Science.gov

Sample records for 20-m solar sail

  1. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  2. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  3. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  4. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  5. Status of solar sail technology within NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  6. Status of Solar Sail Technology Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2010-01-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  7. Unconventional Solar Sailing

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo

    The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth's Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.

  8. Solar Sail Propulsion Technology at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  9. NASA Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  10. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  11. The Physics and Technology of Solar Sail Spacecraft.

    ERIC Educational Resources Information Center

    Dwivedi, B. N.; McInnes, C. R.

    1991-01-01

    Various aspects of the solar sail spacecraft such as solar sailing, solar sail design, navigation with solar sails, solar sail mission applications and future prospects for solar sailing are described. Several possible student projects are suggested. (KR)

  12. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  13. Ultra-Large Solar Sail

    NASA Technical Reports Server (NTRS)

    Burton, Rodney; Coverstone, Victoria

    2009-01-01

    UltraSail is a next-generation ultra-large (km2 class) sail system. Analysis of the launch, deployment, stabilization, and control of these sails shows that high-payload-mass fractions for interplanetary and deep-space missions are possible. UltraSail combines propulsion and control systems developed for formation-flying microsatellites with a solar sail architecture to achieve controllable sail areas approaching 1 km2. Electrically conductive CP-1 polyimide film results in sail subsystem area densities as low as 5 g/m2. UltraSail produces thrust levels many times those of ion thrusters used for comparable deep-space missions. The primary innovation involves the near-elimination of sail-supporting structures by attaching each blade tip to a formation- flying microsatellite, which deploys the sail and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These microsatellite tips are controlled by microthrusters for sail-film deployment and mission operations. UltraSail also avoids the problems inherent in folded sail film, namely stressing, yielding, or perforating, by storing the film in a roll for launch and deployment. A 5-km long by 2 micrometer thick film roll on a mandrel with a 1 m circumference (32 cm diameter) has a stored thickness of 5 cm. A 5 m-long mandrel can store a film area of 25,000 m2, and a four-blade system has an area of 0.1 sq km.

  14. Solar sail Engineering Development Mission

    NASA Technical Reports Server (NTRS)

    Price, H. W.

    1981-01-01

    Since photons have momentum, a useful force can be obtained by reflecting sunlight off of a large, low mass surface (most likely a very thin metal-coated plastic film) and robbing the light of some of its momentum. A solar sail Engineering Development Mission (EDM) is currently being planned by the World Space Foundation for the purpose of demonstrating and evaluating solar sailing technology and to gain experience in the design and operation of a spacecraft propelled by sunlight. The present plan is for the EDM spacecraft to be launched (sail stowed) in a spin-stabilized configuration into an initial elliptical orbit with an apogee of 36,000 km and a perigee of a few hundred kilometers. The spacecraft will then use its own chemical propulsion system to raise the perigee to at least 1,200 km. The deployed sail will have an area of 880 sq m and generate a solar force of about 0.007 N.

  15. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  16. The Physics of Solar Sails

    NASA Technical Reports Server (NTRS)

    Hollerman, William Andrew

    2003-01-01

    The concept of using photon pressure for propulsion has been considered since Tsiolkovsky in 1921. In fact, Tsiolkovsky and Tsander wrote of 'using tremendous mirrors of very thin sheets' and 'using the pressure of sunlight to attain cosmic velocities' in 1924. The term 'solar sailing' was coined in the late 1950s and was popularized by Arthur C. Clarke in the short story Sunjammer (The Wind From the Sun) in May 1964. The National Aeronautics and Space Administration (NASA) used sailing techniques to extend the operational life of the Mariner 10 spacecraft in 1974-1975. A problem in the control system was causing Mariner 10 to go off course. By controlling the attitude of Mariner 10 and the angle of the solar power panels relative to the Sun, ground controllers were able to correct the problem without using precious fuel. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. Candidate sail materials should be: 1) strong, 2) ultra-lightweight (density of a few g/sq m), 3) able to be folded or crushed until deployed, 4) subject to minimal sagging or stretching, and 5) resistant to ionizing radiation, such as galactic and solar particles (electrons and protons), x-rays, ultraviolet light, and magnetically trapped charged particles. Solar sails must be resistant to each of these types of radiation.

  17. Excerpts from solar sail concepts and applications

    NASA Technical Reports Server (NTRS)

    Wright, Jerome; Sauer, Carl; Yen, Chen-Wan

    1986-01-01

    Material applicable to Mars missions are excerpted from an earlier study covering a broader range of applications of solar sails. The basic principles of solar sail operation are provided, and the implications on trajectories and mission are discussed briefly. Concepts of solar sails and interplanetary vehicles are described and discussed. Some of the important solar sail material considerations are presented and some selections criteria are provided.

  18. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  19. Optimal solar sail planetocentric trajectories

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.

    1977-01-01

    The analysis of solar sail planetocentric optimal trajectory problem is described. A computer program was produced to calculate optimal trajectories for a limited performance analysis. A square sail model is included and some consideration is given to a heliogyro sail model. Orbit to a subescape point and orbit to orbit transfer are considered. Trajectories about the four inner planets can be calculated and shadowing, oblateness, and solar motion may be included. Equinoctial orbital elements are used to avoid the classical singularities, and the method of averaging is applied to increase computational speed. Solution of the two-point boundary value problem which arises from the application of optimization theory is accomplished with a Newton procedure. Time optimal trajectories are emphasized, but a penalty function has been considered to prevent trajectories which intersect a planet's surface.

  20. Solar Sail Propulsion for Interplanetary Cubesats

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Sobey, Alex; Sykes, Kevin

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.

  1. NanoSail-D: A Solar Sail Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Whorton, Mark; Heaton, Andy; Pinson, robin; Laue, Greg; Adams, Charles

    2009-01-01

    During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft

  2. UltraSail - Ultra-Lightweight Solar Sail Concept

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.; Coverstone, Victoria L.; Hargens-Rysanek, Jennifer; Ertmer, Kevin M.; Botter, Thierry; Benavides, Gabriel; Woo, Byoungsam; Carroll, David L.; Gierow, Paul A.; Farmer, Greg

    2005-01-01

    UltraSail is a next-generation high-risk, high-payoff sail system for the launch, deployment, stabilization and control of very large (sq km class) solar sails enabling high payload mass fractions for high (Delta)V. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying micro-satellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 sq km, sail subsystem area densities approaching 1 g/sq m, and thrust levels many times those of ion thrusters used for comparable deep space missions. Ultrasail can achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. One of the primary innovations is the near-elimination of sail supporting structures by attaching each blade tip to a formation-flying micro-satellite which deploys the sail, and then articulates the sail to provide attitude control, including spin stabilization and precession of the spin axis. These tip micro-satellites are controlled by 3-axis micro-thruster propulsion and an on-board metrology system. It is shown that an optimum spin rate exists which maximizes payload mass.

  3. Solar Sail Readies for Early Warning Mission

    NASA Video Gallery

    NASA's Solar Sail project, directed by L’Garde of Tustin, Calif., plans to take this innovative technology beyond Earth's orbit. The spacecraft will have a "sail" one quarter the size of a footb...

  4. Solar Sailing is not Science Fiction Anymore

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2010-01-01

    Over 400 years ago Johannes Kepler envisioned the use of sunlight to propel a spacecraft. Just this year, a solar sail was deployed in orbit for the first time and proved that a spacecraft could effectively use a solar sail for propulsion. NASA's first nano-class solar sail satellite, NanoSail-D was designed and developed in only four months. Although the first unit was lost during the Falcon 1 rocket failure in 2008, the second flight unit has been refurbished and is waiting to be launched later this year. NanoSail-D will further the research into solar sail enabled spacecraft. It will be the first of several more sail enabled spacecraft to be launch in the next few years. FeatherSail is the next generation nano-class sail spacecraft being designed with the goal to prove low earth orbit operational capabilities. Future solar sail spacecraft will require novel ideas and innovative research for the continued development of space systems. One such pioneering idea is the Small Multipurpose Advanced Reconfigurable Technology (SMART) project. The SMART technology has the potential to revolutionize spacecraft avionics. Even though solar sailing is currently in its infancy, the next decade will provide great opportunities for research into sailing in outer space.

  5. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic

  6. Solar Sail Model Validation from Echo Trajectories

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Brickerhoff, Adam T.

    2007-01-01

    The NASA In-Space Propulsion program has been engaged in a project to increase the technology readiness of solar sails. Recently, these efforts came to fruition in the form of several software tools to model solar sail guidance, navigation and control. Furthermore, solar sails are one of five technologies competing for the New Millennium Program Space Technology 9 flight demonstration mission. The historic Echo 1 and Echo 2 balloons were comprised of aluminized Mylar, which is the near-term material of choice for solar sails. Both spacecraft, but particularly Echo 2, were in low Earth orbits with characteristics similar to the proposed Space Technology 9 orbit. Therefore, the Echo balloons are excellent test cases for solar sail model validation. We present the results of studies of Echo trajectories that validate solar sail models of optics, solar radiation pressure, shape and low-thrust orbital dynamics.

  7. Electric Solar Wind Sail (E-sail) mission to asteroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Janhunen, Pekka; Toivanen, Petri; Jouni Envall, M.(Tech.).

    2012-07-01

    There are an estimated one to two million asteroids of diameter over 1 km in-between the orbits of Mars and Jupiter. Impact threat, mining prospects and the understanding of solar system history make asteroids interesting objects for further in-situ studies. Electric Solar Wind Sail (E-sail) [1] technology enables touring several different asteroids with the same spacecraft. It is a propulsion technology first proposed in 2006 and currently developed with the EUs FP7 funding (http://www.electric-sailing.fi/fp7). The E-sail utilizes long, conducting, highly charged tethers to gather momentum from the solar wind ions. It does not consume any propellant and is well maneuverable. The Electric Solar Wind Sail producing 1 N of thrust at 1 AU distance from the Sun could be manufactured to weigh 100-150 kg in total. The constant acceleration gives a large advantage over traditional methods when calculated over the mission lifetime. In a ten year mission a baseline 1 N E-sail could produce 300 MNs of total impulse, Itot. As an example, such a total impulse would be able to move a 3 million ton Earth-threatening asteroid to a safer track [2]. With chemical propellant it would take 100 000 tons of fuel to achieve the same feat. Scientists and miners could have a closer look at several targets and they could decide the next target and the duration of investigations once at the vicinity of the asteroid, so the operations would be very flexible. Such a mission could characterize and map several asteroids, some with rapid fly-bys and a few chosen ones during lengthier rendezvous. [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Merikallio, S. and P. Janhunen, Moving an asteroid with electric solar wind sail, Astrophys. Space Sci. Trans., 6, 41-48, 2010

  8. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  9. Heliogyro Solar Sail Research at NASA

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Guerrant, Daniel V.; Lawrence, Dale A.; Gibbs, S. Chad; Dowell, Earl H.; Heaton, Andrew F.; Heaton, Andrew F.; Juang, Jer-Nan; Horta, Lucas G.; Lyle, Karen H.; Littell, Justin D.; Bryant, Robert G.; Thomson, Mark W.; Walkemeyer, Phillip E.

    2013-01-01

    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020.

  10. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Peddieson, John; Garbe, Gregory

    2010-01-01

    Future science missions will require solar sails on the order of 200 square meters (or larger). However, ground demonstrations and flight demonstrations must be conducted at significantly smaller sizes, due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This paper will approach the problem of scaling in solar sail models by developing a set of scaling laws or similarity criteria that will provide constraints in the sail design process. These scaling laws establish functional relationships between design parameters of a prototype and model sail that are created at different geometric sizes. This work is applied to a specific solar sail configuration and results in three (four) similarity criteria for static (dynamic) sail models. Further, it is demonstrated that even in the context of unique sail material requirements and gravitational load of earth-bound experiments, it is possible to develop appropriate scaled sail experiments. In the longer term, these scaling laws can be used in the design of scaled experimental tests for solar sails and in analyzing the results from such tests.

  11. Midcourse trajectory correction for solar sail starships

    NASA Astrophysics Data System (ADS)

    Matloff, Gregory L.

    2016-10-01

    Hyperthin solar sails deployed as close to the Sun as possible are the only currently feasible approach to extrasolar solar exploration and interstellar travel. This paper quantifies and investigates the effects of timing errors in the unfurlment (or inflation) of solar sails at the perihelion of parabolic solar orbits upon the spacecraft's trajectory direction. Methods of correcting such aim errors include on-board solar-, radioisotope-, or nuclear-electric thrusters, electromagnetic thrustless turning, application of electric or magnetic sails, and a new application of toroidal magnetic ion scoops.

  12. Mercury Sample Return using Solar Sails

    NASA Astrophysics Data System (ADS)

    Young, Roy; Montgomery, E.; Adams, C.

    2006-12-01

    Over the previous three years NASA’s In-Space Propulsion Technology (ISPT) Program has matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could be simulated on the ground. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large sails made of a lightweight, reflective material. With photonic pressure providing continuous thrust, sailcraft can conduct missions not available with conventional propulsion: • high-inclination plane changes • flyby or rendezvous missions to outer solar system objects • non-Keplarian orbits (e.g. above the pole of a planet) • hovering indefinitely near a Lagrange point in space To illustrate the capabilities of solar sails, the results of an European Space Agency Mercury Sample Return study using solar sails is described and compared with a mission using conventional propulsion. A conventional Mercury sample return mission requires significant launch mass due to the large Δv required for the outbound and return trips, and the large mass of a planetary lander and ascent vehicle. Solar sailing can reduce mass by delivering the lander to a low, orbit close to the terminator and providing the Δv for the return flight. The mission concept calls for a 275 m sail to deliver a lander, cruise stage and science payload to a Sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples, and conducts limited surface exploration. An ascent vehicle delivers a small vehicle containing the samples for transfer to the solar sail. The solar sail then spirals back to Earth in 1 year. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts. Results of technology development activities sponsored by the ISPT Program will be provided to demonstrate the level of technology readiness for such missions.

  13. Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy

    2006-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.

  14. A Summary fo Solar Sail Technology Developments and Proposed Demonstration Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles; Diedrich, Benjamin; Leipold, Manfred

    1999-01-01

    NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails. From virtually no technology or flight mission studies activity three years ago solar sails are now included in NOAA, NASA, DOD, DLR, ESA and ESTEC technology development programs and technology roadmaps. NASA programs include activities at Langley Research Center, Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, and the NASA Institute for Advanced Concepts; NOAA has received funding for a proposed solar sail mission; DLR is designing and fabricating a 20-m laboratory model sail, there are four demonstration missions under study at industry, NASA, DOD and Europe, two new text books on solar sailing were recently published and one new test book is planned. This paper summarizes these on-going developments in solar sails.

  15. Solar Sail GN and C Model Comparisons

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.

    2004-01-01

    The Solar Sail Propulsion project is engaged in an ambitious program to raise the Technology Readiness Level of solar sails and prepare for a validation flight via a series of hardware ground demonstrations and development of a number of high fidelity simulations and models. Guidance, navigation, and control of solar sails is a key part of this effort. The large flexible structure and optical nature of solar sails create a considerable challenge for attitude control, thrust modeling, and navigation. In this paper, we present an overview and comparison of two recently delivered prototype solar sail guidance, navigation, and control software tools currently funded by the Solar Sail Propulsion project. The results of some key test cases are presented. Where possible, we also make comparisons to other software tools. We discuss the implications of the results of these comparative studies to the future direction and scope of development efforts for guidance, navigation and control software for solar sails, including the relationship to hardware test efforts such as the Thrust Vector Control Authority Demonstration.

  16. Control Analysis of flexible Solar Sails

    NASA Technical Reports Server (NTRS)

    Thomas, Stephanie J.; Paluszek, Michael A.

    2005-01-01

    Future solar sail missions will require sails with dimensions on the order of 100 m to l km. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from standard finite element models of the sail sub- system. The modal data is combined with a rigid core bus to create a modal coordinate state-space plant, which can be analyzed for stability with a state-space controller. Results are presented for an 80 m sail for both collocated actuation and control by actuators mounted at the sail tips.

