Science.gov

Sample records for 20-foot vertical spin

  1. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  2. Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Tests of Dynamic Scale Model of Gemini Capsule in the Langley 20-Foot Free-Spinning Tunnel. The film shows three spin tunnel tests of a 1/20 scale model of the Gemini capsule. In the first test, the capsule spins freely. In tests 2 and 3, a drogue parachute is attached to the capsule. [Entire movie available on DVD from CASI as Doc ID 20070030989. Contact help@sti.nasa.gov

  3. Compilation of Test Data on 111 Free-Spinning Airplane Models Tested in the Langley 15-Foot and 20-Foot Free-Spinning Tunnels

    NASA Technical Reports Server (NTRS)

    Malvestuto, Frank S.; Gale, Lawrence J.; Wood, John H.

    1947-01-01

    A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.

  4. Supplementary Investigation in the Langley 20-Foot Free-Spinning Tunnel of the Spin and Recovery Characteristics of a 0.057-Scale Model of the Chance Vought XFU-1 Airplane, Ted No. NACA DE 311

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.

  5. Spin-Tunnel Investigation of a 1/28-Scale Model of the NASA F-18 High Alpha Research Vehicle (HARV) with and without Vertical Tails

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael

    1997-01-01

    An investigation was conducted in the NASA Langley 20-Foot Vertical Spin Tunnel to determine the developed spin and spin-recovery characteristics of a 1/28-scale, free-spinning model of the NASA F-18 HARV (High Alpha Research Vehicle) airplane that can configured with and without the vertical tails installed. The purpose of the test was to determine what effects, if any, the absence of vertical tails (and rudders) had on the spin and spin-recovery capabilities of the HARV. The model was ballasted to dynamically represent the full-scale airplane at an altitude of 25,000 feet. Erect and inverted spin tests with symmetric mass loadings were conducted with the free-spinning model. The model results indicate that the basic airplane with vertical tails installed (with unaugmented control system) will exhibit fast, flat erect and inverted spins from which acceptable recoveries can be made. Removing the vertical tails had little effect on the erect spin mode, but did degrade recoveries from erect spins. In contrast, inverted spins without the vertical tails were significantly more severe than those with the tails installed.

  6. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  7. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

    PubMed

    Wong, P K Johnny; Zhang, Wen; Wu, Jing; Will, Iain G; Xu, Yongbing; Xia, Ke; Holmes, Stuart N; Farrer, Ian; Beere, Harvey E; Ritchie, Dave A

    2016-07-19

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

  8. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    PubMed Central

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  9. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    NASA Astrophysics Data System (ADS)

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-07-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

  10. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

    PubMed

    Wong, P K Johnny; Zhang, Wen; Wu, Jing; Will, Iain G; Xu, Yongbing; Xia, Ke; Holmes, Stuart N; Farrer, Ian; Beere, Harvey E; Ritchie, Dave A

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  11. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    NASA Astrophysics Data System (ADS)

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-04-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields.

  12. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures.

    PubMed

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a 'giant' resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  13. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    PubMed Central

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  14. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOEpatents

    Romero, Louis; Christenson, Todd; Aaronson, Gene

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  15. Magnetoresistance effect in Fe20Ni80/graphene/Fe20Ni80 vertical spin valves

    NASA Astrophysics Data System (ADS)

    Entani, Shiro; Seki, Takeshi; Sakuraba, Yuya; Yamamoto, Tatsuya; Takahashi, Saburo; Naramoto, Hiroshi; Takanashi, Koki; Sakai, Seiji

    2016-08-01

    Vertical spin valve devices with junctions of single- and bi-layer graphene interlayers sandwiched with Fe20Ni80 (Permalloy) electrodes were fabricated by exploiting the direct growth of graphene on the Permalloy. The linear current-voltage characteristics indicated that ohmic contacts were realized at the interfaces. The systematic characterization revealed the significant modification of the electronic state of the interfacial graphene layer on the Permalloy surface, which indicates the strong interactions at the interface. The ohmic transport was attributable to the strong interface-interaction. The vertical resistivity of the graphene interlayer and the spin asymmetry coefficient at the graphene/Permalloy interface were obtained to be 0.13 Ω cm and 0.06, respectively. It was found that the strong interface interaction modifies the electronic structure and metallic properties in the vertical spin valve devices with bi-layer graphene as well as single-layer graphene.

  16. Vertical spin Hall magnetoresistance in T a1 -xP tx/YIG bilayers

    NASA Astrophysics Data System (ADS)

    Han, J. H.; Shi, G. Y.; Zhou, X. J.; Yang, Q. H.; Rao, Y. H.; Li, G.; Zhang, H. W.; Pan, F.; Song, C.

    2016-10-01

    The spin Hall effect and the magnetic proximity effect are two main sources of the magnetoresistance (MR) effects in heavy metal/ferromagnet bilayers, where they play isolated roles but are usually contaminated by each other. In T a1-xP tx/YIG (=Y3F e5O12) bilayers consisting of Ta and Pt nanograins, these effects are intrinsically coupled to generate new MR with 360° direction sensitivity to the magnetic field and proportionality to the out-of-plane magnetization of YIG. Due to the opposite spin Hall angle of Ta and Pt, vertical spin accumulation is generated via the spin Hall effect at the transverse boundaries between Ta and Pt grains. The spin-dependent scattering by the proximity-induced Pt magnetization finally leads to the MR, which is named as vertical spin Hall MR taking the role of spin Hall angle into account. Besides fundamental insight to spin transport physics, our work provides an approach to detecting perpendicular magnetization in a variety of magnets.

  17. Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2016-04-01

    Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) provide novel opportunities to overcome several limitations of conventional, purely charge-based semiconductor lasers. Presumably the highest potential lies in the spin-VCSEL's capability for ultrafast spin and polarization dynamics which can be significantly faster than the intensity dynamics in conventional devices. By injecting spin-polarized carriers, these coupled spin-photon dynamics can be controlled and utilized for high-speed applications. While relaxation oscillations provide insights in the speed and direct modulation bandwidth of conventional devices, resonance oscillations in the circular polarization degree step in for the spin and polarization dynamics in spin-VCSELs. These polarization oscillations can be generated using pulsed spin injection and achieve much higher frequencies than the conventional intensity relaxation oscillations in these devices. Furthermore polarization oscillations can be switched on and off and it is possible to generate short polarization pulses, which may represent an information unit in polarization-based optical communication. The frequency of polarization oscillations is mainly determined by the birefringence-induced mode splitting between both orthogonal linearly polarized laser modes. Thus the polarization modulation bandwidth of spin-VCSELs can be increased by adding a high amount of birefringence to the cavity, for example by incorporating mechanical strain. Using this technique, we could demonstrate tunable polarization oscillations from 10 to 40 GHz in AlGaAs-based 850nm VCSELs recently. Furthermore a birefringence-induced mode splitting of more than 250 GHz could be demonstrated experimentally. Provided that this potential for ultrafast dynamics can be fully exploited, birefringent spin-VCSELs are ideal devices for fast short-haul optical interconnects. In this paper we review our recent progress on polarization dynamics of birefringent spin

  18. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    SciTech Connect

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei; Liu, Guangtong

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  19. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.

    PubMed

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung

    2012-07-01

    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors. PMID:22966627

  20. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.

    PubMed

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung

    2012-07-01

    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.

  1. Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2016-04-01

    Controlling the coupled spin-photon dynamics in vertical-cavity surface-emitting lasers (VCSELs) is an attractive opportunity to overcome the limitations of conventional, purely charge based semiconductor lasers. Such spin-controlled VCSELs (spin-VCSELs) offer several advantages, like reduced threshold, spin amplification and polarization control. Furthermore the coupling between carrier spin and light polarization bears the potential for ultrafast polarization dynamics. By injecting spin-polarized carriers, the complex polarization dynamics can be controlled and utilized for high-speed applications. Polarization oscillations as resonance oscillations of the coupled spin- photon system can be generated using pulsed spin injection, which can be much faster than the intensity dynamics in conventional devices. We already demonstrated that the oscillations can be switched in a controlled manner. These controllable polarization dynamics can be used for ultrafast polarization-based optical data communication. The polarization oscillation frequency and therefore the possible data transmission rate is assumed to be mainly determined by the birefringence-induced mode-splitting. This provides a direct tool to increase the polarization dynamics toward higher frequencies by adding a high amount of birefringence to the VCSEL structure. Using this technique, we could recently demonstrate experimentally a birefringence splitting of more than 250 GHz using mechanical strain. Here, we employ the well-known spin-flip model to investigate the tuning of the polarization oscillation frequency. The changing mechanical strain is represented by a linear birefringence sweep to values up to 80πGHz. The wide tuning range presented enables us to generate polarization oscillation frequencies exceeding the conventional intensity modulation frequency in the simulated device by far, mainly dependent on the birefringence in the cavity only.

  2. High domain wall velocities via spin transfer torque using vertical current injection

    PubMed Central

    Metaxas, Peter J.; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A.; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm2. Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching. PMID:23670402

  3. High domain wall velocities via spin transfer torque using vertical current injection.

    PubMed

    Metaxas, Peter J; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm(2). Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching. PMID:23670402

  4. High domain wall velocities via spin transfer torque using vertical current injection

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter J.; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A.; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-05-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm2. Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching.

  5. Negative magnetoresistance in a vertical single-layer graphene spin valve at room temperature.

    PubMed

    Singh, Arun Kumar; Eom, Jonghwa

    2014-02-26

    Single-layer graphene (SLG) is an ideal material for spintronics because of its high charge-carrier mobility, long spin lifetime resulting from the small spin-orbit coupling, and hyperfine interactions of carbon atoms. Here, we report a vertical spin valve with SLG with device configuration Co/SLG/Al2O3/Ni. We observed negative magnetoresistance (-0.4%) for the Co/SLG/Al2O3/Ni junction at room temperature. However, the Co/Al2O3/Ni junction, which is without graphene, shows positive magnetoresistance. The current-voltage (I-V) characteristics of both Co/SLG/Al2O3/Ni and Co/Al2O3/Ni junctions are nonlinear, and this reveals that charge transport occurs by a tunneling mechanism. We have also explained the reason for negative magnetoresistance for the Co/SLG/Al2O3/Ni junction. PMID:24495123

  6. Rolling Motion of a Ball Spinning About a Near-Vertical Axis

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed ω. When v = Rω, where R is the ball radius, the ball will start rolling and the friction force drops almost to zero since the contact point at the bottom of the ball comes to rest on the surface. The coefficient of rolling friction is much smaller than that for sliding friction. A different situation arises if the ball is projected forward while it is spinning about a vertical or near vertical axis. The latter situation arises in many ball sports. It arises if a player attempts to curve a ball down a bowling alley, or when a billiards player imparts sidespin or "English" to a ball,2 and it can arise in golf if a player strikes a ball with a putter at a point well away from the middle of the putter head. The situation also arises in the game of curling,3 although in that case the object that is projected is a cylindrical rock rather than a spherical ball, and it arises in tennis when a ball lands on the court spinning about a near vertical axis, as it does in both a slice serve and a kick serve. In a slice serve, the axis is almost vertical. In a kick serve, the axis is tilted about 30 degrees away from the vertical in order to increase the amount of topspin.4

  7. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    SciTech Connect

    Kanaki, Toshiki Asahara, Hirokatsu; Ohya, Shinobu Tanaka, Masaaki

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  8. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    PubMed

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime. PMID:26550870

  9. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    PubMed

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  10. Analysis of heavy spin-3/2 baryon-heavy spin-1/2 baryon-light vector meson vertices in QCD

    SciTech Connect

    Aliev, T. M.; Savci, M.; Azizi, K; Zamiralov, V. S.

    2011-05-01

    The heavy spin-3/2 baryon-heavy spin-1/2 baryon vertices with light vector mesons are studied within the light cone QCD sum rules method. These vertices are parametrized in terms of three coupling constants. These couplings are calculated for all possible transitions. It is shown that correlation functions for these transitions are described by only one invariant function for every Lorenz structure. The obtained relations between the correlation functions of the different transitions are structure independent while explicit expressions of invariant functions depend on the Lorenz structure.

  11. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

    SciTech Connect

    Entani, Shiro Naramoto, Hiroshi; Sakai, Seiji

    2015-05-07

    Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8% at room temperature and increased to 1.75% at 50 K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.

  12. Vertical Spin Tunnel Testing and Stability Analysis of Multi-Mission Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Morelli, Eugene A.; Fremaux, C. Michael; Bean, Jacob

    2014-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from space to the surface of the Earth. To achieve high reliability and minimum weight, MMEEVs avoid using limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing phases of flight. Testing in NASA Langley's 20-FT Vertical Spin Tunnel (20-FT VST), dynamically-scaled MMEEV models was conducted to improve subsonic aerodynamic models and validate stability criteria for this class of vehicle. This report documents the resulting data from VST testing for an array of 60-deg sphere-cone MMEEVs. Model configurations included were 1.2 meter, and 1.8 meter designs. The addition of a backshell extender, which provided a 150% increase in backshell diameter for the 1.2 meter design, provided a third test configuration. Center of Gravity limits were established for all MMEEV configurations. An application of System Identification (SID) techniques was performed to determine the aerodynamic coefficients in order to provide databases for subsequent 6-degree-of-freedom simulations.

  13. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Orchard, J.; Clarke, E.

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  14. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  15. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    NASA Astrophysics Data System (ADS)

    Sampaio, Joao; Lequeux, Steven; Metaxas, Peter J.; Chanthbouala, Andre; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-12-01

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 107 A/cm2. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  16. Spin-to-charge conversion in lateral and vertical topological-insulator/ferromagnet heterostructures with microwave-driven precessing magnetization

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Nagaosa, Naoto; Nikolić, Branislav K.

    2014-09-01

    Using the charge-conserving Floquet-Green function approach to open quantum systems driven by an external time-periodic potential, we analyze how spin current pumped by the precessing magnetization of a ferromagnetic (F) layer is injected laterally into the interface with strong spin-orbit coupling (SOC) and converted into charge current flowing in the same direction. In the case of a metallic interface with the Rashba SOC used in recent experiments [J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané, J. M. De Teresa, C. Magén, and A. Fert, Nat. Commun. 4, 2944 (2013), 10.1038/ncomms3944], both spin ISα and charge I current flow within the interface where I /ISα≃ 2-8% (depending on the precession cone angle), while for a F/topological-insulator (F/TI) interface employed in related experiments [Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, and E. Saitoh, arXiv:1312.7091] the conversion efficiency is greatly enhanced (I /ISα≃ 40-60%) due to perfect spin-momentum locking on the surface of a TI. The spin-to-charge conversion occurs also when spin current is pumped vertically through the F/TI interface with smaller efficiency (I /ISα˜0.001%), but with the charge current signal being sensitive to whether the Dirac fermions at the interface are massive or massless.

  17. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  18. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ∼3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  19. Investigation of the Spin and Recovery Characteristics of a 0.057-Scale Model of the Modified Chance Vought XF7U-1 Airplane. TED No. NACA DE 311

    NASA Technical Reports Server (NTRS)

    Berman, Theodore; Pumphrey, Norman E.

    1950-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the spin and recovery characteristics of a 0.057-scale model of the modified Chance Vought XF7U-1 airplane. The primary change in the design from that previously tested was a revision of the twin vertical tails. Tests were also made to determine the effect of installation of external wing tanks. The results indicated that the revision in the vertical tails did not greatly alter the spin and recovery characteristics of the model and recovery by normal use of controls (fill rapid rudder reversal followed approximately one-half turn later by movement of the stick forward of neutral) was satisfactory. Adding the external wing tanks to cause the recovery characteristics to become critical and border on an unsatisfactory condition; however, it was shown that satisfactory recovery could be obtained by jettisoning the tanks, followed by normal recovery technique.

  20. Rolling Motion of a Ball Spinning about a Near-Vertical Axis

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…

  1. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  2. Vertical nano superconducting quantum interference device based on Josepshon tunnel nanojunctions for small spin cluster detection

    NASA Astrophysics Data System (ADS)

    Granata, Carmine; Vettoliere, Antonio; Fretto, Matteo; Leo, Natascia De; Vincenzo, Lacquaniti

    2015-06-01

    The ultra high sensitivity exhibited by Superconducting Quantum Interference Device (SQUIDs) could be the key to explore new field of nanoscience such as the investigation of small cluster of elementary magnetic moments. In this paper, an ultra high sensitive niobium nanoSQUID based on submicron Josephson tunnel junction is presented. It has been fabricated in a vertical configuration by using a three-dimensional focused ion beam sculpting technique. In such a configuration, the nanosensor loop (area of 0.25 μm2) is perpendicular to the substrate plane allowing to drastically reduce the spurious effects of the external magnetic field employed to excite the nano-objects under investigation. Main device characteristics have been measured at T=4.2 K by using a low noise readout electronics. Due to high voltage responsivity, the nanosensor has exhibited a spectral density of the magnetic flux noise as low as 1.6 μΦ0/Hz1/2.

  3. Investigation of Spinning and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultee XFY-1 Airplane in the Free-Spinning Tunnel, TED No. NACA DE 370

    NASA Technical Reports Server (NTRS)

    Lee, Henry A.

    1952-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.

  4. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    SciTech Connect

    Alharthi, S. S. Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J.; Korpijarvi, V.-M.; Guina, M.

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  5. The 20-Foot View

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe

    2006-01-01

    In higher education, the number of computer projectors in classrooms has doubled every year for the past five years. A similar trend in K?12 education is occurring now that capable classroom projectors have become available for less than $1,000. At the same time, large-screen displays are becoming common in society; a trend being acceleration by a…

  6. Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B.

    1935-01-01

    Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The

  7. Free-Spinning-Tunnel Investigation of a 1/17 Scale Model of the Cessna T-37A Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1958-01-01

    Results of an investigation of a dynamic model in the Langley 20-foot free-spinning tunnel are presented. Erect spin and recovery characteristics were determined for a range of mass distributions and center-of-gravity positions. The effects of lateral displacement of the center of gravity, engine rotation, nose strakes, and increased rudder area were investigated.

  8. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  9. Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    NASA Astrophysics Data System (ADS)

    Saleem, Amin M.; Shafiee, Sareh; Krasia-Christoforou, Theodora; Savva, Ioanna; Göransson, Gert; Desmaris, Vincent; Enoksson, Peter

    2015-02-01

    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMAx-b-AEMAy/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.

  10. Dynamic Model Tests of Models in the McDonnell Design of Project Mercury Capsule in the Langley 20-Foot Free-Spinning Tunnel

    NASA Technical Reports Server (NTRS)

    1959-01-01

    On 11 May 1959, 24 tests of the aerodynamic response of the McDonnell model Project Mercury capsule were conducted. The initial test demonstrated free-fall; a parachute was used in the remaining test. Several tests included the addition of baffles.

  11. RHIC spin flipper commissioning results

    SciTech Connect

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  12. Free-Spinning-Tunnel Investigation of a 1/40-Scale Model of the McConnell F-101A Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1959-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel of a 1/40-scale model of the McDonnell F-101A airplane to alleviate the unfavorable spinning characteristics encountered with the airplane. The model results indicate that a suitable strake extended on the inboard side of the nose of the airplane (right side in a right spin) in conjunction with the use of optimum control recovery technique will terminate spin rotation of the airplane. It may be difficult to recover from subsequent high angle-of-attack trimmed flight attitudes even by forward stick movement. The optimum spin-recovery control technique for the McDonnell F-101A is simultaneous full rudder reversal to against the spin and aileron movement to full with the spin (stick full right in a right erect spin) and forward movement of the stick immediately after rotation stops.

  13. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  14. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  15. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  16. Impact on Spin Tune From Horizontal Orbital Angle Between Snakes and Orbital Angle Between Spin Rotators

    SciTech Connect

    Bai,M.; Ptitsyn, V.; Roser, T.

    2008-10-01

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbits around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.

  17. Supplementary Investigation in the Free-Spinning Tunnel of a 1/24-Scale Model of the Grumman F9F-6 Airplane Incorporating only Flaperons for Lateral Control, TED No. NACA DE 364

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Lee, Henry A.

    1954-01-01

    A supplementary investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F9F-6 airplane. The primary purpose of the investigation was to reevaluate the spin-recovery characteristics of the airplane in view of the fact that the ailerons had been eliminated from the flaperon-aileron lateral control system of the airplane. A spin-tunnel investigation on a model of the earlier version of the F9F-6 airplane had indicated that use of ailerons with the spin (stick right in a right spin) was essential to insure recovery. The results indicate that with.ailerons eliminated, it may be difficult to obtain an erect developed spin but if a fully developed spin is obtained on the airplane, recovery therefrom may be difficult or impossible. Flaperon deflection should have little effect on spins or recoveries.

  18. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  19. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    NASA Technical Reports Server (NTRS)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  20. Effect of Various Errors on the Spin Tune and Stable Spin Axis

    SciTech Connect

    MacKay,W.W.

    2009-01-01

    Even though RHIC has two full Siberian snakes in each ring, there are various perturbations to the ideal case including orbit errors at the snakes, experiment solenoids, injection bumps, and interlaced horizontal-vertical bumps at the hydrogen jet polarimeter. These errors can cause depolarization by shifting the spin tune and tilting the stable spin direction away from vertical. Tilting of the stable spin axis can enhance horizontal depolarizing resonances. This paper presents preliminary results for some of these error scenarios, as well as their impact on the stable spin directions at STAR and PHENIX.

  1. Spin voltage generation across rare earth spin filter barriers

    NASA Astrophysics Data System (ADS)

    Miao, Guoxing; Chang, Joonyeon; Moodera, Jagadeesh

    2011-03-01

    When a metal is in close contact with a rare-earth based magnetic compound, strong exchange interaction exists between the localized 4f electrons and the free moving conduction electrons. One important consequence is that the spin degeneracy among the conduction electrons is lifted, showing up as an effective Zeeman splitting higher than tens of Tesla in low dimensional systems such as graphene and other 2DEG. We perform our work using a vertical transport geometry, which consists of double spin filtering barriers based on a ferromagnetic Eu chalcogenide - EuS. A thin Al metallic layer is sandwiched in the middle and its conduction electrons thus experience the strong spin splitting, which is subsequently detected via the spin filtering effect. A spontaneous spin dependent voltage appears across such a device, and its polarity is directly determined by the EuS/Al interface. The voltage level difference between the spin-parallel and -antiparallel configurations is as large as a few mV. Such spin splitting also induces a clear universal behavior in the observed TMR bias dependence. Such spin voltage effect offers a possibility of directly converting magnetic exchange energy into electrical power. This work is supported by NSF DMR 0504158, ONR N00014-06-1-0235, and KIST-MIT project funds.

  2. Free-spinning-tunnel Investigation of a 1/30 Scale Model of a Twin-jet-swept-wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1960-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/30-scale dynamic model of a twin-jet swept-wing fighter airplane. The model results indicate that the optimum erect spin recovery technique determined (simultaneous rudder reversal to full against the spin and aileron deflection to full with the spin) will provide satisfactory recovery from steep-type spins obtained on the airplane. It is considered that the air-plane will not readily enter flat-type spins, also indicated as possible by the model tests, but developed-spin conditions should be avoided in as much as the optimum recovery procedure may not provide satisfactory recovery if the airplane encounters a flat-type developed spin. Satisfactory recovery from inverted spins will be obtained on the airplane by neutralization of all controls. A 30-foot- diameter (laid-out-flat) stable tail parachute having a drag coefficient of 0.67 and a towline length of 27.5 feet will be satisfactory for emergency spin recovery.

  3. Spin Hall and spin Nernst effects due to intrinsic spin-orbit coupling in monolayer and bilayer graphene.

    PubMed

    Dyrdał, Anna; Barnaś, Józef

    2012-12-01

    We consider intrinsic contributions to the spin Hall and spin Nernst effects in monolayer and bilayer graphene. The spin Hall (Nernst) effect consists in the generation of transverse spin current by longitudinal electric field (temperature gradient). The relevant electronic spectrum for monolayer and bilayer graphene has been obtained from the corresponding effective Hamiltonians. Both spin Hall and spin Nernst conductivities have been determined within the linear response theory and Green function formalism. The influence of an external vertical voltage between the two atomic sheets in the case of a bilayer graphene is also analyzed and discussed. This voltage can generally lead to a phase transition between the topological insulator phase and conventional insulator. In the case of bilayer graphene, the main focuss is on an asymmetrical case, with different spin-orbit parameters in the two atomic sheets. Such a difference may be generated by different atomic planes adjacent to bilayer graphene on its both sides.

  4. Supplementary Investigation in the Langley Free-Spinning Tunnel of a 1/20-Scale Model of the Douglas XF4D-1 Airplane Including Spin-Recovery Parachute Tests of the Model Loaded to Simulate the Douglas F5D-1 Airplane

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Lee, Henry A.

    1955-01-01

    A supplementary investigation has been conducted in the Langley 20-foot free-spinning tunnel of a l/20-scale model of the Douglas XF4D-1 airplane to determine the effect of only neutralizing the rudder for recovery from an inverted spin, and the effect of partial aileron deflection with the spin for recovery from an erect spin. An estimation of the size parachute required for satisfactory recovery from a spin with the model ballasted to represent the Douglas F5D-1 (formerly the Douglas XF4D-2) airplane was also made. Results of the original investigation on the XF4D-1 design are presented in NACA RM SL50K30a. The results indicated that satisfactory recoveries from inverted spins of the airplane should be obtained by rudder neutralization when the longitudinal stick position is neutral or forward. Recoveries from erect spins from the normal-spin control configuration should be satisfactory by full rudder reversal with simultaneous movement of the ailerons to two-thirds with the spin. For the parachute tests with the model loaded to represent the F5D-1 airplane, the tests indicated that a 16.7-foot-diameter hemispherical-tail parachute (drag coefficient of 1.082 based on the projected area) with a towline 20.0 feet long (full- scale values) should be satisfactory for an emergency spin-recovery device during demonstration spins of the airplane.

