Science.gov

Sample records for 20-foot spin tunnel

  1. Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel. The film shows three spin tunnel tests of a 1/20 scale model of the Gemini capsule. In the first test, the capsule spins freely. In tests 2 and 3, a drogue parachute is attached to the capsule. [Entire movie available on DVD from CASI as Doc ID 20070030989. Contact help@sti.nasa.gov

  2. Compilation of Test Data on 111 Free-Spinning Airplane Models Tested in the Langley 15-Foot and 20-Foot Free-Spinning Tunnels

    NASA Technical Reports Server (NTRS)

    Malvestuto, Frank S.; Gale, Lawrence J.; Wood, John H.

    1947-01-01

    A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.

  3. Free-Spinning, Longitudinal-Trim, and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultke MX-813 (Prototype of XP-92) Airplane as Determined in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W., Jr.; White, Richard P.

    1948-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to evaluate the spin, longitudinal-trim, and tumbling characteristics of a 1/20-scale model of the Consolidated Vultee MX-813 airplane. The effects of control position were determined for the model ballasted to represent the airplane in its design gross weight loading. The model, in general, would not spin but demonstrated a tendency to trim at very high stalled angles of attack. Static tests substantiated the dynamic tests as regards the trim characteristics. Movement of the elevator, however, from up to slightly down was effective in pitching the model from stalled to normal trim attitudes. The model would not tumble.

  4. Supplementary Investigation in the Langley 20-Foot Free-Spinning Tunnel of the Spin and Recovery Characteristics of a 0.057-Scale Model of the Chance Vought XFU-1 Airplane, Ted No. NACA DE 311

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.

  5. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  6. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  7. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  8. 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1935-01-01

    A researcher is launching a model into the tunnel airstream of the 15-Foot Spin Tunnel. Charles Zimmerman wrote in NASA TR No. 557: 'After the observations have been made, the model is lowered into a net held in the air stream by one of the operators or into a large bowl-shaped net at the bottom of the test section. When lowered into the large net, the model is retrieved with a long- handled clamp.' (p. 267) 'The models used are generally 1/10 to 1/16 scale. The size of the models is limited by the wing span and the wing loading. The maximum allowable span is about 36 inches; the maximum wing loading is about 1.3 pounds per square foot.' (p. 266) 'Balsa wood is the usual structural material because of its low density. It is necessary to hollow out the after portion of the fuselage and to cut out a large portion of the wood in the wings to permit proper mass distribution. The wing cut-outs are covered with silk tissue paper. The leading and trailing edges and tips of the wings are fitted with strips of spruce, pattern pine, or bamboo inset into the edge of the balsa to prevent disfigurement from accidental blows or from striking the safety netting. Lead is used for ballast.' (p. 266)

  9. 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1935-01-01

    Interior view of model in 15-Foot Spin Tunnel. Charles Zimmerman wrote in NASA TR No. 557: 'After the observations have been made, the model is lowered into a net held in the air stream by one of the operators or into a large bowl-shaped net at the bottom of the test section. When lowered into the large net, the model is retrieved with a long-handled clamp.' (p. 267) 'The models mused are generally 1/10 to 1/16 scale. The size of the models is limited by the wing span and the wing loading. The maximum allowable span is about 36 inches; the maximum wing loading is about 1.3 pounds per square foot.' (p. 266) 'Balsa wood is the usual structural material because of its low density. It is necessary to hollow out the after portion of the fuselage and to cut out a large portion of the wood in the wings to permit proper mass distribution. The wing cut-outs are covered with silk tissue paper. The leading and trailing edges and tips of the wings are fitted with strips of spruce, pattern pine, or bamboo inset into the edge of the balsa to prevent disfigurement from accidental blows or from striking the safety netting. Lead is used for ballast.' (p. 266)

  10. Novel tunnelling barriers for spin tunnelling junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Manish

    A tunnel junction consists of two metal electrodes separated by an insulating barrier thin enough for electrons to tunnel across. With ferromagnetic electrodes, a spin-dependent tunnelling (SDT) effect, electrons of one spin tunnelling preferentially over those of the other, is observed. When the electrodes are switched from a parallel to an anti-parallel alignment, the tunnelling current changes and gives rise to tunnelling magnetoresistance (TMR). Since 1995, interest in SDT junctions has increased as TMR in excess of 15% has been achieved, making viable their use in non-volatile memory and magnetic sensors applications. In this work, two key issues of SDT junctions are addressed: spin polarization of the electrode and the tunnel barrier. Spin polarization, a measure of electron states of up and down spins, is widely believed to be an intrinsic property of the electrode. In junctions with barriers formed by plasma oxidation of composite Ta/Al films, the surprising effect of the resistance being lower with the electrodes aligned antiparallel was observed. Junctions with Ta/Al barriers and those with Al/Ta barriers behave opposite to each other and exhibit an inversion only when the Ta side of the barrier is biased positive. This demonstrates the spin polarization is also influenced by the barrier material. Half-metallic materials such as magnetite (Fe3O4) have a gap in one of the spins' states at the fermi level, thus having a theoretical spin polarization of 100%. In this work, an ultrathin Fe3O 4 layer was added between the Al2O3 barrier and the NiFe electrode. The TMR increased sharply from 4% to 16% for thicknesses less than 0.5nm. As the tunnel barrier must be thinner than 2nm, choice of the barrier material becomes critical. Presently, Al2O3 is the best known barrier. In looking for alternative materials, AlN and AlON were formed by plasma nitridation and oxy-nitridation of deposited Al films. TMR results of up to 18% and resistance-area products down to 3

  11. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  12. Spin-dependent tunneling in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Davis, Albert Hamilton, Jr.

    In this work I present results of a theoretical study of the intrinsic response of ferromagnetic tunnel junctions (MTJ's). The goal of the work has been to understand the underlying physics in order to describe the intrinsic portion of the observed behavior. Specifically, I present a free electron tunneling model which predicts that the magneto-conductance ratio (ΔG/G) or tunneling magneto-resistance (TMR) in high quality MTJs is dominated by the intrinsic response. The model assumes an effective tunneling electronic structure which has been constructed from parameters extracted from first principles calculations and a simple barrier whose effective height and thickness are deduced from the experiments. This model does not utilize the polarization (P) of the density of states (DOS) as an input parameter, but rather calculates the conductance for each spin channel and configuration in order to calculate TMR directly. The process of matching spin-dependent tunneling states with spin-independent barrier states produces a spin-dependent T-matrix which is the main difference between this model and other prevalent models which have been built upon Julliere's model (M. Julliere, Phys. Lett. 54 225, 1975). The effect of bias is handled by increasing the chemical potential on one side of the barrier, and the effect of temperature is included via Fermi smearing and the temperature dependent magnetic band structure. The model predicts that MTJ's are quite sensitive to changes in the magnetic band structure. This explains both the large temperature dependence of TMR and the high sensitivity of MTJ's to magnetic fields. The model strongly supports the assertion that only a portion of the total DOS is relevant to spin-dependent tunneling (SDT) and that the bands which supply the tunneling electrons are essentially Stoner split. I conclude with a consideration of asymmetric TMR and a short first principles study of fcc magnetic alloys which gives some insight into the relative

  13. Free-Spinning-Tunnel Investigation of a 1/28-Scale Model of the North American FJ-4 Airplane with External Fuel Tanks, TED No. NACA AD 3112

    NASA Technical Reports Server (NTRS)

    Healy, Frederick M.

    1958-01-01

    A supplementary investigation to determine the effect of external fuel tanks on the spin and recovery characteristics of a l/28-scale model of the North American FJ-4 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The model had been extensively tested previously (NACA Research Memorandum SL38A29) and therefore only brief tests were made to evaluate the effect of tank installation. Erect spin tests of the model indicate that flat-type spins-are more prevalent with 200-gallon external fuel tanks than with tanks not installed. The recovery technique determined for spins without tanks, rudder reversal to full against the spin accompanied by simultaneous movement of ailerons to full with the spin, is recommended for spins encountered with external tanks installed. If inverted spins are encountered with external tanks installed, the tanks should be jettisoned and recovery attempted by rudder reversal to full against the spin with ailerons maintained at neutral.

  14. Theory of electrically controlled resonant tunneling spin devices

    NASA Technical Reports Server (NTRS)

    Ting, David Z. -Y.; Cartoixa, Xavier

    2004-01-01

    We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.

  15. Construction of Foundation for 15-Foot Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Completed foundation for the outer housing for the 15-Foot Spin Tunnel. Charles Zimmerman was given the assignment to design and build a larger spin tunnel that would supplant the 5-foot Vertical Wind Tunnel. Authorization to build the tunnel using funds from the Federal Public Works Administration (PWA) came in June 1933. Construction started in late winter 1934 and the tunnel was operational in April 1935. The initial construction costs were $64,000.

  16. Free-Spinning-Tunnel Tests of a 1/20-Scale Model of the Northrop N-9M Airplane

    NASA Technical Reports Server (NTRS)

    MacDougall, George F., Jr.; Lichtenstein, Jacob H.

    1946-01-01

    Spin tests of a 1/20-scale model of the Northrop N-9M airplane have been performed in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics were determined for various loading conditions and the effect of deflecting the flaps and of extending the landing gear was investigated. The investigation also included tests to determine the size parachute required for satisfactory spin recovery by parachute action alone. The tests were performed at an equivalent spin altitude of 15,000 feet. A specialized recovery technique consisting of rapid full reversal of the rudder pedals against the spin combined with turning the wheel against the spin and movement of the stick forward is recommended for all loadings and configurations of the airplane. The results also indicated that a 7-foot-diameter spin-recovery parachute having a drag coefficient of 0.7 attached to the outboard wing tip with a towline of 10 to 30 feet or an 8.8-foot-diameter parachute attached to the fixed portion of the wing between the elevons and the pitch flaps with a 30-foot towline would provide satisfactory recovery from demonstration spins by parachute action alone. It appears possible that the first N-9M airplane may have crashed because of failure to recover from a spin.

  17. Simulations of Resonant Intraband and Interband Tunneling Spin Filters

    NASA Technical Reports Server (NTRS)

    Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.

    2001-01-01

    This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).

  18. Free-Spinning-Tunnel Tests of a 1/29-Scale Model of the Republic XP-91 Airplane with a Vee Tail Installed

    NASA Technical Reports Server (NTRS)

    Snyder, Thomas L.

    1948-01-01

    A spin investigation has been conducted in the Langley 20 -foot free-spinning tunnel on a 1/29 - scale model of the Republic XP-91 airplane with vee tail installed. The effects cf control settings and movements upon the effect spin and recovery characteristics of the model were determined for the clean condition (wing tanks removed, landing gear and flaps retracted). The tests were made at a loading simulating that following cruise at altitude and at a time when nearly all fuel was expended. The results indicated that the airplane might not spin at normal spinning-control configuration, but if a spin were obtained, recovery therefrom by full rudder reversal would be satisfactory. It was also indicated that aileron-against settings would lead to violent oscillatory motions and should be avoided.

  19. Fully magnetic manganite spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prasad, Bhagwati; Blamire, Mark G.

    2016-09-01

    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  20. Spin Heat Accumulation Induced by Tunneling from a Ferromagnet

    NASA Astrophysics Data System (ADS)

    Vera-Marun, I. J.; van Wees, B. J.; Jansen, R.

    2014-02-01

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.

  1. Preliminary Tests in the NACA Free-Spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zimmerman, C H

    1937-01-01

    Typical models and the testing technique used in the NACA free-spinning wind tunnel are described in detail. The results of tests on two models afford a comparison between the spinning characteristics of scale models in the tunnel and of the airplanes that they represent.

  2. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  3. Effect of quantum tunneling on spin Hall magnetoresistance.

    PubMed

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  4. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  5. Spin-Tunnel Investigation of a 1/28-Scale Model of the NASA F-18 High Alpha Research Vehicle (HARV) with and without Vertical Tails

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael

    1997-01-01

    An investigation was conducted in the NASA Langley 20-Foot Vertical Spin Tunnel to determine the developed spin and spin-recovery characteristics of a 1/28-scale, free-spinning model of the NASA F-18 HARV (High Alpha Research Vehicle) airplane that can configured with and without the vertical tails installed. The purpose of the test was to determine what effects, if any, the absence of vertical tails (and rudders) had on the spin and spin-recovery capabilities of the HARV. The model was ballasted to dynamically represent the full-scale airplane at an altitude of 25,000 feet. Erect and inverted spin tests with symmetric mass loadings were conducted with the free-spinning model. The model results indicate that the basic airplane with vertical tails installed (with unaugmented control system) will exhibit fast, flat erect and inverted spins from which acceptable recoveries can be made. Removing the vertical tails had little effect on the erect spin mode, but did degrade recoveries from erect spins. In contrast, inverted spins without the vertical tails were significantly more severe than those with the tails installed.

  6. Enhancement of Spin-transfer torque switching via resonant tunneling

    SciTech Connect

    Chatterji, Niladri; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2014-12-08

    We propose the use of resonant tunneling as a route to enhance the spin-transfer torque switching characteristics of magnetic tunnel junctions. The proposed device structure is a resonant tunneling magnetic tunnel junction based on a MgO-semiconductor heterostructure sandwiched between a fixed magnet and a free magnet. Using the non-equilibrium Green's function formalism coupled self consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation, we demonstrate enhanced tunnel magneto-resistance characteristics as well as lower switching voltages in comparison with traditional trilayer devices. Two device designs based on MgO based heterostructures are presented, where the physics of resonant tunneling leads to an enhanced spin transfer torque thereby reducing the critical switching voltage by up to 44%. It is envisioned that the proof-of-concept presented here may lead to practical device designs via rigorous materials and interface studies.

  7. Spin torque ferromagnetic resonance in Heusler based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Phung, Timothy; Pushp, Aakash; Jeong, Jaewoo; Ferrante, Yari; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    Heusler compounds are of interest as electrode materials for use in magnetic tunnel junctions (MTJs) due to their half metallic character, which leads to high spin polarization and high tunneling magnetoresistance. Whilst much work has focused on the influence of the half metallic character of the Heusler compounds on the magnetoresistance of MTJs, there is much less work investigating the influence of this electronic structure on the spin transfer torque. Here, we investigate the bias dependence of the anti-damping like and field-like spin transfer torque components as a function of the bias voltage in symmetric (CoMnSi/MgO/CoMnSi) and asymmetric (CoMnSi/MgO/CoFe) structure magnetic tunnel junctions using spin transfer torque ferromagnetic resonance. Lastly, we report on the effect of asymmetric bias dependence of the differential conductance on the spin transfer torque.

  8. Resonant spin tunneling in small antiferromagnetic particles

    NASA Astrophysics Data System (ADS)

    Luis, F.; del Barco, E.; Hernández, J. M.; Remiro, E.; Bartolomé, J.; Tejada, J.

    1999-05-01

    The paper reports a detailed experimental study on magnetic relaxation of natural horse-spleen ferritin. ac susceptibility measurements performed on three samples of different concentration show that dipole-dipole interactions between uncompensated moments play no significant role. Furthermore, the distribution of relaxation times in these samples has been obtained from a scaling of experimental χ'' data, obtained at different frequencies. The average uncompensated magnetic moment per protein is compatible with a disordered arrangement of atomic spins throughout the core, rather than with surface disorder. The observed field dependence of the blocking temperature suggests that magnetic relaxation is faster at zero field than at intermediate field values. This is confirmed by the fact that the magnetic viscosity peaks at zero field, too. Using the distribution of relaxation times obtained independently, we show that these results cannot be explained in terms of classical relaxation theory. The most plausible explanation of these results is the existence, near zero field, of resonant magnetic tunneling between magnetic states of opposite orientation, which are thermally populated.

  9. Free-spinning-tunnel Investigation of a 1/30 Scale Model of a Twin-jet-swept-wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1960-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/30-scale dynamic model of a twin-jet swept-wing fighter airplane. The model results indicate that the optimum erect spin recovery technique determined (simultaneous rudder reversal to full against the spin and aileron deflection to full with the spin) will provide satisfactory recovery from steep-type spins obtained on the airplane. It is considered that the air-plane will not readily enter flat-type spins, also indicated as possible by the model tests, but developed-spin conditions should be avoided in as much as the optimum recovery procedure may not provide satisfactory recovery if the airplane encounters a flat-type developed spin. Satisfactory recovery from inverted spins will be obtained on the airplane by neutralization of all controls. A 30-foot- diameter (laid-out-flat) stable tail parachute having a drag coefficient of 0.67 and a towline length of 27.5 feet will be satisfactory for emergency spin recovery.

  10. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the McDonnell XP-88 Airplane with a Conventional Tail

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1947-01-01

    An investigation of the spin and recovery characteristics of a 1/24-scale model of the McDonnell XP-88 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model in the normal loading were determined. Tests of the model in the long-range loading also were made. The investigation included tail-modification, spin-recovery parachute, pilot-escape, and rudder-pedal-force tests. Recoveries were generally satisfactory for spins in the normal loading provided the ailerons were not held against the spin. Satisfactory recoveries were obtained regardless of the aileron setting when the leading-edge flaps were deflected and normal recovery technique was used or when the horizontal tail was raised 70 inches, full scale. Recoveries were rapid from all inverted spins obtained. In the long-range loading with tanks on, it may be necessary to jettison the tanks in order to obtain recovery. A 12.0-foot spin-recovery parachute at the tail or a 4.0-foot parachute opened on the outer wing tip (drag coefficient of 0.66) was found to be effective for recoveries from demonstration spins. Test results showed that in an emergency the pilot should attempt to escape from the outboard side of the spinning airplane. The rudder-pedal forces in a spin were indicated to be within the capabilities of the pilot.

  11. Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions

    SciTech Connect

    Wang Wenyong; Richter, Curt A.

    2007-09-26

    In this study, we fabricate molecular magnetic tunnel junctions and demonstrate that inelastic electron tunneling spectroscopy technique can be utilized to inspect such junctions to investigate the existence of desired molecular species in the device area. Tunneling magnetoresistance measurements have been carried out and spin-dependent tunneling transport has been observed. Bias-dependence of the tunneling resistance has also been detected. IETS measurements at different magnetic field suggested that the TMR bias-dependence was likely caused by the inelastic scattering due to the molecular vibrations.

  12. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling.

    PubMed

    Le Breton, Jean-Christophe; Sharma, Sandeep; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2011-06-29

    Heat generation by electric current, which is ubiquitous in electronic devices and circuits, raises energy consumption and will become increasingly problematic in future generations of high-density electronics. The control and re-use of heat are therefore important topics for existing and emerging technologies, including spintronics. Recently it was reported that heat flow within a ferromagnet can produce a flow of spin angular momentum-a spin current-and an associated voltage. This spin Seebeck effect has been observed in metallic, insulating and semiconductor ferromagnets with temperature gradients across them. Here we describe and report the demonstration of Seebeck spin tunnelling-a distinctly different thermal spin flow, of purely interfacial nature-generated in a tunnel contact between electrodes of different temperatures when at least one of the electrodes is a ferromagnet. The Seebeck spin current is governed by the energy derivative of the tunnel spin polarization. By exploiting this in ferromagnet-oxide-silicon tunnel junctions, we observe thermal transfer of spins from the ferromagnet to the silicon without a net tunnel charge current. The induced spin accumulation scales linearly with heating power and changes sign when the temperature differential is reversed. This thermal spin current can be used by itself, or in combination with electrical spin injection, to increase device efficiency. The results highlight the engineering of heat transport in spintronic devices and facilitate the functional use of heat.

  13. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling

    NASA Astrophysics Data System (ADS)

    Le Breton, Jean-Christophe; Sharma, Sandeep; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2011-07-01

    Heat generation by electric current, which is ubiquitous in electronic devices and circuits, raises energy consumption and will become increasingly problematic in future generations of high-density electronics. The control and re-use of heat are therefore important topics for existing and emerging technologies, including spintronics. Recently it was reported that heat flow within a ferromagnet can produce a flow of spin angular momentum--a spin current--and an associated voltage. This spin Seebeck effect has been observed in metallic, insulating and semiconductor ferromagnets with temperature gradients across them. Here we describe and report the demonstration of Seebeck spin tunnelling--a distinctly different thermal spin flow, of purely interfacial nature--generated in a tunnel contact between electrodes of different temperatures when at least one of the electrodes is a ferromagnet. The Seebeck spin current is governed by the energy derivative of the tunnel spin polarization. By exploiting this in ferromagnet-oxide-silicon tunnel junctions, we observe thermal transfer of spins from the ferromagnet to the silicon without a net tunnel charge current. The induced spin accumulation scales linearly with heating power and changes sign when the temperature differential is reversed. This thermal spin current can be used by itself, or in combination with electrical spin injection, to increase device efficiency. The results highlight the engineering of heat transport in spintronic devices and facilitate the functional use of heat.

  14. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions.

    PubMed

    Lin, Weiwei; Hehn, Michel; Chaput, Laurent; Negulescu, Béatrice; Andrieu, Stéphane; Montaigne, François; Mangin, Stéphane

    2012-03-20

    Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents, which are key elements of spin-based electronics. Here we report on a giant magnetothermoelectric effect in a magnetic tunnel junction. The thermovoltage in this geometry can reach 1 mV. Moreover a magnetothermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore, our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.

  15. Spin polarized tunneling study on spin hall metals and topological insulators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Luqiao

    2016-10-01

    Spin orbit interactions give rise to interesting physics phenomena in solid state materials such as the spin Hall effect (SHE) and topological insulator surface states. Those effects have been extensively studied using various electrical detection methods. However, to date most experiments focus only on characterizing electrons near the Fermi surface, while spin-orbit interaction is expected to be energy dependent. Here we developed a tunneling spectroscopy technique to measure spin Hall materials and topological insulators under finite bias voltages. By electrically injecting spin polarized electrons into spin Hall metals or topological insulators using tunnel junctions and measuring the induced transverse voltage, we are able to study SHE in typical 5d transition metals and the spin momentum locking in topological insulators. For spin Hall effect metals, the magnitude of the spin Hall angle has been a highly controversial topic in previous studies. Results obtained from various techniques can differ by more than an order of magnitude. Our results from this transport measurement turned out to be consistent with the values obtained from spin Hall torque measurements, which can help to address the long debating issue. Besides the magnitude, the voltage dependent spectra from our experiment also provide useful information in distinguishing between different potential mechanisms. Finally, because of the impedance matching capability of tunnel junctions, the spin polarized tunneling technique can also be used as a powerful tool to measure resistive materials such as the topological insulators. Orders of magnitude improvement in the effective spin Hall angle was demonstrated through our measurement

  16. Ferromagnetic tunnel contacts to graphene: Contact resistance and spin signal

    SciTech Connect

    Cubukcu, M.; Laczkowski, P.; Vergnaud, C.; Marty, A.; Attané, J.-P.; Notin, L.; Vila, L. Jamet, M.; Martin, M.-B.; Seneor, P.; Anane, A.; Deranlot, C.; Fert, A.; Auffret, S.; Ducruet, C.

    2015-02-28

    We report spin transport in CVD graphene-based lateral spin valves using different magnetic contacts. We compared the spin signal amplitude measured on devices where the cobalt layer is directly in contact with the graphene to the one obtained using tunnel contacts. Although a sizeable spin signal (up to ∼2 Ω) is obtained with direct contacts, the signal is strongly enhanced (∼400 Ω) by inserting a tunnel barrier. In addition, we studied the resistance-area product (R.A) of a variety of contacts on CVD graphene. In particular, we compared the R.A products of alumina and magnesium oxide tunnel barriers grown by sputtering deposition of aluminum or magnesium and subsequent natural oxidation under pure oxygen atmosphere or by plasma. When using an alumina tunnel barrier on CVD graphene, the R.A product is high and exhibits a large dispersion. This dispersion can be highly reduced by using a magnesium oxide tunnel barrier, as for the R.A value. This study gives insight in the material quest for reproducible and efficient spin injection in CVD graphene.

  17. Free-Spinning-Tunnel Investigation of a 1/25-Scale Model of the Chance Vought F8U-1P Airplane

    NASA Technical Reports Server (NTRS)

    Browman, James S., Jr.; Healy, Frederick M.

    1959-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel on a 1/25-scale dynamic model to determine the spin and recovery characteristics of the Chance Vought F8U-1P airplane. Results indicated that the F8U-IP airplane would have spin-recovery characteristics similar to the XF8U-1 design, a model of which was tested and the results of the tests reported in NACA Research Memorandum SL56L31b. The results indicate that some modification in the design, or some special technique for recovery, is required in order to insure satisfactory recovery from fully developed erect spins. The recommended recovery technique for the F8U-lP will be full rudder reversal and movement of ailerons full with the spin (stick right in a right spin) with full deflection of the wing leading- edge flap. Inverted spins will be difficult to obtain and any inverted spin obtained should be readily terminated by full rudder reversal to oppose the yawing rotation and neutralization of the longitudinal and lateral controls. In an emergency, the same size parachute recommended for the XFBU-1 airplane will be adequate for termination of the spin: a stable parachute 17.7 feet in diameter (projected) with a drag coefficient of 1.14 (based on projected diameter) and a towline length of 36.5 feet.

  18. Free-Spinning-Tunnel Investigation of a 1/24-Scale Model of the Grumman F9F-6 Airplane TED No. NACA DE 364

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Healy, Frederick M.

    1952-01-01

    An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.

  19. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the North American XP-86 Airplane

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.

  20. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 317

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    An investigation of the spin and recovery characteristics of a scale model of the Grumman XF9F-2 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model in the flight loading were determined. The investigation also included spin-recovery-parachute, pilot-escape, and rudder-pedal- . force tests. The recovery characteristics of the model were satisfactory for all configurations tested. Spins for the normal control configuration were oscillatory in roll and yaw. Deflecting the leading-edge flaps or the dive brakes did not change the spin and recovery characteristics of the model noticeably. A 10.0-foot tail parachute or a 6.0-foot wing-tip parachute (drag coefficient of 0.75) was found to be effective for recoveries from demonstration spins. The rudder forces in the spin appeared to be within the capabilities of the pilot.

  1. Free-spinning-tunnel Tests of a 1/26th Scale Model of the Douglas XTB2D-1 Airplane

    NASA Technical Reports Server (NTRS)

    Stone, Ralph W; Berman, Theodore

    1946-01-01

    A spin-tunnel investigation of a 1/26 scale model of the Douglas XTB2D-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements upon the erect- and inverted-spin and recovery characteristics of the model were determined for various loading conditions. Tests were also performed to determine the effects of various tail modifications. The investigation included emergency spin-recovery parachute tests as well as crew-escape and rudder- and elevator-force tests. All tests were performed at an equivalent spin altitute of 20,000 feet. The recovery characteristics of the model in the original design were found to be unsatisfactory. Installation of a large ventral fin, installation of tip fins on the horizontal tail, or installation of a small ventral fin in combination with antispan fillets and a spanwise extension of the horizontal-tail surfaces satisfactorily improved the recovery characteristics of the model.

  2. Spin excitations and correlations in scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Ternes, Markus

    2015-06-01

    In recent years inelastic spin-flip spectroscopy using a low-temperature scanning tunneling microscope has been a very successful tool for studying not only individual spins but also complex coupled systems. When these systems interact with the electrons of the supporting substrate correlated many-particle states can emerge, making them ideal prototypical quantum systems. The spin systems, which can be constructed by arranging individual atoms on appropriate surfaces or embedded in synthesized molecular structures, can reveal very rich spectral features. Up to now the spectral complexity has only been partly described. This manuscript shows that perturbation theory enables one to describe the tunneling transport, reproducing the differential conductance with surprisingly high accuracy. Well established scattering models, which include Kondo-like spin-spin and potential interactions, are expanded to enable calculation of arbitrary complex spin systems in reasonable time scale and the extraction of important physical properties. The emergence of correlations between spins and, in particular, between the localized spins and the supporting bath electrons are discussed and related to experimentally tunable parameters. These results might stimulate new experiments by providing experimentalists with an easily applicable modeling tool.

  3. Strongly bias-dependent tunnel magnetoresistance in manganite spin filter tunnel junctions.

    PubMed

    Prasad, Bhagwati; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2015-05-20

    A highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer. Thinner barrier devices exhibit conventional SFTJ behaviors; however, for larger barrier thicknesses, the TMR-bias dependence is more complex and reverses sign at higher bias.

  4. Giant thermal spin torque assisted magnetic tunnel junction switching

    NASA Astrophysics Data System (ADS)

    Pushp, Aakash

    Spin-polarized charge-currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer-torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin-currents from temperature gradients, and their associated thermal-spin-torques (TSTs) have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge-currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. Reference: A. Pushp*, T. Phung*, C. Rettner, B. P. Hughes, S.-H. Yang, S. S. P. Parkin, 112, 6585-6590 (2015).

  5. Giant thermal spin-torque–assisted magnetic tunnel junction switching

    PubMed Central

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    2015-01-01

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  6. Quantum and tunneling capacitance in charge and spin qubits

    NASA Astrophysics Data System (ADS)

    Mizuta, R.; Otxoa, R. M.; Betz, A. C.; Gonzalez-Zalba, M. F.

    2017-01-01

    We present a theoretical analysis of the capacitance of a double quantum dot in the charge and spin qubit configurations probed at high frequencies. We find that, in general, the total capacitance of the system consists of two state-dependent terms: the quantum capacitance arising from adiabatic charge motion and the tunneling capacitance that appears when repopulation occurs at a rate comparable or faster than the probing frequency. The analysis of the capacitance lineshape as a function of externally controllable variables offers a way to characterize the qubits' charge and spin state as well as relevant system parameters such as charge and spin relaxation rates, tunnel coupling, electron temperature, and electron g factor. Overall, our analysis provides a formalism to understand dispersive qubit-resonator interactions which can be applied to high-sensitivity and noninvasive quantum-state readout.

  7. Nanopillar spin filter tunnel junctions with manganite barriers.

    PubMed

    Prasad, Bhagwati; Egilmez, Mehmet; Schoofs, Frank; Fix, Thomas; Vickers, Mary E; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2014-05-14

    The potential of a manganite ferromagnetic insulator in the field of spin-filtering has been demonstrated. For this, an ultrathin film of Sm0.75Sr0.25MnO3 is integrated as a barrier in an epitaxial oxide nanopillar tunnel junction and a high spin polarization of up to 75% at 5 K has been achieved. A large zero-bias anomaly observed in the dynamic conductance at low temperatures is explained in terms of the Kondo scattering model. In addition, a decrease in spin polarization at low bias and hysteretic magneto-resistance at low temperatures are reported. The results open up new possibilities for spin-electronics and suggest exploration of other manganites-based materials for the room temperature spin-filter applications.

  8. Free-Spinning-Tunnel Tests of a 1/18-Scale Model of the Fairchild XNQ-1 Airplane, TED No. NACA 2398

    NASA Technical Reports Server (NTRS)

    Daughtridge, Lee T., Jr.

    1946-01-01

    Spin tests have been performed in the Langley 20-foot free-spinning tunnel on a 1/18-scale model of the Fairchild XNQ-1 airplane. The spin and recovery characteristics of the model were determined for the normal gross-weight loading and for two variations from this loading - center of gravity moved rearward and relative mass distribution increased along the fuselage. These tests were performed for two vertical-tail plan forms. The investigation also included simulated pilot-escape tests and rudder-force tests. The recovery characteristics of the model were satisfactory for all conditions tested by full reversal of the rudder and by simultaneous neutralization of the rudder and elevator. It was indicated that if necessary to escape from the spinning airplane, the pilot should jump from the outboard side of the fuselage and as far rearward as possible. Aa determined from spin model tests, the rudder pedal force required to reverse the rudder for recovery from the spin will be light.

  9. How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Dupé, B.; Kruse, C. N.; Dornheim, T.; Heinze, S.

    2016-05-01

    We predict the occurrence of metastable skyrmionic spin structures such as antiskyrmions and higher-order skyrmions in ultra-thin transition-metal films at surfaces using Monte Carlo simulations based on a spin Hamiltonian parametrized from density functional theory calculations. We show that such spin structures will appear with a similar contrast in spin-polarized scanning tunneling microscopy images. Both skyrmions and antiskyrmions display a circular shape for out-of-plane magnetized tips and a two-lobe butterfly contrast for in-plane tips. An unambiguous distinction can be achieved by rotating the tip magnetization direction without requiring the information of all components of the magnetization.

  10. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    NASA Technical Reports Server (NTRS)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  11. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    PubMed Central

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  12. Spin Hall effect of light in photon tunneling

    SciTech Connect

    Luo Hailu; Wen Shuangchun; Shu Weixing; Fan Dianyuan

    2010-10-15

    We resolve the breakdown of angular momentum conservation on two-dimensional photon tunneling by considering the spin Hall effect (SHE) of light. This effect manifests itself as polarization-dependent transverse shifts of the field centroid when a classic wave packet tunnels through a prism-air-prism barrier. For the left or the right circularly polarized component, the transverse shift can be modulated by altering the refractive index gradient associated with the two prisms. We find that the SHE in conventional beam refraction can be evidently enhanced via photon tunneling mechanism. The transverse spatial shift is governed by the total angular momentum conservation law, while the transverse angular shift is governed by the total linear momentum conservation law. These findings open the possibility for developing new nanophotonic devices and can be extrapolated to other physical systems.

  13. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    PubMed

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  14. Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Robinson, Jeremy T; Whitener, Keith E; Jonker, Berend T

    2015-07-28

    We demonstrate that hydrogenated graphene performs as a homoepitaxial tunnel barrier on a graphene charge/spin channel. We examine the tunneling behavior through measuring the IV curves and zero bias resistance. We also fabricate hydrogenated graphene/graphene nonlocal spin valves and measure the spin lifetimes using the Hanle effect, with spintronic nonlocal spin valve operation demonstrated up to room temperature. We show that while hydrogenated graphene indeed allows for spin transport in graphene and has many advantages over oxide tunnel barriers, it does not perform as well as similar fluorinated graphene/graphene devices, possibly due to the presence of magnetic moments in the hydrogenated graphene that act as spin scatterers.

  15. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport.

    PubMed

    Friedman, Adam L; van 't Erve, Olaf M J; Li, Connie H; Robinson, Jeremy T; Jonker, Berend T

    2014-01-01

    The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization >60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect.

  16. Free-Spinning-Tunnel Tests of a 1/16-Scale Model of the Chance Vought XF5U-1 Airplane, TED No. NACA 2349

    NASA Technical Reports Server (NTRS)

    White, Richard P.

    1947-01-01

    Spin tests of a 1/16-scale model of the Chance Vought XF5U-1 airplane have been performed in the Langley 20-foot free-spinning tunnel. The effect of control position and movement upon the erect and inverted spin and recovery characteristics ae well as the effects of propellers, of stability flaps, and of various revisions to the design configuration have been determined for the normal fighter loading. The investigation also included spin recovery parachute, tumbling, and pilot-escape tests. For the original design configuration, with or without windmilling propellers, the recovery characteristics of the model were considered unsatisfactory. Increasing the maximum upward deflection of the ailavators from 45 deg to 65 deg resulted in greatly improved recovery characteristics. Dimensional revisions to the original airplane configuration, which satisfactorily improved the general spin and recovery characteristics of the model, consisted of: (1) a supplementary vertical tail 34 inches by 59 inches (full-scale) attached to a boom 80 inches aft of the trailing edge of the airplane in the plane of symmetry, (2) a large semispan undersurface spoiler placed along the airplane quarter-chord line and opened on the outboard side in a spin, or (3) two additional vertical tails 64 inches by 52 inches (full-scale) located at the tips of the ailavators. A satisfactory parachute arrangement for emergency spin recovery from demonstration spins was found to be an arrangement consisting of a 13.3-foot parachute attached by a 30-foot towline to the arresting gear mast on the airplane and opened simultaneously with an 8-foot parachute on the outboard end of the wing attached by a 3-foot towline. Tests indicated that pilot escape from a spin would be extremely hazardous unless the pilot is mechanically ejected from the cockpit. Model tumbling tests indicated that the airplane would not tumble.

