actions. The aim of this study was to identify retinal proteomic alterations in db/db mice treated with phlorizin. Methods We used C57BLKS/J db/db mice as a type 2 diabetic animal model, while C57BLKS/J db/m mice were selected as the control. Phlorizin (20 mg/kg bodyweight /d) was administrated to db/db mice for ten weeks. Serum fasting blood glucose and advanced glycation end products were determined. Meanwhile, retina cell apoptosis was determined with terminal transferase dUTP nick end labeling. Isobaric tags for relative and absolute quantification and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify and profile retinal proteins among control, untreated diabetic, and phlorizin-treated db/db mice. The expression of glial fibrillary acidic protein was measured in retinas using western blotting analysis. Results Phlorizin treatment significantly reduced fasting blood glucose and levels of advanced glycation end products (p<0.05) and remarkably inhibited retina cell apoptosis and the expression of glial fibrillary acidic protein in the retinas of db/db mice. In addition, we identified 1,636 proteins from retina tissue in total, of which 348 proteins were differentially expressed in db/db mice compared with the controls. Only 60 proteins in the retinas of the db/db mice were found to be differentially changed following phlorizin treatment, including 33 proteins that were downregulated and 27 proteins that were upregulated. Most of these differentially changed proteins were involved in oxidative stress, apoptosis, energy metabolism, and signaling transduction

  2. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements

    NASA Astrophysics Data System (ADS)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6Hzto1.4MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  3. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  4. Bandwidth-sharing in LHCONE, an analysis of the problem

    NASA Astrophysics Data System (ADS)

    Wildish, T.

    2015-12-01

    The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead

  5. Optimal modified tracking performance for MIMO systems under bandwidth constraint.

    PubMed

    Sun, Xin-Xiang; Wu, Jie; Zhan, Xi-Sheng; Han, Tao

    2016-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with bandwidth and channel noise constraints. A new modified tracking performance index is proposed which prevents variations in the tracking error from leading to invalid data where there is no integrator in the plant. An expression for the optimal modified tracking performance is obtained using a method which includes co-prime factorization, partial factorization, spectral decomposition and H2 norm. The obtained results show that the optimal modified tracking performance is influenced by the non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the characteristics of the input signal, the modification factor, the bandwidth and the channel noise are also shown to be closely related to the optimal modified tracking performance. Finally, the efficiency of the result is verified using some typical examples. PMID:26874745

  6. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  7. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  8. Exploiting material softening in hard PZTs for resonant bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Leadenham, S.; Moura, A.; Erturk, A.

    2016-04-01

    Intentionally designed nonlinearities have been employed by several research groups to enhance the frequency bandwidth of vibration energy harvesters. Another type of nonlinear resonance behavior emerges from the piezoelectric constitutive behavior for high excitation levels and is manifested in the form of softening stiffness. This material nonlinearity does not result in the jump phenomenon in soft piezoelectric ceramics, e.g. PZT-5A and PZT-5H, due to their large internal dissipation. This paper explores the potential for wideband energy harvesting using a hard (relatively high quality factor) PZT-8 bimorph by exploiting its material softening. A wide range of base excitation experiments conducted for a set of resistive electrical loads confirms the frequency bandwidth enhancement.

  9. The Optical Lightpipe as a High-Bandwidth Fusion Diagnostic

    SciTech Connect

    Moran, M J; Lerche, R A; Mant, G; Glebov, V Y; Sangster, T C; Mack, J M

    2006-07-21

    A recent series of experiments at the University of Rochester Laboratory for Laser Energetics OMEGA facility studied the feasibility of using radiation-to-light converters and high bandwidth optical signal transmission to remote recording devices as an alternate nuclear diagnostic method. A prototype system included a radiation-to-light converter, a multiple-section light pipe consisting of stainless steel tubes with polished interiors and turning mirrors, and a streak camera or photomultiplier/digitizer combination for signal recording. Several different radiation-to-light converters (scintillators, glasses, plastics, and pressurized CO{sub 2}) performed well and produced predictable optical emissions. The lightpipe transmitted high-bandwidth optical signals to the recording stations. Data were recorded with the streak camera, the photomultiplier/digitizer, and with both recorders simultaneously.

  10. Anamorphic transformation and its application to time-bandwidth compression.

    PubMed

    Asghari, Mohammad H; Jalali, Bahram

    2013-09-20

    A general method for compressing the modulation time-bandwidth product of analog signals is introduced. As one of its applications, this physics-based signal grooming, performed in the analog domain, allows a conventional digitizer to sample and digitize the analog signal with variable resolution. The net result is that frequency components that were beyond the digitizer bandwidth can now be captured and, at the same time, the total digital data size is reduced. This compression is lossless and is achieved through a feature selective reshaping of the signal's complex field, performed in the analog domain prior to sampling. Our method is inspired by operation of Fovea centralis in the human eye and by anamorphic transformation in visual arts. The proposed transform can also be performed in the digital domain as a data compression algorithm to alleviate the storage and transmission bottlenecks associated with "big data." PMID:24085172

  11. Bandwidth and power efficient modulation and coding development

    NASA Astrophysics Data System (ADS)

    Monte, P. A.; Hoeber, C. F.; Tanner, R. Michael

    This paper describes modulation and forward error correction concepts which can be used to increase the bandwidth efficiency of satellite communications links without sacrificing power efficiency. A spacecraft demodulator/decoder is being developed which advances the technology for the next generation of digital communication satellites. This demodulator/decoder is intended for TDMA applications requiring high total data rates composed of many low data rate users. Low TDMA overhead is obtained with a unique approach for achieving fast acquisition. High spectrum efficiency is obtained through the use of a bandwidth efficient coding system, and the design addresses high interference levels associated with spectrum reuse. The implementation of this demodulator and associated FEC decoder employs high speed digital processing in conjunction with parallel pipeline architecture which lends itself to digital LSI fabrication, giving the potential for a compact, power efficient, and highly reliable system appropriate for satellite applications.

  12. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  13. Amplifier similariton laser with extra-broad bandwidth output pulse

    NASA Astrophysics Data System (ADS)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  14. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths.

    PubMed

    Balan, Adrian; Machielse, Bartholomeus; Niedzwiecki, David; Lin, Jianxun; Ong, Peijie; Engelke, Rebecca; Shepard, Kenneth L; Drndić, Marija

    2014-12-10

    DNA sequencing using solid-state nanopores is, in part, impeded by the relatively high noise and low bandwidth of the current state-of-the-art translocation measurements. In this Letter, we measure the ion current noise through sub 10 nm thick Si3N4 nanopores at bandwidths up to 1 MHz. At these bandwidths, the input-referred current noise is dominated by the amplifier's voltage noise acting across the total capacitance at the amplifier input. By reducing the nanopore chip capacitance to the 1-5 pF range by adding thick insulating layers to the chip surface, we are able to transition to a regime in which input-referred current noise (∼ 117-150 pArms at 1 MHz in 1 M KCl solution) is dominated by the effects of the input capacitance of the amplifier itself. The signal-to-noise ratios (SNRs) reported here range from 15 to 20 at 1 MHz for dsDNA translocations through nanopores with diameters from 4 to 8 nm with applied voltages from 200 to 800 mV. Further advances in bandwidth and SNR will require new amplifier designs that reduce both input capacitance and input-referred amplifier noise. PMID:25418589

  15. Quantum gates with optimal bandwidth in noisy environments

    NASA Astrophysics Data System (ADS)

    Low, Guang Hao; Theodore, Yoder; Chuang, Isaac

    The traditional approach of open-loop quantum error correction suppresses certain systematic imperfections ɛ in quantum control to higher orders ɛ  (L) by a well-designed sequence of L imperfect quantum gates. However, this philosophy of maximal flatness leads to an ɛ-bandwidth that scales poorly with length and a residual that is easily overwhelmed by unaccounted sources of noise. We advance the paradigm of equiripple compensated gates that directly optimize for bandwidth given the limitations imposed by noise of magnitude δ, leading to dramatically improved performance. Where ɛ represent amplitude errors, we provide a formalism that generalizes both approaches and is effective at finding such gates. With it, we provide in closed-form the phase angles for an optimal family of population inversion gates with an ɛ -bandwidth of  (logδ-1/L) - a quadratic improvement over optimal maximally flat variants. We also construct optimal NOT gates and discuss extensions to other gates and error models.

  16. Analysis of the vibrational bandwidths of alkane-urea clathrates

    NASA Astrophysics Data System (ADS)

    Wood, Kurt A.; Snyder, Robert G.; Strauss, Herbert L.

    1989-11-01

    The only large amplitude motion possible for an n-alkane molecule in urea-inclusion compounds is libration-torsion about the long axis of the chain. We present a quantitative model that incorporates the effect of this motion on the widths of the alkane vibrational bands. This model explains the difference in the widths of the different vibrations of the alkanes and their temperature dependence. Two effects are combined: (1) a modulation of the angles between the components of the polarizability in the space and the molecule-fixed frames for Raman spectra or between the components of the dipole moment for the infrared spectra, and (2) a modulation of the frequency of the alkane vibration via anharmonic coupling terms with the libration-torsion. The first effect gives rise to a distinctly non-Lorentzian band shape, which is convoluted with the approximately Lorentzian band of the second effect to produce the final result. The libration-torsional motion is modeled as that of a Brownian harmonic oscillator. Most of the parameters that enter the calculation are obtained from data other than that involving the bandwidths themselves. The libration-torsion relaxation time of about 1 ps obtained from fitting the observed bandwidths agrees with the value obtained from recent quasielastic neutron scattering experiments. Other bandwidth mechanisms that have been proposed are evaluated and it is shown that site hopping is too slow to account for the observations.

  17. Managing high-bandwidth real-time data storage

    SciTech Connect

    Bigelow, David D.; Brandt, Scott A; Bent, John M; Chen, Hsing-Bung

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  18. Neural bandwidth of veridical perception across the visual field.

    PubMed

    Wilkinson, Michael O; Anderson, Roger S; Bradley, Arthur; Thibos, Larry N

    2016-01-01

    Neural undersampling of the retinal image limits the range of spatial frequencies that can be represented veridically by the array of retinal ganglion cells conveying visual information from eye to brain. Our goal was to demarcate the neural bandwidth and local anisotropy of veridical perception, unencumbered by optical imperfections of the eye, and to test competing hypotheses that might account for the results. Using monochromatic interference fringes to stimulate the retina with high-contrast sinusoidal gratings, we measured sampling-limited visual resolution along eight meridians from 0° to 50° of eccentricity. The resulting isoacuity contour maps revealed all of the expected features of the human array of retinal ganglion cells. Contours in the radial fringe maps are elongated horizontally, revealing the functional equivalent of the anatomical visual streak, and are extended into nasal retina and superior retina, indicating higher resolution along those meridians. Contours are larger in diameter for radial gratings compared to tangential or oblique gratings, indicating local anisotropy with highest bandwidth for radially oriented gratings. Comparison of these results to anatomical predictions indicates acuity is proportional to the sampling density of retinal ganglion cells everywhere in the retina. These results support the long-standing hypothesis that "pixel density" of the discrete neural image carried by the human optic nerve limits the spatial bandwidth of veridical perception at all retinal locations. PMID:26824638

  19. High-bandwidth remote flat panel display interconnect system

    NASA Astrophysics Data System (ADS)

    Peterson, Darrel G.

    1999-08-01

    High performance electronic displays (CRT, AMLCD, TFEL, plasma, etc.) require wide bandwidth electrical drive signals to produce the desired display images. When the image generation and/or image processing circuitry is located within the same line replaceable unit (LRU) as the display media, the transmission of the display drive signals to the display media presents no unusual design problems. However, many aircraft cockpits are severely constrained for available space behind the instrument panel. This often forces the system designer to specify that only the display media and its immediate support circuitry are to be mounted in the instrument panel. A wide bandwidth interconnect system is then required to transfer image data from the display generation circuitry to the display unit. Image data transfer rates of nearly 1.5 Gbits/second may be required when displaying full motion video at a 60 Hz field rate. In addition to wide bandwidth, this interconnect system must exhibit several additional key characteristics: (1) Lossless transmission of image data; (2) High reliability and high integrity; (3) Ease of installation and field maintenance; (4) High immunity to HIRF and electrical noise; (5) Low EMI emissions; (6) Long term supportability; and (7) Low acquisition and maintenance cost. Rockwell Collins has developed an avionics grade remote display interconnect system based on the American National Standards Institute Fibre Channel standard which meets these requirements. Readily available low cost commercial off the shelf (COTS) components are utilized, and qualification tests have confirmed system performance.

  20. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography

    NASA Astrophysics Data System (ADS)

    Liu, Qinhe; Xu, Xianhui; Xia, Weixing; Che, Renchao; Chen, Chen; Cao, Qi; He, Jingang

    2015-01-01

    To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications.To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a

  1. The effect of hearing aid bandwidth on speech recognition performance of listeners using a cochlear implant and contralateral hearing aid (bimodal hearing)

    PubMed Central

    Neuman, Arlene C.; Svirsky, Mario A.

    2013-01-01

    Objectives The purpose of this study was to determine how the bandwidth of the hearing aid (HA) fitting affects bimodal speech recognition of listeners with a cochlear implant (CI) in one ear and severe-to-profound hearing loss in the unimplanted ear (but with residual hearing sufficient for wideband amplification using NAL-RP prescriptive guidelines; unaided thresholds no poorer than 95 dB HL through 2000 Hz). Design Recognition of sentence material in quiet and in noise was measured with the CI alone and with CI plus HA as the amplification provided by the hearing aid in the high and mid-frequency regions was systematically reduced from the wideband condition (NAL-RP prescription). Modified bandwidths included upper frequency cutoffs of 2,000, 1,000 or 500 Hz. Results On average, significant bimodal benefit was obtained when the hearing aid provided amplification at all frequencies with aidable residual hearing. Limiting the hearing aid bandwidth to only low frequency amplification (below 1000 Hz) did not yield significant improvements in performance over listening with the CI alone. Conclusion These data suggest the importance of providing amplification across as wide a frequency region as permitted by audiometric thresholds in the hearing aid used by bimodal users. PMID:23632973

  2. The Neural Correlates of Broad Bandwidth and Narrow Bandwidth Elevated Sound

    NASA Astrophysics Data System (ADS)

    Cumming, Amanda

    The present study aimed to investigate the N1 response for both narrow band and broadband sound in order to better understand auditory spatial localization, as well as the role of the "where" stream for localizing elevated sound. Electroencephalographic recordings were obtained from subjects as they listened to broadband or narrowband sounds, with center frequencies of either 4 kHz or 10 kHz, presented from five vertical loud speakers, +/-40°, +/-20° and 0°. The data did not reveal any clusters that identified differences in neuronal processing across time for sound type. The auditory evoked responses demonstrated that, under monaural conditions, narrow band and broadband sounds are differentially processed in A1. Overall, we could not confirm the use of different or similar brain resources for horizontal and vertical sound localization, nor could we demonstrate involvement of the dorsal stream regarding elevated sound localization.

  3. Optical fiber characterization: Backscatter, time domain bandwidth, refracted from near field and interlaboratory comparisons, volume 1

    NASA Astrophysics Data System (ADS)

    Danielson, B. L.; Day, G. W.; Franzen, D. L.; Kim, E. M.; Young, M.

    1982-09-01

    Optical fiber waveguide measurements are described. Systems to determine the backscatter, bandwidth, and index profile are covered in detail. Measurement comparisons between laboratories are given for fiber attenuation, bandwidth, numerical aperture, and core diameter.

  4. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  5. A low-power 20 GSps track-and-hold amplifier in 0.18 μm SiGe BiCMOS technology

    NASA Astrophysics Data System (ADS)

    Kai, Tang; Qiao, Meng; Zhigong, Wang; Yi, Zhang; Kuai, Yin; Ting, Guo

    2013-09-01

    An open-loop 20 GSps track-and-hold amplifier (THA) using fully-differential architecture to mitigate common-mode noise and suppress even-order harmonics is presented. CMOS switch and dummy switches are adopted to achieve high speed and good linearity. A cross-coupled pair is used in the input buffer to suppress the charge injection and clock feedthrough. Both the input and output buffers use an active inductor load to achieve high signal bandwidth. The THA is realized with 0.18 μm SiGe BiCMOS technology using only CMOS devices at a 1.8 V voltage supply and with a core area of 0.024 mm2. The measurement results show that the SFDR is 32.4 dB with a 4 GHz sine wave input at a 20 GSps sampling rate, and the third harmonic distortion is -48 dBc. The effective resolution bandwidth of the THA is 12 GHz and the figure of merit is only 0.028 mW/GHz.

  6. Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey

    PubMed Central

    Schmieder, Daniela A.; Kingston, Tigga; Hashim, Rosli; Siemers, Björn M.