  5. Topological spin and valley pumping in silicene

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-08-01

    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics.

  6. Topological spin and valley pumping in silicene

    PubMed Central

    Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-01-01

    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics. PMID:27507592

  7. Free-Spinning-Tunnel Investigation of a 1/20-Scale Model of the North American T2J-1 Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1959-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel to determine the erect and inverted spin and recovery characteristics of a 1/20-scale dynamic model of the North American T2J-1 airplane. The model results indicate that the optimum technique for recovery from erect spins of the airplane will be dependent on the distribution of the disposable load. The recommended recovery procedure for spins encountered at the flight design gross weight is simultaneous rudder reversal to against the spin and aileron movement to with the spin. With full wingtip tanks plus rocket installation and full internal fuel load, rudder reversal should be followed by a downward movement of the elevator. For the flight design gross weight plus partially full wingtip tanks, recovery should be attempted by simultaneous rudder reversal to against the spin, movement of ailerons to with the spin, and ejection of the wing-tip tanks. The optimum recovery technique for airplane-inverted spins is rudder reversal to against the spin with the stick maintained longitudinally and laterally neutral.

  8. Surprising Behavior of Spinning Tops and Eggs on an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2016-01-01

    A spinning top or a spinning hard-boiled egg is fascinating to observe since both objects can remain upright for a relatively long time without falling over. If spun at sufficient speed on a horizontal surface, the spin axis rises to a vertical position and the bottom end tends to remain fixed in position on the surface. If the initial spin is…

  9. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2016-08-01

    In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ˜25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ˜10 cm or more. For pure side-spin the side-ways drift is up to ˜30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.

  10. Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2016-08-01

    In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ∼25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ∼10 cm or more. For pure side-spin the side-ways drift is up to ∼30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.

  11. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    SciTech Connect

    Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  12. Free-Spinning-Tunnel Investigation of a 1/25-Scale Model of the Chance Vought F8U-1P Airplane

    NASA Technical Reports Server (NTRS)

    Browman, James S., Jr.; Healy, Frederick M.

    1959-01-01

    An investigation has been made in the Langley 20-foot free-spinning tunnel on a 1/25-scale dynamic model to determine the spin and recovery characteristics of the Chance Vought F8U-1P airplane. Results indicated that the F8U-IP airplane would have spin-recovery characteristics similar to the XF8U-1 design, a model of which was tested and the results of the tests reported in NACA Research Memorandum SL56L31b. The results indicate that some modification in the design, or some special technique for recovery, is required in order to insure satisfactory recovery from fully developed erect spins. The recommended recovery technique for the F8U-lP will be full rudder reversal and movement of ailerons full with the spin (stick right in a right spin) with full deflection of the wing leading- edge flap. Inverted spins will be difficult to obtain and any inverted spin obtained should be readily terminated by full rudder reversal to oppose the yawing rotation and neutralization of the longitudinal and lateral controls. In an emergency, the same size parachute recommended for the XFBU-1 airplane will be adequate for termination of the spin: a stable parachute 17.7 feet in diameter (projected) with a drag coefficient of 1.14 (based on projected diameter) and a towline length of 36.5 feet.

  13. Free-Spinning-Tunnel Investigation of a 1/24-Scale Model of the Grumman F9F-6 Airplane TED No. NACA DE 364

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Healy, Frederick M.

    1952-01-01

    An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.

  14. Dissociated Vertical Deviation

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is ...

  15. Horizontal SPINning of transposons.

    PubMed

    Gilbert, Clément; Pace, John K; Feschotte, Cédric

    2009-01-01

    The term 'horizontal transfer (HT)' refers to the transfer of genetic material between two reproductively isolated organisms. HT is thought to occur rarely in eukaryotes compared to vertical inheritance, the transmission of DNA from parent to offspring. In a recent study we have provided evidence that a family of DNA transposons, called SPACE INVADERS or SPIN, independently invaded horizontally the genome of seven distantly related tetrapod species and subsequently amplified to high copy number in each of them. This discovery calls for further investigations to better characterize the extent to which genomes have been shaped through HT events. In this addendum, we briefly discuss some general issues regarding the study of HT and further speculate on the sequence of events that could explain the current taxonomic distribution of SPIN. We propose that the presence of SPIN in the opossum (Monodelphis domestica), a taxon endemic to South America, reflects a transoceanic HT event that occurred from Old to New World, between 46 and 15 million years ago.

  16. Diffraction-dependent spin splitting in spin Hall effect of light on reflection.

    PubMed

    Qiu, Xiaodong; Xie, Linguo; Qiu, Jiangdong; Zhang, Zhiyou; Du, Jinglei; Gao, Fuhua

    2015-07-27

    We report on a diffraction-dependent spin splitting of the paraxial Gaussian light beams on reflection theoretically and experimentally. In the case of horizontal incident polarization, the spin splitting is proportional to the diffraction length of light beams near the Brewster angle. However, the spin splitting is nearly independent with the diffraction length for the vertical incident polarization. By means of the angular spectrum theory, we find that the diffraction-dependent spin splitting is attributed to the first order expansion term of the reflection coefficients with respect to the transverse wave-vector which is closely related to the diffraction length.

  17. The Vertical File.

    ERIC Educational Resources Information Center

    Czopek, Vanessa

    The process of establishing the vertical file for a new branch library is traced; suggestions for making the vertical file a better resource are offered; and guidelines covering the general objective, responsibility for selection and maintenance, principles of selection, and scope of the collection for vertical files are presented. A four-item…

  18. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  19. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  20. Relativistic Heavy Ion Collider spin flipper commissioning plan

    SciTech Connect

    Bai, M.; Dawson, C.; Makdisi, Y.; Meng, W.; Meot, F.; Oddo, P.; Pai, C.; Pile, P.; Roser, T.

    2010-09-27

    The commissioning of the RHIC spin flipper in the RHIC Blue ring during the RHIC polarized proton run in 2009 showed the detrimental effects of global vertical coherent betatron oscillation induced by the 2-AC dipole plus 4-DC dipole configuration. This global orbital coherent oscillation of the RHIC beam in the Blue ring in the presence of collision modulated the beam-beam interaction between the two RHIC beams and affected Yellow beam lifetime. The experimental data at injection with different spin tunes by changing the snake current also demonstrated that it was not possible to induce a single isolated spin resonance with the global vertical coherent betatron oscillation excited by the two AC dipoles. Hence, RHIC spin flipper was re-designed to eliminate the coherent vertical betatron oscillation outside the spin flipper by adding three additional AC dipoles. This paper presents the experimental results as well as the new design.

  1. INVESTIGATION OF A RESIDUAL VERTICAL INSTRINSIC RESONANCES WITH DUAL PARTIAL SIBERIAN SNAKES IN THE AGS.

    SciTech Connect

    LIN,F.; LEE, S.Y.; AHRENS, L.A.; BAI, M.; BROWN, K.; COURANT, E.D.; ET AL.

    2007-06-25

    Two partial helical dipole snakes were found to be able to overcome all imperfection and intrinsic spin resonances provided that the vertical betatron tunes were maintained in the spin tune gap near the integer 9. Recent vertical betatron tune scan showed that the two weak resonances at the beginning of the acceleration cycle may be the cause of polarization loss. This result has been confirmed by the vertical polarization profile measurement, and spin tracking simulations. Possible cure of the remaining beam polarization is discussed.

  2. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  3. Concluding Report of Free-Spinning, Tumbling, and Recovery Characteristics of a 1/18-Scale Model of the Ryan X-13 Airplane, Coord. No. AF-199

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.

    1957-01-01

    An investigation has been completed in the Langley 20-foot free-spinning tunnel on a l/18-scale model of the Ryan X-13 airplane to determine its spin, recovery, and tumbling characteristics, and to determine the minimum altitude from which a belly landing could be made in case of power failure in hovering flight. Model spin tests were conducted with and without simulated engine rotation. Tests without simulated engine rotation indicated two types of spins: one, a slightly oscillatory flat spin; and the other, a violently oscillatory spin. Tests with simulated engine rotation indicated that spins to the left were fast rotating and steep and those to the right were slow rotating and flat. The optimum technique for recovery is reversal of the rudder to against the spin and simultaneous movement of the ailerons to full with the spin followed by movement of the elevators to neutral after the spin rotation ceases. Tumbling tests made on the model indicated that although the Ryan X-13 airplane will not tumble in the ordinary sense (end-over-end pitching motion), it may instead tend to enter a wild gyrating'motion. Tests made to simulate power failure in hovering flight by dropping the model indicated that the model entered what appeared to be a right spin. An attempt should be made to stop this motion immediately by moving the rudder to oppose the rotation (left pedal), moving the ailerons to with the spin (stick right), and moving the stick forward after the spin rotation ceases to obtain flying speed for pullout. The minimum altitude required for a belly landing in case of power failure in hovering flight was indicated to be about 4,200 feet.

  4. Signatures of Currency Vertices

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2009-03-01

    Many real-world networks have broad degree distributions. For some systems, this means that the functional significance of the vertices is also broadly distributed, in other cases the vertices are equally significant, but in different ways. One example of the latter case is metabolic networks, where the high-degree vertices — the currency metabolites — supply the molecular groups to the low-degree metabolites, and the latter are responsible for the higher-order biological function, of vital importance to the organism. In this paper, we propose a generalization of currency metabolites to currency vertices. We investigate the network structural characteristics of such systems, both in model networks and in some empirical systems. In addition to metabolic networks, we find that a network of music collaborations and a network of e-mail exchange could be described by a division of the vertices into currency vertices and others.

  5. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  6. Vertical Axis Wind Turbine

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  7. An evaluation of aerodynamics modeling of spinning light airplanes

    NASA Technical Reports Server (NTRS)

    Pamadi, B. N.; Taylor, L. W., Jr.

    1983-01-01

    This paper extends the application of the modified strip theory for wing body combination of a spinning light airplane reported earlier. In addition, to account for the contribution of the tail plane, the shielding effect on vertical tail under steady state spin condition is modeled from basic aerodynamic considerations. The results of this combined analysis, presented for some light airplane configurations, are shown to be in good agreement with spin tunnel rotary balance test data.

  8. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is

  9. An Investigation of the Free-Spinning and Recovery Characteristics of a 1/24-Scale Model of the Grumman F11F-1 Airplane with Alternate Nose Configurations with and without Wing Fuel Tanks, TED No. NACA AD 395

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.

    1958-01-01

    A supplementary investigation has been conducted in the langley 20-foot free-spinning tunnel on a l/24-scale model of the Grumman F11F-1 airplane to determine the spin and recovery characteristics with alternate nose configurations, the production version and the elongated APS-67 version, with and without empty and full wing tanks. When spins were obtained with either alternate nose configuration, they were oscillatory and recovery characteristics were considered unsatisfactory on the basis of the fact that very slow recoveries were indicated to be possible. The simultaneous extension of canards near the nose of the model with rudder reversal was effective in rapidly terminating the spin. The addition of empty wing tanks had little effect on the developed spin and recovery characteristics. The model did not spin erect with full wing tanks. For optimum recovery from inverted spins, the rudder should be reversed to 22O against the spin and simultaneously the flaperons should be moved with the developed spin; the stick should be held at or moved to full forward longitudinally. The minimum size parachute required to insure satisfactory recoveries in an emergency was found to be 12 feet in diameter (laid out flat) with a drag coefficient of 0.64 (based on the laid-out-flat diameter) and a towline length of 32 feet.

  10. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  11. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  12. Spin polarized transport in MoS2

    NASA Astrophysics Data System (ADS)

    Dankert, André; Pashaei, Parham; Mutta, Venkata Kamalakar; Dash, Saroj Prasad; Spintronic SPD Team

    The two-dimensional (2D) semiconductor MoS2 possesses a high potential for spintronic devices due to a rich spin-valley physics and large spin-orbit coupling. While there have been significant advances in studying the spin and valley dynamics in MoS2 using optical spectroscopy techniques, electronic spin transport in semiconducting MoS2 or its heterostructures have not yet been demonstrated. Here we report the electronic and spin transport properties in MoS2 employing ferromagnetic electrodes in a vertical device geometry. Such vertical devices with MoS2 channel length defined by the thickness of the 2D layer allow to investigate the spin injection, transport and detection. We observe a magnetoresistance effect over a large temperature range up to 300 K and investigate the temperature and bias dependence behavior. Using magnetotransport data and calculations we extract spin parameters in the MoS2 spin valve devices. These findings can open new avenues for exploring spin functionalities in 2D semiconductor heterostructures for spin logic applications.

  13. Layer-by-layer assembly of vertically conducting graphene devices.

    PubMed

    Chen, Jing-Jing; Meng, Jie; Zhou, Yang-Bo; Wu, Han-Chun; Bie, Ya-Qing; Liao, Zhi-Min; Yu, Da-Peng

    2013-01-01

    Graphene has various potential applications owing to its unique electronic, optical, mechanical and chemical properties, which are primarily based on its two-dimensional nature. Graphene-based vertical devices can extend the investigations and potential applications range to three dimensions, while interfacial properties are crucial for the function and performance of such graphene vertical devices. Here we report a general method to construct graphene vertical devices with controllable functions via choosing different interfaces between graphene and other materials. Two types of vertically conducting devices are demonstrated: graphene stacks sandwiched between two Au micro-strips, and between two Co layers. The Au|graphene|Au junctions exhibit large magnetoresistance with ratios up to 400% at room temperature, which have potential applications in magnetic field sensors. The Co|graphene|Co junctions display a robust spin valve effect at room temperature. The layer-by-layer assembly of graphene offers a new route for graphene vertical structures. PMID:23715280

  14. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  15. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the North American XP-86 Airplane

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.

  16. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  17. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998

  18. How higher-spin gravity surpasses the spin-two barrier

    NASA Astrophysics Data System (ADS)

    Bekaert, Xavier; Boulanger, Nicolas; Sundell, Per A.

    2012-07-01

    Aiming at nonexperts, the key mechanisms of higher-spin extensions of ordinary gravities in four dimensions and higher are explained. An overview of various no-go theorems for low-energy scattering of massless particles in flat spacetime is given. In doing so, a connection between the S-matrix and the Lagrangian approaches is made, exhibiting their relative advantages and weaknesses, after which potential loopholes for nontrivial massless dynamics are highlighted. Positive yes-go results for non-Abelian cubic higher-derivative vertices in constantly curved backgrounds are reviewed. Finally, how higher-spin symmetry can be reconciled with the equivalence principle in the presence of a cosmological constant leading to the Fradkin-Vasiliev vertices and Vasiliev’s higher-spin gravity with its double perturbative expansion (in terms of numbers of fields and derivatives) is outlined.

  19. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  20. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  1. Spin Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2015-03-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S >= 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond (RVB) state. The existence of SLC reveals the possible existence of a more general new class of superfluid phases in a lattice.

  2. Spin-Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2014-08-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state.

  3. Ballistic spin resonance.

    PubMed

    Frolov, S M; Lüscher, S; Yu, W; Ren, Y; Folk, J A; Wegscheider, W

    2009-04-16

    The phenomenon of spin resonance has had far-reaching influence since its discovery 70 years ago. Electron spin resonance driven by high-frequency magnetic fields has enhanced our understanding of quantum mechanics, and finds application in fields as diverse as medicine and quantum information. Spin resonance can also be induced by high-frequency electric fields in materials with a spin-orbit interaction; the oscillation of the electrons creates a momentum-dependent effective magnetic field acting on the electron spin. Here we report electron spin resonance due to a spin-orbit interaction that does not require external driving fields. The effect, which we term ballistic spin resonance, is driven by the free motion of electrons that bounce at frequencies of tens of gigahertz in micrometre-scale channels of a two-dimensional electron gas. This is a frequency range that is experimentally challenging to access in spin resonance, and especially difficult on a chip. The resonance is manifest in electrical measurements of pure spin currents-we see a strong suppression of spin relaxation length when the oscillating spin-orbit field is in resonance with spin precession in a static magnetic field. These findings illustrate how the spin-orbit interaction can be harnessed for spin manipulation in a spintronic circuit, and point the way to gate-tunable coherent spin rotations in ballistic nanostructures without external alternating current fields. PMID:19370029

  4. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  5. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  6. Vertical axis windmill

    SciTech Connect

    Zheug, Y.K.

    1984-03-06

    A vertical axis windmill has a blade pivotally connected to a rotatable support structure on an axis passing through its center of gravity which is arranged to lie forward of its aerodynamic center whereby the blade automatically swings outwardly and inwardly when moving on the windward and leeward sides respectively of the axis of rotation of said support means.

  7. Vertical shaft windmill

    SciTech Connect

    Grana, D.C.; Inge, S.V. Jr.

    1983-11-15

    A vertical shaft has several equally spaced blades mounted thereon. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  8. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  9. Magnons, Spin Current and Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  10. Spin Hall effect devices.

    PubMed

    Jungwirth, Tomas; Wunderlich, Jörg; Olejník, Kamil

    2012-05-01

    The spin Hall effect is a relativistic spin-orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.

  11. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  12. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  13. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  14. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  15. Spin Transport by Collective Spin Excitations

    NASA Astrophysics Data System (ADS)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  16. Hole spin relaxation in InAs/GaAs quantum dot molecules.

    PubMed

    Segarra, C; Climente, J I; Rajadell, F; Planelles, J

    2015-10-21

    We calculate the spin-orbit induced hole spin relaxation between Zeeman sublevels of vertically stacked InAs quantum dots. The widely used Luttinger-Kohn Hamiltonian, which considers coupling of heavy- and light-holes, reveals that hole spin lifetimes (T1) of molecular states significantly exceed those of single quantum dot states. However, this effect can be overcome when cubic Dresselhaus spin-orbit interaction is strong. Misalignment of the dots along the stacking direction is also found to be an important source of spin relaxation. PMID:26418483

  17. Spin structure functions

    SciTech Connect

    Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani

    2011-06-01

    Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.

  18. Spinning Eggs and Ballerinas

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  19. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  20. Free-Spinning Tunnel Tests of a 1/24-Scale Model of the Grumman XTB3F-1 Airplane, TED No. NACA DE304

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1947-01-01

    In accordance with a request of the Bureau of Aeronautics, Navy Department, tests were performed in the Langley 20-foot free-spinning tunnel to determine the spin and recovery characteristics of a 1/24 scale model of the Grumman XTB3F-1 airplane. The airplane is a two-place, midwing torpedo bomber equipped with a tractor propeller and an auxiliary jet engine. The effect of control setting and movement on the erect and inverted spin and recovery characteristics of the model were determined for the normal loading. Brief tests with mass extended slightly along the fuselage were also made, however, in order to determine the effect of such a mass variation on elevator effectiveness. Tests were performed to determine the size of emergency spin-recovery tail and wing-tip parachutes required for satisfactory recovery by parachute action alone. The investigation also included emergency pilot-escape tests and tests to determine the rudder pedal and elevator stick forces necessary to move the rudder and elevator for recovery.

  1. Investigation of triple spin correlations and spin dynamics in ferromagnets

    SciTech Connect

    Okorokov, A. I.

    2011-12-15

    Data on the experimental detection and use of three-particle (chiral) spin dynamic correlations in ferromagnets are presented. The oblique-geometry method for investigating polarized neutron small-angle scattering is described, which gives the dependence that the scattering asymmetry has on the polarization P signs and the scattering angle {theta}. The following results of the dynamics investigation in the critical and ferromagnetic phases in the magnetic field are presented: the temperature dependence of the critical field H{sub c}, the factorization of the momentum transfer dependence of three-particle vertices, the corroboration of the 'hard' version of the dipole critical dynamics, and the dynamics of amorphous magnets and invars.

  2. Spin relaxation in geometrically frustrated pyrochlores

    NASA Astrophysics Data System (ADS)

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be

  3. Vertical wind turbine

    SciTech Connect

    Danson, D.P.

    1988-08-16

    This patent describes a wind driven turbine of the vertical axis type comprising: (a) a support base; (b) a generally vertical column rotatably mounted to the support base; (c) upper and lower support means respectively mounted on the column for rotation therewith; wind driven blades connected between the upper and lower support means for rotation about the column and each blade being individually rotatable about a blade axis extending longitudinally through the blade to vary a blade angle of attach thereof relative to wind velocity during rotation about the column; and (e) control means for variably adjusting angles of attack of each blade to incident wind, the control means including a connecting rod means having drive means for rotating each blade about the associated blade axis in response to radial movement of the connecting rod means and control shaft pivotally mounted within the column and having a first shaft portion connected to the connecting rod means and a second shaft portion radially offset from the first shaft portion and pivotally connected to radially displace the first portion and thereby the connecting rod means to vary the blade angles of attack during rotation about the column.

  4. The Steady Spin

    NASA Technical Reports Server (NTRS)

    Fuchs, Richard; Schmidt, Wilhelm

    1931-01-01

    With the object of further clarifying the problem of spinning, the equilibrium of the forces and moments acting on an airplane is discussed in light of the most recent test data. Convinced that in a spin the flight attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigation of steady spin with no side slip. At small angles, wholly arbitrary and perfectly steady spins may be forced, depending on the type of control displacements. But at large angles only very steep and only "approaching steady" spins are possible, no matter what the control displacements.

  5. Spinning eggs-which end will rise?

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken

    2004-06-01

    We examine the spinning behavior of egg-shaped axisymmetric bodies whose cross sections are described by several oval curves similar to real eggs with thin and fat ends. We use the gyroscopic balance condition of Moffatt and Shimomura and analyze the slip velocity of the bodies at the point of contact as a function of θ, the angle between the axis of symmetry and the vertical axis, and find the existence of the critical angle θc. When the bodies are spun with an initial angle θinitial>θc, θ will increase to π, implying that the body will spin at the thin end. Alternatively, if θinitial<θc, then θ will decrease. For some oval curves, θ will reduce to 0 and the corresponding bodies will spin at the fat end. For other oval curves, a fixed point at θf is predicted, where 0<θf<θc. Then the bodies will spin not at the fat end, but at a new stable point with θf. The empirical fact that eggs more often spin at the fat than at the thin end is explained.

  6. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  7. Numerical studies of Siberian snakes and spin rotators for RHIC

    SciTech Connect

    Luccio, A.

    1995-04-17

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180{degrees} apart and with their axis of spin precession at 90{degrees} to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis.

  8. Kagome spin ice

    NASA Astrophysics Data System (ADS)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  9. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  10. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    SciTech Connect

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 #6;± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  11. Observation of Picometer Vertical Emittance with a Vertical Undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Dowd, R.; Tan, Y.-R. E.; Cowie, B. C. C.; Papaphilippou, Y.; Taylor, G. N.; Rassool, R. P.

    2012-11-01

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic.

  12. Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Fördös, Tibor; Postava, Kamil; Jaffrès, Henri; Pištora, Jaromír

    2014-06-01

    Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-LEDs) and spin-polarized lasers (spin-lasers) are prospective devices in which the radiative recombination of spin-polarized carriers results in emission of circularly polarized photons. The main goal of this article is to model emitted radiation and its polarization properties from spin-LED and spin-controlled vertical-cavity surface-emitting laser (spin-VCSEL) solid-state structures. A novel approach based on 4 × 4 transfer matrix formalism is derived for modeling of the interaction of light with matter in active media of resonant multilayer anisotropic structure and enables magneto-optical effects. Quantum transitions, which result in photon emission, are described using general Jones source vectors.

  13. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects.

    PubMed

    Tarallo, M G; Mazzoni, T; Poli, N; Sutyrin, D V; Zhang, X; Tino, G M

    2014-07-11

    We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earth's gravity field of two isotopes of strontium atoms, namely, the bosonic (88)Sr isotope which has no spin versus the fermionic (87)Sr isotope which has a half-integer spin. The effect of gravity on the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values η=(0.2±1.6)×10(-7) for the Eötvös parameter and k=(0.5±1.1)×10(-7) for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects. PMID:25062176

  14. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects.

    PubMed

    Tarallo, M G; Mazzoni, T; Poli, N; Sutyrin, D V; Zhang, X; Tino, G M

    2014-07-11

    We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earth's gravity field of two isotopes of strontium atoms, namely, the bosonic (88)Sr isotope which has no spin versus the fermionic (87)Sr isotope which has a half-integer spin. The effect of gravity on the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values η=(0.2±1.6)×10(-7) for the Eötvös parameter and k=(0.5±1.1)×10(-7) for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects.

  15. Spin accumulation in the extrinsic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  16. ON-LINE TOOLS FOR PROPER VERTICAL POSITIONING OF VERTICAL SAMPLING INTERVALS DURING SITE ASSESSMENT

    EPA Science Inventory

    This presentation presents on-line tools for proper vertical positioning of vertical sampling intervals during site assessment. Proper vertical sample interval selection is critical for generate data on the vertical distribution of contamination. Without vertical delineation, th...

  17. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  18. Spin caloritronics in graphene

    SciTech Connect

    Ghosh, Angsula; Frota, H. O.

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  19. Spin caloritronics in graphene

    NASA Astrophysics Data System (ADS)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  20. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  1. Picosecond Spin Caloritronics

    NASA Astrophysics Data System (ADS)

    Cahill, David G.

    The coupling of spin and heat, i.e., spin caloritronics, gives rise to new physical phenomena in nanoscale spin devices and new ways to manipulate local magnetization. Our work in this field takes advantage of recent advances in the measurement and understanding of heat transport at the nanoscale using ultrafast lasers. We use a picosecond duration pump laser pulses as a source of heat and picosecond duration probe laser pulses to detect changes in temperature, spin accumulation, and spin transfer torque using a combination of time-domain thermoreflectance and time-resolved magneto-optic Kerr effect Our pump-probe optical methods enable us to change the temperature of ferromagnetic layers on a picosecond time-scale and generate enormous heat fluxes on the order of 100 GW m-2 that persist for ~ 30 ps. Thermally-driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The spin-dependent Seebeck effect of a perpendicular ferromagnetic layer converts a heat current into spin current, which in turn can be used to exert a spin transfer torque (STT) on a second ferromagnetic layer with in-plane magnetization. Using a [Co,Ni] multilayer as the source of spin, an energy fluence of ~ 4 J m-2 creates thermal STT sufficient to induce ~ 1 % tilting of the magnetization of a 2 nm-thick CoFeB layer.