  17. Model Test of Mars Entry Vehicles in Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Model Test of Mars Entry Vehicles in Langley Spin Tunnel. Four models of Mars entry vehicles tested were a sphere with cg=35 percent (measured in percent of diameter from surface); Apollo with cg=16 percent (measured in percent of maximum diameter rearward of heat shield); a 103-degree cone with cg=20 percent (measured in percent of maximum diameter rearward of small end); and a tension structure: cg=25 percent (measured in percent of maximum diameter rearward of small end). [Entire movie available on DVD from CASI as Doc ID 20070030979. Contact help@sti.nasa.gov

  18. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    PubMed

    Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F

    2015-06-09

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.

  19. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions

    PubMed Central

    Massarotti, D.; Pal, A.; Rotoli, G.; Longobardi, L.; Blamire, M. G.; Tafuri, F.

    2015-01-01

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495

  20. Thermal spin-transfer torque in magnetic tunnel junctions (invited)

    SciTech Connect

    Heiliger, Christian Franz, C.; Czerner, Michael

    2014-05-07

    The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering Fe{sub x}Co{sub 1–x} alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO, a thermal switching is imaginable. However, even for such a thin barrier, the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagnetic layer. In our current study, it turns out that at the chosen thickness of the ferromagnetic layer, pure Fe gives the highest thermal spin-transfer torque.

  1. Free-Spinning Tunnel Tests of a 1/20-Scale Model of the Chance Vought XF6U-1 Airplane, TED No. NACA 2390

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.

    1946-01-01

    A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/20-scale model of the Chance Vought XF6U-1 airplane, The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the normal-fighter condition. The investigation also included tests for the take-off fighter condition (wing-tip tanks plus fuel added) spin-recovery parachutes, and simulated pilot escape. In general, for the normal-fighter condition, the model was extremely oscillatory in roll, pitch, and yaw. The angles of the fuselage varied from extremely flat to inverted attitudes, and the model rotated with the rudder in a series of short turns and glides. Recoveries by rudder reversal were rapid but the model would immediately go into a spin in the other direction. Recoveries by merely neutralizing the rudder were satisfactory when the elevator and ailerons were set to neutral, the ensuing flight path being a steep glide. Thus, it is recommended that all controls be neutralized for safe recovery from spins obtained on the airplane. With the external wing-tip tanks installed, the spins were somewhat less oscillatory in roll but recovery could not be obtained unless full-down elevator was used in conjunction with the rudder. If a spin is entered inadvertently with the full-scale airplane with external wing-tip tanks installed and if recovery is not imminent after a recovery attempt is made, it is recommended that the tanks be jettisoned and the controls neutralized.

  2. Free-Spinning-Tunnel Tests of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Daughtridge, Lee T., Jr.

    1948-01-01

    An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.

  3. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    SciTech Connect

    Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  4. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    PubMed Central

    Tang, Y. -H.; Chu, F. -C.; Kioussis, Nicholas

    2015-01-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds. PMID:26095146

  5. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions.

    PubMed

    Tang, Y-H; Chu, F-C; Kioussis, Nicholas

    2015-06-22

    We predict a giant field-like spin torque, T[symbol in text], in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF's exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of T[symbol in text] via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both 'reading' and 'writing' processes which require lower critical current densities and faster writing and reading speeds.

  6. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas

    2015-06-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.

  7. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    PubMed

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  8. Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.; White, W. L.

    1984-01-01

    A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined.

  9. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers.

    PubMed

    Park, B G; Banerjee, T; Lodder, J C; Jansen, R

    2007-11-23

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.

  10. Spin-Torque Diode Effect in Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshishige

    2007-03-01

    Spin-injection magnetization switching (SIMS) technique [1] made it possible to control magnetization by a direct current. A discovery of spontaneous rf oscillation from CPP-GMR nano-pillars and a real time observation of the switching process have revealed essential amplification function of a precession in the magnetic nano-pillars under a direct current [2]. Beside of those progresses, developments of giant tunneling magneto-resistive (GTMR) effect using an MgO barrier [3] made it possible to utilize a very large resistance change according to the magnetization switching. In this talk, several attempts to utilize interplay between spin-torque and giant-TMR effect will be presented referring to a ``spin-torque diode effect'' [4] and other properties such like rf noise control and possible signal amplification using magnetic tunnel junctions (MTJs). [1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) , L. Berger, Phys. Rev. B 54, 9353 (1996), and E. B. Myers, et al., Science 285, 867 (1999). [2] S. I. Kiselev et al., Nature 425, 380 (2003), I. N. Krivorotov et al., Science, 307, 228 (2005). [3] W. Wulfhekel, et al. Appl. Phys. Lett. 78, 509--511 (2001), M. Bowen, et al. Appl. Phys. Lett. 79, 1655--1657 (2001), J. Faure-Vincent, et al. Appl. Phys. Lett. 82, 4507--4509 (2003), S. Yuasa, et al., Jpn. J. Appl. Phys. Part 2, 43, L588 (2004), S. Yuasa, et al., Nature Mat. 3, 868 (2004), S. S. P. Parkin et al., Nature Mat. 3, 862 (2004), and D. D. Djayaprawira et al., Appl. Phys. Lett. 86, 092502 (2005). [4] A. A. Tulapurkar, et al., Nature, 438, 339 (2005).

  11. Spin Tests of a Low-lying Monoplane in Flight and in the Free-spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Mcavoy, William H

    1940-01-01

    Comparative full-scale and model spin tests were made with a low-lying monoplane in order to extend the available information as to the utility of the free-spinning wind tunnel as an aid in predicting full-scale spin characteristics. For a given control disposition the model indicated steeper spins than were actually obtained with the airplane, the difference being most pronounced for spins with elevators up. Recovery characteristics for the model, on the whole, agreed with those for the airplane, but a disagreement was noted for the case of recovery with elevators held full up. Free-spinning wind-tunnel tests are a useful aid in estimating spin characteristics of airplanes, but it must be appreciated that model results can give only general indications of full-scale behavior.

  12. Instanton paths and coherent quantum tunneling in antiferromagnetic spin clusters subject to a strong magnetic field

    SciTech Connect

    Ivanov, B. A. Kireev, V. E.

    2008-09-15

    The coherent quantum tunneling effects in antiferromagnets in the presence of a strong external magnetic field parallel to the easy axis have been investigated using the instanton formalism. In a wide field range including the region of the phase spin-flop transition, the tunneling is described by 180{sup o} instantons for which the Euclidean action is real and destructive interference is absent. At the transition point, 90{sup o} instantons describing the tunneling between the collinear and spin-flop states appear. The Euclidean action decreases, whereas the tunneling probability and tunneling level splitting in both phases increase significantly in the immediate vicinity of the spin-flop transition point. The possibility of observing the coherent tunneling effects for artificial small particles (magnetic dots) made of antiferromagnets is discussed.

  13. Spin-dependent tunnel junctions with ZrOx barriers

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Freitas, P. P.; Snoeck, E.; Wei, P.; Soares, J. C.

    2001-12-01

    Spin-dependent tunnel junctions with crystalline ZrOx barriers were fabricated, with tunnel magnetoresistance (TMR) reaching 20% and a resistance×area product of 24 k Ω μm2, after annealing at 260 °C. Effective barrier height and thickness are 1.6 eV and 10.6 Å, respectively. The ZrOx barriers were fabricated by rf plasma oxidation of a 5 Å thick Zr layer. High-resolution transmission electron microscopy and Rutherford backscattering spectrometry were used to characterize the as-deposited barrier. Both ZrO and ZrO2 phases are present, together with (CoFe)Ox. Upon annealing, the interfacial oxygen moves into the barrier, resulting in an increase of TMR from 2% to 19.2%, an increase of barrier height from 0.3 to 1.6 eV, and a reduction of barrier thickness from 18.5 to 10.5 Å.

  14. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

    NASA Astrophysics Data System (ADS)

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  15. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets.

    PubMed

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  16. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-02-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 106%. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents.

  17. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  18. Inelastic electron tunneling spectroscopy of local “spin accumulation” devices

    SciTech Connect

    Tinkey, Holly N.; Li, Pengke; Appelbaum, Ian

    2014-06-09

    We investigate the origin of purported “spin accumulation” signals observed in local “three-terminal” (3T) measurements of ferromagnet/insulator/n-Si tunnel junctions using inelastic electron tunneling spectroscopy (IETS). Voltage bias and magnetic field dependences of the IET spectra were found to account for the dominant contribution to 3T magnetoresistance, thus indicating that it arises from inelastic tunneling through impurities and defects at junction interfaces and within the barrier, rather than from spin accumulation due to pure elastic tunneling into bulk Si as has been previously assumed.

  19. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  20. Characterization of Magnetic Tunnel Junctions For Spin Transfer Torque Magnetic Random Access Memory

    NASA Astrophysics Data System (ADS)

    Dill, Joshua Luchay

    This thesis details two experimental methods for quantifying magnetic tunnel junction behavior, namely write error rates and field modulated spin-torque ferromagnetic resonance. The former examines how reliably an applied spin-transfer torque can excite magnetization dynamics that lead to a reversal of magnetization direction while the latter studies steady state dynamics provided by an oscillating spin-transfer torque. These characterization techniques reveal write error rate behavior for a particular composition magnetic tunnel junction that qualitatively deviates from theoretical predictions. Possible origins of this phenomenon are also investigated with the field modulated spin-torque ferromagnetic resonance technique. By understanding the dynamics of magnetic moments predicted by theory, one can experimentally confirm or disprove these theories in order to accurately model and predict tunnel junction behavior. By having a better model for what factors are important in magnetization dynamics, one can optimize these factors in terms of improving magnetic tunnel junctions for their use as computer memory.

  1. Probing the thiol-gold planar interface by spin polarized tunneling

    SciTech Connect

    Zhang, Xiaohang; McGill, Stephen A.; Xiong, Peng; Wang, Xiaolei; Zhao, Jianhua

    2014-04-14

    Reports of induced magnetism at thiol-gold interface have generated considerable recent interest. In these studies, the sample magnetization was generally measured by superconducting quantum interference device magnetometry which has limitation in determining surface and interface magnetism. In this work, we have fabricated planar tunnel junctions incorporating a thiol-gold interface. An observed room temperature humidity effect together with low temperature inelastic electron tunneling spectroscopy confirmed the existence of a thiol-gold interface in the organic-inorganic hybrid heterostructure. Spin polarized tunneling measurements were performed to probe the spin polarization at the thiol-gold interface; however, the obtained spin polarized tunneling spectra indicate no measurable spin polarization at the thiol-gold interface.

  2. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

    PubMed Central

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  3. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  4. Four-state non-volatile memory in a multiferroic spin filter tunnel junction

    NASA Astrophysics Data System (ADS)

    Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di

    2016-12-01

    We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.

  5. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    PubMed Central

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  6. Spin-symmetry conversion in methyl rotors induced by tunnel resonance at low temperature

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sun, C.; Alsanoosi, A. M.; Aibout, A.; Horsewill, A. J.

    2014-02-01

    Field-cycling NMR in the solid state at low temperature (4.2 K) has been employed to measure the tunneling spectra of methyl (CH3) rotors in phenylacetone and toluene. The phenomenon of tunnel resonance reveals anomalies in 1H magnetization from which the following tunnel frequencies have been determined: phenylacetone, νt = 6.58 ± 0.08 MHz; toluene, νt(1) = 6.45 ± 0.06 GHz and νt(2) = 7.07 ± 0.06 GHz. The tunnel frequencies in the two samples differ by three orders of magnitude, meaning different experimental approaches are required. In phenylacetone the magnetization anomalies are observed when the tunnel frequency matches one or two times the 1H Larmor frequency. In toluene, doping with free radicals enables magnetization anomalies to be observed when the tunnel frequency is equal to the electron spin Larmor frequency. Cross-polarization processes between the tunneling and Zeeman systems are proposed and form the basis of a thermodynamic model to simulate the tunnel resonance spectra. These invoke space-spin interactions to drive the changes in nuclear spin-symmetry. The tunnel resonance lineshapes are explained, showing good quantitative agreement between experiment and simulations.

  7. Spin-symmetry conversion in methyl rotors induced by tunnel resonance at low temperature

    SciTech Connect

    Zhang, B.; Sun, C.; Horsewill, A. J.; Alsanoosi, A. M.; Aibout, A.

    2014-02-28

    Field-cycling NMR in the solid state at low temperature (4.2 K) has been employed to measure the tunneling spectra of methyl (CH{sub 3}) rotors in phenylacetone and toluene. The phenomenon of tunnel resonance reveals anomalies in {sup 1}H magnetization from which the following tunnel frequencies have been determined: phenylacetone, ν{sub t} = 6.58 ± 0.08 MHz; toluene, ν{sub t(1)} = 6.45 ± 0.06 GHz and ν{sub t(2)} = 7.07 ± 0.06 GHz. The tunnel frequencies in the two samples differ by three orders of magnitude, meaning different experimental approaches are required. In phenylacetone the magnetization anomalies are observed when the tunnel frequency matches one or two times the {sup 1}H Larmor frequency. In toluene, doping with free radicals enables magnetization anomalies to be observed when the tunnel frequency is equal to the electron spin Larmor frequency. Cross-polarization processes between the tunneling and Zeeman systems are proposed and form the basis of a thermodynamic model to simulate the tunnel resonance spectra. These invoke space-spin interactions to drive the changes in nuclear spin-symmetry. The tunnel resonance lineshapes are explained, showing good quantitative agreement between experiment and simulations.

  8. Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

    PubMed

    Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G

    2013-08-27

    Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.

  9. Spin-transfer torque and specific features of magnetic-state switching in vacuum tunnel nanostructures

    SciTech Connect

    Demin, G. D. Popkov, A. F.; Dyuzhev, N. A.

    2015-12-15

    The specific features of spin-transfer torque in vacuum tunnel structures with magnetic electrodes are investigated using the quasi-classical Sommerfeld model of electron conductivity, which takes into account the exchange splitting of the spin energy subbands of free electrons. Using the calculated voltage dependences of the transferred torques for a tunnel structure with cobalt electrodes and noncollinear magnetic moments in the electrodes, diagrams of stable spin states on the current–field parameter plane in the in-plane geometry of the initial magnetization are obtained.

  10. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    PubMed

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  11. Analytical description of ballistic spin currents and torques in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Chshiev, M.; Manchon, A.; Kalitsov, A.; Ryzhanova, N.; Vedyayev, A.; Strelkov, N.; Butler, W. H.; Dieny, B.

    2015-09-01

    In this work we demonstrate explicit analytical expressions for both charge and spin currents which constitute the 2 ×2 spinor in magnetic tunnel junctions with noncollinear magnetizations under applied voltage. The calculations have been performed within the free electron model in the framework of the Keldysh formalism and WKB approximation. We demonstrate that spin/charge currents and spin transfer torques are all explicitly expressed through only three irreducible quantities, without further approximations. The conditions and mechanisms of deviation from the conventional sine angular dependence of both spin currents and torques are shown and discussed. It is shown in the thick barrier approximation that all tunneling transport quantities can be expressed in an extremely simplified form via Slonczewski spin polarizations and our effective spin averaged interfacial transmission probabilities and effective out-of-plane polarizations at both interfaces. It is proven that the latter plays a key role in the emergence of perpendicular spin torque as well as in the angular dependence character of all spin and charge transport considered. It is demonstrated directly also that for any applied voltage, the parallel component of spin current at the FM/I interface is expressed via collinear longitudinal spin current components. Finally, spin transfer torque behavior is analyzed in a view of transverse characteristic length scales for spin transport.

  12. Spin-Valve and Spin-Tunneling Devices: Read Heads, MRAMs, Field Sensors

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.

    Hard disk magnetic data storage is increasing at a steady state in terms of units sold, with 144 million drives sold in 1998 (107 million for desktops, 18 million for portables, and 19 million for enterprise drives), corresponding to a total business of 34 billion US [1]. The growing need for storage coming from new PC operating systems, INTERNET applications, and a foreseen explosion of applications connected to consumer electronics (digital TV, video, digital cameras, GPS systems, etc.), keep the magnetics community actively looking for new solutions, concerning media, heads, tribology, and system electronics. Current state of the art disk drives (January 2000), using dual inductive-write, magnetoresistive-read (MR) integrated heads reach areal densities of 15 to 23 bit/μm2, capable of putting a full 20 GB in one platter (a 2 hour film occupies 10 GB). Densities beyond 80 bit/μm2 have already been demonstrated in the laboratory (Fujitsu 87 bit/μm2-Intermag 2000, Hitachi 81 bit/μm2, Read-Rite 78 bit/μ m2, Seagate 70 bit/μ m2 - all the last three demos done in the first 6 months of 2000, with IBM having demonstrated 56 bit/μ m2 already at the end of 1999). At densities near 60 bit/μm2, the linear bit size is sim 43 nm, and the width of the written tracks is sim 0.23 μm. Areal density in commercial drives is increasing steadily at a rate of nearly 100% per year [1], and consumer products above 60 bit/μm2 are expected by 2002. These remarkable achievements are only possible by a stream of technological innovations, in media [2], write heads [3], read heads [4], and system electronics [5]. In this chapter, recent advances on spin valve materials and spin valve sensor architectures, low resistance tunnel junctions and tunnel junction head architectures will be addressed.

  13. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin-spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin-spin correlations in the tip.

  14. Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field

    PubMed Central

    Zheng, Jun-Hui; Wang, Daw-Wei; Juzeliūnas, Gediminas

    2016-01-01

    It is well-known that when the magnetic field is stronger than a critical value, the spin imbalance can break the Cooper pairs of electrons and hence hinder the superconductivity in a spin-singlet channel. In a bilayer system of ultra-cold Fermi gases, however, we demonstrate that the critical value of the magnetic field at zero temperature can be significantly increased by including a spin-flip tunnelling, which opens a gap in the spin-triplet channel near the Fermi surface and hence reduces the influence of the effective magnetic field on the superfluidity. The phase transition also changes from first order to second order when the tunnelling exceeds a critical value. Considering a realistic experiment, this mechanism can be implemented by applying an intralayer Raman coupling between the spin states with a phase difference between the two layers. PMID:27633848

  15. Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Gawełczyk, Michał; Machnikowski, Paweł

    2017-04-01

    We model the electron and hole spin dynamics in an undoped double quantum dot structure, considering the carrier tunneling between quantum dots. Taking the presence of an additional in-plane or tilted magnetic field into account, we enable the simulation of magneto-optical experiments, like the time-resolved Kerr rotation measurement, which are currently performed on such structures to probe the temporal spin dynamics. With our model, we reproduce the experimentally observed effect of the extension of the spin polarization lifetime caused by spatial charge separation, which may occur in structures of this type. Moreover, we provide a number of qualitative predictions concerning the necessary conditions for observation of this effect as well as about possible channels of its suppression, including the spin–orbit coupling, which leads to tunneling of carriers accompanied by a spin flip. We also consider the impact of the magnetic field tilting, which results in an interesting spin polarization dynamics.

  16. Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Hui; Wang, Daw-Wei; Juzeliūnas, Gediminas

    2016-09-01

    It is well-known that when the magnetic field is stronger than a critical value, the spin imbalance can break the Cooper pairs of electrons and hence hinder the superconductivity in a spin-singlet channel. In a bilayer system of ultra-cold Fermi gases, however, we demonstrate that the critical value of the magnetic field at zero temperature can be significantly increased by including a spin-flip tunnelling, which opens a gap in the spin-triplet channel near the Fermi surface and hence reduces the influence of the effective magnetic field on the superfluidity. The phase transition also changes from first order to second order when the tunnelling exceeds a critical value. Considering a realistic experiment, this mechanism can be implemented by applying an intralayer Raman coupling between the spin states with a phase difference between the two layers.

  17. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers.

    PubMed

    van 't Erve, O M J; Friedman, A L; Li, C H; Robinson, J T; Connell, J; Lauhon, L J; Jonker, B T

    2015-06-19

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  18. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers

    NASA Astrophysics Data System (ADS)

    van't Erve, O. M. J.; Friedman, A. L.; Li, C. H.; Robinson, J. T.; Connell, J.; Lauhon, L. J.; Jonker, B. T.

    2015-06-01

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  19. Electrical spin injection into graphene through hexagonal boron nitride tunnel barrier

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takehiro; Inoue, Yoshihisa; Masubuchi, Satoru; Morikawa, Sei; Onuki, Masahiro; Watanabe, Kenji; Taniguchi, Takashi; Moriya, Rai; Machida, Tomoki

    2014-03-01

    Two-dimensional crystals such as graphene, h-BN, and transition metal dichalcogenides are emergent material system and receiving much attention for spintronics applications. Particularly, these 2D crystals have significant advantages when they are used as a tunnel barrier. 1) These materials can be exfoliated with a monolayer thick resolution. 2) A single-crystalline flake can be fabricated. 3) A wide range of band gaps are available. However, up to now, spin polarized tunneling through these materials has not been fully explored experimentally. Here, we demonstrate spin polarized tunneling through one monolayer thick of hexagonal boron nitride (h-BN) layer and used it for electrical spin injection into graphene. A NiFe/ML h-BN/bilayer graphene/h-BN structure is fabricated using a micromechanical cleavage and dry transfer technique. I-V curve across h-BN exhibits non-linear characteristics and suggests the successful fabrication of tunnel barrier. A spin signal is observed in non-local magnetoresistance measurement. Spin diffusion constant and spin relaxation time are obtained from the Hanle measurement.

  20. Interplay between resonant tunneling and spin precession oscillations in all-electric all-semiconductor spin transistors

    NASA Astrophysics Data System (ADS)

    Alomar, M. I.; Serra, Llorenç; Sánchez, David

    2016-08-01

    We investigate the transmission properties of a spin transistor coupled to two quantum point contacts acting as a spin injector and detector. In the Fabry-Pérot regime, transport is mediated by quasibound states formed between tunnel barriers. Interestingly, the spin-orbit interaction of the Rashba type can be tuned in such a way that nonuniform spin-orbit fields can point along distinct directions at different points of the sample. We discuss both spin-conserving and spin-flipping transitions as the spin-orbit angle of orientation increases from parallel to antiparallel configurations. Spin precession oscillations are clearly seen as a function of the length of the central channel. Remarkably, we find that these oscillations combine with the Fabry-Pérot motion, giving rise to quasiperiodic transmissions in the purely one-dimensional case. Furthermore, we consider the more realistic case of a finite width in the transverse direction and find that the coherent oscillations become deteriorated for moderate values of the spin-orbit strength. Our results then determine the precise role of the spin-orbit intersubband coupling potential in the Fabry-Pérot-Datta-Das intermixed oscillations.

  1. Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction

    SciTech Connect

    Tang, Y.-H. Chu, F.-C.

    2015-03-07

    The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.

  2. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

    SciTech Connect

    Dhungana, Kamal B.; Pati, Ranjit

    2014-04-21

    Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

  3. Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions.

    PubMed

    Barraud, Clément; Bouzehouane, Karim; Deranlot, Cyrile; Fusil, Stéphane; Jabbar, Hashim; Arabski, Jacek; Rakshit, Rajib; Kim, Dong-Jik; Kieber, Christophe; Boukari, Samy; Bowen, Martin; Beaurepaire, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-05-22

    Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co/CoPc/Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.

  4. Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Brown, S. L.; Chen, W.; Delenia, E. A.; Gaidis, M. C.; Harms, J.; Hu, G.; Jiang, Xin; Kilaru, R.; Kula, W.; Lauer, G.; Liu, L. Q.; Murthy, S.; Nowak, J.; O'Sullivan, E. J.; Parkin, S. S. P.; Robertazzi, R. P.; Rice, P. M.; Sandhu, G.; Topuria, T.; Worledge, D. C.

    2013-09-01

    It is convenient to define the spin-torque switching efficiency in nanostructured magnetic tunnel junctions as the ratio between the free-layers thermal activation barrier height Eb and the threshold switching current Ic0. Recent device exploration has led to occasional observations of spin-torque induced magnetic switching efficiency in magnetic tunnel junctions that exceeds the macrospin limit by a factor of 2-10. In this paper we examine the possible origins for such enhancement, and materials properties that may allow the full realization of such enhancements.

  5. Electric breakdown in ultrathin MgO tunnel barrier junctions for spin-transfer torque switching

    NASA Astrophysics Data System (ADS)

    Schäfers, M.; Drewello, V.; Reiss, G.; Thomas, A.; Thiel, K.; Eilers, G.; Münzenberg, M.; Schuhmann, H.; Seibt, M.

    2009-12-01

    Magnetic tunnel junctions for spin-transfer torque (STT) switching are prepared to investigate the dielectric breakdown. Intact and broken tunnel junctions are characterized by transport measurements prior to transmission electron microscopy analysis. The comparison to our previous model for thicker MgO tunnel barriers reveals a different breakdown mechanism arising from the high current densities in a STT device: instead of local pinhole formation at a constant rate, massive electromigration and heating leads to displacement of the junction material and voids are appearing. This is determined by element resolved energy dispersive x-ray spectroscopy and three dimensional tomographic reconstruction.

  6. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E.; Hankiewicz, Ewelina M.; Žutić, Igor

    2016-10-01

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  7. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers.

    PubMed

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E; Hankiewicz, Ewelina M; Žutić, Igor

    2016-10-14

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  8. Spin-dependent tunneling junctions with AlN and AlON barriers

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Nickel, Janice H.; Anthony, Thomas C.; Wang, Shan X.

    2000-10-01

    We report on ferromagnetic spin-dependent tunneling (SDT) junctions with NiFe/AlN/NiFe and NiFe/AlON/NiFe structures. Good barriers were formed by plasma nitridation and oxy-nitridation of Al films. Tunneling magnetoresistance ratios (TMR) up to 18% were observed at room temperature. The devices exhibit lower resistance-area products than those seen in reference junctions with Al2O3 barriers. The degradation in TMR at higher bias voltages is found to be less than that found in standard alumina junctions. AlN and AlON could thus be alternate materials for the tunnel barrier in SDT junctions.

  9. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

    SciTech Connect

    Galbiati, Marta; Tatay, Sergio; Delprat, Sophie; Khanh, Hung Le; Deranlot, Cyrile; Collin, Sophie; Seneor, Pierre Mattana, Richard Petroff, Frédéric

    2015-02-23

    Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al{sub 2}O{sub 3} or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but undesired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al{sub 2}O{sub 3}/Alq{sub 3}/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working “organic” and short-circuited junctions fabricated on the same wafer.

  10. Spin-orbit assisted chiral-tunneling at semiconductor tunnel junctions: study with advanced 30-band k • p methods

    NASA Astrophysics Data System (ADS)

    Dang, Huong T.; Erina, E.; L. Nguyen, Hoai T.; Jaffrès, H.; Drouhin, H.-J.

    2016-10-01

    In this paper, we report on theoretical investigations and advanced k • p calculations of carrier forward scattering asymmetry (or transmission asymmetry in tunnel junction) vs. their incidence through magnetic tunnel junctions (MTJ) made of semiconductors involving spin-orbit interactions (SOI). This study represents an extension to our previous contribution1 dealing with the role, on the electronic forward and backward transmission-reflection asymmetry, of the Dresselhaus interaction in the conduction band (CB) of MTJs with antiparallel magnetized electrodes. The role of the atomic-SOI in the p-type valence band (VB) of semiconductors is investigated in a second step. We first developed a perturbative scattering method based on Green's function formalism and applied to both the orbitally non-degenerated CB and degenerated VB to explain the calculated asymmetry in terms of orbital-moment tunneling branching and chirality arguments. This particular asymmetry features are perfectly reproduced by advanced k • p tunneling approaches (30-band) in rather close agreement with the Green's function methods at the first perturbation order in the SOI strength parameter. This forward scattering asymmetry leads to skew-tunneling effects involving the branching of evanescent states within the barrier. Recent experiments involving non-linear resistance variations vs. the transverse magnetization direction or current direction in the in-plane current geometry may be invoked by the phenomenon we discuss.

  11. Spin-Torque Influence on the High-Frequency Magnetization Fluctuations in Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Petit, S.; Baraduc, C.; Thirion, C.; Ebels, U.; Liu, Y.; Li, M.; Wang, P.; Dieny, B.

    2007-02-01

    Voltage noise measurements were performed in the 3 7 GHz frequency range on magnetic tunnel junctions biased with a dc current. Magnetic noise associated with ferromagnetic resonance excitations is either amplified or reduced depending on the direction of the bias current. This effect is interpreted as the influence of spin transfer torque on the magnetization fluctuations and described using Gilbert dynamics equation including spin transfer torque and effective field terms.

  12. Spin-Tunnel Investigation of a 1/28-Scale Model of a Subsonic Attack Airplane

    NASA Technical Reports Server (NTRS)

    Lee, Henry A.; Healy, Frederick M.

    1964-01-01

    An investigation has been made of a 1/28-scale model of the Grumman A-6A airplane in the Langley spin tunnel. The erect spin and recovery characteristics of the model were determined for the flight design gross weight loading and for a loading with full internal fuel and empty external wing fuel tanks. The effects of extending slats and deflecting flaps were investigated. Inverted-spin and recovery characteristics of the model were determined for the flight design gross weight loading. The size of the spin-recovery tail parachute necessary to insure satisfactory spin-recovery was determined, and the effect of firing wing-mounded rockets during spins was investigated.

  13. Probing the Influence of Thermal Spin Torque on Magnetic Tunnel Junction Switching

    NASA Astrophysics Data System (ADS)

    Phung, Timothy; Pushp, Aakash; Rettner, Charles; Hughes, Brian; Yang, See-Hun; Parkin, Stuart

    2013-03-01

    It has been established in the past few years that heat flow within a ferromagnet can induce a spin current and an associated voltage. This so called Spin Seebeck effect, initially reported in ferromagnetic metals, has also been observed in magnetic semiconductors, magnetic insulators as well as in strongly spin orbit coupled systems. An open question has been whether heat induced spin currents can be used in switching a magnetic tunnel junction (MTJ) via thermal spin torque (TST). In order to answer this question, we investigate the MTJ switching with TST induced by sharp temperature gradients on the order of 1-10 K/nm. We will describe our experimental setup and present data that show the various roles that temperature plays on the saturation magnetization of the material and on the induced spin currents that influence MTJ switching.

  14. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    PubMed Central

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin–spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin–spin correlations in the tip. PMID:28074832

  15. Spin and charge thermopower of resonant tunneling diodes

    SciTech Connect

    Nicolau, Javier H.; Sánchez, David

    2014-03-17

    We investigate thermoelectric effects in quantum well systems. Using the scattering approach for coherent conductors, we calculate the thermocurrent and thermopower both in the spin-degenerate case and in the presence of giant Zeeman splitting due to magnetic interactions in the quantum well. We find that the thermoelectric current at linear response is maximal when the well level is aligned with the Fermi energy and is robust against thermal variations. Furthermore, our results show a spin voltage generation in response to the applied thermal bias, giving rise to large spin Seebeck effects tunable with external magnetic fields, quantum well tailoring, and background temperature.

  16. Perturbative calculations of quantum spin tunneling in effective spin systems with a transversal magnetic field and transversal anisotropy

    NASA Astrophysics Data System (ADS)

    Krizanac, M.; Vedmedenko, E. Y.; Wiesendanger, R.

    2017-01-01

    We present a perturbative approach for the resonant tunnel splittings of an arbitrary effective single spin system. The Hamiltonian of such a system contains a uniaxial anisotropy, a transversal magnetic field and a second-order transversal anisotropy. Further, we investigate the influence of the transversal magnetic field on the energy splittings for higher integer quantum spins and we introduce an exact formula, which defines values of the transversal magnetic field, the transversal anisotropy and the uniaxial anisotropy where the contribution of the transversal magnetic field to the energy splitting is at least equal to the contribution of the transversal anisotropy.

  17. CMOS Interface Circuits for Spin Tunneling Junction Based Magnetic Random Access Memories

    SciTech Connect

    Saripalli, Ganesh

    2002-01-01

    Magneto resistive memories (MRAM) are non-volatile memories which use magnetic instead of electrical structures to store data. These memories, apart from being non-volatile, offer a possibility to achieve densities better than DRAMs and speeds faster than SRAMs. MRAMs could potentially replace all computer memory RAM technologies in use today, leading to future applications like instan-on computers and longer battery life for pervasive devices. Such rapid development was made possible due to the recent discovery of large magnetoresistance in Spin tunneling junction devices. Spin tunneling junctions (STJ) are composite structures consisting of a thin insulating layer sandwiched between two magnetic layers. This thesis research is targeted towards these spin tunneling junction based Magnetic memories. In any memory, some kind of an interface circuit is needed to read the logic states. In this thesis, four such circuits are proposed and designed for Magnetic memories (MRAM). These circuits interface to the Spin tunneling junctions and act as sense amplifiers to read their magnetic states. The physical structure and functional characteristics of these circuits are discussed in this thesis. Mismatch effects on the circuits and proper design techniques are also presented. To demonstrate the functionality of these interface structures, test circuits were designed and fabricated in TSMC 0.35μ CMOS process. Also circuits to characterize the process mismatches were fabricated and tested. These results were then used in Matlab programs to aid in design process and to predict interface circuit's yields.

  18. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    NASA Technical Reports Server (NTRS)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  19. Enhanced thermal spin transfer in MgO-based double-barrier tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Wang, Shizhuo; Qin, Minghui

    2016-06-01

    Based on atomic first principles, we predict enhanced thermal spin transfer (TST) effects and small switching temperature gradient in Fe | MgO | Fe | MgO | Fe double-barrier magnetic tunnel junctions (MTJs). At room temperature, temperature gradient {{Δ }}T ˜10 {{K}} with {{\

  20. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  1. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    PubMed Central

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X.-G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-01-01

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices. PMID:25451163

  2. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    DOE PAGES

    Li, D. L.; Ma, Q. L.; Wang, S. G.; ...

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1more » spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.« less

  3. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    SciTech Connect

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X. -G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.

  4. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Le Goff, A.; Nikitin, V.; Devolder, T.

    2016-07-01

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm2 nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.

  5. Electronic structure, tunneling magnetoresistance and spin polarization of amorphous ferromagnetic storage layer used in magnetic tunneling junction

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh G.; Parkin, Stuart S. P.; Hughes, Brian; Guo, Jinghua; Augustsson, Andreas; Rotenberg, Eli

    2003-03-01

    Recently amorphous ferromagnetic materials such as boron doped Co-Fe alloys have received much attention because of their potential use as storage layers in magnetic tunnel junctions (MTJs) for non-volatile magnetic memory cells. The primary reason for this is that amorphous ferromagnetic alloys lack crystalline anisotropy and exhibit low coercivities. These properties significantly improve the magnetic switching characteristics of MTJ devices. We have demonstrated that MTJs with amorphous ferromagnetic storage layer have improved magneto-transport properties and superior thermal stabilities compared to similar structures with crystalline storage layers. To understand the origin of these improvements we have performed high energy resolution soft x-ray emission and resonant photoemission spectroscopy experiments on amorphous ferromagnet layers. We have observed that the tunneling magnetoresistance depends not only on the spin polarization of the ferromagnet but also depends critically on the detailed electronic structure in the valence band.

  6. Temperature dependences of the spin transfer torque and tunneling magneto-resistance in magnetic metallic and tunneling junctions

    NASA Astrophysics Data System (ADS)

    You, Chun-Yeol; Song, Seung-Ho; Kim, Hyungsuk

    2011-08-01

    We investigate temperature dependences of the spin transfer torque (STT) and tunneling magnetoresistance (TMR) in the magnetic metallic junction (MMJ) and magnetic tunneling junction (MTJ). The temperature dependences of the in-plane and out-of-plane STTs are calculated with the Keldysh non-equilibrium Green's function method. We find that the temperature dependences of the in-plane and out-of-plane STTs for MTJ are strikingly deviated from the previous prediction [P. Bruno, Phys. Rev. B 52, 411 (1995)] for the interlayer exchange coupling, while ones for MMJ are well agreed with the prediction. Furthermore, the temperature dependences of the in-plane and out-of-plane STTs are varied with the bias voltage in different ways.