    2010-01-01

    Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2–20 calls s−1 up to about 170 calls s−1 prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10–30 kHz for the calls of this ‘final buzz’. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140–200 calls s−1 and two of Murina at 80 calls s−1. The ‘typical’ and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey. PMID:20356884

  7. Combination Of Narrow Bandwidth Excimer Laser And Monochromatic Reduction Projection Lens

    NASA Astrophysics Data System (ADS)

    Kajiyama, K.; Saito, K.; Moro, N.; Maeda, Y.; Natsuaki, H.

    1988-01-01

    This paper will discuss the problems associated with excimer laser photo-lithography -the combination of a KrF narrow band width excimer laser (non-injection locked type) with a large field fused silica monochromatic reduction lens. An excimer laser with a KrF narrow bandwidth, in combination with a large field monochromatic lens which is appropriate for use with such laser, have been developed and tested. The system's resolution capability has been confirmed at 0.4 um L/S with MP2400 resist. The laser has been designed so as to be installed and maintained in a clean room environment as well as to have a very narrow spectrum line. A very narrow band-width beam, down to 0.003nm, has been attained through a stable resonator with more than 20mJ pulse energy. The ultra-compact laser head (300mm x 545mm x 1100mm) contains a small laser discharge unit (182mm x 156mm x 584mm), and no amplifier because the oscillator is highly efficient in spite of the narrow line emission. Maintenance is much easier in the clean room environment. Users can replace the discharge unit as easily as they would change Hg-lamp, only taking twenty minutes, and while they clean the window and check the electrodes of the removed unit, the laser can be operated with the easily installed replacement -already passivated discharge unit. The laser head unit is separated from a gas circulating unit and trigger pulse circuit - vibration, heat, EMI noise and particle generation. Therefore, it can be installed even in the thermal clean chamber of a stepper. The N.A. (numerical aperture) of the monochromatic lens is 0.36 and the field size is 15mm x 15mm. In fact, three kinds of lenses with N.A.s of 0.4, 0.35 and 0.3 respectively, were designed and individually evaluated for their OTF's and defocus's dependence on the light source's spectral width, and also their co-relationship. In parallel, simulations on the relationship between each lens' chromatic aberration and laser spectral width were completed and

  8. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  9. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  10. Modulator-Based, High Bandwidth Optical Links for HEP Experiments

    NASA Astrophysics Data System (ADS)

    Underwood, David G.; Drake, G.; Fernando, W. S.; Stanek, R. W.

    2013-10-01

    As a concern with the reliability, bandwidth and mass of future optical links in LHC experiments, we are investigating CW lasers and light modulators as an alternative to VCSELs. These links will be particularly useful if they utilize light modulators which are very small, low power, high bandwidth, and are very radiation hard. We have constructed a test system with 3 such links, each operating at 10 Gb/s. We present the quality of these links (jitter, rise and fall time, BER) and eye mask margins (10GbE) for 3 different types of modulators: LiNbO3-based, InP-based, and Si-based. We present the results of radiation hardness measurements with up to ~1012 protons/cm2 and ~65 krad total ionizing dose (TID), confirming no single event effects (SEE) at 10 Gb/s with either of the 3 types of modulators. These optical links will be an integral part of intelligent tracking systems at various scales from coupled sensors through intra-module and off detector communication. We have used a Si-based photonic transceiver to build a complete 40 Gb/s bi-directional link (10 Gb/s in each of four fibers) for a 100m run and have characterized it to compare with standard VCSEL-based optical links. Some future developments of optical modulator-based high bandwidth optical readout systems, and applications based on both fiber and free space data links, such as local triggering and data readout and trigger-clock distribution, are also discussed.

  11. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  12. Bandwidth evaluation of dispersive transformation electromagnetics based devices

    NASA Astrophysics Data System (ADS)

    Argyropoulos, C.; Kallos, E.; Hao, Y.

    2011-06-01

    In this paper, the transient responses of some devices which are based on transformation electromagnetics are studied, such as invisible cloaks and concentrators, by using the Finite-Difference Time-Domain (FDTD) numerical technique. In particular, effects of the inherent losses as well as the coating size of the ideal cylindrical cloak on its bandwidth and cloaking performance are examined. In addition, it is demonstrated that the performance of transformation electromagnetics based devices is affected by the material parameters in the design, although they may behave nicely under monochromatic plane wave illuminations. The obtained results are of interest for the future practical implementation of these structures.

  13. Knowledge-based image bandwidth compression and enhancement

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Tescher, Andrew G.

    1987-01-01

    Techniques for incorporating a priori knowledge in the digital coding and bandwidth compression of image data are described and demonstrated. An algorithm for identifying and highlighting thin lines and point objects prior to coding is presented, and the precoding enhancement of a slightly smoothed version of the image is shown to be more effective than enhancement of the original image. Also considered are readjustment of the local distortion parameter and variable-block-size coding. The line-segment criteria employed in the classification are listed in a table, and sample images demonstrating the effectiveness of the enhancement techniques are presented.

  14. Optimizing bandwidth utilization in packet based telemetry systems

    SciTech Connect

    Kalibjian, J.R.

    1995-10-17

    A consistent theme in spacecraft telemetry system design is the desire to obtain maximum bandwidth utilization given a fixed transmission capability (usually due to cost/weight criteria). Extensions to basic packetization telemetry architectures are discussed which can facilitate a reduction in the amount of actual data telemetered, without loss of data quality. Central to the extensions are the establishment of an ``intelligent`` telemetry process, which can evaluate pending data to be telemetered, and act to compress, discard, or re-formulate data before actual transmission to ground stations.

  15. Flexible All-Digital Receiver for Bandwidth Efficient Modulations

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee

    2000-01-01

    An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.

  16. Betaine Alleviates Hypertriglycemia and Tau Hyperphosphorylation in db/db Mice

    PubMed Central

    Jung, Ga-young; Won, Sae-Bom; Kim, Juhae; Jeon, Sookyoung; Han, Anna

    2013-01-01

    Betaine supplementation has been shown to alleviate altered glucose and lipid metabolism in mice fed a high-fat diet or a high-sucrose diet. We investigated the beneficial effects of betaine in diabetic db/db mice. Alleviation of endoplasmic reticulum (ER) and oxidative stress was also examined in the livers and brains of db/db mice fed a betaine-supplemented diet. Male C57BL/KsJ-db/db mice were fed with or without 1% betaine for 5 wk (referred to as the db/db-betaine group and the db/db group, respectively). Lean non-diabetic db/db+ mice were used as the control group. Betaine supplementation significantly alleviated hyperinsulinemia in db/db mice. Betaine reduced hepatic expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha, a major transcription factor involved in gluconeogenesis. Lower serum triglyceride concentrations were also observed in the db/db-betaine group compared to the db/db group. Betaine supplementation induced hepatic peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase 1a mRNA levels, and reduced acetyl-CoA carboxylase activity. Mice fed a betaine-supplemented diet had increased total glutathione concentrations and catalase activity, and reduced lipid peroxidation levels in the liver. Furthermore, betaine also reduced ER stress in liver and brain. c-Jun N-terminal kinase activity and tau hyperphosphorylation levels were lower in db/db mice fed a betaine-supplemented diet, compared to db/db mice. Our findings suggest that betaine improves hyperlipidemia and tau hyperphosphorylation in db/db mice with insulin resistance by alleviating ER and oxidative stress. PMID:24278623

  17. High-power, wide-bandwidth modified uni-traveling-carrier photodiodes with an optimized depletion region

    NASA Astrophysics Data System (ADS)

    Li, Jin; Xiong, Bing; Luo, Yi; Sun, Changzheng; Hao, Zhibiao; Wang, Jian; Han, Yanjun; Wang, Lai; Li, Hongtao

    2016-05-01

    A modified uni-traveling-carrier photodiode (MUTC-PD) with an optimized depletion region is fabricated and its saturation characteristics are investigated. The space-charge effect is effectively suppressed by inserting a carefully designed cliff layer in the middle of the depletion region. The 22-µm-diameter device exhibits a bandwidth of 28 GHz. Compared with our previous work, the saturation photocurrent of the novel device is increased from 55 to 99 mA, and the corresponding RF power is increased from 15.5 to 20.1 dBm. Furthermore, a 12-µm-diameter device with a bandwidth of 50 GHz is demonstrated, together with a saturation photocurrent of 61 mA, corresponding to an RF power of 15.3 dBm.

  18. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    PubMed

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems. PMID:17902966

  19. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2015-06-01

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens' surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  20. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  1. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  2. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  3. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  4. Exploiting Sparse Dynamics For Bandwidth Reduction In Cooperative Sensing Systems

    NASA Astrophysics Data System (ADS)

    Ganapathy, Harish; Caramanis, Constantine; Ying, Lei

    2013-07-01

    Recently, there has been a significant interest in developing cooperative sensing systems for certain types of wireless applications. In such systems, a group of sensing nodes periodically collect measurements about the signals being observed in the given geographical region and transmit these measurements to a central node, which in turn processes this information to recover the signals. For example, in cognitive radio networks, the signals of interest are those generated by the primary transmitters and the sensing nodes are the secondary users. In such networks, it is critically important to be able to reliably determine the presence or absence of primary transmitters in order to avoid causing interference. The standard approach to transmit these measurements from sensor the nodes to the fusion center has been to use orthogonal channels. Such an approach quickly places a burden on the control-channel-capacity of the network that would scale linearly in the number of cooperating sensing nodes. In this paper, we show that as long as one condition is satisfied: the dynamics of the observed signals are sparse, i.e., the observed signals do not change their values very rapidly in relation to the time-scale at which the measurements are collected, we can significantly reduce the control bandwidth of the system while achieving the full (linear) bandwidth performance.

  5. Progressive raster imagery beyond a means to overcome limited bandwidth

    NASA Astrophysics Data System (ADS)

    Rosenbaum, René; Schumann, Heidrun

    2009-02-01

    Progressive refinement is a well-established approach to overcome bandwidth limitations in mobile environments. One outstanding benefit compared to relates approaches is the provision of meaningful content previews during data transfer or processing. Although highly relevant and useful, however, related literature only addresses the support of this functionality by certain communication stages or proposes systems for specific use cases. No publication is concerned with an abstraction or formalization of progression or takes advantage of its beneficial properties in other application fields. In this publication we want to give a general view to progression, its key concepts, attributes, and common data processing pipeline. Thereby, we abstract from specifics and usage scenarios in order to simplify the development of new algorithms and schemes and to derive guidelines for its general application. To show that progression is also able to solve problems beyond limited bandwidth, this contribution is also concerned with the introduction of new application areas. The novel idea of content-oriented refinement allows emphasizing important image regions by an animated tour-through-the-data. It will also be shown that progressive representations are a very effective means for device adaptation. Both applications are motivated, discussed, and illustrated by different examples.

  6. Programmable noise bandwidth reduction by means of digital averaging

    NASA Technical Reports Server (NTRS)

    Poklemba, John J. (Inventor)

    1993-01-01

    Predetection noise bandwidth reduction is effected by a pre-averager capable of digitally averaging the samples of an input data signal over two or more symbols, the averaging interval being defined by the input sampling rate divided by the output sampling rate. As the averaged sample is clocked to a suitable detector at a much slower rate than the input signal sampling rate the noise bandwidth at the input to the detector is reduced, the input to the detector having an improved signal to noise ratio as a result of the averaging process, and the rate at which such subsequent processing must operate is correspondingly reduced. The pre-averager forms a data filter having an output sampling rate of one sample per symbol of received data. More specifically, selected ones of a plurality of samples accumulated over two or more symbol intervals are output in response to clock signals at a rate of one sample per symbol interval. The pre-averager includes circuitry for weighting digitized signal samples using stored finite impulse response (FIR) filter coefficients. A method according to the present invention is also disclosed.

  7. Bandwidth characteristics for the stepped conical-zoned antenna

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2002-07-01

    The stepped conical zoned lens antenna has better overall efficiency than a true lens, and provides an excellent antenna pattern. It also exhibits somewhat different bandwidth characteristics than the Fresnel zone plate antenna. This paper examines the frequency behavior in detail, particularly for microwave and millimeter-wave applications. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment (i.e., phase correction) is accomplished by cutting different depths (grooves) in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a flat dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still linear (i.e. spherical or hyperboloidal curves do not have to be cut), and can be made, for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical shape. The phase correction steps are small, usually a few degrees, which is much smaller than for the typical Fresnel zone plate. The bandwidth characteristics are calculated for specific cases.

  8. Multi-Modulator for Bandwidth-Efficient Communication

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Lay, Norman; Cheetham, Craig; Fong, Wai; Yeh, Pen-Shu; King, Robin; Ghuman, Parminder; Hoy, Scott; Fisher, Dave

    2009-01-01

    A modulator circuit board has recently been developed to be used in conjunction with a vector modulator to generate any of a large number of modulations for bandwidth-efficient radio transmission of digital data signals at rates than can exceed 100 Mb/s. The modulations include quadrature phaseshift keying (QPSK), offset quadrature phase-shift keying (OQPSK), Gaussian minimum-shift keying (GMSK), and octonary phase-shift keying (8PSK) with square-root raised-cosine pulse shaping. The figure is a greatly simplified block diagram showing the relationship between the modulator board and the rest of the transmitter. The role of the modulator board is to encode the incoming data stream and to shape the resulting pulses, which are fed as inputs to the vector modulator. The combination of encoding and pulse shaping in a given application is chosen to maximize the bandwidth efficiency. The modulator board includes gallium arsenide serial-to-parallel converters at its input end. A complementary metal oxide/semiconductor (CMOS) field-programmable gate array (FPGA) performs the coding and modulation computations and utilizes parallel processing in doing so. The results of the parallel computation are combined and converted to pulse waveforms by use of gallium arsenide parallel-to-serial converters integrated with digital-to-analog converters. Without changing the hardware, one can configure the modulator to produce any of the designed combinations of coding and modulation by loading the appropriate bit configuration file into the FPGA.

  9. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    SciTech Connect

    Chen, Ke; Yang, Zhongjie; Feng, Yijun Zhu, Bo; Zhao, Junming; Jiang, Tian

    2015-06-15

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  10. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  11. An exponential time 2-approximation algorithm for bandwidth

    SciTech Connect

    Kasiviswanathan, Shiva; Furer, Martin; Gaspers, Serge

    2009-01-01

    The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case {Omicron}(1.9797{sup n}) = {Omicron}(3{sup 0.6217n}) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have an {Omicron}*(3{sup n}) and {Omicron}*(2{sup n}) worst-case time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to achieve this improved time bound.

  12. Emergent CSCW systems: the resolution and bandwidth of workplaces.

    PubMed

    Xiao, Yan; Seagull, F Jacob

    2007-06-01

    In any collaborative work settings, people naturally develop physical tools and associated work processes that support the management of the interdependencies in information, materials, and social needs. Field studies of management of operating rooms pointed out that collaborative work is supported by an infrastructure that is composed of mostly non-computerized, physical components. The supporting infrastructure is jointly maintained and exploited, with constantly evolving patterns of usage, in response to complexity of coordination needs and the uncertain environment. To represent status and plans, users seem to invent structures based both on idiosyncratic preferences and on negotiated symbols. The fluidity and ease of restructuring workplaces to support collaborative work may be explained in part by the high resolution and bandwidth of workplaces: a large number of ways in which workers could structure their work and a high capacity to convey rich information and meanings quickly to collaborators. We argue that to support health care workers, designers of computer supported cooperative work (CSCW) systems should learn how the physical and perceptual properties of workplaces are exploited, and that CSCW systems should be designed to allow maximum freedom of restructuring and reconfiguring as part of workplaces to enhance bandwidth and resolution of representation and communication. PMID:16822715

  13. The Effect of Pulse Shaping QPSK on Bandwidth Efficiency

    NASA Technical Reports Server (NTRS)

    Purba, Josua Bisuk Mubyarto; Horan, Shelia

    1997-01-01

    This research investigates the effect of pulse shaping QPSK on bandwidth efficiency over a non-linear channel. This investigation will include software simulations and the hardware implementation. Three kinds of filters: the 5th order Butterworth filter, the 3rd order Bessel filter and the Square Root Raised Cosine filter with a roll off factor (alpha) of 0.25,0.5 and 1, have been investigated as pulse shaping filters. Two different high power amplifiers, one a Traveling Wave Tube Amplifier (TWTA) and the other a Solid State Power Amplifier (SSPA) have been investigated in the hardware implementation. A significant improvement in the bandwidth utilization (rho) for the filtered data compared to unfiltered data through the non-linear channel is shown in the results. This method promises strong performance gains in a bandlimited channel when compared to unfiltered systems. This work was conducted at NMSU in the Center for Space Telemetering, and Telecommunications Systems in the Klipsch School of Electrical and Computer Engineering Department and is supported by a grant from the National Aeronautics and Space Administration (NASA) NAG5-1491.