  2. Spin coating apparatus

    DOEpatents

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  3. Surprising Behavior of Spinning Tops and Eggs on an Inclined Plane

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2016-01-01

    A spinning top or a spinning hard-boiled egg is fascinating to observe since both objects can remain upright for a relatively long time without falling over. If spun at sufficient speed on a horizontal surface, the spin axis rises to a vertical position and the bottom end tends to remain fixed in position on the surface. If the initial spin is insufficient, then the spin axis will not rise all the way to the vertical, in which case a spinning top or a spinning egg will precess slowly around a vertical axis. If the bottom end is rounded, as it is with an egg or with a top having a round rather than a pointed peg, then the vertical precession axis does not necessarily pass through the center of mass. Instead, the precession axis may be located several centimeters away from the center of mass, depending on the radius of the bottom end. As a result, the whole egg or the whole top then rolls along the surface in an approximately circular path, several centimeters in diameter. The essential physics is described in Ref. 1 and the references therein, and in the many more books and papers since the early 1900s quoted in each of the references therein.

  4. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  5. Latitude and longitude vertical disparities.

    PubMed

    Read, Jenny C A; Phillipson, Graeme P; Glennerster, Andrew

    2009-12-09

    The literature on vertical disparity is complicated by the fact that several different definitions of the term "vertical disparity" are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position-gaze direction, convergence, torsion, cyclovergence, and vertical misalignment-can be derived from the vertical disparity field and its derivatives at the fovea.

  6. The Gains from Vertical Scaling

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Domingue, Ben

    2013-01-01

    It is often assumed that a vertical scale is necessary when value-added models depend upon the gain scores of students across two or more points in time. This article examines the conditions under which the scale transformations associated with the vertical scaling process would be expected to have a significant impact on normative interpretations…

  7. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…

  8. Spin torque driven nano-spintronic devices

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaochun

    Spin momentum transfer, an effect first predicted theoretically and later observed by carefully designed experiments, has found its use in current-perpendicular-to-plane (CPP) magnetic devices over the past decade. Although extensive research on this subject has been conducted both experimentally and theoretically, the understanding of its effect and impact on the performance of actual magnetic devices with finite dimensions at nanometer scale are still far from complete. Innovations based on its utilization for novel devices application have also been rare. This thesis presents a series of systematic micromagnetic studies focusing on the spin momentum transfer effect in various CPP devices at deep submicrometer and nanometer dimensions. The thesis contributes to the subject of spin momentum transfer in two particular aspects: the insightful understanding of its impact to CPP magnetoresistive devices and its innovative utilization in novel MRAM designs. The thesis is organized as the following: Chapter 1 gives a general introduction on spin momentum transfer effect. In Chapter 2 of the thesis, the theoretical micromagnetic model and the numerical calculation methodology is presented. The work in Chapter 3, 4 and 5 is based on the micromagnetic modeling. In Chapter 3, current MRAM designs and challenges are reviewed. A new low power vertical ring shaped MRAM design and a new perpendicular MRAM are presented. The two new designs utilize both spin transfer torque and Ampere's field to switching memory states. They are free of write addressing disturbance and avoid the limit of the half selection problem in the conventional design. The magnetic performance as well as the scalability of memories is described in this chapter. Chapter 4 has investigated the magnetization oscillation excited by perpendicularly polarized spin transfer torque in CPP structure and designed its applications in microwave spin nano-oscillator and ferromagnetic resonance assisted recording

  9. Effect of spin rotation coupling on spin transport

    SciTech Connect

    Chowdhury, Debashree Basu, B.

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  10. Electron spin susceptibility of superconductors

    SciTech Connect

    Levitov, L.S.; Nazarov, Y.V.; Eliashberg, G.M.

    1985-03-10

    The effect of spin polarization due to the Meissner currents on the electron spin susceptibility of a superconductor is studied. This effect accounts for a susceptibility considerably stronger than that of a normal metal. The spin distribution is discussed.

  11. Heat-driven spin transport in a ferromagnetic metal

    SciTech Connect

    Xu, Yadong; Yang, Bowen; Tang, Chi; Jiang, Zilong; Shi, Jing; Schneider, Michael; Whig, Renu

    2014-12-15

    As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this voltage is also accompanied by voltages from two other sources, i.e., the anomalous Nernst effect in both the ferromagnet and the proximity-induced ferromagnetic boundary layer. By properly identifying and carefully separating those different effects, we find that in this pure spin current circuit the additional spin current drawn by the heavy metal generates another significant voltage by the ferromagnetic metal itself which should be present in all relevant experiments.

  12. Spin Waves in Quasiequilibrium Spin Systems

    SciTech Connect

    Bedell, Kevin S.; Dahal, Hari P.

    2006-07-28

    Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T{sup 3/2} contribution to the specific heat. These modes significantly contribute to the dynamic structure function.

  13. Exploratory investigation of the incipient spinning characteristics of a typical light general aviation airplane

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.

    1977-01-01

    The incipient spinning characteristics of general aviation airplanes were studied. Angular rates in pitch, yaw, and roll were measured through the stall during the incipient spin and throughout the recovery along with control positions, angle of attack, and angle of sideslip. The characteristic incipient spinning motion was determined from a given set of entry conditions. The sequence of recovery controls were varied at two distinct points during the incipient spin, and the effect on recovery characteristics was examined. Aerodynamic phenomena associated with flow over the aft portion of the fuselage, vertical stabilizer, and rubber are described.

  14. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  15. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  16. Coherent spin-networks

    SciTech Connect

    Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio

    2010-07-15

    In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as the gauge-invariant projection of a product over links of Hall's heat kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). These states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.

  17. Sparkling and Spinning Words.

    ERIC Educational Resources Information Center

    Carlson, Ruth Kearney

    1964-01-01

    Teachers should foster in children's writing the use of words with "sparkle" and "spin"--"sparkle" implying brightness and vitality, "spin" connoting industry, patience, and painstaking work. By providing creative listening experiences with good children's or adult literature, the teacher can encourage students to broaden their imaginations and…

  18. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  19. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  20. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  1. Spin-labeled polyribonucleotides.

    PubMed Central

    Petrov, A I; Sukhorukov, B I

    1980-01-01

    Poly (U), poly (C) and poly (A) were spin labeled with N-(2,2,5,5-tetramethyl-3-carbonylpyrroline-1-oxyl)-imidazole. This spin label interacts selectively with 2' OH ribose groups of polynucleotides and does not modify the nucleic acid bases. The extent of spin labeling is not dependent upon the nature of the base and is entirely determined by rigidity of the secondary structure of the polynucleotide. The extent of modification for poly (U), poly (C) and poly (A) was 4.2, 1.7 and 1.5 per cent, respectively, the secondary structure of the polynucleotides being practically unchanged. Some physico-chemical properties of the spin-labeled polynucleotides were investigated by ESR spectroscopy. Rotational correlation times of the spin label and activation energy of its motion were calculated. PMID:6253911

  2. Spin-Wave Diode

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  3. Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields

    SciTech Connect

    Metsaev, R. R.

    2010-05-15

    In the framework of gauge invariant Stueckelberg approach, totally symmetric arbitrary spin shadow fields in flat space-time of dimension greater than or equal to four are studied. Gauge invariant two-point vertices for such shadow fields are obtained. We demonstrate that, in Stueckelberg gauge frame, these gauge invariant vertices become the standard two-point vertices of CFT. Light-cone gauge two-point vertices of the shadow fields are also obtained. AdS/CFT correspondence for the shadow fields and the non-normalizable solutions of free massless totally symmetric arbitrary spin AdS fields is studied. AdS fields are considered in a modified de Donder gauge and this simplifies considerably the study of AdS/CFT correspondence. We demonstrate that the bulk action, when it is evaluated on solution of the Dirichlet problem, leads to the two-point gauge invariant vertex of shadow field. Also we show that the bulk action evaluated on solution of the Dirichlet problem leads to new description of conformal fields. The new description involves Stueckelberg gauge symmetries and gives simple higher-derivative Lagrangian for the conformal arbitrary spin field. In the Stueckelberg gauge frame, our Lagrangian becomes the standard Lagrangian of conformal field. Light-cone gauge Lagrangian of the arbitrary spin conformal field is also obtained.

  4. Fractionalized spin-wave continuum in kagome spin liquids

    NASA Astrophysics Data System (ADS)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  5. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, R.; Wu, J.; Stadler, H.

    1990-01-01

    Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges

  6. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    SciTech Connect

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  7. Direction of spin axis and spin rate of the pitched baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice. PMID:16939153

  8. Direction of spin axis and spin rate of the pitched baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.

  9. The Wake of a Single Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle

    Vertical axis wind turbines (VAWTs) pose various advantages over traditional horizontal axis wind turbines (HAWTs), including their smaller size and footprint, quiet operation, and ability to produce power under a greater variety of wind directions and wind speeds. To determine the optimal spacing of an array of VAWTs for maximum power output, an understanding of the fundamental wake structure of a single VAWT is needed. This study is among the first attempts to experimentally visualize the wake of a VAWT using stereo particle image velocimetry (PIV). A scale VAWT is placed inside a wind tunnel and a motor rotates the scale model at a constant rotational speed. Wake data at several Reynolds numbers and tip speed ratios indicate that vortices are shed by each blade of the spinning VAWT, demonstrating significant differences between the wake of a VAWT and a spinning cylinder.

  10. The Fock space of loopy spin networks for quantum gravity

    NASA Astrophysics Data System (ADS)

    Charles, Christoph; Livine, Etera R.

    2016-08-01

    In the context of the coarse-graining of loop quantum gravity, we introduce loopy and tagged spin networks, which generalize the standard spin network states to account explicitly for non-trivial curvature and torsion. Both structures relax the closure constraints imposed at the spin network vertices. While tagged spin networks merely carry an extra spin at every vertex encoding the overall closure defect, loopy spin networks allow for an arbitrary number of loops attached to each vertex. These little loops can be interpreted as local excitations of the quantum gravitational field and we discuss the statistics to endow them with. The resulting Fock space of loopy spin networks realizes new truncation of loop quantum gravity, allowing to formulate its graph-changing dynamics on a fixed background graph plus local degrees of freedom attached to the graph nodes. This provides a framework for re-introducing a non-trivial background quantum geometry around which we would study the effective dynamics of perturbations. We study how to implement the dynamics of topological BF theory in this framework. We realize the projection on flat connections through holonomy constraints and we pay special attention to their often overlooked non-trivial flat solutions defined by higher derivatives of the δ -distribution.

  11. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  12. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  13. Towards a Compositional SPIN

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulou, Dimitra

    2006-01-01

    This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.

  14. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  15. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  16. Visualize Vertical Connectedness (Middle Ground).

    ERIC Educational Resources Information Center

    van Allen, Lanny

    1996-01-01

    Discusses the possibility of vertical connectedness in K-12 education through references to journal articles and the author's own reflections. Suggests that middle school teachers may be leaders in a movement toward eliminating redundancy and gaps between grade levels. (TB)

  17. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  18. Horizontal and Vertical Line Designs.

    ERIC Educational Resources Information Center

    Johns, Pat

    2003-01-01

    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  19. Higher spins and holography

    NASA Astrophysics Data System (ADS)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  20. Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Kessel, Pan; Skvortsov, Evgeny; Taronna, Massimo

    2016-03-01

    We consider four-dimensional higher-spin (HS) theory at the first nontrivial order corresponding to the cubic action. All HS interaction vertices are explicitly obtained from Vasiliev’s equations. In particular, we obtain the vertices that are not determined solely by the HS algebra structure constants. The dictionary between the Fronsdal fields and HS connections is found and the corrections to the Fronsdal equations are derived. These corrections turn out to involve derivatives of arbitrary order. We observe that the vertices not determined by the HS algebra produce naked infinities, when decomposed into the minimal derivative vertices and improvements. Therefore, standard methods can only be used to check a rather limited number of correlation functions within the HS AdS/CFT duality. A possible resolution of the puzzle is discussed.

  1. SPINning parallel systems software.

    SciTech Connect

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-03-15

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin.

  2. Quantum spin Hall effect.

    PubMed

    Bernevig, B Andrei; Zhang, Shou-Cheng

    2006-03-17

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  3. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  4. Spin tracking in RHIC

    SciTech Connect

    Luccio, A.U.; Katayama, T.; Wu, H.

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  5. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.

    2015-05-07

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.

  6. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins

    NASA Astrophysics Data System (ADS)

    Grinolds, M. S.; Warner, M.; de Greve, K.; Dovzhenko, Y.; Thiel, L.; Walsworth, R. L.; Hong, S.; Maletinsky, P.; Yacoby, A.

    2014-04-01

    Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous `dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.

  7. Spin waves in a persistent spin-current Fermi liquid

    SciTech Connect

    Feldmann, J. D.; Bedell, K. S.

    2010-06-15

    We report two theoretical results for transverse spin waves, which arise in a system with a persistent spin current. Using Fermi liquid theory, we introduce a spin current in the ground state of a polarized or unpolarized Fermi liquid, and we derive the resultant spin waves using the Landau kinetic equation. The resulting spin waves have a q{sup 1} and q{sup 1/2} dispersion to leading order for the polarized and unpolarized systems, respectively.

  8. Spin transfer torques in the nonlocal lateral spin valve.

    PubMed

    Xu, Yuan; Xia, Ke; Ma, Zhongshui

    2008-06-11

    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve. PMID:21825793

  9. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    SciTech Connect

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  10. Pluto's Spinning Moons

    NASA Video Gallery

    Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning ...

  11. MMS Spin Test

    NASA Video Gallery

    The four Magnetospheric Multiscale observatories all undergo what's called a spin test, to learn how well the spacecraft are balanced. It also provides information on how well the mass properties o...

  12. The spin deep within

    SciTech Connect

    Stackhouse, S.

    2008-10-08

    The electronic configuration of iron impurities in lower-mantle minerals influences their physical properties, but it is not well constrained. New studies suggest that ferrous iron in silicate phases exists mainly in an intermediate spin state.

  13. Itinerant spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, Masafumi

    2014-03-01

    Spin ice is a prototypical frustrated magnet defined on a pyrochlore lattice. The ground state of spin ice is described by a simple rule called ``ice rule'': out of four spins on a tetrahedron, two spins point inward, while the other two outward. This simple rule is not sufficient to determine the spin configuration uniquely, but it leaves macroscopic degeneracy in the ground state. Despite the macroscopic degeneracy, however, the ground state is not completely disordered, but it exhibits algebraic spatial correlation, which characterizes this state as ``Coulomb phase'' where various exotic properties, such as monopole excitations and unusual magnetic responses are observed. Given the peculiar spatial correlation, it is interesting to ask what happens if itinerant electrons coexist and interact with spin ice. Indeed, this setting is relevant to several metallic Ir pyrochlore oxides, such as Ln2Ir2O7 (Ln=Pr, Nd), where Ir 5d itinerant electrons interact with Ln 4f localized moments. In these compounds, anomalous transport phenomena have been reported, such as non-monotonic magnetic field dependence of Hall conductivity and low-temperature resistivity upturn. To address these issues, we adopt a spin-ice-type Ising Kondo lattice model on a pyrochlore lattice, and solve this model by applying the cluster dynamical mean-field theory and the perturbation expansion in terms of the spin-electron coupling. As a result, we found that (i) the resistivity shows a minimum at a characteristic temperature below which spin ice correlation sets in. Moreover, (ii) the Hall conductivity shows anisotropic and non-monotonic magnetic field dependence due to the scattering from the spatially extended spin scalar chirality incorporated in spin ice manifold. These results give unified understanding to the thermodynamic and transport properties of Ln2Ir2O7 (Ln=Pr, Nd), and give new insights into the role of geometrical frustration in itinerant systems. This work has been done in

  14. EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi

    2011-09-01

    This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can

  15. Spider Spinning for Dummies

    NASA Astrophysics Data System (ADS)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  16. Spin transport in nanoscale spin valves and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Patibandla, Sridhar

    Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin

  17. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  18. Quantifying spin Hall angles from spin pumping: experiments and theory.

    PubMed

    Mosendz, O; Pearson, J E; Fradin, F Y; Bauer, G E W; Bader, S D; Hoffmann, A

    2010-01-29

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni{80}Fe{20}|normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the Ni{80}Fe{20}|N has contributions from both the anisotropic magnetoresistance and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au, and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.

  19. Designing electron spin textures and spin interferometers by shape deformations

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Gentile, Paola; Ortix, Carmine; Cuoco, Mario

    2016-08-01

    We demonstrate that the spin orientation of an electron propagating in a one-dimensional nanostructure with Rashba spin-orbit (SO) coupling can be manipulated on demand by changing the geometry of the nanosystem. Shape deformations that result in a nonuniform curvature give rise to complex three-dimensional spin textures in space. We employ the paradigmatic example of an elliptically deformed quantum ring to unveil the way to get an all-geometrical and all-electrical control of the spin orientation. The resulting spin textures exhibit a tunable topological character with windings around the radial and the out-of-plane directions. We show that these topologically nontrivial spin patterns affect the spin interference effect in the deformed ring, thereby resulting in different geometry-driven ballistic electronic transport behaviors. Our results establish a deep connection between electronic spin textures, spin transport, and the nanoscale shape of the system.

  20. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling.

    PubMed

    Caetano, R A

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  1. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    PubMed Central

    Caetano, R. A.

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  2. Bose-Einstein condensation and spin mixtures of optically trapped metastable helium

    SciTech Connect

    Partridge, G. B.; Jaskula, J.-C.; Bonneau, M.; Boiron, D.; Westbrook, C. I.

    2010-05-15

    We report the realization of a Bose-Einstein condensate of metastable helium-4 atoms ({sup 4}He*) in an all-optical potential. Up to 10{sup 5} spin-polarized {sup 4}He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far-off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode microchannel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin-state combinations of {sup 4}He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin-state-resolved two-body inelastic loss rate coefficients in the optical trap.

  3. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  4. Magnetization plateaux in Bethe ansatz solvable spin-S ladders

    NASA Astrophysics Data System (ADS)

    Maslen, M.; Batchelor, M.; de Gier, J.

    2003-07-01

    We examine the properties of the Bethe ansatz solvable two- and three-leg spin-S ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-S Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz-Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 in agreement with the experimental observation for the organic polyradical spin-1 ladder compound BIP-TENO.

  5. Hot electron spin transport in C60 fullerene

    NASA Astrophysics Data System (ADS)

    Hueso, Luis Eduardo; Gobbi, Marco; Bedoya-Pinto, Amilcar; Golmar, Federico; Llopis, Roger; Casanova, Felix

    2012-02-01

    Carbon-based molecular materials are interesting for spin transport application mainly due to their small sources of spin relaxation [1]. However, spin coherence lengths reported in many molecular films do not exceed a few tens of nanometers [2]. In this work we will present results showing how hot spin-polarized electrons injected well above the Fermi level in C60 fullerene films travel coherently for hundreds of nanometers. We fabricated hot-electron vertical transistors, in which the current created across an Al/Al2O3 junction is polarized by a metallic Co/Cu/Py spin valve trilayer and subsequently injected in the molecular thin film. This geometry allows us to determine the energy level alignment at each interface between different materials. Moreover, the collector magnetocurrent excess 85%, even for C60 films thicknesses of 300 nm. We believe these results show the importance of hot spin-polarized electron injection and propagation in molecular materials. [1] V. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nature Mater. 8, 707 (2009) [2] M. Gobbi, F. Golmar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. 23, 1609 (2011)

  6. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  7. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  8. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin

  9. Spin Hall and Spin Nernst effect from first principles

    NASA Astrophysics Data System (ADS)

    Mertig, Ingrid

    2013-03-01

    Spintronics without magnetic materials is an interesting alternative to the existing spintronics applications. The spin Hall effect creates spin currents in nonmagnetic materials and avoids the problem of spin injection. Future applications of the spin Hall effect require two properties of the materials, a large spin Hall angle and a long spin diffusion length. Ab intio calculations based on density functional theory are a powerful tool to design the desired materials and to get insight into the underlying microscopic processes. We investigated the spin Hall effect in dilute alloys, in particular the intrinsic effect based on the Berry curvature as well as side-jump and the skew-scattering contributions. The results demonstrate that a large extrinsic spin Hall effect is determined by the differences between host and impurity concerning the spin-orbit interaction. It can be caused by light p scatterers as C and N in Au. A comparable large effect is observed for heavy p scatterers as Bi in Cu. An alternative way is to deposit impurities in the adatom position. Furthermore, we predict a spin current perpendicular to a temperature gradient. The phenomenon is called spin Nernst effect. The predicted spin currents can be comparably large as in the case of the spin Hall effect.

  10. Spin pumping by magnetopolaritons

    NASA Astrophysics Data System (ADS)

    Cao, Yunshan; Yan, Peng; Huebl, Hans; Goennenwein, Sebastian; Bauer, Gerrit

    2015-03-01

    Recent experiments report the strong coupling of microwaves to the magnetic insulator yttrium iron garnet with weakly damped magnetization dynamics. We developed a scattering approach to study the coupled magnetization and microwave cavities beyond the paramagnetic/macrospin and rotating wave approximations that are implicit in the Tavis-Cummings model. To this end we solve the coupled Landau-Lifshitz-Gilbert and Maxwell's equations for a thin film magnet in a microwave cavity, leading to rich ferromagnetic spin wave resonance spectra of the transmitted or absorbed microwaves. Our method is valid for the full parameter range spanning the weak to strong coupling limits. We demonstrate strong coupling achievement not only for the FMR mode but also for standing spin waves, although the lowest excitation has a decisive leading role for coupling strength. Spin pumping in FI|N bilayers as detected by inverse spin Hall voltages provides additional access to study strong coupling electrically. Funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under Grant Agreement 316657 (SpinIcur).

  11. Spin hydrodynamic generation

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.

    2016-01-01

    Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.

  12. Geometrically representing spin correlations

    NASA Astrophysics Data System (ADS)

    White, Ian G.; Mirasola, Anthony; Hollingsworth, Jacob; Mukherjee, Rick; Hazzard, Kaden R. A.

    2016-05-01

    We develop a general method to visualize spin correlations, and we demonstrate its usefulness in ultracold matter from fermions in lattices to trapped ions and ultracold molecules. Correlations are of fundamental interest in many-body physics: they characterize phases in condensed matter and AMO, and are required for quantum sensing and computing. However, it is often difficult to understand even the simplest correlations - for example between two spin-1/2's - directly from the components Cab = - for { a , b } ∈ { x , y , z } . Not only are the nine independent Cab unwieldy, but considering the components also obscures the natural geometric structure. For example, simple spin rotations lead to complex transformations among the nine Cab. We provide a one-to-one map between the spin correlations and certain three-dimensional objects, analogous to the map between single spins and Bloch vectors. This object makes the geometric structure of the correlations manifest. Moreover, much as one can reason geometrically about dynamics using a Bloch vector - e.g. a magnetic field causes it to precess and dephasing causes it to shrink - we show that analogous reasoning holds for our visualization method.

  13. Free-Spinning and Recovery Characteristics of a 1/19-Scale Model of the North American T-28C Airplane, TED No. NACA AD 3127

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.