  17. Flexible Models for Solar Sail Control

    NASA Technical Reports Server (NTRS)

    Weaver Smith, Suzanne; Song, Haiping; Baker, John R.; Black, Jonathan; Muheim, Danniella M.

    2005-01-01

    Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.

  18. Solar Sails: Sneaking up on Interstellar Travel

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    Throughout the world, government agencies, universities and private companies are developing solar sail propulsion systems to more efficiently explore the solar system and to enable science and exploration missions that are simply impossible to accomplish by any other means. Solar sail technology is rapidly advancing to support these demonstrations and missions, and in the process, is incrementally advancing one of the few approaches allowed by physics that may one day take humanity to the stars. Continuous solar pressure provides solar sails with propellantless thrust, potentially enabling them to propel a spacecraft to tremendous speeds ­ theoretically much faster than any present-day propulsion system. The next generation of sails will enable us to take our first real steps beyond the edge of the solar system, sending spacecraft out to distances of 1000 Astronomical Units, or more. In the farther term, the descendants of these first and second generation sails will augment their thrust by using high power lasers and enable travel to nearby stellar systems with flight times less than 500 years ­ a tremendous improvement over what is possible with conventional chemical rockets. By fielding these first solar sail systems, we are sneaking up on a capability to reach the stars.

  19. Design Rules and Scaling for Solar Sails

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.

    2005-01-01

    Useful design rules and simple scaling models have been developed for solar sails. Chief among the conclusions are: 1. Sail distortions contribute to the thrust and moments primarily though the mean squared value of their derivatives (slopes), and the sail behaves like a flat sheet if the value is small. The RMS slope is therefore an important figure of merit, and sail distortion effects on the spacecraft can generally be disregarded if the RMS slope is less than about 10% or so. 2. The characteristic slope of the sail distortion varies inversely with the tension in the sail, and it is the tension that produces the principle loading on the support booms. The tension is not arbitrary, but rather is the value needed to maintain the allowable RMS slope. That corresponds to a halyard force about equal to three times the normal force on the supported sail area. 3. Both the AEC/SRS and L Garde concepts appear to be structurally capable of supporting sail sizes up to a kilometer or more with 1AU solar flux, but select transverse dimensions must be changed to do so. Operational issues such as fabrication, handling, storage and deployment will be the limiting factors.

  20. Solar Sail Propulsion Technology Readiness Level Database

    NASA Technical Reports Server (NTRS)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  1. Solar sailing - The concept made realistic

    NASA Technical Reports Server (NTRS)

    Friedman, L.; Carroll, W.; Goldstein, R.; Jacobson, R.; Kievit, J.; Landel, R.; Layman, W.; Marsh, E.; Ploszaj, R.; Rowe, W.; Ruff, W.; Stevens, J.; Stimpson, L.; Trubert, M.; Varsi, G.; Wright, J.

    1978-01-01

    The practicability of using solar sails as a means of spacecraft propulsion is discussed with reference to a Haley's comet rendezvous mission in 1981. Two types of sails are examined: square and heliogyro. Because of ease of deployment (release into space from a space shuttle, and unfolding of the blades through solar radiation pressure) the latter is preferred. Structural and mission parameters are given for the heliogyro configuration, with attention to operational temperature limits and material coefficients. A cranking orbit is described, where a sail-powered spacecraft flies first toward the sun, and then away from it in order to achieve rendezvous with a comet. Other missions using solar sails, including a back-up mission to Encke's comet in 1983, are also discussed.

  2. Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project

    NASA Technical Reports Server (NTRS)

    Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.

    2014-01-01

    NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.

  3. Multiple NEO Rendezvous Using Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.

  4. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.

    2005-01-01

    This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.

  5. Selection and Manufacturing of Membrane Materials for Solar Sails

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Seaman, Shane T.; Wilkie, W. Keats; Miyaucchi, Masahiko; Working, Dennis C.

    2013-01-01

    Commercial metallized polyimide or polyester films and hand-assembly techniques are acceptable for small solar sail technology demonstrations, although scaling this approach to large sail areas is impractical. Opportunities now exist to use new polymeric materials specifically designed for solar sailing applications, and take advantage of integrated sail manufacturing to enable large-scale solar sail construction. This approach has, in part, been demonstrated on the JAXA IKAROS solar sail demonstrator, and NASA Langley Research Center is now developing capabilities to produce ultrathin membranes for solar sails by integrating resin synthesis with film forming and sail manufacturing processes. This paper will discuss the selection and development of polymer material systems for space, and these new processes for producing ultrathin high-performance solar sail membrane films.

  6. Steering Concept of a 2-Blade Heliogyro Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2017-01-01

    Solar sails can be classified into two groups based on their method of stabilization: 1) truss supported, and 2) centrifugally (spin) supported. The truss configuration requires masts or booms to deploy, support, and rigidize the sails whereas the spin type uses the spacecraft’s centrifugal force to deploy and stabilize the sails. The truss-supported type sail has a scaling limitation because as the sail area gets larger, the sail is increasingly more difficult to make and stow: the masts and booms get heavier, occupying more volume, and have increased risk during deployment. This major disadvantage limits the size of the sail area. The spin type comes in two configurations: 1) spinning square/disk sail and 2) heliogyro sail. This spinning square/disk sail architecture suffers the same sail area limitation as the truss-supported sail.

  7. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect

    Funaki, Ikkoh; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-12-31

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  8. Mercury Sample Return using Solar Sails

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.; Young, Roy M.; Adams, Charles L.

    2006-01-01

    A conventional Mercury sample return mission requires significant launch mass due to the large deltav required for the outbound and return trips, and the large mass of a planetary lander and ascent vehicle. Solar sailing can be used to reduce lander mass allocation by delivering the lander to a low, thermally safe orbit close to the terminator. Propellant mass is not an issue for solar sails so a sample can be returned relatively easily, without resorting to lengthy, multiple gravity assists. The initial Mercury sample return studies reported here were conducted under ESA contract ESTEC/16534/02/NL/NR, PI Colin McInnes, Technical Officer Peter Falkner. Updated solar sail capabilities were developed under the Ground System Demonstration program, funded by the NASA's In-Space Propulsion Technology (ISPT) Program.

  9. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  10. Attitude stability criteria of axisymmetric solar sail

    NASA Astrophysics Data System (ADS)

    Hu, Xiaosai; Gong, Shengping; Li, Junfeng

    2014-07-01

    Passive attitude stability criteria of a solar sail whose membrane surface is axisymmetric are studied in this paper under a general SRP model. This paper proves that arbitrary attitude equilibrium position can be designed through adjusting the deviation between the pressure center and the mass center of the sail. The linearized method is applied to inspect analytically the stability of the equilibrium point from two different points of views. The results show that the attitude stability depends on the membrane surface shape and area. The results of simulation with full dynamic equations confirm that the two stability criteria are effective in judging the attitude stability for axisymmetric solar sail. Several possible applications of the study are also mentioned.

  11. Graphene Solar Photon Sails and Interstellar Arks

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    2014-06-01

    A review of conceptual interstellar generation ships is followed by a presentation of optical and thermal properties of graphene and a discussion of kinematics/thermal-aspects of the solar-acceleration phase of a starship propelled by a graphene hollowbody solar-photon sail. The spacecraft departs from an initially parabolic solar orbit and the sail is oriented normal to the Sun during solar-acceleration. Perihelion is constrained to 0.1 AU because humans can tolerate ~3g for several hours without lasting effects. The 5 × 106 kg payload mass and 9.16 × 106 kg sail mass are applied as cosmic-ray shielding for the ship's 20-50 person population during the ~1,400-year cruise phase. Artificial gravity, the Coriolis Effect, closed-environment agriculture, illumination, on-board energy requirements, thermal dissipation, and hygiene/recreation are considered in a discussion of habitat design. Many concepts for mid-course trajectory correction are discussed including a new one that expels mass collected by a Cassenti toroidal ion scoop in a direction normal to the ship's trajectory. Although acceleration is affected by the unfurled sail, other options are discussed, as is the problem of protection from interstellar-dust erosion. As well as presenting the total mass budget, the conclusion reviews published variations and modifications on the generation-ship theme.

  12. A Study of Possible Solar Sail Applications for Mars Missions

    NASA Technical Reports Server (NTRS)

    Percy, Thomas K.; Taylor, Travis; Powell, T. Conley

    2004-01-01

    A study was performed in conjunction with the In Space Technology Investment Area of NASA's Marshall Space Flight Center to investigate potential applications of solar sails to Mars missions. While solar sails have been proposed as possible candidates for several missions, including Geostorm and a Polar Observer mission, Mars has often been overlooked as a potential destination. It was found that solar sails may have potential in Mars observation missions with smaller payloads. Sail aerocapture maneuvers also show an improvement in payload delivery capability. This study has shown that solar sail spacecraft rival chemical interplanetary probes to Mars and may have applications in future Mars exploration.

  13. Spaceborne hypertelescope controlled by solar sails

    NASA Astrophysics Data System (ADS)

    Lardière, O.; Labeyrie, A.

    2002-10-01

    Snapshot imaging of exoplanets seems feasible with multi-apertures interferometric arrays according the hypertelescope principle. A space hypertelescope can be formed from a vast constellation of ultra-light optical elements positioned by small solar sails along the large primary sphere. Our calculations show that 1 m2 of solar reflective surface is sufficient to control a mass of 1.3 kg in geo-stationary orbit. However, L2 orbits are preferable for hypertelescopes larger than 200m, in order to avoid tidal forces between elements and slow drift of the whole constellation. A 10kg-spacecraft is the heavier limit to have a reasonable solar sail size, but 1kg would be preferable. This mass constraint seems compatible with recent advances in MOEMS and ultra-light mirrors.

  14. Spacecraft Solar Sails Containing Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2005-01-01

    A report discusses a proposal to use large, lightweight solar sails embedded with electrodynamic tethers (essentially, networks of wires) to (1) propel robotic spacecraft to distant planets, then (2) exploit the planetary magnetic fields to capture the spacecraft into orbits around the planets. The purpose of the proposal is, of course, to make it possible to undertake long interplanetary missions without incurring the large cost and weight penalties of conventional rocket-type propulsion systems. Through transfer of momentum from reflected solar photons, a sail would generate thrust outward from the Sun. Upon arrival in the vicinity of a planet, the electrodynamic tethers would be put to use: Motion of the spacecraft across the planetary magnetic field would induce electric currents in the tether wires, giving rise to an electromagnetic drag force that would be exploited to brake the spacecraft for capture into orbit. The sail with embedded tethers would be made to spin to provide stability during capture. Depending upon the requirements of a particular application, it could be necessary to extend the tether to a diameter greater than that of the sail.

  15. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  16. Design of a Solar Sail Mission to Mars

    NASA Technical Reports Server (NTRS)

    Eastridge, Richard; Funston, Kerry; Okia, Aminat; Waldrop, Joan; Zimmerman, Christopher

    1989-01-01

    An evaluation of the design of the solar sail includes key areas such as structures, sail deployment, space environmental effects, materials, power systems, telemetry, communications, attitude control, thermal control, and trajectory analysis. Deployment and material constraints determine the basic structure of the sail, while the trajectory of the sail influences the choice of telemetry, communications, and attitude control systems. The thermal control system of the sail for the structures and electronics takes into account the effects of the space environment. Included also are a cost and weight estimate for the sail.

  17. Thrust vectoring of an electric solar wind sail with a realistic sail shape

    NASA Astrophysics Data System (ADS)

    Toivanen, P.; Janhunen, P.

    2017-02-01

    The shape of a rotating electric solar wind sail under the centrifugal force and solar wind dynamic pressure is modeled to address the sail attitude maintenance and thrust vectoring. The sail rig assumes centrifugally stretched main tethers that extend radially outward from the spacecraft in the sail spin plane. Furthermore, the tips of the main tethers host remote units that are connected by auxiliary tethers at the sail rim. Here, we derive the equation of main tether shape and present both a numerical solution and an analytical approximation for the shape as parametrized both by the ratio of the electric sail force to the centrifugal force and the sail orientation with respect to the solar wind direction. The resulting shape is such that near the spacecraft, the roots of the main tethers form a cone, whereas towards the rim, this coning is flattened by the centrifugal force, and the sail is coplanar with the sail spin plane. Our approximation for the sail shape is parametrized only by the tether root coning angle and the main tether length. Using the approximate shape, we obtain the torque and thrust of the electric sail force applied to the sail. As a result, the amplitude of the tether voltage modulation required for the maintenance of the sail attitude is given as a torque-free solution. The amplitude is smaller than that previously obtained for a rigid single tether resembling a spherical pendulum. This implies that less thrusting margin is required for the maintenance of the sail attitude. For a given voltage modulation, the thrust vectoring is then considered in terms of the radial and transverse thrust components.

  18. Design of a solar sail mission to Mars

    NASA Technical Reports Server (NTRS)

    Fleri, E. J., Jr.; Galliano, P. A.; Harrison, M. E.; Johnson, W. B.; Meyer, G. J.

    1989-01-01

    A new area of interest in space vehicles is the solar sail. Various applications for which it has been considered are attitude control of satellites, focusing light on the jungles of Vietnam, and a Halley's comet rendezvous. Although for various reasons these projects were never completed, new interest in solar sails has arisen. The solar sail is an alternative to the rocket-propelled space vehicle as an interplanetary cargo vehicle, and manufacture of solar sails on the space station is a possibility. Solar sails have several advantages over rockets, including an unlimited power supply and low maintenance. The purpose of this project is to design a solar sail mission to Mars. The spacecraft will efficiently journey to Mars powered only by a solar sail. The vehicle weighs 487.16 kg and will be launchable on an expendable launch vehicle. The project includes an investigation of options to minimize cost, weight, and flight duration. The design of the sail and its deployment system are a major part of the project, as is the actual mission planning. Various topics researched include solar power, material, space environment, thermal control, trajectories, and orbit transfer. Various configurations are considered in order to determine the optimal structure. Another design consideration is the control system of the vehicle. This system includes the attitude control and the communication system of the sail. This project will aid in determining the feasibility of a solar sail and will raise public interest in space research.

  19. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.; Wawrzyniak, G.; Ayon, J.; Burton, R.; Carroll, D.; Matloff, G.; Kezerashvili, R. Ya.

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions

  20. Mars Sample Return Using Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  1. Venus round trip using solar sail

    NASA Astrophysics Data System (ADS)

    Zhu, KaiJian; Zhang, RongZhi; Xu, Dong; Wang, JiaSong; Li, ShaoMin

    2012-08-01

    Trajectory optimization and simulation is performed for Venus round trip (VeRT) mission using solar sail propulsion. Solar gravity is included but atmospheric drag and shadowing effects are neglected in the planet-centered escape and capture stages. The spacecraft starts from the Geostationary orbit (GEO) at a predetermined time to prepare a good initial condition for the Earth-Venus transfer, although the launch window is not an issue for spacecraft with solar sails. The Earth-Venus phase and the return trip are divided into three segments. Two methods are adopted to maintain the mission trajectory for the VeRT mission and then compared through a numerical simulation. According to the first approach, Planet-centered and heliocentric maneuvers are modeled using a set of blended analytical control laws instead of the optimal control techniques. The second procedure is the Direct Attitude Angle Optimization in which the attitude angles of the solar sail are adopted as the optimization variables during the heliocentric transfer. Although neither of the two methods guarantees a globally optimal trajectory, they are more efficient and will produce a near-optimal solution if employed properly. The second method has produced a better result for the minimum-time transfer of the VeRT mission demonstrating the effectiveness of the methods in the preliminary design of the complex optimal interplanetary orbit transfers.

  2. Design Considerations for an Integrated Solar Sail Diagnostics System

    NASA Technical Reports Server (NTRS)

    Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John

    2004-01-01

    Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.

  3. Space Environmental Effects on Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  4. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  5. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  6. Parametric Studies of Square Solar Sails Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Muheim, Danniella M.