  14. Modulation bandwidth of spin torque oscillators under current modulation

    NASA Astrophysics Data System (ADS)

    Quinsat, M.; Garcia-Sanchez, F.; Jenkins, A. S.; Tiberkevich, V. S.; Slavin, A. N.; Buda-Prejbeanu, L. D.; Zeltser, A.; Katine, J. A.; Dieny, B.; Cyrille, M.-C.; Ebels, U.

    2014-10-01

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γp that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature of the STNO the amplitude relaxation rate Γp determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.

  15. Modulation bandwidth of spin torque oscillators under current modulation

    SciTech Connect

    Quinsat, M.; Garcia-Sanchez, F.; Jenkins, A. S.; Buda-Prejbeanu, L. D.; Dieny, B.; Ebels, U.; Tiberkevich, V. S.; Slavin, A. N.; Zeltser, A.; Katine, J. A.; Cyrille, M.-C.

    2014-10-13

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature of the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.

  16. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  17. Using ultra narrow bandwidth to overcome traditional problems with distribution line carrier

    SciTech Connect

    Hunt, P.C.; Hunt, L.R.

    1995-12-31

    It has long been common knowledge among communication engineers that wide bandwidth signals require more energy to overcome noise than do narrow band signals. This is why, during adverse conditions Morse code radio communications can get through when voice can`t. To achieve similar range: A television transmitter (6000 kHz bandwidth) requires 200,000 watts; A music broadcast transmitter (60 kHz bandwidth) requires 2000 watts; A voice only transmitter (3 kHz bandwidth) requires 100 watts. Carry this principle to extremes: An Ultra Narrow Bandwidth (UNB) transmitter (.00001 kHz bandwidth) requires .003 watts. This paper explores the advantages of using Ultra Narrow Bandwidth (UNB) in power line carrier systems. Using an Automatic Meter Reading System as an example, the authors explore how UNB allows (or sometimes requires) a change in system architecture, which creates further advantages.

  18. Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing-aid processing for children and adults with hearing loss

    PubMed Central

    Brennan, Marc A.; McCreery, Ryan; Kopun, Judy; Hoover, Brenda; Alexander, Joshua; Lewis, Dawna; Stelmachowicz, Patricia G.

    2014-01-01

    Background Preference for speech and music processed with nonlinear frequency compression and two controls (restricted and extended bandwidth hearing-aid processing) was examined in adults and children with hearing loss. Purpose Determine if stimulus type (music, sentences), age (children, adults) and degree of hearing loss influence listener preference for nonlinear frequency compression, restricted bandwidth and extended bandwidth. Research Design Within-subject, quasi-experimental study. Using a round-robin procedure, participants listened to amplified stimuli that were 1) frequency-lowered using nonlinear frequency compression, 2) low-pass filtered at 5 kHz to simulate the restricted bandwidth of conventional hearing aid processing, or 3) low-pass filtered at 11 kHz to simulate extended bandwidth amplification. The examiner and participants were blinded to the type of processing. Using a two-alternative forced-choice task, participants selected the preferred music or sentence passage. Study Sample Sixteen children (8–16 years) and 16 adults (19–65 years) with mild-to-severe sensorineural hearing loss. Intervention All subjects listened to speech and music processed using a hearing-aid simulator fit to the Desired Sensation Level algorithm v.5.0a (Scollie et al, 2005). Results Children and adults did not differ in their preferences. For speech, participants preferred extended bandwidth to both nonlinear frequency compression and restricted bandwidth. Participants also preferred nonlinear frequency compression to restricted bandwidth. Preference was not related to degree of hearing loss. For music, listeners did not show a preference. However, participants with greater hearing loss preferred nonlinear frequency compression to restricted bandwidth more than participants with less hearing loss. Conversely, participants with greater hearing loss were less likely to prefer extended bandwidth to restricted bandwidth. Conclusion Both age groups preferred access to

  19. High-bandwidth multichannel fiber optic system for measuring gamma rays

    SciTech Connect

    Roeske, F.; Smith, D.E.; Pruett, B.L.; Reedy, R.P.

    1984-07-01

    We describe an analog fiber optic gamma-ray diagnostic system that can transmit signals through fiber cables 600 to 700 m long with a system bandwidth exceeding 1 GHz and measure the relative timing between signals to within 0.3 ns. Gamma rays are converted to visible light via the Cerenkov process in a short length of a radiation-resistant optical fiber. A graded-index optical fiber transmits this pulse to a recording station where the broadened pulse is compensated for material dispersion and recorded using a streak camera. The streak camera can simultaneously record 20 to 30 data channels on a single piece of film. The system has been calibrated using electron linear accelerators and fielded on two experiments.

  20. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  1. A 0.8-3 GHz RF-VGA with 35 dB dynamic range in 0.13 μm CMOS

    NASA Astrophysics Data System (ADS)

    Xi, Qin; Xingli, Huang; Yajie, Qin; Zhiliang, Hong

    2012-01-01

    A wideband variable gain amplifier (VGA) implemented in 0.13 μm CMOS technology is presented. To optimize noise performance, an active feedback amplifier with 15 dB fixed gain is put in the front, followed by modified Cherry—Hooper amplifiers in cascade providing variable gain, which adopt dual loop feedback for bandwidth extension. Negative capacitive neutralization and capacitive source degeneration are employed for Miller effect compensation and DC offset cancellation, respectively. Measurement results show that the proposed VGA achieves a 35 dB gain tuning range with an upper 3-dB bandwidth larger than 3 GHz and the input 1 dB compression point of -29 dBm at the lowest gain state, while the minimum noise figure is 9 dB at the highest gain state. The core VGA (without test buffer) consumes 32 mW from 1.2 V power supply and occupies 0.48 mm2 area.

  2. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

    PubMed

    Najim, Mohd; Modi, Gaurav; Mishra, Yogendra Kumar; Adelung, Rainer; Singh, Dharmendra; Agarwala, Vijaya

    2015-09-21

    A viable lightweight absorber is the current need for stealth technology as well as microwave absorption. Several microwave absorbers have been developed, but it is still a challenge to fabricate an absorber that facilitates microwave absorption in broad bandwidth or covers the maximum portion of the frequency range 2-18 GHz, the commonly used range for radar and other applications. Therefore, it is highly required to develop a wide bandwidth absorber that can provide microwave absorption in the most part of the frequency range 2-18 GHz while simultaneously being lightweight and can be fabricated in desired bulk quantities by the cost-effective synthesis methods. In this paper, an attempt has been made to design an ultra-wide bandwidth absorber with enhanced microwave absorption response by using nickel-phosphorus coated tetrapod-shaped ZnO (Ni-P coated T-ZnO). In the Ni-P coated T-ZnO absorber, ZnO acts as a good dielectric contributor, while Ni as a magnetic constituent to obtain a microwave absorbing composite material, which has favorable absorption properties. Ni-P coated ZnO nano-microstructures are synthesized by a simple and scalable two-step process. First, tetrapod-shaped ZnO (T-ZnO) structures have been grown by the flame transport synthesis (FTS) approach in a single step process and then they have been coated with Ni-P by an electroless coating technique. Their morphology, degree of crystallinity and existing phases were studied in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The complex permittivity and permeability of the "as-fabricated" T-ZnO and Ni-P coated T-ZnO have been measured in the frequency range of 4-14 GHz and their microwave absorption properties are computed using the coaxial transmission-reflection method. The strongest reflection loss (RL) peak value of -36.41 dB has been obtained at a frequency of ∼8.99 GHz with coating thickness of 3.4 mm for the Ni

  3. Proteases in Plasma and Kidney of db/db Mice as Markers of Diabetes-Induced Nephropathy

    PubMed Central

    Hadler-Olsen, E.; Winberg, J.-O.; Reinholt, F. P.; Larsen, T.; Uhlin-Hansen, L.; Jenssen, T.; Berg, E.; Kolset, S. O.

    2011-01-01

    Db/db mice are overweight, dyslipidemic and develop diabetic complications, relevant for similar complications in human type 2 diabetes. We have used db/db and db/+ control mice to investigate alterations in proteinase expression and activity in circulation and kidneys by SDS-PAGE zymography, electron microscopy, immunohistochemistry, Western blotting, and in situ zymography. Plasma from db/db mice contained larger amounts of serine proteinases compared to db/+ mice. Kidneys from the db/db mice had a significantly larger glomerular surface area and somewhat thicker glomerular basement membranes compared to the db/+ mice. Furthermore, kidney extracts from db/+ mice contained metalloproteinases with Mr of approximately 92000, compatible with MMP-9, not observed in db/db mice. These results indicate that higher levels of serine proteinases in plasma may serve as potential markers for kidney changes in db/db mice, whereas a decrease in MMP-9 in the kidney may be related to the glomerular changes. PMID:22363890

  4. Wide-Bandwidth Capture of Wire-Scanner Signals

    SciTech Connect

    Gruchalla, Michael E.; Gilpatrick, John D.; Sedillo, James Daniel; Martinez, Derwin

    2012-05-16

    Integrated charge collected on the sense wires of wire-scanner systems utilized to determine beam profile is generally the parameter of interest. The LANSCE application requires capturing the charge information macropulse-by-macropulse with macropulse lengths as long as 700 {micro}s at a maximum macropulse rate of 120 Hz. Also, for the LANSCE application, it is required that the integration be performed in a manner that does not require integrator reset between macropulses. Due to the long macropulse which must be accommodated and the 8.33 ms minimum pulse period, a simple R-C integrator cannot be utilized since there is insufficient time between macropulses to allow the integrator to adequately recover. The application of wide analog bandwidth to provide accurate pulse-by-pulse capture of the wire signals with digital integration of the wire signals to determine captured charge at each macropulse in applications with comparatively long macropulses and high pulse repetition rates is presented.

  5. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  6. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  7. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  8. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  9. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  10. Fibre Bragg grating based accelerometer with extended bandwidth

    NASA Astrophysics Data System (ADS)

    Basumallick, Nandini; Biswas, Palas; Chakraborty, Rajib; Chakraborty, Sushanta; Dasgupta, Kamal; Bandyopadhyay, Somnath

    2016-03-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer.

  11. An improved harmony search algorithm with dynamically varying bandwidth

    NASA Astrophysics Data System (ADS)

    Kalivarapu, J.; Jain, S.; Bag, S.

    2016-07-01

    The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.

  12. High bandwidth absorption spectroscopy with a dispersed supercontinuum source.

    PubMed

    Hult, Johan; Watt, Rosalynne S; Kaminski, Clemens F

    2007-09-01

    An optical gas sensor is presented, making use of a dispersed supercontinuum source, capable of acquiring broad bandwidth spectra at ultrahigh wavelength sweep and repetition rates. Wavelength sweeps from 1100 nm to 1700 nm can be performed in 800 ns at a spectral resolution of 40 pm. This is comparable to line-widths of molecular spectra at atmospheric pressure. Quantitative measurements are presented of CH(4) employing 80 nm wide sweeps over the P- Q- and R-branches of the 2nu(3) transition near 1665 nm, at rates exceeding 100 kHz. The effective acquisition rate is determined by the amount of averaging required, and the effect of this averaging on observed precision is investigated. PMID:19547496

  13. Investigation of Bandwidth-Efficient Coding and Modulation Techniques

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    The necessary technology was studied to improve the bandwidth efficiency of the space-to-ground communications network using the current capabilities of that network as a baseline. The study was aimed at making space payloads, for example the Hubble Space Telescope, more capable without the need to completely redesign the link. Particular emphasis was placed on the following concepts: (1) what the requirements are which are necessary to convert an existing standard 4-ary phase shift keying communications link to one that can support, as a minimum, 8-ary phase shift keying with error corrections applied; and (2) to determine the feasibility of using the existing equipment configurations with additional signal processing equipment to realize the higher order modulation and coding schemes.

  14. Transformation optics for antennas: why limit the bandwidth with metamaterials?

    NASA Astrophysics Data System (ADS)

    Quevedo-Teruel, Oscar; Tang, Wenxuan; Mitchell-Thomas, Rhiannon C.; Dyke, Amy; Dyke, Hazel; Zhang, Lianhong; Haq, Sajad; Hao, Yang

    2013-05-01

    In the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation. Here we circumvent this problem with the proposal of a full dielectric implementation of a transformed planar hyperbolic lens which retains the same focusing properties of an original curved lens. The redesigned lens demonstrates operation with high directivity and low side lobe levels for an ultra-wide band of frequencies, spanning over three octaves. The methodology proposed in this paper can be applied to revolutionise the design of many electromagnetic devices overcoming bandwidth limitations.

  15. Modulator based high bandwidth optical readout for HEP detectors

    NASA Astrophysics Data System (ADS)

    Drake, G.; Fernando, W. S.; Stanek, R. W.; Underwood, D. G.

    2013-02-01

    Optical links will be an integral part of future LHC experiments at various scales from coupled sensors to off-detector communication. We are investigating CW lasers and light modulators as an alternative to VCSELs. Light modulators are small, use less power, have high bandwidth, are reliable, have low bit error rates and are very rad-hard. We present the quality of the links at 10Gbps and the results of radiation hardness measurements for the modulators built based on LiNbO3, InP, and Si. Also we present results on modulator-based free space data links, steered by MEMS mirrors and optical feedback paths for the control loop.

  16. Transformation optics for antennas: why limit the bandwidth with metamaterials?

    PubMed Central

    Quevedo-Teruel, Oscar; Tang, Wenxuan; Mitchell-Thomas, Rhiannon C.; Dyke, Amy; Dyke, Hazel; Zhang, Lianhong; Haq, Sajad; Hao, Yang

    2013-01-01

    In the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation. Here we circumvent this problem with the proposal of a full dielectric implementation of a transformed planar hyperbolic lens which retains the same focusing properties of an original curved lens. The redesigned lens demonstrates operation with high directivity and low side lobe levels for an ultra-wide band of frequencies, spanning over three octaves. The methodology proposed in this paper can be applied to revolutionise the design of many electromagnetic devices overcoming bandwidth limitations. PMID:23712699

  17. High Bandwidth Optical Links for Micro-Satellite Support

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  18. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    PubMed Central

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  19. A Wide Bandwidth Digital Recording System for Pulsar Astronomy

    NASA Astrophysics Data System (ADS)

    Jenet, F. A.; Unwin, S. C.; Prince, T. A.

    1995-12-01

    We have developed a powerful and flexible data acquisition system for pulsar astronomy, based on a 50 Mbyte/s commercial instrumentation tape recorder and a custom analog-digital VLSI digitizer chip. This system converts the problem of pulsar detection from largely hardware-oriented to mostly software-oriented. We are using the 512-node Intel Paragon XPS and Touchstone Delta supercomputers at Caltech for pulsar searching and analysis. The detection of fast pulsars requires (1) rapid time sampling, and (2) the ability to correct for dispersion (frequency-dependent time delay caused by charged particles in the interstellar medium). A conventional hardware approach involves a filterbank or correlator at the telescope, then sampling and recording the detected power. Our telescope hardware is relatively simple, performing only downconversion from RF or IF to baseband, followed by Nyquist sampling and (2-bit) digitizing the voltage signal by the custom VLSI chip, then storage on ANSI D1 videocassette. One D1-L cassette allows continuous recording of two polarizations each with 50 MHz bandwidth for 32 minutes, or 25 MHz for 64 minutes. In software we can de-disperse the pulse signals by synthesizing a filterbank with an arbitrary number of frequency channels. Coherent dedispersion can be performed on the voltage (but not power) data, allowing time resolutions down to the inverse RF bandwidth to be achieved in principle. We present first results from observations in July 1995 at the 64-m telescope at Parkes Observatory, Australia Telescope National Facility. These results on known pulsars, including faint globular cluster millisecond-period pulsars, demonstrate the capabilities of our data recording and analysis system.