    1956-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/19-scale model of the North American T-28C airplane to determine the spin and recovery characteristics. The T-28C airplane is similar to the T-28B airplane except for slight modifications for the arresting hook. The lower rear section of the fuselage was cut out and, consequently, the lower part of the rudder was removed to make a smooth fairing with the fuselage. The T-28B airplane had good recovery characteristics; but these modifications, along with the addition of gun packages on the wings, led to poor and unsatisfactory spin-recovery characteristics during demonstration spins of the T-28C airplane. Model test results indicated that without the gun packages installed, satisfactory recoveries could be obtained if the elevators were held full back while the rudder was fully reversed and the ailerons were held neutral. However, with the addition of gun packages to the wings and the corresponding change in loading, recoveries were considered unsatisfactory. Recoveries attempted by using a larger chord or larger span rudder were improved very slightly, but were still considered marginal or unsatisfactory. Strakes placed on the nose of the model were effective in slowing the spin rotation slightly and, in most instances, decreased the turns for recovery slightly. Recovery characteristics were slightly marginal for the full fuel loading when strakes and the extended-chord rudder were installed; but with the wing fuel partly used, recovery characteristics were again considered unsatisfactory or, at least, definitely on the marginal side. The optimum control technique for recovery is movement of the rudder to full against the spin with the stick held full back (elevators full up) and the ailerons held neutral, followed by forward movement of the stick only after the spin rotation ceases. Inverted-spin test results indicate that the airplane will spin steep and fast and that recovery

  14. Harnessing spin precession with dissipation

    PubMed Central

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors. PMID:26816050

  15. Harnessing spin precession with dissipation

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

  16. Physical Continuity and Vertical Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition.

    PubMed

    Hu, Hanqiong; Choo, Youngwoo; Feng, Xunda; Osuji, Chinedum O

    2015-07-01

    The fabrication of block copolymer (BCP) thin films is reported with vertically aligned cylindrical domains using continuous electrospray deposition onto bare wafer surfaces. The out-of-plane orientation of hexagonally packed styrene cylinders is achieved in the "fast-wet" deposition regime in which rapid evaporation of the solvent in deposited droplets of polymer solution drives the vertical alignment of the self-assembled structure. Thermally activated crosslinking of the polybutadiene matrix provides kinetic control of the morphology, freezing the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the nontreated substrate. Physically continuous vertically oriented domains can be achieved over several micrometers of film thickness. The ability of electrospray deposition to fabricate well-ordered and aligned BCP films on nontreated substrates, the low amount of material used relative to spin-coating, and the continuous nature of the deposition may open up new opportunities for BCP thin films. PMID:25959572

  17. Manipulating topological states by imprinting non-collinear spin textures

    DOE PAGES

    Streubel, Robert; Han, Luyang; Im, Mi -Young; Kronast, Florian; Rößler, Ulrich K.; Radu, Florin; Abrudan, Radu; Lin, Gungun; Schmidt, Oliver G.; Fischer, Peter; et al

    2015-03-05

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can bemore » imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence« less

  18. Manipulating topological states by imprinting non-collinear spin textures

    SciTech Connect

    Streubel, Robert; Han, Luyang; Im, Mi -Young; Kronast, Florian; Rößler, Ulrich K.; Radu, Florin; Abrudan, Radu; Schmidt, Oliver G.; Fischer, Peter; Makarov, Denys

    2015-03-05

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence

  19. Manipulating Topological States by Imprinting Non-Collinear Spin Textures

    PubMed Central

    Streubel, Robert; Han, Luyang; Im, Mi-Young; Kronast, Florian; Rößler, Ulrich K.; Radu, Florin; Abrudan, Radu; Lin, Gungun; Schmidt, Oliver G.; Fischer, Peter; Makarov, Denys

    2015-01-01

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence. PMID:25739643

  20. Physics and the Vertical Jump

    ERIC Educational Resources Information Center

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  1. Spin rectification induced by spin Hall magnetoresistance at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  2. Quantum spin transistor with a Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-10-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  3. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  4. Spin-orbit coupling and spin relaxation in phosphorene

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    We employ first principles density functional theory calculations to study intrinsic and extrinsic spin-orbit coupling in monolayer phosphorene. We also extract the spin-mixing amplitudes of the Bloch wave functions to give realistic estimates of the Elliott-Yafet spin relaxation rate. The most remarkable result is the striking anisotropy in both spin-orbit coupling and spin relaxation rates, which could be tested experimentally in spin injection experiments. We also identify spin hot spots in the electronic structure of phosphorene at accidental bands anticrossings. We compare the Elliott-Yafet with Dyakonov-Perel spin relaxation times, obtained from extrinsic couplings in an applied electric field. We also compare the results in phosphorene with those of black phosphorous. This work is supported by the DFG SPP 1538, SFB 689, and by the EU Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.

  5. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    NASA Astrophysics Data System (ADS)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  6. Spin filter and spin valve in ferromagnetic graphene

    NASA Astrophysics Data System (ADS)

    Song, Yu; Dai, Gang

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.

  7. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  8. Spinning electroweak sphalerons

    SciTech Connect

    Radu, Eugen; Volkov, Mikhail S.

    2009-03-15

    We present numerical evidence for the existence of stationary spinning generalizations for the static sphaleron in the Weinberg-Salam theory. Our results suggest that, for any value of the mixing angle {theta}{sub W} and for any Higgs mass, the spinning sphalerons comprise a family labeled by their angular momentum J. For {theta}{sub W}{ne}0 they possess an electric charge Q=eJ, where e is the electron charge. Inside they contain a monopole-antimonopole pair and a spinning loop of electric current, and for large J, a Regge-type behavior. It is likely that these sphalerons mediate the topological transitions in sectors with J{ne}0, thus enlarging the number of transition channels. Their action decreases with J, which may considerably affect the total transition rate.

  9. Vertical Sextants give Good Sights

    NASA Astrophysics Data System (ADS)

    Dixon, Mark

    Many texts stress the need for marine sextants to be held precisely vertical at the instant that the altitude of a heavenly body is measured. Several authors lay particular emphasis on the technique of the instrument in a small arc about the horizontal axis to obtain a good sight. Nobody, to the author's knowledge, however, has attempted to quantify the errors involved, so as to compare them with other errors inherent in determining celestial position lines. This paper sets out to address these issues and to pose the question: what level of accuracy of vertical alignment can reasonably be expected during marine sextant work at sea ?When a heavenly body is brought to tangency with the visible horizon it is particularly important to ensure that the sextant is held in a truly vertical position. To this end the instrument is rocked gently about the horizontal so that the image of the body describes a small arc in the observer's field of vision. As Bruce Bauer points out, tangency with the horizon must be achieved during the process of rocking and not a second or so after rocking has been discontinued. The altitude is recorded for the instant that the body kisses the visible horizon at the lowest point of the rocking arc, as in Fig. 2. The only other visual clue as to whether the sextant is vertical is provided by the right angle made by the vertical edge of the horizon glass mirror with the horizon. There may also be some input from the observer's sense of balance and his hand orientation.

  10. Zero-bias spin separation

    NASA Astrophysics Data System (ADS)

    Ganichev, Sergey D.; Bel'Kov, Vasily V.; Tarasenko, Sergey A.; Danilov, Sergey N.; Giglberger, Stephan; Hoffmann, Christoph; Ivchenko, Eougenious L.; Weiss, Dieter; Wegscheider, Werner; Gerl, Christian; Schuh, Dieter; Stahl, Joachim; de Boeck, Jo; Borghs, Gustaaf; Prettl, Wilhelm

    2006-09-01

    The generation, manipulation and detection of spin-polarized electrons in low-dimensional semiconductors are at the heart of spintronics. Pure spin currents, that is, fluxes of magnetization without charge current, are quite attractive in this respect. A paradigmatic example is the spin Hall effect, where an electrical current drives a transverse spin current and causes a non-equilibrium spin accumulation observed near the sample boundary. Here we provide evidence for an another effect causing spin currents which is fundamentally different from the spin Hall effect. In contrast to the spin Hall effect, it does not require an electric current to flow: without bias the spin separation is achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show, by free-carrier absorption of terahertz (THz) radiation, that spin currents flow in a wide range of temperatures. Moreover, the experimental results provide evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy-relaxation processes.

  11. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  12. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  13. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  14. Spin Wave Genie

    SciTech Connect

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce the time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.

  15. Spin Wave Genie

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less

  16. Spin current swapping and spin hall effect in disordered metals

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Pauyac, Christian; Manchon, Aurelien

    2015-03-01

    The conversion of charge currents into spin currents via the spin Hall effect has attracted intense experimental and theoretical efforts lately, providing an efficient means to generate electric signals and manipulate the magnetization of single layers. More recently, it was proposed that spin-dependent scattering induced by spin-orbit coupled impurities also produces a so-called spin swapping, i.e. an exchange between the spin angular momentum and linear momentum of itinerant electrons. In this work, we investigate the nature of spin swapping and its interplay with extrinsic spin Hall effect and spin relaxation in finite size normal metals. We use two complementary methods based on non-equilibrium Green's function technique. The first method consists in rigorously deriving the drift-diffusion equation of the spin accumulation in the presence of spin-orbit coupled impurities from quantum kinetics using Wigner expansion. The second method is the real-space tight binding modeling of a finite system in the presence of spin-orbit coupled disorder.

  17. Spin guides and spin splitters: waveguide analogies in one-dimensional spin chains.

    PubMed

    Makin, Melissa I; Cole, Jared H; Hill, Charles D; Greentree, Andrew D

    2012-01-01

    Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures.

  18. Polariton condensates: Electrical spin switching

    NASA Astrophysics Data System (ADS)

    Liew, T. C. H.

    2016-10-01

    Ultra-low-power electronic switching of stable exciton-polariton spin states has now been achieved in a semiconductor microcavity. This opens a new route to the integration of spin-based photonics and electronics.

  19. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  20. Nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Ruan, Jianhong

    2015-10-01

    This paper contains three parts relating to the nucleon spin structure in a simple picture of the nucleon: (i) The polarized gluon distribution in the proton is dynamically predicted starting from a low scale by using a nonlinear quantum chromodynamics (QCD) evolution equation — the Dokshitzer-Gribov-Lipatov-Altarelli-Paris (DGLAP) equation with the parton recombination corrections, where the nucleon is almost consisted only of valence quarks. We find that the contribution of the gluon polarization to the nucleon spin structure is much larger than the predictions of most other theories. This result suggests that a significant orbital angular momentum of the gluons is required to balance the gluon spin momentum. (ii) The spin structure function g1p of the proton is studied, where the perturbative evolution of parton distributions and nonperturbative vector meson dominance (VMD) model are used. We predict g1p asymptotic behavior at small x from lower Q2 to higher Q2. The results are compatible with the data including the early HERA estimations and COMPASS new results. (iii) The generalized Gerasimov-Drell-Hearn (GDH) sum rule is understood based on the polarized parton distributions of the proton with the higher twist contributions. A simple parameterized formula is proposed to clearly present the contributions of different components in the proton to Γ 1p(Q2). The results suggest a possible extended objects with size 0.2-0.3 fm inside the proton.

  1. Artificial frustrated spin systems

    NASA Astrophysics Data System (ADS)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  2. Stabilizing a spinning Skylab.

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Justice, D. W.; Schweitzer, G.; Patel, J. S.

    1972-01-01

    This paper presents the results of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  3. Stabilizing a spinning Skylab

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.

    1972-01-01

    The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  4. Layered kagome spin ice

    NASA Astrophysics Data System (ADS)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  5. Does the Moon Spin?

    ERIC Educational Resources Information Center

    Collins, Robert; Simpson, Frances

    2007-01-01

    In this article, the authors explore the question, "Does the Moon spin?", and show how the question is investigated. They emphasise the importance of the process by which people work out what they know, by "learning from the inside out." They stress that those involved in science education have to challenge current conceptions and ideas, making…

  6. Supramolecular spin valves

    NASA Astrophysics Data System (ADS)

    Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W.

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

  7. Supramolecular spin valves.

    PubMed

    Urdampilleta, M; Klyatskaya, S; Cleuziou, J-P; Ruben, M; Wernsdorfer, W

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties. PMID:21685902

  8. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  9. An overview of spin physics

    SciTech Connect

    Prescott, C.Y.

    1991-07-01

    Spin physics is playing an increasingly important role in high energy experiments and theory. This review looks at selected topics in high energy spin physics that were discussed at the 9th International Symposium on High Energy Spin Physics at Bonn in September 1990.

  10. Spin Transport in Semiconductor heterostructures

    SciTech Connect

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  11. Microwave generation by spin Hall nanooscillators with nanopatterned spin injector

    SciTech Connect

    Zholud, A. Urazhdin, S.

    2014-09-15

    We experimentally study spin Hall nano-oscillators based on Pt/ferromagnet bilayers with nanopatterned Pt spin injection layer. We demonstrate that both the spectral characteristics and the electrical current requirements can be simultaneously improved by reducing the spin injection area. Moreover, devices with nanopatterned Pt spin injector exhibit microwave generation over a wide temperature range that extends to room temperature. Studies of devices with additional Pt spacers under the device electrodes show that the oscillation characteristics are affected not only by the spin injection geometry but also by the effects of Pt/ferromagnet interface on the dynamical properties of the ferromagnet.

  12. Gluonic Spin Contribution to Proton Spin at NLO

    SciTech Connect

    Casey, Andrew

    2011-05-24

    In 1988, when the EMC results showed that the quarks had a much smaller contribution to the spin of the proton than previously thought, the 'Proton Spin Crisis' began. Since then, considerable effort has been directed into discovering the main contributors to proton spin and how much each contributes. One such contributor is the gluonic spin component. QCD NLO evolution equations are combined with boundary conditions obtained from heavy quark decoupling expressions to evolve the equations from infinity to the mass of the charm quark in order to determine the gluonic spin contribution.

  13. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  14. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Mattione, Paul

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  15. Development and Application of Spin Traps, Spin Probes, and Spin Labels.

    PubMed

    Bagryanskaya, Elena G; Krumkacheva, Olesya A; Fedin, Matvey V; Marque, Sylvain R A

    2015-01-01

    This chapter focuses on major achievements of the last decade in the synthesis and applications of spin traps, spin probes, and spin labels. Our discussion on spin trapping is mainly concerned with novel aspects of nitrones used as spin traps and with the kinetics caused by bioreductants. The second part of the chapter deals with recent developments in site-directed spin labeling (SDSL) for studying structure and functions of proteins and nucleic acids. We focus on SDSL EPR distance measurements using advanced trityl and nitroxide labels, on new approaches for incorporation of spin labels in biomolecules, and finally, on recent room/physiological temperature measurements made feasible by these novel spin labels. PMID:26478492

  16. Next generation vertical electrode cells

    NASA Astrophysics Data System (ADS)

    Brown, Craig

    2001-05-01

    The concept of the vertical electrode cell (VEC) for aluminum electrowinning is presented with reference to current research. Low-temperature electrolysis allows nonconsumable metal-alloy anodes to show ongoing promise in laboratory tests. The economic and environmental advantages of the VEC are surveyed. The unique challenges of bringing VEC technology into practice are discussed. The current status of laboratory research is summarized. New results presented show that commercial purity aluminum can be produced with promisingly high current efficiency.

  17. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  18. Spin Circuit Representation of Spin Pumping in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    Earlier we developed spin circuit representation of spin pumping and combined it with the spin circuit representation for the inverse spin Hall effect to show that it reproduces the established results in literature. Here we construct the spin circuit representation of spin pumping in topological insulators. The discovery of spin-polarized surface states in three-dimensional (3D) topological insulators (TIs) with strong spin-orbit coupling is promising for the development of spintronics. There is considerable bulk conduction too in 3D TIs (e.g., Bi2Se3) apart from possessing the surface states. We utilize the spin circuit model for spin orbit torques in topological insulator surface states to develop the equivalent circuit model of spin pumping in topological insulators. Such equivalent circuit model developed here can be utilized to analyze available experimental results and evaluate more complex structures. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  19. Thermal creation of a spin current by Seebeck spin tunneling

    NASA Astrophysics Data System (ADS)

    Jansen, R.; Le Breton, J. C.; Deac, A. M.; Saito, H.; Yuasa, S.

    2013-09-01

    The thermoelectric analog of spin-polarized tunneling, namely Seebeck spin tunneling, is a recently discovered phenomenon that arises from the spin-dependent Seebeck coefficient of a magnetic tunnel contact. In a tunnel junction with one ferromagnetic electrode and one non-magnetic electrode, a temperature difference between the two electrodes creates a spin current across the contact. Here, the basic principle and the observation of Seebeck spin tunneling are described. It is shown how it can be used to create a spin accumulation in silicon driven by a heat flow across a magnetic tunnel contact, without a charge tunnel current. The sign of the spin current depends on the direction of the heat flow, whereas its magnitude is anisotropic, i.e., dependent on the absolute orientation of the magnetization of the ferromagnet. The connection between Seebeck spin tunneling and the tunnel magneto-Seebeck effect, observed in metal magnetic tunnel junctions, is also clarified. Seebeck spin tunneling may be used to convert waste heat into useful thermal spin currents that aid or replace electrical spin current, and thereby improve the energy efficiency of spintronic devices and technologies.

  20. Spin Hall Conductivity and Spin Chern Number for Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yunt, Elif; Dayi, Omer Faruk

    A semiclassical differential form formalism of the spin Hall effect for Dirac systems is presented. In this formalism, space coordinates and momenta are usual dynamical variables, whereas spin is not a dynamical degree of freedom. Spin depicts itself in the matrix-valuedness of equations of motion. We demonstrate that the main contribution to the spin Hall conductivity is given by the spin Chern number whether the spin is conserved or not at the quantum level. We illustrated the formulation within the Kane-Mele model of graphene in the absence and in the presence of the Rashba spin-orbit coupling term. Kane-Mele Model of graphene, which incorporates intrinsic spin-orbit interaction, constitutes the first example of a two dimensional topological insulator. We established the anomalous Hall conductivity as well as the spin Hall conductivity from the term linear in the electric field and the Berry curvature in the the anamolous velocity term. In a basis where the component of spin under consideration is diagonal this term is diagonal. We argue that this semiclassical procedure of calculating the spin Hall conductivity can be generalized to any dimension.

  1. Hyperfine-induced spin relaxation of a hopping carrier: implications for spin transport in 1-D vs 3-D organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh; Dobrovitski, Viatcheslav; 0 Team

    2015-03-01

    The hyperfine coupling of a carrier spin to a nuclear spin bath is a predominant channel for the carrier spin relaxation in organic semiconductors. We investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice theoretically, in a transport regime typical for organic semiconductors. We show that in d = 1 and d = 2 the time dependence of spin polarization, P (t) , is dominated by a superexponential decay, crossing over to an exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P (t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d = 1 vs. d = 3). Furthermore, we consider the coordinate dependence of spin polarization, σ (r) , in a hypothetic lateral or vertical organic spin-valve device. We demonstrate that, while σ (r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the specific field-dependence of spin relaxation length. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  2. A Conservative Solution to the Stochastic Dynamical Reduction Problem. Case of Spin- z Measurement of a Spin-1/2 Particle

    NASA Astrophysics Data System (ADS)

    Halabi, T.

    2013-10-01

    Stochastic dynamical reduction for the case of spin- z measurement of a spin-1/2 particle describes a random walk on the spin- z axis. The measurement’s result depends on which of the two points: spin- z=± ħ/2 is reached first. Born’s rule is recovered as long as the expected step size in spin- z is independent of proximity to endpoints. Here, we address the questions raised by this description: (1) When is collapse triggered, and what triggers it? (2) Why is the expected step size in spin- z (as opposed to polar angle) independent of proximity to endpoints? (3) Why does spin “lock” in the vertical directions? The difficulties associated with (1) are rooted, as is Bell’s theorem, in the time-asymmetric assumption that the present distribution over hidden variables is independent of future settings. We believe, a priori of any of the experiments of modern physics, that such a time-asymmetric assumption is dubious when probing the microscopic scale. As for (2) and (3), they are simultaneously resolved by abandoning the fundamental distinction drawn between spin and spatial angular momentum, and by appealing to very tiny (in both magnitude and spatial extent) but numerous patches of magnetic noise in the Stern-Gerlach’s field.

  3. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang

    2015-03-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).

  4. Excitation of coherent propagating spin waves by pure spin currents

    PubMed Central

    Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232

  5. State diagram of an orthogonal spin transfer spin valve device

    SciTech Connect

    Ye, Li; Wolf, Georg; Pinna, Daniele; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.

    2015-05-21

    We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.

  6. Ultrafast Optical Spin Echo for Electron Spins in Semiconductors

    SciTech Connect

    Clark, Susan M.; Fu, Kai-Mei C.; Zhang Qiang; Ladd, Thaddeus D.; Yamamoto, Yoshihisa; Stanley, Colin

    2009-06-19

    Spin-based quantum computing and magnetic resonance techniques rely on the ability to measure the coherence time T{sub 2} of a spin system. We report on the experimental implementation of all-optical spin echo to determine the T{sub 2} time of a semiconductor electron-spin system. We use three ultrafast optical pulses to rotate spins an arbitrary angle and measure an echo signal as the time between pulses is lengthened. Unlike previous spin-echo techniques using microwaves, ultrafast optical pulses allow clean T{sub 2} measurements of systems with dephasing times (T{sub 2}*) fast in comparison to the time scale for microwave control. This demonstration provides a step toward ultrafast optical dynamic decoupling of spin-based qubits.

  7. Hydrodynamics of spin-polarized transport and spin pendulum

    SciTech Connect

    Gurzhi, R. N. Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2007-07-15

    The dynamics of a nonequilibrium spin system dominated by collisions preserving the total quasimomentum of the interacting electrons and quasiparticles is considered. An analysis of the derived hydrodynamic equations shows that weakly attenuated spin-polarization waves associated with an oscillating drift current can exist in a magnetically inhomogeneous conducting ring. Spin-polarized transport in a ballistic regime of wave propagation through a conductor is also considered, and a simple method is proposed for distinguishing these waves from spin and current oscillations that develop in the hydrodynamic regime. It is shown that a potential difference arises between the leads of an open nonuniformly spin-polarized conductor as a manifestation of spin polarization of electron density. This spin-mediated electrical phenomenon occurs in both hydrodynamic and diffusive limits.

  8. Spinning compact binary : Independent variables and dynamically preserved spin configurations

    SciTech Connect

    Gergely, Laszlo Arpad

    2010-04-15

    We establish the set of independent variables suitable to monitor the complicated evolution of the spinning compact binary during the inspiral. Our approach is valid up to the second post-Newtonian order, including leading order spin-orbit, spin-spin and mass quadrupole-mass monopole effects, for generic (noncircular, nonspherical) orbits. Then, we analyze the conservative spin dynamics in terms of these variables. We prove that the only binary black hole configuration allowing for spin precessions with equal angular velocities about a common instantaneous axis roughly aligned to the normal of the osculating orbit, is the equal mass and parallel (aligned or antialigned) spin configuration. This analytic result puts limitations on what particular configurations can be selected in numerical investigations of compact binary evolutions, even in those including only the last orbits of the inspiral.

  9. Pseudospin, real spin, and spin polarization of photoemitted electrons

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi

    2016-08-01

    In this paper, we discuss the connections between pseudospin, real spin of electrons in a material, and spin polarization of photoemitted electrons out of a material. By investigating these three spin textures for Bi2Se3 and SmB6 compounds, we find that the spin orientation of photoelectrons for SmB6 has a different correspondence to pseudospin and real spin compared to Bi2Se3 , due to the different symmetry properties of the photoemission matrix between the initial and final states. We calculate the spin polarization and circular dichroism spectra of photoemitted electrons for both compounds, which can be detected by spin-resolved and circular dichroism angle-resolved photoemission spectroscopy experiments.

  10. Spin Hall controlled magnonic microwaveguides

    SciTech Connect

    Demidov, V. E.; Urazhdin, S.; Rinkevich, A. B.; Reiss, G.; Demokritov, S. O.

    2014-04-14

    We use space-resolved magneto-optical spectroscopy to study the influence of spin Hall effect on the excitation and propagation of spin waves in microscopic magnonic waveguides. We find that the spin Hall effect not only increases the spin-wave propagation length, but also results in an increased excitation efficiency due to the increase of the dynamic susceptibility in the vicinity of the inductive antenna. We show that the efficiency of the propagation length enhancement is strongly dependant on the type of the excited spin-wave mode and its wavelength.

  11. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-01

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications.

  12. [Vertical fractures: apropos of 2 clinical cases].

    PubMed

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  13. Vertical separation of the two beams

    SciTech Connect

    Heifets, S.

    1985-10-01

    The author discusses the problem of design of insertion points on the SSC, and in particular keeping the length necessary for them under control. Here he considers the possibility of having vertically separated beams, without a vertical dispersion suppressor.

  14. Vertical Feature Mask Feature Classification Flag Extraction

    Atmospheric Science Data Center

    2013-03-28

      Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...

  15. [Vertical fractures: apropos of 2 clinical cases].

    PubMed

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures. PMID:1659859

  16. Bouncing Balls that Spin

    ERIC Educational Resources Information Center

    Knipp, Peter

    2008-01-01

    When a ball bounces elastically against a floor, the vertical component (v[subscript y]) of the velocity of the ball's mass-center changes sign. This is a special case of the elastic collision of two balls (i.e., two objects, neither of which is much more massive than the other), in which case the balls' post-collision relative velocity (=…

  17. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    NASA Astrophysics Data System (ADS)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  18. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  19. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  20. All-electric spin transistor using perpendicular spins

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Bae, Joohyung; Min, Byoung-Chul; Kim, Hyung-jun; Chang, Joonyeon; Koo, Hyun Cheol

    2016-04-01

    All-electric spin transistor is demonstrated using perpendicular spins in an InAs quantum well channel. For the injection and detection of perpendicular spins in the quantum well channel, we use Tb20Fe62Co18/Co40Fe40B20 electrodes, where the Tb20Fe62Co18 layer produces the perpendicular magnetization and the Co40Fe40B20 layer enhances the spin polarization. In this spin transistor device, a gate-controlled spin signal as large as 80 mΩ is observed at 10 K without an external magnetic field. In order to confirm the spin injection and relaxation independently, we measure the three-terminal Hanle effect with an in-plane magnetic field, and obtain a spin signal of 1.7 mΩ at 10 K. These results clearly present that the electric field is an efficient way to modulate spin orientation in a strong spin-orbit interaction system.

  1. Spin Funneling for Enhanced Spin Injection into Ferromagnets.

    PubMed

    Sayed, Shehrin; Diep, Vinh Q; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  2. Spin squeezing and entanglement for an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Vitagliano, Giuseppe; Apellaniz, Iagoba; Egusquiza, Iñigo L.; Tóth, Géza

    2014-03-01

    A complete set of generalized spin-squeezing inequalities is derived for an ensemble of particles with an arbitrary spin. Our conditions are formulated with the first and second moments of the collective angular momentum coordinates. A method for mapping the spin-squeezing inequalities for spin-1/2 particles to entanglement conditions for spin-j particles is also presented. We apply our mapping to obtain a generalization of the original spin-squeezing inequality to higher spins. We show that, for large particle numbers, a spin-squeezing parameter for entanglement detection based on one of our inequalities is strictly stronger than the original spin-squeezing parameter defined in Sørensen et al. [Nature (London) 409, 63 (2001), 10.1038/35051038]. We present a coordinate system independent form of our inequalities that contains, besides the correlation and covariance tensors of the collective angular momentum operators, the nematic tensor appearing in the theory of spin nematics. Finally, we discuss how to measure the quantities appearing in our inequalities in experiments.

  3. Spin noise in the anisotropic central spin model

    NASA Astrophysics Data System (ADS)

    Hackmann, Johannes; Anders, Frithjof B.