  7. Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Fen; Yang, Yihang; Xue, Qian; Gao, Zhiwei; Chen, Aixi; Miao, Guo-Xing

    2016-08-01

    Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsic properties.

  8. Influence of spin-transfer torque on thermally activated ferromagnetic resonance excitations in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Petit, S.; de Mestier, N.; Baraduc, C.; Thirion, C.; Liu, Y.; Li, M.; Wang, P.; Dieny, B.

    2008-11-01

    Voltage noise measurements on magnetic tunnel junctions show that thermal fluctuations of the magnetization are either amplified or quenched by subcritical spin-transfer torque depending on the current direction. We present an analytical model that describes the dependence of thermally activated ferromagnetic resonance on bias current. The evolution of the peak amplitude and linewidth with the applied current is directly related to the longitudinal torque, whereas the shift of the resonance frequency is sensitive to the transverse torque. Both spin torque terms are independently extracted from the measured noise spectra. Our results support the general idea that it is more pertinent to describe spin torque in terms of voltage rather than current in magnetic tunnel junctions.

  9. Observation of thermally driven field-like spin torque in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bose, Arnab; Shukla, Amit Kumar; Konishi, Katsunori; Jain, Sourabh; Asam, Nagarjuna; Bhuktare, Swapnil; Singh, Hanuman; Lam, Duc Duong; Fujii, Yuya; Miwa, Shinji; Suzuki, Yoshishige; Tulapurkar, Ashwin A.

    2016-07-01

    We report the thermally driven giant field-like spin-torque in magnetic tunnel junctions (MTJ) on application of heat current from top to bottom. The field-like term is detected by the shift of the magneto-resistance hysteresis loop applying temperature gradient. We observed that the field-like term depends on the magnetic symmetry of the MTJ. In asymmetric structures, with different ferromagnetic materials for free and fixed layers, the field-like term is greatly enhanced. Our results show that a pure spin current density of the order of 109 A/m2 can be produced by creating a 120 mK temperature difference across 0.9 nm thick MgO tunnelling barrier. Our results will be useful for writing MTJ and domain wall-based memories using thermally driven spin torque.

  10. Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer

    SciTech Connect

    Chen, C. H.; Cheng, Y. H.; Ko, C. W.; Hsueh, W. J.

    2015-10-12

    This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed to the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.

  11. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    SciTech Connect

    Clément, P.-Y.; Baraduc, C. Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  12. Enhancement of thermal spin transfer torque by double-barrier magnetic tunnel junctions with a nonmagnetic metal spacer

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Tseng, P.; Yang, Y. Y.; Hsueh, W. J.

    2017-01-01

    Enhancement of thermal spin transfer torque in a double-barrier magnetic tunnel junction with a nonmagnetic-metal spacer is proposed in this study. The results indicate that, given the same temperature difference, thermal spin transfer torque and charge current density for the proposed double barrier magnetic tunnel junction configuration can be approximately twice as much as that of the traditional single-barrier magnetic tunnel junctions. This enhancement can be attributed to the resonant tunneling mechanism in the double-barrier structure.

  13. Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate

    DOE PAGES

    Lendínez, S.; Zarzuela, R.; Tejada, J.; ...

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  14. Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement

    SciTech Connect

    Wagner, Andreas; Bruder, Christoph; Demler, Eugene

    2011-12-15

    We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.

  15. Electrical spin injection into GaAs based light emitting diodes using perpendicular magnetic tunnel junction-type spin injector

    NASA Astrophysics Data System (ADS)

    Tao, B. S.; Barate, P.; Frougier, J.; Renucci, P.; Xu, B.; Djeffal, A.; Jaffrès, H.; George, J.-M.; Marie, X.; Petit-Watelot, S.; Mangin, S.; Han, X. F.; Wang, Z. G.; Lu, Y.

    2016-04-01

    Remanent electrical spin injection into an InGaAs/GaAs based quantum well light emitting diode is realized by using a perpendicularly magnetized MgO/CoFeB/Ta/CoFeB/MgO spin injector. We demonstrate that the Ta interlayer plays an important role to establish the perpendicular magnetic anisotropy and the thickness of Ta interlayer determines the type of exchange coupling between the two adjacent CoFeB layers. They are ferromagnetically or antiferromagnetically coupled for a Ta thickness of 0.5 nm or 0.75 nm, respectively. A circular polarized electroluminescence (Pc) of about 10% is obtained at low temperature and at zero magnetic field. The direction of the electrically injected spins is determined only by the orientation of the magnetization of the bottom CoFeB layer which is adjacent to the MgO/GaAs interface. This work proves the critical role of the bottom CoFeB/MgO interface on the spin-injection and paves the way for the electrical control of spin injection via magnetic tunnel junction-type spin injector.

  16. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-06-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  17. Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction

    NASA Astrophysics Data System (ADS)

    Jia, Xing-Tao; Xia, Ke

    2014-12-01

    We present first-principle calculations of electric and thermo spin transfer torques (STT) in Fe/Vacuum(Vac)/Fe magnetic tunnel junctions (MTJs). Our quantitative studies demonstrate rich bias dependence of STT and tunnel magneto resistance (TMR) behaviors with respect to the interface roughness. Thermoelectric effects in Fe/Vac/Fe MTJs is remarkable. We observe larger ZT of 6.2 in 8 ML clean Vacuum barrier, where the heavily restrained thermal conductance should be responsible for. Thermo-STT in Fe/Vac/Fe MTJs show same order as that in Fe/MgO/Fe MTJs with similar barrier thickness.

  18. Dynamic Model Investigation of a 1/20 Scale Gemini Spacecraft in the Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Dynamic Model Investigation of a 1/20 Scale Gemini Spacecraft in the Langley Spin Tunnel. The investigation was conducted in the Langley spin tunnel. The tunnel is an atmospheric wind tunnel with a vertically rising airstream in the test section and a maximum airspeed of approximately 90 feet per second. For this investigation, the model was hand launched into the vertically rising airstream. At times the model, both with and without a drogue parachute, was launched gently with as little disturbance as possible to determine what motions of the spacecraft were self-excited. At other times, the spacecraft with pre-deployed drogue parachute was launched into various spinning motions to determine the effectiveness of the drogue parachute in terminating these spinning motions. During drogue-parachute deployment tests, the spacecraft was launched into various spinning and tumbling motions and the drogue parachute was deployed. The motions of the model were photographed with a motion-picture camera, and some of the film records were read to obtain typical time histories of the model motion. The angles of attack indicated in the time histories presented are believed to be accurate within +/-1 degree. The mass and dimensional characteristics of the dynamic model are believed to be measured to an accuracy of: +/-1 percent for the weight, +/-1 percent for z(sub cg)/d, +/-15 percent for x (sub cg), and +/-5 percent for the moments of inertia. The towline and bridle-line lengths were simulated to an accuracy of +/-1 foot full scale. [Entire movie available on DVD from CASI as Doc ID 20070030985. Contact help@sti.nasa.gov

  19. Effect of oxide barrier height in spin dependent tunneling in MTJ of FeO-MgO multilayer structure

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, M.; Nemade, H.; Bandyopadhyay, D.

    2016-10-01

    We study the spin dependent tunneling current properties through oxide multilayers in a magnetic tunnel junction (MTJ). For this purpose, nonequilibrium Green's function approach along-with the density-functional theory have been applied. We employed three structural models of FeO-MgO-FeO multi-layer with three different width of FeO and MgO layer. An atomistic model is considered to describe the effect of oxide multilayers of different heights. Spin dependent study for tunneling reveals that the parallel spin shows higher tunneling current whereas anti-parallel spin conducts very less. Further, the lowest tunneling current is obtained for the case where the FeO and MgO each has 3 atomic layers of height whereas the tunneling current is highest in 4 atomic layers of FeO/1 atomic layers of MgO/4 atomic layers of MgO multilayer structure. Importantly, when the MgO or FeO layers are increased or decreased from this level, the tunneling current decreases significantly. The study reveals that the layer height in the tunneling domain can be important factor for tuning and adjusting tunneling current in the nanoscale regime of oxide layer thickness.

  20. Spin transfer torque in magnetic tunnel junctions with a perpendicularly magnetized polarizer

    NASA Astrophysics Data System (ADS)

    Moriyama, Takahiro; Gudmundsen, Theodore; Liu, Luqiao; Buhrman, R. A.; Ralph, D. C.

    2011-03-01

    Spin-torque devices containing magnetic layers with perpendicular magnetic anisotropy are of interest for strategies to reduce the switching currents in memory applications. We report spin-torque-driven ferromagnetic resonance (ST-FMR) measurements of the bias-dependent torque in magnetic tunnel junctions containing [Co/Ni]x multilayers possessing perpendicular anisotropy, acting as the polarizer layer providing spin-polarized current. We observe unusual dependence of the bias-dependent torque as a function of the magnetic orientation of the [Co/Ni]x multilayer. We speculate that this sensitivity to the magnetic orientation may originate from changes in the occupation of spin-polarized states at the Co/Ni interfaces associated with the perpendicular magnetic anisotropy.

  1. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction

    SciTech Connect

    Cubukcu, Murat; Boulle, Olivier; Drouard, Marc; Mihai Miron, Ioan; Gaudin, Gilles; Langer, Juergen; Ocker, Berthold

    2014-01-27

    We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 10{sup 11} A/m{sup 2} in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.

  2. Low Speed Model Investigation of Apollo Command Module Configuration in the Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Low Speed Dynamic Model Investigation of Apollo Command Module Configuration in the Langley Spin Tunnel. An investigation has been conducted in the Langley spin tunnel to determine the dynamic stability of the Apollo command module at low subsonic speeds, both with and without drogue parachutes. The investigation consisted of tests to determine (1) the dynamic stability of the command module alone, (2) the motion of the command module during the deployment of a drogue parachute, (3) the effect of various drogue-parachute configurations on the stability of the command module, and (4) the effect of modifications to the command module to prevent an apex-forward trim condition. [Entire movie available on DVD from CASI as Doc ID 20070031002. Contact help@sti.nasa.gov

  3. Negative spin polarization of Mn2VGa probed by tunnel magnetoresistance.

    PubMed

    Klewe, Christoph; Meinert, Markus; Schmalhorst, Jan; Reiss, Günter

    2013-02-20

    The ferrimagnetic Heusler compound Mn(2)VGa is predicted to have a pseudogap in the majority spin channel, which should lead to a negative tunnel magnetoresistance (TMR). We synthesized epitaxial Mn(2)VGa thin films on MgO(001) substrates by dc and rf magnetron co-sputtering, resulting in nearly stoichiometric films. XRD analysis revealed a mostly B2 ordered structure for the films deposited at substrate temperatures of 350, 450, and 550 °C. Magnetic tunnel junctions with MgO barriers and CoFe counter-electrodes were fabricated. After post-annealing at up to T(a) = 425 °C negative TMR was obtained around zero bias, providing evidence for inverted spin polarization. The band structures of both electrodes were computed within the coherent potential approximation and used to calculate the TMR(V) characteristics, which were in good agreement with our experimental findings.

  4. Spin orbital torque driven magnetization switching in magnetic tunnel junction with inter-layer exchange coupling

    SciTech Connect

    Xu, Lei; Ma, Zhongshui; Wei, Dan

    2015-01-14

    The switching processes of elliptically shaped magnetic tunnel junction bits with the structure Ta/CoFeB/MgO/CoFeB have been studied by the micromagnetic models. By comparing the tunneling magneto-resistance minor and major loops calculated by our model with related experimental results, we found that the inter-layer exchange coupling between the two CoFeB layers and a reduced saturation magnetization M{sub s} distribution at the edge of the elliptical bit should be included. The chosen strength of the inter-layer exchange coupling also matches well with experimental observations. The current induced magnetization switching is generated from the spin Hall effect in the Ta layer. The critical switching currents calculated by our model are coincident with experiment. This shows the reliability of our micromagnetic model with the spin orbital torque term.

  5. Room Temperature Single-Spin Tunneling Force Microscopy for Characterization of Paramagnetic Defects in Electronic Materials

    DTIC Science & Technology

    2014-04-08

    atomic   scale  spatial  resolution,  using  tunneling   force   microscopy .  To achieve this goal, an electron must spontaneously shuttle back and...trap states imaged by Dynamic  Tunneling   Force   Microscopy  line  scans .  Previous evidence for trap states created by AFM probe tip voltage pulses involved...Payne, K. Ambal, C. Boehme and C.C. Williams, “A concept for room temperature single‐ spin  tunneling   force   microscopy  with  atomic  resolution,” to be

  6. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    SciTech Connect

    Ho-Baek, Seung

    2004-01-01

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  7. Effect of the intrinsic spin-orbit interaction on the tunnel magnetoresistance in graphenelike nanoflakes

    NASA Astrophysics Data System (ADS)

    Weymann, Ireneusz; Krompiewski, Stefan

    2016-12-01

    This paper is devoted to examining the effect of intrinsic spin-orbit interaction on the possible appearance of edge magnetic moments and spin-dependent transport in graphenelike nanoflakes. In the case of finite-size graphenelike nanostructures it is shown that, on one hand, energetically the most advantageous configuration corresponds to magnetic moments located at zigzag edges with the in-plane antiferromagnetic inter-edge coupling. On the other hand, the tunnel magnetoresistance and the shot noise also have thoroughly been tested both for the in-plane configuration as well as for the out-of-plane one (for comparison reasons). Transport properties are described in terms of the mean-field Kane-Mele-Hubbard model with spin mixing correlations, supplemented by additional terms describing external leads, charging energy, and lead-nanostructure tunneling. The results show that Coulomb blockade stability spectra of graphenelike nanoflakes with ferromagnetic contacts provide information on both the intrinsic spin-orbit interaction and the expected edge magnetism.

  8. Temperature dependence of spin-dependent tunneling conductance of magnetic tunnel junctions with half-metallic C o2MnSi electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Moges, Kidist; Honda, Yusuke; Liu, Hong-xi; Uemura, Tetsuya; Yamamoto, Masafumi; Inoue, Jun-ichiro; Shirai, Masafumi

    2016-09-01

    In order to elucidate the origin of the temperature (T ) dependence of spin-dependent tunneling conductance (G ) of magnetic tunnel junctions (MTJs), we experimentally investigated the T dependence of G for the parallel and antiparallel magnetization alignments, GP and GAP, of high-quality C o2MnSi (CMS)/MgO/CMS MTJs having systematically varied spin polarizations (P ) at 4.2 K by varying the Mn composition α in C o2M nαSi electrodes that exhibited giant tunneling magnetoresistance ratios. Results showed that GP normalized by its value at 4.2 K exhibited a notable, nonmonotonic T dependence although its variation with T was significantly smaller than that of GAP normalized by its value at 4.2 K, indicating that an analysis of the experimental GP(T ) is critical to revealing the origin of the T dependence of G . By analyzing the experimental GP(T ) , we clarified that both spin-flip inelastic tunneling via a thermally excited magnon and spin-conserving elastic tunneling in which P decays with increasing T play key roles. The experimental GAP(T ) , including its stronger T dependence for higher P at 4.2 K, was also consistently explained with this model. Our findings provide a unified picture for understanding the origin of the T dependence of G of MTJs with a wide range of P , including MTJs with high P close to a half-metallic value.

  9. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  10. Spin Texture of Bi2Se3 Thin Films in the Quantum Tunneling Limit

    NASA Astrophysics Data System (ADS)

    Landolt, Gabriel; Schreyeck, Steffen; Eremeev, Sergey V.; Slomski, Bartosz; Muff, Stefan; Osterwalder, Jürg; Chulkov, Evgueni V.; Gould, Charles; Karczewski, Grzegorz; Brunner, Karl; Buhmann, Hartmut; Molenkamp, Laurens W.; Dil, J. Hugo

    2014-02-01

    By means of spin- and angle-resolved photoelectron spectroscopy we studied the spin structure of thin films of the topological insulator Bi2Se3 grown on InP(111). For thicknesses below six quintuple layers the spin-polarized metallic topological surface states interact with each other via quantum tunneling and a gap opens. Our measurements show that the resulting surface states can be described by massive Dirac cones which are split in a Rashba-like manner due to the substrate induced inversion asymmetry. The inner and the outer Rashba branches have distinct localization in the top and the bottom part of the film, whereas the band apices are delocalized throughout the entire film. Supported by ab initio calculations, our observations help in the understanding of the evolution of the surface states at the topological phase transition and provide the groundwork for the realization of two-dimensional spintronic devices based on topological semiconductors.

  11. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    SciTech Connect

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L. Jia, Jin-Feng; Luo, Weidong

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  12. Photon assisted tunneling through three quantum dots with spin-orbit-coupling

    SciTech Connect

    Tang, Han-Zhao; An, Xing-Tao; Wang, Ai-Kun; Liu, Jian-Jun

    2014-08-14

    The effect of an ac electric field on quantum transport properties in a system of three quantum dots, two of which are connected in parallel, while the third is coupled to one of the other two, is investigated theoretically. Based on the Keldysh nonequilibrium Green's function method, the spin-dependent current, occupation number, and spin accumulation can be obtained in our model. An external magnetic flux, Rashba spin-orbit-coupling (SOC), and intradot Coulomb interactions are considered. The magnitude of the spin-dependent average current and the positions of the photon assisted tunneling (PAT) peaks can be accurately controlled and manipulated by simply varying the strength of the coupling and the frequency of the ac field. A particularly interesting result is the observation of a new kind of PAT peak and a multiple-PAT effect that can be generated and controlled by the coupling between the quantum dots. In addition, the spin occupation number and spin accumulation can be well controlled by the Rashba SOC and the magnetic flux.

  13. Influence of spin-orbit interaction within the insulating barrier on the electron transport in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Vedyayev, A.; Ryzhanova, N.; Strelkov, N.; Titova, M.; Chshiev, M.; Rodmacq, B.; Auffret, S.; Cuchet, L.; Nistor, L.; Dieny, B.

    2017-02-01

    We present a theory of the anisotropy of tunneling magnetoresistance (ATMR) phenomenon in magnetic tunnel junctions (MTJs) attributed to Rashba spin-orbit interaction in the insulating barrier. ATMR represents the difference of tunnel magnetoresistance (TMR) amplitude measured with in-plane and out-of-plane magnetic configurations. It is demonstrated that within the spin-polarized free-electron model the change of conductance associated with the ATMR is exactly twice the change of conductance measured at full saturation (i.e., in parallel configuration of magnetizations) between in-plane and out-of-plane configuration, i.e., the tunneling anisotropic magnetoresistance (TAMR). Both ATMR and TAMR are closely related to the TMR amplitude and spin-orbit constant. The predicted ATMR phenomenon is confirmed experimentally, showing a few percent value in the case of the widely studied CoFeB/MgO/CoFeB based MTJ.

  14. Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs

    NASA Astrophysics Data System (ADS)

    Ertler, C.; Matos-Abiague, A.; Gmitra, M.; Turek, M.; Fabian, J.

    2008-10-01

    Spintronics has attracted wide attention by promising novel functionalities derived from both the electron charge and spin. While branching into new areas and creating new themes over the past years, the principal goals remain the spin and magnetic control of the electrical properties—essentially the I-V characteristics—and vice versa. There are great challenges ahead to meet these goals. One challenge is to find niche applications for ferromagnetic semiconductors, such as GaMnAs. Another is to develop further the science of hybrid ferromagnetic metal/semiconductor heterostructures, as alternatives to all-semiconductor room temperature spintronics. Here we present our representative recent efiorts to address such challenges. We show how to make a digital magnetoresistor by combining two magnetic resonant diodes, or how introducing ferromagnetic semiconductors as active regions in resonant tunneling diodes leads to novel efiects of digital magnetoresistance and of magnetoelectric current oscillations. We also discuss the phenomenon of tunneling anisotropic magnetoresistance in Fe/GaAs junctions by introducing the concept of the spin-orbit coupling field, as an analog of such fields in all-semiconductor junctions. Finally, we look at fundamental electronic and optical properties of GaMnAs by employing reasonable tight-binding models to study disorder efiects.

  15. Reprint of : Majorana fermion fingerprints in spin-polarised scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Kotetes, Panagiotis; Mendler, Daniel; Heimes, Andreas; Schön, Gerd

    2016-08-01

    We calculate the spatially resolved tunnelling conductance of topological superconductors (TSCs) based on ferromagnetic chains, measured by means of spin-polarised scanning tunnelling microscopy (SPSTM). Our analysis reveals novel signatures of MFs arising from the interplay of their strongly anisotropic spin-polarisation and the magnetisation content of the tip. We focus on the deep Yu-Shiba-Rusinov (YSR) limit where only YSR bound states localised in the vicinity of the adatoms govern the low-energy as also the topological properties of the system. Under these conditions, we investigate the occurrence of zero/finite bias peaks (ZBPs/FBPs) for a single or two coupled TSC chains forming a Josephson junction. Each TSC can host up to two Majorana fermions (MFs) per edge if chiral symmetry is preserved. Here we retrieve the conductance for all the accessible configurations of the MF number of each chain. Our results illustrate innovative spin-polarisation-sensitive experimental routes for arresting the MFs by either restoring or splitting the ZBP in a predictable fashion via: (i) weakly breaking chiral symmetry, e.g. by the SPSTM tip itself or by an external Zeeman field and (ii) tuning the superconducting phase difference of the TSCs, which is encoded in the 4π-Josephson coupling of neighbouring MFs.

  16. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    PubMed

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  17. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide.

    PubMed

    Tang, Tingting; Li, Chaoyang; Luo, Li

    2016-08-01

    Giant enhancement of spin Hall effect of tunneling light (SHETL) is theoretically proposed in a frustrated total internal reflection (FTIR) structure with hyperbolic metamaterial (HMM). We calculate the transverse shift of right-circularly polarized light in a SiO2-air-HMM-air-SiO2 waveguide and analyze the physical mechanism of the enhanced SHETL. The HMM anisotropy can greatly increase the transverse shift of polarized light even though HMM loss might reduce it. Compared with transverse shift of transmitted light through a single HMM slab with ZnAlO/ZnO multilayer, the maximum transverse shift of tunneling light through a FTIR structure with identical HMM can be significantly enlarged by more than three times which reaches -38 μm without any amplification method.

  18. Resistance decrease in spin tunnel junctions by control of natural oxidation conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Freitas, P. P.; Ramos, A. R.; Barradas, N. P.; Soares, J. C.

    2001-10-01

    Spin-dependent tunnel junctions with AlOx barriers were fabricated by in situ natural oxidation of a 7 Å thick Al film. Oxygen pressure was varied from 0.5 to 100 Torr, and oxidation time ranged from 5 min to 2 h. Junction resistances as low as 10 to 12 Ω μm2 were obtained with corresponding tunnelling magnetoresistance values (TMR) ranging from 14% to 17%, for the junctions oxidized at the lower pressure (0.5 Torr). Rutherford backscattering analysis (RBS) indicates an O/Al ratio of 1.29±0.34 denoting incomplete oxidation of the Al. Junctions oxidized at higher pressures (⩾10 Torr) can reach 25% to 30% TMR, with resistances ranging from 30 to 70 Ω μm2. RBS shows near-stoichiometric Al2O3 oxide composition (O/Al=1.51±0.43) in these barriers.

  19. Tunneling spectroscopy of normal metals with charge-density or spin-density waves

    SciTech Connect

    Gabovich, A.M.; Voitenko, A.I.

    1995-09-01

    Tunneling current-voltage characteristics (CVC) are calculated for symmetrical and nonsymmetrical junctions made up of metals with charge-density or spin-density waves and a distortion of the Fermi-surface nesting sections described by the order parameter {Sigma}. For the symmetrical junction the CVC are odd functions of the bias voltage {ital V} and do not depend on the sign of {Sigma}. The differential conductivities have root singularities at {ital eV}={Sigma} and jumps at {ital eV}=2{Sigma}. For the nonsymmetrical junction the CVC depend on the sign of {Sigma}. Relevant differential conductivities are nonsymmetrical, with one branch being smooth and another having a root singularity at {ital eV}={Sigma}. A qualitative agreement exists with the tunneling and point-contact spectroscopy measurements for layered dichalcogenides, NbSe{sub 3}, and URu{sub 2}Si{sub 2}.

  20. Spin models for two-site resonant tunnelling dynamics of bosons in a tilted optical lattice

    NASA Astrophysics Data System (ADS)

    Buyskikh, Anton; Pekker, David; Daley, Andrew

    2016-05-01

    We study the non-equilibrium dynamics of a one dimensional tilted Bose-Hubbard model, beginning from unit filling in the Mott insulator regime. Studying a quench to the resonance point for tunnelling of the particles over two sites, we show how in the presence of a superlattice, a spin model emerges involving two subchains described by an Ising model that are then coupled by interaction terms. Using this model, we study the behaviour of the system near the quantum critical point in the vicinity of the tunnelling resonance, especially looking at the out-of-equilibrium dynamics after the quench. We compare the dephasing of local observables corresponding to the number of doubly occupied sites, which were measured in recent experiments, to the dynamics expected in the presence of noise and decoherence. These results should be directly measurable in experiments, and provide a diagnostic tool for investigating decoherence in such out-of-equilibrium dynamics.

  1. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide

    PubMed Central

    Tang, Tingting; Li, Chaoyang; Luo, Li

    2016-01-01

    Giant enhancement of spin Hall effect of tunneling light (SHETL) is theoretically proposed in a frustrated total internal reflection (FTIR) structure with hyperbolic metamaterial (HMM). We calculate the transverse shift of right-circularly polarized light in a SiO2-air-HMM-air-SiO2 waveguide and analyze the physical mechanism of the enhanced SHETL. The HMM anisotropy can greatly increase the transverse shift of polarized light even though HMM loss might reduce it. Compared with transverse shift of transmitted light through a single HMM slab with ZnAlO/ZnO multilayer, the maximum transverse shift of tunneling light through a FTIR structure with identical HMM can be significantly enlarged by more than three times which reaches −38 μm without any amplification method. PMID:27477307

  2. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.

    PubMed

    Martin, Marie-Blandine; Dlubak, Bruno; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Bouzehouane, Karim; Petroff, Frédéric; Anane, Abdelmadjid; Hofmann, Stephan; Robertson, John; Fert, Albert; Seneor, Pierre

    2014-08-26

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

  3. Spin incoherent effects in momentum resolved tunneling, transport, and Coulomb drag in Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    2006-03-01

    In a one dimensional electron gas at low enough density the magnetic exchange energy J between neighboring electrons is exponentially suppressed relative to the Fermi energy, EF. At finite temperature T, the energy hierarchy J << T << EF can be reached, and we refer to this as the spin incoherent (SI) Luttinger liquid state. By using a model of a fluctuating Wigner solid, we theoretically explore the signatures of spin incoherence in the single particle Green’s function[1], momentum resolved tunneling[2], transport[3], and Coulomb drag[4]. In the SI Green’s function the spin modes of a Luttinger liquid (LL) are thermally washed out leaving only singular behavior from the charge modes. The charge modes are broadened in momentum space by an amount of order kF and the energy dependence of the tunneling density of states qualitatively changes from the low energy suppression of the LL regime to a possible low energy divergence in the SI regime. Such a state may be probed directly in momentum resolved tunneling between parallel quantum wires. Deep in the SI regime, the physics of transport and Coulomb drag can be mapped onto spinless electrons. Various crossovers in temperature and for finite systems connected to Fermi liquid leads are discussed. Both transport and Coulomb drag may exhibit interesting non-monotonic temperature dependence. [1] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93, 226401 (2004). [2] G. A. Fiete, J. Qian, Y. Tserkovnyak, and B. I. Halperin, Phys. Rev. B 72, 045315 (2005). [3] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev. B 72, 125416 (2005). [4] G. A. Fiete, K. Le Hur, and L. Balents, Submitted, cond-mat/0511715.

  4. Low Speed Dynamic Model Investigation of Apollo Command Module Configuration in the Langley Spin Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Henry A.; Burk, Sanger M., Jr.

    1967-01-01

    An investigation has been conducted in the Langley spin tunnel to determine the dynamic stability of the Apollo command module at low subsonic speeds, both with and without drogue parachutes. The investigation consisted of tests to determine (1) the dynamic stability of the command module alone, (2) the motion of the command module during the deployment of a drogue parachute, (3) the effect of various drogue-parachute configurations on the stability of the command module, and (4) the effect of modifications to the command module to prevent an apex-forward trim condition.

  5. Effect of interfacial structures on spin dependent tunneling in epitaxial L1{sub 0}-FePt/MgO/FePt perpendicular magnetic tunnel junctions

    SciTech Connect

    Yang, G.; Li, D. L.; Wang, S. G. Ma, Q. L.; Liang, S. H.; Wei, H. X.; Han, X. F.; Hesjedal, T.; Ward, R. C. C.; Kohn, A.; Elkayam, A.; Tal, N.; Zhang, X.-G.

    2015-02-28

    Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1{sub 0}-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.

  6. Annealing temperature window for tunneling magnetoresistance and spin torque switching in CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Meng, H.; Sbiaa, R.; Wang, C. C.; Lua, S. Y. H.; Akhtar, M. A. K.

    2011-11-01

    Annealing temperature (Ta) and free layer thickness dependencies of magnetic properties and spin-transfer torque switching were investigated in CoFeB-MgO based magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA). Annealing process was found to be critical to buildup PMA. As Ta increases, switching field of free layer and reference layer is enhanced first then drops, corresponding to the improvement and collapse of PMA in both layers. However, it should be noted that PMA of free layer and the tunneling magnetoresistive (TMR) are maximized at different Ta zones. Spin transfer torque study pointed out that switching current density (Jc) depends on the combined effects from PMA, spin polarization, and saturation magnetization, which all depend on Ta values. Thickness dependence study revealed that Jc relies on the competing results of the thickness and PMA. The lowest critical switching current density achieved is 2.1 MA/cm2, accompanied with a TMR around 52% at room temperature.

  7. Bit error rate investigation of spin-transfer-switched magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wang, Zihui; Zhou, Yuchen; Zhang, Jing; Huai, Yiming

    2012-10-01

    A method is developed to enable a fast bit error rate (BER) characterization of spin-transfer-torque magnetic random access memory magnetic tunnel junction (MTJ) cells without integrating with complementary metal-oxide semiconductor circuit. By utilizing the reflected signal from the devices under test, the measurement setup allows a fast measurement of bit error rates at >106, writing events per second. It is further shown that this method provides a time domain capability to examine the MTJ resistance states during a switching event, which can assist write error analysis in great detail. BER of a set of spin-transfer-torque MTJ cells has been evaluated by using this method, and bit error free operation (down to 10-8) for optimized in-plane MTJ cells has been demonstrated.

  8. Spin-dependent tunneling time in periodic diluted-magnetic-semiconductor/nonmagnetic-barrier superlattices

    SciTech Connect

    Yang, Ping-Fan; Guo, Yong

    2016-02-01

    We investigate the tunneling time (dwell time) in periodic diluted-magnetic-semiconductor/nonmagnetic-barrier (DMS/NB) superlattices subjected to an external magnetic field. It is found that spin-dependent resonant bands form in the spectra of dwell time, which can be effectively manipulated by not only the external magnetic field but also the geometric parameters of the system. Moreover, an intuitive semiclassical delay is defined to illustrate the behavior of the dwell time, and the former one is shown to be the result of “smoothing out” the latter one. We also find that the dwell time in diluted-magnetic-semiconductor/semiconductor superlattices behaves surprisingly different from the DMS/NB case, especially for spin-down electrons.

  9. Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Bai, Lihui; Chen, Xiaobin; Guo, Hong; Fan, X. L.; Xue, D. S.; Houssameddine, D.; Hu, C.-M.

    2016-08-01

    The thermal spin-transfer torque (TSTT) in magnetic tunneling junctions (MTJs) was systematically studied using electrical detection of ferromagnetic resonance (FMR). Evidence for the existence of TSTT in MTJs is observed. A temperature difference was applied across an MTJ acting as a TSTT on the free layer of the MTJ. The FMR of the free layer was then excited by a microwave current and electrically detected as a dc voltage. We found that the FMR line shape was changed by the TSTT, indicated by the ratio of dispersive and Lorentz components of the FMR spectra (D /L ). D /L increases by increasing the temperature difference. In addition, we analyze the magnetization orientation dependence of TSTT and provide solid evidence that this dependence differs from the magnetization orientation dependence of spin-transfer torque driven by a dc bias.

  10. Nanosecond magnetization dynamics during spin Hall switching of in-plane magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Rowlands, G. E.; Aradhya, S. V.; Shi, S.; Yandel, E. H.; Oh, J.; Ralph, D. C.; Buhrman, R. A.

    2017-03-01

    We present a study of the magnetic dynamics associated with nanosecond scale magnetic switching driven by the spin Hall effect in 3-terminal nanoscale magnetic tunnel junctions (MTJs) with in-plane magnetization. Utilizing fast pulse measurements in a variety of material stacks and detailed micromagnetic simulations, we demonstrate that this unexpectedly fast and reliable magnetic reversal is facilitated by the self-generated Oersted field, and that the short-pulse energy efficiency can be substantially enhanced by spatial non-uniformity in the initial magnetization of the magnetic free layer. The sign of the Oersted field is essential for this enhancement—in simulations in which we artificially impose a field-like torque with a sign opposite to the effect of the Oersted field, the result is a much slower and stochastic switching process that is reminiscent of the so-called incubation delay in conventional 2-terminal spin-torque-switched MTJs.

  11. Abnormal bias dependence of magnetoresistance in CoFeB/MgO/Si spin-injection tunnel contacts

    SciTech Connect

    Park, June-Young; Park, Byong-Guk; Baek, Seung-heon Chris; Park, Seung-Young; Jo, Younghun

    2015-11-02

    We report a strong bias voltage dependence of magnetoresistance (MR) in CoFeB/MgO/Si spin-injection tunnel contacts using the three-terminal Hanle geometry. When a bias voltage is relatively large, the MR is composed of two characteristic signals: a conventional Hanle signal observed at a low magnetic field, which is due to the precession of injected spins, and another signal originating from the rotation of the magnetization at a larger magnetic field. In contrast, for a small bias voltage, additional signals appear at a wide range of magnetic fields, which occasionally overwhelms the conventional Hanle signals. Because the additional signals are pronounced at a low bias and are significantly reduced by annealing at moderate temperatures, they can be attributed to multi-step tunneling via defect states at the interfaces or tunnel barrier. Our results demonstrate that the spin injection signal caused by the defect states can be evaluated by its bias voltage dependence.

  12. Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach

    NASA Astrophysics Data System (ADS)

    Chen, Son-Hsien; Chang, Ching-Ray; Xiao, John Q.; Nikolić, Branislav K.

    2009-02-01

    We study spin and charge currents pumped by precessing magnetization of a single ferromagnetic layer within F|I|N or F|I|F ( F -ferromagnet; I -insulator; N -normal metal) multilayers of nanoscale thickness attached to two normal-metal electrodes with no applied bias voltage between them. Both simple one-dimensional model, consisting of a single precessing spin and a potential barrier as the “sample,” and realistic three-dimensional devices are investigated. In the rotating reference frame, where the magnetization appears to be static, these junctions are mapped onto a four-terminal dc circuit whose effectively half-metallic ferromagnetic electrodes are biased by the frequency ℏω/e of microwave radiation driving magnetization precession at the ferromagnetic resonance (FMR) conditions. We show that pumped spin current in F|I|F junctions, diminished behind the tunnel barrier and increased in the opposite direction, is filtered into charge current by the second F layer to generate dc pumping voltage of the order of ˜1μV (at FMR frequency ˜10GHz ) in an open circuit. In F|I|N devices, several orders of magnitude smaller charge current and the corresponding dc voltage appear concomitantly with the pumped spin current due to barrier induced asymmetry in the transmission coefficients connecting the four electrodes in the rotating-frame picture of pumping.