    2004-01-01

    Parametric studies are performed on two generic square solar sail designs to identify parameters of interest. The studies are performed on systems-level models of full-scale solar sails, and include geometric nonlinearity and inertia relief, and use a Newton-Raphson scheme to apply sail pre-tensioning and solar pressure. Computational strategies and difficulties encountered during the analyses are also addressed. The purpose of this paper is not to compare the benefits of one sail design over the other. Instead, the results of the parametric studies may be used to identify general response trends, and areas of potential nonlinear structural interactions for future studies. The effects of sail size, sail membrane pre-stress, sail membrane thickness, and boom stiffness on the sail membrane and boom deformations, boom loads, and vibration frequencies are studied. Over the range of parameters studied, the maximum sail deflection and boom deformations are a nonlinear function of the sail properties. In general, the vibration frequencies and modes are closely spaced. For some vibration mode shapes, local deformation patterns that dominate the response are identified. These localized patterns are attributed to the presence of negative stresses in the sail membrane that are artifacts of the assumption of ignoring the effects of wrinkling in the modeling process, and are not believed to be physically meaningful. Over the range of parameters studied, several regions of potential nonlinear modal interaction are identified.

  7. Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require

  8. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  9. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  10. NASA's Next Solar Sail: Lessons Learned from NanoSail - D2

    NASA Technical Reports Server (NTRS)

    Katan, Chelsea

    2012-01-01

    NanoSail-D2 unfurled January 17th, 2011 and commenced a nine month Low Earth Orbit path to reentry to evaluate a sail's capacity to deploy in space and deorbit satellites. The orbit was strongly affected by variables including but not limited to: initial attitude, orbit lighting, solar radiation pressure, aerodynamic drag, gravity, and Center of Pressure offsets. The effects of these variables were evaluated through a 3-DOF rigid body simulation. The sail experienced stability in orbits which were continuously lit, i.e. did not orbit behind Earth. Probable drag area experienced by the sail for the mission is also estimated from orbital data and compared to the attitude simulation results. Analysis focuses on sail behavior in full lighting conditions to establish the limits of the sails stability in full lighting. Solar radiation pressure, aerodynamic drag, and gravity torque effects are described. Lastly, a reasonable upper bound on the variation of the Center of Pressure from the geometric center of the sail plane is established. Each of these results contributes to the design requirements for future solar sails.

  11. Simulated Space Environment Effects on a Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  12. Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Solar Sail System

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Galena, Daisy; Friese, Dave

    2005-01-01

    Solar sails reflect photons streaming from the sun and transfer momentum to the sail. The thrust, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L'Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of the NASA In-Space Propulsion office, has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The baseline design currently in development and testing was optimized around the 1 AU solar sentinel mission. Featuring inflatably deployed sub-T(sub g), rigidized beam components, the 10,000 sq m sail and support structure weighs only 47.5 kg, including margin, yielding an areal density of 4.8 g/sq m. Striped sail architecture, net/membrane sail design, and L'Garde's conical boom deployment technique allows scalability without high mass penalties. This same structural concept can be scaled to meet and exceed the requirements of a number of other useful NASA missions. This paper discusses the interim accomplishments of phase 3 of a 3-phase NASA program to advance the technology readiness level (TRL) of the solar sail system from 3 toward a technology readiness level of 6 in 2005. Under earlier phases of the program many test articles have been fabricated and tested successfully. Most notably an unprecedented 4-quadrant 10 m solar sail ground test article was fabricated, subjected to launch environment tests, and was successfully deployed under simulated space conditions at NASA Plum Brook s 30m vacuum facility. Phase 2 of the program has seen much development and testing of this design validating assumptions, mass estimates, and predicted mission scalability. Under Phase 3 a much larger 20 m square test article including subscale vane has been fabricated and tested. A 20 m system

  13. NanoSail-D: The First Flight Demonstration of Solar Sails for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Heaton, Andy; Pinson, Robin; Laue, Greg; Adams, Charles L.

    2008-01-01

    The NanoSail-D mission is currently scheduled for launch onboard a Falcon Launch Vehicle in the late June 2008 timeframe. The NanoSail-D, a CubeSat-class satellite, will consist of a sail subsystem stowed in a Cubesat 2U volume integrated with a CubeSat 1U volume bus provided by the NASA Ames Research Center (ARC). Shortly after deployment of the NanoSail-D from a Poly Picosatellite Orbital Deployer (P-POD) ejection system, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary mission objectives: 1) to successfully stow and deploy the sail and 2) to demonstrate de-orbit functionality. Given a nearterm opportunity for launch, the project was met with the challenge of delivering the flight hardware in approximately six months, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization will be achieved using permanent magnets to de-tumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems, overview the NanoSail-D spacecraft, describe the performance analysis for the passive attitude stabilization, and present a prediction of flight data results from the mission.

  14. Near Earth Asteroid Scout Solar Sail Thrust and Torque Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andy; Ahmad, Naeem; Miller, Kyle

    2017-01-01

    The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust; a flat plate model could potentially model thrust well enough to close mission design studies, but a three-dimensional solar sail is essential to control system design. The three-dimensional solar sail model revealed that thermal deformations of unshielded booms would create unacceptably large solar disturbance torques. The original large FEM model was used in control and mission simulations, but was resulted in simulations with prohibitive run times. This led us to adapt the Generalized Sail Model (GSM) of Rios-Reyes. A design reference sail model has been baselined for NEA Scout and has been used to design the mission and control system for the sailcraft. Additionally, since NEA Scout uses reaction wheels for attitude pointing and control, the solar torque model is

  15. Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4

    NASA Technical Reports Server (NTRS)

    Rowe, W. M. (Editor)

    1978-01-01

    Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.

  16. Electron Radiation Effects on Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Hollerman, William A.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.

  17. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  18. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  19. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  20. Fabrication and Deployment Testing of Solar Sail Quadrants for a 20-Meter Solar Sail Ground Test System Demonstration

    NASA Technical Reports Server (NTRS)

    Laue, Greg; Case, David; Moore, Jim

    2005-01-01

    A 20-meter Scalable Square Solar Sail (S(sup 4)) System was produced and successfully completed functional vacuum testing in NASA Glenn's Space Power Facility at Plum Brook Station Ohio in May 2005. The S(sup 4) system was designed and developed by ATK Space Systems, and the design and production of the Solar Sails for this system was carried out by SRS Technologies. The S(sup 4) system consists of a central structure with four deployable carbon fiber masts that support four triangular sails. SRS has developed an effective and efficient design for triangular sail quadrants that are supported at three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline some of the sail design and fabrication processes and the mature production, packaging and deployment processes that have been developed. This paper will also detail the successful ambient and vacuum testing of the sails and the ATK spacecraft structure. Based on recent experience and testing, SRS is confidant that high Technology Readiness Level (TRL) 5-6 solar sails in the 40-120-meter size range with areal density in the 4-5 grams per square meters (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 2.0 grams per square meters using the current design, resulting in a system areal densities as low as 5.3 grams per square meters (sail and structure). These areal densities are low enough to allow nearly all of the Solar Sail missions that have been proposed by the

  1. Attitude Dynamics and Control of Solar Sails

    NASA Astrophysics Data System (ADS)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  2. Testing of a 10-meter Quadrant Solar Sail

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Behun, Vaughn; Macy, Brian; Barker, Peter; Murphy, David

    2006-01-01

    The purpose of this paper is to address the technical challenges and requirements of modal testing a solar sail system (Fig. 1). Specific objectives of this work are to investigate the effectiveness (i.e. accuracy, precision, repeatability, etc.) of laser vibrometer measurements obtained on solar sail components (i.e. sail membrane quadrant and masts) actuated with various excitation methods in vacuum conditions. Results from this work will be used to determine the appropriate test technique for testing large scale full quadrant flight-like solar sail system hardware in vacuum conditions. This paper will focus on the dynamic tests conducted in-vacuum on a 10-meter solar sail quadrant development by AEC-ABLE as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. One triangular shaped quadrant of a solar sail membrane (Fig. 2) was modal tested in a 1 Torr vacuum environment using various excitation techniques including, shaker excitation through the masts, magnetic excitation (Ref. 3), and surface-bonded piezoelectric patch actuators (Ref. 4 & 5). The excitation methods are evaluated for their applicability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts (Fig. 3) were also tested in ambient atmospheric conditions and vacuum using various excitation techniques and these methods will also be assessed for their ground test capabilities and traceability to on-orbit flight testing.

  3. A practical six-degree of freedom solar sail dynamics model for optimizing solar sail trajectories with torque constraints

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.

    2004-01-01

    Controlled flight of a solar sail-propelled spacecraft ('sailcraft') is a six-degree-of-freedom dynamics problem. Current state-of-the-art tools that simulate and optimize the trajectories flown by sailcraft do not treat the full kinetic (i.e. force and torque-constrained) motion, instead treating a discrete history of commanded sail attitudes, and either neglecting the sail attitude motion over an integration timestep, or treating the attitude evolution kinematically with a spline or similar treatment. The present paper discusses an aspect of developing a next generation sailcraf trajectory designing optimization tool JPL, for NASA's Solar Sail Spaceflight Simulation Software (SS). The aspect discussed in an experimental approach to modeling full six-degree-of-freedom kinetic motion of a solar sail in a trajectory propagator. Early results from implementing this approach in a new trajectory propagation tool are given.

  4. World Ships: The Solar-Photon Sail Option

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    The World Ship, a spacecraft large enough to simulate a small-scale terrestrial internal environment, may be the best feasible option to transfer members of a technological civilization between neighboring stars. Because of the projected size of these spacecraft, journey durations of ~1,000 years seem likely. One of the propulsion options for World Ships is the hyper-thin, likely space-manufactured solar-photon sail, unfurled as close to the migrating civilization's home star as possible. Because the sail and associated structure can be wound around the habitat while not in use, it represents the only known ultimately feasible interstellar propulsion system that can be applied for en route galactic-cosmic ray shielding as well as acceleration/ deceleration. This paper reviews the three suggested sail configurations that can be applied to world ship propulsion: parachute, hollow-body and hoop sails. Possible existing and advanced sail and structure materials and the predicted effects on the sail of the near-Sun space environment are reviewed. Consideration of solar-photon-sail World Ships also affects SETI (the Search for Extraterrestrial Intelligence). Can we detect such craft in flight? When in a star's lifetime is migration using such craft likely? What classes of stars are good candidates for solar-sail World-Ship searches?

  5. An Update to the NASA Reference Solar Sail Thrust Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.

    2015-01-01

    An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.

  6. Attitude Dynamics and Controls for Large Solar Sails

    NASA Astrophysics Data System (ADS)

    Fu, Bo

    This dissertation enriches our knowledge of attitude control methodologies that are suitable for solar sails, and in particularly large solar sails. In chapter 1, the fundamental physics of solar sails and existing solar sail attitude control methodologies are reviewed. In chapter 2, an attitude control methodology (Tip Displacement Method) that is suitable for large solar sail is presented. In the proposed method, the sail wing-boom attachment points are allowed to move, and under solar radiation pressure, the sail membrane sags into a curved profile. A mathematical model of this curved profile is built, and analytical solutions of solar radiation body torque based on the curved wing is derived. It is shown that this methodology along can generate enough body toque in all three body axis directions for attitude control of large solar sails. In chapter 3, the propose method is further investigated, and the effect of incident solar radiation direction on solar radiation pressure body torque generation is studied. The effect of sail shape is also studied a step further, mainly by relaxing previously made cylindrical assumption on the shape of the wing. Based on an optimization process, algorithms for determining the shape of the wing are given, and solar radiation body torques are developed for the shape of the wing. One finding is that for small tip displacements, the cylindrical sail wing model is sufficient in estimating the solar radiation body torque. In chapters 2 and 3, the analyses are carried out based on the assumption that the wing shape is of a generalized cylinder. In chapter 4 a theoretical basis is provided for this assumption. Using the mathematical model of the single wing for the proposed tip displacement attitude control strategy, in chapter 5 a whole square solar sail model is built, and the system controllability is studied for linearized system states. The system is found to be robust because of the many actuators used, and is controllable even

  7. NEA Scout Solar Sail: Half-scale Fold Time Lapse

    NASA Video Gallery

    In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...

  8. Asteroid rotation control via a tethered solar sail

    NASA Astrophysics Data System (ADS)

    Gao, Youtao; Wu, Jingyun

    2016-12-01

    The rotation of asteroids causes difficulties in the exploration of asteroids or prevention of asteroids impact on the Earth. We propose to use a solar sail to control, i.e., slow down or stop the rotational motion of an asteroid. First, the dynamic model of a tethered solar sail in the rotating gravitational field of an asteroid is presented. An optimal control method is employed to determine the control law of the tethered solar sail. The optimal control problem is converted into a nonlinear programming problem with the Gauss pseudospectral method. Simulation results show that this method can effectively slow down or even stop the rotation of an asteroid. A solar sail of 105 m2 can stop the rotation of the asteroid Apophis in 1000 days.

  9. Solar sail-solar electric technology readiness and transfer assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1977-01-01

    A method of conducting a technology readiness assessment was developed. It uses existing OAST technology readiness and risk criteria to define a technology readiness factor that considers both the required gain in technology readiness level to achieved technology readiness plus the degree of effort associated with achieving the gain. The results indicate that Solar Electric Propulsion is preferred based on technology readiness criteria. Both Solar Sail and Solar Electric Propulsion have a high level of transfer potential for future NASA missions, and each has considerable technology spillover for non-NASA applications.

  10. A project for a solar sail propelled spaceship

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Franco; Cesare, Stefano

    1994-02-01

    The idea of using the solar radiation pressure for propelling a space vehicle dates back to the 1920s and was suggested by the Russian space pioneer Konstantin Tsiolkovsky and the Russian engineer Fridrickh Arturovich Tsander. NASA began technology studies in the mid-1960s in which various design and technology requirements were examined for solar sailing vehicles without reference to specific missions. In 1977 a Jet Propulsion laboratory team undertook a 1-year study under a NASA contract to assess the practical possibilities of carrying out a rendezvous mission to Halley's Comet using a solar sail. Despite the confidence of the technical team and the completion of a valid preliminary design, NASA thought the technology of solar sailing was not sufficiently 'mature' to be implemented in time for a 1981 launch to the comet and the project was abandoned. Efforts to design and develop the solar sailing concept have been continued since then by private organizations i.e. the Union pour la Promotion de la Propulsion Photonique (U3P) in France, and the World Space Foundation in the United States. The latter has already fabricated a prototype square sail of about 700 sq m, and is seeking NASA support for flying a test vehicle. U3P is also seeking sponsorship for its design and development of solar sailing spacecraft and has proposed a race to the Moon between solar sails. In December 1988 the Christopher Columbus Quincentenary Jubilee Commission, a Presidential commission created by the Congress of the United States, approved the establishment of a Columbus 500 Space Sail Cup competition to commemorate his voyage to the Americas. The intent of the Space Sail Cup was to bring about the launch of at least three solar sail vehicles representing the Americas, Europe and Asia, selected among all the presented projects, that would have travelled from a High Earth Orbit (HEO) toward the Moon and then toward Mars. The space company then called Aeritalia Gruppo Sistemi Spaziali

  11. Invited article: Electric solar wind sail: toward test missions.

    PubMed

    Janhunen, P; Toivanen, P K; Polkko, J; Merikallio, S; Salminen, P; Haeggström, E; Seppänen, H; Kurppa, R; Ukkonen, J; Kiprich, S; Thornell, G; Kratz, H; Richter, L; Krömer, O; Rosta, R; Noorma, M; Envall, J; Lätt, S; Mengali, G; Quarta, A A; Koivisto, H; Tarvainen, O; Kalvas, T; Kauppinen, J; Nuottajärvi, A; Obraztsov, A

    2010-11-01

    The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.