  20. Adaptive data filtering of inertial sensors with variable bandwidth.

    PubMed

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  1. Chemotherapy of Second Stage Human African Trypanosomiasis: Comparison between the Parenteral Diamidine DB829 and Its Oral Prodrug DB868 in Vervet Monkeys

    PubMed Central

    Thuita, John K.; Wolf, Kristina K.; Murilla, Grace A.; Bridges, Arlene S.; Boykin, David W.; Mutuku, James N.; Liu, Qiang; Jones, Susan K.; Gem, Charles O.; Ching, Shelley; Tidwell, Richard R.; Wang, Michael Z.; Paine, Mary F.; Brun, Reto

    2015-01-01

    Human African trypanosomiasis (HAT, sleeping sickness) ranks among the most neglected tropical diseases based on limited availability of drugs that are safe and efficacious, particularly against the second stage (central nervous system [CNS]) of infection. In response to this largely unmet need for new treatments, the Consortium for Parasitic Drug Development developed novel parenteral diamidines and corresponding oral prodrugs that have shown cure of a murine model of second stage HAT. As a rationale for selection of one of these compounds for further development, the pharmacokinetics and efficacy of intramuscular (IM) active diamidine 2,5-bis(5-amidino-2-pyridyl)furan (DB829; CPD-0802) and oral prodrug2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868) were compared in the vervet monkey model of second stage HAT. Treatment was initiated 28 days post-infection of monkeys with T. b. rhodesiense KETRI 2537. Results showed that IM DB829 at 5 mg/kg/day for 5 consecutive days, 5 mg/kg/day every other day for 5 doses, or 2.5 mg/kg/day for 5 consecutive days cured all monkeys (5/5). Oral DB868 was less successful, with no cures (0/2) at 3 mg/kg/day for 10 days and cure rates of 1/4 at 10 mg/kg/day for 10 days and 20 mg/kg/day for 10 days; in total, only 2/10 monkeys were cured with DB868 dose regimens. The geometric mean plasma Cmax of IM DB829 at 5 mg/kg following the last of 5 doses was 25-fold greater than that after 10 daily oral doses of DB868 at 20 mg/kg. These data suggest that the active diamidine DB829, administered IM, should be considered for further development as a potential new treatment for second stage HAT. PMID:25654243

  2. High-throughput compression of FASTQ data with SeqDB.

    PubMed

    Howison, Mark

    2013-01-01

    Compression has become a critical step in storing next-generation sequencing (NGS) data sets because of both the increasing size and decreasing costs of such data. Recent research into efficiently compressing sequence data has focused largely on improving compression ratios. Yet, the throughputs of current methods now lag far behind the I/O bandwidths of modern storage systems. As biologists move their analyses to high-performance systems with greater I/O bandwidth, low-throughput compression becomes a limiting factor. To address this gap, we present a new storage model called SeqDB, which offers high-throughput compression of sequence data with minimal sacrifice in compression ratio. It achieves this by combining the existing multithreaded Blosc compressor with a new data-parallel byte-packing scheme, called SeqPack, which interleaves sequence data and quality scores. PMID:23702558

  3. InGaAs PIN photodiodes on semi-insulating InP substrates with bandwidth exceeding 14 GHz

    NASA Astrophysics Data System (ADS)

    Wen-Jeng Ho; Ting-Arn Dai; Zuon-Ming Chuang; Wei Lin; Yuan-Kuang Tu; Meng-Chyi Wu

    1995-07-01

    The top-illuminated InGaAs PIN photodiodes have been fabricated from materials grown by metalorganic vapor phase epitaxy. Using the planar air-bridge approach and the selective etching technique, it can eliminate the significant bondpad capacitance which is present in conventional PIN photodiodes on conducting substrates. Besides, a self-aligned lift-off process is used for the n-contact recess and metallization. The anti-reflection coating devices have responsivity of 0.79 and 0.78 A/W at 1.3 and 1.55 μm, respectively. The fabricated devices with 30 μm photosensitive diameter have a very low dark current below 0.2 nA and low capacitance of 143 fF at -5V bias voltage. The 3-dB bandwidth of these devices is in excess of 14.8 GHz which is in good agreement with the calculated minority-carrier transit time through an absorbing layer thickness of 1.85 μm. The device performance reveals that these devices are potentially suitable for the applications in optoelectronic integrated circuits.

  4. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng

    2014-06-01

    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  5. A variable bandwidth assignment scheme for the Land Mobile Satellite experiment

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Li, V. O. K.

    1985-01-01

    The Mobile Satellite Experiment is a proposed experimental satellite-based communications network which provides data and voice communications to mobile terminals dispersed in geographically dispersed areas. In this paper, an analytical model is developed to calculate the performance of a Variable Bandwidth Assignment (VBA) Scheme. Under this scheme, the satellite channel bandwidth is dynamically reassigned so that a message may be transmitted in the shortest possible time. To transmit a long message, message channels will be reconfigured to have more bandwidth such that the transmission time is reduced, while to transmit a short message, the channel bandwidth will be shrunk such that the released bandwidth can be used to serve other messages. The model is illustrated with numerical examples. It is shown that a VBA scheme can achieve considerable improvement in transmission delays over a Fixed Bandwidth Assignment Scheme.

  6. Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

    SciTech Connect

    Jin, Guojun; Tierney, Brian

    2003-01-31

    Distinguishing available bandwidth and achievable throughput is essential for improving network applications' performance. Achievable throughput is the throughput considering a number of factors such as network protocol, host speed, network path, and TCP buffer space, where as available bandwidth only considers the network path. Without understanding this difference, trying to improve network applications' performance is like ''blind men feeling the elephant'' [4]. In this paper, we define and distinguish bandwidth and throughput, and debate which part of each is achievable and which is available. Also, we introduce and discuss a new concept - Maximum Burst Size that is crucial to the network performance and bandwidth sharing. A tool, netest, is introduced to help users to determine the available bandwidth, and provides information to achieve better throughput with fairness of sharing the available bandwidth, thus reducing misuse of the network.

  7. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  8. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes.

    PubMed

    Sataranatarajan, Kavithalakshmi; Ikeno, Yuji; Bokov, Alex; Feliers, Denis; Yalamanchili, Himabindu; Lee, Hak Joo; Mariappan, Meenalakshmi M; Tabatabai-Mir, Hooman; Diaz, Vivian; Prasad, Sanjay; Javors, Martin A; Ghosh Choudhury, Goutam; Hubbard, Gene B; Barnes, Jeffrey L; Richardson, Arlan; Kasinath, Balakuntalam S

    2016-07-01

    We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment. PMID:26442901

  9. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    NASA Astrophysics Data System (ADS)

    Lobisser, Evan

    Indium phosphide heterojunction bipolar transistors are able to achieve higher bandwidths at a given feature size than transistors in the Silicon material system for a given feature size. Indium phosphide bipolar transistors demonstrate higher breakdown voltages at a given bandwidth than both Si bipolars and field effect transistors in the InP material system. The high bandwidth of InP HBTs results from both intrinsic material parameters and bandgap engineering through epitaxial growth. The electron mobility in the InGaAs base and saturation velocity in the InP collector are both approximately three times higher than their counterparts in the SiGe material system. Resistance of the base can be made very low due to the large offset in the valence band between the InP emitter and the InGaAs base, which allows the base to be doped on the order of 1020 cm-3 with negligible reduction in emitter injection efficiency. This thesis deals with type-I, NPN dual-heterojunction bipolar transistors. The emitters are InP, and the base is InGaAs. There is a thin (˜ 10 nm) n-type InGaAs "setback" region, followed by a chirped superlattice InGaAs/InAlAs grade to the InP collector. The setback, grade, and collector are all lightly doped n-type. The emitter and collector are contacted through thin (˜ 5 nm) heavily doped n-type InGaAs layers to reduce contact resistivity. The primary focus of this work is increasing the bandwidth of InP HBTs through the proportional scaling of the device dimensions, both layer thicknesses and junction areas, as well as the reduction of the contact resistivities associated with the transistor. Essentially, all RC time constants and transit times must be reduced by a factor of two to double a transistor's bandwidth. Chapter 2 describes in detail the scaling laws and design principles for high frequency bipolar transistor design. A low-stress, blanket sputter deposited composite emitter metal process was developed. Refractory metal base contacts were

  10. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min

    2015-12-01

    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  11. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High quality regression models of gas chromatographic retention indices were generated for OV-101 (R=0.997), DB-1 (R=0.998), DB-5 (R=0.997), and DB-Wax (R=0.982) using 91, 57, 94, and 102 compounds respectively. The models were generated using a second order equation including the cross product uti...

  12. The transmission of symmetric 40 Gb/s TWDM-based NG-PON2 utilizing delay interferometer (DI) for RSOA bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Bindhaiq, Salem; Zulkifli, Nadiatulhuda; Supa'at, AbuSahmah M.

    2016-07-01

    Time and wavelength-division multiplexed passive optical network (TWDM-PON) has been finally selected as the pragmatic solution for the next-generation passive optical network stage 2 (NG-PON2). In this paper, we propose a symmetric 40 Gb/s TWDM-PON system with low cost reflective semiconductor optical amplifier (RSOA) for both downstream and upstream directions. A single bi-pass delay interferometer (DI), deployed in the optical line terminal (OLT), is used to enhance the poor performance of the RSOA with respect to the low bandwidth induced by laser chirp. With the help of the 40 GHz free spectrum range (FSR) DI, we show a successful transmission of the proposed work through simulation study where an aggregate capacity of 40 Gb/s is transported over 40 km transmission distance with 32 splits. The TWDM-PON system at BER of 10-6 has shown a minimum receiver sensitivity of -22.78 dBm and -22.71 dBm for both downstream and upstream, respectively with maximum power penalty of 2 dB for downstream channel and 2.39 dB for upstream channel.

  13. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    SciTech Connect

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, Anthony M.; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  14. Performance evaluation of multilevel modulation formats using partial response for capacity upgrade in access network with limited electronic bandwidth

    NASA Astrophysics Data System (ADS)

    Madsen, Peter; Frejstrup Suhr, Lau; Sebastian Rodriguez, Juan; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-09-01

    We present a successful experimental evaluation of 4 level Pulse Amplitude Modulation (4-PAM) and Duobinary modulation. An experimental performance evaluation is presented for Duobinary 4 PAM and other modulation formats. All modulation formants used, may be considered to be implemented in future Passive Optical Network (PON) class access networks with limited electrical bandwidth. We compared NRZ, Duobinary, 4-PAM and Duobinary 4-PAM operating at 9 Gbaud over 20 km single mode fiber. The results provides an insight and guidelines on the utilization of these advanced modulation formats.

  15. Design of wide-bandwidth electromagnetic wave absorbers using the inductance and capacitance of a square loop-frequency selective surface calculated from an equivalent circuit model

    NASA Astrophysics Data System (ADS)

    Liu, Tian; Kim, Sung-Soo

    2016-01-01

    The design of wide-bandwidth microwave absorbers is conducted using a square loop-frequency selective surface (SL-FSS) on the surface of the grounded dielectric substrate. The parallel circuit combination of the input impedance of the grounded substrate and the complex impedance of the SL-FSS leads to impedance matching in a broad frequency range. The inductance (L) and capacitance (C) of the SL-FSS is calculated using the equivalent circuit model, which is dependent on the SL-FSS geometry. For the SL-FSS, the inductance and capacitance are calculated from the equations of reactance and susceptance at the resonance frequency (f0) of the equivalent L-C circuit. The circuit is capacitive below f0 and inductive above f0. For a grounded substrate with a quarter wavelength thickness, however, the input impedance is inductive at lower frequencies and capacitive at higher frequencies. Through combining these two impedances, impedance matching can be derived over a wide frequency range with the controlled FSS resistance matched to the free-space impedance. The optimized surface resistance of the FSS conductor is Rs=26 Ω for the widest bandwidth (4.9-16.4 GHz with respect to -10 dB reflection loss), which is consistent with the simulation results obtained via computational tool.

  16. Detection algorithm of big bandwidth chirp signals based on STFT

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhen; Wu, Juhong; Su, Shaoying; Chen, Zengping

    2014-10-01

    Aiming at solving the problem of detecting the wideband chirp signals under low Signal-to-Noise Ratio (SNR) condition, an effective signal detection algorithm based on Short-Time-Fourier-Transform (STFT) is proposed. Considering the characteristic of dispersion of noise spectrum and concentration of chirp spectrum, STFT is performed on chirp signals with Gauss window by fixed step, and these frequencies of peak spectrum obtained from every STFT are in correspondence to the time of every stepped window. Then, the frequencies are binarized and the approach similar to mnk method in time domain is used to detect the chirp pulse signal and determine the coarse starting time and ending time. Finally, the data segments, where the former starting time and ending time locate, are subdivided into many segments evenly, on which the STFT is implemented respectively. By that, the precise starting and ending time are attained. Simulations shows that when the SNR is higher than -28dB, the detection probability is not less than 99% and false alarm probability is zero, and also good estimation accuracy of starting and ending time is acquired. The algorithm is easy to realize and surpasses FFT in computation when the width of STFT window and step length are selected properly, so the presented algorithm has good engineering value.

  17. Increasing the orbital angular momentum bandwidth of entangled photons

    NASA Astrophysics Data System (ADS)

    Romero, Jacquiline; Giovannini, Daniele; Franke-Arnold, Sonja; Barnett, Stephen M.; Padgett, Miles J.

    2012-09-01

    The bandwidth of any communication system, classical or quantum, is limited by the number of orthogonal states in which the information can be encoded. Quantum key distribution systems available commercially rely on the two-dimensional polarisation state of photons. Quantum computation has also been largely designed on the basis of qubits. However, a photon is endowed with other degrees of freedom, such as orbital angular momentum (OAM). OAM is an attractive basis to be used for quantum information because it is discrete and theoretically infinite-dimensional. This promises a higher information capacity per photon which can lead to more complex quantum computation protocols and more security and robustness for quantum cryptography. Entanglement of OAM naturally arises from spontaneous parametric down-conversion (SPDC). However, any practical experiment utilising the innately high-dimensional entanglement of the orbital angular momentum (OAM) state space of photons is subject to the modal capacity of the detection system. Only a finite subset of this space is accessible experimentally. Given such a constraint, we show that the number of measured, entangled OAM modes in photon pairs generated by SPDC can be increased by tuning the phase-matching conditions in the SPDC process. We achieve this by tuning the orientation angle of the nonlinear crystal generating the entangled photons.

  18. Spatial frequency bandwidth used in the recognition of facial images.

    PubMed

    Näsänen, R

    1999-11-01

    The purpose of the study was to find out what spatial frequency information human observers use in the recognition of face images. Signal-to-noise ratio thresholds for the recognition of facial images were measured as a function of the centre spatial frequency of narrow-band additive spatial noise. The relative sensitivity of recognition to different spatial frequencies was derived from these results. The maximum sensitivity was found at 8-13 c/face width and the bandwidth was just under two octaves. Qualitatively similar results were obtained with stimuli in which Fourier phase was randomised within a narrow band of different centre spatial frequencies. This resulted in a considerable increase of energy threshold around 8 c/face width and less elsewhere. Further, contrast energy thresholds were measured as a function of the centre spatial frequency of band-pass filtered face images. As a function of object spatial frequency (c/face width), energy threshold first decreased and then increased. The lowest energy thresholds found around 10 c/face width were lower than the energy threshold for unfiltered images. This is what one would expect if face recognition is narrow-band, since band-pass filtered images of optimal centre spatial frequency do not contain unused contrast energy at low and high spatial frequencies. In conclusion, the results suggest that the recognition of facial images is tuned to a relatively narrow band (< 2 octaves) of mid object spatial frequencies. PMID:10748918

  19. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  20. Satisfying customer bandwidth demand in IP data networks

    NASA Astrophysics Data System (ADS)

    Kogan, Yaakov; Kosal, Haluk; Maguluri, Gangaji; Ramachandran, Gomathi

    2001-07-01

    We introduce the notion of customer bandwidth fulfillment in IP data networks and provide a quantitative characterization of the fulfillment using measurements of the router uplink (link connecting a router to the backbone) utilization. The threshold for the uplink utilization is calculated for a given probability of customer fulfillment based on the normal approximation. We use three different stochastic models to prove the normal approximation for the distribution of the uplink utilization. The convergence to the Gaussian diffusion prcess is proved in the framework of the nonstationary exponential Benes buffer model. In a special case of an alternating renewal process, we show that the fulfillment can be evaluated based on measurements of the mean uplink utilization. We also prove that the distribution for the number of busy links in a large generalized Engset model is asymptotically normal that provides another justification of the normal approximation for the uplink utilization. We analyze 5-minutes measurements of the uplink utilization and show that their empirical distribution is close to normal.

  1. QoS routing via multiple paths using bandwidth reservation

    SciTech Connect

    Rao, N.S.V.; Batsell, S.G.

    1997-11-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate. They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete and propose a polynomial-time approximate solution.

  2. QoS routing via multiple paths using bandwidth reservation

    SciTech Connect

    Rao, N.S.V.; Batsell, S.G.

    1998-01-01

    The authors address the problem of computing a multipath, consisting of possibly overlapping paths, to transmit data from the source node s to the destination node d over a computer network while ensuring deterministic bounds on end-to-end delay or delivery rate.They consider two generic routing problems within the framework wherein bandwidth can be reserved, and guaranteed, once reserved, on various links of the communication network. The first problem requires that a message of finite length be transmitted from s to d within {tau} units of time. The second problem requires that a sequential message of r units be transmitted at a rate of {eta} such that maximum time difference between two units that are received out of order is no more than q. They propose a polynomial-time algorithm to the first problem based on an adaptation of the classical Ford-Fulkerson`s method. They present simulation results to illustrate the applicability of the proposed algorithm. They show the second problem to be NP-complete, and propose a polynomial-time approximately solution.