    2014-01-01

    Spin-noise measurements can serve as a direct probe for the microscopic decoherence mechanism of an electronic spin in semiconductor quantum dots (QDs). We have calculated the spin-noise spectrum in the anisotropic central spin model using a Chebyshev expansion technique which exactly accounts for the dynamics up to an arbitrary long but fixed time in a finite-size system. In the isotropic case, describing QD charge with a single electron, the short-time dynamics is in good agreement with quasistatic approximations for the thermodynamic limit. The spin-noise spectrum, however, shows strong deviations at low frequencies with a power-law behavior of ω-3/4 corresponding to a t-1/4 decay at intermediate and long times. In the Ising limit, applicable to QDs with heavy-hole spins, the spin-noise spectrum exhibits a threshold behavior of (ω-ωL)-1/2 above the Larmor frequency ωL=gμBB. In the generic anisotropic central spin model we have found a crossover from a Gaussian type of spin-noise spectrum to a more Ising-type spectrum with increasing anisotropy in a finite magnetic field. In order to make contact with experiments, we present ensemble averaged spin-noise spectra for QD ensembles charged with single electrons or holes. The Gaussian-type noise spectrum evolves to a more Lorentzian shape spectrum with increasing spread of characteristic time scales and g factors of the individual QDs.

  4. Pure spin current transport in Alq3 by spin pumping

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Wang, Peng; Luan, Zhongzhi; Tao, Xinde; Ding, Haifeng; Wu, Di

    2015-03-01

    The use of organic semiconductors (OSCs) in spintronics has aroused considerable interests, owing to their much longer spin-relaxation times of OSCs than those of inorganic counterparts. The most studied example is the organic spin valve (OSV), in which magnetoresistance (MR) effect is frequently reported. However, studies on pure spin current injection and transport in OSCs are scarce. Recently, the pioneering work by Watanabe et al. demonstrated that pure spin current can be pumped into and propagates in semiconducting polymers. In the present work we extend the study to small molecule OSCs, and demonstrate that pure spin current can be injected into Alq3 from the adjacent magnetic insulator Y3Fe5O12 (YIG) by spin pumping. The pure spin current is detected by inverse spin Hall effect (ISHE) in Pd after propagation through Alq3. From the ISHE voltage VISHE as a function of the Alq3 thickness, the spin diffusion length is determined to be ~ 50 nm and does not depend on temperature. This result indicates the MR decrease as increasing temperature in OSVs is not due to the reduced spin diffusion length.

  5. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  6. A design for vertical crossing insertions

    SciTech Connect

    Garren, A.

    1985-10-01

    A crossing insertion designed for an SSC with vertically separated 1-in-1 beam lines is presented in this note. The author supposes that the beam lines consist of separate magnets in separate cryostats separated by about 70 cm. He then describes the design, where vertical separation is done with four vertical dipoles producing a steplike beam line.

  7. 46 CFR 108.160 - Vertical ladders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vertical ladders. 108.160 Section 108.160 Shipping COAST... Construction and Arrangement Means of Escape § 108.160 Vertical ladders. (a) Each vertical ladder must have... inches) apart, uniform for the length of the ladder; and (3) At least 18 centimeters (7 inches) from...

  8. 46 CFR 108.160 - Vertical ladders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Vertical ladders. 108.160 Section 108.160 Shipping COAST... Construction and Arrangement Means of Escape § 108.160 Vertical ladders. (a) Each vertical ladder must have... inches) apart, uniform for the length of the ladder; and (3) At least 18 centimeters (7 inches) from...

  9. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  10. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  11. Spinning superconducting electrovacuum soliton

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2006-08-01

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

  12. Spin-driven inflation

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.

    1993-11-01

    Following recent studies of Ford, we suggest - in the framework of general relativity - an inflationary cosmological model with self-interacting spinning matter. A generalization of the standard fluid model is discussed and estimates of the physical parameters of the evolution are given. I would like to thank Professor Friedrich W. Hehl for the careful reading of the manuscript and useful advice. This research was supported by the Alexander von Humboldt Foundation (Bonn).

  13. Dusty spin plasmas

    SciTech Connect

    Brodin, G.; Marklund, M.; Zamanian, J.

    2008-09-07

    A fluid model is derived, taking into account the effect of spin magnetization of electrons as well as of magnetized dust grains. The model is analyzed, and it is found that both the acoustic velocity and the Alfven velocity is decreased due to the magnetization effects. Furthermore, for low-temperature high density plasmas, it is found that the linear wave modes can be unstable, due to the magnetic attraction of individual fluid elements. The significance of our results are discussed.

  14. Spin and gravitation

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.

  15. 14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... However, the drag component used for design may not be less than the drag load prescribed in § 23.479(b... time until the peak load is reached and under this assumption, the equation determines the drag force..., as stated above, the drag spin-up load need not exceed 0.8 of the maximum vertical loads. (c)...

  16. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  17. Inertial oscillation of a vertical rotating draft with application to a supercell storm

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Stock, Larry V.

    1992-01-01

    An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell.

  18. ?Vertical Sextants give Good Sights?

    NASA Astrophysics Data System (ADS)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.

  19. Vertical jumping and signaled avoidance

    PubMed Central

    Cándido, Antonio; Maldonado, Antonio; Vila, Jaime

    1988-01-01

    This paper reports an experiment intended to demonstrate that the vertical jumping response can be learned using a signaled-avoidance technique. A photoelectric cell system was used to record the response. Twenty female rats, divided equally into two groups, were exposed to intertrial intervals of either 15 or 40 s. Subjects had to achieve three successive criteria of acquisition: 3, 5, and 10 consecutive avoidance responses. Results showed that both groups learned the avoidance response, requiring increasingly larger numbers of trials as the acquisition criteria increased. No significant effect of intertrial interval was observed. PMID:16812559

  20. Neighbourly polytopes with few vertices

    SciTech Connect

    Devyatov, Rostislav A

    2011-10-31

    A family of neighbourly polytopes in R{sup 2d} with N=2d+4 vertices is constructed. All polytopes in the family have a planar Gale diagram of a special type, namely, with exactly d+3 black points in convex position. These Gale diagrams are parametrized by 3-trees (trees with a certain additional structure). For all polytopes in the family, the number of faces of dimension m containing a given vertex A depends only on d and m. Bibliography: 7 titles.

  1. Spin-bus concept of spin quantum computing

    SciTech Connect

    Mehring, Michael; Mende, Jens

    2006-05-15

    We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm. Experiments were performed on a qubyte plus one nuclear spin in a solid state system.

  2. FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS

    SciTech Connect

    Huffenberger, Kevin M.; Wandelt, Benjamin D.

    2010-08-15

    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.

  3. Coherent spin mixing dynamics in a spin-1 atomic condensate

    SciTech Connect

    Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.

    2005-07-15

    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.

  4. Vertically coupled dipolar exciton molecules

    NASA Astrophysics Data System (ADS)

    Cohen, Kobi; Khodas, Maxim; Laikhtman, Boris; Santos, Paulo V.; Rapaport, Ronen

    2016-06-01

    While the interaction potential between two dipoles residing in a single plane is repulsive, in a system of two vertically adjacent layers of dipoles it changes from repulsive interaction in the long range to attractive interaction in the short range. Here we show that for dipolar excitons in semiconductor heterostructures, such a potential may give rise to bound states if two such excitons are excited in two separate layers, leading to the formation of vertically coupled dipolar exciton molecules. Our calculations prove the existence of such bound states and predict their binding energy as a function of the layers separation as well as their thermal distributions. We show that these molecules should be observed in realistic systems such as semiconductor coupled quantum well structures and the more recent van der Waals bound heterostructures. Formation of such molecules can lead to new effects such as a collective dipolar drag between layers and new forms of multiparticle correlations, as well as to the study of dipolar molecular dynamics in a controlled system.

  5. Laser tracking for vertical control

    NASA Technical Reports Server (NTRS)

    Dunn, Peter; Torrence, Mark; Pavlis, Erricos; Kolenkiewicz, Ron; Smith, David

    1993-01-01

    The Global Laser Tracking Network has provided LAGEOS ranging data of high accuracy since the first MERIT campaign in late 1983 and we can now resolve centimeter-level three dimensional positions of participating observatories at monthly intervals. In this analysis, the station height estimates have been considered separately from the horizontal components, and can be determined by the strongest stations with a formal standard error of 2 mm using eight years of continuous observations. The rate of change in the vertical can be resolved to a few mm/year, which is at the expected level of several geophysical effects. In comparing the behavior of the stations to that predicted by recent models of post-glacial rebound, we find no correlation in this very small effect. Particular attention must be applied to data and survey quality control when measuring the vertical component, and the survey observations are critical components of the geodynamic results. Seasonal patterns are observed in the heights of most stations, and the possibility of secular motion at the level of several millimeters per year cannot be excluded. Any such motion must be considered in the interpretation of horizontal inter-site measurements, and can help to identify mechanisms which can cause variations which occur linearly with time, seasonally, or abruptly.

  6. Decoupling a hole spin qubit from the nuclear spins

    NASA Astrophysics Data System (ADS)

    Prechtel, Jonathan H.; Kuhlmann, Andreas V.; Houel, Julien; Ludwig, Arne; Valentin, Sascha R.; Wieck, Andreas D.; Warburton, Richard J.

    2016-09-01

    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.

  7. Correlation functions of the integrable spin-s chain

    NASA Astrophysics Data System (ADS)

    Ribeiro, G. A. P.; Klümper, A.

    2016-06-01

    We study the correlation functions of su(2) invariant spin-s chains in the thermodynamic limit. We derive nonlinear integral equations for an auxiliary correlation function ω for any spin s and finite temperature T. For the spin-3/2 chain for arbitrary temperature and zero magnetic field we obtain algebraic expressions for the reduced density matrix of two-sites. In the zero temperature limit, the density matrix elements are evaluated analytically and appear to be given in terms of Riemann’s zeta function values of even and odd arguments. Dedicated to Professor Rodney Baxter on the occasion of his 75th birthday.

  8. Chiral spin liquids in arrays of spin chains

    NASA Astrophysics Data System (ADS)

    Gorohovsky, Gregory; Pereira, Rodrigo G.; Sela, Eran

    2015-06-01

    We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.

  9. Valley-spin blockade and spin resonance in carbon nanotubes.

    PubMed

    Pei, Fei; Laird, Edward A; Steele, Gary A; Kouwenhoven, Leo P

    2012-10-01

    The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.

  10. Spin-up from rest in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Flor, Jan-Bert; Bush, John; Ungarish, Marius

    2002-11-01

    We investigate the spin-up from rest of a stratified fluid with initial Brunt-Väisälä frequency N bound within a cylindrical container of height H and radius R which is set to rotate impulsively with angular speed Ω. The initial phase of motion is marked by the establishment of axisymmetric corner vortices fed by radial Ekman transport, a process detailed in Flor, Ungarish & Bush (2001). The subsequent evolution of the central vortex depends critically on N/f. For N/f > 1 and H/R >1, the axisymmetry of the system is retained throughout the spin-up process: the central vortex attains a state of near solid body rotation by the diffusion of vorticity from the sidewalls. For N/f > 1 and H/R < 1, the central vortex breaks up into a series of vertical vortices that enhance transfer of angular momentum from the boundaries and so expedite the spin-up process. For N/f < 1, the central vortex becomes unstable through a tilting instability. In a short tank, this is marked by a simple tipping of the central stratified vortex. In a tall tank, the centerline of the central vortex is twisted from its vertical position, and the resulting instability gives rise to a stack of vortices with approximately constant Burger ratio Nh/fR.

  11. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  12. Inductance due to spin current

    SciTech Connect

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  13. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves

    NASA Astrophysics Data System (ADS)

    Dejene, F. K.; Flipse, J.; Bauer, G. E. W.; van Wees, B. J.

    2013-10-01

    Since the discovery of the giant magnetoresistance effect the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120mK and 350mK are extracted at room temperature and 77K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.

  14. Spinning Characteristics of Wings III : a Rectangular and Tapered Clark Y Monoplane Wing with Rounded Tips

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.

  15. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology

    NASA Astrophysics Data System (ADS)

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F.; Branford, Will R.

    2016-07-01

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  16. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-01-01

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  17. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-01-01

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures. PMID:27443523

  18. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology

    PubMed Central

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F.; Branford, Will R.

    2016-01-01

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures. PMID:27443523

  19. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    SciTech Connect

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa; Deur, Alexandre P.; Dezern, Gary L.; Ho, Dao Hoang; Kageya, Tsuneo; Khandaker, Mahbubul A,; Kashy, David H.; Laine, Vivien Eric; Lowry, Michael M.; O'Connell, Thomas Robert; Sandorfi, Andrew M.; Teachey, II, Robert W.; Whisnant, Charles Steven; Zarecky, Michael R.

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.

  20. Parameters of spinning FM reticles.

    PubMed

    Driggers, R G; Halford, C E; Boreman, G D; Lattman, D; Williams, K F

    1991-03-01

    The literature describes tracking devices that allow a single detector coupled to a spinning FM reticle to determine target location. The spinning FM reticles presented were limited to single parameter reticles of frequency vs angle, frequency vs radius, or phase. This study presents these parameters with their capabilities and limitations and shows that multiple parameters can be integrated into a single reticle. Also, a general equation is developed that describes any FM reticle of the spinning type. PMID:20582075

  1. Understanding the proton's spin structure

    SciTech Connect

    Fred Myhrer; Thomas, Anthony W.

    2010-02-01

    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton "spin crisis" by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.

  2. The wake of a single vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle A.; Leftwich, Megan C.

    2013-11-01

    The purpose of this study is to measure the wake of a Windspire vertical axis wind turbine (VAWT). In recent years, research on VAWTs has increased due to various potential advantages over the more common horizontal axis wind turbines (HAWTs). Unlike very large HAWTs, moderately sized-and virtually silent-VAWTs can be placed in urban and suburban regions where land space is limited. To date, many VAWT studies have assumed that the turbine has the same aerodynamic structure as a spinning cylinder despite a significant increase in geometric complexity. This experiment attempts to understand the fundamental wake structure of a single VAWT (and compare it to the wake structure of a spinning cylinder). In this experiment, a scaled-down VAWT is placed inside a wind tunnel under a controlled laboratory setting. A motor rotates the scale model at a constant angular speed. Stereo particle image velocimetry (PIV) is used to visualize the wake of the turbine and image processing techniques are used to quantify the velocity and vorticity of the wake.

  3. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  4. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  5. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  6. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. PMID:26112081

  7. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  8. The straintronic spin-neuron

    NASA Astrophysics Data System (ADS)

    Biswas, Ayan K.; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  9. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  10. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  11. RHIC spin program

    SciTech Connect

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  12. Spin-Hall effect and spin-Coulomb drag in doped semiconductors.

    PubMed

    Hankiewicz, E M; Vignale, G

    2009-06-24

    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.

  13. TOPICAL REVIEW: Spin-Hall effect and spin-Coulomb drag in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, E. M.; Vignale, G.

    2009-06-01

    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.

  14. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  15. Spin waves in the (

    SciTech Connect

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  16. Spin-SILC: CMB polarisation component separation with spin wavelets

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in the underlying E and B modes, therefore providing the ability to perform component separation and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological E and B modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB E and B modes for future polarisation experiments.

  17. Spin pumping and spin-transfer torques in antiferromagnet

    NASA Astrophysics Data System (ADS)

    Niu, Qian

    2015-03-01

    Spin pumping and spin-transfer torques are key elements of coupled dynamics of magnetization and conduction electron spin, which have been widely studied in various ferromagnetic materials. Recent progress in spintronics suggests that a spin current can significantly affects the behavior of an antiferromagnetic material, and the electron motion become adiabatic when the staggered field varies sufficiently slowly. However, pumping from antiferromagnets and its relation to current-induced torques is yet unclear. In a recent study, we have solved this puzzle analytically by calculating how electrons scatter off a normal metal-antiferromagnetic interface. The pumped spin and staggered spin currents are derived in terms of the staggered field, the magnetization, and their rates of change. We find that for both compensated and uncompensated interfaces, spin pumping is of a similar magnitude as in ferromagnets; the direction of spin pumping is controlled by the polarization of the driving microwave. Via the Onsager reciprocity relations, the current-induced torques are also derived, the salient feature of which is illustrated by a terahertz nano-oscillator. In collaboration with Ran Cheng, Jiang Xiao, and A. Brataas.

  18. Tensor spin observables and spin stucture at low Q2

    SciTech Connect

    Slifer, Karl J.

    2015-04-01

    We discuss recent spin structure results from Jefferson Lab, and outline an emerging program to study tensor spin observables using solid deuteron targets. These new experiments open the potential to study hidden color, the tensor nature of short range correlations, and to probe for exotic gluonic states.

  19. Unconventional spin texture in a noncentrosymmetric quantum spin Hall insulator

    NASA Astrophysics Data System (ADS)

    Mera Acosta, C.; Babilonia, O.; Abdalla, L.; Fazzio, A.

    2016-07-01

    We propose that the simultaneous presence of both Rashba and band inversion can lead to a Rashba-like spin splitting formed by two bands with the same in-plane helical spin texture. Because of this unconventional spin texture, the backscattering is forbidden in edge and bulk conductivity channels. We propose a noncentrosymmetric honeycomb-lattice quantum spin Hall (QSH) insulator family formed by the IV, V, and VII elements with this property. The system formed by Bi, Pb, and I atoms is mechanically stable and has both a large Rashba spin splitting of 60 meV and a large nontrivial band gap of 0.14 eV. Since the edge and the bulk states are protected by the time-reversal (TR) symmetry, contrary to what happens in most doped QSH insulators, the bulk states do not contribute to the backscattering in the electronic transport, allowing the construction of a spintronic device with less energy loss.

  20. Spin slush in an extended spin ice model

    PubMed Central

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  1. Spin slush in an extended spin ice model.

    PubMed

    Rau, Jeffrey G; Gingras, Michel J P

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  2. Spin slush in an extended spin ice model

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-07-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed.

  3. Spin injection and spin transport in paramagnetic insulators

    DOE PAGES

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  4. Intrinsic spin torque without spin-orbit coupling

    PubMed Central

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-01-01

    We derive an intrinsic contribution to the non-adiabatic spin torque for non-uniform magnetic textures. It differs from previously considered contributions in several ways and can be the dominant contribution in some models. It does not depend on the change in occupation of the electron states due to the current flow but rather is due to the perturbation of the electronic states when an electric field is applied. Therefore it should be viewed as electric-field-induced rather than current-induced. Unlike previously reported non-adiabatic spin torques, it does not originate from extrinsic relaxation mechanisms nor spin-orbit coupling. This intrinsic non-adiabatic spin torque is related by a chiral connection to the intrinsic spin-orbit torque that has been calculated from the Berry phase for Rashba systems. PMID:26877628

  5. Magnetar Spin-Down.

    PubMed

    Harding; Contopoulos; Kazanas

    1999-11-10

    We examine the effects of a relativistic wind on the spin-down of a neutron star and apply our results to the study of soft gamma repeaters (SGRs), which are thought to be neutron stars with magnetic fields greater than 1014 G. We derive a spin-down formula that includes torques from both dipole radiation and episodic or continuous particle winds. We find that if SGR 1806-20 puts out a continuous particle wind of 1037 ergs s-1, then the pulsar age is consistent with that of the supernova remnant, but the derived surface dipole magnetic field is only 3x1013 G, in the range of normal radio pulsars. If instead the particle wind flows are episodic with small duty cycle, then the observed period derivatives imply magnetar-strength fields, while still allowing characteristic ages within a factor of 2 of the estimated supernova remnant age. Close monitoring of the periods of SGRs will allow us to establish or place limits on the wind duty cycle and thus the magnetic field and age of the neutron star.

  6. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.

  7. Spin-noise correlations and spin-noise exchange driven by low-field spin-exchange collisions

    NASA Astrophysics Data System (ADS)

    Dellis, A. T.; Loulakis, M.; Kominis, I. K.

    2014-09-01

    The physics of spin-exchange collisions have fueled several discoveries in fundamental physics and numerous applications in medical imaging and nuclear magnetic resonance. We report on the experimental observation and theoretical justification of spin-noise exchange, the transfer of spin noise from one atomic species to another. The signature of spin-noise exchange is an increase of the total spin-noise power at low magnetic fields, on the order of 1 mG, where the two-species spin-noise resonances overlap. The underlying physical mechanism is the two-species spin-noise correlation induced by spin-exchange collisions.

  8. Enhanced spin polarization in graphene with spin energy gap induced by spin-orbit coupling and strain

    SciTech Connect

    Liu, Zheng-Fang; Wu, Qing-Ping E-mail: aixichen@ecjtu.jx.cn; Chen, Ai-Xi E-mail: aixichen@ecjtu.jx.cn; Xiao, Xian-Bo; Liu, Nian-Hua

    2014-05-28

    We investigate the possibility of spin polarization in graphene. The result shows that a spin energy gap can be opened in the presence of both spin-orbit coupling and strain. We find that high spin polarization with large spin-polarized current is achieved in the spin energy gap. However, only one of the two modulations is present, no spin polarization can be generated. So the combination of the two modulations provides a way to design tunable spin polarization without need for a magnetic element or an external magnetic field.

  9. Spin transport in p-type germanium.

    PubMed

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  10. Spin transport in p-type germanium

    NASA Astrophysics Data System (ADS)

    Rortais, F.; Oyarzún, S.; Bottegoni, F.; Rojas-Sánchez, J.-C.; Laczkowski, P.; Ferrari, A.; Vergnaud, C.; Ducruet, C.; Beigné, C.; Reyren, N.; Marty, A.; Attané, J.-P.; Vila, L.; Gambarelli, S.; Widiez, J.; Ciccacci, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2016-04-01

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle {θ\\text{SHE}} in Ge-p (6-7× {{10}-4} ) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  11. Nonstochastic magnetic reversal in artificial quasicrystalline spin ice

    SciTech Connect

    Farmer, B.; Bhat, V. S.; Woods, J.; Teipel, E.; Smith, N.; De Long, L. E.; Sklenar, J.; Ketterson, J. B.; Hastings, J. T.

    2014-05-07

    We have measured the isothermal DC magnetization of Penrose P2 tilings (P2T) composed of wire segments of permalloy thin film. Micromagnetic simulations reproduce the coercive fields and “knee anomalies” observed in experimental data and show magnetic shape anisotropy constrains segments to be single-domain (Ising spins) at low fields, similar to artificial spin ice (ASI). Mirror symmetry controls the initial reversal of individual segments oriented parallel to the applied field, followed by complex switching of multiple adjacent segments (“avalanches”) of various orientations such that closed magnetization loops (“vortices”) are favored. Ferromagnetic P2T differ from previously studied ASI systems due to their aperiodic translational symmetry and numerous inequivalent pattern vertices, which drive nonstochastic switching of segment polarizations.

  12. On quantum corrections in higher-spin theory in flat space

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry; Tseytlin, Arkady A.

    2016-05-01

    We consider an interacting theory of an infinite tower of massless higher-spin fields in flat space with cubic vertices and their coupling constants found previously by Metsaev. We compute the one-loop bubble diagram part of the self-energy of the spin 0 member of the tower by summing up all higher-spin loop contributions. We find that the result contains an exponentially UV divergent part and we discuss how it could be cancelled by a tadpole contribution depending on yet to be determined quartic interaction vertex. We also compute the tree-level four-scalar scattering amplitude due to all higher-spin exchanges and discuss its inconsistency with the BCFW constructibility condition. We comment on possible relation to similar computations in AdS background in connection with AdS/CFT.

  13. Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase.

    SciTech Connect

    Bower, D. J.; Gurnis, M.; Jackson, J. M.; Sturhahn, W.; X-Ray Science Division; California Inst. of Tech.

    2009-05-28

    Using a numerical model we explore the consequences of the intrinsic density change ({Delta}{rho}/{rho} {approx} 2-4%) caused by the Fe{sup 2+} spin transition in ferropericlase on the style and vigor of mantle convection. The effective Clapeyron slope of the transition from high to low spin is strongly positive in pressure-temperature space and broadens with high temperature. This introduces a net spin-state driving density difference for both upwellings and downwellings. In 2-D cylindrical geometry spin-buoyancy dominantly enhances the positive thermal buoyancy of plumes. Although the additional buoyancy does not fundamentally alter large-scale dynamics, the Nusselt number increases by 5-10%, and vertical velocities by 10-40% in the lower mantle. Advective heat transport is more effective and temperatures in the core-mantle boundary region are reduced by up to 12%. Our findings are relevant to the stability of lowermost mantle structures.

  14. Aerodynamic model development and simulation of airliner spin for upset recovery

    NASA Astrophysics Data System (ADS)

    Khrabrov, A.; Sidoryuk, M.; Goman, M.

    2013-06-01

    The aerodynamic model of a generic airliner configuration is developed for a wide range of angles of attack, sideslip and angular rate based on experimental data obtained in wind tunnels using static, forced oscillations and rotary balance tests. The developed aerodynamic model is applied for the investigation of the airliner scaled model nonlinear dynamics at high angles of attack with an intensive rotation to identify potential spin modes and spin recovery procedures. The evaluated equilibrium spin parameters and simulated recovery control deflections are in good agreement with the experimental results from free-spin tests obtained in the TsAGI vertical wind tunnel. The work is performed in connection with the European FP7 project SUPRA (Simulation of UPset Recovery in Aviation, http://www.supra.aero).

  15. Spin Technologies in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Klimov, Paul

    2015-03-01

    Over the past several decades SiC has evolved from being a simple abrasive to a versatile material platform for high-power electronics, optoelectronics, and nanomechanical devices. These technologies have been driven by advanced growth, doping, and processing capabilities, and the ready availability of large-area, single-crystal SiC wafers. Recent advances have also established SiC as a promising host for a novel class of technologies based on the spin of intrinsic color centers. In particular, the divacancies and related defects have ground-state electronic-spin triplets with ms-long coherence times that can be optically addressed near telecom wavelengths and manipulated with magnetic, electric, and strain fields. Recently, divacancy addressability has been extended to the single defect level, laying foundation for single spin technologies in SiC. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are typically a major source of decoherence in color-center spin systems, they are also an important resource since they interact with magnetic fields orders of magnitude more weakly than electronic spins. This fact has motivated their use for quantum memories and ultra-sensitive sensors. In this talk I will review advances in this rapidly developing field and discuss our efforts towards this latter goal. This work was supported by the AFOSR, DARPA, and the NSF.