  12. Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions

    NASA Astrophysics Data System (ADS)

    Dachwald, Bernd; Seboldt, Wolfgang; Lämmerzahl, Claus

    Solar sails enable a wide range of high-energy missions, many of which are difficult or even impossible to accomplish with any other type of conventional propulsion system. They are also an enabling propulsion technology for two types of deep-space missions that are very favorable for testing current gravitational theories and the large-scale gravitational field of the solar system: the first type comprises missions that go very close to the Sun (<8 solar radii) and the second one comprises missions that go fast very far away from the Sun ( 200AU). Being propelled solely by the freely available solar radiation pressure, solar sails do not consume any propellant. Therefore, their capability to gain (or reduce) orbital energy is theoretically unlimited and practically only limited by their lifetime in the space environment and their distance from the Sun (because the solar radiation pressure decreases with the square of solar distance). Nevertheless, solar sails make also missions that go far away from the Sun feasible because they can gain a large amount of orbital energy by first making one or more close solar approaches that turn the trajectory hyperbolic. For both mission types, the temperature limit of the sail film is a critical issue. In this chapter, we briefly review the physics and the current technological status of solar sails, and then present mission outlines and trade-offs for both mission types. Thereby, we will show that even near- or medium-term solar sails with a relatively moderate performance enable these kinds of missions.

  13. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  14. Strong thin membrane structure. [solar sails

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1979-01-01

    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  15. Demonstration of a 10-m Solar Sail System

    NASA Technical Reports Server (NTRS)

    Murphy, David M.; Macy, Brian D.; Gaspar, James L.

    2004-01-01

    The NASA In-Space Propulsion (ISP) program has been sponsoring system design development and hardware demonstration activities of solar sail technology over the past 16 months. Efforts to validate by test a moderate-scale (10-m) 1/4 symmetry ground demonstration sail system are nearly complete. Results of testing and analytical model validation of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed.

  16. Fabrication end Deployment Testing of Meter Solar Sail Quadrants for a Scaleable Square Solar Sail Ground Test System

    NASA Technical Reports Server (NTRS)

    Laue, Greg; Case, David; Moore, Jim

    2005-01-01

    In order for solar sail propulsion technologies to be considered as a viable option for a wide range of near term practical missions a predictable, stable, reliable, manufactureable, scaleable, and cost effective system must be developed and tested first on earth and then on orbit. The design and development of a Scaleable Square Solar Sail System (S^4) is well underway a t AEC-Able Engineering Co. Inc., and the design and production of the Solar Sails for this system is being carried out by SRS Technologies. In April and May of 2004 a single quadrant 10-meter system was tested at NASA LARC's vacuum chamber and a four quadrant 20-meter system has been designed and built for deployment and testing in the Spring of 2005 at NASA/Glenn Research Center's Plumb Brook Facility. SRS has developed an effective and efficient design for triangular sail quadrants that are supported are three points and provide a flat reflective surface with a high fill factor. This sail design is robust enough for deployments in a one atmosphere, one gravity environment and incorporates several advanced features including adhesiveless seaming of membrane strips, compliant edge borders to allow for film membrane cord strain mismatch without causing wrinkling and low mass (3% of total sail mass) ripstop. This paper will outline the sail design and fabrication process, the lessons learned and the resulting mature production, packaging and deployment processes that have been developed. It will also highlight the scalability of the equipment and processes that were developed to fabricate and package the sails. Based on recent experience, SRS is confidant that flight worthy solar sails in the 40-120-meter size range with areal density in the 4-5g/sq m (sail minus structure) range can be produced with existing technology. Additional film production research will lead to further reductions in film thickness to less than 1 micron enabling production of sails with areal densities as low as 20 g/sq m

  17. Phobos/Deimos sample return via solar sail.

    PubMed

    Matloff, Gregory L; Taylor, Travis; Powell, Conley; Moton, Tryshanda

    2005-12-01

    A sample-return mission to the Martian satellites using a con-temporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/m(2) areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and payload increase spacecraft areal mass thickness to 0.028 kg/m(2). During the Mars encounter, the sail functions as a parachute in the outer atmosphere of Mars to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into the Earth's atmosphere. Mission mass budget is about 218 grams and mission duration is less than five years.

  18. Phobos/Deimos Sample Return via Solar Sail

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley; Moton, Tryshanda

    2004-01-01

    Abstract A sample-return mission to the martian satellites using a contemporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/sq m areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and pay!oad increase spacecraft areal mass thickness to 0.028 kg/sq m. During Mars-encounter, the sail functions parachute-like in Mars s outer atmosphere to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth-encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into Earth s atmosphere. Mission mass budget is about 218 grams and; mission duration is <5 years.

  19. Combination Solar Sail and Electrodynamic Tether Propulsion System

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L. (Inventor); Matloff, Gregory L. (Inventor)

    2003-01-01

    A propulsion system for a spacecraft includes a solar sail system and an electrodynamic tether system is presented. The solar sail system is used to generate propulsion to propel the spacecraft through space using solar photons and the electrodynamic tether system is used to generate propulsion to steer the spacecraft into orbit and to perform orbital maneuvers around a planet using the planet's magnetic field. The electrodynamic tether system can also be used to generate power for the spacecraft using the planet's magnetic field.

  20. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  1. Solar Sail Application to Comet Nucleus Sample Return

    NASA Technical Reports Server (NTRS)

    Taylor, Travis S.; Moton, Tryshanda T.; Robinson, Don; Anding, R. Charles; Matloff, Gregory L.; Garbe, Gregory; Montgomery, Edward

    2003-01-01

    Many comets have perihelions at distances within 1.0 Astronomical Unit (AU) from the sun. These comets typically are inclined out of the ecliptic. We propose that a solar sail spacecraft could be used to increase the inclination of the orbit to match that of these 1.0 AU comets. The solar sail spacecraft would match the orbit velocity for a short period of time, which would be long enough for a container to be injected into the comet's nucleus. The container would be extended from a long durable tether so that the solar sail would not be required to enter into the potentially degrading environment of the comet s atmosphere. Once the container has been filled with sample material, the tether is retracted. The solar sail would then lower its inclination and fly back to Earth for the sample return. In this paper, we describe the selection of cometary targets, the mission design, and the solar sailcraft design suitable for sail-comet rendezvous as well as possible rendezvous scenarios.

  2. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    NASA Technical Reports Server (NTRS)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approximately10cm x 20cm x 30cm) cubesat Near Earth Asteroid (NEA) Scout, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System (SLS), will utilize a solar sail as its main method of propulsion throughout its approximately 3 year mission to a near earth asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems and advance solutions. Though finite element analysis was performed during this process in an attempt to quantify forces present within the mechanism during deployment, both the boom and the sail materials do not lend themselves to achieving high-confidence results. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented here will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  3. Flexible Dynamics and Attitude Control of a Square Solar Sail

    NASA Astrophysics Data System (ADS)

    Choi, Mirue

    This thesis presents a comprehensive analysis of attitude and structural dynamics of a square solar sail. In particular, this research examines the use of corner-attached reflective vanes to control the attitude of the spacecraft. An introduction to known solar sail designs is given, then the mathematics involved in calculating solar radiation pressure forces are presented. A detailed derivation and implementation of the unconstrained nonlinear flexible structural dynamics with Finite Element Method (FEM) models are explored, with several sample simulations of published large deflection experiments used as verification measures. To simulate the inability of a thin membrane to resist compression, the sail membrane elements are augmented with a method that approximates the wrinkling and the slacking dynamics, which is followed by a simulation of another well-known experiment as a verification measure. Once the structural dynamics are established, the usage of the tip vanes is explored. Specifically, a control allocation problem formed by having two degrees of freedom for each tip vane is defined and an efficient solution to this problem is presented, allowing desired control torques to be converted to appropriate vane angles. A randomized testing mechanism is implemented to show the efficacy of this algorithm. The sail shadowing problem is explored as well, where a component of the spacecraft casts shadow upon the sail and prevents solar radiation pressure force from being produced. A method to calculate the region of shadow is presented, and two different shadowing examples are examined --- due to the spacecraft bus, and due to the sail itself. Combining all of the above, an attitude control simulation of the sail model is presented. A simple PD controller combined with the control allocation scheme is used to provide the control torque for the sail, with which the spacecraft must orient towards a number of pre-specified attitude targets. Several attitude

  4. AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Murphy, David

    2005-01-01

    Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m

  5. Development of New Modeling and Analysis Tools for Solar Sails

    NASA Technical Reports Server (NTRS)

    Lou, Michael; Fang, Houfei; Yang, Bingen

    2004-01-01

    Existing finite-element-based structural analysis codes are ineffective in treating deployable gossamer space systems, including solar sails that are formed by long space-deployable booms and extremely large thin-film membrane apertures. Recognizing this, the NASA Space transportation Technology Program has initiated and sponsored a focused research effort to develop new and computationally efficient structural modeling and analysis tools for solar sails. The technical approach of this ongoing effort will be described. Two solution methods, the Distributed Transfer Function Method and the Parameter-Variation-Principle method, based on which the technical approach was formatted are also discussed.

  6. Torquing and electrostatic deformation of the solar sail

    NASA Technical Reports Server (NTRS)

    Laquey, R. E.; Deforest, S. E.; Douglas, M.

    1980-01-01

    The impact of natural sources of electrical-mechanical oscillations induced by the environment on the solar sail system is evaluated. The study indicates that, to the level of accuracy (first order) of the analysis, none of the natural sources studied, which range from plasma wave interactions to E x B forces, will have a significant impact on the proposed solar sail design. The study is not intended as an exhaustive analysis, and further analysis, particularly in the area of artificially induced oscillations, is needed.

  7. An Overview of Solar Sail Propulsion within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Swartzlander, Grover A.; Artusio-Glimpse, Alexandra

    2013-01-01

    Solar Sail Propulsion (SSP) is a high-priority new technology within The National Aeronautics and Space Administration (NASA), and several potential future space missions have been identified that will require SSP. Small and mid-sized technology demonstration missions using solar sails have flown or will soon fly in space. Multiple mission concept studies have been performed to determine the system level SSP requirements for their implementation and, subsequently, to drive the content of relevant technology programs. The status of SSP technology and potential future mission implementation within the United States (US) will be described.

  8. TESTING OF A 20-METER SOLAR SAIL SYSTEM

    NASA Technical Reports Server (NTRS)

    Gaspar, Jim L.; Behun, Vaughan; Mann, Troy; Murphy, Dave; Macy, Brian

    2005-01-01

    This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods are evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.

  9. TESTING OF A 20-METER SOLAR SAIL SYSTEM

    NASA Technical Reports Server (NTRS)

    Gaspar, J. L.; Behun, V.; Mann, T.; Murphy D.; Macy, B.

    2005-01-01

    This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.

  10. Solar Sail Roadmap Mission GN and C Challenges

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.

    2005-01-01

    The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.

  11. In-Vacuum Photogrammetry of a 10-Meter Solar Sail

    NASA Technical Reports Server (NTRS)

    Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.

    2005-01-01

    In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.

  12. Correction and adjusting for the deformation on solar sail

    NASA Astrophysics Data System (ADS)

    Shen, Fan; Rong, Siyuan; Zhang, Hualan; Peng, Fujun; Cui, Naigang

    2016-12-01

    A research on structural deformation of solar sail was presented. Nonlinear deformation of the sail was discussed, which will cause an additional devastating torque because of the shifting of the center of mass (CM). Finite-element analysis (FEA) method was carried out. In the computation, a correction was brought in, and a gradually increasing load method was presented. A more accurate membrane deformation result was obtained, and the photons pressure on the membrane was corrected. In purpose to guarantee the control ability in the long mission, a lifting mechanism is developed to adjust the large deformation. The lifting motion and result are verified by Abaqus. The research can be used in the solar sail controlling, where a large deformation may occur and an additional torque will disturb the controlling.

  13. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    NASA Technical Reports Server (NTRS)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approx.10 cm x 20 cm x 30 cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System, will utilize a solar sail as its main method of propulsion throughout its approx.3-year mission to a Near Earth Asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  14. Design and Development of NEA Scout Solar Sail Deployer Mechanism

    NASA Technical Reports Server (NTRS)

    Sobey, Alexander R.; Lockett, Tiffany Russell

    2016-01-01

    The 6U (approximately 10cm x 20cm x 30cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System (SLS), will utilize a solar sail as its main method of propulsion throughout its approximately 3 year mission to a Near Earth Asteroid (NEA). Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.

  15. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  16. Design of Optimal Cyclers Using Solar Sails

    DTIC Science & Technology

    2002-12-01

    necessary (but not sufficient ) conditions for optimality in these cases. Moreover, the optimal control solution is the one where H is minimized...problems, 1H = − for all time. The first and second order necessary (but not sufficient ) conditions for optimality using the Hamiltonian are written as... optimization and the initial conditions , the path of the sail could be propagated by means of a numeric ordinary differential equation solver on the non

  17. Saturn/Titan Rendezvous: A Solar-Sail Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    A low-mass Titan orbiter is proposed that uses conservative or optimistic solar sails for all post-Earth-escape propulsion. After accelerating the probe onto a trans-Saturn trajectory, the sail is used parachute style for Saturn capture during a pass through Saturn's outer atmosphere. If the apoapsis of the Saturn-capture orbit is appropriate, the aerocapture maneuver can later be repeated at Titan so that the spacecraft becomes a satellite of Titan. An isodensity-atmosphere model is applied to screen aerocapture trajectories. Huygens/Cassini should greatly reduce uncertainties regarding the upper atmospheres of Saturn and Titan.

  18. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  19. Solar Array Sails: Possible Space Plasma Environmental Effects

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  20. Solar sail time-optimal interplanetary transfer trajectory design

    NASA Astrophysics Data System (ADS)

    Gong, Sheng-Pin; Gao, Yun-Feng; Li, Jun-Feng

    2011-08-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  1. Bringing an Effective Solar Sail Design Toward TRL 6

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; West, John; Reinert, Rich; Belvin, Keith; Pappa, Richard; Derbes, Billy

    2003-01-01

    Solar sails reflect photons streaming from the sun and convert some of the energy into thrust. This thrust, though small, is continuous and acts for the life of the mission without the need for propellant ( I ) . Recent advances in sail materials and ultra-low mass structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of NASA, has been developing a solar sail configuration to address NASA s future space propulsion needs. Utilizing inflatably deployed and Sub Tg rigidized boom components, this 10,000 sq m sailcraft achieves an areal density of 14.1 g/sq m and a characteristic acceleration of 0.58 mm/s . The entire configuration released by the upper stage has a mass of 232.9 kg and requires just 1.7 d of volume in the booster. After deployment, 92.2 kg of non-flight required equipment is jettisoned resulting in a sailcraft mass, including payload and control system, of 140.7 kg. This document outlines the accomplishments of a Phase 1 effort to advance the technology readiness level (TRL) of the concept from 3 toward a TRL of 6. The Phase 1 effort, the first of three proposed phases, addressed the design of the solar sail, its application to several missions currently under review at NASA, and developed a ground tes plan to bring the technology toward a TRL of 6.

  2. A low-tech health monitor for the solar-photon sail

    NASA Astrophysics Data System (ADS)

    Matloff, Gregory L.; Leng, Lufeng

    2007-01-01

    On-orbit deployment tests and operational missions for first-generation solar-photon sails may require a method of monitoring post-deployment sail health. A low-technology device capable of performing this function is the pinhole camera, combined with an inflatable hydrostatic beam mounted at the sail's center of mass.

  3. Symmetries in the Optimal Control of Solar Sail Spacecraft

    NASA Astrophysics Data System (ADS)

    Kim, M.; Hall, C. D.

    2005-08-01

    The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.

  4. EMMI-Electric solar wind sail facilitated Manned Mars Initiative

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Paton, Mark

    2015-08-01

    The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.