  3. Infinite bandwidth of a Mott-Hubbard insulator

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cohn, Jeffrey; van Dongen, Peter; Krishnamurthy, Hulikal

    The conventional viewpoint of the strongly correlated electron metal-insulator transition is that a single band splits into two upper and lower Hubbard bands at the metal-insulator transition. Much work has investigated whether this transition is continuous or discontinuous. Here we focus on another aspect and ask the question of whether there are additional upper and lower Hubbard bands, which stretch all the way out to infinity|leading to an infinite bandwidth for the Mott insulator. While we are not yet able to provide a rigorous proof of this result, we use exact diagonalization studies on small clusters to motivate the existence of these additional bands, and we discuss some different methods that might be utilized to provide a rigorous proof of this result. Even though the extra upper and lower Hubbard bands have very low total spectral weight, those states are expected to have extremely long lifetimes, leading to a nontrivial contribution to the transport density of states for dc transport and modifying the high temperature limit for the electrical resistivity. JKF supported by the Department of Energy, Office of Basic Energy Sciences, under Grant No. DE-FG02-08ER46542, and by the McDevitt bequest at Georgetown University. HRK supported by the Indian Science Foundation.

  4. Numerical Models of Broad-Bandwidth Nanosecond Optical Parametric Oscillators

    SciTech Connect

    Bowers, M.S.; Gehr. R.J.; Smith, A.V.

    1998-10-22

    We present three new methods for modeling broad-bandwidth, nanosecond optitcal parametric oscillators in the plane-wave approximation. Each accounts for the group-velocity differences that determine the operating linewidth of unseeded optical parametric oscillators, and each allows the signal and idler waves to develop from quantum noise. The first two methods are based on split-step integration methods in which nonlinear mixing and propagation are calculated separately on alternate steps. One method relies on Fourier transforming handle propagation, wiih mixing integrated over a the fields between t and u to Az step: the other transforms between z and k= in the propagation step, with mixing integrated over At. The third method is based on expansion of the three optical fields in terms of their respective longitudinal empty cavity modes, taking into account the cavity boundary condi- tions. Equations describing the time development of the mode amplitudes are solved to yield the time dependence of the three output fields. These plane-wave models exclude diffractive effects, but can be readily extended to include them.

  5. Social value of high bandwidth networks: creative performance and education.

    PubMed

    Mansell, Robin; Foresta, Don

    2016-03-01

    This paper considers limitations of existing network technologies for distributed theatrical performance in the creative arts and for symmetrical real-time interaction in online learning environments. It examines the experience of a multidisciplinary research consortium that aimed to introduce a solution to latency and other network problems experienced by users in these sectors. The solution builds on the Multicast protocol, Access Grid, an environment supported by very high bandwidth networks. The solution is intended to offer high-quality image and sound, interaction with other network platforms, maximum user control of multipoint transmissions, and open programming tools that are flexible and modifiable for specific uses. A case study is presented drawing upon an extended period of participant observation by the authors. This provides a basis for an examination of the challenges of promoting technological innovation in a multidisciplinary project. We highlight the kinds of technical advances and cultural and organizational changes that would be required to meet demanding quality standards, the way a research consortium planned to engage in experimentation and learning, and factors making it difficult to achieve an open platform that is responsive to the needs of users in the creative arts and education sectors. PMID:26809576

  6. High-Bandwidth Protein Analysis Using Solid-State Nanopores

    PubMed Central

    Larkin, Joseph; Henley, Robert Y.; Muthukumar, Murugappan; Rosenstein, Jacob K.; Wanunu, Meni

    2014-01-01

    High-bandwidth measurements of the ion current through hafnium oxide and silicon nitride nanopores allow the analysis of sub-30 kD protein molecules with unprecedented time resolution and detection efficiency. Measured capture rates suggest that at moderate transmembrane bias values, a substantial fraction of protein translocation events are detected. Our dwell-time resolution of 2.5 μs enables translocation time distributions to be fit to a first-passage time distribution derived from a 1D diffusion-drift model. The fits yield drift velocities that scale linearly with voltage, consistent with an electrophoretic process. Further, protein diffusion constants (D) are lower than the bulk diffusion constants (D0) by a factor of ∼50, and are voltage-independent in the regime tested. We reason that deviations of D from D0 are a result of confinement-driven pore/protein interactions, previously observed in porous systems. A straightforward Kramers model for this inhibited diffusion points to 9- to 12-kJ/mol interactions of the proteins with the nanopore. Reduction of μ and D are found to be material-dependent. Comparison of current-blockage levels of each protein yields volumetric information for the two proteins that is in good agreement with dynamic light scattering measurements. Finally, detection of a protein-protein complex is achieved. PMID:24507610

  7. Simulations of the intermediate bandwidth fluctuations in nanostructured PV

    NASA Astrophysics Data System (ADS)

    Mebadi, Ashkan; Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2013-09-01

    The size dispersion and distributions of quantum dot nanoparticles (sizes from 2-5 nm) embedded in the active region of the intermediate band solar cells are important to reach the high efficiencies. An optimized size and regularity can increase the efficiency due largely to avoided non-radiative transitions which can originate from the fluctuations in the bandwidth of the intermediate layer. In this work, we propose all the energy band diagrams possible in the formation of such a cell. Five equivalent band diagrams of the cells with different size dispersions and regularity of quantum dots are considered and compared with the reported experimental profiles in the literature. Furthermore, the degree of the size fluctuation is considered by proposing a fluctuation degree for the band gap and sub-band gaps of the cell. These proposed profiles and the fluctuation theory are exploited to consider the experimental data reported in literature. The optimized size dispersion will increase the photocurrent of the cell. We believe that every quantum dot solar cell will fall into one of the proposed band diagrams. This approach gives foresight to the theoretical studies of such devices and expectation from the energy band structure and band widths since it considers the fluctuation of the band widths for the intermediate band separately.

  8. A video transmission system for low-bandwidth remote driving

    SciTech Connect

    DePiero, F.W.; Noell, T.E. ); Gee, T.F. )

    1993-01-01

    Oak Ridge National Laboratory (ORNL) staff have developed a real-time video transmission system for low-bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black-and-white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports the teleoperated driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds of up to 15 mph on a moguled dirt tract. The system also provides video transmissions for a mission package on board the vehicle. The system supports dynamic image quality adjustments that allow the remote driver to adjust to changing scenery and viewing requirements. During driving, the system's nominal configuration had a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of [approx] 1s.

  9. A video transmission system for low-bandwidth remote driving

    SciTech Connect

    DePiero, F.W.; Noell, T.E.; Gee, T.F.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) staff have developed a real-time video transmission system for low-bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black-and-white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports the teleoperated driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds of up to 15 mph on a moguled dirt tract. The system also provides video transmissions for a mission package on board the vehicle. The system supports dynamic image quality adjustments that allow the remote driver to adjust to changing scenery and viewing requirements. During driving, the system`s nominal configuration had a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approx} 1s.

  10. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  11. Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade

    PubMed Central

    Lau, Yeh Siang; Tian, Xiao Yu; Mustafa, Mohd Rais; Murugan, Dharmani; Liu, Jian; Zhang, Yang; Lau, Chi Wai; Huang, Yu

    2013-01-01

    BACKGROUND AND PURPOSE Boldine is a potent natural antioxidant present in the leaves and bark of the Chilean boldo tree. Here we assessed the protective effects of boldine on endothelium in a range of models of diabetes, ex vivo and in vitro. EXPERIMENTAL APPROACH Vascular reactivity was studied in mouse aortas from db/db diabetic and normal mice. Reactive oxygen species (ROS) production, angiotensin AT1 receptor localization and protein expression of oxidative stress markers in the vascular wall were evaluated by dihydroethidium fluorescence, lucigenin enhanced-chemiluminescence, immunohistochemistry and Western blot respectively. Primary cultures of mouse aortic endothelial cells, exposed to high concentrations of glucose (30 mmol L−1) were also used. KEY RESULTS Oral treatment (20 mg kg−1day−1, 7 days) or incubation in vitro with boldine (1 μmol L−1, 12 h) enhanced endothelium-dependent aortic relaxations of db/db mice. Boldine reversed impaired relaxations induced by high glucose or angiotensin II (Ang II) in non-diabetic mouse aortas while it reduced the overproduction of ROS and increased phosphorylation of eNOS in db/db mouse aortas. Elevated expression of oxidative stress markers (bone morphogenic protein 4 (BMP4), nitrotyrosine and AT1 receptors) were reduced in boldine-treated db/db mouse aortas. Ang II-stimulated BMP4 expression was inhibited by boldine, tempol, noggin or losartan. Boldine inhibited high glucose-stimulated ROS production and restored the decreased phosphorylation of eNOS in mouse aortic endothelial cells in culture. CONCLUSIONS AND IMPLICATIONS Boldine reduced oxidative stress and improved endothelium-dependent relaxation in aortas of diabetic mice largely through inhibiting ROS overproduction associated with Ang II-mediated BMP4-dependent mechanisms. PMID:23992296

  12. A 90dB 1.32mW 1.2V 0.13mm2 Two-Stage Variable Gain Amplifier in 0.18μm CMOS

    NASA Astrophysics Data System (ADS)

    Duong, Quoc-Hoang; Lee, Jeong-Seon; Min, Sang-Hyun; Kim, Joong-Jin; Lee, Sang-Gug

    An all CMOS variable gain amplifier (VGA) which features wide dB-linear gain range per stage (45dB), low power consumption (1.32mW), small chip size (0.13mm2), and low supply voltage (1.2V) is described. The dB-linear range is extended by reducing the supply voltage of the conventional V-to-I converter. The two-stage VGA implemented in 0.18μm CMOS offers 90dB of gain variation, 3dB bandwidth of greater than 21MHz, and max/min input IP3 and P1 dB, respectively, of -5/-42 and -12/-50 dBm.

  13. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    PubMed Central

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  14. A hybrid OFDM-TDM architecture with decentralized dynamic bandwidth allocation for PONs.

    PubMed

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  15. The Minimum bandwidth of narrowband spikes in solar flare decimetric radio waves

    NASA Astrophysics Data System (ADS)

    Messmer, Peter; Benz, Arnold O.

    2000-02-01

    The minimum and the mean bandwidth of individual narrowband spikes in two events in decimetric radio waves is determined by means of multi-resolution analysis. Spikes of a few tens of millisecond duration occur at decimetric/microwave wavelength in the particle acceleration phase of solar flares. A first method determines the dominant spike bandwidth scale based on their scalegram, the mean squared wavelet coefficient at each frequency scale. This allows to measure the scale bandwidth independently of heuristic spike selection criteria, e.g. manual selection. The major drawback is a low resolution in the bandwidth. To overcome this uncertainty, a feature detection algorithm and a criterion for spike shape in the time-frequency plane is applied to locate the spikes. In that case, the bandwidth is measured by fitting an assumed spike profile into the denoised data. The smallest FWHM bandwidth of spikes was found at 0.17% and 0.41% of the center frequency in the two events. Knowing the shortest relevant bandwidth of spikes, the slope of the Fourier power spectrum of this two events was determined and no resemblance to a Kolmogorov spectrum detected. Additionally the correlation between spike peak flux and bandwidth was examined.

  16. Bandwidth Management in Universities in Zimbabwe: Towards a Responsible User Base through Effective Policy Implementation

    ERIC Educational Resources Information Center

    Chitanana, Lockias

    2012-01-01

    This research was undertaken to investigate the issue of how to maximise or make efficient use of bandwidth. In particular, the research sought to find out about what universities in Zimbabwe are doing to manage their bandwidth. It was, therefore, appropriate to survey a sample of five universities and to catalogue their experiences. Results show…

  17. A Survey of Bandwidth Utilization: Case Study of Federal University of Technology Minna

    NASA Astrophysics Data System (ADS)

    Haq, A.; Bello Salau, H.; Aibinu, A. M.; Onwuka, E. N.

    2013-12-01

    The effective utilization of the limited scarce bandwidth resources allocated by a spectrum regulator usually the Nigerian Communications Commissions (NCC) in Nigeria universities is paramount in maximizing the usage of the expensive scarce bandwidth resources. A significant bandwidth allocation is needed in order to meet up with the challenges of the day and the task of networking, communicating and reaching the word in our universities. Therefore, bandwidth management becomes necessary and essential. This paper contributes in that direction by surveying the bandwidth utilization at Federal University of Technology Minna campus with the hope of proffering a general solution that can be adopted in Nigerian universities for effective bandwidth management. Also, factors that hindered the development of most Nigeria universities are also examined. The federal university of technology minna which is structured like all other universities in the country in terms of the bandwidth requirement was choosing as a case study for this research work. Furthermore, some policies which can be adopted in order to effectively manage the scarce bandwidth resources in Nigerian universities are also proposed.

  18. Bandwidth skimming: a technique for cost-effective video on demand

    NASA Astrophysics Data System (ADS)

    Eager, Derek L.; Vernon, Mary K.; Zahorjan, John

    1999-12-01

    This paper proposes a new technique for on-demand delivery of streaming media. The idea is to hold in reserve, or `skim', a portion of the client reception bandwidth that is sufficiently small that display quality is not impacted significantly, and yet that is nonetheless enough to support substantial reductions in server and network bandwidth through near-optimal hierarchical client stream merging. In this paper we show that this objective is feasible, and we develop practical techniques that achieve it. The results indicate that server and network bandwidth can be reduced to on the order of the logarithm of the number of clients who are viewing the object, using a small `skim' (e.g., 15%) of client reception bandwidth. These low server and network bandwidths are achieved for every media file, while providing immediate service to each client, and without having to pre-load initial portions of the video at each client.

  19. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  20. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma

    SciTech Connect

    Zhao, Yao; Yu, Lu-Le; Zheng, Jun; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming E-mail: zhengming.sheng@strath.ac.uk

    2015-05-15

    The effects of laser bandwidth on stimulated Raman scattering (SRS) instability in underdense plasma are studied by particle-in-cell simulations. In the simulations, sinusoidal frequency modulation of the incident laser pulse is used. By changing the size of bandwidth, it is shown that the linear growth of SRS can be suppressed considerably, provided the laser bandwidth is much larger than the SRS linear growth rate. Simulations also show that by choosing the proper frequency modulation parameters or decreasing the linear growth rate of SRS, the inhibitory effects become more obvious. The plasma electron temperature tends to weaken the bandwidth effects especially when it is over a keV level. The laser bandwidth can only increase the time duration for linear growth but cannot diminish the instability completely.

  1. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    NASA Technical Reports Server (NTRS)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  2. Fixed tile rate codec for bandwidth saving in video processors

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Dinh, Chon-Tam Le; Le, Dinh Kha; Wong, Jeffrey

    2014-02-01

    The paper presents an image compression circuit for bandwidth saving in video display processors. This is intra frame tile based compression algorithm offering visually lossless quality for compression rates between 1.5 and 2.5. RGB and YCbCr (4:4:4, 4:2:2 and 4:2:0) video formats are supported for 8/10 bits video signals. The Band Width Compressor (BWC) consists of Lossless Compressor (LC) and Quantization Compressor (QC) that generate output bit streams for tiles of pixels. Size of output bit stream generated for a tile by the LC may be less or greater than a required size of output memory block. The QC generates bit stream that always fits output memory block of the required size. The output bit stream generated by the LC is transmitted if its size is less than the required size of the output memory block. Otherwise, the output bit stream generated by the QC is transmitted. The LC works on pixel basis. A difference between original and predicted pixel's values for each pixel of a tile is encoded as prefix and suffix. The prefix is encoded by means of variable length code, and suffix is encoded as is. The QC divides a tile of pixels on a set of blocks and quantizes pixels of each block independently of the other blocks. The number of quantization bits for all pixels of a block depends on standard deviation calculated over the block. A difference between pixel's value and average value over the block is quantized and transmitted.

  3. A 20-GHz low-noise HEMT amplifier for satellite communications

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Y.; Niori, M.; Saito, T.

    1984-03-01

    A description is given of a 20-Ghz low-noise amplifier that uses a new device, a low-noise high electron mobiity transistor (HEMT), developed for the receiver front-end in earth stations for 30/20-GHz satellite communications systems. The minimum noise figure of the HEMT is 3.1 dB, and the associated gain is 7.5 dB at 20 GHz. It is believed that before too long the HEMT will surpass the GaAs FET as a low-noise device. In the test amplifier at an operating frequency range from 17.6 GHz to 19.2 Ghz, the noise figure is 4.2 dB and the gain is 28.6 dB. The minimum noise figure is 3.9 dB. It is expected that cooling the amplifier will give a significant improvement in the noise figure.

  4. Medicaid after 20 Years: Promise, Problems, Potential.

    ERIC Educational Resources Information Center

    Master, Robert J.