  16. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony

    2008-11-01

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between "chiral" and "invariant" spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  17. Microfabricated Spin Polarized Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Jimenez Martinez, Ricardo

    Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.

  18. Invariant Spin in the Proton

    SciTech Connect

    Thomas, Anthony W.

    2008-10-13

    We discuss recent theoretical progress in understanding the distribution of spin and orbital angular momentum in the proton. Particular attention is devoted to the effect of QCD evolution and to the distinction between 'chiral' and 'invariant' spin. This is particularly significant with respect to the possible presence of polarized strange quarks.

  19. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects.

  20. On the Vertical Gradient in CO2

    NASA Astrophysics Data System (ADS)

    Stine, A. R.; Fung, I. Y.

    2008-12-01

    Attempts to constrain surface fluxes of carbon from atmospheric measurements of carbon dioxide have primarily focused on surface boundary layer measurements, because information about surface fluxes is least diluted close to the locations where the fluxes occur. However, errors in model ventilation of air in the vertical can be misinterpreted as local surface fluxes. Satellites which measure column integrated CO2 are expected to represent a major advance in part because they observe the entire atmospheric column. Recent work has highlighted the fact that vertical gradients in carbon concentrations can give us information about where vertical mixing errors are likely to be misinterpreted as local surface fluxes, but passive tracer evidence suggests that models that capture vertical profiles on the ocean do poorly on the land (and vice versa), suggesting that the problem of correctly treating vertical mixing in inverse studies is more fundamental than picking the "best" model. We consider observations of the vertical gradient in CO2 from aircrafts and from a comparison of satellites that observe in the near infrared (which observe the column integrated CO2 field) and the thermal infrared (which observe the upper troposphere). We evaluate the feasibility of using these satellites for determining the vertical gradient in CO2. We examine how observations of the vertical gradient of CO2 allow us to differentiate the imprint of vertical mixing and the imprint in surface fluxes on the observed field of atmospheric CO2.

  1. Vertical motion requirements for landing simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1973-01-01

    Tests were conducted to determine the significance of vertical acceleration cues in the simulation of the visual approach and landing maneuver. Landing performance measures were obtained for four subject pilots operating a visual landing simulation device which provides up to plus or minus 40 feet of vertical motion. Test results indicate that vertical motion cues are utilized in the landing task, and that they are particularly important in the simulation of aircraft with marginal longitudinal handling qualities. To assure vertical motion cues of the desired fidelity in the landing tasks, it appears that a simulator must have excursion capabilities of at least plus or minus 20 feet.

  2. Vertical velocity-CCN correlations

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R.

    2013-12-01

    The realization that smaller cloud droplets evaporate more readily (Xue and Feingold 2006; Jiang et al. 2002) gives rise to an anti-indirect aerosol effect (IAE); less cloudiness with pollution. The greater latent heat exchange of the greater evaporation in more polluted clouds adds TKE and buoyancy gradients that can enhance vertical velocity (W), mixing and entrainment (Zhao and Austin 2005). Stronger W can increase horizontal motions, which can further enhance droplet evaporation, which further enhances latent heat exchange and vertical motions, thus, positive feedback. This could also include latent heat released during condensation (Lee and Feingold 2010), which is more rapid for the greater surface areas of the smaller more numerous droplets. These theories imply a positive relationship between within-cloud W variations; i.e., standard deviation of W (σw) and CCN concentration (NCCN) rather than W and NCCN. This implies greater turbulence in polluted clouds, which could possibly counteract the reduction of cloudiness of anti-IAE. During two stratus cloud projects, 50 cloud penetrations in 9 MASE flights and 34 cloud penetrations in 13 POST flights, within-cloud σw-NCCN showed correlation coefficients (R) of 0.50 and 0.39. Panel a shows similar within-cloud σw-NCCN R in all altitude bands for 17 RICO flights in small cumulus clouds. R for W-NCCN showed similar values but only at low altitudes. Out-of-cloud σw-NCCN showed similar high values except at the highest altitudes. Within-cloud σw showed higher R than within-cloud W with droplet concentrations (Nc), especially at higher altitudes. Panel b for 13 ICE-T cumulus cloud flights in the same location as RICO but during the opposite season, however, showed σw and W uncorrelated with NCCN at all altitudes; and W and σw correlated with Nc only at the highest altitudes. On the other hand, out-of-cloud σw was correlated with NCCN at all altitudes with R similar to the corresponding R of the other projects

  3. Photo-spin-voltaic effect

    NASA Astrophysics Data System (ADS)

    Ellsworth, David; Lu, Lei; Lan, Jin; Chang, Houchen; Li, Peng; Wang, Zhe; Hu, Jun; Johnson, Bryan; Bian, Yuqi; Xiao, Jiang; Wu, Ruqian; Wu, Mingzhong

    2016-09-01

    The photo-voltaic effect typically occurs in semiconductors and involves photon-driven excitation of electrons from a valence band to a conduction band. In a region such as a p-n junction that has a built-in electric field, the excited electrons and holes diffuse in opposite directions, resulting in an electric voltage. This letter reports that a spin voltage can be created by photons in a non-magnetic metal that is in close proximity to a magnetic insulator: a photo-spin-voltaic effect. The experiments use platinum/magnetic insulator bilayer structures. On exposure to light, there occurs photon-driven, spin-dependent excitation of electrons in several platinum atomic layers near the platinum/magnetic insulator interface. The excited electrons and holes diffuse in different manners, and this gives rise to an effective spin voltage at the interface and a corresponding pure spin current that flows across the platinum.

  4. Thermal radiation from Saturn's rings: new results on the spin of particles

    NASA Astrophysics Data System (ADS)

    Leyrat, C.; Ferrari, C.; Spilker, L.; Charnoz, S.

    2003-05-01

    The dynamical evolution of dense ring systems is strongly dependent on inter-particle collisions and their mutual gravitational interactions. The ring local thickness and the energy stored in particles spins during collisions are revealing the microphysics of rings. However, the distribution of particles spins in Saturn's rings is yet unknown and the vertical structure is still under debate. Observations of ring temperatures at infrared wavelengths provide unique constraints on particles properties like their thermal inertia or their spin. Mid-infrared CAMIRAS/CFHT images, have shown that particles in Saturn's rings are most probably slow rotators with a very small thermal inertia, about 3 and 6 J.m-.K-1.s-1/2 for B and C rings respectively (Ferrari et al. 2003). In order to more accurately constrain the spin of particles, we have developed a new model for the thermal radiation of a ring, which takes into account particles spins and assumes a monolayer vertical structure for now. We will show how spin norm and direction induce azimuthal variations in ring temperature and how these are affected by the position of the observer. Spin distributions derived from local numerical simulations (see Charnoz et al. this issue) are also included and tested against observations. This model is compared to currently available infrared data sets (CAMIRAS/CFHT, IRIS/VOYAGER, ). But the CIRS instrument on board the CASSINI spacecraft will soon allow us to closely constrain this spin distribution for all the Saturn's main rings thanks to the wide variety of observation geometries provided by the designed Tour and a wide coverage in ring azimuth.

  5. Distinguishing spin relaxation mechanisms in organic semiconductors.

    PubMed

    Harmon, N J; Flatté, M E

    2013-04-26

    A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752

  6. Theory of the spin Seebeck effect.

    PubMed

    Adachi, Hiroto; Uchida, Ken-ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2013-03-01

    The spin Seebeck effect refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimeters. The inverse spin Hall effect converts the injected spin current into a transverse charge voltage, thereby producing electromotive force as in the conventional charge Seebeck device. Recent theoretical and experimental efforts have shown that the magnon and phonon degrees of freedom play crucial roles in the spin Seebeck effect. In this paper, we present the theoretical basis for understanding the spin Seebeck effect and briefly discuss other thermal spin effects.

  7. Quantum spin Hall effect in nanostructures based on cadmium fluoride

    SciTech Connect

    Bagraev, N. T.; Guimbitskaya, O. N.; Klyachkin, L. E.; Koudryavtsev, A. A.; Malyarenko, A. M.; Romanov, V. V.; Ryskin, A. I.; Shcheulin, A. S.

    2010-10-15

    Tunneling current-voltage (I-V) characteristics and temperature dependences of static magnetic susceptibility and specific heat of the CdB{sub x}F{sub 2-x}/p-CdF{sub 2}-QW/CdB{sub x}F{sub 2-x} planar sandwich structures formed on the surface of an n-CdF{sub 2} crystal have been studied in order to identify superconducting properties of the CdB{sub x}F{sub 2-x} {delta} barriers confining the p-type CdF{sub 2} ultranarrow quantum well. Comparative analysis of current-voltage (I-V) characteristics and conductance-voltage dependences (measured at the temperatures, respectively, below and above the critical temperature of superconducting transition) indicates that there is an interrelation between quantization of supercurrent and dimensional quantization of holes in the p-CdF{sub 2} ultranarrow quantum well. It is noteworthy that detection of the Josephson peak of current in each hole subband is accompanied by the appearance of the spectrum of the multiple Andreev reflection (MAR). A high degree of spin polarization of holes in the edge channels along the perimeter of the p-CdF{sub 2} ultranarrow quantum well appears as a result of MAR and makes it possible to identify the quantum spin Hall effect I-V characteristics; this effect becomes pronounced in the case of detection of nonzero conductance at the zero voltage applied to the vertical gate in the Hall geometry of the experiment. Within the energy range of superconducting gap, the I-V characteristics of the spin transistor and quantum spin Hall effect are controlled by the MAR spectrum appearing as the voltage applied to the vertical gate is varied. Beyond the range of the superconducting gap, the observed I-V characteristic of the quantum spin Hall effect is represented by a quantum conductance staircase with a height of the steps equal to e{sub 2}/h; this height is interrelated with the Aharonov-Casher oscillations of longitudinal and depends on the voltage applied to the vertical gate.

  8. A Novel RF E × B Spin Manipulator at COSY

    NASA Astrophysics Data System (ADS)

    Mey, Sebstian; Gebel, Ralf

    2016-02-01

    The Jülich Electric Dipole Moment Investigations (JEDI) Collaboration is developing tools for the measurement of permanent Electric Dipole Moments (EDMs) of charged, light hadrons in storage rings. While the Standard Model prediction for the EDM gives unobservably small magnitudes, a non-vanishing EDM from 𝒞𝒫 violating sources beyond the standard model can lead to a tiny build-up of vertical polarization in a beforehand horizontally polarized beam. This requires a spin tune modulation by an RF dipole without any excitation of coherent beam oscillations. In the course of 2014, a prototype RF E × B dipole has been successfully commissioned and tested. We verified that the device can be used to continuously flip the vertical polarization of a 970MeV/c deuteron beam without exciting any coherent beam oscillations.

  9. Extrinsic spin Hall effects measured with lateral spin valve structures

    NASA Astrophysics Data System (ADS)

    Niimi, Y.; Suzuki, H.; Kawanishi, Y.; Omori, Y.; Valet, T.; Fert, A.; Otani, Y.

    2014-02-01

    The spin Hall effect (SHE), induced by spin-orbit interaction in nonmagnetic materials, is one of the promising phenomena for conversion between charge and spin currents in spintronic devices. The spin Hall (SH) angle is the characteristic parameter of this conversion. We have performed experiments of the conversion from spin into charge currents by the SHE in lateral spin valve structures. We present experimental results on the extrinsic SHEs induced by doping nonmagnetic metals, Cu or Ag, with impurities having a large spin-orbit coupling, Bi or Pb, as well as results on the intrinsic SHE of Au. The SH angle induced by Bi in Cu or Ag is negative and particularly large for Bi in Cu, 10 times larger than the intrinsic SH angle in Au. We also observed a large SH angle for CuPb, but the SHE signal disappeared in a few days. Such an aging effect could be related to a fast mobility of Pb in Cu and has not been observed in CuBi alloys.

  10. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  11. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  12. Endoscopy of vertical banded gastroplasty.

    PubMed

    Deitel, M; Bendago, M

    1989-05-01

    Vertical banded gastroplasty is the most common operation for morbid obesity. Postoperative gastroscopy was needed 91 times in 79 of 696 patients for 1) abdominal pain (23), 2) excess vomiting (22), 3) inadequate weight loss (14), 4) excess weight loss (13), 5) and a sudden increase in eating capacity (7). A normal appearance consisted of a clean gastric channel 6.8 +/- 1.4 SD cm long, with a rosette 46.6 +/- 2.1 cm from the incisors and, with insufflation, an 11 mm scope passed through this pseudopylorus snugly, but without difficulty. In Group 1, no problem was seen in the channel, and cholecystitis was found to be the cause. In Group 2, no problem was observed in ten (poor teeth and chewing), six experienced stasis or pill ulcerations, four had bezoars (fragmented or removed with basket), and two had intraluminal mesh. In Group 3, the scope floated through too large an outlet (greater than or equal to 13 mm) in eight, and no cause was seen in six (gorgers, sweets-eaters). In Group 4, tightness or stricture resolved with dilatations (Eder-Puestow; Savary; balloon dilators) in six, but seven required re-operation. In Group 5, the scope travelled through four breakdowns in the partition and three outlets were too large. Gastroscopy viewed problems accurately, indicated treatment and suggested modifications in gastroplasty technique. PMID:2719405

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. HL-20 Vertical Human Factors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The HL-20 space taxi, Langley's candidate personnel launch system, is one of several designs being considered by NASA as a complement to the Space Shuttle. Human factors studies, using Langley volunteers as subjects, have been ongoing since March 1991 to verify crew seating arrangements, habitability, ingress and egress, equipment layout and maintenance and handling operations, and to determine visibility requirements during docking and landing operations. Langley volunteers, wearing flight suits and helmets, were put through a series of tests with the craft placed both vertically and horizontally to simulate launch and landing attitudes, The HL-20 would be launched into a low orbit by an expendable rocket and then use its own propulsion system to boost itself to the space station. Following exchange of crews or delivery of small payload, the HL-20 would return to Earth like the space shuttle, making a runway landing near the launch site, The full-scale engineering research model of the HL-20 design was constructed by students and faculty at North Carolina State University and North Carolina A&T State University with the Mars Mission Research Center under a grant from NASA Langley.

  16. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  17. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    NASA Astrophysics Data System (ADS)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  18. Spin Splitting and Spin Current in Strained Bulk Semiconductors

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We present a theory for two recent experiments in bulk strained semiconductors and show that a new, previously overlooked, strain spin-orbit coupling term may play a fundamental role. We propose simple experiments that could clarify the origin of strain-induced spin-orbit coupling terms in inversion asymmetric semiconductors. We predict that a uniform magnetization parallel to the electric field will be induced in the samples studied in for specific directions of the applied electric field. We also propose special geometries to detect spin currents in strained semiconductors.

  19. Teaching Students the Verticality of Technical Documentation.

    ERIC Educational Resources Information Center

    Hager, Peter J.

    1992-01-01

    Advocates making technical writing courses more vertical in structure by including an extensive study of at least one specific form of technical documentation. Examines how students can gain experience in the vertical process by designing, writing, testing, and producing user manuals for on-campus cooperative education clients. Lists the benefits…

  20. Vertical Integration, Monopoly, and the First Amendment.

    ERIC Educational Resources Information Center

    Brennan, Timothy J.

    This paper addresses the relationship between the First Amendment, monopoly of transmission media, and vertical integration of transmission and content provision. A survey of some of the incentives a profit-maximizing transmission monopolist may have with respect to content is followed by a discussion of how vertical integration affects those…

  1. 33 CFR 84.19 - Vertical sectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Vertical sectors. 84.19 Section 84.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.19 Vertical sectors. (a)...

  2. 33 CFR 84.19 - Vertical sectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Vertical sectors. 84.19 Section 84.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.19 Vertical sectors. (a)...

  3. Vertical Files in Midlands Academic Libraries.

    ERIC Educational Resources Information Center

    Lillis, John G.

    1991-01-01

    Reviews survey responses from 127 nonmedical academic libraries in Nebraska, Iowa, and Kansas regarding their vertical files (e.g., acquisitions, weeding, size, nature, collection management, frequency of use, maintenance of statistics, types of users, circulation, and security), reporting that 109 had vertical files, with most emphasizing topics…

  4. [Vertical dimension in the Begg technic].

    PubMed

    Demange, C; Dion, J G

    1989-01-01

    This data of 25 treated cases in BEGG technic show, with RICKETTS analysis, a small augmentation of vertical dimensions during treatment. During retention, four of five factors improved. No correlation have been found between increase rate of vertical dimensions, treatment duration, and initial typology.

  5. Relativistic Definition of Spin Operators

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis H.

    2002-12-01

    Some years ago Mashhoon [1] made the highly interesting suggestion that there existed a coupling of spin with rotations, just as there exists such a coupling with orbital angular momentum, as seen in the Sagnac effect, for example. Spin being essentially a quantum phenomenon, the obvious place to look for this was by studying the Dirac equation, and Hehl and Ni, in such an investigation [2], indeed found a coupling term of just the type Mashhoon had envisaged. Part of their procedure, however, was to take the nonrelativistic limit, and this was done by performing appropriate Foldy-Wouthuysen (FW) transformations. In the nonrelativistic limit, it is well-known that the spin operators for Dirac particles are in essence the Pauli matrices; but it is also well-known, and indeed was part of the motivation for Foldy and Wouthuysen's paper, that for fully-fledged Dirac particles the (4×4 generalisation of the) Pauli matrices do not yield satisfactory spin operators, since spin defined in this way would not be conserved. The question therefore presented itself: is there a relativistic spin operator for Dirac particles, such that in the relativistic, as well as the nonrelativistic, régime a Mashhoon spin-rotation coupling exists?...

  6. Taming spin decoherence in silicon

    NASA Astrophysics Data System (ADS)

    Lyon, Stephen

    2013-03-01

    Electron spins in semiconductor hosts have been candidate qubits since the early days of experimental quantum computing research, but it was generally assumed that the solid state environment would limit coherence to times much shorter than that seen in isolated atoms or ions. The longest measured electron spin coherence, measured in isotopically enriched silicon, was of order 1 ms. However, over the last 8 or 10 years the measured electron spin coherence times have steadily increased as materials and experimental techniques have improved. Much of the decoherence observed in the early ensemble Electron Spin Resonance (ESR) experiments arose from interactions amongst the spins being measured. In the most highly enriched bulk silicon measured to date, the residual silicon isotopes with nuclear magnetic moments affect the coherence of electrons bound to phosphorus donors on about a 1 second time scale. The remaining decoherence is still dominated by interactions between the donor spins, even in very lightly doped Si. Other decoherence processes have been shown to be at least an order of magnitude weaker. Recent work suggested that longer spin coherence would be obtained in bismuth doped Si, where magnetic-field insensitive ``clock transitions'' occur in the GHz frequency range. Recent experiments are bearing out these suggestions. This work was supported in part by the ARO and NSF.

  7. Turbulent Flow Past Spinning Cylinders

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Donald; Carlucci, Pasquale; Thangam, Siva

    2009-11-01

    Flow past cylinders aligned along their axis where a base freely spins while attached to a non-spinning forebody is considered from a computational and experimental point of view. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. Experiments are performed for a range of spin rates and free stream flow conditions. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions. Applications involving the design of projectiles are discussed.

  8. Spin squeezing, entanglement and correlations

    NASA Astrophysics Data System (ADS)

    Sirsi, Swarnamala

    2004-11-01

    Spin-s assemblies are classified into two mutually exclusive classes: oriented and non-oriented systems. The density matrix rgr, describing oriented systems, can assume diagonal form in the angular momentum basis \\vert sm \\rangle (m=-s \\cdots {+}s ) defined with respect to the axis of quantization, whereas the eigenstates of rgr for the non-oriented assembly cannot all be identified with \\vert sm \\rangle states. A new scheme for constructing a mixed, non-oriented spin-s state using s(2s+1) spinors all pointing in different directions in space and 2s weights is discussed. Such a construction takes its inspiration from Schwinger's idea of realizing an \\vert sm \\rangle state as being made up of (s+m) 'up' spinors and (s-m) 'down' spinors, all defined with respect to a single axis in space. Since the oriented systems are never squeezed, non-oriented spin-1 assemblies which can be prepared in the laboratory with the available NQR technology are examined for signatures of squeezing using our scheme in a frame of reference where the Heisenberg-Robertson uncertainty relation has the same form as the Schrödinger uncertainty relation. It is shown that unlike in the case of the pure spin-1 state where squeezing is synonymous with non-orientedness, a non-oriented spin-1 system need not be squeezed and the existence of entanglement is a necessary but not sufficient condition for the system to be squeezed.

  9. Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  10. Spin waves in a spin-1 normal Bose gas

    SciTech Connect

    Natu, Stefan S.; Mueller, Erich J.

    2010-05-15

    We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.

  11. Spin regulation in composite spin-filter barrier devices.

    PubMed

    Miao, Guo-Xing; Chang, Joonyeon; Assaf, Badih A; Heiman, Donald; Moodera, Jagadeesh S

    2014-04-23

    Magnetic insulators are known to provide large effective Zeeman fields that are confined at an interface, making them especially powerful in modifying adjacent one- or two-dimensional electronic structures. Utilizing this phenomenon and the other important property of magnetic insulators--spin filtering--here we report the generation and subsequent detection of a large interface field, as large as tens of tesla in EuS/Al/EuS heterostructures with metallic coulomb islands confined within a magnetic insulator barrier. The unique energy profile across this sandwich structure produces spin-assisted charge transfer across the device, generating a spontaneous spin current and voltage. These unique properties can be practical for controlling spin flows in electronic devices and for energy harvesting.

  12. Enhanced Atomic-Scale Spin Contrast due to Spin Friction

    NASA Astrophysics Data System (ADS)

    Ouazi, S.; Kubetzka, A.; von Bergmann, K.; Wiesendanger, R.

    2014-02-01

    Atom manipulation with the magnetic tip of a scanning tunneling microscope is a versatile technique to construct and investigate well-defined atomic spin arrangements. Here we explore the possibility of using a magnetic adatom as a local probe to image surface spin textures. As a model system we choose a Néel state with 120° between neighboring magnetic moments. Close to the threshold of manipulation, the adatom resides in the threefold, magnetically frustrated hollow sites, and consequently no magnetic signal is detected in manipulation images. At smaller tip-adatom distances, however, the adatom is moved towards the magnetically active bridge sites and due to the exchange force of the tip the manipulation process becomes spin dependent. In this way the adatom can be used as an amplifying probe for the surface spin texture.

  13. Spin scan imaging at Jupiter

    NASA Technical Reports Server (NTRS)

    Sinclair, K. F.

    1973-01-01

    The general feasibility of spin scan imaging from spinning platforms in outer planet orbiters was investigated. The study was limited to consideration of a typical orbiter mission to Jupiter with an orbit designed to provide repetitive close approaches to the Galilean satellites. Discussed are: (1) data requirements for imaging experiments at Jupiter and its satellites; (2) spin scan camera and baseline camera selection; and (3) operational considerations bearing on imager performance. A physical camera model including relationships identifying the supporting requirements was developed and used to determine the characteristics of the baseline camera.

  14. Spinning fluids in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  15. Spin precession in anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2016-05-01

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter.

  16. Spin-manipulating polarized deuterons

    SciTech Connect

    Morozov, V S; Krisch, A D; Leonova, M A; Raymond, R S; Sivers, D W; Wong, V K; Hinterberger, F; Kondratenko, A M; Stephenson, E J

    2011-03-01

    Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.

  17. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  18. Quantum melting of spin ice

    NASA Astrophysics Data System (ADS)

    Onoda, Shigeki; Tanaka, Yoichi

    2010-03-01

    A quantum melting of the spin ice is proposed for pyrochlore-lattice magnets Pr2TM2O7 (TM =Ir, Zr, and Sn). The quantum pseudospin-1/2 model is derived from the strong-coupling perturbation of the f-p electron transfer in the basis of atomic non-Kramers magnetic doublets. The ground states are characterized by a cooperative ferroquadrupole and pseudospin chirality in the cubic unit cell, forming a magnetic analog of smectic liquid crystals. Then, pinch points observed in spin correlations for dipolar spin-ice systems are replaced with the minima. The relevance to experiments is discussed.

  19. Complexity of vector spin glasses.

    PubMed

    Yeo, J; Moore, M A

    2004-08-13

    We study the annealed complexity of the m-vector spin glasses in the Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of the Thouless-Anderson-Palmer free energy is found to consist of a continuous band of positive eigenvalues in addition to an isolated eigenvalue and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly, the band does not extend to zero at any finite temperature. The isolated eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1), indicating that the same supersymmetry breaking recently found in Ising spin glasses occurs in vector spin glasses.

  20. SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Stefano, R. Di; Voss, R.

    2011-09-01

    In the single-degenerate scenario for Type Ia supernovae (SNe Ia), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, M{sub crit}, needed for explosion. When M{sub crit} is higher than the maximum mass achieved by the WD, the central regions of the WD must spin down before it can explode. This introduces super-Chandrasekhar single-degenerate explosions, and a delay between the completion of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-M{sub Ch} WDs in either wide binaries with WD companions or cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post-explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNe Ia.

  1. Spin filter for arbitrary spins by substrate engineering

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava

    2016-08-01

    We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.

  2. Inclusion of Vertical Dynamics in Vertically-integrated Models for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Guo, B.; Bandilla, K.; Celia, M. A.