  13. Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films.

    PubMed

    Neupane, Madhab; Richardella, Anthony; Sánchez-Barriga, Jaime; Xu, SuYang; Alidoust, Nasser; Belopolski, Ilya; Liu, Chang; Bian, Guang; Zhang, Duming; Marchenko, Dmitry; Varykhalov, Andrei; Rader, Oliver; Leandersson, Mats; Balasubramanian, Thiagarajan; Chang, Tay-Rong; Jeng, Horng-Tay; Basak, Susmita; Lin, Hsin; Bansil, Arun; Samarth, Nitin; Hasan, M Zahid

    2014-05-12

    Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.

  14. Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs)

    NASA Astrophysics Data System (ADS)

    Daqiq, Reza; Ghobadi, Nader

    2017-02-01

    The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green's function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.

  15. Enhancing the spin transfer torque in magnetic tunnel junctions by ac modulation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobin; Zhou, Chenyi; Zhang, Zhaohui; Chen, Jingzhe; Zheng, Xiaohong; Zhang, Lei; Hu, Can-Ming; Guo, Hong

    2017-03-01

    The phenomenon of spin transfer torque (STT) has attracted a great deal of interest due to its promising prospects in practical spintronic devices. In this paper, we report a theoretical investigation of STT in a noncollinear magnetic tunnel junction under ac modulation based on the nonequilibrium Green's-function formalism, and we derive a closed formulation for predicting the time-averaged STT. Using this formulation, the ac STT of a carbon-nanotube-based magnetic tunnel junction is analyzed. Under ac modulation, the low-bias linear (quadratic) dependence of the in-plane (out-of-plane) torque on bias still holds, and the sinθ dependence on the noncollinear angle is maintained. By photon-assisted tunneling, the bias-induced components of the in-plane and out-of-plane torques can be enhanced significantly, about 12 and 75 times, respectively. Our analysis reveals the condition for achieving optimized STT enhancement and suggests that ac modulation is a very effective way for electrical manipulation of STT.

  16. Suppression of spin transport in ferromagnet/oxide/semiconductor junctions by magnetic impurities in the tunnel barrier

    NASA Astrophysics Data System (ADS)

    Spiesser, Aurélie; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2016-10-01

    We have studied how the insertion of sub-monolayer amounts of Mn impurities in the middle of the oxide tunnel barrier of Fe/GeO2 on p-type Ge affects the spin transport, using three-terminal Hanle measurements. Strikingly, the magnitude of the Hanle spin voltage is strongly reduced by increasing the amount of Mn dopants and is even completely absent for devices having an amount of Mn impurities equivalent to a 0.2-nm-thick layer. This demonstrates that magnetic impurities in the tunnel barrier are detrimental to the spin transport in ferromagnet/oxide/semiconductor junctions, and that the localized states associated with such magnetic impurities do not produce three-terminal Hanle spin signals.

  17. Novel compact model for multi-level spin torque magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prajapati, Sanjay; Verma, Shivam; Kulkarni, Anant Aravind; Kaushik, Brajesh Kumar

    2016-10-01

    Spin-transfer torque (STT) and spin-orbit torque (SOT) based magnetic tunnel junction (MTJ) devices are emerging as strong contenders for the next generation memories. Conventional STT magneto-resistive random access memory (MRAM) offers lower power, non-volatility and CMOS process compatibility. However, higher current requirement during the write operation leads to tunnel barrier reliability issues and larger access devices. SOT-MRAM eliminates the reliability issues with strong spin polarized current (100%) and separate read/write current paths; however, the additional two access transistors in SOT-MRAM results into increased cell area. Multilevel cell (MLC) structure paves a way to circumvent the problems related to the conventional STT/SOT based MTJ devices and provides enhanced integration density at reduced cost per bit. Conventional STT/SOT-MRAM requires a unit cell area of 10-60 F2 and reported simulations have been based on available single-level MTJ compact models. However, till date no compact model exists that can capture the device physics of MLC-MTJ accurately. Hence, a novel compact model is proposed in this paper to capture the accurate device physics and behaviour of the MLC-MTJs. It is designed for MLCs with different MTJ configurations demonstrated so far, such as series and parallel free layer based MLC-MTJs. The proposed model is coded in Verilog-A, which is compatible with SPICE for circuit level simulations. The model is in close agreement with the experimental results exhibiting an average error of less than 15%.

  18. Spin-Relaxation Dynamics of E' Centers at High Density in SiO2 Thin Films for Single-Spin Tunneling Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ambal, K.; Payne, A.; Waters, D. P.; Williams, C. C.; Boehme, C.

    2015-08-01

    The suitability of the spin dynamics of paramagnetic silicon dangling bonds (E' centers) in high-E'-density amorphous silicon dioxide (SiO2 ) as probe spins for single-spin tunneling force microscopy (SSTFM) is studied. SSTFM is a spin-selection-rule-based scanning-probe single-spin readout concept. Following the synthesis of SiO2 thin films on (111)-oriented crystalline-silicon substrates with room-temperature stable densities of [E'] >5 ×1018 cm-3 throughout the 60-nm thin film, pulsed electron paramagnetic resonance spectroscopy is conducted on the E' centers at temperatures between T =5 K and T =70 K . The measurements reveal that the spin coherence (the transverse spin-relaxation time T2) of these centers is significantly shortened compared to low-E'-density SiO2 films and within error margins not dependent on temperature. In contrast, the spin-flip times (the longitudinal relaxation times T1) are dependent on the temperature but with much weaker dependence than low-density SiO2 , with the greatest deviations from low-density SiO2 seen for T =5 K . These results, discussed in the context of the spin-relaxation dynamics of dangling-bond states of other silicon-based disordered solids, indicate the suitability of E' centers in high-density SiO2 as probe spins for SSTFM.

  19. Simulation Study on Understanding the Spin Transport in MgO Adsorbed Graphene Based Magnetic Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Raturi, Ashish; Choudhary, Sudhanshu

    2016-11-01

    First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.

  20. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  1. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    SciTech Connect

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-09-29

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  2. Polarization Factors and Spin-Transfer Torque in Magnetic Tunneling Junctions

    NASA Astrophysics Data System (ADS)

    Slonczewski, John

    2004-03-01

    Recent advances in fabrication of magnetic tunnel junctions having small RA enhance the prospect of 2-terminal memory elements using spin transfer for writing and TMR for reading. Using Bardeen theory, I find a sufficient condition for the existence of the tunnel-effective polarization factors which I-V experiments support. The mere presence of an ideal crystalline slab within the barrier suffices, regardless of electron structure and atomic disorder within the magnets and interface regions. I find the moment-coplanar torque density L_R=(h/4π e)P_LJ_0sin θ acting on a right magnet with applied voltage V. Here, P_L(V) and P_R(V) are the polarization factors of the left and right magnets, and J_0(V) is the mean current density in the conventional expression J=J_0(1+P_LP_Rs θ ). This connection between LR and J may aid laboratory exploration of junction technology for current-driven switching by study of J(V,θ ) prior to the difficult fabrication of pillars having submicron dimensions.

  3. High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge

    NASA Astrophysics Data System (ADS)

    Prakash, T.; Williams, G. V. M.; Kennedy, J.; Rubanov, S.

    2016-09-01

    We report the successful synthesis of ferrimagnetic magnetite powders made using an arc-discharge method in a partial oxygen atmosphere. X-ray and electron diffraction measurements show that the powders also contain some antiferromagnetic hematite and a small amount of FeO and Fe that has not oxidized. The Raman data show that there is a small fraction of ferrimagnetic maghemite that cannot be seen in the x-ray diffraction data. There is a wide particle size distribution where there are nanoparticles as small as 7 nm, larger faceted nanoparticles, and particles that are up to 25 μm in diameter. The saturation magnetization at high magnetic fields is ˜74% of that found in the bulk magnetite, where the lower value is due to the presence of some antiferromagnetic hematite. The temperature dependence of the saturation magnetization changes at the Verwey transition temperature, and it has a power low dependence with an exponent of 3/2 at low temperatures and 2.23 at high temperatures above the Verwey transition temperature. Electronic transport measurements were made on a cold-pressed pellet and the electrical resistance had an exponential dependence on temperature that may be due to electrostatic charging during tunneling between small nanoparticles. A large magnetoresistance from spin-dependent tunneling between the magnetite particles was observed that reached -9.5% at 120 K and 8 T.

  4. Extended spin-boson model for nonadiabatic hydrogen tunneling in the condensed phase.

    PubMed

    Ohta, Yasuhito; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2006-10-14

    A nonadiabatic rate expression for hydrogen tunneling reactions in the condensed phase is derived for a model system described by a modified spin-boson Hamiltonian with a tunneling matrix element exponentially dependent on the hydrogen donor-acceptor distance. In this model, the two-level system representing the localized hydrogen vibrational states is linearly coupled to the donor-acceptor vibrational mode and the harmonic bath. The Hamiltonian also includes bilinear coupling between the donor-acceptor mode and the bath oscillators. This coupling provides a mechanism for energy exchange between the two-level system and the bath through the donor-acceptor mode, thereby facilitating convergence of the time integral of the probability flux correlation function for the case of weak coupling between the two-level system and the bath. The dependence of the rate constant on the model parameters and the temperature is analyzed in various regimes. Anomalous behavior of the rate constant is observed in the weak solvation regime for model systems that lack an effective mechanism for energy exchange between the two-level system and the bath. This theoretical formulation is applicable to a wide range of chemical and biological processes, including neutral hydrogen transfer reactions with small solvent reorganization energies.

  5. Chiral-like tunneling of electrons in two-dimensional semiconductors with Rashba spin-orbit coupling

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, C.

    2014-01-01

    The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a single layer graphene and bilayer graphene represent some of the most bizarre quantum transport phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses at a Dirac-like point and has a band turning point. These features generate transport properties not found in usual two-dimensional electron gas. Albeit its π Berry phase, electron backscattering is present in R2DEG. An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its energy is near the subband minima. PMID:24445394

  6. Free-spinning Wind-tunnel Tests of a Low-wing Monoplane with Systemic Changes in Wings and Tails

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1937-01-01

    A series of tests was made at the National Advisory Committee for Aeronautics (NACA) free-spinning tunnel to determine the effect of systematic changes in wing and tail arrangement upon steady-spinning and recovery characteristics of a conventional low-wing monoplane model for a basic loading condition. Eight wings and three tails, covering a wide range of aerodynamic characteristics, were independently ballasted so as to be interchangeable with no change in mass distribution. For each of the 24 wing-tail combinations, observations were made of steady spins for four control settings and of recoveries for five control manipulators. The results are presented in the form of charts comparing the spin characteristics. The results showed that, with a poor tail arrangement, wing plan form and tip shape had a considerable effect on the spinning characteristics.

  7. A graphene solution to conductivity mismatch: spin injection from ferromagnetic metal/graphene tunnel contacts into silicon

    NASA Astrophysics Data System (ADS)

    van't Erve, Olaf

    2014-03-01

    New paradigms for spin-based devices, such as spin-FETs and reconfigurable logic, have been proposed and modeled. These devices rely on electron spin being injected, transported, manipulated and detected in a semiconductor channel. This work is the first demonstration on how a single layer of graphene can be used as a low resistance tunnel barrier solution for electrical spin injection into Silicon at room temperature. We will show that a FM metal / monolayer graphene contact serves as a spin-polarized tunnel barrier which successfully circumvents the classic metal / semiconductor conductivity mismatch issue for electrical spin injection. We demonstrate electrical injection and detection of spin accumulation in Si above room temperature, and show that the corresponding spin lifetimes correlate with the Si carrier concentration, confirming that the spin accumulation measured occurs in the Si and not in interface trap states. An ideal tunnel barrier should exhibit several key material characteristics: a uniform and planar habit with well-controlled thickness, minimal defect / trapped charge density, a low resistance-area product for minimal power consumption, and compatibility with both the FM metal and semiconductor, insuring minimal diffusion to/from the surrounding materials at temperatures required for device processing. Graphene, offers all of the above, while preserving spin injection properties, making it a compelling solution to the conductivity mismatch for spin injection into Si. Although Graphene is very conductive in plane, it exhibits poor conductivity perpendicular to the plane. Its sp2 bonding results in a highly uniform, defect free layer, which is chemically inert, thermally robust, and essentially impervious to diffusion. The use of a single monolayer of graphene at the Si interface provides a much lower RA product than any film of an oxide thick enough to prevent pinholes (1 nm). Our results identify a new route to low resistance-area product spin

  8. Current-induced magnetization switching with a spin-polarized scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Krause, Stefan

    2008-03-01

    In present data storage applications magnetic nanostructures are switched by external magnetic fields. Due to their non-local character, however, cross-talk between adjacent nanomagnets may occur. An elegant method to circumvent this problem is magnetization switching by spin-polarized currents, as observed in GMR,1] as well as in TMR,2] studies. However, the layered structures of these devices do not provide any insight to the details of the spatial distribution of the switching processes. Spin-polarized scanning tunneling microscopy (SP-STM) is a well-established tool to reveal the magnetic structure of surfaces at spatial resolution down to the atomic scale. Besides, SP-STM takes advantage of a perfect TMR junction consisting of an isolating vacuum barrier separating two magnetic electrodes, which are represented by the foremost tip atom and the sample. Our experiments demonstrate that SP-STM serves as a tool to manipulate the switching behavior of uniaxial superparamagnetic nanoislands,3]. Furthermore, we show how SP-STM can be used to switch the magnetization of quasistable magnetic nanoislands at low temperature (T=31,). Besides its scientific relevance to investigate the details of current-induced magnetization switching (CIMS), this technique opens perspectives for future data storage technologies based on SP-STM. [1] J. A. Katine et al., Phys. Rev. Lett. 84, 3149 (2000). [2] Y. Liu et al., Appl. Phys. Lett. 82, 2871 (2003). [3] S. Krause et al., Science 317, 1537 (2007).

  9. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    SciTech Connect

    Yuan, Z. H.; Huang, L.; Feng, J. F. Wen, Z. C.; Li, D. L.; Han, X. F.; Nakano, Takafumi; Naganuma, Hiroshi; Yu, T.

    2015-08-07

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.

  10. Size dependence of nanosecond-scale spin-torque switching in perpendicularly magnetized tunnel junctions

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Le Goff, A.; Nikitin, V.

    2016-06-01

    We have time resolved the spin-transfer-torque-induced switching in perpendicularly magnetized tunnel junctions of diameters from 50 to 250 nm in the subthreshold thermally activated regime. When the field and the spin torque concur to both favor the P to AP transition, the reversal yields monotonic resistance ramps that can be interpreted as a domain wall propagation through the device at velocities of the order of 17 to 30 nm/ns; smaller cells switch faster, and proportionally to their diameter. At the largest sizes, transient domain wall pinning can occasionally occur. When the field hinders the P to AP transition triggered by the spin torque, the P to AP switching is preceded by repetitive switching attempts, during which the resistance transiently increases until successful reversal occurs. At 50 nm, the P to AP switching proceeds reproducibly in 3 ns, with a monotonic featureless increase of the device resistance. In the reverse transition (AP to P), the variability of thermally activated reversal is not restricted to stochastic variations of incubation delays before the onset of reversal: several reversal paths are possible even in the smallest perpendicularly magnetized junctions. Besides, the nonuniform nature of the magnetic response seems still present at the nanoscale, with sometimes electrical signatures of strong disorder during the AP to P reversal. The AP to P transition is preceded by a strong instability of the AP states in devices larger than 100 nm. The resistance becomes extremely agitated before switching to P in a path yielding a slow (20 to 50 ns) and irregular increase of the conductance with substantial event-to-event variability. Unreversed bubbles of typical diameter 60 nm can persist a few additional microseconds in the largest junctions. The complexity of the AP to P switching is reduced but not suppressed when the junctions are downsized below 60 nm. The instability of the initial AP state is no longer detected but the other features

  11. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    NASA Astrophysics Data System (ADS)

    Paul, William; Baumann, Susanne; Lutz, Christopher P.; Heinrich, Andreas J.

    2016-07-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5-35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  12. Spin-tunnel investigation of the spinning characteristics of typical single-engine general aviation airplane designs. 2: Low-wing model A; tail parachute diameter and canopy distance for emergency spin recovery

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.

    1977-01-01

    A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m.

  13. Effects of boron composition on tunneling magnetoresistance ratio and microstructure of CoFeB/MgO/CoFeB pseudo-spin-valve magnetic tunnel junctions

    SciTech Connect

    Kodzuka, M.; Ohkubo, T.; Hono, K.; Ikeda, S.; Ohno, H.; Gan, H. D.

    2012-02-15

    The effect of B concentration on the tunneling magnetoresistance (TMR) of (Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x}/MgO/(Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x} (x = 22 and 33) pseudo-spin-valve (P-SV) magnetic tunnel junctions (MTJs) was investigated. The TMR ratios for optimally annealed MTJs with x = 22 and 33 were 340% and 170%, respectively, at room temperature. High resolution transmission electron microscopy (HRTEM) observation showed a weaker (001) texture in the MgO barrier in the MTJ with x = 33. The bottom electrode was not fully crystallized even with a considerable amount of B in the (Co{sub 25}Fe{sub 75}){sub 67}B{sub 33}, while good epitaxy was observed between (001) textured MgO and (Co{sub 25}Fe{sub 75}){sub 78}B{sub 22} electrodes.

  14. Non-equilibrium quantum transport of spin-polarized electrons and back action on molecular magnet tunnel-junction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, J.-Q.

    2016-11-01

    We investigate the non-equilibrium quantum transport through a single-molecule magnet embedded in a tunnel junction with ferromagnetic electrodes, which generate spin-polarized electrons. The lead magnetization direction is non-collinear with the uniaxial anisotropy easy-axis of molecule-magnet. Based on the Pauli rate-equation approach we demonstrate the magnetization reversion of molecule-magnet induced by the back action of spin-polarized current in the sequential tunnel regime. The asymptotic magnetization of molecular magnet and spin-polarization of transport current are obtained as functions of time by means of time-dependent solution of the rate equation. It is found that the antiparallel configuration of the ferromagnetic electrodes and molecular anisotropy easy-axis is an effective structure to reverse both the magnetization of molecule-magnet and spin-polarization of the transport current. Particularly the non-collinear angle dependence provides useful knowledge for the quantum manipulation of molecule-magnet and spin polarized electron-transport.

  15. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect

    SciTech Connect

    Kanai, S.; Nakatani, Y.; Yamanouchi, M.; Ikeda, S.; Sato, H.; Matsukura, F.; Ohno, H.

    2014-05-26

    We propose and demonstrate a scheme for magnetization switching in magnetic tunnel junctions, in which two successive voltage pulses are applied to utilize both spin-transfer torque and electric field effect. Under this switching scheme, a CoFeB/MgO magnetic tunnel junction with perpendicular magnetic easy axis is shown to switch faster than by spin-transfer torque alone and more reliably than that by electric fields alone.

  16. Non-rigid Group Theory, Tunneling Splittings and Nuclear Spin Statistics of Water Pentamer: (H2O5)

    SciTech Connect

    Balasubramanian, K

    2004-02-02

    The character table of the fully non-rigid water pentamer, (H{sub 2}O){sub 5} is derived for the first time. The group of all feasible permutations is the wreath product group S{sub 5}[S{sub 2}] and it consists of 3840 operations divided into 36 conjugacy classes and irreducible representations. We have shown that the full character table can be constructed using elegant matrix type generator algebra. The character table has been applied to the water pentamer by obtaining the nuclear spin statistical weights of the rovibronic levels and tunneling splittings of the fully non-rigid pentamer. We have also obtained the statistical weights and tunneling splittings of a semi-rigid deuterated pentamer that exhibits pseudo rotation with an averaged C{sub 5h}(G{sub 10}) symmetry used in the assignment of vibration-rotation-tunneling spectra . The correlation tables have been constructed for the semirigid (G{sub 10}) to non-rigid (G{sub 3840}) groups for the rotational levels and tunneling levels. The nuclear spin statistical weights have also been derived for both the limits.

  17. Spintronic logic design methodology based on spin Hall effect-driven magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kang, Wang; Wang, Zhaohao; Zhang, Youguang; Klein, Jacques-Olivier; Lv, Weifeng; Zhao, Weisheng

    2016-02-01

    Conventional complementary metal-oxide-semiconductor (CMOS) technology is now approaching its physical scaling limits to enable Moore’s law to continue. Spintronic devices, as one of the potential alternatives, show great promise to replace CMOS technology for next-generation low-power integrated circuits in nanoscale technology nodes. Until now, spintronic memory has been successfully commercialized. However spintronic logic still faces many critical challenges (e.g. direct cascading capability and small operation gain) before it can be practically applied. In this paper, we propose a standard complimentary spintronic logic (CSL) design methodology to form a CMOS-like logic design paradigm. Using the spin Hall effect (SHE)-driven magnetic tunnel junction (MTJ) device as an example, we demonstrate CSL implementation, functionality and performance. This logic family provides a unified design methodology for spintronic logic circuits and partly solves the challenges of direct cascading capability and small operation gain in the previously proposed spintronic logic designs. By solving a modified Landau-Lifshitz-Gilbert equation, the magnetization dynamics in the free layer of the MTJ is theoretically described and a compact electrical model is developed. With this electrical model, numerical simulations have been performed to evaluate the functionality and performance of the proposed CSL design. Simulation results demonstrate that the proposed CSL design paradigm is rather promising for low-power logic computing.

  18. Vertical Spin Tunnel Testing and Stability Analysis of Multi-Mission Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Morelli, Eugene A.; Fremaux, C. Michael; Bean, Jacob

    2014-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from space to the surface of the Earth. To achieve high reliability and minimum weight, MMEEVs avoid using limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing phases of flight. Testing in NASA Langley's 20-FT Vertical Spin Tunnel (20-FT VST), dynamically-scaled MMEEV models was conducted to improve subsonic aerodynamic models and validate stability criteria for this class of vehicle. This report documents the resulting data from VST testing for an array of 60-deg sphere-cone MMEEVs. Model configurations included were 1.2 meter, and 1.8 meter designs. The addition of a backshell extender, which provided a 150% increase in backshell diameter for the 1.2 meter design, provided a third test configuration. Center of Gravity limits were established for all MMEEV configurations. An application of System Identification (SID) techniques was performed to determine the aerodynamic coefficients in order to provide databases for subsequent 6-degree-of-freedom simulations.

  19. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure

    NASA Astrophysics Data System (ADS)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-09-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  20. On the valve nature of a monolayer of aligned molecular magnets in tunneling spin-polarized electrons: Towards organic molecular spintronics

    SciTech Connect

    Chakrabarti, Sudipto; Pal, Amlan J.

    2014-01-06

    We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.

  1. An experimental study of the effect of tail configuration on the spinning characteristics of general aviation aircraft. M.S. Thesis; [static wind tunnel force measurements

    NASA Technical Reports Server (NTRS)

    Ballin, M. G.

    1982-01-01

    The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.

  2. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    SciTech Connect

    Akushichi, T. Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-05-07

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.

  3. Correct Determination of Hysteresis of Nonlinear Current-Voltage Characteristics of Spin Valves, Magnetic Tunnel Junctions, or Memristors

    NASA Astrophysics Data System (ADS)

    Demidov, E. S.

    2016-11-01

    Until now, significant progress has been made in synthesizing the current-switched structure of spin valves and magnetic tunnel junctions with hysteresis dependences of the resistance on the current. These structures are of interest for creation of small-size electronic memory. However, hysteresis of resistance, which is usually presented in publications, does not correspond to physical principles. In this paper, we show how the hysteresis dependence of the resistance on the current, or the conductance on the voltage, which does not contradict the energy conservation law, and the corresponding current-voltage characteristic should look like. As an example, we present the experimental current-voltage characteristic of the CO2MnSi/MgO/Co2MnSi magnetic tunnel junction, which agrees with the model hysteresis dependences.

  4. 14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  5. 13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  6. Superconducting coupling across a spin-filtering manganite tunnel barrier with magnetic disorder

    NASA Astrophysics Data System (ADS)

    Harada, T.; Matvejeff, M.; Takahashi, R.; Lippmaa, M.

    2016-09-01

    Ferromagnetic insulator Josephson junctions consisting of Nb/Au/Pr0.8Ca0.2MnO3/La1.85Sr0.15CuO4 layers were fabricated. Non-linear current-voltage characteristics suggest the presence of superconducting coupling between the Nb/Au and La1.85Sr0.15CuO4 layers across a ferromagnetic Pr0.8Ca0.2MnO3 tunnel barrier. Tunneling spectra showed clear conductance peaks due to quasi-particle tunneling. Superconducting gap energies determined from the tunneling spectra were consistent with the temperature dependence of the critical current of the junctions. We argue that magnetic inhomogeneity in the ultrathin tunnel barrier plays a role in linking the superconducting states in Nb/Au and La1.85Sr0.15CuO4.

  7. Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions

    SciTech Connect

    Zhang, Xiangli; Zhang, Zongzhi; Liu, Yaowen; Jin, Q. Y.

    2015-05-07

    Macrospin simulations are performed to model the magnetization switching driven by the combined action of electric-field and spin-polarized electric current (spin-transfer torque; STT) in MgO/CoFeB based magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy. The results indicate that at low current case, the free layer magnetization shows a fast toggle-like switching, the final parallel or antiparallel magnetization state is determined by the electric-field effect, and the STT just helps or resists it to reach the final state depending on the current direction. However, with the increase of current strength, the contribution of STT effect gradually increases, which eventually achieves a deterministic magnetization switching state. Simulations further demonstrate that by appropriately tuning the parameters of applied electric-field and current the power consumption can be easily reduced by two orders of magnitude.

  8. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    SciTech Connect

    Awan, I. T.; Galvão Gobato, Y.; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2014-08-07

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices for spintronic applications such as a high-frequency spin-oscillators.

  9. Quantum-tunneling dynamics of a spin-polarized Fermi gas in a double-well potential

    SciTech Connect

    Salasnich, L.; Mazzarella, G.; Toigo, F.; Salerno, M.

    2010-02-15

    We study the exact dynamics of a one-dimensional spin-polarized gas of fermions in a double-well potential at zero and finite temperature. Despite the system being made of noninteracting fermions, its dynamics can be quite complex, showing strongly aperiodic spatio-temporal patterns during the tunneling. The extension of these results to the case of mixtures of spin-polarized fermions interacting with self-trapped Bose-Einstein condensates (BECs) at zero temperature is considered as well. In this case we show that the fermionic dynamics remains qualitatively similar to that observed in the absence of BEC but with the Rabi frequencies of fermionic excited states explicitly depending on the number of bosons and on the boson-fermion interaction strength. From this, the possibility of controlling quantum fermionic dynamics by means of Feshbach resonances is suggested.

  10. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    NASA Astrophysics Data System (ADS)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  11. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    NASA Astrophysics Data System (ADS)

    Jiang, Liming; Qiu, Wanzhi; Sharafat Hossain, Md; Al-Dirini, Feras; Evans, Robin; Skafidas, Efstratios

    2016-02-01

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.

  12. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    SciTech Connect

    Jiang, Liming; Qiu, Wanzhi; Sharafat Hossain, Md; Al-Dirini, Feras; Skafidas, Efstratios; Evans, Robin

    2016-02-07

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicate that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.

  13. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    NASA Astrophysics Data System (ADS)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  14. Low frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling.

    PubMed

    Fogler, Michael M

    2002-05-06

    A long-standing problem of the low-energy dynamics of a disordered XY spin chain is reexamined. The case of a rigid chain is studied, where the quantum effects can be treated quasiclassically. It is shown that, as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.

  15. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  16. Tunneling conductance for Majorana fermions in spin-orbit coupled semiconductor-superconductor heterostructures using superconducting leads

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Tewari, Sumanta

    2016-05-01

    It has been recently pointed out that the use of a superconducting (SC) lead instead of a normal metal lead can suppress the thermal broadening effects in tunneling conductance from Majorana fermions, helping reveal the quantized conductance of 2 e2/h . In this paper we discuss the specific case of tunneling conductance with SC leads of spin-orbit coupled semiconductor-superconductor (SM-SC) heterostructures in the presence of a Zeeman field, a system which has been extensively studied both theoretically and experimentally using a metallic lead. We examine the d I /d V spectra using a SC lead for different sets of physical parameters including temperature, tunneling strength, wire length, magnetic field, and induced SC pairing potential in the SM nanowire. We conclude that in a finite wire the Majorana splitting energy Δ E , which has nontrivial dependence on these physical parameters, remains responsible for the d I /d V peak broadening, even when the temperature broadening is suppressed by the SC gap in the lead. In a finite wire the signatures of Majorana fermions with a SC lead are oscillations of quasi-Majorana peaks about bias V =±Δlead , in contrast to the case of metallic leads where such oscillations are about zero bias. Our results will be useful for analysis of future experiments on SM-SC heterostructures using SC leads.

  17. Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction

    SciTech Connect

    Kinjo, Hidekazu Machida, Kenji; Aoshima, Ken-ichi; Kato, Daisuke; Kuga, Kiyoshi; Kikuchi, Hiroshi; Shimidzu, Naoki; Matsui, Koichi

    2014-05-28

    Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.

  18. Temperature dependent coercivity crossover in pseudo-spin-valve magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Feng, G.; Wu, H. C.; Feng, J. F.; Coey, J. M. D.

    2011-07-01

    We report the temperature dependent collapse of tunnel magnetoresistance (TMR) in perpendicular anisotropy magnetic tunnel junctions (pMTJs) with AlOx barriers and (Co/Pt)3 multilayer electrodes, due to the coercivity crossover of the top and bottom (Co/Pt)3 stacks. The different temperature dependence of two (Co/Pt)3 stacks in pMTJs is mainly caused by the additional perpendicular anisotropy created at interface between the ferromagnetic electrode and the AlOx barrier.

  19. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO{sub 3}/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    SciTech Connect

    Dai, Jian-Qing Zhang, Hu; Song, Yu-Min

    2015-08-07

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.

  20. A proposal of a spin cell using light on magnetic tunneling junctions.

    PubMed

    Chen, Jingzhe; Hu, Yibin; Guo, Hong; Chen, Xiaobin

    2014-01-08

    We propose and theoretically investigate a spin cell using light as the power source. Such a device can be realized when a quantum dot is connected to two ferromagnetic electrodes. In the case of identical electrodes, a pure spin current (PSC) can be generated when the light is shone on the quantum dot. Moreover, the PSC can be tuned continuously from zero to the maximum when the magnetic moment orientations of the two electrodes are changed from parallel to anti-parallel. The output spin bias is linear with the light power in the low power region, while it approaches the theoretical limit when the power is extremely high because of the electrodes' renormalization by the spin transfer torque. This effect implies that light energy can be transferred to electron spin directly, which may be applicable in future opto-spintronics.

  1. Are insulating LiF barriers relevant for spin-polarized tunnelling applications? Insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Vlaic, P.; Burzo, E.; Carva, K.

    2016-08-01

    Structural, electronic and magnetic properties of Fe/LiF (0 0 1) interfaces and spin-polarized transport properties of Fe/LiF/Fe (0 0 1) heterostructures are studied by means of self-consistent atomistic first-principles calculations. Total energy calculations performed for various interfacial geometries show that the Fe/LiF (0 0 1) interface with Fe atoms located above anionic sites is the most stable. F-Fe and Li-Fe substitutional intermixings at Fe/LiF (0 0 1) interfaces are not energetically favourable, but F accumulation in the interstitial void spaces at Fe/LiF (0 0 1) interfaces is possible. The magnetism of interfacial Fe atoms is robust. The majority-spin ferromagnetic state conductances decay rapidly with respect to the barrier thickness, while the minority-spin ones have very large contributions at specific hot spots and play a major role in the transport properties. Depending on the interfacial geometry, tunnelling magnetoresistance ratios ranging from 460%-2400% are evidenced. Interfacial interdiffusion can affect the transport properties. The exchange coupling between Fe electrodes through LiF barriers is negligible.

  2. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    NASA Astrophysics Data System (ADS)

    Lavanant, M.; Petit-Watelot, S.; Kent, A. D.; Mangin, S.

    2017-04-01

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data.

  3. Spin-dependent electronic and magnetic properties of Co nanostructures on Pt(111) studied by spin-resolved scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Meier, F.; von Bergmann, K.; Ferriani, P.; Wiebe, J.; Bode, M.; Hashimoto, K.; Heinze, S.; Wiesendanger, R.

    2006-11-01

    Spin-resolved scanning tunneling spectroscopy measurements at low temperatures were performed for Co nanostructures on Pt(111) . On Co monolayer islands and wires the electronic structure changes on the scale of a few atoms due to the changing local stacking of the Co atoms. First-principles calculations for pseudomorphic fcc and hcp stacked Co monolayers assign the dominant feature in the measured spectra to a d -like surface resonance of minority-spin character which shifts in energy because of a different coupling to the Pt substrate. Despite the heterogeneous electronic structure of the Co monolayer, the out-of-plane magnetized domains are clearly observed. While the domain wall width measured on wires is less than 4nm there is no indication for a change in the magnetization direction for islands with a base length up to fifteen times the domain wall width. Furthermore, the magnetic hysteresis in an ensemble of out-of-plane magnetized Co monolayer as well as double-layer nanostructures was observed. While the coercivity for the monolayer nanostructures is about 0.25T , double-layer islands show surprisingly large coercivities of more than 2T .

  4. Analysis of flight and wind-tunnel tests on Udet airplanes with reference to spinning characteristics

    NASA Technical Reports Server (NTRS)

    Herrmann, H

    1929-01-01

    This report presents an analysis of results of wind-tunnel tests conducted at the D.V.L. Values were determined for the effectiveness of all the controls at various angles of attack. The autorotation was studied by subjecting the rotating model to an air blast.

  5. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films

    SciTech Connect

    Kumar, Hardeep; Ghosh, Santanu; Buerger, Danilo; Zhou, Shengqiang; Groetzschel, Rainer; Schmidt, Heidemarie; Li, Lin; Kabiraj, Debdulal; Avasthi, Devesh Kumar

    2011-04-01

    In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to P{sub FeCo}{sup 2}/(1+P{sub FeCo}{sup 2}), where P{sub FeCo} is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.

  6. High Spin Torque Efficiency of Magnetic Tunnel Junctions with MgO/CoFeB/MgO Free Layer

    NASA Astrophysics Data System (ADS)

    Jan, Guenole; Wang, Yu-Jen; Moriyama, Takahiro; Lee, Yuan-Jen; Lin, Mark; Zhong, Tom; Tong, Ru-Ying; Torng, Terry; Wang, Po-Kang

    2012-09-01

    We present the results of a perpendicular magnetic tunnel junction (MTJ) that displays simultaneously low critical switching current and voltage, as well as high thermal stability factor. These results were achieved using a free layer of the MgO/CoFeB/MgO structure by increasing the spin torque efficiency to an average of 3.0 kBT/µA for 37-nm-diameter junctions, about three times that of a MgO/CoFeB/Ta free layer, which makes it the highest value reported to date. By comparing two films with different RA, hence different switching voltage and power, we explore the contributions of heating and voltage-modulated anisotropy change to the switching properties.