    1987-01-01

    The operation of Medicaid, a joint federal-state program to fund medical services for disabled and indigent persons, over the last 20 years is reviewed with emphasis on evolving policies and practices in Massachusetts. Stressed is the trend toward integration of Medicaid clients into the medical care mainstream. (DB)

  5. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    PubMed Central

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  6. Astragaloside IV ameliorates renal injury in db/db mice.

    PubMed

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  7. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  8. High-Density, High-Bandwidth, Multilevel Holographic Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2008-01-01

    A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing

  9. Long-term solution to the imagery bandwidth problem

    NASA Astrophysics Data System (ADS)

    Kent, Dennis C.

    1996-11-01

    There are numerous technological challenges in the Tactical Reconnaissance (Tac Recce) arena as the digital imagery era dawns. Foremost among them are the problems of imagery transmission bandwidth and the storage of the collected imagery. In this paper I seek to address these problems in an interrelated manner. I do not propose any new technological innovation, but rather a fundamental change in the philosophy of the collection, transmission, and storage of tactical imagery. The core of the approach requires that the area being imaged has already been imaged before (old imagery). This is reasonable given satellite, long range, UAV, and tactical imagery collection systems presently planned for, anticipated data collection rates, and how hot spots are repeatedly imaged. In addition, the Defense Airborne Reconnaissance Office (DARO) expects to be imaging tens of thousands of square kilometers each day within the next decade. When new tasking to collect imaging is received, imagery collected before by some imagery collection system must be taken with the aircraft (A/C) or person sent out to collect new imagery. As the new imagery is collected, the old and new imagery of the same area would be automatically registered. The old imagery can be pre-scaled, pre-warped, pre-rotated, etc., in order to maximize the efficiency of this process. The registered images can be spatially and spectrally thresholded in order to isolate significant deltas. Automatic target cueing (ATC)/automatic target recognition (ATR) could be used on both images for comparison to further isolate new objects of interest. Segmentation techniques could then be used to extract objects or regions of interest from the new image and only these objects or regions would be transmitted to the ground, a relay aircraft, or a satellite. Once at the ground station or long-term storage site, the new information could be inserted into the original image, thus minimizing the amount of storage space required as areas

  10. Pharmacokinetics and brain uptake of HIV-1 replication inhibitor DB213 in Sprague-Dawley rats.

    PubMed

    Wang, Qianwen; Zhang, Yufeng; Qian, Shuai; Peng, Shaohong; Zhang, Qian; Wong, Chun-Ho; Chan, H Y Edwin; Zuo, Zhong

    2016-06-01

    The current study aims to investigate the pharmacokinetics and brain uptake of HIV-1 replication inhibitor DB213 via a developed LC/MS/MS analytical method. A sensitive, selective, accurate and reliable LC/MS/MS method for determination and quantification of DB213 in rat plasma and brain was developed and validated. A triple quadrupole mass spectrometer equipped with electrospray ionization (ESI) source was applied for the detection of DB213 and benzamidine (Internal Standard). The analytes were quantified by using multiple reaction monitoring (MRM) mode with m/z 333.4→86.1 and m/z 121.2→104 for DB213 and benzamidine respectively. Chromatographic separation of DB213 and benzamidine was achieved on a SunFire C8 (4.6×250mm, i.d. 5μm) analytical column with gradient elution of a mobile phase consisted of acetonitrile and 20mM ammonium formate buffer (containing 0.5% formic acid). The method achieved good linearity from 1.95∼1000ng/ml (r(2)=0.999) in plasma and 0.98∼125ng/ml (r(2)=0.999) in brain. The validated method was successfully applied to plasma pharmacokinetics (PK) and brain uptake of intravenous administration of DB213 water solution (1mg/kg) to Sprague-Dawley rats. It was found that the area under the plasma concentration-time curve from 0 to 360min (AUC0→360min) was 184422.1±42450.8ngmin/ml and the elimination half-life of DB213 after intravenous administration was 70.9±16.1min. In addition, DB213 has demonstrated a potential to cross the blood-brain barrier via intravenous administration with a brain tissue concentration of 11.3±3.6ng/g peaked at 30min post-dosing. PMID:26999321

  11. Wide-bandwidth Tm-based amplifier for laser acceleration driver

    NASA Astrophysics Data System (ADS)

    Copeland, Drew A.; Vetrovec, John; Litt, Amardeep S.

    2016-03-01

    We report on an investigation of novel 2 μm thulium (Tm)-based laser accelerator driver (LAD) offering efficient generation of high-energy pulses with high-peak power at high pulse repetition rate (PRF), high efficiency, and with near-diffraction-limited beam quality (BQ). Laser acceleration of electrons by ultrashortpulse laser-generated plasmas offers accelerators of much reduced size and cost compared to conventional accelerators of the same energy, thus replacing the traditional mammoth-size and costly accelerator research facilities with room-size systems1. A LAD operating at 2 μm wavelength offers ponderomotive forces four times that of 1 μm wavelength and six times that of a traditional 0.8 μm wavelength LAD. In addition, the Tm bandwidth of nearly 400 nm offers > 15% tunability and generation of ultrashort pulses down to <30 fs. The "2-for- 1" pump quantum efficiency of the Tm ion enables > 20% wall-plug efficiency. This work presents a preliminary analysis of Tm-based LAD configurations.

  12. Wide bandwidth dual-frequency ultrasound measurements based on fiber laser sensing technology.

    PubMed

    Lyu, Chengang; Liu, Ying; Wu, Chuang

    2016-07-01

    A dual-frequency ultrasound measurement system based on a distributed Bragg reflector (DBR) fiber laser sensor in a liquid medium was presented. To compare the dual-frequency measurement performance of a DBR fiber laser acoustic sensor with that of a piezoelectric (PZT) ultrasound sensor, two experiments were performed. First, we fixed the driving frequencies of two ultrasound signals at 3 and 5 MHz, and decreased the driving voltage from 15 to 3 V. The outputs of the DBR acoustic sensor show flat-balanced response to dual-frequencies, compared with the PZT acoustic sensor whose response to one of the dual-frequency signals (5 MHz in this paper) has been covered by noise at low acoustic pressure. Then we increased the acoustic pressure by fixing the driving voltage at 20 V, and changed the frequency spacing between the two ultrasound signals. By analyzing the frequency response, sensitivity, signal-to-noise ratio, and noise equivalent pressure of two acoustic sensors under different frequencies, we found that the response of the DBR sensor to wideband dual-frequency is stable, while the response of the PZT sensor deteriorates sharply with increasing frequency spacing. The results demonstrate that the DBR fiber laser sensor performs better for wide bandwidth dual-frequency ultrasound measurements. PMID:27409190

  13. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs.

    PubMed

    Brown, M

    1998-10-15

    The fourth-harmonic generation of broadband 243-nm radiation is reported. The broadband radiation is achieved by implementation of a multicrystal design to overcome spectral bandwidth limitations, and a plane-wave analysis is developed that shows increased spectral bandwidths for these designs. The fourth harmonic of a Cr:LiSAF laser operating at 972 nm is generated in beta-barium borate (BBO). The results demonstrate a spectral bandwidth at 243 nm more than five times broader than that which is expected from a single BBO crystal of equivalent length. PMID:18091854

  14. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%. PMID:26192666

  15. High bandwidth based on a tapped delay line equalization in visible light communications

    NASA Astrophysics Data System (ADS)

    Zhang, Minglun; Guo, Xujing; Zhu, Hetian; Wang, Chao; Bai, Xiaonan; Zhai, Xiangwen

    2015-08-01

    In the visible light communication, the white LED bandwidth severely limits the transmission rate of information. This paper presents an analog pre-equalization technology to compensate for the bandwidth of white LED. The technology not only can debug according to the actual channel changing, but also avoid the high costs of using FPGA technology. The pre-equalization technology is implemented by an analog circuit of tapped-delay-line, in the circuit we select an appropriate delay line and a digital to analog converter. In our LED visible light communication system, we can achieve a bandwidth of 150MHz which was proved theoretically in the paper.

  16. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  18. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  19. Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator.

    PubMed

    Gatti, Davide; Gotti, Riccardo; Sala, Tommaso; Coluccelli, Nicola; Belmonte, Michele; Prevedelli, Marco; Laporta, Paolo; Marangoni, Marco

    2015-11-15

    An integrated single-sideband modulator is used as the sole wide-bandwidth frequency actuator in a Pound-Drever-Hall locking loop. Thanks to the large modulation bandwidth, the device enables a locking range of ±75 MHz and a control bandwidth of 5 MHz without the need for a second feedback loop. As applied to the coupling of an extended-cavity diode laser at 1.55 μm to a high-finesse optical cavity, the in-loop frequency noise spectral density reaches a minimum of 1 mHz/Hz(1/2) at 1 kHz. PMID:26565828

  20. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice.

    PubMed

    Aubert, Jacinthe; Begriche, Karima; Delannoy, Matthieu; Morel, Isabelle; Pajaud, Julie; Ribault, Catherine; Lepage, Sylvie; McGill, Mitchell R; Lucas-Clerc, Catherine; Turlin, Bruno; Robin, Marie-Anne; Jaeschke, Hartmut; Fromenty, Bernard

    2012-09-01

    Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders. PMID:22647274

  1. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor... measuring equipment employing a peak detector function, properly adjusted for such factors as pulse...: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which...

  2. Release of ToxCastDB and ExpoCastDB databases

    EPA Science Inventory

    EPA has released two databases - the Toxicity Forecaster database (ToxCastDB) and a database of chemical exposure studies (ExpoCastDB) - that scientists and the public can use to access chemical toxicity and exposure data. ToxCastDB users can search and download data from over 50...

  3. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    PubMed

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated. PMID:23988981

  4. Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2007-01-01

    Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.

  5. A High Performance and Low Bandwidth Multi-Standard Motion Compensation Design for HD Video Decoder

    NASA Astrophysics Data System (ADS)

    Chen, Xianmin; Liu, Peilin; Zhou, Dajiang; Zhu, Jiayi; Pan, Xingguang; Goto, Satoshi

    Motion compensation is widely used in many video coding standards. Due to its bandwidth requirement and complexity, motion compensation is one of the most challenging parts in the design of high definition video decoder. In this paper, we propose a high performance and low bandwidth motion compensation design, which supports H.264/AVC, MPEG-1/2 and Chinese AVS standards. We introduce a 2-Dimensional cache that can greatly reduce the external bandwidth requirement. Similarities among the 3 standards are also explored to reduce hardware cost. We also propose a block-pipelining strategy to conceal the long latency of external memory access. Experimental results show that our motion compensation design can reduce the bandwidth by 74% in average and it can real-time decode 1920x1088@30fps video stream at 80MHz.

  6. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    NASA Astrophysics Data System (ADS)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  7. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    SciTech Connect

    Lipton, Robert Polizzi, Anthony

    2014-10-14

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  8. Role of Bandwidth in Computation of NDVI From Landsat TM and NOAA AVHRR Bands

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.; Tirumaladevi, N. Ch.

    The observations for wheat, onion, potato and chickpea over the Crop Growth Cycle (CGC) in 3 nm bandwidth were converted to AVHRR and TM bands in visible/red and near-IR spectral regions. Correlation between TM and AVHRR NDVI were very high for all these crops. The additional 0.725-0.76 μm bandwidth in AVHRR as compared to TM was causing reduction in NDVI values for AVHRR when crop NDVI value was more than 0.46

  9. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  10. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection

    NASA Astrophysics Data System (ADS)

    Yin, Xue-Mei; Zhong, Zhu-Qiang; Zhao, Ling-Juan; Lu, Dan; Qiu, Hai-Ying; Xia, Guang-Qiong; Wu, Zheng-Mao

    2015-11-01

    Wide bandwidth chaotic signal generation in a three-section monolithically integrated semiconductor laser (MISL) under external optical injection is investigated experimentally. Through evaluating the effective bandwidth of chaotic signals, the influences of the optical injection on the bandwidth of chaotic signal from the MISL are analyzed. The experimental results indicate that, for the currents of the DFB section (IDFB) and the phase section (IP) are fixed at 70.00 mA and 34.00 mA, respectively, the effective bandwidth of chaos signal generated by the solitary MISL reaches its maximum value of 14.36 GHz when the current of the amplification section (IA) takes 23.22 mA. After an external optical injection is introduced into the MISL, the effective bandwidth of the generated chaotic signal can be beyond 2.5 times of the maximum value. Furthermore, the effects of the injection strength and the frequency detuning on the effective bandwidth of the generated chaotic signal are also discussed.

  11. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Li, X.; Zheng, C.; Zhou, Y.; Kubota, H.; Yuasa, S.; Pong, Philip W. T.

    2016-06-01

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.

  12. An improved scheduled traffic model utilizing bandwidth splitting in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Vyas, Upama; Prakash, Shashi

    2016-07-01

    The surge of traffic in today's networks gave birth to elastic optical networking paradigm. In this paper, first we propose to use the scheduled traffic model (STM) in elastic optical networks (EONs) to ensure guaranteed availability of resources to demands which enter into the network with a predetermined start and end times. In optical networks, such demands are referred to as scheduled lightpath demands (SLDs). To increase the amount of bandwidth accepted in network, next we introduce a time aware routing and spectrum assignment (TA-RSA) approach. We observed that provisioning of bulky SLDs has become more challenging in EONs due to enforcement of RSA constraints. To address this challenge, we improve the proposed STM and designed three heuristics for its implementation in EONs. In this work, we collectively refer to these heuristics as bandwidth segmented RSA (BSRSA). The improved STM (iSTM) allows splitting of SLDs in bandwidth dimension by utilizing the knowledge of attributes viz. demand holding time, overlapping in time and bandwidth requested by SLDs. Our numerical results show that BSRSA consistently outperformed over TA-RSA under all distinctive experimental cases that we considered and achieved fairness in serving heterogeneous bandwidth SLDs. The impact of splitting on the number and capacity of transponders at nodes is also gauged. It is observed that ingenious splitting of demands increases the number of resources (on links and nodes) used, and their utilization, leading to an increase in bandwidth accepted in the network.

  13. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie L.; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.

  14. On bandwidth characteristics of tuning fork micro-gyroscope with mechanically coupled sense mode.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin; Ding, Xukai; Wang, Haipeng

    2014-01-01

    The bandwidth characteristics of a tuning fork micro-gyroscope with mechanically coupled sense mode were investigated in this paper to provide some references for mechanical bandwidth design. The concept of sense mode mechanical coupling is introduced first. Theoretical frequency response analyses were then carried out on the mechanical part of the gyroscope. Equations representing the relationships between the differential output signal and the frequency of the input angular rate were deduced in full frequency range and further simplified in low frequency range. Based on these equations, bandwidth characteristics under ideal and non-ideal conditions are discussed. Analytical results show that under ideal conditions, the bandwidth characteristics of a tuning fork micro-gyroscope are similar to those of a single mass micro-gyroscope, but under non-ideal conditions, especially when sense mass and/or stiffness are asymmetric, the bandwidth characteristics would be quite different because the in-phase mode would participate in the anti-phase vibration response. Experimental verifications were carried out on two micro-gyroscope prototypes designed in our laboratory. The deduced equations and analytical results can be used in guiding the mechanical bandwidth design of tuning fork micro-gyroscopes with mechanically coupled sense mode. PMID:25051030

  15. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species

    PubMed Central

    Aurrecoechea, Cristina; Barreto, Ana; Brestelli, John; Brunk, Brian P.; Caler, Elisabet V.; Fischer, Steve; Gajria, Bindu; Gao, Xin; Gingle, Alan; Grant, Greg; Harb, Omar S.; Heiges, Mark; Iodice, John; Kissinger, Jessica C.; Kraemer, Eileen T.; Li, Wei; Nayak, Vishal; Pennington, Cary; Pinney, Deborah F.; Pitts, Brian; Roos, David S.; Srinivasamoorthy, Ganesh; Stoeckert, Christian J.; Treatman, Charles; Wang, Haiming

    2011-01-01

    AmoebaDB (http://AmoebaDB.org) and MicrosporidiaDB (http://MicrosporidiaDB.org) are new functional genomic databases serving the amoebozoa and microsporidia research communities, respectively. AmoebaDB contains the genomes of three Entamoeba species (E. dispar, E. invadens and E. histolityca) and microarray expression data for E. histolytica. MicrosporidiaDB contains the genomes of Encephalitozoon cuniculi, E. intestinalis and E. bieneusi. The databases belong to the National Institute of Allergy and Infectious Diseases (NIAID) funded EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center family of integrated databases and assume the same architectural and graphical design as other EuPathDB resources such as PlasmoDB and TriTrypDB. Importantly they utilize the graphical strategy builder that affords a database user the ability to ask complex multi-data-type questions with relative ease and versatility. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, GO terms, sequence motifs, protein characteristics, phylogenetic relationships and functional data such as transcript (microarray and EST evidence) and protein expression data. Search strategies can be saved within a user’s profile for future retrieval and may also be shared with other researchers using a unique strategy web address. PMID:20974635

  16. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice

    PubMed Central

    Huang, Bo; Wang, Zhiqiang; Park, Jong Hyuk; Ryu, Ok Hyun; Choi, Moon Ki; Lee, Jae-Yong; Kang, Young-Hee

    2015-01-01

    BACKGROUND/OBJECTIVES Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2- fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic β-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic β-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice. PMID:25671064

  17. Masked threshold for noise bands masked by narrower bands of noise: Effects of masker bandwidth and center frequency.