  5. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  6. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  7. SOLAR SAIL PROPULSION SENSITIVITY TO MEMBRANE SHAPE AND OPTICAL PROPERTIES USING THE SOLAR VECTORING EVALUATION TOOL (SVET)

    NASA Technical Reports Server (NTRS)

    Ewing, Anthony

    2005-01-01

    Solar sail propulsive performance is dependent on sail membrane optical properties and on sail membrane shape. Assumptions of an ideal sail (flat, perfect reflector) can result in errors which can affect spacecraft control, trajectory analyses, and overall evaluation of solar sail performance. A MATLAB(R) program has been developed to generate sail shape point cloud files for two square-architecture solar sail designs. Simple parabolic profiles are assumed for sail shape under solar pressure loading. These files are then input into the Solar Vectoring Evaluation Tool (SVET) software to determine the propulsive force vector, center of pressure, and moments about the sail body axes as a function of sail shape and optical properties. Also, the impact of the center-line angle, due to non-perfect optical properties, is addressed since this constrains sail force vector cone angle and is often overlooked when assuming ideal-reflector membranes. Preliminary sensitivity analysis using these tools aids in determining the key geometric and optical parameters that drive solar sail propulsive performance.

  8. The effect of environmental plasma interactions on the performance of the solar sail system

    NASA Technical Reports Server (NTRS)

    Douglas, M.; Laquey, R.; Deforest, S. E.

    1977-01-01

    Interaction between the solar sail and the natural plasma environment were examined for deleterious impacts upon the operation of the sail and its associated payload. Electrostatic charging of the sail in the solar wind and in near earth environment were examined. Deployment problems were studied. An analysis of electromechanical oscillations coupling the sail to the natural plasma was performed. As a result of these studies, it was concluded that none of these effects will have a significant negative impact upon the sail operation. The natural environment will be significantly perturbed and this will preclude measurements of electric and magnetic fields from an attached payload.

  9. Attitude and Translation Control of a Solar Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  10. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andrew; Thomas, Scott; Thomas, Dan; Young, Roy; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the inner solar system. Companies like L'Garde have demonstrated sail manufacturability and various in-space deployment methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  11. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andy F.; Young, Roy; Baysinger, Mike; Schnell, Andrew R.

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the innter solar system. Companies like L'Garde have demonstrated sail manufacturability and various i-space development methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  12. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  13. Dynamic and Static Shape Test/Analysis Correlation of a 10 Meter Quadrant Solar Sail

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Lively, Peter S.; Gaspar, James L.; Murphy, David M.; Trautt, Thomas A.

    2005-01-01

    This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 10-meter quadrant solar sail system. Thin film membranes and booms were analyzed at the component and system-level. The objective was to verify the design and structural responses of the sail system and to mature solar sail technology to a TRL 5. The focus of this paper is in test/analysis correlation.

  14. Accelerator-Based PIXE and STIM Analysis of Candidate Solar Sail Materials

    SciTech Connect

    Hollerman, W.A.; Stanaland, T.L.; Boudreaux, P.; Elberson, L.; Fontenot, J.; Gates, E.; Greco, R.; McBride, M.; Woodward, A.; Edwards, D.

    2003-08-26

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. A totally reflective sail experiences a pressure of 9.1 {mu}Pa at a distance of 1 AU from the Sun. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. One of the current challenges is to develop strong, lightweight, and radiation resistant sail materials. This paper will discuss initial results from a Particle Induced X-Ray Emission (PIXE) and Scanning Transmission Ion Microscopy (STIM) analysis of candidate solar sail materials.

  15. Simulations of Solar Wind Plasma Flow Around a Simple Solar Sail

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Wang, Joseph

    2004-01-01

    In recent years, a number of solar sail missions of various designs and sizes have been proposed (e.g., Geostorm). Of importance to these missions is the interaction between the ambient solar wind plasma environment and the sail. Assuming a typical 1 AU solar wind environment of 400 km/s velocity, 3.5 cu cm density, ion temperature of approx.10 eV, electron temperature of 40 eV, and an ambient magnetic field strength of 10(exp -4) G, a first order estimate of the plasma interaction with square solar sails on the order of the sizes being considered for a Geostorm mission (50 m x 50 m and 75 m x 75 m corresponding to approx.2 and approx.3 times the Debye length in the plasma) is carried out. First, a crude current balance for the sail surface immersed in the plasma environment and in sunlight was used to estimate the surface potential of the model sails. This gave surface potentials of approx.10 V positive relative to the solar wind plasma. A 3-D, Electrostatic Particle-in-Cell (PIC) code was then used to simulate the solar wind flowing around the solar sail. It is assumed in the code that the solar wind protons can be treated as particles while the electrons follow a Boltzmann distribution. Next, the electric field and particle trajectories are solved self-consistently to give the proton flow field, the electrostatic field around the sail, and the plasma density in 3-D. The model sail was found to be surrounded by a plasma sheath within which the potential is positive compared to the ambient plasma and followed by a separate plasma wake which is negative relative to the plasma. This structure departs dramatically from a negatively charged plate such as might be found in the Earth s ionosphere on the night side where both the plate and its negative wake are contiguous. The implications of these findings are discussed as they apply to the proposed Geostorm solar sail mission.

  16. Conceptual analyses of extensible booms to support a solar sail

    NASA Technical Reports Server (NTRS)

    Crawford, R. F.; Benton, M. D.

    1977-01-01

    Extensible booms which could function as the diagonal spars and central mast of an 800 meter square, non-rotating Solar Sailing Vehicle were conceptually designed and analyzed. The boom design concept that was investigated is an extensible lattice boom which is stowed and deployed by elastically coiling and uncoiling its continuous longerons. The seven different free-span lengths in each spar which would minimize the total weights of the spars and mast were determined. Boom weights were calculated by using a semi-empirical formulation which related the overall weight of a boom to the weight of its longerons.

  17. An approach for the control method's determination for an interplanetary mission with solar sail

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2017-01-01

    This article is devoted to an interplanetary movement of the solar sail spacecraft. Authors propose to use locally-optimal control laws for the solar sail control model. We used previously obtained by the authors locally-optimal control laws for chosen interplanetary missions. The obtained laws can provide rapid change of Keplerian elements or stabilize its values. Authors offer an approach for combination of these laws. To confirm the result correctness authors simulated the heliocentric motion of the solar sail spacecraft to the selected planet. Model of solar sail spacecraft called Helios is designed by students of Samara State Aerospace University. We define heliocentric motion of the solar sail spacecraft via Keplerian elements. Authors used combination technique for locally-optimal control laws to obtained several trajectories for interplanetary missions. The distinctive feature of the proposed method that parameters of osculating elements are used as destination phase coordinates.

  18. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  19. DAPHNE: Energy Generation and storage, using Solar Sails

    NASA Astrophysics Data System (ADS)

    Argelagós Palau, Ana Maria; Savio Bradford, Brandon

    Space travel is still in it's adolescent stages. Having embarked beyond the limit of our atmosphere for a mere 50 years, it is easy to imagine how much is yet to be discovered, in other solar systems and our own. One of the main factors that slow us down is the need for Energy. Long distance space travel requires a lot of energy, both for propulsion and operations alike. The principle of solar sails shows that the momentum of solar energy can be used beneficially, as can be seen in NASA's Sun-Jammer project. So, why not generate energy from this system? The DAPHNE system will utilize the simple principle of wind mills that is used here on Earth; using the force created by Solar wind to rotate an axle that in turn, generates energy. And this mill can be used to recharge spacecraft that need to fly further than it's own initial energy system will allow. Another benefit to developing this system is the fact that it is an alternative to nuclear energy generation for space, that a lot of modern research is being done on. The DAPHNE system can be considered a solution to long term propellant storage in space for interplanetary and interstellar travel. This paper proposes the design of an energy recharge technology, we called DAPHNE, which will utilize Nanotechnology, using solar sails to generate and store energy for future long-distance space craft to dock with, recharge and continue on their journey/mission. Examples of spacecraft in development that might benefit from a recharging station are the LISA Pathfinder, terrestrial exploration missions and eventually, the long interstellar missions that will be launched in the distant future. Thereby, allowing mankind to push the boundaries of our solar system and accelerate our ability to know what's out there. This technology would help the future generations of Space researchers move further than we can.

  20. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  1. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  2. Solar Sail Topology Variations Due to On-Orbit Thermal Effects

    NASA Technical Reports Server (NTRS)

    Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.

    2006-01-01

    The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.

  3. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    SciTech Connect

    Montgomery, Edward E. IV

    2010-05-06

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  4. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NASA Astrophysics Data System (ADS)

    Heiligers, Jeannette; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-07-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun's motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of Sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits.

  5. Thermo-Optical and Mechanical Property Testing of Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Hollerman, WIlliam A.; Stanaland, T. L.; Womack, F.; Edwards, David; Hubbs, Whitney; Semmel, Charles

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra-lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This poster will discuss the preliminary results of this research.

  6. Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion

    NASA Technical Reports Server (NTRS)

    Peerawan, Wiwattananon; Bryant, Robert G.; Edmonson, William W.; Moore, William B.; Bell, Jared M.

    2015-01-01

    Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight

  7. Shape memory self-deployable structures for solar sails

    NASA Astrophysics Data System (ADS)

    Sokolowski, Witold; Tan, Seng; Willis, Paul; Pryor, Mark

    2008-12-01

    A cold-hibernated elastic memory (CHEM) structures technology is one of the most recent results of the quest for simple, reliable and low-cost self-deployable structures. The CHEM technology utilizes shape-memory polymers in open-cell foam structures or sandwich structures made of shape-memory-polymer foam cores and polymeric laminated-composite skins. It takes advantage of a polymer's shape memory and the corresponding internal elastic recovery forces to self-deploy a compacted structure. This paper describes these structures and their major advantages over other expandable and deployable structures presently used. Previous preliminary investigations and experiments have confirmed the feasibility of certain CHEM structures for space applications. Further improvements in CHEM technology and structure design widen potential space applications, including advanced solar sail structural concepts that are revealed and described in this paper.

  8. Analytical control laws of the heliocentric motion of the solar sail spacecraft

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2014-12-01

    The heliocentric motion of the solar sail spacecraft is described in classical Keplerian elements. The flat of solar sail with an ideal reflection coefficient is considered. The spacecraft performs a noncoplanar motion with the sun gravity and the light pressure. Disturbances of other celestial bodies gravity are not considered. We have received analytical terms for laws to control a solar sail, which ensure constancy or maximum rate of change of the Keplerian elements. To confirm the results correctness, we simulated the solar sail spacecraft. The spacecraft's initial orbit coincides with the average Earth orbit relative to the Sun. Authors developed a program complex to simulated the planar heliocentric movement and obtained results for motion simulation of flights to Mars and Venus. The results were compared with the simulation results obtained using the Pontryagin maximum principle.

  9. A Summary of Solar Sail Technology Developments and Proposed Demonstration Missions

    NASA Technical Reports Server (NTRS)

    Garner, C.; Diedrich, B.; Leipold, M.

    1999-01-01

    NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails.

  10. Experimental and Numerical Correlation of Gravity Sag in Solar Sail Quality Membranes

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Leifer, Jack; DeMoss, Joshua A.; Walker, Eric N.; Belvin, W. Keith

    2004-01-01

    Solar sails are among the most studied members of the ultra-lightweight and inflatable (Gossamer) space structures family due to their potential to provide propellentless propulsion. They are comprised of ultra-thin membrane panels that, to date, have proven very difficult to experimentally characterize and numerically model due to their reflectivity and flexibility, and the effects of gravity sag and air damping. Numerical models must be correlated with experimental measurements of sub-scale solar sails to verify that the models can be scaled up to represent full-sized solar sails. In this paper, the surface shapes of five horizontally supported 25 micron thick aluminized Kapton membranes were measured to a 1.0 mm resolution using photogrammetry. Several simple numerical models closely match the experimental data, proving the ability of finite element simulations to predict actual behavior of solar sails.

  11. Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  12. Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  13. Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail

    NASA Technical Reports Server (NTRS)

    Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.

    2017-01-01

    Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.

  14. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    NASA Technical Reports Server (NTRS)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  15. Mass breakdown model of solar-photon sail shuttle: The case for Mars

    NASA Astrophysics Data System (ADS)

    Vulpetti, Giovanni; Circi, Christian

    2016-02-01

    The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.

  16. Development of Modal Test Techniques for Validation of a Solar Sail Design

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Behun, Vaughn; Wilkie, W. Keats; Pappa, Richard

    2004-01-01

    This paper focuses on the development of modal test techniques for validation of a solar sail gossamer space structure design. The major focus is on validating and comparing the capabilities of various excitation techniques for modal testing solar sail components. One triangular shaped quadrant of a solar sail membrane was tested in a 1 Torr vacuum environment using various excitation techniques including, magnetic excitation, and surface-bonded piezoelectric patch actuators. Results from modal tests performed on the sail using piezoelectric patches at different positions are discussed. The excitation methods were evaluated for their applicability to in-vacuum ground testing and to the development of on orbit flight test techniques. The solar sail membrane was tested in the horizontal configuration at various tension levels to assess the variation in frequency with tension in a vacuum environment. A segment of a solar sail mast prototype was also tested in ambient atmospheric conditions using various excitation techniques, and these methods are also assessed for their ground test capabilities and on-orbit flight testing.

  17. Preliminary Design and Fabrication Assessment for Two Solar Sail Candidates

    NASA Technical Reports Server (NTRS)

    Weis, R.

    1977-01-01

    Primary emphasis is directed to the spinning sail design and fabrication assessment. Several methods of fabricating the spinning sail blades are presented and compared. Evaluations are made of each proposed design, as well as the baseline design. These efforts resulted in the recommendation of an apparent optimum design and fabrication plan with an assessment of the major advantages/disadvantages of each concept considered.

  18. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  19. Finite Element Analysis and Test Correlation of a 10-Meter Inflation-Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann. Troy O.; Slade, Kara N.; Wang, John T.

    2005-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA's future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from vibration tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.

  20. Structural Analysis of an Inflation-Deployed Solar Sail With Experimental Validation

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann, Troy O.

    2005-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from structural dynamics tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.

  1. Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Whorton, M. S.

    2007-01-01

    Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.

  2. Flex Dynamics Avoidance Control of the NEA Scout Solar Sail Spacecraft's Reaction Control System

    NASA Technical Reports Server (NTRS)

    Heaton Andrew; Stiltner, Brandon; Diedrich, Benjamin; Becker, Christopher; Orphee, Juan

    2017-01-01

    The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will

  3. Earth orbital assessment of solar electric and solar sail propulsion systems

    NASA Technical Reports Server (NTRS)

    Teeter, R. R.

    1977-01-01

    The earth orbital applications potential of Solar Electric (Ion Drive) and Solar Sail low-thrust propulsion systems are evaluated. Emphasis is placed on mission application in the 1980s. The two low-thrust systems are compared with each other and with two chemical propulsion Shuttle upper stages (the IUS and SSUS) expected to be available in the 1980s. The results indicate limited Earth orbital application potential for the low-thrust systems in the 1980s (primarily due to cost disadvantages). The longer term potential is viewed as more promising. Of the two systems, the Ion Drive exhibits better performance and appears to have better overall application potential.

  4. Innovative Structural Design Features for a 10 m Solar Sail Demonstrator

    NASA Technical Reports Server (NTRS)

    Laue, G.; Moore, J.; Clayton, W.

    2004-01-01

    The successful development of sail architectures will require careful attention to a number of key issues including but not limited to material strength issues, stress conditions for the membrane, load interactions between membrane and structure, and membrane material planarity. Along with the inherent challenges of fabricating and handling very large membrane structures these issues will pose real challenges for the near-term development of practical sail technologies. SRS has developed innovative technologies that deal directly with the challenges of developing very large sail membranes. Some of these technologies include edge reinforcements and innovative reinforcement attachment techniques, production of flight durable sail materials of less than 2.5 micron thicknesses and large scale fabrication techniques. SRS has employed these technologies in several large 10 m demonstrators that have been delivered to LaRC for solar vacuum testing. Details of the design of this system will be discussed.