  7. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  8. Tunneling conductance study of a metal-superconductor junction in the presence of Rashba spin orbit coupling

    NASA Astrophysics Data System (ADS)

    Kapri, Priyadarshini; Basu, Saurabh

    2017-02-01

    The tunneling conductance for a junction device consisting of a normal metal and a singlet superconductor is studied with Rashba spin orbit coupling (RSOC) being present in the metallic lead and the interface separating the two regions via an extended Blonder-Tinkham-Klapwijk (BTK) formalism. Interesting interplay between the RSOC and a number of parameters that have experimental significance, and characterize either the junction or the superconducting leads, such as the barrier transparency, quasiparticle lifetime, Fermi wavevector mismatch, an in-plane magnetic field and their effects on the tunneling conductance are investigated in details for both a s-wave and a d-wave superconductor. In an opaque barrier, in presence of a quasiparticle lifetime, a Fermi wavevector mismatch or an external in-plane magnetic field, RSOC enhances the conductance corresponding to low biasing energies, that is, at energies lesser than the superconducting gap, while the reverse is noted for energies exceeding the magnitude of the gap. Further, there are exciting anomalies noted in the conductance spectrum for the d-wave gap which can be understood by incorporating the interplay between the superconducting gap and the angle of incident of the charge carriers.

  9. Polarity-tunable spin transport in all-oxide multiferroic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Soni, Rohit; Petraru, Adrian; Nair, Harikrishnan S.; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Kohlstedt, Hermann

    2016-05-01

    A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb(Zr0.3Ti0.7)O3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay--captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ.A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb(Zr0.3Ti0.7)O3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay--captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01277a

  10. Low-Resistance Spin Injection into Silicon Using Graphene Tunnel Barriers

    DTIC Science & Technology

    2012-11-01

    normalized zero bias resistance (ZBR) shows a weak insulator-like temperature dependence, confirming tunnel transport. Each solid colour line is from a...for three contacts are shown by triangles, red-dashed and green-dashed lines . b, Current–voltage curves and corresponding resistance–area (RA) products...data for the NiFe/Si ohmic reference contacts, and the NiFe/graphene/Si samples for both carrier concentrations studied. The red lines are fits to the

  11. Effect of bias voltage on tunneling mechanism in Co40Fe40B20/MgO/Co40Fe40B20 pseudo-spin valve

    NASA Astrophysics Data System (ADS)

    Yıldırım, Mustafa; Öksüzoğlu, Ramis Mustafa

    2015-04-01

    Bias voltage dependence of tunneling mechanism has been systematically investigated in Co40Fe40B20 (2.1 nm)/MgO (2 nm)/Co40Fe40B20 (1.7 nm) pseudo-spin valve magnetic tunnel junction deposited using the combination of the pulsed DC unbalanced magnetron and RF magnetron sputtering techniques. Structural investigations revealed polycrystalline and partially (001) oriented growth of CoFeB/MgO(001) MTJ with similar low interface roughness on both side of the MgO barrier. The junction with a 25×25 μm2 area indicates a giant tunnel magnetoresistance in the order of 505% at room temperature. The magnetoresistance ratio decreases with increasing applied bias voltage ranging from 0.5 to 1.8 V. Reasonable values for barrier thickness and heights were obtained using the combination of Brinkman and Gundlach models, including average barrier height and symmetry. Both barrier parameters and the tunneling mechanism vary in dependence of applied bias voltage. The tunneling mechanism indicates a change from direct to the FN tunneling, especially when reaching high bias voltages. Effect of the tunneling mechanism on the bias dependence of the magnetoresistance was also discussed.

  12. Magnetization switching by combining electric field and spin-transfer torque effects in a perpendicular magnetic tunnel junction

    PubMed Central

    Zhang, Xiangli; Wang, Chengjie; Liu, Yaowen; Zhang, Zongzhi; Jin, Q. Y.; Duan, Chun-Gang

    2016-01-01

    Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×109 A/m2 under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only. PMID:26732287

  13. Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate

    SciTech Connect

    Lendínez, S.; Zarzuela, R.; Tejada, J.; Terban, M. W.; Billinge, S. J. L.; Espin, J.; Imaz, I.; Maspoch, D.; Chudnovsky, E. M.

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for a single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.

  14. Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings.

    PubMed

    Huang, S M; Tokura, Y; Akimoto, H; Kono, K; Lin, J J; Tarucha, S; Ono, K

    2010-04-02

    We investigated the electron transport property of the InGaAs/GaAs double quantum dots, the electron g factors of which are different from each other. We found that in a magnetic field, the resonant tunneling is suppressed even if one of the Zeeman sublevels is aligned. This is because the other misaligned Zeeman sublevels limit the total current. A finite broadening of the misaligned sublevel partially relieves this bottleneck effect, and the maximum current is reached when interdot detuning is half the Zeeman energy difference.

  15. 10. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  16. 3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  17. 9. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  18. 11. INTERIOR VIEW OF WIND TUNNEL (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  19. 6. CLOSEUP VIEW OF TENFOOT WIND TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLOSE-UP VIEW OF TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  20. 7. SOUTH VIEW ALONG SIDE OF TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTH VIEW ALONG SIDE OF TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  1. 8. NORTH VIEW ALONG SIDE OF TUNNEL (1991). WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. NORTH VIEW ALONG SIDE OF TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the McDonnell XP-88 Airplane with a VEE Tail

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1947-01-01

    An investigation of the spin and recovery characteristics of a 1/24-scale model of the McDonnell XP-88 airplane has been conducted in the Langley 20-ft free-spinning tunnel. Results of tests with a conventional tail have been previously reported; the results presented herein are for the model with a vee tail installed. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model. In the normal loading were determined. Tests of the model in the long-range loading also were made. The investigation included leading-edge-flap, spin-recovery-parachute, and rudder-pedal-force tests. The recovery characteristics of the model were satisfactory for the normal loading. Deflecting the leading-edge flaps improved recoveries. The results indicated that with the external wing tanks installed (long-range loading) recoveries may be poor and, therefore, if a spin is inadvertently entered in this condition the tanks should be jettisoned if recovery does not appear imminent immediately after it is attempted. A 10-foot spin-recovery tail parachute with a towline 40 feet long and a drag coefficient of 0.63 was found to be effective for spin recovery. The rudder pedal force required for spin recovery was indicated to be within the capabilities of the pilot.

  3. Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails IV : Effect of Center-of-Gravity Location

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1939-01-01

    Eight wings and three tails, covering a wide range of aerodynamic characteristics, were independently ballasted so as to be interchangeable with no change in mass distribution. For each of the 24 resulting wing-tail combinations, observations were made of the steady spin for four control settings and of recoveries for five control manipulations. The results are presented in the form of charts comparing the spin characteristics. The tests are part of a general investigation being made in the NACA free-spinning tunnel to determine the effects of systematic changes in wing and tail arrangement upon the steady-spin and the recovery characteristics of a conventional low-wing monoplane for various load distributions.

  4. Supplementary Free-Spinning-Tunnel Tests of a 1/16-Scale Model of the McDonnell XB-85 Airplane Equipped with a Conventional-Tail Arrangement

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.

    1947-01-01

    Spin tests have been conducted in the Langley free-spinning tunnel on a 1/16-scale model of the McDonnell XP-85 airplane with the normal X-tail replaced with a short-coupled conventional tail arrangement. The effect of the conventional tail arrangement and the effects of various modifications upon the spin and recovery characteristics of the model were determined. The results of the tests indicated that installation of the conventional tail arrangement wil not provide satisfactory recoveries from spins of the airplane. Satisfactory recoveries will be obtainable, however, either by installing in addition a very large ventral fin (17.94 sq ft, full-scale) below the tail or by decreasing the width of the fuselage and making it flat sided rearward of the wing trailing edge.

  5. Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails V : Effect of Airplane Relative Density

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1940-01-01

    The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.

  6. Geology of the "20-foot" clay and Gardiners clay in southern Nassau and southwestern Suffolk counties, Long Island, New York

    USGS Publications Warehouse

    Doriski, T.P.; Wilde-Katz, Franceska

    1983-01-01

    Data from 1978-79 drilling was compiled with information from previous reports and historical records to prepare surface contour and isopach maps of the ' 20-foot ' clay and Gardiners Clay in southern Nassau and southwestern Suffolk Counties. These units are major confining layers in the upper part of the groundwater reservoir along Long Island 's south shore. Where present, they influence the groundwater flow patterns locally. The ' 20-foot ' clay, previously mapped in Nassau County only, was found in test borings in Suffolk County also. Its surface altitude ranges from 20 to 40 ft below NGVD (National Geodetic Vertical Datum of 1929); thickness ranges from 0 to 30 ft. The surface altitude of the Gardiners Clay ranges from 40 to 120 ft below NGVD; thickness ranges from 0 to 90 ft. Previously known discontinuities in both formations are more accurately delineated, and several new discontinuities have been inferred from the new data. The Matawan Group-Magothy Formation undifferentiated the Monmouth Group, and the Jameco Gravel directly underlie the Gardiners Clay. Revised surface altitudes of these formations are depicted on maps and cross sections of the south-shore area. (Author 's abstract)

  7. Reducing spin-torque switching current by incorporating an ultra-thin Ta layer with CoFeB free layer in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, R. S.; Meng, H.; Naik, V. B.; Sim, C. H.; Yap, S.; Luo, P.

    2014-12-01

    We studied the spin torque switching in dual MgO layer based magnetic tunnel junctions (MTJs) by incorporating an ultra-thin (0.5 nm) Ta layer at the CoFeB free layer/top MgO layer interface. The Ta incorporated MTJ showed a significant reduction (˜30%) in critical switching current density (JC0 ) as compared to that of the control MTJ whilst maintaining the same tunneling magnetoresistance as well as thermal stability. The reduction of JC0 can be attributed to the perpendicular magnetic anisotropy arising from the incorporation of an ultrathin Ta layer with the MgO|CoFeB structure. This scheme of reducing JC0 without degrading other properties may contribute to the development of spin-transfer-torque magnetic random access memory for low power applications

  8. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    NASA Astrophysics Data System (ADS)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.

  9. Reducing spin-torque switching current by incorporating an ultra-thin Ta layer with CoFeB free layer in magnetic tunnel junctions

    SciTech Connect

    Liu, R. S. Meng, H.; Naik, V. B.; Sim, C. H.; Yap, S.; Luo, P.

    2014-12-15

    We studied the spin torque switching in dual MgO layer based magnetic tunnel junctions (MTJs) by incorporating an ultra-thin (0.5 nm) Ta layer at the CoFeB free layer/top MgO layer interface. The Ta incorporated MTJ showed a significant reduction (∼30%) in critical switching current density (J{sub C0} ) as compared to that of the control MTJ whilst maintaining the same tunneling magnetoresistance as well as thermal stability. The reduction of J{sub C0} can be attributed to the perpendicular magnetic anisotropy arising from the incorporation of an ultrathin Ta layer with the MgO|CoFeB structure. This scheme of reducing J{sub C0} without degrading other properties may contribute to the development of spin-transfer-torque magnetic random access memory for low power applications.

  10. Intrinsic spin dynamics in optically excited nanoscale magnetic tunnel junction arrays restored by dielectric coating

    NASA Astrophysics Data System (ADS)

    Jaris, M.; Yahagi, Y.; Mahato, B. K.; Dhuey, S.; Cabrini, S.; Nikitin, V.; Stout, J.; Hawkins, A. R.; Schmidt, H.

    2016-11-01

    We report the all-optical observation of intrinsic spin dynamics and extraction of magnetic material parameters from arrays of sub-100 nm spin-transfer torque magnetic random access memory (STT-MRAM) devices with a CoFeB/MgO interface. To this end, the interference of surface acoustic waves with time-resolved magneto-optic signals via magneto-elastic coupling was suppressed using a dielectric coating. The efficacy of this method is demonstrated experimentally and via modeling on a nickel nanomagnet array. The magnetization dynamics for both coated nickel and STT-MRAM arrays shows a restored field-dependent Kittel mode from which the effective damping can be extracted. We observe an increased low-field damping due to extrinsic contributions from magnetic inhomogeneities and variations in the nanomagnet shape, while the intrinsic Gilbert damping remains unaffected by patterning. The data are in excellent agreement with a local resonance model and have direct implications for the design of STT-MRAM devices as well as other nanoscale spintronic technologies.

  11. Instantons and scaling of the transitions rates in Quantum Monte Carlo simulations of thermally-assisted quantum tunneling in spin systems

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, Vadim; Jiang, Zhang; Boixo, Sergio; Issakov, Sergei; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    We study analytically and numerically the dynamics of the quantum Monte Carlo (QMC) algorithm to simulate thermally-assisted tunneling in mean-field spin models without conservation of total spin. We use Kramers escape rate theory to calculate the scaling of the QMC time with the problem size to simulate the tunneling transitions. We develop path-integral instanton approach in coherent state and Suzuki-Trotter representations to calculate the escape rate and most probable escape path in QMC dynamics. Analtytical results are in a good agreement with numerical studies. We identify the class of models where the exponent in the scaling of the QMC time is the same as that in physical tunneling but the pre-factor depends very significantly on the QMC path representation. We propose the classes of problems where QMC can fail to simulate tunneling efficiently. The work of GM and MT has been supported by the Swiss National Science Foundation through the National Competence Center in Research QSIT and by ODNI, IARPA via MIT Lincoln Laboratory Air Force Contract No. FA8721-05-C-0002.

  12. Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui

    2017-02-01

    We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.

  13. Tunneling conductance through normal metal - superconductor junctions: effects of Rashba spin orbit coupling and magnetic field

    NASA Astrophysics Data System (ADS)

    Kapri, Priyadarshini; Ganguly, Sudin; Basu, Saurabh

    2016-10-01

    In a system consisting of a metal-(s-wave) superconductor junction, we study the conductance characteristics in presence of Rashba spin orbit coupling (RSOC) and an external magnetic field applied along the plane of the sample. With a selective inclusion of the Rashba coupling either in the metallic or in both we note that there is a distinct effect with regard to the magnitude of the Andreev peak that occurs at a biasing voltage lower than the superconducting gap energy. The height of the peak is sensitive to the RSOC (increases with increase in RSOC) for RSOC to be present only in the metallic region, (same is true when RSOC is present throughout the junction), while the peak height is fairly independent when RSOC is solely present in the superconducting region. The in-plane magnetic field has very interesting effects which show up in the form of having a conductance peak at zero bias, thereby making it possible to realize a Majorana bound state.

  14. Nanosecond-Timescale Low Energy Switching of In-Plane Magnetic Tunnel Junctions through Dynamic Oersted-Field-Assisted Spin Hall Effect.

    PubMed

    Aradhya, S V; Rowlands, G E; Oh, J; Ralph, D C; Buhrman, R A

    2016-10-12

    We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to 10(-5), using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature. Using micromagnetic simulations, we show that in the three-terminal spin-Hall devices the Oersted magnetic field generated by the pulse current strongly modifies the magnetic dynamics excited by the spin-Hall torque, enabling this unanticipated performance improvement. Our results suggest that in-plane MTJs controlled by Oersted-field-assisted spin-Hall torque are a promising candidate for both cache memory applications requiring high speed and for cryogenic memories requiring low write energies.

  15. Python Engine Installed in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  16. Effect of double MgO tunneling barrier on thermal stability and TMR ratio for perpendicular MTJ spin-valve with tungsten layers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Eun; Takemura, Yasutaka; Park, Jea-Gun

    2016-10-01

    A tunneling magneto-resistance (TMR) ratio of ˜163% at an annealing temperature of 400 °C was achieved in a single MgO-based perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a tungsten (W)/tantalum (Ta) seed and W capping layer instead of with a Ta seed and capping layer. This was done by improving the interface perpendicular magnetic anisotropy (i-PMA) characteristic of the Co2Fe6B2 free layer and face-centered-cubic (f.c.c.) crystallinity of the MgO tunneling barrier. In particular, a TMR ratio of ˜141% at an annealing temperature of 400 °C and a thermal stability at room temperature of ˜61 were achieved in a double MgO-based p-MTJ spin valve with W/Ta seed, W spacer, and W capping layers by doubling the i-PMA magnetic moment and increasing slightly magnetic anisotropy field (Hk).

  17. Observation of single-spin transport in an island-shaped CoFeB double magnetic tunnel junction prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Siripongsakul, Thamrongsin; Naganuma, Hiroshi; Kovacs, Andras; Kohn, Amit; Oogane, Mikihiko; Ando, Yasuo

    2016-02-01

    The Co40Fe40B20(CFB)/MgO/CFB/MgO/CFB-based multilayer was prepared by conventional magnetron sputtering and utilised in the fabrication of double magnetic tunnel junctions (DMTJs) for which the middle CFB layers were island-shaped. By analysing the magnetic property of the CFB islands with Langevin's equation, it was possible to identify their diameters of 7.6, 8.9 and 11.0 nm; accordingly submicron-scaled DMTJs were fabricated to investigate single-spin transport phenomena. The coulomb staircase and the oscillatory tunnel magnetoresistive (TMR) were able to be observed at 6 K, where the TMR ratio was enhanced up to 60%, which is the highest value ever achieved in this structure.

  18. Spin-polarized scanning tunneling microscopy experiments on the rough surface of a polycrystalline NiFe film with a fine magnetic tip sensitive to a well-defined magnetization component

    NASA Astrophysics Data System (ADS)

    Matsuyama, H.; Nara, D.; Kageyama, R.; Honda, K.; Sato, T.; Kusanagi, K.; Srinivasan, E.; Koike, K.

    2016-03-01

    We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin image of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.

  19. Current-induced switching of magnetic tunnel junctions: Effects of field-like spin-transfer torque, pinned-layer magnetization orientation, and temperature

    SciTech Connect

    Tiwari, R. K.; Jhon, M. H.; Ng, N.; Gan, C. K.; Srolovitz, D. J.

    2014-01-13

    We study current-induced switching in magnetic tunnel junctions in the presence of a field-like spin-transfer torque and titled pinned-layer magnetization in the high current limit at finite temperature. We consider both the Slonczewski and field-like torques with coefficients a{sub J} and b{sub J}, respectively. At finite temperatures, σ=b{sub J}/a{sub J}=±1 leads to a smaller mean switching time compared that with σ=0. The reduction of switching time in the presence of the field-like term is due to the alignment effect (for σ>0) and the initial torque effect.

  20. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    NASA Astrophysics Data System (ADS)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-03-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  1. Time-domain analysis of spin-torque induced switching paths in nanoscale CoFeB/MgO/CoFeB magnetic tunnel junction devices

    SciTech Connect

    Heindl, R.; Rippard, W. H.; Russek, S. E.; Pufall, M. R.

    2014-12-28

    We performed thousands of single-shot, real-time measurements of spin-transfer-torque induced switching in nanoscale CoFeB/MgO/CoFeB magnetic tunnel junctions having in-plane magnetizations. Our investigation discovered a variety of switching paths occurring in consecutive, nominally identical switching trials of a single device. By mapping the voltage as a function of time to an effective magnetization angle, we determined that reversal of a single device occurs via a variety of thermally activated paths. Our results show a complex switching behavior that has not been captured by previous observations and cannot be fully explained within the simple macrospin model.

  2. Spin torque switching of perpendicular Ta form="infix">∣CoFeB form="infix">∣MgO-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Worledge, D. C.; Hu, G.; Abraham, David W.; Sun, J. Z.; Trouilloud, P. L.; Nowak, J.; Brown, S.; Gaidis, M. C.; O'Sullivan, E. J.; Robertazzi, R. P.

    2011-01-01

    Spin torque switching is investigated in perpendicular magnetic tunnel junctions using Ta form="infix">∣CoFeB form="infix">∣MgO free layers and a synthetic antiferromagnet reference layer. We show that the Ta form="infix">∣CoFeB interface makes a key contribution to the perpendicular anisotropy. The quasistatic phase diagram for switching under applied field and voltage is reported. Low switching voltages, Vc 50 ns=290 mV are obtained, in the range required for spin torque magnetic random access memory. Switching down to 1 ns is reported, with a rise in switching speed from increased overdrive that is eight times greater than for comparable in-plane devices, consistent with expectations from a single-domain model.

  3. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    SciTech Connect

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T.; Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y.; Frougier, J.; Jaffrès, H.; George, J. M.; Zheng, Y.; Tao, B.; Han, X. F.

    2014-07-07

    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350 °C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  4. The 20-Foot View

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe

    2006-01-01

    In higher education, the number of computer projectors in classrooms has doubled every year for the past five years. A similar trend in K?12 education is occurring now that capable classroom projectors have become available for less than $1,000. At the same time, large-screen displays are becoming common in society; a trend being acceleration by a…

  5. 1H-19F spin-lattice relaxation spectroscopy: proton tunnelling in the hydrogen bond studied by field-cycling NMR.

    PubMed

    Noble, D L; Aibout, A; Horsewill, A J

    2009-12-01

    Proton tunnelling in the hydrogen bonds of two fluorine substituted benzoic acid dimers has been investigated using field-cycling NMR relaxometry. The close proximity of the (19)F nuclei to the hydrogen bond protons introduces heteronuclear (19)F-(1)H dipolar interactions into the spin-lattice relaxation processes. This renders the (1)H magnetisation-recovery biexponential and introduces multiple spectral density components into the relaxation matrix characterised by frequencies that are sums and differences of the (19)F and (1)H Larmor frequencies. Using field-cycling NMR pulse sequences that measure the spin-lattice relaxation and cross-relaxation rates we demonstrate how some of these multiple spectral density components can be separately resolved. This leads to an accurate determination of the correlation times that characterise the proton tunnelling motion. A broad spectrum of relaxation behaviour is illustrated and explored in the chosen samples and the investigation is used to explore the theory and practise of field-cycling NMR relaxometry in cases where heteronuclear interactions are significant.

  6. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Steam pile driver for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22

  7. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Pile driving for foundation of Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Located just a few feet from the Back River, pilings to support the massive building's foundation had to be driven deep into the earth. This work began in the spring of 1929 and cost $11,293.22.

  8. Full-Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    General view of concrete column base for Full-Scale Tunnel (FST). In 1924, George Lewis, Max Munk and Fred Weick began to discuss an idea for a wind tunnel large enough to test a full-scale propeller. Munk sketched out a design for a tunnel with a 20-foot test section. The rough sketches were presented to engineers at Langley for comment. Elliott Reid was especially enthusiastic and he wrote a memorandum in support of the proposed 'Giant Wind Tunnel.' At the end of the memorandum, he appended the recommendation that the tunnel test section should be increased to 30-feet diameter so as to allow full-scale testing of entire airplanes (not just propellers). Reid's idea for a full-scale tunnel excited many at Langley but the funds and support were not available in 1924. Nonetheless, Elliot Reid's idea would eventually become reality. In 1928, NACA engineers began making plans for a full-scale wind tunnel. In February 1929, Congress approved of the idea and appropriated $900,000 for construction. Work on the foundation began in the spring of 1929 and cost $11,293.22.

  9. Spin transfer in a ferromagnet-quantum dot and tunnel-barrier-coupled Aharonov-Bohm ring system with Rashba spin-orbit interactions.

    PubMed

    Chen, Xi; Zheng, Qing-Rong; Su, Gang

    2010-05-12

    The spin transfer effect in a ferromagnet-quantum dot (insulator)-ferromagnet Aharonov-Bohm (AB) ring system with Rashba spin-orbit (SO) interactions is investigated by means of the Keldysh nonequilibrium Green function method. It is found that both the magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet electrode can be effectively controlled by changing the magnetic flux threading the AB ring or the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical current and spin current are uncovered to oscillate with the magnetic flux. The present results are expected to be useful for information storage in nanospintronics.

  10. A scanning tunneling microscopy study of the electronic and spin states of bis(phthalocyaninato)terbium(iii) (TbPc2) molecules on Ag(111).

    PubMed

    Ara, Ferdous; Qi, Zhi Kun; Hou, Jie; Komeda, Tadahiro; Katoh, Keiichi; Yamashita, Masahiro

    2016-10-25

    tunneling feature caused by the spin flipping. This feature is not observed for the TbPc2/Au(111) system, suggesting that the decoupling between the TbPc2 molecule and Ag(111) by the presence of the first layer produces an inelastic feature in the tunneling spectra.

  11. Efficient spin injection through a crystalline AlOx tunnel barrier prepared by the oxidation of an ultra-thin Al epitaxial layer on GaAs

    NASA Astrophysics Data System (ADS)

    Nishizawa, N.; Munekata, H.

    2013-07-01

    We report that an ultra-thin, post-oxidized aluminum epilayer grown on the AlGaAs surface works as a high-quality tunnel barrier for spin injection from a ferromagnetic metal to a semiconductor. One of the key points of the present oxidation method is the formation of the crystalline AlOx template layer without oxidizing the AlGaAs region near the Al/AlGaAs interface. The oxidized Al layer is not amorphous but show well-defined single crystalline feature reminiscent of the spinel γ-AlOx phase. A spin-light emitting diode consisting of a Fe layer, a crystalline AlOx barrier layer, and an AlGaAs-InGaAs double hetero-structure has exhibited circularly polarized electroluminescence with circular polarization of PEL ˜ 0.145 at the remnant magnetization state of the Fe layer, indicating the relatively high spin injection efficiency (≡2PEL/PFe) of 0.63.

  12. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  13. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  14. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    PubMed

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  15. Quantum tunneling of spin-1 particles from a 5D Einstein-Yang-Mills-Gauss-Bonnet black hole beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Jusufi, K.

    2016-12-01

    In the present paper we study the Hawking radiation as a quantum tunneling effect of spin-1 particles from a five-dimensional, spherically symmetric, Einstein-Yang-Mills-Gauss-Bonnet (5D EYMGB) black hole. We solve the Proca equation (PE) by applying the WKB approximation and separation of variables via Hamilton-Jacobi (HJ) equation which results in a set of five differential equations, and reproduces, in this way, the Hawking temperature. In the second part of this paper, we extend our results beyond the semiclassical approximation. In particular, we derive the logarithmic correction to the entropy of the EYMGB black hole and show that the quantum corrected specific heat indicates the possible existence of a remnant.

  16. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    PubMed

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  17. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  18. Nonequilibrium green function approach to elastic and inelastic spin-charge transport in topological insulator-based heterostructures and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad

    Current and future technological needs increasingly motivate the intensive scientific research of the properties of materials at the nano-scale. One of the most important domains in this respect at present concerns nano-electronics and its diverse applications. The great interest in this domain arises from the potential reduction of the size of the circuit components, maintaining their quality and functionality, and aiming at greater efficiency, economy, and storage characteristics for the corresponding physical devices. The aim of this thesis is to present a contribution to the analysis of the electronic charge and spin transport phenomena that occur at the quantum level in nano-structures. This thesis spans the areas of quantum transport theory through time-dependent systems, electron-boson interacting systems and systems of interest to spintronics. A common thread in the thesis is to develop the theoretical foundations and computational algorithms to numerically simulate such systems. In order to optimize the numerical calculations I resort to different techniques (such as graph theory in finding inverse of a sparse matrix, adaptive grids for integrations and programming languages (e.g., MATLAB and C++) and distributed computing tools (MPI, CUDA). Outline of the Thesis: After giving an introduction to the topics covered in this thesis in Chapter 1, I present the theoretical foundations to the field of non-equilibrium quantum statistics in Chapter 2. The applications of this formalism and the results are covered in the subsequent chapters as follows: Spin and charge quantum pumping in time-dependent systems: Covered in Chapters 3, 4 and 5, this topics was initially motivated by experiments on measuring voltage signal from a magnetic tunnel junction (MTJ) exposed to a microwave radiation in ferromagnetic resonance (FMR) condition. In Chapter 3 we found a possible explanation for the finite voltage signal measured from a tunnel junction consisting of only a single

  19. Realizing the Harper Hamiltonian and Spin-Orbit Coupling with Laser-Assisted Tunneling in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Miyake, Hiro; Burton, Cody; Chung, Woo Chang; Siviloglou, Georgios; Ketterle, Wolfgang

    2014-05-01

    The study of charged particles in a magnetic field has led to paradigm shifts in condensed matter physics including the discovery of topologically ordered states like the quantum Hall and fractional quantum Hall states. Quantum simulation of such systems using neutral atoms has drawn much interest recently in the atomic physics community due to the versatility and defect-free nature of such systems. We discuss our recent experimental realization of the Harper Hamiltonian and strong, uniform effective magnetic fields for neutral particles in an optical lattice. Additionally, our scheme represents a promising system to realize spin-orbit coupling and the quantum spin Hall states without flipping atomic spin states and thus without the intrinsic heating that comes with near-resonant Raman lasers. We point out that our scheme can be implemented all optically through the use of a period-tripling superlattice, offering faster switching times and more precise control than with magnetic field gradients. Finally, we show that this method is very general for engineering novel single particle spectra in an optical lattice and can be used to map out Hofstadter's butterfly.

  20. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al2O3/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  1. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  2. Electric field control of spin re-orientation in perpendicular magnetic tunnel junctions—CoFeB and MgO thickness dependence

    SciTech Connect

    Meng, Hao; Naik, Vinayak Bharat; Liu, Ruisheng; Han, Guchang

    2014-07-28

    We report an investigation of electric-field (EF) control of spin re-orientation as functions of the thicknesses of CoFeB free layer (FL) and MgO layer in synthetic-antiferromagnetic pinned magnetic tunnel junctions with perpendicular magnetic anisotropy. It is found that the EF modulates the coercivity (Hc) of the FL almost linearly for all FL thicknesses, while the EF efficiency, i.e., the slope of the linearity, increases as the FL thickness increases. This linear variation in Hc is also observed for larger MgO thicknesses (≥1.5 nm), while the EF efficiency increases only slightly from 370 to 410 Oe nm/V when MgO thickness increases from 1.5 to 1.76 nm. We have further observed the absence of quasi-DC unipolar switching. We discuss its origin and highlight the underlying challenges to implement the EF controlled switching in a practical magnetic memory.

  3. Fabrication and characterization of spin injector using a high-quality B2-ordered-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5}/MgO/Si(100) tunnel contact

    SciTech Connect

    Kawame, Yu Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi; Takamura, Yota

    2015-05-07

    We successfully fabricate a (100)-orientated B2-type-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5} (CFSA)/MgO/Si(100) tunnel contact that is promising for an efficient spin injector for Si channels. The MgO barrier is formed by radical oxidation of an Mg thin film deposited on a Si(100) surface at room temperature and successive radical oxygen annealing at 400 °C. The CFSA electrode is grown on the MgO barrier at 400 °C by ultrahigh-vacuum molecular beam deposition, and it exhibits a (100)-orientated columnar polycrystalline structure with a high degree (63%) of B2-order. The MgO barrier near the interface of the CFSA/MgO junction is crystallized with the (100) orientation, i.e., the spin filter effect due to the MgO barrier could be expected for this junction. A three-terminal Si-channel spin-accumulation device with a CFSA/MgO/Si(100) spin injector is fabricated, and the Hanle effect of accumulated spin polarized electrons injected from this contact to the Si channel is observed.

  4. Wind-tunnel investigation of the descent characteristics of bodies of revolution simulating anti-personnel bombs

    NASA Technical Reports Server (NTRS)

    Sher, S. H.

    1951-01-01

    An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.

  5. PREFACE: Spin Electronics

    NASA Astrophysics Data System (ADS)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  6. Wind-tunnel Tests of a Cyclogiro Rotor

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Windler, Ray

    1935-01-01

    During an extensive study of all types of rotating wings, the NACA examined the cyclogiro rotor and made an aerodynamic analysis of that system (reference 1). The examination disclosed that such a machine had sufficient promise to justify an experimental investigation; a model with a diameter and span of 8 feet was therefore constructed and tested in the 20-foot wind tunnel during 1934. The experimental work included tests of the effect of the motion upon the rotor forces during the static-lift and forward-flight conditions at several rotor speeds and the determination of the relations between the forces generated by the rotor and the power required by it.

  7. Effect of stripe height on the critical current density of spin-torque noise in a tunneling magnetoresistive read head with a low resistance area product below 1.0 Ω μm{sup 2}

    SciTech Connect

    Endo, Yasushi Fan, Peng; Yamaguchi, Masahiro

    2015-05-07

    To understand the spin-torque effect on the noise in tunneling magnetoresistive (TMR) read heads, the GHz range noise spectra of TMR read heads with a narrow track width (w = 36 nm), and various stripe heights (h) are investigated as a function of the external magnetic field (H{sub ex}) and dc bias current density (j). The strong noise peak intensity depends on both H{sub ex} and j, indicating that the spin-torque affects the thermal mag-noise under a positive (negative) j for a positive (negative) H{sub ex}, regardless of h in the TMR heads. Due to the increased shape anisotropy, the critical current density (j{sub c}), where the non-thermal fluctuation noise originates from the spin-torque, increases markedly as the head dimension is reduced, and the maximum value of j{sub c} is approximately +1.5 × 10{sup 12} A/m{sup 2} for a head with w = 36 nm and h = 15 nm. These results demonstrate that the non-thermal fluctuation noise originating from the spin-torque in the TMR head can be suppressed in the current density range below 10{sup 12} A/m{sup 2}, as the head dimension is reduced and the shape anisotropy is increased.

  8. Tunneling path toward spintronics

    NASA Astrophysics Data System (ADS)

    Miao, Guo-Xing; Münzenberg, Markus; Moodera, Jagadeesh S.

    2011-03-01

    The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.

  9. 5-foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The researcher is sitting above the exit cone of the 5-foot Vertical Wind Tunnel and is examining the new 6-component spinning balance. This balance was developed between 1930 and 1933. It was an important advance in the technology of rotating or rolling balances. As M.J. Bamber and C.H. Zimmerman wrote in NACA TR 456: 'Data upon the aerodynamic characteristics of a spinning airplane may be obtained in several ways; namely, flight tests with full-scale airplanes, flight tests with balanced models, strip-method analysis of wind-tunnel force and moment tests, and wind-tunnel tests of rotating models.' Further, they note: 'Rolling-balance data have been of limited value because it has not been possible to measure all six force and moment components or to reproduce a true spinning condition. The spinning balance used in this investigation is a 6-component rotating balance from which it is possible to obtain wind-tunnel data for any of a wide range of possible spinning conditions.' Bamber and Zimmerman described the balance as follows: 'The spinning balance consists of a balance head that supports the model and contains the force-measuring units, a horizontal turntable supported by streamline struts in the center of the jet and, outside the tunnel, a direct-current driving motor, a liquid tachometer, an air compressor, a mercury manometer, a pair of indicating lamps, and the necessary controls. The balance head is mounted on the turntable and it may be set to give any radius of spin between 0 and 8 inches.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual

  10. Spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO tunnel contacts

    SciTech Connect

    Ishikawa, Mizue Sugiyama, Hideyuki; Inokuchi, Tomoaki; Saito, Yoshiaki; Hamaya, Kohei

    2015-08-31

    We investigate spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co{sub 2}FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co{sub 2}FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ∼1000 mV in which the increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co{sub 2}FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.

  11. Free-Spinning and Recovery Characteristics of a 1/19-Scale Model of the North American T-28C Airplane, TED No. NACA AD 3127

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.