    PubMed

    Taghipour, Armin; Moore, Brian C J; Edler, Bernd

    2016-05-01

    This paper examines how masked thresholds depend on the masker bandwidth and center frequency when the masker has a smaller bandwidth than the signal. The signal bandwidth was equal to the equivalent rectangular bandwidth of the auditory filter and the masker bandwidth was 0.1, 0.35, or 0.6 times the signal bandwidth. The masker and signal were centered at the same frequency of 257, 697, 1538, 3142, or 6930 Hz. Masked thresholds were estimated using a two-interval two-alternative forced-choice paradigm and a three-down one-up adaptive staircase method. Masked thresholds increased with increasing masker bandwidth and were lowest for medium center frequencies. PMID:27250136

  18. Pharmacokinetics and metabolism of the prodrug DB289 (2,5-bis[4-(N-methoxyamidino)phenyl]furan monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride).

    PubMed

    Midgley, Ian; Fitzpatrick, Karen; Taylor, Lynne M; Houchen, Tara L; Henderson, Simon J; Wright, Sarah J; Cybulski, Zbigniew R; John, Brian A; McBurney, Alan; Boykin, David W; Trendler, Kerri L

    2007-06-01

    DB289 (pafuramidine maleate; 2,5-bis[4-(N-methoxyamidino)phenyl]furan monomaleate) is a prodrug of DB75 (furamidine dihydrochloride; 2,5-bis(4-guanylphenyl)furan dihydrochloride), an aromatic dication related to pentamidine that has demonstrated good efficacy against African trypanosomiasis, Pneumocystis carinii pneumonia, and malaria, but lacks adequate oral availability. The pharmacokinetics and metabolism of 14C-DB289 have been investigated in rat and monkey after oral and intravenous administration. Oral doses were well absorbed (approximately 50-70%) and effectively converted to DB75 in both species but subject to first-pass metabolism and hepatic retention, limiting its systemic bioavailability to 10 to 20%. Clearance of DB289 approximated the liver plasma flow and its large volume of distribution was consistent with extensive tissue binding. Plasma protein binding of DB289 was 97 to 99% in four animal species and humans, but that of DB75 was noticeably less and more species- and concentration-dependent. Together, prodrug and active metabolite accounted for less than 20% of the plasma radioactivity after an oral dose, but DB75 was the major radiochemical component in key organs such as brain and liver and was largely responsible for the persistence of 14C in the body. The predominant route of excretion of radioactivity was via the feces, although biliary secretion was not particularly extensive. High-performance liquid chromatography and liquid chromatography-mass spectrometry investigations showed that the formation of DB75 from the prodrug involved the sequential loss of the two N-methoxy groups, either directly or by O-demethylation followed by reduction of the resulting oxime to the amidine. It was estimated that almost half of an oral dose of DB289 to rats and about one-third of that to monkeys was metabolized to DB75. PMID:17360833

  19. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    PubMed Central

    Huang, Le; You, Yong-ke; Zhu, Tracy Y; Zheng, Li-zhen; Huang, Xiao-ru; Chen, Hai-yong; Yao, Dong; Lan, Hui-yao; Qin, Ling

    2016-01-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM. PMID:27283954

  20. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis.

    PubMed

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-01-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM. PMID:27283954

  1. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    NASA Astrophysics Data System (ADS)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  2. Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, W.; Thorne, R. M.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.

    2014-11-01

    The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. The coherence coefficient of rising and falling tones is extremely large (~1), while the coherence coefficient of hiss-like emissions is smaller but is still larger than 0.5. For all categories of whistler mode waves, the normalized bandwidth increases at larger L shells. Furthermore, the normalized bandwidth is positively correlated with local fpe/fce but is inversely correlated with the electron density. Interactions between radiation belt electrons and whistler mode waves have been widely described by quasi-linear diffusion theory. Our results suggest that although quasi-linear theory is not entirely applicable for modeling electron interactions with rising and falling tones due to their narrow bandwidth and high coherence coefficient, it is suitable to treat wave-particle interactions between electrons and low-amplitude hiss-like emissions. Moreover, the correlations between the normalized bandwidth of chorus waves (especially the discrete emissions) and other parameters may provide insights for the generation mechanism of chorus waves.

  3. An impact excitation system for repeatable, high-bandwidth modal testing of miniature structures

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Korkmaz, Emrullah; Burak Ozdoganlar, O.

    2014-06-01

    Miniature components and devices are increasingly seen in a myriad of applications. In general, the dynamic behavior of miniature devices is critical to their functionality and performance. However, modal testing of miniature structures poses many challenges. This paper presents a design and evaluation of an impact excitation system (IES) for repeatable, high-bandwidth, controlled-force modal testing of miniature structures. Furthermore, a dynamic model of the system is derived and experimentally validated to enable the identification of the system parameters that yield single-hit impacts with desired bandwidth and force magnitude. The system includes a small instrumented impact tip attached to a custom designed flexure-based body, an automated electromagnetic release mechanism, and various precision positioners. The excitation bandwidth and the impact force magnitude can be controlled by selecting the system parameters. The dynamic model of the system includes the structural dynamics of the flexure-based body, the electromagnetic force and the associated eddy-current damping, and the impact event. A validation study showed an excellent match between the model simulations and experiments in terms of impact force and bandwidth. The model is then used to create process maps that relate the system parameters to the number of hits (single vs. multiple), the impact force magnitudes and the excitation bandwidths. These process maps can be used to select system parameters or predict system response for a given set of parameters. A set of experiments is conducted to compare the performances of the IES and a (manual) miniature impact hammer. It is concluded that the IES significantly improves repeatability in terms of the impact bandwidth, location, and force magnitude, while providing a high excitation-bandwidth and excellent coherence values. The application of the IES is demonstrated through modal testing of a miniature contact-probe system.

  4. Ultrabroadband TW-class Ti:sapphire laser system with adjustable central wavelength, bandwidth and multi-color operation.

    PubMed

    Trisorio, Alexandre; Paul, Pierre M; Ple, Fabien; Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2011-10-10

    We demonstrate a versatile tunable and highly stable ultrabroadband Ti:sapphire chirped pulse amplification system with a compressed pulse energy of 20 mJ at 100 Hz repetition rate. High power Ti:Sa systems in principle do not offer wavelength tunability due to gain narrowing. Here we demonstrate transform limited pulse generation from 15 fs to 94 fs with tunable central wavelength (λc from 755 nm to 845 nm) and bandwidth (130 nm<Δλ<16 nm) as well as multi-color, time synchronized, sub-100 fs pulses with user defined central wavelength separation. The unique wavelength tunability capabilities have been expanded into the UV and deep-UV by second and third harmonic generation with excellent energy stability. Enhanced energy stability is achieved by multiplexing six ultrastable diode-based solid state pump lasers. PMID:21997024

  5. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm. PMID:22714504

  6. CottonDB: Cotton Genome Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CottonDB (www.cottondb.org) is the first and most comprehensive source of cotton genome information. CottonDB is maintained at the Southern Plains Agricultural Research Center in College Station, TX. The project includes a website and database creating a repository of information for over 355,000 ...

  7. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory

    PubMed Central

    Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.

    2016-01-01

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988

  8. Bandwidth of the contrast sensitivity function as an index of spatial vision with application to refraction.

    PubMed

    Jiang, B C; Scialfa, C T; Tyrrell, R A; Garvey, P M; Leibowitz, H W

    1990-04-01

    The contrast sensitivity function (CSF), although containing more information than traditional measures of acuity, has found difficulty gaining clinical acceptance. The hesitancy of clinicians to adopt the CSF stems, in part, from the fact that it is not as readily interpreted as is acuity. In order to facilitate such interpretation, five indices of spatial vision which are derivable from the CSF were examined in a sample of 287 persons aged 5 to 85 years. All indices were found to be both age-sensitive and strongly related to each other, but bandwidth of the CSF was chosen as a practical index for clinical settings. In a second study, acuity and CSF bandwidth were measured under 0 to +/- 1 D optical blur. It was found that the correction providing best acuity also maximized CSF bandwidth, and that bandwidth was more sensitive to optical blur than was acuity. Results support the assertion that CSF bandwidth is a readily interpreted index of spatial vision that can be measured efficiently within the context of clinical refraction. PMID:2342788

  9. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  10. Movie approximation technique for the implementation of fast bandwidth-smoothing algorithms

    NASA Astrophysics Data System (ADS)

    Feng, Wu-chi; Lam, Chi C.; Liu, Ming

    1997-12-01

    Bandwidth smoothing algorithms can effectively reduce the network resource requirements for the delivery of compressed video streams. For stored video, a large number of bandwidth smoothing algorithms have been introduced that are optimal under certain constraints but require access to all the frame size data in order to achieve their optimal properties. This constraint, however, can be both resource and computationally expensive, especially for moderately priced set-top-boxes. In this paper, we introduce a movie approximation technique for the representation of the frame sizes of a video, reducing the complexity of the bandwidth smoothing algorithms and the amount of frame data that must be transmitted prior to the start of playback. Our results show that the proposed approximation technique can accurately approximate the frame data with a small number of piece-wise linear segments without affecting the performance measures that the bandwidth soothing algorithms are attempting to achieve by more than 1%. In addition, we show that implementations of this technique can speed up execution times by 100 to 400 times, allowing the bandwidth plan calculation times to be reduced to tens of milliseconds. Evaluation using a compressed full-length motion-JPEG video is provided.

  11. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.

    PubMed

    Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J

    2016-01-01

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988

  12. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory

    NASA Astrophysics Data System (ADS)

    Fisher, Kent A. G.; England, Duncan G.; Maclean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.

    2016-04-01

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.

  13. SPDC correlated photon source filtered for narrowed bandwidth using volume Bragg grating

    NASA Astrophysics Data System (ADS)

    Slattery, Oliver; Kuo, Paulina; Kim, Yong-Su; Ma, Lijun; Tang, Xiao

    2012-10-01

    A Volume Bragg Grating (VBG) can be used to efficiently extract a narrow bandwidth, highly collimated beam from an otherwise broad spectrum beam. We use a VBG to extract a narrow bandwidth of signal spectrum from a broadband Spontaneous Parametric Down-Conversion source to optimally match the narrow detection bandwidth of our idler upconversion detector. Improved coincidence count rates and visibility can be achieved when limiting signal-spectrum detection to the narrow signal bandwidth whose photons are correlated with a narrow idler-spectrum bandwidth that has been selected by the up-conversion detector. We compare coincidence count rate and visibility for when the entire signal spectrum is detected and when the spectrum has been filtered by the VBG. We further relax the collection techniques and show that following the VBG, the coincidence count rate improves with minimal loss in visibility compared to when the entire spectrum is detected. We introduce our initial efforts at using the VBG to further narrow the signal spectrum by placing it inside a multipass cavity. Additionally, we further adapt the single photon level up-conversion spectrometer, previously developed for idler spectrum measurement, to indirectly measure the single photon level signal spectrum. We verify its capability for several different wavelength and linewidth selections.

  14. Effects of Stimulus Bandwidth on the Imitation of English Fricatives by Normal-Hearing Children

    PubMed Central

    Stelmachowicz, Patricia G.; Nishi, Kanae; Choi, Sangsook; Lewis, Dawna E.; Hoover, Brenda M.; Dierking, Darcia; Lotto, Andrew

    2008-01-01

    Purpose Recent studies from our laboratory have suggested that reduced audibility in the high frequencies (due to the bandwidth of hearing instruments) may play a role in the delays in phonological development often exhibited by children with hearing impairment. The goal of the current study was to extend previous findings on the effect of bandwidth on fricatives/affricates to more complex stimuli. Method Nine fricatives/affricates embedded in 2-syllable nonsense words were filtered at 5 and 10 kHz and presented to normal-hearing 6–7 year olds who repeated words exactly as heard. Responses were recorded for subsequent phonetic and acoustic analyses. Results Significant effects of talker gender and bandwidth were found, with better performance for the male talker and the wider bandwidth condition. In contrast to previous studies, relatively small (5%) mean bandwidth effects were observed for /s/ and /z/ spoken by the female talker. Acoustic analyses of stimuli used in the previous and the current studies failed to explain this discrepancy. Conclusions It appears likely that a combination of factors (i.e., dynamic cues, prior phonotactic knowledge, and perhaps other unidentified cues to fricative identity) may have facilitated the perception of these complex nonsense words in the current study. PMID:18664693

  15. Improvement on Diversity Gain with Filter Bandwidth Enlargement in Fractional Sampling OFDM Receiver

    NASA Astrophysics Data System (ADS)

    Shinkai, Toshiya; Nishimura, Haruki; Sanada, Yukitoshi

    A diversity scheme with Fractional Sampling (FS) in an OFDM receiver has been investigated recently. Through FS, it is possible to separate multipath components and obtain diversity gain in OFDM systems. Enlargement of the bandwidth of the total frequency response between transmit and receive baseband filters allows the FS scheme to achieve path diversity. However, the transmit filter has to be designed according to the spectrum mask of the wireless standards such as IEEE802.11a/g to avoid interference to the other communication systems and the frequency response of the composite channel including the transmit and receive filters has often been set to minimal bandwidth to eliminate adjacent channel signals. In order to achieve the maximum signal-to-noise ratio (SNR), the same filter is commonly used in the transmitter and the receiver. In this paper, the trade-off among the SNR deterioration, adjacent channel interference, and the diversity gain due to the enlargement of the bandwidth of the receive filter is investigated. Numerical results from computer simulations indicate that the BER performance with wider bandwidth in the receiver shows better performance than that with the minimal bandwidth for maximizing the SNR in certain conditions.

  16. Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1992-01-01

    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.

  17. Anti-Diabetic Effect of Aster sphathulifolius in C57BL/KsJ-db/db Mice.

    PubMed

    Yin, Xingfu; Huang, Yuhua; Jung, Da-Woon; Chung, Hee Chul; Choung, Se Young; Shim, Jae-Hoon; Kang, Il-Jun

    2015-09-01

    In this study, we investigated the anti-diabetic effect of Aster sphathulifolius (AS) extract in C57BL/KsJ-db/db mice. The db/db mice were orally administered with AS 50% ethanol extract at concentrations of 50, 100, and 200 mg/kg/day (db/db-AS50, db/db-AS100, and db/db-AS200, respectively) for 10 weeks. Food and water intake, fasting blood glucose concentrations, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the db/db-AS200 group than in the vehicle-treated db/db group; whereas glucose tolerance was significantly improved in the db/db-AS200 group. Moreover, AS dose dependently increased both insulin receptor substrate 1 and glucose transporter type 4 expression in skeletal muscle, significantly increased glucokinase expression, and decreased glucose 6-phosphatase and phosphoenolpyruvate carboxykinase expressions in the liver. The expressions of transcription factors, such as sterol-regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and adipocyte protein 2, were upregulated in adipose tissue. Furthermore, immunohistochemical analysis showed that AS upregulated insulin production by increasing pancreatic β-cell mass. In summary, AS extract normalized hyperglycemia by multiple mechanisms: inhibition of glyconeogenesis, acceleration of glucose metabolism and lipid metabolism, and increase of glucose uptake. Using in vivo assays, this study has shown the potential of AS as a medicinal food and suggests the efficacy of AS for the use of prevention of diabetes. PMID:25961463

  18. Impaired Mobilization of Vascular Reparative Bone Marrow Cells in Streptozotocin-Induced Diabetes but not in Leptin Receptor-Deficient db/db Mice.