  5. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  6. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kouhei; Yamakawa, Hiroshi

    2016-03-01

    An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail's attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

  7. An analysis of the orbital Evolution of a solar sail around Mercury

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Treasaco, Eva

    2016-07-01

    Solar sails are a new concept of spacecraft propulsion that uses solar radiation pressure to generate acceleration: this way the sail experiences a small but unlimited and continuous acceleration. This work presents a method for finding initial conditions for frozen orbits for a solar sail around Mercury Frozen orbits are those whose orbital elements remain constant on average. Thus, at a given latitude, the satellite always passes at the same altitude. The orbital dynamics of the solar sail is governed by the potential attraction of the main body and the Sun. Besides the J2, J3 and C22 of Mercury gravity field, the dynamical model also includes the eccentricity and inclination of the orbit of the third body (Sun) and the solar acceleration pressure. In order to remove short-period terms of the dynamical system, a double averaging technique is applied to the disturbig potential. This algorithm is a two-fold process which firstly averages over the period of the satellite and secondly averages with respect to the period of the third body. The double-averaged potential is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semi-major axis, eccentricity and inclination. These surfaces determine orbits ranging in altitude from 300 to 1000 km, which include the altitude values considered in future scientific missions around Mercury such as BepiColombo. Finally, this work delves into the influence on the dynamics of the spacecraft for different values of the sail area-to-mass ratio, which is a parameter related to the efficiency of the solar sail Sponsored by CNPq - Brazil. The author is grateful to CNPq- Brazil for contract 306953/2014-5.

  8. Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

    NASA Astrophysics Data System (ADS)

    Smith, Sarah Mitchell

    A heliogyro spacecraft is a specific type of solar sail that generates thrust from the reflection of solar photons. It consists of multiple long (200 to 600 meters), thin blades, similar to a helicopter. The heliogyro's blades remain in tension by spinning around the central hub of the spacecraft. The individual blades are pitched collectively or cyclically to produce the desired maneuver profile. The propellant-free heliogyro is a long-duration sustainable spacecraft whose maneuverability allows it to attain previously inaccessible orbits for traditional spacecraft. The blades are constructed from thin Mylar sheets, approximately 2.5 ?m thick, which have very little inherent damping making it necessary to include some other way of attenuating blade vibration caused by maneuvering. The most common approach is to incorporate damping through the root pitch actuator. However, due to the small root pitch control torques required, on the order of 2 ?Nm, compared to the large friction torques associated with a root pitch actuator, it is challenging to design a root control system that takes friction into account and can still add damping to the blade. The purpose of this research is to address the limitations of current control designs for a heliogyro spacecraft and to develop a physically realizable root pitch controller that effectively damps the torsional structural modes of a single heliogyro blade. Classical control theory in conjunction with impedance control techniques are used to design a position-source root pitch controller to dominate friction with high gains, wrapped with an outer loop that adds damping to the blade by sensing differential twist outboard of the blade root. First, modal parameter characterization experiments were performed on a small-scale heliogyro blade in a high vacuum chamber to determine a damping constant to be used in the membrane ladder finite element model of the blade. The experimental damping ratio of the lowest frequency torsional

  9. Solar Sailing Kinetic Energy Interceptor (KEI) Mission for Impacting/Deflecting Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Wie, Bong

    2005-01-01

    A solar sailing mission architecture, which requires a t least ten 160-m, 300-kg solar sail spacecraft with a characteristic acceleration of 0.5 mm/sqs, is proposed as a realistic near- term option for mitigating the threat posed by near-Earth asteroids (NEAs). Its mission feasibility is demonstrated for a fictional asteroid mitigation problem created by AIAA. This problem assumes that a 200-m asteroid, designated 2004WR, was detected on July 4, 2004, and that the expected impact will occur on January 14, 2015. The solar sailing phase of the proposed mission for the AIAA asteroid mitigation problem is comprised of the initial cruise phase from 1 AU t o 0.25 AU (1.5 years), the cranking orbit phase (3.5 years), and the retrograde orbit phase (1 year) prior to impacting the target asteroid at its perihelion (0.75 AU from the sun) on January 1, 2012. The proposed mission will require at least ten kinetic energy interceptor (KEI) solar sail spacecraft. Each KEI sailcraft consists of a 160- m, 150-kg solar sail and a 150-kg microsatellite impactor. The impactor is to be separated from a large solar sail prior to impacting the 200-m target asteroid at its perihelion. Each 150-kg microsatellite impactor, with a relative impact velocity of at least 70 km/s, will cause a conservatively estimated AV of 0.3 cm/s in the trajectory of the 200-m target asteroid, due largely to the impulsive effect of material ejected from the newly-formed crater. The deflection caused by a single impactor will increase the Earth-miss-distance by 0.45Re (where Re denotes the Earth radius of 6,378 km). Therefore, at least ten KEI sailcraft will be required for consecutive impacts, but probably without causing fragmentation, to increase the total Earth-miss-distance by 4.5Re. This miss-distance increase of 29,000 km is outside of a typical uncertainty/error of about 10,000 km in predicting the Earth-miss- distance. A conventional Delta I1 2925 launch vehicle is capable of injecting at least two KEI

  10. Towing Asteroids with Gravity Tractors Enhanced by Tethers and Solar Sails

    NASA Technical Reports Server (NTRS)

    Shen, Haijun; Roithmayr, Carlos M.

    2015-01-01

    Material collected from an asteroid's surface can be used to increase gravitational attraction between the asteroid and a Gravity Tractor (GT); the spacecraft therefore operates more effectively and is referred to as an Enhanced Gravity Tractor (EGT). The use of tethers and solar sails to further improve effectiveness and simplify operations is investigated. By employing a tether, the asteroidal material can be placed close to the asteroid while the spacecraft is stationed farther away, resulting in a better safety margin and improved thruster efficiency. A solar sail on a spacecraft can naturally provide radial offset and inter-spacecraft separation required for multiple EGTs.

  11. One kilometer (1 km) electric solar wind sail tether produced automatically.

    PubMed

    Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward

    2013-09-01

    We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.

  12. Minimum time solar sailing from geosynchronous orbit to the sun-earth L2 point

    NASA Astrophysics Data System (ADS)

    Hur, Sun H.; Bryson, Arthur E., Jr.

    1992-08-01

    An approximate time-optimal of a solar sail from a geosynchronous orbit to the sun-earth L2 libration point is found using a combined method of local optimization and single shooting. The local optimization strategy is based on maximizing the time rate of change of an energy variable at each time. This strategy overcomes the numerical difficulties associated with solving optimal control problems of long duration like the solar sail transfer problem. The single shooting portion of the method is employed to meet the terminal constraints. The combined method can be applied to other optimal low thrust transfer problems of long duration.

  13. Formation flying solar-sail gravity tractors in displaced orbit for towing near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Gong, Shengping; Li, Junfeng; Baoyin, Hexi

    2009-11-01

    Several methods of asteroid deflection have been proposed in literature and the gravitational tractor is a new method using gravitational coupling for near-Earth object orbit modification. One weak point of gravitational tractor is that the deflection capability is limited by the mass and propellant of the spacecraft. To enhance the deflection capability, formation flying solar sail gravitational tractor is proposed and its deflection capability is compared with that of a single solar sail gravitational tractor. The results show that the orbital deflection can be greatly increased by increasing the number of the sails. The formation flying solar sail gravitational tractor requires several sails to evolve on a small displaced orbit above the asteroid. Therefore, a proper control should be applied to guarantee that the gravitational tractor is stable and free of collisions. Two control strategies are investigated in this paper: a loose formation flying realized by a simple controller with only thrust modulation and a tight formation realized by the sliding-mode controller and equilibrium shaping method. The merits of the loose and tight formations are the simplicity and robustness of their controllers, respectively.

  14. Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Kim, Young; Stough, Robert; Whorton, Mark

    2005-01-01

    Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.

  15. The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E, IV; Johnson, Charles Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.

  16. Photogrammetry and Videogrammetry Methods for Solar Sails and Other Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2004-01-01

    Ultra-lightweight and inflatable gossamer space structures are designed to be tightly packaged for launch, then deploy or inflate once in space. These properties will allow for in-space construction of very large structures 10 to 1000 meters in size such as solar sails, inflatable antennae, and space solar power stations using a single launch. Solar sails are of particular interest because of their potential for propellantless propulsion. Gossamer structures do, however, have significant complications. Their low mass and high flexibility make them very difficult to test on the ground. The added mass and stiffness of attached measurement devices can significantly alter the static and dynamic properties of the structure. This complication necessitates an alternative approach for characterization. This paper discusses the development and application of photogrammetry and videogrammetry methods for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, noncontact, dynamic characterization using dot projection videogrammetry.

  17. Formation control of multi-robots for on-orbit assembly of large solar sails

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Zhang, Yao; Zhang, Jingrui; Hu, Haiyan

    2016-06-01

    This study focuses on the formation control of four robots used for the on-orbit construction of a large solar sail. The solar sail under consideration is non-spinning and has a 1 km2 area. It includes a hub as the central body and four large booms supporting the lightweight films. Four formation operating space robots capable of walking on the boom structure are utilized to deploy the sail films. Because of the large size and mass of the sail, the robots should remain in formation during the sail deployment to avoid dramatic changes in the system properties. In this paper, the formation control issue of the four robots is solved by an adaptive sliding mode controller. A disturbance observer with finite-time convergence is embedded to improve the control performance. The proposed controller is capable of resisting the strong uncertainties in the operation and do not require the accurate parameters of the system. The stability is proven, and numerical simulations are provided to validate the effectiveness of the control strategy.

  18. Solar sail equilibria with albedo radiation pressure in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Grøtte, Mariusz E.; Holzinger, Marcus J.

    2017-02-01

    Solar Radiation Pressure (SRP) and albedo effects are investigated in the circular restricted three-body problem for a system consisting of the Sun, a reflective minor body and a solar sail. As an approximation of albedo radiation pressure (ARP), the minor body is treated as Lambertian with reflected flux scattered by the bidirectional reflectance distribution function. Incorporating ARP, which is a function of SRP, into the solar sail equations of motion renders additional artificial equilibrium points in a volume between the L1 and L2 points which is defined as the region of influence. Based on the model, characterization of the findings are provided that are theoretically applicable to any body with discernible albedo such as for instance Earth, Mars or an asteroid. Example results are presented for a Sun-Vesta system which show that the inclusion of ARP generates artificial equilibrium points requiring solar sail designs with very low mass-to-area ratio. The equilibrium points are found to be unstable in general but asymptotic stability may be enforced with sail attitude feedback control.

  19. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  20. A Fractionated Space Weather Base at L5 using CubeSats and Solar Sails

    NASA Astrophysics Data System (ADS)

    Liewer, Paulett C.; Klesh, A.; Lo, M.; Murphy, N.; Staehle, R. L.; Vourlidas, A.; Cutler, J. W.; Lightsey, G.

    2013-07-01

    The Sun-Earth L5 Lagrange point is an ideal location for an operational space weather mission to provide early warning of Earth-directed solar storms (CMEs, shocks and associated solar energetic particles) so the effects on power grids, spacecraft and communications systems can be mitigated. Such missions have been proposed using conventional spacecraft and chemical propulsion at costs of hundreds of millions of dollars. Here we describe a mission that can accomplish the goals at a much lower cost by dividing the payload among a cluster of interplanetary CubeSats that reach orbits around L5 using solar sails. The ascendancy of CubeSats has brought renewed interest in solar sail propulsion because sail area scales directly with spacecraft mass. The concept presented here draws heavily on a NIAC study (Staehle et al., AIAA, 2012) that developed a 6U CubeSat architecture for interplanetary missions. This study allocated 2U for a solar sail; the sail system was based on the Planetary Society’s LightSail-1TM architecture. At a recent workshop on small satellites, hosted by the Keck Institute for Space Studies, a concept was developed for a fractionated Space Weather Base (SWB) at L5. In this concept, a loose formation of CubeSats, each ~6U in size and each carrying a portion of the science payload, can accomplish, at a much reduced cost, many of the goals of a conventional single-spacecraft L5 mission, as described in the 2013 NRC Solar and Space Physics Decadal report. Each of the small ~6U interplanetary CubeSats reaches an orbit around L5 using its own solar sail of approximately 64 m2 which fits in ~2U. Key to the mission is that only one of the CubeSats carries a high-gain antenna and other hardware necessary for sending high-rate science data to Earth. The other CubeSats, in addition to carrying one or two science instruments, carry a much smaller communication system to send the science data to the communication hub and low-rate engineering data to Earth. The

  1. The Solar-Sail Launched Interstellar Probe: Pre-Perihelion Trajectories and Application of Holography

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.

    2002-01-01

    Design of missions beyond our solar system presents many challenges. Here, we consider certain aspects of the solar-sail launched interstellar probe (ISP), a spacecraft slated for launch in the 2010 time period that is planned to reach the heliopause, at 200 Astronomical Units (AU) from the Sun after a flight of about 20-years duration. The baseline mission under consideration by NASA / JPL has a sail radius of 200 m, a science payload of 25 kg, a spacecraft areal mass thickness of about two grams per square meter and is accelerated out of the solar system at about 14 AU per year after performing a perihelion pass of about 0.25 AU. In current plans, the sail is to be dropped near Jupiter's orbit (5.2 AU from the Sun) on the outbound trajectory leg. One aspect of this study is application of a realistic model of sail thermo-optics to sail kinematics that includes diffuse / specular reflectance and sail roughness. The effects of solar-wind degradation of sail material, based on recent measurements at the NASA MSFC (Marshall Space Flight Center) Space Environment Facility were incorporated in the kinematical model. After setting initial and final conditions for the spacecraft, trajectory was optimized using the provision of variable sail aspect angle. The second phase of the study included consideration of rainbow holography as a medium for a message plaque that would be carried aboard the ISP in the spirit of the message plaques aboard Pioneer 10 /11 and Voyager 1 /2. A prototype holographic message plaque was designed and created by artist C. Bangs with the assistance of Ana Maria Nicholson and Dan Schweitzer of the Center for Holographic Arts in Long Island City, NY. The piece was framed by Simon Liu Inc. of Brooklyn, NY. Concurrent to the creation of the prototype message plaque, we explored the potential of this medium to transmit large amounts of visual information to any extraterrestrial civilization that might detect and intercept ISP. It was also necessary to

  2. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.; Young, Roy M.; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  3. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  4. Exploration of Jovian Magnetosphere and Trojan Asteroids by a Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Fujimoto, M.; Kasaba, Y.; Kawaguchi, J.; Kawakatsu, Y.; Mori, O.; Takashima, T.; Tsuda, Y.; Yano, H.; Jupiter Exploration Working Group

    2009-04-01

    Europa Jupiter System Mission (EJSM) is a proposed international mission to explore Jupiter, Jovian satellites and environment. EJSM consists of (1) The Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA. (4) The Europa lander is also studied by Roscosmos. Together with plasma instruments on board JEO and JGO, JMO will investigate the fast and huge rotating magnetosphere to clarify the energy procurement from Jovian rotation to the magnetosphere, to clarify the interaction between the solar wind the magnetosphere. JMO will clarify the characteristics of the strongest accelerator in the solar system. JMO will investigate the role of Io as a source of heavy ions in the magnetosphere. Proposed instruments on board JMO are magnetometers, low-energy plasma spectrometers, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, a dust detector, an ENA imager, and EUV spectrometer. JAXA is studying solar power sail for deep space explorations following the successful ion engine mission Hayabusa. This is not only solar sail (photon propulsion) but also include very efficient ion engines where electric power is produced solar panels within the sail. Currently we are studying a mission to Jupiter and one (or two) of Trojan asteroids, which are primitive bodies with information of the early solar system as well as raw solid materials of Jovian system. As the main spacecraft flies by Jupiter heading for an asteroid, it will deploy JMO spinner around Jupiter.

  5. Study of a 30-M Boom For Solar Sail-Craft: Model Extendibility and Control Strategy

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    2005-01-01

    Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the

  6. In-Vacuum Photogrammetry of a Ten-Meter Square Solar Sail

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Lunsford, Charles B.; Meyer, Christopher G.