    1956-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/19-scale model of the North American T-28C airplane to determine the spin and recovery characteristics. The T-28C airplane is similar to the T-28B airplane except for slight modifications for the arresting hook. The lower rear section of the fuselage was cut out and, consequently, the lower part of the rudder was removed to make a smooth fairing with the fuselage. The T-28B airplane had good recovery characteristics; but these modifications, along with the addition of gun packages on the wings, led to poor and unsatisfactory spin-recovery characteristics during demonstration spins of the T-28C airplane. Model test results indicated that without the gun packages installed, satisfactory recoveries could be obtained if the elevators were held full back while the rudder was fully reversed and the ailerons were held neutral. However, with the addition of gun packages to the wings and the corresponding change in loading, recoveries were considered unsatisfactory. Recoveries attempted by using a larger chord or larger span rudder were improved very slightly, but were still considered marginal or unsatisfactory. Strakes placed on the nose of the model were effective in slowing the spin rotation slightly and, in most instances, decreased the turns for recovery slightly. Recovery characteristics were slightly marginal for the full fuel loading when strakes and the extended-chord rudder were installed; but with the wing fuel partly used, recovery characteristics were again considered unsatisfactory or, at least, definitely on the marginal side. The optimum control technique for recovery is movement of the rudder to full against the spin with the stick held full back (elevators full up) and the ailerons held neutral, followed by forward movement of the stick only after the spin rotation ceases. Inverted-spin test results indicate that the airplane will spin steep and fast and that recovery

  12. Electrical Spin-Injection into Silicon and Spin FET

    DTIC Science & Technology

    2010-02-18

    MgO/silicon tunneling emitter NPN bipolar transistors . Device simulations revealed that the NDTC was the consequence of an inversion layer at...2009. He is now a research engineer at Intel Semiconductor Company. The aim of the project was to explore a tunneling emitter bipolar transistor as a...possible spin injector into silicon, and we have succeeded in that goal. The transistor has a metallic emitter that as a spin-injector will be a 1

  13. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  14. Effect of electron trap states on spin-dependent transport characteristics in CoFe/MgO/n{sup +}-Si junctions investigated by Hanle effect measurements and inelastic electron tunneling spectroscopy

    SciTech Connect

    Inokuchi, Tomoaki Ishikawa, Mizue; Sugiyama, Hideyuki; Tanamoto, Tetsufumi; Saito, Yoshiaki

    2014-12-08

    Spin-dependent transport properties in CoFe/MgO/n{sup +}-Si junctions were investigated by Hanle effect measurements and inelastic electron tunneling (IET) spectroscopy. The CoFe/MgO/n{sup +}-Si junctions examined in this study exhibited two different Hanle curves. In the low bias region, broad Hanle signals were mainly observed; in the high bias region, narrow Hanle signals were mainly observed. The d{sup 2}I/dV{sup 2}-V curves (which correspond to IET spectra) contain several peaks originating from phonon modes and other peaks originating from electron trap states. At the bias voltage where electron trap states are observed, Δd{sup 2}I/dV{sup 2} depends on the magnetic field and the full width at half-maximum of the Δd{sup 2}I/dV{sup 2}–H curves corresponds to that of the broad Hanle signals. These results indicate that electron trap states are located in the low energy region and cause a decrease in spin lifetime.

  15. Manipulation of magnetic skyrmions with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Wieser, R.; Shindou, R.; Xie, X. C.

    2017-02-01

    The dynamics of a single magnetic skyrmion in an atomic spin system under the influence of a scanning tunneling microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single skyrmions is showed.

  16. Spin polarization of the split Kondo state.

    PubMed

    von Bergmann, Kirsten; Ternes, Markus; Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2015-02-20

    Spin-resolved scanning tunneling microscopy is employed to quantitatively determine the spin polarization of the magnetic field-split Kondo state. Tunneling conductance spectra of a Kondo-screened magnetic atom are evaluated within a simple model taking into account inelastic tunneling due to spin excitations and two Kondo peaks positioned symmetrically around the Fermi energy. We fit the spin state of the Kondo-screened atom with a spin Hamiltonian independent of the Kondo effect and account for Zeeman splitting of the Kondo peak in the magnetic field. We find that the width and the height of the Kondo peaks scales with the Zeeman energy. Our observations are consistent with full spin polarization of the Kondo peaks, i.e., a majority spin peak below the Fermi energy and a minority spin peak above.

  17. Minimal Model of Spin-Transfer Torque and Spin Pumping Caused by the Spin Hall Effect.

    PubMed

    Chen, Wei; Sigrist, Manfred; Sinova, Jairo; Manske, Dirk

    2015-11-20

    In the normal-metal-ferromagnetic-insulator bilayer (such as Pt/Y_{3}Fe_{5}O_{12}) and the normal-metal-ferromagnetic-metal-oxide trilayer (such as Pt/Co/AlO_{x}) where spin injection and ejection are achieved by the spin Hall effect in the normal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their dampinglike to fieldlike component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface s-d coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.

  18. Enhancement of macroscopic quantum tunneling by Landau-Zener transitions.

    PubMed

    Ankerhold, Joachim; Grabert, Hermann

    2003-07-04

    Motivated by recent realizations of qubits with a readout by macroscopic quantum tunneling in a Josephson junction, we study the problem of barrier penetration in the presence of coupling to a spin-1 / 2 system. It is shown that, when the diabatic potentials for fixed spin intersect in the barrier region, Landau-Zener transitions lead to an enhancement of the tunneling rate. The effect of these spin flips in imaginary time is in qualitative agreement with experimental observations.

  19. Tunnel magnetoresistance of diamondoids

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-10-01

    Tunnel magnetoresistance (TMR) of diamondoids has been predicted by first principles density functional theory. Diamantane was used as a basic molecular proxy for diamondoids because hydrogen atoms in the apical position are easily substituted for a thiol group. The pristine diamantane exhibited a low TMR ratio of 7%, and boron-substitution considerably decreased the TMR ratio. Conversely, nitrogen-substitution enhanced the TMR ratio by up to 20%. Heteroatom-substitution changes the tunneling probabilities by varying the molecular bond lengths. Furthermore, when the spins of the electrodes are parallel, the heteroatoms resulted in transmittance probabilities at an energy range near the Fermi level. Consequently, heteroatom-substitution can control the TMR ratios of diamondoids very well.

  20. Wind-Tunnel Tests of 10-foot-diameter Autogiro Rotors

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Bioletti, Carlton

    1937-01-01

    Report presents the results of a series of 10-foot-diameter autogiro rotor models tested in the NACA 20-foot wind tunnel. Four of the models differed only in the airfoil sections of the blades, the sections used being the NACA 0012, 0018, 4412, and 4418. Three additional models employing the NACA 0012 section were tested, in which a varying portion of the blade near the hub was replaced by a streamline tube with a chord of about one-fourth the blade chord.

  1. Tunnelling of relativistic particles from new type black hole in new massive gravity

    SciTech Connect

    Gecim, Ganim; Sucu, Yusuf E-mail: ysucu@akdeniz.edu.tr

    2013-02-01

    In the framework of the three dimensional New Massive Gravity theory introduced by Bergshoeff, Hohm and Townsend, we analyze the behavior of relativistic spin-1/2 and spin-0 particles in the New-type Black Hole backgroud, solution of the New Massive Gravity.We solve Dirac equation for spin-1/2 and Klein-Gordon equation for spin-0. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe that the tunnelling probability and Hawking temperature are same for the spin-1/2 and spin-0.

  2. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  3. First results for custom-built low-temperature (4.2 K) scanning tunneling microscope/molecular beam epitaxy and pulsed laser epitaxy system designed for spin-polarized measurements

    NASA Astrophysics Data System (ADS)

    Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.

  4. Single-Shot Ternary Readout of Two-Electron Spin States in a Quantum Dot Using Spin Filtering by Quantum Hall Edge States.

    PubMed

    Kiyama, H; Nakajima, T; Teraoka, S; Oiwa, A; Tarucha, S

    2016-12-02

    We report on the single-shot readout of three two-electron spin states-a singlet and two triplet substates-whose z components of spin angular momentum are 0 and +1, in a gate-defined GaAs single quantum dot. The three spin states are distinguished by detecting spin-dependent tunnel rates that arise from two mechanisms: spin filtering by spin-resolved edge states and spin-orbital correlation with orbital-dependent tunneling. The three states form one ground state and two excited states, and we observe the spin relaxation dynamics among the three spin states.

  5. Effective circuit theory for the cusplike zero-bias anomaly in tunneling magnetoresistance

    NASA Astrophysics Data System (ADS)

    You, D.; Sheng, L.; Xing, D. Y.

    2010-02-01

    An effective circuit approach is developed to investigate inelastic tunneling of electrons through magnetic tunnel junctions. Electrons tunneling via impurities may dissipate their energy through interaction with the collective modes of the environment, which are effectively modeled by an infinite lumped LC circuit. The present theory can well reproduce the cusplike zero-bias anomaly of the tunneling magnetoresistance observed in magnetic tunnel junctions, the energy dissipation and spin-flip scattering playing a critical role.

  6. Tunneling magnetoresistance in Si nanowires

    NASA Astrophysics Data System (ADS)

    Montes, E.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-11-01

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green’s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  7. The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction

    SciTech Connect

    Tober, Eric D.

    1997-06-01

    Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f7/2 spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.

  8. Quantum electron tunneling in respiratory complex I.

    PubMed

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2011-05-12

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.

  9. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  10. Tunnel-to-tunnel correlation

    NASA Technical Reports Server (NTRS)

    Steinle, F. W., Jr.

    1982-01-01

    Flow quality is discussed. Incremental comparisons of: (1) the angle of attack, (2) the axial force coefficient, and (3) the base cavity axial force coefficient against the normal force coefficient are presented. Relative blockage determination, relative buoyancy corrections, and boundary layer transition length are discussed. Blockage buoyancy caused by tunnel model wall dynamic interaction is discussed in terms of adaptive walls. The effect of 'transonic turbulence factor' is considered.

  11. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  12. Superpoissonian shot noise in organic magnetic tunnel junctions

    SciTech Connect

    Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G.; Hong, Jhen-Yong; Lin, Minn-Tsong; Szczepański, Tomasz; Dugaev, Vitalii K.; Barnaś, Józef

    2014-12-08

    Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

  13. Carpal Tunnel Syndrome

    MedlinePlus

    ... Just a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ligament and bones ... from irritated tendons or other swelling narrows the tunnel and causes the nerve to be compressed. Symptoms ...

  14. Looking into Tunnel Books.

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    1999-01-01

    Describes how to make tunnel books, which are viewed by looking into a "tunnel" created by accordion-folded expanding sides. Suggests possible themes. Describes how to create a walk-through tunnel book for first grade students. (CMK)

  15. Tunnel magnetoresistance in epitaxially grown magnetic tunnel junctions using Heusler alloy electrode and MgO barrier

    SciTech Connect

    Tsunegi, S.; Sakuraba, Y.; Oogane, M.; Telling, N. D.; Shelford, L. R.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Takanashi, K.; Ando, Y.

    2009-07-01

    Epitaxially grown magnetic tunnel junctions (MTJs) with a stacking structure of Co{sub 2}MnSi/MgO/CoFe were fabricated. Their tunnel magnetoresistance (TMR) effects were investigated. The TMR ratio and tunnelling conductance characteristics of MTJs were considerably different between those with an MgO barrier prepared using sputtering (SP-MTJ) and those prepared using EB evaporation (EB-MTJ). The EB-MTJ exhibited a very large TMR ratio of 217% at room temperature and 753% at 2 K. The bias voltage dependence of the tunnelling conductance in the parallel magnetic configuration for the EB-MTJ suggests that the observed large TMR ratio at RT results from the coherent tunnelling process through the crystalline MgO barrier. The tunnelling conductance in the anti-parallel magnetic configuration suggests that the large temperature dependence of the TMR ratio results from the inelastic spin-flip tunnelling process.

  16. Spin-asymmetric Josephson plasma oscillations

    NASA Astrophysics Data System (ADS)

    Kreula, J. M.; Valtolina, G.; Törmä, P.

    2017-01-01

    The spin-asymmetric Josephson effect is a proposed quantum-coherent tunneling phenomenon where Cooper-paired fermionic spin-1/2 particles, which are subjected to spin-dependent potentials across a Josephson junction, undergo frequency-synchronized alternating-current Josephson oscillations with spin-dependent amplitudes. Here, in line with present-day techniques in ultracold Fermi gas setups, we consider the regime of small Josephson oscillations and show that the Josephson plasma oscillation amplitude becomes spin dependent in the presence of spin-dependent potentials, while the Josephson plasma frequency is the same for both spin components. Detecting these spin-dependent Josephson plasma oscillations provides a possible means to establish the yet-unobserved spin-asymmetric Josephson effect with ultracold Fermi gases using existing experimental tools.

  17. Room temperature spin relaxation length in spin light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Soldat, Henning; Li, Mingyuan; Gerhardt, Nils C.; Hofmann, Martin R.; Ludwig, Arne; Ebbing, Astrid; Reuter, Dirk; Wieck, Andreas D.; Stromberg, Frank; Keune, Werner; Wende, Heiko

    2011-08-01

    We investigate the spin relaxation length in GaAs spin light-emitting diode devices under drift transport at room temperature. The spin-polarised electrons are injected through a MgO tunnel barrier from a Fe/Tb multilayer in magnetic remanence. The decrease in circular polarization with increasing injection path length is investigated and found to be exponential, supporting drift-based transport. The spin relaxation length in our samples is 26 nm, and a lower bound for the spin injection efficiency at the spin injector/GaAs interface is estimated to be 25 ± 2%.

  18. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum.

  19. Spin transport in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2016-12-01

    We investigated the spin transport in nano-scale silicon (Si)-based spin-valve devices with Fe electrodes, MgO/Ge tunnel barriers, and a 20 nm-long Si channel. We observed a clear spin-valve effect when a magnetic field was applied in the film plane along and perpendicular to the Si channel transport direction. Systematic investigations of the bias voltage dependence, temperature dependence, and magnetic-field direction dependence of the magnetoresistance indicate that the observed spin-valve effect is governed by the spin transport through the nano-scale Si channel. The spin-valve effect remains observable up to 200 K. For the device with MgO/Ge tunnel barriers, with a bias voltage of 1.7 V at 50 K, the spin-dependent output voltage is 13 mV, which is among the highest values reported so far.

  20. Oxygen-vacancy driven tunnelling spintronics across MgO

    NASA Astrophysics Data System (ADS)

    Halisdemir, U.; Schleicher, F.; Kim, D. J.; Taudul, B.; Lacour, D.; Choi, W. S.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P.; Halley, D.; Majjad, H.; Henry, Y.; Leconte, B.; Boulard, A.; Spor, D.; Beyer, N.; Kieber, C.; Sternitzky, E.; Cregut, O.; Ziegler, M.; Montaigne, F.; Arabski, J.; Beaurepaire, E.; Jo, W.; Alouani, M.; Gilliot, P.; Hehn, M.; Bowen, M.

    2016-10-01

    The conservation of an electron's spin and symmetry as it undergoes solid-state tunnelling within magnetic tunnel junctions (MTJs) is thought to be best understood using MgO-based MTJs1. Yet the very large experimental values of tunnelling magnetoresistance (TMR) that justify this perception are often associated with tunnelling barrier heights well below those suggested by the MgO optical band gap. This combination of high TMR and low RA-product, while spawning spin-transfer/spin-orbit torque experiments and considerable industrial interest, cannot be explained by standard theory. Noting the impact of a tunnel barrier's altered stoichiometry on TMR2, we reconcile this 10+year-old contradiction between theory and experiment by considering the impact of the MgO barrier's structural defects3-5. We find that the ground and excited states of oxygen vacancies can promote localized states within the band gap with differing electronic character. By setting symmetry- and temperature-dependent tunnelling barrier heights, they alter symmetry-polarized tunnelling and thus TMR. We will examine how annealing, depending on MgO growth conditions, can alter the nature of these localized states. This oxygen vacancy paradigm of inorganic tunnelling spintronics opens interesting perspectives into endowing the MTJ with additional functionalities, such as optically manipulating the MTJ's spintronic response.

  1. Time domain capacitance spectroscopy of tunneling electrons in the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Ashoori, R. C.; Chan, H. B.

    2003-07-01

    We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states ( ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.

  2. Quantum tunneling of the non-stationary BTZ black hole

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Yang, Shu Zheng

    2009-07-01

    The semi-classical tunneling method is extended to study the Hawking tunneling radiation from the non-stationary BTZ black hole via general tortoise coordination transformation and WKB approximation. In this paper, we simplify the spin-0 scalar field equation and the spin-1/2 Dirac equation at the event horizon of this black hole, and then the quantum tunneling probability and Hawking temperature are obtained. Finally, the correctional tunneling rate is researched, and the results show that after considering the changed background space-time of the non-stationary BTZ black hole, the tunneling rate depends not only on the entropy change but also on the integral about {\\dot r}_H .

  3. Calibration of a Larmor clock for tunneling time experiments

    NASA Astrophysics Data System (ADS)

    Ramos, Jesus; Potnis, Shreyas; Spierings, David; Ebadi, Sapehr; Steinberg, Aephraim

    2016-05-01

    How much time does it take for a particle to tunnel? This has been a controversial question since the early times of quantum mechanics. The debate stems mainly from the inability to measure time directly. One proposal to measure the tunnelling time is the Larmor clock, in which the spin degree of freedom of the tunneling particle is used as a clock. This clock only ``ticks'' inside the forbidden region due to the precession of the spin about a magnetic field localized within the barrier. Here, we report the calibration of a Larmor clock to measure tunneling times of a 87 Rb Bose Einstein condensate. We use the Zeeman sublevels of the ground-state F = 2 manifold and Raman beams for the implementation of a Larmor clock. Experimental progress towards measuring the tunneling time and the challenges involved in this measurement will also be discussed.

  4. Spin of Planetary Probes in Atmospheric Flight

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  5. Ferroelectric control of spin polarization.

    PubMed

    Garcia, V; Bibes, M; Bocher, L; Valencia, S; Kronast, F; Crassous, A; Moya, X; Enouz-Vedrenne, S; Gloter, A; Imhoff, D; Deranlot, C; Mathur, N D; Fusil, S; Bouzehouane, K; Barthélémy, A

    2010-02-26

    A current drawback of spintronics is the large power that is usually required for magnetic writing, in contrast with nanoelectronics, which relies on "zero-current," gate-controlled operations. Efforts have been made to control the spin-relaxation rate, the Curie temperature, or the magnetic anisotropy with a gate voltage, but these effects are usually small and volatile. We used ferroelectric tunnel junctions with ferromagnetic electrodes to demonstrate local, large, and nonvolatile control of carrier spin polarization by electrically switching ferroelectric polarization. Our results represent a giant type of interfacial magnetoelectric coupling and suggest a low-power approach for spin-based information control.

  6. Wing design for spin resistance

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Dicarlo, D. J.; Glover, K. E.; Stewart, E. C.

    1984-01-01

    Use of a discontinuous outboard wing leading edge to improve stall/spin characteristics has been evaluated through wind-tunnel and flight tests. Addition of such a discontinuous outboard wing leading-edge droop design to three light airplanes having NACA 6-series airfoil sections produced significant improvements in stall characteristics and spin resistance. The increased spin resistance of the modified airplanes has been related to the difference in angle of attack between the outer wing panel stall and the maximum attainable angle of attack.

  7. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  8. Spin slush in an extended spin ice model

    PubMed Central

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  9. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy.

    PubMed

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V; Samant, Mahesh G; Felser, Claudia; Parkin, Stuart S P

    2016-01-18

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

  10. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

    SciTech Connect

    Chantis, Athanasios N

    2008-01-01

    In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

  11. Tunneling magnetoresistive heads for magnetic data storage.

    PubMed

    Mao, Sining

    2007-01-01

    Spintronics is emerging to be a new form of nanotechnologies, which utilizes not only the charge but also spin degree of freedom of electrons. Spin-dependent tunneling transport is one of the many kinds of physical phenomena involving spintronics, which has already found industrial applications. In this paper, we first provide a brief review on the basic physics and materials for magnetic tunnel junctions, followed more importantly by a detailed coverage on the application of magnetic tunneling devices in magnetic data storage. The use of tunneling magnetoresistive reading heads has helped to maintain a fast growth of areal density, which is one of the key advantages of hard disk drives as compared to solid-state memories. This review is focused on the first commercial tunneling magnetoresistive heads in the industry at an areal density of 80 approximately 100 Gbit/in2 for both laptop and desktop Seagate hard disk drive products using longitudinal media. The first generation tunneling magnetoresistive products utilized a bottom stack of tunnel junctions and an abutted hard bias design. The output signal amplitude of these heads was 3 times larger than that of comparable giant magnetoresistive devices, resulting in a 0.6 decade bit error rate gain over the latter. This has enabled high component and drive yields. Due to the improved thermal dissipation of vertical geometry, the tunneling magnetoresistive head runs cooler with a better lifetime performance, and has demonstrated similar electrical-static-discharge robustness as the giant magnetoresistive devices. It has also demonstrated equivalent or better process and wafer yields compared to the latter. The tunneling magnetoresistive heads are proven to be a mature and capable reader technology. Using the same head design in conjunction with perpendicular recording media, an areal density of 274 Gbit/in2 has been demonstrated, and advanced tunneling magnetoresistive heads can reach 311 Gbit/in2. Today, the

  12. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  13. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  14. Tunneling spectroscopy of a magnetic adatoms on topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Misiorny, M.; Bjerngaard, M.; Paaske, J.

    In this communication, we address the question of how the presence of a magnetic impurity on a topological insulator (TI) surface manifests in the inelastic electron tunneling spectroscopy (IETS) when such a system is probed by a STM. For this purpose, we consider a single magnetic adatom with arbitrary spin, whose dynamics is governed by the local magnetic anisotropy. The spin is exchange-coupled to two-dimensional helical surface electrons, corresponding to the surface of a three-dimensional TI like Bi2Se3, with its characteristic hexagonally warped Dirac cone band structure. Employing an effective exchange-tunneling model, we calculate the non-linear differential conductance from a spin-polarized STM tip to the helical substrate, valid in the perturbative regime of weak exchange-tunneling and including the nonequilibrium pumping of the adatom spin states. The interplay between the magnetic anisotropy and the spin-momentum locked surface electrons is shown to give a number of specific imprints in the IETS, which could be investigated by spin-resolved scanning tunneling spectroscopy. M. Misiorny, M. Bjerngaard and J. Paaske, manuscript in preparation Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  15. 4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. 'Ring Stones & Tunnel Sections, Tunnel #33,' Southern Pacific Standard Double-Track Tunnel, ca. 1913. Compare to photos in documentation sets for Tunnel 18 (HAER No. CA-197), Tunnel 34 (HAER No. CA-206), and Tunnel 1 (HAER No. CA-207). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  16. Experimental Investigations of Flow past Spinning Cylinders

    NASA Astrophysics Data System (ADS)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2015-11-01

    Experimental investigations of flow past spinning cylinders is presented in the context of their application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders that are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 2 (based on cylinder diameter). The experimental validation of the tunnel characteristics and the benchmarking of the flow field in the tunnel are described. The experimental results for spinning cylinders with both rear-mounted and fore-mounted stings are presented along with available computational and experimental findings. This work was funded in part by U. S. Army ARDEC.

  17. Spin-polarized transport through ZnMnSe/ZnSe/ZnBeSe heterostructures

    NASA Astrophysics Data System (ADS)

    Ming, Y.; Gong, J.; Zhang, R. Q.

    2011-11-01

    Using the transfer matrix method and Airy function, the spin-dependent tunneling through the ZnMnSe/ZnSe/ZnBeSe structure was investigated theoretically. The electron tunneling determined by the applied bias, external magnetic field, and spin orientations exhibited some interesting and complex features. It was found that the magnetic field could suppress the spin-up current, but enhance the spin-down current. Furthermore the spin-flip of current could be realized by changing the applied bias slightly. Therefore, it can be believed that our structure could behave as a good spin-filter.

  18. Graphene-WS2 heterostructures for tunable spin injection and spin transport

    NASA Astrophysics Data System (ADS)

    Omar, S.; van Wees, B. J.

    2017-02-01

    We report the first measurements of spin injection into graphene through a 20-nm-thick tungsten disulphide (WS2) layer, along with a modified spin relaxation time (τs) in graphene in the WS2 environment, via spin-valve and Hanle spin-precession measurements, respectively. First, during the spin injection into graphene through a WS2-graphene interface, we can tune the interface resistance at different current bias and modify the spin injection efficiency, in a correlation with the conductivity-mismatch theory. Temperature assisted tunneling is identified as a dominant mechanism for the charge transport across the interface. Second, we measure the spin transport in graphene, underneath the WS2 crystal, and observe a significant reduction in the τs down to 17 ps in graphene in the WS2 covered region, compared to that in its pristine state. The reduced τs indicates the WS2-proximity induced additional dephasing of the spins in graphene.

  19. Carpal tunnel repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100078.htm Carpal tunnel repair - series—Normal anatomy To use the sharing ... in the wrist and the wrist bones (carpal tunnel). Review Date 5/9/2015 Updated by: C. ...

  20. Unveiling self-assembled monolayers' potential for molecular spintronics: spin transport at high voltage.

    PubMed

    Galbiati, Marta; Barraud, Clément; Tatay, Sergio; Bouzehouane, Karim; Deranlot, Cyrile; Jacquet, Eric; Fert, Albert; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2012-12-18

    Molecular magnetic tunnel junctions using self-assembled monolayers (SAMs) as tunnel barriers show stable and efficient spin transport properties. Large tunnel magnetoresistance with a flat bias voltage dependence of the magnetoresistance is observed in La(2/3) Sr(1/3) MnO(3) /dodecylphosphonic acid SAM/Co nanocontacts. This opens the door to spintronic tailoring though SAM engineering and could also lead to new venues for spin injection in organic devices.

  1. Variable Density Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Variable Density Tunnel in operation. Man at far right is probably Harold J. 'Cannonball' Tuner, longtime safety officer, who started with Curtiss in the teens. This view of the Variable Density Tunnel clearly shows the layout of the Tunnel's surroundings, as well as the plumbing and power needs of the this innovative research tool.

  2. Magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Ning, Keyu; Liu, Houfang; Ju, Zhenyi; Fang, Chi; Wan, Caihua; Cheng, Jinglei; Liu, Xiao; Li, Linsen; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    As one invigorated filed of spin caloritronics combining with spin, charge and heat current, the magneto-Seebeck effect has been experimentally and theoretically studied in spin tunneling thin films and nanostructures. Here we analyze the tunnel magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy (p-MTJs) under various measurement temperatures. The large tunnel magneto-Seebeck (TMS) ratio up to -838.8% for p-MTJs at 200 K is achieved, with Seebeck coefficient S in parallel and antiparallel states of 6.7 mV/K and 62.9 mV/K, respectively. The temperature dependence of the tunnel magneto-Seebeck can be attributed to the contributing transmission function and electron states at the interface between CoFeB electrode and MgO barrier.

  3. Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    NASA Astrophysics Data System (ADS)

    Park, Hee Chul; Myung, Nojoon; Lee, Seung Joo

    We investigate spin transport through ferromagnetic graphene vertical heterostructures where a sandwiched tunneling layer is either a normal or ferroelectric insulator. We show that the spin-polarization of the tunneling current is electrically controlled via gate voltages. We also demonstrate that the tunneling current of Dirac fermions can be prohibited when the spin configuration of ferromagnetic graphene sheets is opposite. Giant electroresistance can thus be developed by using the proposed heterostructure in this study. The effects of temperature on spin transport and the giant electroresistance ratio are also investigated. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures through electric fields via gate and bias electrodes. The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement No604391 Graphene Flagship, Project Code (IBS-R024-D1), and the NRF grant funded by MSIP(No. 2014-066298).

  4. Dirac particles tunneling from black holes with topological defects

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet

    2016-08-01

    We study Hawking radiation of Dirac particles with spin-1 / 2 as a tunneling process from Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black holes in background spacetimes with a spinning cosmic string and a global monopole. Solving Dirac's equation by employing the Hamilton-Jacobi method and WKB approximation we find the corresponding tunneling probabilities and the Hawking temperature. Furthermore, we show that the Hawking temperature of those black holes remains unchanged in presence of topological defects in both cases.

  5. Effects of Pt capping layer on perpendicular magnet anisotropy in pseudo-spin valves of Ta/CoFeB/MgO/CoFeB/Pt magnetic-tunneling junctions

    NASA Astrophysics Data System (ADS)

    Lee, Du-Yeong; Shim, Tae-Hun; Park, Jea-Gun

    2013-05-01

    We investigated how the Pt capping layer affected perpendicular magnet anisotropy in magnetic-tunnel-junctions fabricated with a Ta electrode, a lower CoFeB layer, an MgO barrier, an upper CoFeB layer, and a Pt capping electrode, which was estimated by using an anisotropy constant multiplied by the upper CoFeB layer thickness (Ku * t). The maximum Ku * t was found at an annealing temperature of 300 °C for an magnetic tunnel junction with an upper CoFeB layer thickness of 0.9 nm, indicating a highly textured MgO (100) barrier of 1.0 nm with none of the remaining Pt inter-diffused in the upper CoFeB layer.

  6. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.

    2016-02-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications.

  7. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  8. Fermion tunneling from higher-dimensional black holes

    SciTech Connect

    Lin Kai; Yang Shuzheng

    2009-03-15

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  9. Interplay between ferromagnetism and superconductivity in tunneling currents.

    PubMed

    Grønsleth, M S; Linder, J; Børven, J-M; Sudbø, A

    2006-10-06

    We study tunneling currents in a model consisting of two nonunitary ferromagnetic spin-triplet superconductors separated by a thin insulating layer. We find a novel interplay between ferromagnetism and superconductivity, manifested in the Josephson effect. This offers the possibility of tuning dissipationless currents of charge and spin in a well-defined manner by adjusting the magnetization direction on either side of the junction.

  10. Generation and coherent control of pure spin currents via terahertz pulses

    NASA Astrophysics Data System (ADS)

    Schüler, Michael; Berakdar, Jamal

    2014-04-01

    We inspect the time and spin-dependent, inelastic tunneling in engineered semiconductor-based double quantum well driven by time-structured terahertz pulses. An essential ingredient is an embedded spin-active structure with vibrational modes that scatter the pulse driven carriers. Due to the different time scales of the charge and spin dynamics, the spin-dependent electron-vibron coupling may result in pure net spin current (with negligible charge current). Heating the vibrational site may affect the resulting spin current. Furthermore, by controlling the charge dynamics, the spin dynamics and the generated spin current can be manipulated and switched on and off coherently.

  11. Fermions Tunneling from Bardeen-Vaidya Black Hole via General Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Kai, Lin; Shuzheng, Yang

    In this paper, we research on the scalar field particles and 1/2 spin fermions tunneling from the event horizon of Bardeen-Vaidya black hole by semiclassical method and general tortoise coordinate transformation, and obtain the Hawking temperature and tunneling rate near the event horizon.

  12. Turbulent Flow Past Spinning Cylinders

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Donald; Carlucci, Pasquale; Thangam, Siva

    2009-11-01

    Flow past cylinders aligned along their axis where a base freely spins while attached to a non-spinning forebody is considered from a computational and experimental point of view. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. Experiments are performed for a range of spin rates and free stream flow conditions. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions. Applications involving the design of projectiles are discussed.

  13. Probing spin flip scattering in ballistic nanosystems

    SciTech Connect

    Zeng, Z. M.; Feng, J. F.; Wang, Y.; Han, Prof. X. F.; Zhan, W. S.; Zhang, Xiaoguang; Zhang, Z.

    2006-01-01

    Because spin-flip scattering length is longer than the electron mean-free-path in a metal, past studies of spin-flip scattering are limited to the diffusive regime. Spin accumulation in the nanometer sized spacer layer of a magnetic double barrier tunnel junction allows the study of spin flip scattering near ballistic limit. We extract the spin-flip conductance $G_s$ of the spacer layer from magnetoresistance measurements. A linear temperature dependence of $G_s$ is found. The bias voltage dependence shows a quantum well resonance which explains the sharp reduction of the magnetoresistance. At 4.2K $G_s$ yields the mean-free-path (70nm) and the spin-flip length ($1.0$-$2.6\\mu$m).

  14. Clocked single-spin source based on a spin-split superconductor

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Giazotto, Francesco

    2016-08-01

    We propose an accurate clocked single-spin source for ac-spintronic applications. Our device consists of a superconducting island covered by a ferromagnetic insulator (FI) layer through which it is coupled to superconducting leads. Single-particle transfer relies on the energy gaps and the island's charging energy, and is enabled by a bias and a time-periodic gate voltage. Accurate spin transfer is achieved by the FI layer which polarizes the island, provides spin-selective tunneling barriers and improves the precision by suppressing Andreev reflection. We analyze realistic material combinations and experimental requirements which allow for a clocked spin current in the MHz regime.

  15. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    SciTech Connect

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-08-21

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials.

  16. Spin decoherence of magnetic atoms on surfaces

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Fernández-Rossier, J.

    2017-02-01

    We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time T1 , while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time T2 of an individual magnetic adatom. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin-phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.

  17. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  18. Simulator of Road Tunnel

    NASA Astrophysics Data System (ADS)

    Danišovič, Peter; Schlosser, František; Šrámek, Juraj; Rázga, Martin

    2015-05-01

    A Tunnel Traffic & Operation Simulator is a device of the Centre of Transport Research at the University of Žilina. The Simulator allows managing technological equipment of virtual two-tube highway tunnel, which is interconnected with simulation of vehicle traffic in tunnel. Changes of the traffic-operation states and other equipment are reflecting at the simulated traffic, as well as simulations of various emergency events in traffic initiate changes in tunnel detecting and measuring devices. It is thus possible to simulate emergency states, which can be affected by various faults of technology as well as by climatic conditions. The solutions can be found in irreplaceable experiences of Slovak road tunnel operators, changes of trafficoperation states, visualizations of operator technological display screens, technological devices labelling in order to increase operational safety of road tunnels.

  19. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    PubMed Central

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices. PMID:25266219

  20. Pipetron Tunnel Construction Issues

    SciTech Connect

    Friant, James E.; Bauer, Robert A.; Gross, David L.; May, Michael; Lach, Joseph

    1997-01-01

    This report examines issues involved in the civil construction aspects of the tunneling that could be done in the region of Fermilab to support the Pipetron along, moderately deep, tunnel loop. Cost, technical and political aspects of tunneling are addressed in this preliminary guide for further study. At Snowmass 96, in a series of informal, but comprehensive discussions, several guidelines were developed to frame this report.

  1. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  2. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  3. Tunnel closure calculations

    SciTech Connect

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  4. Spin-Entry Characteristics of a Large Supersonic Bomber as Determined by Dynamic Model Tests

    NASA Technical Reports Server (NTRS)

    Bowman, James S.

    1965-01-01

    An investigation has been conducted in the Langley spin tunnel and at a catapult launch facility of a 1/60-scale dynamic model to determine the spin-entry characteristics of a large supersonic bomber. Catapult tests indicated that spin-entry motions were obtainable for a center-of-gravity location of 0.21 mean aerodynamic chord but were not obtainable at a center-of-gravity location of 0.25 mean aerodynamic chord. Deflected ailerons were effective in promoting or preventing the spin- entry motion and this effect was qualitatively the same as it was for the fully developed spin. Varying the configuration had little significant effect on the spin-entry characteristics. Brief tests conducted with the model in the Langley spin tunnel indicated that fully developed spins were obtainable at the forward center-of-gravity location and that spins were highly unlikely at the rearward center-of-location.

  5. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  8. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Spin-dependent shot noise enhancement in a quantum dot

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Fricke, Christian; Hohls, Frank; Haug, Rolf J.

    2013-07-01

    The spin-dependent dynamical blockade was investigated in a lateral quantum dot in a magnetic field. Spin-polarized edge channels in the two-dimensional leads and the spatial distribution of Landau orbitals in the dot modulate the tunnel coupling of the quantum dot level spectrum. In a measurement of the electron shot noise we observe a pattern of super-Poissonian noise which is correlated to the spin-dependent competition between different transport channels.

  10. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  11. Massive vector bosons tunnelled from the (2+1)-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Gecim, Ganim; Sucu, Yusuf

    2017-03-01

    In this study, we investigate the Hawking radiation from three-dimensional New-type black hole and Warped-AdS3 black hole by using the quantum tunnelling properties of a massive spin-1 particle, i.e. a massive vector boson. Using the Hamilton-Jacobi method, we calculate the tunnelling probabilities and the Hawking temperature of the escaping massive spin-1 vector particle from the black holes. From these results, we see that the massive vector boson tunnels the same as a scalar and a Dirac particle from these black holes.