    2012-12-01

    Mathematical models of different complexity are needed to answer a range of questions for geological sequestration of carbon dioxide (CO2). One category of simplified models is based on vertical integration, which reduces the three-dimensional problem to two dimensions. Usually, these models assume that brine and CO2 are in vertical equilibrium. This type of model is useful and accurate for simulation times that are large relative to the time for buoyant segregation. But, vertical-equilibrium models are inappropriate in some situations, for instance, in the early stage of injection, when brine and CO2 have not fully segregated. Therefore, for these situations, the vertical equilibrium assumption needs to be relaxed and vertical dynamics needs to be included in the governing equations. To avoid significant increases of computational effort due to the inclusion of vertical dynamics, a multi-scale algorithm can be constructed where the vertically integrated equations are still used to model the (dominant) horizontal flow processes with the vertical reconstruction included as a dynamic problem. Such an approach allows each vertical column of grid cells to be solved independently, as a one-dimensional problem, during the dynamic reconstruction step. Because the top and bottom boundaries usually correspond to impermeable caprock, the total flow for these one-dimensional problems is zero and counter-current flow driven only by buoyancy and capillarity is involved. Solutions for this kind of problem are relatively simple and require little computational effort. With careful coupling between the vertical calculations and the horizontally integrated equations, an efficient algorithm can be developed to simulate a fairly wide range of problems including those with significant vertical dynamics. When vertical dynamics become insignificant, then usual vertical equilibrium reconstruction is used in the vertically integrated models. This new algorithm provides an intermediate

  3. Muon spin relaxation in spin glass PdMn

    SciTech Connect

    Heffner, R.H.; Leon, M.; Schillaci, M.E.; Dodds, S.A.; Gist, G.A.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.

    1983-01-01

    Muon spin relaxation (..mu..SR) rates have been measured in transverse, longitudinal, and zero applied field for the spin glass PdMn (7 at. %), and are compared with a previous study of the disordered ferromagnet PdMn (2 at. %). The calculated paramagnetic state transverse field relaxation rate for noninteracting spins is much larger than the observed rate in spin glass PdMn, but is in good agreement with ferromagnetic PdMn. The zero field relaxation rate shows a sharp cusp at T/sub g/=5K. An applied longitudinal field of 5 kG is insufficient to suppress this cusp in spin glss PdMn, but will suppress a similar cusp in ferromagnetic PdMn. Below T/sub g/=5K. An applied longitudinal field of 5 kG is insufficient to suppress this cusp in spin glass PdMn, but will suppress a similar cusp in ferromagnetic PdMn. Below T/sub g/, a distribution of quasistatic local fields is observed in zero field, which has the same temperature dependence for both samples. Comparisons with model calculations are discussed.

  4. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  5. Spin voltage generation through optical excitation of complementary spin populations.

    PubMed

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules. PMID:24952750

  6. Explicit symplectic orbit and spin tracking method for electric storage ring

    NASA Astrophysics Data System (ADS)

    Hwang, Kilean; Lee, S. Y.

    2016-08-01

    We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δm from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η /δm , where η is the electric dipole moment for an initially vertically polarized beam. The method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.

  7. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    SciTech Connect

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  8. Anisotropic spin dephasing of impurity-bound electron spins in ZnO

    SciTech Connect

    Lee, Jieun; Sih, Vanessa; Venugopal, Aneesh

    2015-01-05

    We investigate the electron spin dynamics of n-type c-axis oriented bulk zinc oxide (ZnO) by using time-resolved Kerr rotation and resonant spin amplification measurements. Calculating resonant spin amplification using an anisotropic spin dephasing model reveals that there are two species involved in the spin dynamics, which we attribute to conduction and impurity-bound electron spins, respectively. We find that the impurity-bound electron spin dephasing mechanism is strongly anisotropic due to anisotropic exchange interactions. The identification of the two spin species and their dephasing mechanisms is further supported by the temperature, power, and wavelength dependence of the spin coherence measurements.

  9. Thermally induced vertical phase separation and photovoltaic characteristics of polymer solar cells for P3HT/PCBM composites

    NASA Astrophysics Data System (ADS)

    Nagai, Masaru; Wei, Huang; Yoshida, Yuji

    2016-06-01

    The occurrence of vertical phase separation has been reported for various spin-cast polymer films, including bulk-heterojunction films of polymer solar cells (PSCs). Focusing on real-space analysis, we conducted a study on the relationship between the morphology and processing conditions of PSCs for typical poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) cells. Our results demonstrated that spin-casting caused a localized reduction in the P3HT concentration in the bulk center. Thermal annealing after cathode formation enhanced the unevenness in concentration and created a multilayered vertical phase-separated morphology in which the P3HT domains were gathered near the electrodes, leaving only PCBM domains at the center of the film. Cells with this morphology had good power conversion efficiency (∼3%).

  10. An experimental study of the effect of tail configuration on the spinning characteristics of general aviation aircraft. M.S. Thesis; [static wind tunnel force measurements

    NASA Technical Reports Server (NTRS)

    Ballin, M. G.

    1982-01-01

    The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.

  11. Vertical grid of retrieved atmospheric profiles

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-05-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application.

  12. Magnetoelectric control of spin currents

    NASA Astrophysics Data System (ADS)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A.

    2016-06-01

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ˜140 Oe cm kV-1. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  13. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  14. Experimenting with a Spinning Disk

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    Almost everyone will have observed a spinning coin fall to a shuddering stop. How and why does it do that? Several experiments are described, suitable for a student project, to help motivate an understanding of the rotational dynamics involved.

  15. Spinning angle optical calibration apparatus

    SciTech Connect

    Beer, S.K.; Pratt, H.R. II.

    1989-09-12

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.

  16. Spin models of the proton

    SciTech Connect

    Ramsey, G.P.

    1988-10-20

    We have constructed a model of the proton spin based on a broken SU(6) parameterization for the spin-weighted valence quark distributions in a longitudinally polarized proton. The polarized sea and gluon distributions are assumed to have simple relations to the corresponding unpolarized structure functions. The sum rules, which involve the non-singlet components of the structure function xg/sub 1/, imply that the valence quarks carry about 78% of the proton spin, while the spin carried by sea quarks is negative. Recent EMC data suggest a model in which the sea quarks carry a large negative polarization, whereas certain theoretical arguments favor a model with a smaller negatively polarized sea. These models are discussed with reference to the sum rules. Experiments are suggested which will discriminate between these models. 24 refs., 4 figs.

  17. Spin transport in graphene superlattice under strain

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2016-09-01

    In this paper, the spin-dependent transport and the spin polarization properties for graphene superlattice with Rashba spin-orbit interaction (RSOI) in the presence of zigzag and armchair direction strain are studied. It is found that for the zigzag direction strain the angular range of the spin-inversion can be efficiently controlled by the strain strength. In addition, the efficiency of spin-inversion and spin-dependent conductivity decreases by increasing the strain strength. When the armchair direction strain is applied to a monolayer graphene superlattice the spin polarization can be observed and increases by increasing the strain strength, whereas for the zigzag direction strain it is zero.

  18. Spin current source based on a quantum point contact with local spin-orbit interaction

    SciTech Connect

    Nowak, M. P.; Szafran, B.

    2013-11-11

    Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.

  19. Methods of testing parameterizations: Vertical ocean mixing

    NASA Technical Reports Server (NTRS)

    Tziperman, Eli

    1992-01-01

    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the

  20. Muon spin rotation in solids

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  1. Hybrid spin-crossover nanostructures

    PubMed Central

    Quintero, Carlos M; Félix, Gautier; Suleimanov, Iurii; Sánchez Costa, José; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William

    2014-01-01

    Summary This review reports on the recent progress in the synthesis, modelling and application of hybrid spin-crossover materials, including core–shell nanoparticles and multilayer thin films or nanopatterns. These systems combine, often in synergy, different physical properties (optical, magnetic, mechanical and electrical) of their constituents with the switching properties of spin-crossover complexes, providing access to materials with unprecedented capabilities. PMID:25551051

  2. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  3. Two Wien Filter Spin Flipper

    SciTech Connect

    Grames, J M; Benesch, J F; Clark, J; Hansknecht, J; Kazimi, R; Machie, D; Poelker, M; Stutzman, M L; Suleiman, R; Zhang, Y

    2011-03-01

    A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.

  4. Photonic spin filter with dielectric metasurfaces.

    PubMed

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2015-12-28

    We propose a photonic spin filter whose structure is similar to that of conventional spatial filter, but the two plano-convex lenses are replaced by Pancharatnam-Berry phase ones. The dielectric metasurface with high transmission and conversion efficiency is designed to work as Pancharatnam-Berry phase lens. The photonic spin filter can sort desired spin photons from the input beam with mixed spin states, and thereby facilitate possible applications in spin-based photonics. PMID:26831976

  5. Spin selective filtering of polariton condensate flow

    SciTech Connect

    Gao, T.; Antón, C.; Martín, M. D.; Liew, T. C. H.; Hatzopoulos, Z.; Viña, L.; Eldridge, P. S.; Savvidis, P. G.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  6. Kane model parameters and stochastic spin current

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashree

    2015-11-01

    The spin current and spin conductivity is computed through thermally driven stochastic process. By evaluating the Kramers equation and with the help of k → . p → method we have studied the spin Hall scenario. Due to the thermal assistance, the Kane model parameters get modified, which consequently modulate the spin orbit coupling (SOC). This modified SOC causes the spin current to change in a finite amount.

  7. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    lasting a few hundred thousand years as the island migrates over a broad flexural arch related to isostatic compensation of a nearby active volcano. The arch is located about 190±30 km away from the center of volcanic activity and is also related to the rejuvenated volcanic stage on the islands. Reefs on Oahu that are uplifted several tens of m above sea level are the primary evidence for uplift as the islands over-ride the flexural arch. At the other end of the movement spectrum, both in terms of magnitude and length of response, are the rapid uplift and subsidence that occurs as magma is accumulated within or erupted from active submarine volcanoes. These changes are measured in days to years and are of cm to m variation; they are measured using leveling surveys, tiltmeters, EDM and GPS above sea level and pressure gauges and tiltmeters below sea level. Other acoustic techniques to measure such vertical movement are under development. Elsewhere, evidence for subsidence of volcanoes is also widespread, ranging from shallow water carbonates on drowned Cretaceous guyots, to mapped shoreline features, to the presence of subaerially-erupted (degassed) lavas on now submerged volcanoes. Evidence for uplift is more limited, but includes makatea islands with uplifted coral reefs surrounding low volcanic islands. These are formed due to flexural uplift associated with isostatic loading of nearby islands or seamounts. In sum, oceanic volcanoes display a long history of subsidence, rapid at first and then slow, sometimes punctuated by brief periods of uplift due to lithospheric loading by subsequently formed nearby volcanoes.

  8. Ballistic spin resonance in multisubband quantum wires

    NASA Astrophysics Data System (ADS)

    Hachiya, Marco O.; Usaj, Gonzalo; Egues, J. Carlos

    2014-03-01

    Ballistic spin resonance was experimentally observed in a quasi-one-dimensional wire by Frolov et al. [Nature (London) 458, 868 (2009), 10.1038/nature07873]. The spin resonance was generated by a combination of an external static magnetic field and the oscillating effective spin-orbit magnetic field due to periodic bouncings of the electrons off the boundaries of a narrow channel. An increase of the D'yakonov-Perel spin relaxation rate was observed when the frequency of the spin-orbit field matched that of the Larmor precession frequency around the external magnetic field. Here we develop a model to account for the D'yakonov-Perel mechanism in multisubband quantum wires with both the Rashba and Dresselhaus spin-orbit interactions. Considering elastic spin-conserving impurity scatterings in the time-evolution operator (Heisenberg representation), we extract the spin relaxation time by evaluating the time-dependent expectation value of the spin operators. The magnetic field dependence of the nonlocal voltage, which is related to the spin relaxation time behavior, shows a wide plateau, in agreement with the experimental observation. This plateau arises due to injection in higher subbands and small-angle scattering. In this quantum mechanical approach, the spin resonance occurs near the spin-orbit-induced energy anticrossings of the quantum wire subbands with opposite spins. We also predict anomalous dips in the spin relaxation time as a function of the magnetic field in systems with strong spin-orbit couplings.

  9. Observation of large spin accumulation voltages in nondegenerate Si spin devices due to spin drift effect: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Tahara, Takayuki; Ando, Yuichiro; Kameno, Makoto; Koike, Hayato; Tanaka, Kazuhito; Miwa, Shinji; Suzuki, Yoshishige; Sasaki, Tomoyuki; Oikawa, Tohru; Shiraishi, Masashi

    2016-06-01

    A large spin accumulation voltage of more than 1.5 mV at 1 mA, i.e., a magnetoresistance of 1.5 Ω, was measured by means of the local three-terminal magnetoresistance in nondegenerate Si-based lateral spin valves (LSVs) at room temperature. This is the largest spin accumulation voltage measured in semiconductor-based LSVs. The modified spin drift-diffusion model, which successfully accounts for the spin drift effect, explains the large spin accumulation voltage and significant bias-current-polarity dependence. The model also shows that the spin drift effect enhances the spin-dependent magnetoresistance in the electric two-terminal scheme. This finding provides a useful guiding principle for spin metal-oxide-semiconductor field-effect transistor operations.

  10. Longitudinal spin dynamics in ferrimagnets: Multiple spin wave nature of longitudinal spin excitations

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.

    2016-08-01

    Motivated by the existing controversy about the physical mechanisms that govern longitudinal magnetization dynamics under the effect of ultrafast laser pulses, in this paper we study the microscopic model of longitudinal spin excitations in a two-sublattice ferrimagnet using the diagrammatic technique for spin operators. The diagrammatic approach provides us with an efficient procedure to derive graphical representations for perturbation expansion series for different spin Green's functions and thus to overcome limitations typical for phenomenological approaches. The infinite series involving all distinct loops built from spin wave propagators are summed up. These result in an expression for the longitudinal spin susceptibility χz z(q ,ω ) applicable in all regions of frequency ω and wave vector q space beyond the hydrodynamical and critical regimes. A strong renormalization of the longitudinal spin oscillations due to processes of virtual creation and annihilation of transverse spin waves has been found. We have shown that the spectrum of longitudinal excitations consists of a quasirelaxation mode forming a central peak in χz z(q ,ω ) and two (acoustic and exchange) precessionlike modes. As the main result, it is predicted that both acoustic and exchange longitudinal excitations are energetically above similar modes of transverse spin waves at the same temperature and wave vector. The existence of the exchange longitudinal mode at such frequencies can result in a new form of excitation behavior in ferrimagnetic system, which could be important for understanding the physics of nonequilibrium magnetic dynamics under the effect of ultrafast laser pulses in multisublattice magnetic materials.

  11. Vertical Water Vapor Distribution at Phoenix

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Lemmon, M. T.

    2016-09-01

    The Phoenix SSI camera data along with radiative transfer modeling are used to retrieve the vertical water vapor profile. Preliminary results indicate that water vapor is often confined near the surface.

  12. Vertical Axis Wind Turbine Foundation parameter study

    SciTech Connect

    Lodde, P.F.

    1980-07-01

    The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

  13. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  14. Vertical transport and sources in flux models

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Vertical transport in flux models in examined and shown to reproduce expected limits for densities and fluxes. Disparities with catalog distributions are derived and inverted to find the sources required to rectify them.

  15. 30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND LOWER CHORD DETAIL OF DECK TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  16. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  17. Spin Waves and Spin Relaxation in Normal Fermi Liquids.

    NASA Astrophysics Data System (ADS)

    Meltzer, David Elliott

    This work explores several aspects of spin-dependent excitations in normal Fermi liquids. Chapter 1 is a general introduction and overview of the work. The Landau kinetic equation and its application to nonequilibrium proper- ties of Fermi liquids is discussed, and the properties of collective density modes are briefly reviewed. The properties of both longitu- dinal and transverse spin excitations are then outlined, leading up to a discussion of spin waves and spin diffusion, including the Leggett -Rice effect. Chapter 2 discusses the possibility of making a determination of the contribution of many-body interactions to the large effective mass in "heavy-fermion" materials, e.g. UPt(,3), by the method of conduction-electron spin resonance (CESR). It is shown that a microwave trans- mission observation of CESR might show a resonance pattern which, based on already measured parameters, would clearly distinguish among various suggested models for the strength of the many-body effects. Chapter 3 investigates the accuracy of the usual relaxation time approximations, involving the spin diffusion lifetime (tau)(,D), which are generally made in analyses of spin waves and the Leggett-Rice effect in Fermi liquids. By employing the variational methods of Ah-Sam, H(SLASHCIRC)jgaard -Jensen and Smith, and Egilsson and Pethick, we are able to determine upper and lower bounds on the effective diffusion coefficient resulting from spin wave phenomena which are accurate in the whole Fermi liquid regime. Our results indicate that the usual approximations break down for(' )T < 7 mK in ('3)He, but are accurate to within (TURN)2% in 5% ('3)He-('4)He mixtures. Chapter 4 contains a calculation of the longitudinal spin relaxa- tion time T(,1) in bulk ('3)He in the Fermi liquid (T << T(,F)) regime. The kinetic equation is used to obtain an expression for T(,1) in terms of perturbations of the scattering amplitude. These perturbations are then obtained using the induced interaction model

  18. Novel Vertical Interconnects With 180 Degree Phase Shift for Amplifiers, Filters, and Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).

  19. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers

    PubMed Central

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  20. One way synchronization of polarization chaos from a solitary Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Virte, Martin; Sciamanna, Marc; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    We investigate theoretically the synchronization properties of the polarization chaos dynamics generated by a free-running vertical-cavity surface-emitting laser (VCSEL). Here, we focus on a one-way master-slave configuration - or unidirectional coupling - with two chaotic VCSELs. The spin-flip model is used to model the two devices and derived to account for the coupling between them. We demonstrate that the chaotic dynamics generated by the two lasers can indeed synchronize in the proposed configuration. The synchronization appears to be of high quality as we obtain a high-level of similarity between the emission characteristics of the master and slave laser dynamics.

  1. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review

    NASA Astrophysics Data System (ADS)

    Niimi, Yasuhiro; Otani, YoshiChika

    2015-12-01

    Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure.

  2. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 cu m Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  3. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 m3 Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  4. Spin-wave excitations induced by spin current in spin-valve structures

    NASA Astrophysics Data System (ADS)

    Liu, Haoliang; Sun, Dali; Zhang, Chuang; Groesbeck, Matthew; Vardeny, Zeev Valy; Department of Physics; Astronomy, University of Utah, Salt Lake City, Utah 84112, USA Team

    2016-03-01

    We have investigated the magnetization dynamics of NiFe/Pt/Co spin-valve structures with different Pt layer thickness, using a broadband ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) at ambient temperature. We found that the Gilbert damping factor, α of the two ferromagnetic (FM) layer films in the spin-valve structure are significantly larger than α of each individual FM layer. We interpret the increase in α in the spin-valve configuration as due to an interaction between the FM layers mediated by the induced spin current through the Pt interlayer when FMR conditions are met for one of the FM. This was verified by BLS of the spin-valve structure, in which the magnons density in the adjacent FM layer is enhanced upon FMR of the other FM layer. We have studied this spin-current-mediated interaction as a function of the Pt interlayer. Work supported by the MURI-AFOSR Grant FA9550-14-1-0037, and the UofU facility center supported by NSF-MRSEC Grant DMR-1121252.

  5. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  6. Forced vibration analysis of rotating structures with application to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Lobitz, D. W.

    Predictive methods for the dynamic analysis of wind turbine systems are important for assessing overall structural integrity and fatigue life. For the former, the identification of resonance points (spectral analysis) is of primary concern. For the latter forced vibration analysis is necessary. These analyses are complicated by the fact that, for a spinning turbine, the stress-producing deformations take place in both fixed and rotating reference systems simultaneously. As an example, the tower of a horizontal axis wind turbine (HAWT) must be analyzed in a fixed frame, and the rotor in a rotating one. Forced vibration analysis is further complicated in that accurate models need to be developed for aeroload prediction. Methods which are available for forced vibration analysis of both horizontal and vertical axis machines are identified and the method which was developed for vertical axis wind turbines is emphasized, with some comparisons of the predictions to experimental data.

  7. Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes

    SciTech Connect

    Chen, Aiping; Zhang, Wenrui; Khatkhatay, Fauzia; Su, Qing; Tsai, Chen-Fong; Chen, Li; Wang, H.; Jia, Q. X.; MacManus-Driscoll, Judith L.

    2013-03-04

    A unique quasi-one-dimensionally channeled nanomaze structure has been self-assembled in the (La{sub 0.7}Sr{sub 0.3}MnO{sub 3}){sub 1−x}:(ZnO){sub x} vertically aligned nanocomposites (VANs). Significantly enhanced magnetotransport properties have been achieved by tuning the ZnO composition x. The heteroepitaxial VAN thin films, free of large angle grain boundaries, exhibit a maximum low-field magnetoresistance (LFMR) of 75% (20 K and 1 T). The enhanced LFMR close to the percolation threshold is attributed to the spin-polarized tunneling through the ferromagnetic/insulating/ferromagnetic vertical sandwiches in the nanomazes. This study suggests that the phase boundary in the nanomaze structure is an alternative approach to produce decoupled ferromagnetic domains and thus to achieve enhanced magnetoresistance.

  8. Tunable bistable devices for harvesting energy from spinning wheels

    NASA Astrophysics Data System (ADS)

    Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser

    2015-04-01

    Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.

  9. Perfect state transfer over distance-regular spin networks

    SciTech Connect

    Jafarizadeh, M. A.; Sufiani, R.

    2008-02-15

    Christandl et al. have noted that the d-dimensional hypercube can be projected to a linear chain with d+1 sites so that, by considering fixed but different couplings between the qubits assigned to the sites, the perfect state transfer (PST) can be achieved over arbitrarily long distances in the chain [Phys. Rev. Lett. 92, 187902 (2004); Phys. Rev. A 71, 032312 (2005)]. In this work we consider distance-regular graphs as spin networks and note that any such network (not just the hypercube) can be projected to a linear chain and so can allow PST over long distances. We consider some particular spin Hamiltonians which are the extended version of those of Christandl et al. Then, by using techniques such as stratification of distance-regular graphs and spectral analysis methods, we give a procedure for finding a set of coupling constants in the Hamiltonians so that a particular state initially encoded on one site will evolve freely to the opposite site without any dynamical control, i.e., we show how to derive the parameters of the system so that PST can be achieved. It is seen that PST is only allowed in distance-regular spin networks for which, starting from an arbitrary vertex as reference vertex (prepared in the initial state which we wish to transfer), the last stratum of the networks with respect to the reference state contains only one vertex; i.e., stratification of these networks plays an important role which determines in which kinds of networks and between which vertices of them, PST can be allowed. As examples, the cycle network with even number of vertices and d-dimensional hypercube are considered in details and the method is applied for some important distance-regular networks.

  10. A spin glass approach to the directed feedback vertex set problem

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Jun

    2016-07-01

    A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.

  11. [Is the sense of verticality vestibular?].

    PubMed

    Barra, J; Pérennou, D

    2013-06-01

    The vestibular system constitutes an inertial sensor, which detects linear (otoliths) and angular (semicircular canals) accelerations of the head in the three dimensions. The otoliths are specialized in the detection of linear accelerations and can be used by the brain as a "plumb line" coding earth gravity acceleration (direction). This property of otolithic system suggested that the sense of verticality is supported by the vestibular system. The preeminence of vestibular involvement in the sense of verticality stated in the 1900s was progressively supplanted by the notion of internal models of verticality. The internal models of verticality involve rules and properties of integration of vestibular graviception, somaesthesic graviception, and vision. The construction of a mental representation of verticality was mainly modeled as a bottom-up organization integrating visual, somatosensory and vestibular information without any cognitive modulations. Recent studies reported that the construction of internal models of verticality is not an automatic multi-sensory integration process but corresponds to more complex mechanisms including top-down influences such as awareness of body orientation or spatial representations. PMID:23856176

  12. [Is the sense of verticality vestibular?].

    PubMed

    Barra, J; Pérennou, D

    2013-06-01

    The vestibular system constitutes an inertial sensor, which detects linear (otoliths) and angular (semicircular canals) accelerations of the head in the three dimensions. The otoliths are specialized in the detection of linear accelerations and can be used by the brain as a "plumb line" coding earth gravity acceleration (direction). This property of otolithic system suggested that the sense of verticality is supported by the vestibular system. The preeminence of vestibular involvement in the sense of verticality stated in the 1900s was progressively supplanted by the notion of internal models of verticality. The internal models of verticality involve rules and properties of integration of vestibular graviception, somaesthesic graviception, and vision. The construction of a mental representation of verticality was mainly modeled as a bottom-up organization integrating visual, somatosensory and vestibular information without any cognitive modulations. Recent studies reported that the construction of internal models of verticality is not an automatic multi-sensory integration process but corresponds to more complex mechanisms including top-down influences such as awareness of body orientation or spatial representations.

  13. Investigation of the Model ME 210 in the Spin Wind Tunnel of the DVL. Report 4; Model with Long Fuselage and with a VEE Tail

    NASA Technical Reports Server (NTRS)

    Huffschmid, A

    1950-01-01

    After conclusion of the spin investigation of the model Me 210 with elongated fuselage and central vertical tail surfaces (model condition III; reference 3), tests were performed on the same model with a vee tail (model condition IV). Here the entire tail surfaces consist of only one surface with pronounced dihedral. Since the blanketing of the vertical tail surfaces by the horizontal tail surfaces, which may occur in case of standard tail surfaces, does not occur here, one could expect for this type of tail surface favorable spin characteristics, particularly with respect to rudder effectiveness for spin recovery. However, the test results did not confirm these expectations. The steady spin was shown to be very irregular; regarding rudder effectiveness the vee tail surfaces proved to be inferior even to standard tail surfaces, thus they represent the most unfavorable of the four fuselage and tail-surface combinations investigated so far.