    2006-01-01

    Solar sailing is a promising, future in-space propulsion method that uses the small force of reflecting sunlight to accelerate a large, reflective membrane without expendable propellants. One of two solar sail configurations under development by NASA is a striped net approach by L'Garde, Inc. This design uses four inflatably deployed, lightweight booms supporting a network of thin strings onto which four quadrants of ultrathin aluminized membranes are attached. The NASA Langley Research Center (LaRC) provided both experimental and analytical support to L'Garde for validating the structural characteristics of this unique, ultralightweight spacecraft concept. One of LaRC's responsibilities was to develop and apply photogrammetric methods to measure sail shape. The deployed shape provides important information for validating the accuracy of finite-element modeling techniques. Photogrammetry is the science and art of calculating 3D coordinates of targets or other distinguishing features on structures using images. A minimum of two camera views of each target is required for 3D determination, but having four or more camera views is preferable for improved reliability and accuracy. Using retroreflective circular targets typically provides the highest measurement accuracy and automation. References 3 and 4 provide details of photogrammetry technology, and reference 5 discusses previous experiences with photogrammetry for measuring gossamer spacecraft structures such as solar sails. This paper discusses the experimental techniques used to measure a L Garde 10-m solar sail test in vacuum with photogrammetry. The test was conducted at the NASA-Glenn Space Power Facility (SPF) located at Plum Brook Station in Sandusky, Ohio. The SPF is the largest vacuum chamber in the United States, measuring 30 m in diameter by 37 m in height. High vacuum levels (10(exp -6) torr) can be maintained inside the chamber, and cold environments (-195 C) are possible using variable

  7. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  8. Displaced orbits for solar sail equipped with reflectance control devices in Hill's restricted three-body problem with oblateness

    NASA Astrophysics Data System (ADS)

    Song, Ming; He, Xingsuo; He, Dongsheng

    2016-10-01

    We investigate solar sail displaced orbits in the Hill's restricted three-body problem, where the larger primary is an oblate spheroid in the system. Firstly, the model of solar sail equipped with a new version of reflectance control device is introduced. Next, dynamical model of the system with the larger primary an oblate spheroid is established and the Hill's restricted three-body problem with oblateness is built through appropriate simplifications. The collinear equilibrium points of the Hill's system varying with the variations of areas of absorption and thermal radiation of reflectance control devices in the solar sail, or the dimensionless characteristic acceleration of solar sail, or the oblateness of the larger primary are also investigated. Then, Linearization near the collinear equilibria of the system is applied. A linear quadratic regulator is used to stabilize the nonlinear system. The simulation reveals that solar sail displaced orbits in this system are doable and asymptotically stable by means of adjusting the pitch angle of solar sail and the area of absorption in reflectance control devices.

  9. Nonlinear modeling and study for control of the research spacecraft with solar sail

    NASA Astrophysics Data System (ADS)

    Khabibullin, Roman; Starinova, Olga

    2017-01-01

    This paper outlines the mathematical motion model of the research spacecraft that uses solar sail instead of an engine and a propellant. The mathematical motion model for solar sail spacecraft is formulated and described. The work considers the mathematical motion model within the heliocentric system of coordinates. The best way to assess the reasonableness of the mathematical model is the using model in motion simulation process. On the basis of the formulated mathematical model the special software complex for interplanetary transfer simulation is developed. Especially, the mission of the transfer of the spacecraft from the Earth's orbit to the potentially hazardous asteroid is simulated. The obtained results during simulation demonstrate correctness and feasibility of the considered mathematical motion model.

  10. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  11. Investigation of Structural Dynamics in a 2-Meter Square Solar Sail Model Including Axial Load Effects

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Virgin, L. N.; Belvin, W. K.

    2003-01-01

    This paper presents a parameter study of the effect of boom axial loading on the global dynamics of a 2-meter solar sail scale model. The experimental model used is meant for building expertise in finite element analysis and experimental execution, not as a predecessor to any planned flight mission or particular design concept. The results here are to demonstrate the ability to predict and measure structural dynamics and mode shapes in the presence of axial loading.

  12. The dynamics and control of solar-sail spacecraft in displaced lunar orbits

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey George

    Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the

  13. A comparison of solar sail and ion drive trajectories for a Halley's comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1977-01-01

    According to the propulsion concept of solar sail spacecraft the thrust force is produced by the specular reflection of sunlight from a large, essentially flat, reflecting surface. The magnitude of this force is approximately 9 newtons for a perfectly reflecting sail with an area of 1 square kilometer oriented normal to the sunline at a distance of one astronomical unit from the sun. There exists a restriction in the types of orbit transfer trajectories which can be considered with this propulsion system. In the case of the second propulsion system being considered for the Halley's comet rendezvous mission, thrust is produced by the acceleration of ionized mercury atoms by an electric field. Power to the ion thrusters is supplied by lightweight solar arrays which can provide up to 100 kW of electrical power at a distance of 1 AU from the sun. Because of differing thrust constraints for the two propulsion systems, trajectories for a Halley's comet rendezvous mission are significantly different for the Ion Drive and Solar Sail spacecraft. Details concerning the trajectory characteristics are shown with the aid of a number of graphs.

  14. MicroPPT-Based Secondary/Backup ACS for a 160-m, 450-kg Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Murphy, David

    2005-01-01

    Solar sail tip-mounted, lightweight pulsed plasma thrusters (PPTs) are proposed for a secondary (or backup) attitude control system (ACS) of a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. A propellantless primary ACS of the SPI sailcraft employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness of such a propellantless primary ACS would be further enhanced by a secondary ACS utilizing tip-mounted, lightweight PPTs. The microPPT-based ACS is intended mainly for attitude recovery maneuvers from various off-nominal conditions that cannot be reliably handled by the propellantless primary ACS. However, it can also be employed for: i) the checkout or standby mode prior to and during sail deployment, ii) the post-deployment transition mode (prior to the propellantless primary ACS mode operation), iii) the solar sailing cruise mode of a trimmed sailcraft, and iv) the spin-stabilized, sun-pointing, safe mode. Although a conventional bus ACS is required for the SPI mission as the sail is jettisoned at the start of its science mission phase, the microPPT-based ACS option promises greater redundancy and robustness for the SPI mission. For other sailing missions, where the sail is never jettisoned, this secondary ACS provides a lower-cost, lower-mass propulsion for deployment control and greater redundancy than any traditional reaction-jet control system. This paper presents an overview nf the state--of-the--art microPPT technology, the design requirements of microPPTs for solar sail attitude control, and the preliminary ACS design and simulation results.

  15. An unconditionally stable method for numerically solving solar sail spacecraft equations of motion

    NASA Astrophysics Data System (ADS)

    Karwas, Alex

    Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach

  16. Electric solar-wind sail for asteroid touring missions and planetary protection

    NASA Astrophysics Data System (ADS)

    Janhunen, P.

    2014-07-01

    The electric solar-wind sail (electric sail, E-sail [1,2]) is a relatively new concept for moving around in the solar system without consuming propellant and by using the thrust provided by the natural solar wind to produce propulsion. The E-sail is based on deploying, using the centrifugal force, a set of long, thin metallic tethers and charging them to high positive voltage by actively removing negative charge from the system by an electron gun. To make the tethers resistant towards inevitable wire cuts by micrometeoroids, they must be made by bonding from multiple (typically 4) thin (25--50 μ m) aluminium wires. Production of the tethers was a technical challenge which was recently overcome. According to present numerical estimates, the E-sail could produce up to 1 N of propellantless thrust out of less than 200 kg package which is enough to give characteristic acceleration of 1 mm/s^2 to a spacecraft weighing 1 tonne, thus producing 30 km/s of delta-v per year. The thrust scales as ˜ 1/r where r is the solar distance. There are ways to control and vector the thrust enough to enable inward and outward spiralling missions in the solar system. The E-sail working principle has been indirectly measured in a laboratory, and ESTCube-1 CubeSat experiment is underway in orbit (in late March 2014 it was waiting to be started) to measure the E-sail thrust acting on a short 10-m long tether. A full-scale mission requires ˜ 1000 km of tether altogether (weighing ˜10 kg). The production of a 1-km piece of tether has been demonstrated in laboratory [3]. If the E-sail holds up its present promise, it would be ideally suited for asteroid missions because it enables production of similar level of thrust than ion engines, but needs only a small fraction of the electric power and never runs out of propellant because it does not use any (the ''propellant'' being the natural solar-wind plasma flow). Here we consider especially a mission which would tour the asteroid belt for a

  17. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  18. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  19. Sail '76

    ERIC Educational Resources Information Center

    Vandewalle, Raymond

    1976-01-01

    A new nationwide program called Sail '76 has been launched to give more people the opportunity to try the sport of sailing and to teach people the proper sailing techniques before they invest in a sailboat. (SK)

  20. NanoSail-D

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Adams, Charles L.

    2008-01-01

    The "NanoSail-D" mission is currently scheduled for launch onboard a Falcon-1 Launch Vehicle in the early June 2008 timeframe. The NanoSail-D spacecraft will consist of a solar sail subsystem stowed in a 2U volume and a 1U spacecraft bus, provided by Ames Research Center. The primary objectives of the NanoSail-D technology demonstration mission are to fabricate, stow and deploy on-orbit a solar sail and perform a de-orbit maneuver to demonstrate a potential orbital debris mitigation technology. The NanoSail-D mission is being developed through a collaborative effort between the NASA Marshall Space Flight Center and the NASA Ames Research Center Small Spacecraft Office. Details of the NanoSail-D system will be presented, including: 1) design details of the solar sail reflective membrane quadrants, gossamer booms, deployment system and passive attitude control system, 2) design analysis results including structural, thermal, environmental, orbital debris and safety, and 3) test results including deployment, ascent venting, launch vibration and PPOD integration verification.

  1. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  2. Evaluation of transient response of spinning solar sail with flexible membrane by eigenfunction analysis and continuum analysis

    NASA Astrophysics Data System (ADS)

    Chujo, Toshihiro; Kawaguchi, Junichiro

    2016-10-01

    This study evaluates the transient response of large spinning membrane structures in space - especially spinning solar sails - by two different methods. A flexible sail membrane is easily deformed when a spacecraft changes its attitude, such as when using thrusters, and the control response including membrane vibration must be estimated in advance of operation. In order to estimate the motion of the membrane, numerical simulations using a multi-particle model (MPM) are conducted, where the membrane is modeled with masses, spring, and dampers. Usually, force propagation is calculated directly in this model and the position and velocity of each particle represent the membrane motion, which is referred to as a continuum analysis in this study. This method is useful for the analysis of membrane vibration because it replaces the complex dynamics with simple equations of motion. However, the computational cost is high and the calculations require a considerable amount of time. This study introduces an eigenfunction analysis to solve this problem. In this method, natural vibration modes and natural frequencies for the entire spacecraft are derived and used for dynamics computation, which reduces the computational cost dramatically compared to the conventional continuum analysis. In this study, the transient response of a spinning solar sail is analyzed using both methods, and the advantages and disadvantages are discussed. It is shown that the eigenfunction analysis provides a suitable method for acquiring approximate solutions in a very low computation time.

  3. Space sail liner

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. V.

    1983-09-01

    Space vehicles, fit to ply between space objects and to transport hundreds of tons, will be necessary for research expeditions to planets and for asteroids materials supply to future space settlements, factories and satellite solar power stations. The means of creating such sail "liners" are discussed in the paper. The liner's solar sail area is dozens to hundreds of km 2. The sail is produced by combining in line small standard controlled units assembled or deployed in space. The equations of motion and sail control are considered. It is shown how superlight rotating reflectors, investigated by the author before, could be used to construct a sail. Another construction may be obtained by means of connecting stiff framework square reflectors and can be easily realized. Using deployable tubes made of composite straps will essentially lighten the square unit framework. Commercially available 4-μm thick aluminized mylar film and considerably thinner film may be used, and its mass will be most of the sail mass. Assembling of such a sail may be carried out on the orbiting assembling station.

  4. Surface Experiments on a Jupiter Trojan Asteroid in the Solar Powered Sail Mission

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki

    2016-04-01

    Introduction: A new mission to a Jupiter Trojan asteroid is under study us-ing a solar-powered sail (SPS), and a science lander is being investigated in the joint study between Japan and Europe [1]. We present here the key sci-entific objectives and the strawman payloads of science experiments on the asteroid. Science Objectives: Jupiter Trojan asteroids are located around the Sun-Jupiter Lagrange points (L4 or L5) and most of them are classified as D- or P-type in asteroid taxonomy, but their origin still remains unknown. A classi-cal (static) model of solar system evolution indicates that they were formed around the Jupiter region and survived until now as the outer end members of asteroids. A new (dynamical) model such as Nice model suggests that they were formed at the far end of the solar system and transferred inward due to dynamical migration of giant planets [2]. Therefore physical, miner-alogical, and isotopic studies of surface materials and volatile compounds could solve their origin, and then the solar system formation [3]. Strawman Payloads: The SPS orbiter will be able to carry a 100 kg class lander with 20 kg mission payloads. Just after landing of the lander, geolog-ical, mineralogical, and geophysical observations will be performed to char-acterize the site using a panoramic optical camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. The surface and subsur-face materials of the asteroid will be collected into a carousel by the bullet-type and the pneumatic drill type samplers, respectively. Samples in the carousel will be investigated by a visible and an infrared microscope, and transferred for performing high resolution mass spectrometry (HRMS). Mass resolution m/dm > 30,000 is expected to investigate isotopic ratios of D/H, 15N/14N, and 18O/16O, as well as molecules from organic matters. A set of strawman payloads are tentatively determined during the lander system study [4]. The constraints to select the strawman

  5. Applications of magnetic sails

    NASA Astrophysics Data System (ADS)

    Love, S. G.; Andrews, D. G.

    The interplanetary magnetic sail is a low-thrust propulsion device that derives its motive power from the interaction of solar wind ions with the magnetic field of a circular current-bearing loop of superconducting cable. The principal advantage of a magnetic sail is that it produces thrust in opposition to the sun's gravity without consuming any propellant whatsoever. The low acceleration of a magnetic sail restricts its applicability to missions that do not demand rapid changes in velocity. In many cases, though, that disadvantage is overwhelmed by the desirability of a system that does not have to be refuelled. Missions well suited for magnetic sails include propulsion for a robot asteroid surveyor, orbital correction for structures in unstable libration points, motive power for orbital correction near planets with magnetic fields, and aerobraking in planetary ionospheres.

  6. FeatherSail - The Next Generation Nano-Class Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Alhom, Dave C.

    2010-01-01

    Solar sail propulsion is a concept, which will soon become a reality. Solar sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. Solar sail vehicles have generally been designed to have a very large area. This requires significant time and expenditures to develop, test and launch such a vehicle. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, less than 10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. The NanoSail-D solar sail design is used for the basic design concept for the next generation of nanoclass solar sail vehicles. The FeatherSail project was started to develop a solar sail vehicle with the capability to perform attitude control via rotating or feathering the solar sails. In addition to using the robust deployment method of the NanoSail-D system, the FeatherSail design incorporates other novel technologies. These technologies include deployable thin film solar arrays and low power, low temperature Silicon-Germanium electronics. Together, these three technological advancements provide a starting point for smaller class sail vehicles. These smaller solar sail vehicles provide a capability for inexpensive missions to explore beyond the realms of low earth orbit.

  7. Places Only Sails Can Go

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Heaton, Andrew F.; Garbe, Gregory P.

    2003-01-01

    Solar sails are a near term, low thrust, propellantless propulsion technology suitable for orbital maneuvering, station keeping, and attitude control applications for small payloads. Furthermore, these functions can be highly integrated, reducing mass, cost and complexity. The solar sail concept is based on momentum exchange with solar flux reflected from a large, deployed thin membrane. Thrust performance increases as the square of the distance to the sun. In comparison to conventional chemical systems, there are missions where solar sails are vastly more and less economical. The less attractive applications involve large payloads, outer solar system transfers, and short trip times. However, for inclination changes and station keeping at locations requiring constant thrust, the solar sail is the only economical option for missions of more than a few weeks duration. We compare the location and energies required for these applications between solar sails, advanced electric propulsion, and conventional rockets. We address the effect on mass fraction to understand solar sail mission cost and capability. Finally, the benefit of potential applications to near term science missions is reported.