  12. Electric-field-assisted switching in magnetic tunnel junctions.

    PubMed

    Wang, Wei-Gang; Li, Mingen; Hageman, Stephen; Chien, C L

    2011-11-13

    The advent of spin transfer torque effect accommodates site-specific switching of magnetic nanostructures by current alone without magnetic field. However, the critical current density required for usual spin torque switching remains stubbornly high around 10(6)-10(7) A cm(-2). It would be fundamentally transformative if an electric field through a voltage could assist or accomplish the switching of ferromagnets. Here we report electric-field-assisted reversible switching in CoFeB/MgO/CoFeB magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy, where the coercivity, the magnetic configuration and the tunnelling magnetoresistance can be manipulated by voltage pulses associated with much smaller current densities. These results represent a crucial step towards ultralow energy switching in magnetic tunnel junctions, and open a new avenue for exploring other voltage-controlled spintronic devices.

  13. Ferroelectric control of anisotropic damping in multiferroic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Ning; Berakdar, Jamal; Jia, Chenglong

    2015-10-01

    The magnetoelectric effect on nonlocal magnetization dynamics is theoretically investigated in normal-metal/ferroelectric-insulator/ferromagnetic tunnel junctions. In addition to the Rashba spin-orbit interaction (SOI) originating from loss of parity symmetry at the interfaces, the topology of interfacial spiral spins triggered by ferroelectric polarization acts with an effective SOI that is electrically controllable. These spin-dependent interactions result in an anisotropic Gilbert damping with C2 v symmetry. The findings are of a direct relevance for the utilization of composite multiferroics for devices that rely on electrically controlled magnetic switching.

  14. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  15. Spinon walk in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Carrasquilla, Juan; Melko, Roger

    Quantum spin ice is a novel family of spin ice magnets that possess substantial quantum fluctuations. The fractional excitations are spinons, which are quantum analog of the monopoles in classical spin ice. The spinon propagates in quantum spin ice via quantum tunnelling. As opposed to a conventional quantum particle, the spinon moves in a background of disordered spins. The orientation of background spins controls the spinon motion, whereas the spinon motion in turn alters the spin background. One may naturally ask what a suitable framework for understanding the dynamics of spinon is in quantum spin ice, and furthermore, whether the spinon propagation is coherent. In this talk, we address these issues by investigating a minimal model that captures the essential features of single spinon dynamics in quantum spin ice. We demonstrate that the spinon motion can be thought of as a quantum walk with entropy-induced memory. Our numerical simulation shows that the simple quasi-particle behaviour emerges out of the intricate interplay between the spinon and the background spins .

  16. Tunnel anisotropic magnetoresistance in CoFeB|MgO|Ta junctions

    SciTech Connect

    Hatanaka, S.; Miwa, S. Matsuda, K.; Nawaoka, K.; Tanaka, K.; Morishita, H.; Goto, M.; Mizuochi, N.; Shinjo, T.; Suzuki, Y.

    2015-08-24

    We found that CoFeB|MgO|Ta tunnel junctions exhibit tunnel anisotropic magnetoresistance (TAMR) at room temperature. The tunnel junctions exhibit positive magnetoresistance with the application of a magnetic field normal to the film plane. The dependencies on the applied magnetic field angle and MgO thickness reveal that the magnetoresistance originates from the TAMR, caused by the spin polarization and the spin-orbit interaction at the CoFeB|MgO interface. We also found that the TAMR can be used to detect ferromagnetic resonance in the CoFeB. This detection method could be useful for the characterization of nanomagnets that are free from the spin-transfer effect and the stray field of a reference layer, unlike conventional magnetic tunnel junctions.

  17. The carpal tunnel.

    PubMed

    Ellis, Harold

    2009-12-01

    The carpal bones are deeply convex anteriorly. This bony gutter is converted by the flexor retinaculum into a tube - the carpal tunnel, which conveys the median nerve, together with the long flexor tendons of the fingers and thumb, into the hand. It is of special interest to the surgeon because it is the site of a common nerve entrapment, the carpal tunnel syndrome.

  18. Shotcrete in tunnel design

    SciTech Connect

    Golser, J.; Galler, R.; Schubert, P.; Rabensteiner, K.

    1995-12-31

    Shotcrete is an important structural element for tunnel support. Green shotcrete is exposed to compression strain rates and tunnel design requires a realistic material law for shotcrete. A modified rate of flow method simulates shotcrete behavior very well and can be incorporated in Finite Element calculations.

  19. The Vertical Wind Tunnel of the National Advisory Committee for Aeronautics

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris, Thomas A

    1931-01-01

    The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics is described in this report. The tunnel was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the spin of an airplane. Satisfactory air flow has been attained with a velocity that is uniform over the jet to within plus or minus 0.5 per cent. The turbulence present in the tunnel has been compared with that of several other tunnels by means of the results of sphere drag tests and was found to average well with the values of those tunnels. Included also in the report are comparisons of results of stable autorotation and of rolling-moment test obtained both in the vertical tunnel and in the old horizontal 5-foot atmospheric tunnel. (author)

  20. Pure second harmonic current-phase relation in spin-filter Josephson junctions.

    PubMed

    Pal, Avradeep; Barber, Z H; Robinson, J W A; Blamire, M G

    2014-01-01

    Higher harmonics in current-phase relations of Josephson Junctions are predicted to be observed when the first harmonic is suppressed. Conventional theoretical models predict higher harmonics to be extremely sensitive to changes in barrier thickness, temperature, and so on. Here we report experiments with Josephson junctions incorporating a spin-dependent tunnelling barrier, revealing a current-phase relation for highly spin polarized barriers that is purely second harmonic in nature and is insensitive to changes in barrier thickness. This observation implies that the standard theory of Cooper pair transport through tunnelling barriers is not applicable for spin-dependent tunnelling barriers.

  1. Tunneling conductance in a two-dimensional Dirac semimetal protected by nonsymmorphic symmetry

    NASA Astrophysics Data System (ADS)

    Habe, Tetsuro

    2017-03-01

    We theoretically study a tunneling effect in a two-dimensional Dirac semimetal with two Dirac points protected by nonsymmorphic symmetries. The tunnel barrier can be arranged by a magnetic exchange potential which opens a gap at the Dirac points which can be induced by a magnetic proximity effect of a ferromagnetic insulator. We found that the tunnel decay length increases with a decrease in the strength of the spin-orbit coupling, and moreover the dependence is attributed to the correlation of sublattice and spin degrees of freedom which lead to symmetry-protected Dirac points. The tunnel probability is quite different in two Dirac points, and thus the tunnel effect can be applied to the highly selective valley filter.

  2. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6 μW) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  3. Tunneling from super- to normal-deformed minima in nuclei.

    SciTech Connect

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  4. Tunneling and Transport in Clean Ferromagnet-Superconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Te; Valls, Oriol; Halterman, Klaus

    2014-03-01

    We study charge and spin transport in clean Ferromagnet (F)-Superconductor (S) layered structures. By combining a transfer matrix method with a numerical self-consistent solution of the Bogoliubov-de Gennes (BdG) equations, we compute the spin dependent tunneling conductance in F-F-S trilayers in a range of exchange fields and layer thicknesses. In particular, we investigate the dependence of the tunneling conductance on the angle α between the magnetizations in two F layers. We find a variety of non-monotonic and switching behaviors in these heterostructures. We also present results for charge and spin transport in S-F-F-S Josephson junctions. C.-T. Wu and O. T. Valls are supported in part by IARPA under Grant No. N66001-12-1-2023. C.-T. Wu is also supported by the University of Minnesota's Doctoral Dissertation Fellowship.

  5. The Stability Tunnel

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Engineers operate the controls of the Stability Tunnel: Plans for a new tunnel to study stability problems began in the late thirties. The Stability Tunnel was authorized in 1939 and began operations in June 1941. The installation was completed in December that year with the completion of a new 10,000 Horsepower Diesel-electric generating plant. It was a single return, closed jet tunnel with a 6-foot square test section. The tunnel was disassembled and shipped to Virginia Polytechnic Institute and State University in 1958. The tunnel had two separate test sections: one for curved flow, the other for rolling flow. 'The facility...simulates the motion of the aircraft in curved or rolling flight. This is done by actually curving or rolling the airstream as it passes over the model and at the same time providing the proper velocity distribution.' (From AIAA-80-0309) >From Alan Pope, Wind-Tunnel Testing: 'The only tunnel directly designed for dynamic stability work is located at the Langley Field branch of the NACA. Its most vital feature is its ability to subject the models to curving air streams that simulate those actually encountered when an airplane rolls, pitches, or yaws. the rotating airstream for simulating roll is produced by a motor-driven paddle just ahead of the test section. Curved air of properly varying velocity for simulating pitch and yaw is produced by a combination of a curved test section and velocity screens. The proper use of this apparatus makes possible the determination of the stability derivatives.' Published in F.H. Lutze, 'Experimental Determination of Pure Rotary Stability Derivatives using a Curved and Rolling Flow Wind Tunnel,' AIAA-80-0309, AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, January 14-16, 1980; Alan Pope, Wind-Tunnel Testing (New York: John Wiley & Sons, 1947).

  6. Extremely large, gate tunable spin Hall angle in 3D Topological Insulator pn junction

    NASA Astrophysics Data System (ADS)

    Habib, K. M. Masum; Sajjad, Redwan; Ghosh, Avik

    2015-03-01

    The band structure of the surface states of a three dimensional Topological Insulator (3D TI) is similar to that of graphene featuring massless Dirac Fermions. We show that due to this similarity, the chiral tunneling of electron in a graphene pn junction also appears in 3D TI. Electrons with very small incident angle (modes) are allowed to transmit through a TI pn junction (TIPNJ) due to the chiral tunneling. The rest of the electrons are reflected. As a result, the charge current in a TIPNJ is suppressed. Due to the spin momentum locking, all the small angle modes are spin-down states. Therefore, the transmitted end of the TIPNJ becomes highly spin polarized. On the other hand, the spin of the reflected electron is flipped due to spin momentum locking. This enhances the spin current at the injection end. Thus, the interplay between the chiral tunneling and spin momentum locking reduces the charge current but enhances the spin current at the same time, leading to an extremely large (~20) spin Hall angle. Since the chiral tunneling can be controlled by an external electric field, the spin Hall angle is gate tunable. The spin current generated by a TIPNJ can be used for energy-efficient switching of nanoscaled ferromagnets, which is an essential part of spintronic devices. This work is supported by the NRI INDEX center.

  7. Charged fermions tunneling from regular black holes

    SciTech Connect

    Sharif, M. Javed, W.

    2012-11-15

    We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.

  8. Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar

    2014-07-01

    The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.

  9. Distance- and spin-resolved spectroscopy of iridium atoms on an iron bilayer

    NASA Astrophysics Data System (ADS)

    Schöneberg, Johannes; Caffrey, Nuala Mai; Ferriani, Paolo; Heinze, Stefan; Berndt, Richard

    2016-09-01

    The induced spin polarization of Ir atoms on a ferromagnetic Fe double layer on W(110) has been investigated with spin-polarized scanning tunneling microscopy. An unoccupied state is observed with a spin polarization exceeding 60 % that is inverted with respect to the Fe layer. This inversion is due to the tunneling gap acting as an orbital and spin filter. Distance dependent measurements show that the spin polarization remains approximately constant over the entire experimentally accessible range, from far in the tunneling regime to 1 Å from the point of contact formation. This is corroborated by density functional theory calculations which show that the inversion of spin polarization occurs within 0.5 Å of the adatom.

  10. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  11. Thermal creation of electron spin polarization in n-type silicon

    SciTech Connect

    Dankert, André Dash, Saroj P.

    2013-12-09

    Conversion of heat into a spin-current in electron doped silicon can offer a promising path for spin-caloritronics. Here, we create an electron spin polarization in the conduction band of n-type silicon by producing a temperature gradient across a ferromagnetic tunnel contact. The substrate heating experiments induce a large spin signal of 95 μV, corresponding to 0.54 meV spin-splitting in the conduction band of n-type silicon by Seebeck spin tunneling mechanism. The thermal origin of the spin injection has been confirmed by the quadratic scaling of the spin signal with the Joule heating current and linear dependence with the heating power.

  12. [Anterior tarsal tunnel syndrome].

    PubMed

    Miliam, Palle B; Basse, Peter N

    2009-03-30

    Anterior tarsal tunnel syndrome is a rare entrapment neuropathy of the deep peroneal nerve beneath the extensor retinaculum of the ankle. It may be rare because it is underrecognized clinically.We present a case regarding a 29-year-old man, drummer, who for one and a half year experienced clinical symptoms of anterior tarsal tunnel syndrome. A surgical decompression of the anterior tarsal tunnel was performed, and at the check three months later the symptoms where gone. One year after, there were still no symptoms.

  13. Quantum interference effects in molecular spin hybrids

    NASA Astrophysics Data System (ADS)

    Esat, Taner; Friedrich, Rico; Matthes, Frank; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan; Bürgler, Daniel E.; Tautz, F. Stefan; Schneider, Claus M.

    2017-03-01

    We have studied by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) single molecular spin hybrids formed upon chemisorbing a polycyclic aromatic, threefold symmetric hydrocarbon molecule on Co(111) nanoislands. The spin-dependent hybridization between the Co d states and the π orbitals of the molecule leads to a spin-imbalanced electronic structure of the chemisorbed organic molecule. Spin-sensitive measurements reveal that the spin polarization shows intramolecular variations among the different aromatic rings in spite of the highly symmetric adsorption geometry promoted by symmetry matching of the threefold symmetric molecule and the sixfold symmetric Co(111) lattice. Hence the varying degree of spin polarization on the organic molecule does not stem from a different hybridization of the aromatic rings with the Co atoms, but is proposed to be a consequence of the superposition of the spin polarization of the molecule and the spatially modulated spin polarization of the spin-dependent quantum interference pattern of the Co(111) surface state.

  14. Gate tunable spin transport in graphene with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Tan, Xiao-Dong; Liao, Xiao-Ping; Sun, Litao

    2016-10-01

    Recently, it attracts much attention to study spin-resolved transport properties in graphene with Rashba spin-orbit coupling (RSOC). One remarkable finding is that Klein tunneling in single layer graphene (SLG) with RSOC (SLG + R for short below) behaves as in bi-layer graphene (BLG). Based on the effective Dirac theory, we reconsider this tunneling problem and derive the analytical solution for the transmission coefficients. Our result shows that Klein tunneling in SLG + R and BLG exhibits completely different behaviors. More importantly, we find two new transmission selection rules in SLG + R, i.e., the single band to single band (S → S) and the single band to multiple bands (S → M) transmission regimes, which strongly depend on the relative height among Fermi level, RSOC, and potential barrier. Interestingly, in the S → S transmission regime, only normally incident electrons have capacity to pass through the barrier, while in the S → M transmission regime the angle-dependent tunneling becomes very prominent. Using the transmission coefficients, we also derive spin-resolved conductance analytically, and conductance oscillation with the increasing barrier height and zero conductance gap are found in SLG + R. The present study offers new insights and opportunities for developing graphene-based spin devices.

  15. Spin ice dynamics

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph William

    2003-07-01

    Geometrically frustrated magnets (GFMs) are materials in which it is impossible to satisfy all exchange interactions due the geometry of the lattice. The frustration of interactions is the origin of many unique and interesting material properties. GFMs are typified by large ground state degeneracy and will undergo spin fluctuations down to temperatures well below theta W, where un-frustrated materials display long-range order. This results in the development of correlated magnetic states that are analogous to various structural phases of matter such as spin glasses and spin liquids. Very recently, another magnetic-structural analog has been discovered where the magnetic properties show distinct similarities with the structural properties of a common substance that has itself long perplexed scientists, water ice. The aptly named spin ice compounds have been shown to exhibit the same "ground state entropy" as water ice and to be well characterized by consideration in terms of the "ice model". In this thesis, we explore the low temperature dynamics of the spins in the spin ice compound Dy2Ti2O7 through measurements of the magnetization and ac susceptibility. We show that the ground state represents a unique form of glassiness in a dense magnetic system. Our results show the onset of irreversibility and the development of a metastable state where the dynamics are significantly slowed but no long-range order is achieved below Tirr ˜ 650 mK. The system is also shown to display unique properties at higher temperatures with a partial freezing of the ac susceptibility at T ˜ 16 K. This freezing is shown to be thermally activated in nature above Tcross ˜ 12 K below which it is driven by quantum tunneling until it assumes faster than activated behavior at T ice ˜ 4 K. The freezing is shown to occur over a very narrow range of relaxation time constants, similar to that seen in the dielectric constants of ice. Measurements of Dy2-xYxTi2O 7, where the J = 15/2 Dy3+ ions were

  16. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  17. Enhancing Spin Filters by Use of Bulk Inversion Asymmetry

    NASA Technical Reports Server (NTRS)

    Ting, David; Cartoixa,Xavier

    2007-01-01

    Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.

  18. Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2015-05-01

    In recent years, studies on cyclic molecular nanomagnets have captivated the attention of researchers. These magnets are finite in size and contain very large spins. They are interesting because they possess macroscopic quantum tunneling of Néel vectors. For antiferromagnetic molecular nanomagnets with finite number of even-numbered coupled spins, tunneling involves two classical localized Néel ground states separated by a magnetic energy barrier. The question is: can such phenomena be observed in nanomagnets with odd number of magnetic ions? The answer is not directly obvious because cyclic chains with odd-numbered coupled spins are frustrated as one cannot obtain a perfect Néel order. These frustrated spins can indeed be observed experimentally, so they are of interest. In this letter, we theoretically investigate macroscopic quantum tunneling in this odd spin system with arbitrary spins s, in the presence of a magnetic field applied along the plane of the magnet. In contrast to systems with an even-numbered coupled spins, the ground state of the cyclic odd-spin system contains a topological soliton due to spin frustration. Thus, the classical ground state is 2N-fold degenerate as the soliton can be placed anywhere along the ring with total S_z=+/- s . Small quantum fluctuations delocalize the soliton with a formation of an energy band. We obtain this energy band using degenerate perturbation theory at order 2s. We show that the soliton ground state is chiral for half-odd integer spins and non-chiral for integer spins. From the structure of the energy band we infer that as the value of the spin increases the inelastic polarized neutron-scattering intensity may increase or decrease depending on the strengths of the parameters of the Hamiltonian.

  19. Carpal tunnel release

    MedlinePlus

    ... you are taking. This includes medicines, supplements, or herbs you bought without a prescription. You may be ... gov/pubmed/23026458 . Zhao M, Burke DT. Median neuropathy (carpal tunnel syndrome). In: Frontera WR, Silver JK, ...

  20. Endoscopic cubital tunnel release.

    PubMed

    Cobb, Tyson K

    2010-10-01

    A minimally invasive endoscopic approach has been successfully applied to surgical treatment of cubital tunnel syndrome. This procedure allows for smaller incisions with faster recovery time. This article details relevant surgical anatomy, indications, contraindications, surgical technique, complications, and postoperative management.

  1. Inelastic electron tunneling spectroscopy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.

    1983-01-01

    Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10 to the 10th molecules (a fraction of a monolayer) on a 1 sq mm junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.

  2. Generic fixed point model for pseudo-spin-1/2 quantum dots in nonequilibrium: Spin-valve systems with compensating spin polarizations

    NASA Astrophysics Data System (ADS)

    Göttel, Stefan; Reininghaus, Frank; Schoeller, Herbert

    2015-07-01

    We study a pseudo-spin-1/2 quantum dot in the cotunneling regime close to the particle-hole symmetric point. For a generic tunneling matrix we find a fixed point with interesting nonequilibrium properties, characterized by effective reservoirs with compensating spin orientation vectors weighted by the polarizations and the tunneling rates. At large bias voltage we study the magnetic field dependence of the dot magnetization and the current. The fixed point can be clearly identified by analyzing the magnetization of the dot. We characterize the universal properties for the case of two reservoirs and discuss deviations from the fixed point model in experimentally realistic situations.

  3. World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA's National Full Scale Aerodynamics Complex, which houses two of the world's largest wind tunnels and has been used for testing experimental aircraft since 1944, is presented. This video highlights the structure and instrumentation of the 40 x 80 foot and 80 x 120 foot wind tunnels and documents their use in testing full scale aircraft, NASA's Space Shuttle and the XV-15 Tiltrotor aircraft.

  4. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1991-01-01

    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described.

  5. Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of motor fairing for the fan motors of the Full-Scale Tunnel (FST). The motors and their supporting structures were enclosed in aerodynamically smooth fairings to minimize resistance to the air flow. Close examination of this photograph reveals the complicated nature of constructing a wind tunnel. This motor fairing, like almost every other structure in the FST, represents a one-of-a-kind installation.

  6. Asymmetric and Negative Differential Thermal Spin Effect at Magnetic Interfaces: Towards Spin Seebeck Diodes and Transistors

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2014-03-01

    We study the nonequilibrium thermal-spin transport across metal-magnetic insulator interfaces. The transport is assisted by the exchange interaction between conduction electrons in the metal and localized spins in the magnetic insulator. We predict the rectification and negative differential spin Seebeck effect (SSE), that is, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing spin current. We resolve their microscopic mechanism as a consequence of the energy-dependent electronic DOS in the metal. The rectification of spin Peltier effect is also discussed. We then study the asymmetric and negative differential magnon tunneling driven by temperature bias. We show that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential SSEs in magnon tunneling junctions. We show that these asymmetric and negative differential SSEs are relevant for building magnon and spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in functional devices. Supported by the National Nuclear Security Administration of the US DOE at LANL under Contract No. DE-AC52-06NA25396.

  7. Enhancing spin injection efficiency through half-metallic miniband conduction in a spin-filter superlattice

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Hang; Li, Lin; Liu, Fen; Gao, Zhi-Wei; Miao, Guo-Xing

    2016-02-01

    We theoretically and numerically studied the band structure and spin transport of electrons subject to a superlattice structure where magnetic semiconductor layers lie between normal semiconductor layers to form periodic spin-filter tunnel barriers. In this alternately deposited superlattice structure, due to the induced periodicity of the envelope wavefunctions, there are additional allowed and forbidden energy regions established, i.e. forming minibands that are far narrower than the conventional conduction bands. The number and thickness of the stacked potential profiles can finely tune these minibands. The spin dependent potential barriers also induce spin splitting at the bottom of each miniband, which generates strongly spin-dependent miniband conduction. Most strikingly, the lowest lying miniband is 100% spin-polarized mimicking a half-metallic behavior on this conduction channel. The total transmission electron current carries thus near-perfectly polarized spin currents when the superlattice falls into suitable miniband conduction regime. This half-metallic miniband enhanced spin-filtering capability paves the way to generate highly polarized spin current without incurring exponentially increased device impedance, as usually happens when only a single spin-filter barrier is applied.

  8. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  9. Experimental simulation of quantum tunneling in small systems.

    PubMed

    Feng, Guan-Ru; Lu, Yao; Hao, Liang; Zhang, Fei-Hao; Long, Gui-Lu

    2013-01-01

    It is well known that quantum computers are superior to classical computers in efficiently simulating quantum systems. Here we report the first experimental simulation of quantum tunneling through potential barriers, a widespread phenomenon of a unique quantum nature, via NMR techniques. Our experiment is based on a digital particle simulation algorithm and requires very few spin-1/2 nuclei without the need of ancillary qubits. The occurrence of quantum tunneling through a barrier, together with the oscillation of the state in potential wells, are clearly observed through the experimental results. This experiment has clearly demonstrated the possibility to observe and study profound physical phenomena within even the reach of small quantum computers.

  10. Spin torque ferromagnetic resonance with magnetic field modulation

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. M.; Barsukov, I.; Chen, Y.-J.; Yang, L.; Katine, J. A.; Krivorotov, I. N.

    2013-10-01

    We demonstrate a technique of broadband spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation for measurements of spin wave properties in magnetic nanostructures. This technique gives great improvement in sensitivity over the conventional ST-FMR measurements, and application of this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR measurements with micromagnetic simulations of the spin wave spectrum allows us to explain the character of low-frequency magnetic excitations in nanoscale MTJs.

  11. Field assisted spin switching in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.; Park, J. H.; Oh, J. H.; Koh, G. H.; Jeong, G. T.; Jeong, H. S.; Kim, Kinam

    2006-04-01

    A switching method called by field assisted spin switching has been investigated. A field assisted spin switching consists of a metal line induced magnetic field and a spin switching through a magnetic tunnel junction. It is a variation of a current induced switching and assisted by the magnetic field induced by the current-carrying metal line. Various current paths have been tested to investigate how and how much the spin switching contributes to the overall switching and the results will be explained. A computer simulation has been complemented to measure the degree of the thermal effect in the switching.

  12. Spin accumulation on a one-dimensional mesoscopic Rashba ring.

    PubMed

    Zhang, Zhi-Yong

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  13. Pumped double quantum dot with spin-orbit coupling.

    PubMed

    Khomitsky, Denis; Sherman, Eugene

    2011-03-11

    We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn.

  14. Spin injection from a normal metal into a mesoscopic superconductor

    NASA Astrophysics Data System (ADS)

    Wolf, M. J.; Hübler, F.; Kolenda, S.; v. Löhneysen, H.; Beckmann, D.

    2013-01-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.

  15. Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin

    NASA Astrophysics Data System (ADS)

    Giavaras, G.

    2017-03-01

    Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.

  16. Spintronic Oscillator Based on Spin-Current Feedback Using the Spin Hall Effect

    NASA Astrophysics Data System (ADS)

    Bhuktare, Swapnil; Singh, Hanuman; Bose, Arnab; Tulapurkar, Ashwin. A.

    2017-01-01

    We propose a radio-frequency nano-oscillator based on feedback of spin current into a magnetic tunnel junction (MTJ) with an in-plane magnetized pinned layer and an out-of-plane magnetized free layer. The MTJ is connected to a "feedback" strip of a material like tungsten with a giant spin Hall effect. On passing a dc current through the MTJ, the thermal fluctuations of its free layer produce an oscillatory voltage across itself owing to the magnetoresistance effect. This oscillatory voltage drives an oscillatory current into the tungsten strip which converts this charge current into spin current via the spin Hall effect and feeds it back to the MTJ. We show that this feedback can amplify the fluctuations further and drive the free layer into periodic precessional states. We also propose a way of implementing spin-current feedback by using a nanomagnet coupled to the free layer of the MTJ by dipolar magnetic field.

  17. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation.

    PubMed

    Macià, Ferran; Kent, Andrew D; Hoppensteadt, Frank C

    2011-03-04

    Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.

  18. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    PubMed Central

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  19. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    NASA Astrophysics Data System (ADS)

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-06-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported.

  20. Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.

    PubMed

    Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C

    2012-04-06

    A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque.

  1. RHIC spin program

    SciTech Connect

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  2. Influence of Temperature on the Performance of a Spin-Torque Microwave Detector

    DTIC Science & Technology

    2012-11-01

    diode voltages in magnetic tunnel junctions,” in Abstracts IEEE 7th Int. Symp. Metallic Multilayers (MML 2010), I-40, Berkeley, CA, Sep. 2010. [14] A...dependence of spin torque diode voltages in magnetic tunnel junctions,” in Abstracts IEEE 7th Int. Symp. Metallic Multilayers (MML 2010), I-40, Berkeley, CA... ferromagnetic resonance frequency of the magnetic tunnel junction (MTJ). In this case the induced resonance oscillations of the junction resistance can mix

  3. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions.

    PubMed

    Yuasa, Shinji; Nagahama, Taro; Fukushima, Akio; Suzuki, Yoshishige; Ando, Koji

    2004-12-01

    The tunnel magnetoresistance (TMR) effect in magnetic tunnel junctions (MTJs) is the key to developing magnetoresistive random-access-memory (MRAM), magnetic sensors and novel programmable logic devices. Conventional MTJs with an amorphous aluminium oxide tunnel barrier, which have been extensively studied for device applications, exhibit a magnetoresistance ratio up to 70% at room temperature. This low magnetoresistance seriously limits the feasibility of spintronics devices. Here, we report a giant MR ratio up to 180% at room temperature in single-crystal Fe/MgO/Fe MTJs. The origin of this enormous TMR effect is coherent spin-polarized tunnelling, where the symmetry of electron wave functions plays an important role. Moreover, we observed that their tunnel magnetoresistance oscillates as a function of tunnel barrier thickness, indicating that coherency of wave functions is conserved across the tunnel barrier. The coherent TMR effect is a key to making spintronic devices with novel quantum-mechanical functions, and to developing gigabit-scale MRAM.

  4. Seebeck effect in magnetic tunnel junctions.

    PubMed

    Walter, Marvin; Walowski, Jakob; Zbarsky, Vladyslav; Münzenberg, Markus; Schäfers, Markus; Ebke, Daniel; Reiss, Günter; Thomas, Andy; Peretzki, Patrick; Seibt, Michael; Moodera, Jagadeesh S; Czerner, Michael; Bachmann, Michael; Heiliger, Christian

    2011-10-01

    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 μV K⁻¹ from the antiparallel to the parallel direction close to the predicted value of -12.1 μV K⁻¹. In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.

  5. Single Electron Tunneling

    SciTech Connect

    Ruggiero, Steven T.

    2005-07-25

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  6. Suppression of tunneling rate fluctuations in tunnel field-effect transistors by enhancing tunneling probability

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Migita, Shinji; Fukuda, Koichi; Asai, Hidehiro; Morita, Yukinori; Mizubayashi, Wataru; Liu, Yongxun; O’uchi, Shin-ichi; Fuketa, Hiroshi; Otsuka, Shintaro; Yasuda, Tetsuji; Masahara, Meishoku; Ota, Hiroyuki; Matsukawa, Takashi

    2017-04-01

    This paper discusses the impact of the tunneling probability on the variability of tunnel field-effect transistors (TFETs). Isoelectronic trap (IET) technology, which enhances the tunneling current in TFETs, is used to suppress the variability of the ON current and threshold voltage. The simulation results show that suppressing the tunneling rate fluctuations results in suppression of the variability. In addition, a formula describing the relationship between the tunneling rate fluctuations and the electric field strength is derived based on Kane’s band-to-band tunneling model. This formula indicates that the magnitude of the tunneling rate fluctuations is proportional to the magnitude of the fluctuations in the electric field strength and a higher tunneling probability results in a lower variability. The derived relationship is universally valid for any technologies that exploit enhancement of the tunneling probability, including IET technology, channel material engineering, heterojunctions, strain engineering, etc.

  7. Improved tunneling magnetoresistance in (Ga,Mn)As/AlOx/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yu, G. Q.; Chen, L.; Rizwan, Syed; Zhao, J. H.; XU, K.; Han, X. F.

    2011-06-01

    We fabricated (Ga,Mn)As/AlOx/Co40Fe40B20 magnetic tunnel junctions with ferromagnetic semiconductor/insulator/ferromagnetic metal (S/I/F) structure. The treatments of pre-annealing and post-plasma cleaning on the (Ga,Mn)As film were introduced before the growth of the subsequent layers. A high tunneling magnetoresistance (TMR) ratio of 101% is achieved at 2 K, and the spin polarization of (Ga,Mn)As, P = 56.8%, is deduced from Jullière's formula. The improved TMR ratio is primarily due to the improved magnetism of (Ga,Mn)As layer by low-temperature annealing and cleaned interface between (Ga,Mn)As and AlOx attained by subsequent plasma cleaning process.

  8. Microscopic understanding of spin current probed by shot noise

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  9. Carpal Tunnel Syndrome

    PubMed Central

    Zimmerman, Gregory R.

    1994-01-01

    Carpal tunnel syndrome is a neuropathy resulting from compression of the median nerve as it passes through a narrow tunnel in the wrist on its way to the hand. The lack of precise objective and clinical tests, along with symptoms that are synonymous with other syndromes in the upper extremity, cause carpal tunnel syndrome to appear to be a rare entity in athletics. However, it should not be ruled out as a possible etiology of upper extremity paralysis in the athlete. More typically, carpal tunnel syndrome is the most common peripheral entrapment neuropathy encountered in industry. Treatment may include rest and/or splinting of the involved wrist, ice application, galvanic stimulation, or iontophoresis to reduce inflammation, and then transition to heat modalities and therapeutic exercises for developing flexibility, strength, and endurance. In addition, an ergonomic assessment should be conducted, resulting in modifications to accommodate the carpal tunnel syndrome patient. ImagesFig 3.Fig 4.Fig 5.Fig 6.Fig 7. PMID:16558255

  10. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  11. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales, Juan Pedro; Martínez, Isidoro; Katmis, Ferhat; Chang, Cui-Zu; Guerrero, Rubén; Moodera, Jagadeesh S.; Aliev, Farkhad G.

    2015-12-01

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  12. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales Sandoval, Juan Pedro; Martinez, Isidoro; Guerrero, Ruben; Chang, Cui-Zu; Katmis, Ferhat; Moodera, Jagadeesh; Aliev, Farkhad

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunnelling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunnelling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  13. Room temperature electrical spin injection into GaAs by an oxide spin injector

    PubMed Central

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2014-01-01

    Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices. PMID:24998440

  14. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  15. Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy.

    PubMed

    Pertsev, Nikolay A

    2013-09-25

    Spin-polarized currents represent an efficient tool for manipulating ferromagnetic nanostructures but the critical current density necessary for the magnetization switching is usually too high for applications. Here we show theoretically that, in magnetic tunnel junctions having electric-field-dependent interfacial anisotropy, the critical density may reduce down to a very low level (~10(4) A cm(-2)) when the junction combines small conductance with the proximity of free layer to a size-driven spin reorientation transition. The theory explains easy magnetization switching recently discovered in CoFeB/MgO/CoFeB tunnel junctions, surprisingly showing that it happens when the spin-transfer torque is relatively small, and provides a recipe for the fabrication of magnetic tunnel junctions suitable for industrial memory applications.

  16. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    SciTech Connect

    Kaiju, Hideo Takei, Masashi; Misawa, Takahiro; Nishii, Junji; Nagahama, Taro; Xiao, Gang

    2015-09-28

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices.

  17. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  18. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  19. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  20. View down tank tunnel (tunnel no. 2) showing pipes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View down tank tunnel (tunnel no. 2) showing pipes and walkway of metal grating, side tunnel to tank 3 is on the left - U.S. Naval Base, Pearl Harbor, Diesel Purification Plant, North Road near Pierce Street, Pearl City, Honolulu County, HI

  1. Role of coherence in transport through engineered atomic spin devices

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.; Ribeiro, Pedro

    2016-12-01

    We give a further step in the quantum mechanical description of engineered atomic spin structures by deriving a master equation of the Redfield type that governs the dynamics of the atomic spin density matrix. By generalizing this approach to charge-specific density matrices, we are able to describe magnetic transport quantities, such as the average inelastic current and the shot noise, accessible by tunneling spectroscopy. Our method suitably describes moderate lead-atom coupling regimes where quantum coherence effects cannot be disregarded. We contrast our approach with the existing descriptions in terms of rate equations and show examples where coherence effects are crucial to understand the physics of spin-polarized tunnel current through spin structures.

  2. Electrical detection of spin hyperpolarization in InP

    NASA Astrophysics Data System (ADS)

    Caspers, Christian; Ansermet, Jean-Philippe

    2014-09-01

    The electrical detection of surface spin polarization in Indium Phosphide (InP) is demonstrated. Using a planar four-terminal architecture on top of semi-insulating Fe:InP (001) wafers, optical orientation is separated from electrical detection. Spin filter tunnel contacts consisting of InP/oxide/Co reveal significant asymmetries in the differential resistance upon helicity change of the optical pumping. The iron-rich tunnel oxide provides the main spin selection mechanism. A reproducible helicity-dependent asymmetry as high as 18% could be observed at T = 55 K and an external induction field μ0H = 1 T. At room temperature and zero external field, a helicity-dependent asymmetry of 6% suggests the stand-alone applicability of the device either as an electronic spin sensor or as an optical helicity sensor.

  3. Tunneling into and between helical edge states: Fermionic approach

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.; Niyazov, R. A.