    PubMed

    Vasam, Goutham; Joshi, Shrinidh; Jarajapu, Yagna P R

    2016-01-01

    Diabetes is associated with impaired mobilization of bone marrow stem/progenitor cells that accelerate vascularization of ischemic areas. This study characterized mobilization of vascular reparative bone marrow progenitor cells in mouse models of diabetes. Age-matched control or streptozotocin (STZ)-induced diabetic, and db/db mice with lean-controls were studied. Mobilization induced by G-CSF, AMD3100 or ischemia was evaluated by flow cytometric enumeration of circulating Lin(-)Sca-1(+)cKit(+) (LSK) cells, and by colony forming unit (CFU) assay. The circulating WBCs and LSKs, and CFUs were reduced in both models with a shorter duration (10-12 weeks) of diabetes compared to their respective controls. Longer duration of STZ-diabetes (≥20 weeks) induced impairment of G-CSF- or AMD3100-mobilization (P < 0.01, n = 8). In db/db mice, mobilization by G-CSF or AMD3100 was either increased or unaffected (P < 0.05, n = 6 to 8). Proliferation, migration, and ischemia-induced mobilization, of LSK cells were impaired in both models. Leptin receptor antagonist, PESLAN-1, increased G-CSF- or AMD3100-mobilization of WBCs and LSKs, compared to the untreated. Leptin increased basal WBCs, decreased basal and AMD3100-mobilized LSK cells, and had no effect on G-CSF. These results suggest that mobilopathy is apparent in STZ-diabetes but not in db/db mice. Leptin receptor antagonism would be a promising approach for reversing diabetic bone marrow mobilopathy. PMID:27188595

  19. Impaired Mobilization of Vascular Reparative Bone Marrow Cells in Streptozotocin-Induced Diabetes but not in Leptin Receptor-Deficient db/db Mice

    PubMed Central

    Vasam, Goutham; Joshi, Shrinidh; Jarajapu, Yagna P. R.

    2016-01-01

    Diabetes is associated with impaired mobilization of bone marrow stem/progenitor cells that accelerate vascularization of ischemic areas. This study characterized mobilization of vascular reparative bone marrow progenitor cells in mouse models of diabetes. Age-matched control or streptozotocin (STZ)-induced diabetic, and db/db mice with lean-controls were studied. Mobilization induced by G-CSF, AMD3100 or ischemia was evaluated by flow cytometric enumeration of circulating Lin−Sca-1+cKit+ (LSK) cells, and by colony forming unit (CFU) assay. The circulating WBCs and LSKs, and CFUs were reduced in both models with a shorter duration (10–12 weeks) of diabetes compared to their respective controls. Longer duration of STZ-diabetes (≥20 weeks) induced impairment of G-CSF- or AMD3100-mobilization (P < 0.01, n = 8). In db/db mice, mobilization by G-CSF or AMD3100 was either increased or unaffected (P < 0.05, n = 6 to 8). Proliferation, migration, and ischemia-induced mobilization, of LSK cells were impaired in both models. Leptin receptor antagonist, PESLAN-1, increased G-CSF- or AMD3100-mobilization of WBCs and LSKs, compared to the untreated. Leptin increased basal WBCs, decreased basal and AMD3100-mobilized LSK cells, and had no effect on G-CSF. These results suggest that mobilopathy is apparent in STZ-diabetes but not in db/db mice. Leptin receptor antagonism would be a promising approach for reversing diabetic bone marrow mobilopathy. PMID:27188595

  20. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice

    PubMed Central

    Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin

    2015-01-01

    The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026

  1. SurfaceomeDB: a cancer-orientated database for genes encoding cell surface proteins.

    PubMed

    de Souza, Jorge Estefano Santana; Galante, Pedro Alexandre Favoretto; de Almeida, Renan Valieris Bueno; da Cunha, Julia Pinheiro Chagas; Ohara, Daniel Takatori; Ohno-Machado, Lucila; Old, Lloyd J; de Souza, Sandro José

    2012-01-01

    Cell surface proteins (CSPs) are excellent targets for the development of diagnostic and therapeutic reagents, and it is estimated that 10-20% of all genes in the human genome encode CSPs. In an effort to integrate all data publicly available for genes encoding cell surface proteins, a database (SurfaceomeDB) was developed. SurfaceomeDB is a gene-centered portal containing different types of information, including annotation for gene expression, protein domains, somatic mutations in cancer, and protein-protein interactions for all human genes encoding CSPs. SurfaceomeDB was implemented as an integrative and relational database in a user-friendly web interface, where users can search for gene name, gene annotation, or keywords. There is also a streamlined graphical representation of all data provided and links to the most important data repositories and databases, such as NCBI, UCSC Genome Browser, and EBI. PMID:23390370

  2. Broadband sub-millimeter wave amplifer module with 38dB gain and 8.3dB noise figure

    NASA Astrophysics Data System (ADS)

    Sarkozy, S.; Leong, K.; Lai, R.; Leakey, R.; Yoshida, W.; Mei, X.; Lee, J.; Liu, P.-H.; Gorospe, B.; Deal, W. R.

    2011-05-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter-wave systems, sub-millimeter-wave systems are hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report on the development of a sub-millimeter wave amplifier module as part of a broadband pixel operating from 300-350 GHz, biased off of a single 2V power supply. Over this frequency range, > 38 dB gain and < 8.3 dB noise figure are obtained and represent the current state-of-art performance capabilities. The prototype pixel chain consists of two WR3 waveguide amplifier blocks, and a horn antenna and diode detector. The low noise amplifier Sub-Millimeter-wave Monolithic Integrated Circuit (SMMIC) was originally developed under the DARPA SWIFT and THz Electronics programs and is based on sub 50 nm Indium Arsenide Composite Channel (IACC) transistor technology with a projected maximum oscillation frequency fmax > 1.0 THz. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brown-out problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  3. Exendin-4 improves resistance to Listeria monocytogenes infection in diabetic db/db mice

    PubMed Central

    Liu, Hsien Yueh; Chung, Chih-Yao; Yang, Wen-Chin; Liang, Chih-Lung; Wang, Chi-Young; Chang, Chih-Yu

    2012-01-01

    The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b+ macrophage populations with higher lipid content and lower phagocytic activity were observed. Exendin-4 lowered high lipid levels and enhanced phagocytosis in macrophages from db/db mice infected with L. monocytogenes. Exendin-4 also ameliorated obesity and hyperglycemia, and improved ex vivo bacteria clearance by macrophages in the animals. Liver histology examined during L. monocytogenes infection indicated that abscess formation was much milder in exendin-4-treated db/db mice than in the control animals. Moreover, mechanistic studies demonstrated that expression of ATP binding cassette transporter 1, a sterol transporter, was higher in macrophages isolated from the exendin-4-treated db/db mice. Overall, our results suggest that exendin-4 decreases the risk of infection in diabetic animals by modifying the interaction between intracellular lipids and phagocytic macrophages. PMID:23000581

  4. Local intelligent electronic device (IED) rendering templates over limited bandwidth communication link to manage remote IED

    DOEpatents

    Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin

    2013-11-05

    The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.

  5. Dynamic Online Bandwidth Adjustment Scheme Based on Kalai-Smorodinsky Bargaining Solution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwook

    Virtual Private Network (VPN) is a cost effective method to provide integrated multimedia services. Usually heterogeneous multimedia data can be categorized into different types according to the required Quality of Service (QoS). Therefore, VPN should support the prioritization among different services. In order to support multiple types of services with different QoS requirements, efficient bandwidth management algorithms are important issues. In this paper, I employ the Kalai-Smorodinsky Bargaining Solution (KSBS) for the development of an adaptive bandwidth adjustment algorithm. In addition, to effectively manage the bandwidth in VPNs, the proposed control paradigm is realized in a dynamic online approach, which is practical for real network operations. The simulations show that the proposed scheme can significantly improve the system performances.

  6. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  7. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    PubMed Central

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  8. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2016-02-01

    Practical security of the continuous-variable quantum key distribution (CVQKD) system with finite sampling bandwidth of analog-to-digital converter (ADC) at the receiver's side is investigated. We find that the finite sampling bandwidth effects may decrease the lower bound of secret key rate without awareness of the legitimate communicators. This leaves security loopholes for Eve to attack the system. In addition, this effect may restrains the linear relationship of secret key bit rate with repetition rate of the system; subsequently, there is a saturation value for the secret key bit rate with the repetition rate. To resist such kind of effects, we propose a dual sampling detection approach in which two ADCs are employed so that the finite sampling bandwidth effects are removed.

  9. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy.

    PubMed

    Karvinen, K S; Moheimani, S O R

    2014-02-01

    While often overlooked, one of the prerequisites for high-speed amplitude modulation atomic force microscopy is a high-bandwidth amplitude estimation technique. Conventional techniques, such as RMS to DC conversion and the lock-in amplifier, have proven useful, but offer limited measurement bandwidth and are not suitable for high-speed imaging. Several groups have developed techniques, but many of these are either difficult to implement or lack robustness. In this contribution, we briefly outline existing amplitude estimation methods and propose a new high-bandwidth estimation technique, inspired by techniques employed in microwave and RF circuit design, which utilizes phase cancellation to significantly improve the performance of the lock-in amplifier. We conclude with the design and implementation of a custom circuit to experimentally demonstrate the improvements and discuss its application in high-speed and multifrequency atomic force microscopy. PMID:24593371

  10. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy

    SciTech Connect

    Karvinen, K. S. Moheimani, S. O. R.

    2014-02-15

    While often overlooked, one of the prerequisites for high-speed amplitude modulation atomic force microscopy is a high-bandwidth amplitude estimation technique. Conventional techniques, such as RMS to DC conversion and the lock-in amplifier, have proven useful, but offer limited measurement bandwidth and are not suitable for high-speed imaging. Several groups have developed techniques, but many of these are either difficult to implement or lack robustness. In this contribution, we briefly outline existing amplitude estimation methods and propose a new high-bandwidth estimation technique, inspired by techniques employed in microwave and RF circuit design, which utilizes phase cancellation to significantly improve the performance of the lock-in amplifier. We conclude with the design and implementation of a custom circuit to experimentally demonstrate the improvements and discuss its application in high-speed and multifrequency atomic force microscopy.

  11. Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response.

    PubMed

    Geis, M W; Spector, S J; Grein, M E; Yoon, J U; Lennon, D M; Lyszczarz, T M

    2009-03-30

    SOI CMOS compatible Si waveguide photodetectors are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. Photodiodes have a bandwidth of >35 GHz, an internal quantum efficiency of 0.5 to 10 AW-1, and leakage currents of 0.5 nA to 0.5 microA. Phototransistors have an optical response of 50 AW-1 with a bandwidth of 0.2 GHz. These properties are related to carrier mobilities in the implanted Si waveguide. These detectors exhibit low optical absorption requiring lengths from <0.3 mm to 3 mm to absorb 50% of the incoming light. However, the high bandwidth, high quantum efficiency, low leakage current, and potentially high fabrication yields, make these devices very competitive when compared to other detector technologies. PMID:19333283

  12. An optimized bandwidth efficient demand assigned protocol for integrated Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Wang, C. C.

    1985-01-01

    This paper describes the design of a demand assigned protocol based on bandwidth efficiency for integrated services of a Mobile Satellite System (MSS). An MSS provides data (closed-ended) and voice (open-ended) communications services for a large number of mobile users dispersed over a wide geographical area. Each mobile requests its desired service through a designated set of channels to a network management center. Either pure or slotted ALOHA random access scheme can be used to make connection requests, while data and voice communications are demand assigned. All channels have equal bandwidth and can be adaptively used for reservation requests, data connections or voice connections to maximize the bandwidth utilization. In this paper, perfect communications channels are assumed. It has been shown that, for the case considered, using the slotted ALOHA scheme for making connection requests can save about 30 percent on the total number of channels over using the pure ALHOA scheme.

  13. Global path and bandwidth scheduling in inter-data-center IP/optical transport network

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Lei; Chen, Xue; Yang, Futao; Shi, Sheping; Wang, Huitao

    2016-07-01

    We propose a flow-oriented global path and bandwidth scheduling scheme for inter-data-center IP/optical network. To improve the throughput of network and reduce the mutual impact between flows, we allow each flow to be carried by a multi-path optical channel data unit (ODU) channel. In addition bandwidth is allocated to flows fairly according to weight. Simulation results reveal that compared to high-priority-first mechanism, the method proposed improves average bandwidth allocation ratio by about 15% and allocation fairness between flows by 30%. Furthermore, compared to pure IP network, router ports are significantly saved and network cost can be reduced by up to 40% with scheme proposed in unified controlled IP/optical network.

  14. Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Li, Yanhe

    2004-02-01

    Based on hybrid genetic algorithm (HGA), the signal bandwidth of the distributed multi-pump Raman amplifiers is optimized, and the corresponding noise figure is obtained. The results show that: (1) the optimal signal bandwidth Δ λ decreases with the increase of the span length L, e.g., Δ λ is 79.6 nm for L=50 km and 41.5 nm for L=100 km under our simulated conditions; (2) the relationship between Δ λ and L is approximately linear; (3) the equivalent noise figure can be negative and increases with the extension of L; (4) there are one or several global maximum signal bandwidth on the determinate conditions; (5) to realize the fixed Δ λ, several candidates can be obtained by means of HGA, as has important applications on the design of distributed multi-pump Raman amplifiers in practice.

  15. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    PubMed

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  16. Efficient time-slot assignment algorithms for SS/TDMA systems with variable-bandwidth beams

    NASA Astrophysics Data System (ADS)

    Chalasani, Suresh; Varma, Anujan

    1994-02-01

    In this paper, we present efficient sequential and parallel algorithms for computation of time-slot assignments in SS/TDMA (satellite-switched /time-division multiple-access) systems with variable-bandwidth beams. These algorithms are based on modeling the time-slot assignment (TSA) problem as a network-flow problem. Our sequential algorithm, in general, has a better time-complexity than a previous algorithm due to Gopal, et al. and generates fewer switching matrices. If M (N) is the number of uplink (downlink) beams, L is the length of any optimal TSA, and alpha is the maximum bandwidth of an uplink or downlink beam, our sequential algorithm takes O ((M x N)(exp 3)) min(MN alpha, L) time to compute an optimal TSA when the traffic-handling capacity of the satellite is of the same order as the total bandwidth of the links.

  17. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats.

    PubMed

    Li, Hao; Liu, Wenzhong; Zhang, Hao F

    2015-10-01

    Abstract. Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10  μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications. PMID:26502233

  18. Angular phase-matching bandwidths in biaxial nonlinear crystals for frequency converters

    SciTech Connect

    Grechin, Sergei G

    2010-11-13

    It is shown that the angular phase-matching bandwidths in biaxial nonlinear crystals in the general case must be calculated in the coordinate system in which the angular deviations of the crystal and the laser beam divergence are determined consistently. The angular phase-matching bandwidths in this coordinate system may considerably differ from the conventionally determined values. The optimum orientation of the coordinate system for determining the angular phase-matching bandwidths is found. It is established that, in the general case in biaxial crystals, as in uniaxial ones, phase matching is always angle-critical along one coordinate and noncritical along the other and that it is possible to realise angle-noncritical phase matching of the fourth order. (nonlinear optical phenomena)

  19. Influence of finite bandwidth on the propagation of information in fast- and slow-light media

    NASA Astrophysics Data System (ADS)

    Amano, Heisuke; Tomita, Makoto

    2016-06-01

    We examined the propagation of information encoded as nonanalytical points on temporally Gaussian-shaped optical pulses in fast- and slow-light systems. The bandwidth of the input pulses determined the sharpness of the nonanalytical points. A sharp bending nonanalytical point propagated with luminal velocity in both fast- and slow-light systems, in good agreement with relativistic causality. As the bandwidth was reduced, the bending point became broad and propagated with the relevant group velocities. This transition was, however, qualitatively different in the fast- and slow-light systems. We also examined the predictability of the future pulse shape beyond the practical nonanalytical point on the basis of the expansion. When the bandwidth was reduced below a critical value, the expansion well predicted the future pulse shape.

  20. Improving the chaos bandwidth of a semiconductor laser with phase-conjugate feedback

    NASA Astrophysics Data System (ADS)

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-04-01

    Common applications using optical chaos in a semiconductor laser include, among others, random number generation and chaos-encrypted communications. They rely on chaos of high dimension with a large bandwidth and a high entropy growth rate to achieve good results. Optical chaos from a semiconductor laser with conventional optical feedback (COF) is typically used as the primary source of chaos. Additional enhancing techniques are used to enlarge the chaos bandwidth. In this contribution, we show experimentally how using phase-conjugate feedback (PCF) can naturally produce a chaos of higher bandwidth than COF. PCF is an alternative to COF which consists of feeding the conjugate of the optical output back into the laser cavity, with a time-delay. Thanks to an oscilloscope with a fast sampling rate, and a large bandwidth, we were able to measure and observe the time-resolved frequency dynamics with a good precision. In the regime of low-frequency fluctuations (LFF), where dropouts of optical power occur randomly, we were able to compare the difference in dynamics before and after a dropout, for PCF and COF. In the range of attainable reflectivities, we measured a bandwidth increase of up to 27 % with PCF when compared to COF. Interestingly, we found that high-frequency dynamics are enabled before dropouts in PCF, where it was theoretically shown that the system jumps between destabilized self-pulsing states at harmonics of the external-cavity frequency, the so-called external-cavity modes (ECMs). This observation tends to confirm that ECMs in PCF are indeed fundamentally different than ECMs in COF, where they are simple steady-states. Finally, we believe that the enhancing techniques used with COF could also be used with PCF to obtain even wider chaotic bandwidths. These results could lead to studies about the dimension and the entropy growth rate of chaos from a laser diode with PCF.