  14. Kondo spin screening cloud in two-dimensional electron gas with spin-orbit couplings.

    PubMed

    Feng, Xiao-Yong; Zhang, Fu-Chun

    2011-03-16

    A spin-1/2 Anderson impurity in a semiconductor quantum well with Rashba and Dresselhaus spin-orbit couplings is studied by using a variational wavefunction method. The local magnetic moment is found to be quenched at low temperatures. The spin-spin correlations of the impurity and the conduction electron density show anisotropy in both spatial and spin spaces, which interpolates the Kondo spin screenings of a conventional metal and of a surface of three-dimensional topological insulators.

  15. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  16. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  17. Pure spin current in lateral structures

    NASA Astrophysics Data System (ADS)

    Chen, Shuhan

    Spintronics, a frontier academic research area, is advancing rapidly in recent years. It has been chosen as one of the promising candidates for overcoming the obstacles in continuing the "Moore's Law" of the electronics industry. Spintronics employs both spin and charge degrees of freedom of electrons to reduce energy consumption and increase the flexibility of IC design. To achieve this, it is extremely important to understand the generation, transport, and detection of the spin polarized current (spin current). In this work we use a mesoscopic metallic spintronic structure-nonlocal spin valve (NLSV)-for fundamental studies of spintronics. A nonlocal spin valve consists of two ferromagnetic electrodes (a spin injector and a spin detector) bridged by a non-magnetic spin channel. A thin aluminum oxide barrier (~ 2 - 3 nm) has been shown to effectively enhance the spin injection and detection polarizations. We have studied spin injection and detection in these nanoscale structures. Several topics will be discussed in this work. In Chapter 4 we explore spin transport in NLSVs with Ag channels. Substantial spin signals are observed. The temperature dependence of the spin signals indicates long spin diffusion lengths and low surface spin-flip rate in the mesoscopic Ag channels. Chapter 5 will focus on the asymmetric spin absorption across the low-resistance AlOx barriers in NLSVs. This effect allows for a more simplified and efficient detection scheme for the spin accumulation. Then in Chapter 6 we report a large spin signal owing to a highly resistive break-junction. We have also developed a model to describe the spin-charge coupling effect which enables the large spin signal. In the end, Spin Hall Effect (SHE) is investigated in Chapter 7. A mesoscopic Pt film is utilized to inject a spin accumulation into a mesoscopic Cu channel via the SHE. The spin accumulation in Cu can be detected by the nonlocal method. The reciprocal effect -- the inverse Spin Hall Effect - (i

  18. Is The Intrinsic Spin Hall Effect Measurable?

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoyang

    2005-03-01

    Despite of the large intrinsic spin Hall conductivity in a spin- orbit coupled material predicted theoretically, we show that the intrinsic spin Hall effect in any diffusive sample is not measurable via conventional transport methods, thus the research on the intrinsic spin Hall effect is limited at the pure theoretical content. After generally defining the intrinsic and extrinsic transport coefficients, we show that the intrinsic magnetization Hall current, which is the sum of the intrinsic spin and intrinsic orbit-angular-momentum Hall currents, is identically zero. More importantly, we demonstrate that the equation of motion for the spin density does not depend on the intrinsic spin Hall current, therefore the transverse spin accumulation is solely determined by the extrinsic spin Hall current. The zero intrinsic magnetization Hall current and the independence of the spin accumulation on the intrinsic spin Hall effect lead us to conclude that the intrinsic spin Hall effect can not be assessed by conventional spin transport experiments based on the measurement of the magnetization current and the spin accumulation at the edge of the sample.

  19. Spin transport in benzofurane bithiophene based organic spin valves

    SciTech Connect

    Palosse, Mathieu; Séguy, Isabelle; Bedel-Pereira, Élena; Villeneuve-Faure, Christina; Mallet, Charlotte; Frère, Pierre; Warot-Fonrose, Bénédicte; Biziere, Nicolas; Bobo, Jean-François

    2014-01-15

    In this paper we present spin transport in organic spin-valves using benzofurane bithiophene (BF3) as spacer layer between NiFe and Co ferromagnetic electrodes. The use of an AlO{sub x} buffer layer between the top electrode and the organic layer is discussed in terms of improvements of stacking topology, electrical transport and oxygen contamination of the BF3 layer. A study of magnetic hysteresis cycles evidences spin-valve behaviour. Transport properties are indicative of unshorted devices with non-linear I-V characteristics. Finally we report a magnetoresistance of 3% at 40 K and 10 mV in a sample with a 50 nm thick spacer layer, using an AlO{sub x} buffer layer.

  20. Controlling spin-spin network dynamics by repeated projective measurements

    PubMed Central

    Bretschneider, Christian O.; Álvarez, Gonzalo A.; Kurizki, Gershon; Frydman, Lucio

    2016-01-01

    We show that coupled-spin network manipulations can be made highly effective by repeated “projections” of the evolving quantum states onto diagonal density-matrix states (populations). As opposed to the intricately crafted pulse trains that are often used to fine-tune a complex network’s evolution, the strategy hereby presented derives from the “quantum-Zeno effect” and provides a highly robust route to guide the evolution by destroying all unwanted correlations (coherences). We exploit these effects by showing that a relaxation-like behaviour is endowed to polarization transfers occurring within a N-spin coupled network. Experimental implementations yield coupling constant determinations for complex spin-coupling topologies, as demonstrated within the field of liquid-state nuclear magnetic resonance (NMR). PMID:22540774

  1. Measurement of noncommuting spin components using spin-orbit interaction

    SciTech Connect

    Sokolovski, D.; Sherman, E. Ya.

    2011-09-15

    We propose a possible experiment aimed at a joint measurement of two noncommuting spin-1/2 components and analyze its physical meaning. We demonstrate that switching of a strong spin-orbit interaction, e.g., in a solid-state or a cold-atom system, for a short time interval simulates a simultaneous von Neumann measurement of the operators {sigma}{sub x} and {sigma}{sub y}. With the spin dynamics mapped onto the quantum coordinate-space motion, such an experiment determines averages of {sigma}{sub x} and {sigma}{sub y} over the duration of the measurement, however short the latter may be. These time averages, unlike the instantaneous values of {sigma}{sub x} and {sigma}{sub y}, may be evaluated simultaneously to an arbitrary accuracy.

  2. Octet spin fractions and the proton spin problem.

    PubMed

    Shanahan, P E; Thomas, A W; Tsushima, K; Young, R D; Myhrer, F

    2013-05-17

    The relatively small fraction of the spin of the proton carried by its quarks presents a major challenge to our understanding of the strong interaction. Traditional efforts to explore this problem have involved new and imaginative experiments and QCD based studies of the nucleon. We propose a new approach to the problem that exploits recent advances in lattice QCD. In particular, we extract values for the spin carried by the quarks in other members of the baryon octet in order to see whether the suppression observed for the proton is a general property or depends significantly on the baryon structure. We compare these results with the values for the spin fractions calculated within a model that includes the effects of confinement, relativity, gluon exchange currents, and the meson cloud required by chiral symmetry, finding a very satisfactory level of agreement given the precision currently attainable. PMID:25167398

  3. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  4. Decoherence of nitrogen-vacancy defect spins in diamond from surface spins

    NASA Astrophysics Data System (ADS)

    Dominguez, Michael; Flatté, Michael E.

    In recent work, researchers measured the spin coherence time of intentionally-doped nitrogen-vacancy (NV) spin ensembles. The spin coherence times of these spins depends on their local environment, including their nearness to the surface of the material. We calculated the decoherence time of a deep spin within the material affected by the presence of a sheet of surface spins interacting with the deep spin through the dipolar interaction. These calculations describe the experimental measurements qualitatively, however quantitative agreement requires the assumption these spins extend deeper into the material from the surface layer.

  5. Optimization of spin injection and spin detection in lateral nanostructures by geometrical means

    NASA Astrophysics Data System (ADS)

    Stejskal, Ondřej; Hamrle, Jaroslav; Pištora, Jaromír; Otani, Yoshichika

    2016-09-01

    Lateral spin devices are an important concept in nowadays all-metallic spintronic devices. One of the key problems is to obtain large spin injection and detection efficiency. Several concepts has been envisaged, such as to use half-metallic ferromagnetic electrodes or spin-polarized interface barriers. Within this work, we address the optimization of spin devices (namely optimization of spin current density, spin current and spin accumulation) based on adjustment of the geometry (dimensions) of the lateral device, material selection of spin conductors, jointly with optimization of the interface resistance.

  6. Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system.

    PubMed

    Bernevig, B Andrei; Orenstein, J; Zhang, Shou-Cheng

    2006-12-01

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constants, and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions and is generated by operators whose wave vector depends on the coupling strength. It renders the spin lifetime infinite at this wave vector, giving rise to a persistent spin helix. We obtain the spin fluctuation dynamics at, and away from, the symmetry point and suggest experiments to observe the persistent spin helix.

  7. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    SciTech Connect

    Taminiau, T.H.; Wagenaar, J.J.T.; van der Sar, T.; Jelezko, F.; Dobrovitski, Viatcheslav V.; Hanson, R.

    2012-09-28

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.

  8. Vertical Continuity and Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Hu, Hanqiong; Woo, Youngwoo; Feng, Xunda; Osuji, Chinedum; Osuji Lab Team

    2015-03-01

    We report the fabrication of vertically aligned cylindrical block copolymer (BCP) domains using continuous electrospray deposition (ESD) onto bare wafer surfaces. The out-of-plane orientation of hexagonally packed styrene cylinders was achieved in a ``fast-wet'' deposition regime where rapid evaporation of solvent in droplets of polymer solution drove the vertical alignment of SBS domains. The deposition conditions were optimized such that thermally activated crosslinking of the polybutadiene matrix provided kinetic control of the morphology, locking in the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the non-treated substrate. Physically continuous and vertically oriented domains is achieved over several microns of film thickness. We describe the effects of flow rate, collection distance and substrate temperature on thin film morphology and demonstrate selective etching capabilities. The ability of ESD to fabricate well-ordered and aligned BCP films on non-treated substrates, the low utilization of material relative to spin-coating and the continuous nature of the deposition may open up new opportunities for BCP thin films. We are exploring ESD as a new platform for sequential deposition of BCPs with different functionalities.

  9. A cryostat to hold frozen-spin polarized HD targets in CLAS. HDice-II

    DOE PAGES

    Lowry, Michael M.; Bass, Christopher D.; D'Angelo, Annalisa; Deur, Alexandre P.; Dezern, Gary L.; Hanretty, Charles; Ho, D.; Kageya, Tsuneo; Kashy, David H.; Khandaker, Mahbub A.; et al

    2016-01-07

    The design, fabrication, operation, and performance of a helium-3/4 dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). Moreover, the device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 Tesla for extended periods.

  10. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  11. Quantization of higher spin fields

    SciTech Connect

    Wagenaar, J. W.; Rijken, T. A

    2009-11-15

    In this article we quantize (massive) higher spin (1{<=}j{<=}2) fields by means of Dirac's constrained Hamilton procedure both in the situation were they are totally free and were they are coupled to (an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and discussing all constraints and Lagrange multipliers and by giving all equal times (anti)commutation relations. Also we construct the relevant propagators. In the free case we obtain the well-known propagators and show that they are not covariant, which is also well known. In the coupled case we do obtain covariant propagators (in the spin-3/2 case this requires b=0) and show that they have a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in the massive case.

  12. Heavy spin-2 Dark Matter

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Marzola, Luca; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-09-01

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  13. Exclusive processes in QCD and spin-spin correlations

    SciTech Connect

    de Teramond, G.F.

    1988-09-01

    The unexpected spin behavior observed in hard proton-proton collisions is described in terms of new degrees of freedom associated with the onset of strange and charmed thresholds. The deviation from dimensional scaling laws, the anomalous broadening of angular distributions, and the unusual energy dependence of pp quasielastic scattering in nuclear targets are also consistent with the onset of highly inelastic contributions to elastic pp amplitudes interfering with a perturbative QCD background. The model predicts significant charm production above 12 GeV/c and a relaxation of the spin correlation parameters to their scaling values at higher energies. 13 refs., 3 figs.

  14. Melt spinning study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    microstructure of the undercooled species is frozen in without going through the melting point regime and subsequent near equilibrium solidification of the remaining liquid. This experimental approach entails the design of an appropriate melt spinning system which is compatible with Drop Tube operations and processing constraints. That work is the goal of this study.

  15. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  16. Second post-Newtonian Lagrangian dynamics of spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wu, Xin; Ma, DaZhu

    2016-09-01

    The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim.

  17. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    SciTech Connect

    Artzi, Yaron; Twig, Ygal; Blank, Aharon

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  18. Spin selectivity effect in achiral molecular systems

    NASA Astrophysics Data System (ADS)

    Guo, Ai-Min; Pan, Ting-Rui; Fang, Tie-Feng; Xie, X. C.; Sun, Qing-Feng

    2016-10-01

    Recently, chiral-induced spin selectivity has been attracting intense interest. Here, we report a theoretical study of spin-dependent electron transport in achiral nanotubes contacted by nonmagnetic leads. Our results reveal that by properly connecting to the leads, the achiral nanotubes can present a pronounced spin filtering phenomenon even if the spin-orbit coupling is very weak. In addition, the spin selectivity effect holds for various achiral nanotubes with different radii and is still significant in the presence of strong disorder and dephasing. These findings open new opportunities of using achiral molecules in spintronic applications and could motivate further studies on spin transport along achiral systems.

  19. Nonequilibrium spin polarization induced charge Hall effect

    NASA Astrophysics Data System (ADS)

    Hou, Dazhi; Qiu, Z.; Iguchi, R.; Sato, K.; Uchida, K.; Bauer, G. W.; Saitoh, Eiji

    2015-03-01

    The nonequilibrium spin polarization lies at the heart of information processing in spin-based devices. The generation and manipulation of the spin polarization have been realized by various approaches, however, the spin polarization is usually considered to have negligible effect on the electric transport property, especially for systems of high electron concentration like metals (ɛF ~ eV). Here we show that the nonequilibrium spin polarization can cause a novel Hall voltage in a conventional metallic alloy at room temperature, which is due to a new mechanism and closely related to the spin Nernst effect.

  20. Spin gravitational resonance and graviton detection

    NASA Astrophysics Data System (ADS)

    Quach, James Q.

    2016-05-01

    We develop a gravitational analogue of spin magnetic resonance, called spin gravitational resonance, whereby a gravitational wave interacts with a magnetic field to produce a spin transition. In particular, an external magnetic field separates the energy spin states of a spin-1 /2 particle, and the presence of the gravitational wave produces a perturbation in the components of the magnetic field orthogonal to the gravitational-wave propagation. In this framework we test Dyson's conjecture that individual gravitons cannot be detected. Although we find no fundamental laws preventing single gravitons being detected with spin gravitational resonance, we show that it cannot be used in practice, in support of Dyson's conjecture.

  1. The role of spin in cosmological models

    NASA Astrophysics Data System (ADS)

    Bedran, M. L.; Vasconcellos-Vaidya, E. P.

    1984-09-01

    The classical description of spin in a perfect fluid of Ray and Smalley (1982) and its energy-momentum-tensor formulation are applied to cosmological models. The Raychaudhuri equation for the evolution of a continuous matter distribution in hydrodynamic motion is analyzed, and the role of spin and torsion in the Einstein-Cartan theory of gravitation (Hehl et al., 1976) is compared to that of spin in general relativity. It is found that spin-spin interaction is significant only at extremely high densities, and that spin-vorticity interactions are of potential importance at high vorticity, as in the early moments of cosmological models.

  2. Joule heating in spin Hall geometry

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    The theoretical formula for the entropy production rate in the presence of spin current is derived using the spin-dependent transport equation and thermodynamics. This theory is applicable regardless of the source of the spin current, for example, an electric field, a temperature gradient, or the Hall effect. It reproduces the result in a previous work on the dissipation formula when the relaxation time approximation is applied to the spin relaxation rate. By using the developed theory, it is found that the dissipation in the spin Hall geometry has a contribution proportional to the square of the spin Hall angle.

  3. QCD SPIN PHYSICS IN HADRONIC INTERACTIONS.

    SciTech Connect

    VOGELSANG,W.

    2007-06-19

    We discuss spin phenomena in high-energy hadronic scattering, with a particular emphasis on the spin physics program now underway at the first polarized proton-proton collider, RHIC. Experiments at RHIC unravel the spin structure of the nucleon in new ways. Prime goals are to determine the contribution of gluon spins to the proton spin, to elucidate the flavor structure of quark and antiquark polarizations in the nucleon, and to help clarify the origin of transverse-spin phenomena in QCD. These lectures describe some aspects of this program and of the associated physics.

  4. Vertical and bisection bias in active touch.

    PubMed

    Millar, S; al-Attar, Z

    2000-01-01

    We investigated the conditions that underlie the vertical and bisection illusion in touch, in order to understand the basis of their similarity to visual illusions, and the means of reducing the biases in length perception by active touch. Movement, speed, and spatial reference cues were tested. Movements in scanning L-shapes in ipsilateral and contralateral (across the body midline) table-top space produced significant underestimation of the vertical line with the right hand, but not with the left hand. Right-handed scanning of L-shapes showed no significant bias when the vertical line in the figure was aligned to the body midline, suggesting that spatial cues were involved. The vertical line was overestimated in inverted T-shapes, but underestimated in rotated T-shapes, implicating line bisection. Holding scanning latencies constant reduced the vertical error for inverted T-shapes, but could not explain the bisection bias. Sectioning biases were predicted by the location of junctions on sectioned lines, showing that junction points act as misleading anchor cues for movement extents. The illusion was significantly reduced when reference information was added by instructing subjects to relate two-handed scanning of the figure to an external frame and to body-centred cues. It is argued that disparities in spatial reference (anchor) cues for movement extents are involved in vertical and bisection biases in active touch. The hypothesis that length illusions depend on disparities in spatial reference information can also account for the similarity of the tactile to the visual horizontal-vertical illusion.

  5. A generic approach for vertical integration of nanowires.

    PubMed

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  6. A generic approach for vertical integration of nanowires.

    PubMed

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs. PMID:21730646

  7. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  8. Double-quantum spin vortices in SU(3) spin-orbit-coupled Bose gases

    NASA Astrophysics Data System (ADS)

    Han, Wei; Zhang, Xiao-Fei; Song, Shu-Wei; Saito, Hiroki; Zhang, Wei; Liu, Wu-Ming; Zhang, Shou-Gang

    2016-09-01

    We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit-coupled Bose gases. It is found that the SU(3) spin-orbit coupling and spin-exchange interaction play important roles in determining the ground-state phase diagram. In the case of effective ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a threefold degeneracy to the magnetized ground state, while in the antiferromagnetic spin interaction case, the SU(3) spin-orbit coupling breaks the ordinary phase rule of spinor Bose gases and allows the spontaneous emergence of double-quantum spin vortices. This exotic topological defect is in stark contrast to the singly quantized spin vortices observed in existing experiments and can be readily observed by the current magnetization-sensitive phase-contrast imaging technique.

  9. Spinning angle optical calibration apparatus

    SciTech Connect

    Beer, S.K.; Pratt, H.R.

    1991-02-26

    This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted.

  10. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  11. Spin waves in exchange-coupled double layers in the presence of spin torques

    NASA Astrophysics Data System (ADS)

    Baláž, Pavel; Barnaś, Józef

    2015-03-01

    Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.

  12. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  13. Flight dynamics of a spinning projectile descending on a parachute

    SciTech Connect

    Benedetti, G.A.

    1989-02-01

    During the past twenty years Sandia National Laboratories and the US Army have vertically gun launched numerous 155mm and eight-inch diameter flight test projectiles. These projectiles are subsequently recovered using an on-board parachute recovery system which is attached to the forward case structure of the projectile. There have been at least five attempts to describe, through analytical and numerical simulations, the translational and rotational motions of a spinning projectile descending on a parachute. However, none of these investigations have correctly described the large nutational motion of the projectile since all of them overlooked the fundamental mechanism which causes these angular motions. Numerical simulations as well as a closed form analytical solution show conclusively that the Magnus moment is responsible for the large nutational motion of the projectile. That is, when the center of pressure for the Magnus force is aft of the center of mass for the projectile, the Magnus moment causes an unstable (or large) nutational motion which always tends to turn the spinning projectile upside down while it is descending on the parachute. Conversely, when the center of mass for the projectile is aft of the center of pressure for the Magnus force, the Magnus moment stabilizes the nutational motion tending to always point the base of the spinning projectile down. The results of this work are utilized to render projectile parachute recovery systems more reliable and to explain what initially may appear to be strange gyrodynamic behavior of a spinning projectile descending on a parachute. 14 refs., 20 figs.

  14. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  15. Ballistic spin transport in exciton gases

    NASA Astrophysics Data System (ADS)

    Kavokin, A. V.; Vladimirova, M.; Jouault, B.; Liew, T. C. H.; Leonard, J. R.; Butov, L. V.

    2013-11-01

    Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals. The challenges for the realization of long-range electron spin transport include rapid spin relaxation due to electron scattering. Scattering and, in turn, spin relaxation can be effectively suppressed in excitonic devices where the spin currents are carried by electrically neutral bosonic quasiparticles: excitons or exciton-polaritons. They can form coherent quantum liquids that carry spins over macroscopic distances. The price to pay is a finite lifetime of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied to a range of systems supporting bosonic spin transport, in particular to indirect excitons in coupled quantum wells. We describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account for the Zeeman effect induced by external magnetic fields and long-range and short-range exchange splittings of the exciton resonances. We also consider exciton transport in the nonlinear regime and discuss the definitions of the exciton spin current, polarization current, and spin conductivity.

  16. Giant Rashba spin splitting with unconventional spin texture in a quantum spin Hall insulator

    NASA Astrophysics Data System (ADS)

    Mera Acosta, Carlos; Babilonia, Oscar; Abdalla, Leonardo; Fazzio, Adalberto

    We propose a non-centrosymmetric honeycomb-lattice quantum spin Hall effect family formed by atoms of the groups IV, V and VII of the periodic table. We make a structural analysis, a Z2 characterization. According to our ab-initio phonon calculations, the system formed by Bi, Pb and I atoms is only mechanically stable system. This material presents a Rashba-type spin-splitting and a hexagonal warping effect, which lead to an unusual spin texture. Due to this spin texture, the backscattering is forbidden for both edge conductivity channels and bulk conductivity channels. This suggests that, contrary to what happens in most systems with nontrivial topological phases, the bulk states would not pose a problem for spintronic devices. The value of the spin-splitting due to the Rashba effect is about 60 meV, which is huge compared with the values found in 2D systems and surprisingly is on the order of the highest found in 3D systems. We would like to thank the financial support by the Sao Paulo research fundation (FAPESP).

  17. Spin correlations and topological entanglement entropy in a non-Abelian spin-one spin liquid

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia; Bonesteel, N. E.

    2016-07-01

    We analyze the properties of a non-Abelian spin-one chiral spin liquid state proposed by Greiter and Thomale [Phys. Rev. Lett. 102, 207203 (2009), 10.1103/PhysRevLett.102.207203] using Monte Carlo. In this state the bosonic ν =1 Moore-Read Pfaffian wave function is used to describe a gas of bosonic spin flips on a square lattice with one flux quantum per plaquette. For toroidal geometries there is a three-dimensional space of these states corresponding to the topological degeneracy of the bosonic Moore-Read state on the torus. We show that spin correlations for different states in this space become indistinguishable for large system size. We also calculate the Renyi entanglement entropy for different system partitions to extract the topological entanglement entropy and provide evidence that the topological order of the lattice spin-liquid state is the same as that of the continuum Moore-Read state from which it is constructed.

  18. Thermal Impacts of Vertical Greenery Systems

    NASA Astrophysics Data System (ADS)

    Safikhani, Tabassom; Abdullah, Aminatuzuhariah Megat; Ossen, Dilshan Remaz; Baharvand, Mohammad

    2014-12-01

    - Using vertical greenery systems to reduce heat transmission is becoming more common in modern architecture. Vertical greenery systems are divided into two main categories; green facades and living walls. This study aims to examine the thermal performance of vertical greenery systems in hot and humid climates. An experimental procedure was used to measure indoor temperature and humidity. These parameters were also measured for the gap between the vertical greenery systems and wall surfaces. Three boxes were used as small-scale rooms. Two boxes were provided with either a living wall or a green facade and one box did not have any greenery (benchmark). Blue Trumpet Vine was used in the vertical greenery systems. The data were recorded over the course of three sunny days in April 2013. An analyses of the results showed that the living wall and green facade reduced indoor temperature up to 4.0 °C and 3.0 °C, respectively. The living wall and green facade also reduced cavity temperatures by 8.0 °C and 6.5 °C, respectively.

  19. Climatology of tropospheric vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  20. Some vertical lineaments of lip position.

    PubMed

    Peck, S; Peck, L; Kataja, M

    1992-06-01

    This study was performed to elucidate quantitatively upper lip-tooth-jaw relativity in the vertical dimension. Values for five linear dentolabial measurements were generated from male (n = 42) and female (n = 46) reference samples. In addition, three vertical skeletofacial dimensions and two vertical dental dimensions were recorded. A significant sexual dimorphism was found in the vertical lip-tooth-jaw relationship: the upper lip of the female subjects was positioned on average 1.5 mm more superiorly at maximum smile than the upper lip of the male subjects (p less than 0.01). High smile lines appeared to be a female lineament, and low smile lines appeared to be a male lineament. There was a significant sex difference in upper lip length: the male subjects exhibited a longer upper lip than the female subjects (p less than 0.001). The mean difference was 2.2 mm. A similarly significant male-female difference was seen in the skeletal maxillary height measurement: the male sample showed a 2.2 mm mean vertical maxillary increase over the female sample (p less than 0.001). Furthermore, a significant difference was found between the clinical crown height of the maxillary central incisors in the male and female subjects of comparable ages: the male group had longer central incisor crowns (p less than 0.01).