    2016-07-01

    We study the four-terminal junction of spinless Luttinger liquid wires, which describes either a corner junction of two helical edge states of topological insulators or the tunneling from the spinful wire into the helical edge state. We use the fermionic representation and the scattering state formalism, in order to compute the renormalization group (RG) equations for the linear response conductances. We establish our approach by considering a junction between two possibly nonequivalent helical edge states and find an agreement with the earlier analysis of this situation. Tunneling from the tip of the spinful wire to the edge state is further analyzed which requires some modification of our formalism. In the latter case we demonstrate (i) the existence of both fixed lines and conventional fixed points of RG equations, and (ii) certain proportionality relations holding for conductances during renormalization. The scaling exponents and phase portraits are obtained in all cases.

  4. Low-temperature phonoemissive tunneling rates in single molecule magnets

    SciTech Connect

    Liu, Yun; Garg, Anupam

    2016-03-15

    Tunneling between the two lowest energy levels of single molecule magnets with Ising type anisotropy, accompanied by the emission or absorption of phonons, is considered. Quantitatively accurate calculations of the rates for such tunneling are performed for a model Hamiltonian especially relevant to the best studied example, Fe{sub 8}. Two different methods are used: high-order perturbation theory in the spin–phonon interaction and the non-Ising-symmetric parts of the spin Hamiltonian, and a novel semiclassical approach based on spin-coherent-state-path-integral instantons. The methods are found to be in good quantitative agreement with other, and consistent with previous approaches to the problem. The implications of these results for magnetization of molecular solids of these molecules are discussed briefly.

  5. Aorto-ventricular tunnel

    PubMed Central

    McKay, Roxane

    2007-01-01

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta. PMID:17922908

  6. Aorto-ventricular tunnel.

    PubMed

    McKay, Roxane

    2007-10-08

    Aorto-ventricular tunnel is a congenital, extracardiac channel which connects the ascending aorta above the sinutubular junction to the cavity of the left, or (less commonly) right ventricle. The exact incidence is unknown, estimates ranging from 0.5% of fetal cardiac malformations to less than 0.1% of congenitally malformed hearts in clinico-pathological series. Approximately 130 cases have been reported in the literature, about twice as many cases in males as in females. Associated defects, usually involving the proximal coronary arteries, or the aortic or pulmonary valves, are present in nearly half the cases. Occasional patients present with an asymptomatic heart murmur and cardiac enlargement, but most suffer heart failure in the first year of life. The etiology of aorto-ventricular tunnel is uncertain. It appears to result from a combination of maldevelopment of the cushions which give rise to the pulmonary and aortic roots, and abnormal separation of these structures. Echocardiography is the diagnostic investigation of choice. Antenatal diagnosis by fetal echocardiography is reliable after 18 weeks gestation. Aorto-ventricular tunnel must be distinguished from other lesions which cause rapid run-off of blood from the aorta and produce cardiac failure. Optimal management of symptomatic aorto-ventricular tunnel consists of diagnosis by echocardiography, complimented with cardiac catheterization as needed to elucidate coronary arterial origins or associated defects, and prompt surgical repair. Observation of the exceedingly rare, asymptomatic patient with a small tunnel may be justified by occasional spontaneous closure. All patients require life-long follow-up for recurrence of the tunnel, aortic valve incompetence, left ventricular function, and aneurysmal enlargement of the ascending aorta.

  7. Subsonic Aerodynamics of Spinning and Non-Spinning Type 200 Lightcraft: Progress Report

    NASA Astrophysics Data System (ADS)

    Kenoyer, David A.; Myrabo, Leik N.

    2010-05-01

    A combined experimental and numerical investigation of subsonic aerodynamics for Type 200 laser lightcraft is underway for both spinning and non-spinning cases. A 12.2 cm diameter aluminum model with a "closed" annular airbreathing inlet was fitted to a sting balance in RPI's 61 cm by 61 cm subsonic wind tunnel. Aerodynamic forces and moments were measured first for the non-spinning case vs. angle of attack, at several freestream flow velocities (e.g., 30, 45, and 60 m/s) to assess Reynolds number effects. The CFD analysis was performed for 0-180° angles of attack for a fixed coordinate system (i.e., non-spinning Type 200 model), and predictions compared favorably with the experimental data. In the near future, for the spinning case, a brushless electric motor has been installed to rotate the wind tunnel model at 3000 to 13,000 RPM; Magnus force effects upon the coefficients (Cd, Cl, and Cm) are expected to reveal interesting departures from the non-spinning database in forthcoming experiments.

  8. Future tunnelling projects in Iceland

    SciTech Connect

    Jonsson, B. )

    1992-04-01

    More than 300 km of hydro tunnels and 80-90 km of road tunnels could be excavated in Iceland before the year 2050. In order to complete this task, an average of 6-7 km of tunnel per year would have to be driven. This volume of tunnelling is estimated to cost more than $US1 billion, which could be divided as follows: (a) about 100 km of 3.5-m-wide diversion hydro tunnels (unsupported), for a total of $90 million; (b) approx. 100 km of 5-m-wide hydro tunnels (supported), for a total of $210 million; (c) about 100 km of 7.6-m-wide hydro tunnels (supported), for a total of $380 million; and (d) approx. 85 km of road tunnels with 25 m[sup 2] cross-section, for a total of $435 million. 5 refs., 5 figs., 4 tabs.

  9. Carpal Tunnel Syndrome (For Kids)

    MedlinePlus

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Taking Care of Your Ears Taking ... an X-ray Carpal Tunnel Syndrome KidsHealth > For Kids > Carpal Tunnel Syndrome Print A A A What's ...

  10. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  11. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  12. Tunneling in axion monodromy

    NASA Astrophysics Data System (ADS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-10-01

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman's original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  13. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  14. Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    2017-01-01

    We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .

  15. Large magnetoelectric effect in organic ferroelectric copolymer-based multiferroic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Subedi, Ram Chandra; Geng, Rugang; Luong, Hoang Mai; Huang, Weichuan; Li, Xiaoguang; Hornak, Lawrence A.; Nguyen, Tho Duc

    2017-01-01

    We report electrically controlled interfacial spin polarization, or the magnetoelectric effect in multiferroic tunnel junctions by employing organic ferroelectric copolymers, poly(vinylindene fluoride-trifluoroethylene) (P(VDF-TrFE)), as a tunneling barrier. First, we show that the ferroelectric domains and spontaneous ferroelectric polarization of the P(VDF-TrFE) films can be formed in a thin interlayer. Next, we demonstrate that the tunneling magnetoresistance in the unpolarized multiferroic tunnel junction severely quenches from 21% at 20 K to 0.7% at 296 K. Remarkably, we find that the interfacial spin polarization of the device, dubbed spinterface, can be gradually tuned by controlling the ferroelectric polarization with an applied electric field. Specifically, the tunneling electromagnetoresistance can reach around 1000% while the tunneling electroresistance reaches about 30% at 200 K. We speculate that the interface might act as a polarization-dependent spin filter causing the large spinterface effect. The result suggests that organic magnetoelectric-based information storage with four-state bits is feasible at room temperature.

  16. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    PubMed Central

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn–Ge termination layers that are oppositely magnetized to the higher moment Mn–Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible. PMID:26776829

  17. Spinning Characteristics of Wings I : Rectangular Clark Y Monoplane Wing

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerman, C H

    1936-01-01

    A series of wind tunnel tests of a rectangular Clark Y wing was made with the NACA spinning balance as part of a general program of research on airplane spinning. All six components of the aerodynamic force and moment were measured throughout the range of angles of attack, angles of sideslip, and values omega b/2v likely to be attained by a spinning airplane; the results were reduced to coefficient form. It is concluded that a conventional monoplane with a rectangular Clark y wing can be made to attain spinning equilibrium throughout a wide range of angles of attack but that provision of a yawing moment coefficient of -0.02 (against the spin) by the tail, fuselage, and interferences will insure against attainment of equilibrium in a steady spin.

  18. Visualizing Topological Surface States using Scanning Tunneling Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yazdani, Ali

    2010-03-01

    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin-orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Angle resolved photoemission experiments and theoretical efforts have provided strong evidence for bulk topological insulators and their spin-chiral surface states in several Bi-based compounds. We have performed scanning tunneling microscopy and spectroscopic studies of topological surface states on a range of different compounds. I will describe how these experiments illustrate the importance of the spin-texture of these novel states on their scattering and quantum confinement. Experiments demonstrate that these states are protected from backscattering between opposite spin states due to their chiral spin textures. [1]. More recently, our studies were extended to determine the interplay between the influence of spin symmetry on scattering and the possibility of energy level quantization due to geometric confinement for topological surface states. [2] Work was done in collaboration with P. Roushan, J. Seo, H. Beidenkopf, Y.-S. Hor, C. Parker, D. Hsieh, D. Qian, and A. Richardella, M. Z. Hasan, R. Cava. Supported by ARO, ONR, and MRSEC through PCCM. [4pt] [1] P. Roushan et al. Nature 460, 1106 (2009). [0pt] [2] J. Seo et al. submitted (2009).

  19. Quantum Fluctuations of Local Magnetoresistance in Organic Spin Valves

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail; Roundy, Robert; Nemirovsky, Demitry; Kagalovsky, Victor

    2014-03-01

    Aside from interfacial effects, the performance of organic spin valves is limited by the spin memory loss in course of electron transport between the magnetized electrodes. One of the most prominent mechanisms of this loss is the spin precession in the random hyperfine fields of nuclei. We assume that the electron transport is due to incoherent multi-step tunneling. Then the precession takes place while electron ``waits'' for the subsequent tunneling step. While the spatial coherence of electron is lost after a single step, the spin evolution remains absolutely coherent all the way between the electrodes. As a result, the amplitudes of subsequent spin rotation interfere with each other. We demonstrate that this interference leads to a wide spread in the local values of tunnel magnetoresistance (TMR). Moreover, if on average the TMR is positive, the portion of the surface area where the TMR is negative is appreciable. We calculate analytically and numerically the distribution of local TMR as a function of the spin-valve thickness. Supported by the NSF through MRSEC DMR-112125 and by the US-Israel Binational Science Foundation

  20. Carpal tunnel syndrome

    PubMed Central

    2014-01-01

    Introduction Carpal tunnel syndrome is a collection of clinical symptoms and signs caused by compression of the median nerve within the carpal tunnel. However, the severity of symptoms and signs does not often correlate well with the extent of nerve compression. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments, non-drug treatments, and surgical treatments for carpal tunnel syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to October 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 33 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: carpal tunnel release surgery (open and endoscopic), diuretics, local corticosteroids injection, non-steroidal anti-inflammatory drugs (NSAIDs), therapeutic ultrasound, and wrist splints.

  1. Carpal tunnel syndrome

    PubMed Central

    2010-01-01

    Introduction Carpal tunnel syndrome is a neuropathy caused by compression of the median nerve within the carpal tunnel. However, the severity of symptoms and signs does not often correlate well with the extent of nerve damage. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments, non-drug treatments, surgical treatments, and postoperative treatments for carpal tunnel syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 53 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: acupuncture, carpal tunnel release surgery (open and endoscopic), diuretics, internal neurolysis, local and systemic corticosteroids, massage therapy, nerve and tendon gliding exercises, non-steroidal anti-inflammatory drugs (NSAIDs), pyridoxine, therapeutic ultrasound, and wrist splints. PMID:21718565

  2. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  3. Tunnelling with wormhole creation

    SciTech Connect

    Ansoldi, S.; Tanaka, T.

    2015-03-15

    The description of quantum tunnelling in the presence of gravity shows subtleties in some cases. We discuss wormhole production in the context of the spherically symmetric thin-shell approximation. By presenting a fully consistent treatment based on canonical quantization, we solve a controversy present in the literature.

  4. Full Scale Tunnel model

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. The Mystery Tunnel

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1974-01-01

    Describes a mystery tunnel, constructed by teachers, which provides a variety of non-visual, sensory experiences for children as they crawl through it. It is designed to help primary children develop basic abilities to use their own senses to better observe, discriminate among observations, and describe their own perceptions accurately. (JR)

  7. Spin pumping and spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Saitoh, Eiji

    2012-02-01

    Utilization of a spin current, a flow of electrons' spins in a solid, is the key technology in spintronics that will allow the achievement of efficient magnetic memories and computing devices. In this technology, generation and detection of spin currents are necessary. Here, we review inverse spin-Hall effect and spin-current-generation phenomena recently discovered both in metals and insulators: inverse spin-Hall effect, spin pumping, and spin Seebeck effect. (1)Spin pumping and spin torque in a Mott insulator system We found that spin pumping and spin torque effects appear also at an interface between Pt and an insulator YIG.. This means that we can connect a spin current carried by conduction electrons and a spin-wave spin current flowing in insulators. We demonstrate electric signal transmission by using these effects and interconversion of the spin currents [1]. (2) Spin Seebeck effect We have observed, by using the inverse spin-Hall effect [2], spin voltage generation from a heat current in a NiFe, named the spin-Seebeck effect [3]. Surprisingly, spin-Seebeck effect was found to appear even in insulators [4], a situation completely different from conventional charge Seebeck effect. The result implies an important role of elementary excitation in solids beside charge in the spin Seebeck effect. In the talk, we review the recent progress of the research on this effect. This research is collaboration with K. Ando, K. Uchida, Y. Kajiwara, S. Maekawa, G. E. W. Bauer, S. Takahashi, and J. Ieda. [4pt] [1] Y. Kajiwara and E. Saitoh et al. Nature 464 (2010) 262. [0pt] [2] E. Saitoh et al., Appl. Phys. Lett. 88 (2006) 182509. [0pt] [3] K. Uchida and E. Saitoh et al., Nature 455 (2008)778. [0pt] [4] K. Uchida and E. Saitoh et al.,Nature materials 9 (2010) 894 - 897.

  8. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  9. Tunneling spectroscopy of carbon nanostructures: A romance in many dimensions

    NASA Astrophysics Data System (ADS)

    Dirks, Travis Lee

    In this dissertation we present results from various methods of tunneling spectroscopy in carbon nanotubes, which shed light on electron -- electron interaction in carbon nanotubes and low dimensional systems in general. We also apply those methods to two dimensional graphene sheets. We first review the fabrication techniques used to make the devices studied here. Some of the techniques are standard in nanofabrication, and some were developed in-house to make the particular device geometries studied here possible. In particular, we developed recipes for the growth and contact of clean, ultra-long carbon nanotubes as well as for the fabrication of non-invasive top tunnel probes. We then present results on normal metal tunneling spectroscopy of carbon nanotube devices of varying length. We measure the exponent of the conductance power law in the density of states as a function of device length over two orders of magnitude and find unexpected evidence of finite size effects in long devices. Next, we present results from the first measurement of the non-equilibrium electron energy distribution function in carbon nanotubes measured via non-equilibrium superconducting tunneling spectroscopy and find little evidence of scattering at low temperatures, which is consistent with a clean, strongly interacting Luttinger liquid. In addition, we discuss two ways we are working to extend this powerful technique. We also present results of superconducting tunneling spectroscopy of a clean carbon nanotube quantum dot. We are able to characterize the energy spectrum of the quantum dot and distinguish between spin singlet and spin triplet shell filling. We observe elastic and inelastic co-tunneling features which are not visible when the probe is made normal by a magnetic field. These co-tunneling rates have important technological implications for carbon nanotubes as single electron transistors. We also observe an energetically forbidden conductance inside the superconducting gap

  10. Fabrication of spintronic devices: etching endpoint detection by resistance measurement for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Pong, Philip W. T.; Schmoueli, Moshe; Egelhoff, William F., Jr.

    2007-09-01

    Magnetic tunnel junctions (MTJs) have received tremendous interest since the discovery of substantial room temperature tunneling magnetoresistance (TMR) due to spin-dependent tunneling, and have been intensively investigated for applications in next-generation memory devices, hard disk drives, and magnetic sensors. In the fabrication of MTJs, etching is needed to remove the top cap layers, upper magnetic layers, and the middle oxide layer in order to form a tunneling junction. In view of this, we have devised an innovative, simple, low-cost endpoint detection method for fabricating MTJs. In this method, the endpoint is detected by measurement of the sheet resistance of the MTJ stack. Only a multimeter is needed in this method, hence it provides a simple low-cost alternative for spintronic device researchers to explore the research field of magnetic tunnel junctions. This technique is also of great use in other kinds of metallic stack etching experiments.

  11. Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta|CoFe|MgO magnetic tunnel junctions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.

    2016-09-01

    To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.

  12. Evidence for two distinct spin relaxation mechanisms in 'hot' spin ice Ho2Ti2O7

    NASA Astrophysics Data System (ADS)

    Ehlers, G.; Cornelius, A. L.; Fennell, T.; Koza, M.; Bramwell, S. T.; Gardner, J. S.

    2004-03-01

    Neutron scattering and ac-susceptibility techniques have been performed on the spin ice material Ho2Ti2O7 to study the spin relaxation processes in the 'hot' paramagnetic phase (T>1 K). Neutron spin echo (NSE) proves that above T\\simeq {15} K the spin dynamics are governed by a thermally activated single-ion process. At lower temperatures (T<15 K) this cannot account for the spin dynamics found in ac-susceptibility measurements. It is inferred that a second, slower process, with a different thermal signature dominates. We suggest that this is a quantum-mechanical tunnelling process between different spin states separated by a large energy barrier.

  13. Silicon/silicon-germanium quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Simmons, Christine B.

    Gate-defined quantum dots are tunable devices that are capable of trapping individual electrons. This thesis presents measurements of gate-defined quantum dots formed in Si/SiGe semiconductor heterostuctures. The motivation for this work is the development of a solid state electron spin qubit for quantum information processing. The fundamental properties of silicon make it an attractive option for spin qubit development, because electron spins are weakly coupled to the material. In particular, the coherence time for electron spins in silicon is expected to be long because of relatively weak spin-orbit coupling and the natural abundance of 28Si, a spin-zero nuclear isotope. The results presented in this thesis demonstrate significant advances in the manipulation and measurement of electrons in Si/SiGe quantum dots, including the first demonstration of a single electron quantum dot. An integrated quantum point contact is utilized as a local sensor to detect charge transitions on the neighboring quantum dot and to determine the absolute number of electrons on the dot. Gated control of the dot tunnel barriers enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of the tunnel rate to the leads in combination with fast, pulsed-gate manipulation of individual electrons enables a spectroscopy technique to identify electronic excited states. Using this technique, the Zeeman split spin qubit levels were observed. A 3-level voltage pulse sequence was utilized to perform single-shot readout of the spin state of individual electrons, to demonstrate tunable spin-selective loading, and to measure the spin relaxation time T1 . Double quantum dots are important for achieving two-qubit operations. Here, charge sensing measurements on a double dot are demonstrated. Analysis of the interdot transfer of a single electron is used to measure the tunnel coupling between the dots, and control of a single gate voltage is used to tune this coupling by over an

  14. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  15. Impact of Tunnel-Barrier Strength on Magnetoresistance in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Morgan, Caitlin; Misiorny, Maciej; Metten, Dominik; Heedt, Sebastian; Schäpers, Thomas; Schneider, Claus M.; Meyer, Carola

    2016-05-01

    We investigate magnetoresistance in spin valves involving CoPd-contacted carbon nanotubes. Both the temperature and bias-voltage dependence clearly indicate tunneling magnetoresistance as the origin. We show that this effect is significantly affected by the tunnel-barrier strength, which appears to be one reason for the variation between devices previously detected in similar structures. Modeling the data by means of the scattering matrix approach, we find a nontrivial dependence of the magnetoresistance on the barrier strength. Furthermore, an analysis of the spin precession observed in a nonlocal Hanle measurement yields a spin lifetime of τs=1.1 ns , a value comparable with those found in silicon- or graphene-based spin-valve devices.

  16. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  17. Spin Electronics

    DTIC Science & Technology

    2003-08-01

    spectroscopy laboratory including high pulse power capabilities (regenerative amplifiers and optical parametric amplifiers ) and broad spectral range ...The data identify narrow ranges of doping concentrations where spin lifetimes in semiconductors are enhanced by orders of magnitude, culminating in... dynamic measurements in the 10 to 100 picoseconds (ps) range . • A second program, which will come to fruition within one to two years, has the name

  18. Non-magnetic organic/inorganic spin injector at room temperature

    SciTech Connect

    Mathew, Shinto P.; Mondal, Prakash Chandra; Naaman, Ron; Moshe, Hagay; Mastai, Yitzhak

    2014-12-15

    Spin injection into solid-state devices is commonly performed by use of ferromagnetic metal electrodes. Here, we present a spin injector design without permanent magnet; rather, the spin selectivity is determined by a chiral tunneling barrier. The chiral tunneling barrier is composed of an ultrathin Al{sub 2}O{sub 3} layer that is deposited on top of a chiral self-assembled monolayer (SAM), which consists of cysteine or oligopeptide molecules. The experimentally observed magnetoresistance can be up to 20% at room temperature, and it displays an uncommon asymmetric curve as a function of the applied magnetic field. These findings show that the spin injector transmits only one spin orientation, independent of external magnetic field. The sign of the magnetoresistance depends on the handedness of the molecules in the SAM, which act as a spin filter, and the magnitude of the magnetoresistance depends only weakly on temperature.

  19. Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin Ice

    NASA Astrophysics Data System (ADS)

    Snyder, J.; Ueland, B. G.; Slusky, J. S.; Karunadasa, H.; Cava, R. J.; Mizel, Ari; Schiffer, P.

    2003-09-01

    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the ac magnetic susceptibility. While the characteristic spin-relaxation time (τ) is thermally activated at high temperatures, it becomes almost temperature independent below Tcross˜13 K. This behavior, combined with nonmonotonic magnetic field dependence of τ, indicates that quantum tunneling dominates the relaxational process below that temperature. As the low-entropy spin ice state develops below Tice˜4 K, τ increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become strongly correlated.

  20. Optimization of spin-torque switching using AC and DC pulses

    SciTech Connect

    Dunn, Tom; Kamenev, Alex

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  1. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  2. A spin-filter made of quantum anomalous Hall insulator nanowires

    SciTech Connect

    Wu, Jiansheng

    2014-07-28

    Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.

  3. Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction.

    PubMed

    Boehnke, Alexander; Walter, Marvin; Roschewsky, Niklas; Eggebrecht, Tim; Drewello, Volker; Rott, Karsten; Münzenberg, Markus; Thomas, Andy; Reiss, Günter

    2013-06-01

    Recently, several groups have reported spin-dependent thermoelectric effects in magnetic tunnel junctions. In this paper, we present a setup for time-resolved measurements of thermovoltages and thermocurrents of a single micro- to nanometer-scaled tunnel junction. An electrically modulated diode laser is used to create a temperature gradient across the tunnel junction layer stack. This laser modulation technique enables the recording of time-dependent thermovoltage signals with a temporal resolution only limited by the preamplifier for the thermovoltage. So far, time-dependent thermovoltage could not be interpreted. Now, with the setup presented in this paper, it is possible to distinguish different Seebeck voltage contributions to the overall measured voltage signal in the μs time regime. A model circuit is developed that explains those voltage contributions on different sample types. Further, it will be shown that a voltage signal arising from the magnetic tunnel junction can only be observed when the laser spot is directly centered on top of the magnetic tunnel junction, which allows a lateral separation of the effects.

  4. Imaging single spin probes embedded in a conductive diamagnetic layer.

    SciTech Connect

    Messina, P.; Fradin, F.

    2009-01-01

    The detection of spin noise by means of scanning tunneling microscopy (STM) has recently been substantially improved by the work presented by Komeda and Manassen (Komeda, T.; Manassen, Y. Appl. Phys. Lett. 2008, 92, 212506). The application of this technique to molecular paramagnets requires the positioning and anchoring of paramagnetic molecules at surfaces. It also requires the possibility of tunneling high current densities into the STM-molecule-substrate tunneling junction. In this letter, we exploit the self-assembly of 1,10-phenantroline on the Au(111) surface to form a diamagnetic matrix that hosts individual molecules and dimers of diphenyl-2-picryl-hydrazyl (DPPH). STM measurements are used to characterize the molecular layer. Electron spin resonance (ESR) measurements elucidate the role of thermal annealing in the preservation of the paramagnetic nature of the DPPH molecules.

  5. Large influence of capping layers on tunnel magnetoresistance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Jiaqi; Zhao, Weisheng; Wang, Yin; Peng, Shouzhong; Qiao, Junfeng; Su, Li; Zeng, Lang; Lei, Na; Liu, Lei; Zhang, Youguang; Bournel, Arnaud

    2016-12-01

    It has been reported in experiments that capping layers, which enhance the perpendicular magnetic anisotropy (PMA) of magnetic tunnel junctions (MTJs), induce a great impact on the tunnel magnetoresistance (TMR). To explore the essential influence caused by the capping layers, we carry out ab initio calculations on TMR in the X(001)|CoFe(001)|MgO(001)|CoFe(001)|X(001) MTJ, where X represents the capping layer material, which can be tungsten, tantalum, or hafnium. We report TMR in different MTJs and demonstrate that tungsten is an ideal candidate for a giant TMR ratio. The transmission spectrum in Brillouin zone is presented. It can be seen that in the parallel condition of MTJ, sharp transmission peaks appear in the minority-spin channel. This phenomenon is attributed to the resonant tunnel transmission effect, and we explained it by the layer-resolved density of states. In order to explore transport properties in MTJs, the density of scattering states was studied from the point of band symmetry. It has been found that CoFe|tungsten interface blocks scattering states transmission in the anti-parallel condition. This work reports TMR and transport properties in MTJs with different capping layers and proves that tungsten is a proper capping layer material, which would benefit the design and optimization of MTJs.

  6. Tunnel boring machine

    SciTech Connect

    Snyder, L. L.

    1985-07-09

    A tunnel boring machine for controlled boring of a curvilinear tunnel including a rotating cutter wheel mounted on the forward end of a thrust cylinder assembly having a central longitudinal axis aligned with the cutter wheel axis of rotation; the thrust cylinder assembly comprising a cylinder barrel and an extendable and retractable thrust arm received therein. An anchoring assembly is pivotally attached to the rear end of the cylinder barrel for anchoring the machine during a cutting stroke and providing a rear end pivot axis during curved cutting strokes. A pair of laterally extending, extendable and retractable arms are fixedly mounted at a forward portion of the cylinder barrel for providing lateral displacement in a laterally curved cutting mode and for anchoring the machine between cutting strokes and during straight line boring. Forward and rear transverse displacement and support assemblies are provided to facilitate cutting in a transversely curved cutting mode and to facilitate machine movement between cutting strokes.

  7. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  8. Possibility of hyperbolic tunneling

    SciTech Connect

    Lobo, Francisco S. N.; Mimoso, Jose P.

    2010-08-15

    Traversable wormholes are primarily useful as 'gedanken experiments' and as a theoretician's probe of the foundations of general relativity. In this work, we analyze the possibility of having tunnels in a hyperbolic spacetime. We obtain exact solutions of static and pseudo-spherically symmetric spacetime tunnels by adding exotic matter to a vacuum solution referred to as a degenerate solution of class A. The physical properties and characteristics of these intriguing solutions are explored, and through the mathematics of embedding it is shown that particular constraints are placed on the shape function, that differ significantly from the Morris-Thorne wormhole. In particular, it is shown that the energy density is always negative, and the radial pressure is positive, at the throat, contrary to the Morris-Thorne counterpart. Specific solutions are also presented by considering several equations of state, and by imposing restricted choices for the shape function or the redshift function.

  9. Gate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Meyer, Carola

    2017-02-01

    We show that the engineering of tunnel barriers forming at the interfaces of a one-dimensional spin valve provides a viable path to a strong gate-voltage tunability of the magnetoresistance effect. Specifically, we investigate theoretically a carbon nanotube (CNT) spin valve in terms of the influence of the CNT-contact interface on the performance of the device. The focus is on the strength and the spin selectivity of the tunnel barriers that are modeled as Dirac-δ potentials. The scattering matrix approach is used to derive the transmission coefficient that yields the tunneling magnetoresistance (TMR). We find a strong nontrivial gate-voltage response of the TMR in the absence of spin-orbit coupling when the energy of the incident electrons matches the potential energy of the barrier. Analytic expressions for the TMR in various limiting cases are derived. These expressions are used to explain previous experimental results, and also to predict prospective ways for device optimization with respect to the size and tunability of the TMR effect in the ballistic transport regime by means of engineering the tunnel barriers at the CNT-contact interfaces.

  10. Spin supercurrent in the canted antiferromagnetic phase

    NASA Astrophysics Data System (ADS)

    Hama, Yusuke; Tsitsishvili, George; Ezawa, Zyun F.

    2013-03-01

    The spin and layer (pseudospin) degrees of freedom are entangled coherently in the canted antiferromagnetic phase of the bilayer quantum Hall system at the filling factor ν=2. A complex Goldstone mode emerges describing such a combined degree of freedom. In the zero tunneling-interaction limit (ΔSAS→0), its phase field provokes a supercurrent carrying both spin and charge within each layer. The Hall resistance is predicted to become anomalous precisely as in the ν=1 bilayer system in the counterflow and drag experiments. Furthermore, it is shown that the total current flowing in the bilayer system is a supercurrent carrying solely spins in the counterflow geometry. It is intriguing that all these phenomena occur only in imbalanced bilayer systems.

  11. Tarsal tunnel syndrome.

    PubMed

    Gould, John S

    2011-06-01

    Tarsal tunnel syndrome, unlike its similar sounding counterpart in the hand, is a significantly misunderstood clinical entity. Confusion concerning the anatomy involved, the presenting symptomatology, the appropriateness and significance of various diagnostic tests, conservative and surgical management, and, finally, the variability of reported results of surgical intervention attests to the lack of consensus surrounding this condition. The terminology involved in various diagnoses for chronic heel pain is also a hodgepodge of poorly understood entities.

  12. Full Scale Tunnel (FST)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Installation of Full Scale Tunnel (FST) power plant. Virginia Public Service Company could not supply adequate electricity to run the wind tunnels being built at Langley. (The Propeller Research Tunnel was powered by two submarine diesel engines.) This led to the consideration of a number of different ideas for generating electric power to drive the fan motors in the FST. The main proposition involved two 3000 hp and two 1000 hp diesel engines with directly connected generators. Another, proposition suggested 30 Liberty motors driving 600 hp DC generators in pairs. For a month, engineers at Langley were hopeful they could secure additional diesel engines from decommissioned Navy T-boats but the Navy could not offer a firm commitment regarding the future status of the submarines. By mid-December 1929, Virginia Public Service Company had agreed to supply service to the field at the north end of the King Street Bridge connecting Hampton and Langley Field. Thus, new plans for FST powerplant and motors were made. Smith DeFrance described the motors in NACA TR No. 459: 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed.'

  13. Diffraction as tunneling

    NASA Technical Reports Server (NTRS)

    Nussenzveig, H. M.; Wiscombe, W. J.

    1987-01-01

    A new approximation to the short-wavelength scattering amplitude from an impenetrable sphere is presented. It is uniform in the scattering angle and it is more accurate than previously known approximations (including Fock's theory of diffraction) by up to several orders of magnitude. It remains valid in the transition to long-wavelength scattering. It leads to a new physical picture of diffraction, as tunneling through an inertial barrier.

  14. Tunneling magnetoresistance in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junctions

    SciTech Connect

    Tao, L. L.; Liang, S. H.; Liu, D. P.; Wei, H. X.; Han, X. F.; Wang, Jian

    2014-04-28

    We present a theoretical study of the tunneling magnetoresistance (TMR) and spin-polarized transport in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junction (MTJ). It is found that the spin-polarized conductance and bias-dependent TMR ratios are rather sensitive to the structure of Fe{sub 3}Si electrode. From the symmetry analysis of the band structures, we found that there is no spin-polarized Δ{sub 1} symmetry bands crossing the Fermi level for the cubic Fe{sub 3}Si. In contrast, the tetragonal Fe{sub 3}Si driven by in-plane strain reveals half-metal nature in terms of Δ{sub 1} state. The giant TMR ratios are predicted for both MTJs with cubic and tetragonal Fe{sub 3}Si electrodes under zero bias. However, the giant TMR ratio resulting from interface resonant transmission for the former decreases rapidly with the bias. For the latter, the giant TMR ratio can maintain up to larger bias due to coherent transmission through the majority-spin Δ{sub 1} channel.

  15. Evaluating tunnel kiln performance

    SciTech Connect

    O`Connor, K.R.; Carty, W.M.; Ninos, N.J.

    1997-08-01

    Process improvements in the production of whitewares provide the potential for substantial savings for manufacturers. A typical whiteware manufacturer incurs an annual defective product loss of {approximately}$20 million when accounting for raw materials, energy, labor and waste disposal. Reduction in defective product loss of 1% could result in a savings in excess of $1 million annually. This study was designed to establish benchmarks for two conventional tunnel kilns used to bisque-fire dinnerware at Buffalo China Inc. (Buffalo, NY). The benchmark was established by assessing the current conditions and variability of the two tunnel kilns as a function of the fracture strength of sample bars that were made from production body. Sample bars were fired in multiple locations in both kilns to assess the conditions and variability of firing within each kiln. Comparison of strength results between the two kilns also was assessed. These comparisons were accomplished through applied statistical analysis, wherein significant statistical variations were identified and isolated for both tunnel kilns. The statistical methods and tools used in this analysis are readily accessible to manufacturers, thus allowing implementation of similar analysis, or benchmarking, in-house.

  16. Smart tunnel: Docking mechanism

    NASA Technical Reports Server (NTRS)

    Schliesing, John A. (Inventor); Edenborough, Kevin L. (Inventor)

    1989-01-01

    A docking mechanism is presented for the docking of a space vehicle to a space station comprising a flexible tunnel frame structure which is deployable from the space station. The tunnel structure comprises a plurality of series connected frame sections, one end section of which is attached to the space station and the other end attached to a docking module of a configuration adapted for docking in the payload bay of the space vehicle. The docking module is provided with trunnions, adapted for latching engagement with latches installed in the vehicle payload bay and with hatch means connectable to a hatch of the crew cabin of the space vehicle. Each frame section comprises a pair of spaced ring members, interconnected by actuator-attenuator devices which are individually controllable by an automatic control means to impart relative movement of one ring member to the other in six degrees of freedom of motion. The control means includes computer logic responsive to sensor signals of range and attitude information, capture latch condition, structural loads, and actuator stroke for generating commands to the onboard flight control system and the individual actuator-attenuators to deploy the tunnel to effect a coupling with the space vehicle and space station after coupling. A tubular fluid-impervious liner, preferably fabric, is disposed through the frame sections of a size sufficient to accommodate the passage of personnel and cargo.

  17. Steady State and Dynamics of Joule Heating in Magnetic Tunnel Junctions Observed via the Temperature Dependence of RKKY Coupling

    NASA Astrophysics Data System (ADS)

    Chavent, A.; Ducruet, C.; Portemont, C.; Vila, L.; Alvarez-Hérault, J.; Sousa, R.; Prejbeanu, I. L.; Dieny, B.

    2016-09-01

    Understanding quantitatively the heating dynamics in magnetic tunnel junctions submitted to current pulses is very important in the context of spin-transfer-torque magnetic random-access memory development. Here we provide a method to probe the heating of magnetic tunnel junctions using the Ruderman-Kittel-Kasuya-Yoshida coupling of a synthetic ferrimagnetic storage layer as a thermal sensor. The temperature increase versus applied bias voltage is measured thanks to the decrease of the spin-flop field with temperature. This method allows distinguishing spin-transfer torque effects from the influence of temperature on the switching field. The heating dynamics is then studied in real time by probing the conductance variation due to spin-flop rotation during heating. This approach provides a method for measuring fast heating in spintronic devices, particularly magnetic random-access memory using thermally assisted or spin-transfer torque writing.

  18. Electrical detection of magnetization dynamics via spin rectification effects

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Gui, Yongsheng; Hu, Can-Ming

    2016-11-01

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  19. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  20. Tunneling and Speedup in Quantum Optimization for Permutation-Symmetric Problems

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A.

    2016-07-01

    Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final cost function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Finally, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.