  8. The magnetic sail

    SciTech Connect

    Zubrin, R.M.

    1992-05-01

    The potential of magnetic sail (Magsail) technology to provide mobility to solar system missions is discussed. The operation of the Magsail in a plasma wind and within the magnetosphere is examined, and the utilization of Magsail to escape from LEO is addressed. Magsail orbits in heliocentric space and the use of the Magsail as an interstellar brake are discussed. 13 refs.

  9. On the Trojan asteroid sample and return mission via solar-power sail -- an innovative engineering demonstration

    NASA Astrophysics Data System (ADS)

    Kawaguchi, J.; Mori, O.; Shirasawa, Y.; Yoshikawa, M.

    2014-07-01

    The science and engineering communities in the world are seeking what comes next. Especially for asteroids and comets, as those objects lie in relatively far area in our solar system, and new engineering solutions are essential to explore them. JAXA has studied the next-step mission since 2000, a solar-power sail demonstrator combining the use of photon propulsion with electric propulsion, ion thruster, targeting the untrodden challenge for the sample return attempt from a Trojan asteroid around the libration points in the Sun-Jupiter system. The Ikaros spacecraft was literally developed and launched as a preliminary technology demonstration. The mission will perform in-situ measurement and on-site analysis of the samples in addition to the sample return to the Earth, and will also deploy a small lander on the surface for collecting surface samples and convey them to the mother spacecraft. From a scientific point of view, there is an enormous reward in the most primitive samples containing information about the ancient solar system and also about the origin of life in our solar system. JAXA presently looks for international partners to develop and build the lander. The presentation will elaborate the current mission scenario as well as what we think the international collaboration will be.

  10. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  11. Revealing Exo-Zody and Exo-Planets from Solar System Dust Measurements: ALADDIN-2 for the Solar Power Sail Mission

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Hirai, Takayuki

    2016-07-01

    The dust structure of our Solar System provides a benchmark information of dust disks of other exo-planetary systems in general, just like the Sun as the closest main sequence G-star that we can study with the most details. Heliocentric dust distributions and gravitational and orbital interactions with planets such as mean motion resonances (MMRs) of dust flux of our Solar System are what we can transfer the knowledge of our Solar System dust apply to infer anisotropic exo-zodiacal brightness, or spatial structures within a exo-planetary dust disks with information about potentially embedded planets inside. In the coming era of disk resolved observations by ALMA, TMT and other new telescopes, we will be able to apply what we find in the Solar System to the rest of planetary systems. In 2010-11, the IKAROS solar sail spacecraft carried the ALADDIN large area dust detector array to study large meteoroids between the Earth and Venus orbits. Yano et al. directly detected both the Earth's and Venus' MMRs dust structures, being consistent with numerical simulations that predict the existence of such local enhancements of dust distribution around these terrestrial planets, as well as Neptune. JAXA's Solar Power Sail mission plans to carry even larger dust detector inherited the technology onboard IKAROS, namely ALADDIN-2 in order to search for such MMRs in the Mars and Jupiter orbits, as predicted by Kuchner et al.(2000), in addition to make a continuous measurement of large dust flux from 1.0 to 5.2 AU crossing the main asteroid belt up to Jupiter Trojan region. It is also noted that recent reanalysis of the Pioneer 10 and 11 photo polarimeter data suggests a small enhancement of the brightness towards the anti-solar direction near Jupiter the largest planet of our Solar System, implying a possible existence of a dust belt related to the planet. The spatial density of dust particles directly measured by the ALADDIN-2 will provide a more conclusive and direct proof due to

  12. FeatherSail - Design, Development and Future Impact

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Scheierl, J. M.

    2010-01-01

    To the present day, the idea of using solar sails for space propulsion is still just a concept, but one that provides a great potential for future space exploration missions. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, <10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. Using the features of the NanoSail-D architecture, a second-generation solar sail design concept, dubbed FeatherSail, has been developed. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density. The FeatherSail design will utilize the NanoSail-D based extendable boom technology with only one sail on each set of booms. This design also allows each of the four sails to feather as much as ninety degrees. The FeatherSail concept uses deployable solar arrays to generate the power necessary for deep space missions. In addition, recent developments in low power, low temperature Silicon-Germanium electronics provide the capability for long duration deep space missions. It is envisioned that the FeatherSail conceptual design will provide the impetus for future sail vehicles, which may someday visit distant places that mankind has only observed.

  13. TENEX SAIL

    NASA Technical Reports Server (NTRS)

    Smith, R.

    1975-01-01

    SAIL, a high level ALGOL language for the PDP-10, is extended to operate under the TENEX time sharing system without executing DEC system calls. A large set of TENEX oriented runtime routines are added to allow complete access to TENEX. The emphasis is on compatibility of programs across time sharing systems and integrity of the language.

  14. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Technical Reports Server (NTRS)

    Azor, Ruth

    1992-01-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar radiation pressure. This work presents a roll/yaw control which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  15. Sailing the Sun field and the mathematics of the Solar System

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, A. I.; López-Martinez, F.; Lozano, C.; Rodrigo-Gudiel, V.

    2012-09-01

    The Solar System is an explendid laboratory for students to think and apply the mathematics learnt at high school level. To assist teachers to introduce some concepts making use of Solar System exploration we have developed a set of tools that are interfaced through a wiki service. This contribution is aimed at presenting this service and some of the tools made available to the community.

  16. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    NASA Astrophysics Data System (ADS)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  17. Flying on Sun Shine: Sailing in Space

    SciTech Connect

    Alhorn, Dean

    2012-03-28

    On January 20th, 2011, NanoSail-D successfully deployed its sail in space. It was the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The 10m2 sail, deployment mechanism and electronics were packed into a 3U CubeSat with a volume of about 3500cc. The NanoSail-D mission had two objectives: eject a nanosatellite from a minisatellite; deploy its sail from a highly compacted volume to validate large structure deployment and potential de-orbit technologies. NanoSail-D was jointly developed by NASA's Marshall Space Flight Center and Ames Research Center. The ManTech/NeXolve Corporation provided key sail design support. NanoSail-D is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Space Test Program, the Von Braun Center for Science and Innovation and Dynetics Inc. The presentation will provide insights into sailcraft advances and potential missions enabled by this emerging in-space propulsion technology.

  18. Photon Sail History, Engineering, and Mission Analysis. Appendix

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    This Appendix summarizes the results of a Teledyne Brown Engineering, Inc. report to the In-Space propulsion research group of the NASA Marshall Space Flight Center (MSFC) that was authored by Taylor et al. in 2003. The subject of this report is the technological maturity, readiness, and capability of the photon solar sail to support space-exploration missions. Technological maturity for solar photon sail concepts is extremely high high for rectangular (or square) solar sail configurations due to the historical development of the rectangular design by the NASA Jet Propulsion Laboratory (JPL). L'Garde Inc., ILC Dover Inc., DLR, and many other corporations and agencies. However, future missions and mission analysis may prove that the rectangular sail design is not the best architecture for achieving mission goals. Due to the historical focus on rectangular solar sail spacecraft designs, the maturity of other architectures such as hoop-supported disks, multiple small disk arrays, parachute sails, heliogyro sails, perforated sails, multiple vane sails (such as the Planetary Society's Cosmos 1), inflated pillow sails, etc., have not reached a high level of technological readiness. (Some sail architectures are shown in Fig. A.1.) The possibilities of different sail architectures and some possible mission concepts are discussed in this Appendix.

  19. Plasma Sail Concept Fundamentals

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Delamere, P.; Kabin, K.; Linde, T. J.

    2004-01-01

    The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50 C80 km/s after an acceleration period of 3 mo. Such velocities will enable travel out of the solar system in period of 7 yr almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably ( 10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

  20. Sailing through Leadership Theory

    ERIC Educational Resources Information Center

    Northup, Kimberly R.

    2006-01-01

    The University of Tampa's Leadership and Sailing program introduces students to leadership and sailing simultaneously by situating their learning about leadership in the context of sailing. By combining outdoor adventure and leadership training, the program is designed to help students learn the basic components of a sailboat and operate the boat…

  1. Magnetic sails and interplanetary travel

    SciTech Connect

    Zubrin, R.M.; Andrews, D.G.

    1989-01-01

    A new concept, the magnetic sail, or 'magsail' is proposed which propels spacecraft by using the magnetic field generated by a loop of superconducting cable to deflect interplanetary or interstellar plasma winds. The performance of such a device is evaluated using both a plasma particle model and a fluid model, and the results of a series of investigations are presented. It is found that a magsail sailing on the solar wind at a radius of one astronautical unit can attain accelerations on the order of 0.01 m/sec squared, much greater than that available from a conventional solar lightsail, and also greater than the acceleration due to the sun's gravitational attraction. A net tangential force, or 'lift' can also be generated. Lift to drag ratios of about 0.3 appear attainable. Equations are derived whereby orbital transfers using magsail propulsion can be calculated analytically.

  2. E-Sail for Fast Interplanetary Travel

    NASA Astrophysics Data System (ADS)

    Aru, M.; Janhunen, P.

    2017-02-01

    The electric solar wind sail is a propellantless propulsion concept that utilizes solar wind to produce small but continuous thrust, which can accelerate a spacecraft to speeds of 20 to 30 au/year. This opens new possibilities for space exploration.

  3. NanoSail - D Orbital and Attitude Dynamics

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  4. Laser driven light sails: An examination of the possibilities for interstellar probes and other missions

    NASA Technical Reports Server (NTRS)

    Rather, J. D. G.; Zeiders, G. W.; Vogelsang, K. R.

    1976-01-01

    A theoretical discussion of high energy laser propelled light sails is presented. Selection of sail materials, interstellar drag forces, beam pointing, flight velocity, probe mass, and radiation shielding are among the factors discussed. Interstellar probe missions and colonization of the solar system via the light sail are considered.

  5. RADAR "SAIL" satellite concept

    NASA Astrophysics Data System (ADS)

    Aguttes, Jean Paul; Sombrin, Jacques; Conde, Eric

    1996-11-01

    The Radar SAIL concept is based on the use of a rectangular antenna lying in the dawn-dusk orbital plane with the length (along speed vector) smaller than the height. Such geometry makes it possible to place the solar cells on the back of the antenna, to use gravity gradient stabilisation, and to implement multipath-free GPS interferometric measurement of the antenna deformation thus allowing structural relaxation. Less obviously, the geometry favours the RADAR design too, by allowing grating lobes and therefore a lower density of built-in electronic in the active antenna. The antenna can be thin and packed for launch inside a cylinder-shaped bus having pyrotechnic doors for the antenna deployement and bearing the rest of the payload and the service equipment. With respect to a standard design of performant missions, cost savings come from the bus, whose functions (AOCS, power supply) are simplified, from the launch since the mass budget and the stowing configuration become compatible with medium size rockets (LLV2/3, DELTA-LITE, LM-4.), and from the active antenna built-in electronics. The RADAR SAIL concept is all the more cost effective when the mission requires a large, high and short antenna, i.e. high resolution (<5m), low frequency band (L or S or even P), high revisiting, multiple frequencies. Mission implementation and funding can be favored by the new capability to share the satellite between autonomous regional operators. Combined with ground DBF (digital beam forming) technique, the concept allows extremely simple and low cost missions providing a fixed wide swath (10 to 15 m resolution within 500km to 1000 km swath) for systematic surveillance or monitoring.

  6. Combining Electric and Sail Propulsion for Interplanetary Sample Return

    SciTech Connect

    Noble, Robert

    2003-02-04

    Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a ''solar parachute'' used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study.

  7. New age of sail

    SciTech Connect

    Robb, D.

    1982-08-01

    Wind power activities currently underway in the United States are discussed, in particular, the American conference on sail-equipped working vessel technology at Norfolk, Virginia. Lloyd Bergeson, founder of Wind Sail, and keynote speaker, discussed factory-built sail rigs which would be retrofitted aboard cargo ships and would function as a form of auxiliary propulsion for fuel conservation. An expedition from Sea World intends to build a 67 meter sailing research vessel and conduct a 3-1/2 year oceanographic research cruise. (MJF)

  8. Electric sail, photonic sail and deorbiting applications of the freely guided photonic blade

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka

    2014-01-01

    We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.

  9. Why Not Sails,

    DTIC Science & Technology

    1978-03-01

    ship propulsion . (In the interest of adding credance to what may be considered a questionable endeavor, it should be noted that serious studies are being made both in Britain and West Germany concerning the practicality of sail propulsion for commercial vessels.) The paper reviews the history of sails as a means of propulsion, the capabilities and limitations of modern sailing ship designs with both conventional displacement hulls and unconventional hull forms such as semi-submersible and hydrofoil supported considered. A variety of designs to suit naval and commercial

  10. The Aurora Project: A new sail layout

    NASA Astrophysics Data System (ADS)

    Genta, Giancarlo; Brusa, Eugenio

    1999-05-01

    Aurora spacecraft is a scientific probe propelled by a "fast" solar sail whose first goal is to perform a technology assessment mission. The main characteristic of the sail is its low mass, which implies the absence of a plastic backing of the aluminum film and the lightness of the whole structure. In previous structural studies the limiting factor has been shown to be the elastic stability of a number of structural members subject to compressive loads. An alternative structural layout is here suggested: an inflatable beam, which is kept pressurized also after the deployment, relieves all compressive stresses, allowing a very simple configuration and a straightforward deployment procedure. However, as the mission profile requires a trajectory passing close to the Sun, a configuration different from the 'parachute' sail proposed in another paper, must be used.

  11. Drag and propulsive forces in electric sails with negative polarity

    NASA Astrophysics Data System (ADS)

    Sanchez-Torres, Antonio

    2016-02-01

    An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.

  12. Les Johnson Views Interstellar Sail Material

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at Marshall Space Flight Center's (MSFC) Interstellar Propulsion Research department are proposing different solutions to combustion propellants for future space travel. One alternative being tested is the solar sail. The idea is, once deployed, the sail will allow solar winds to propel a spacecraft away from Earth and towards its destination. This would allow a spacecraft to travel indefinitely without the need to refuel during its ong journey. Thin reflective sails could be propelled through space by sunlight, microwave beams, or laser beams, just as the wind pushes sailboats on Earth. The sail will be the largest spacecraft ever built, sparning 440 yards, twice the diameter of the Louisiana Super Dome. Construction materials are being tested in a simulated space environment, where they are exposed to harsh conditions to test their performance and durability in extremely hot and cold temperatures. A leading candidate for the construction material is a carbon fiber material whose density is less than 1/10 ounce per square yard, the equivalent of flattening one raisin to the point that it covers a square yard. In space, the material would unfurl like a fan when it is deployed from an expendable rocket. This photo shows Les Johnson, manager of MSFC's Interstellar Propulsion Research Center holding the rigid, lightweight carbon fiber. An artist's concept of the sail is on the right. Mankind's first venture outside of our solar system is proposed for launch in a 2010 timeframe. An interstellar probe, powered by the fastest spacecraft ever flown, will zoom toward the stars at 58 miles per second. It will cover the distance from New York to Los Angeles in less than a minute and will travel over 23 billion miles beyond the edge of the solar system.

  13. United sail windmill

    SciTech Connect

    Labrador, G.A.

    1988-07-12

    This windmill provides low cost energy out of the wind in the form of compressed air, etc, by maximizing wind-contact at the least cost construction and maintenance, at the least cost of project site - making the ''Output/Cost Ratio'' very high. This is done by making the sails very large using light fabrics with aluminum or bamboo frames forming a square face, supported by light strong ropes, by arranging the sails on a single file close to one after the other at erect posture free to clip to the right or to the left, forming a long procession line transverse to the wind which is in close loop with another long procession line parallel to it but moving to the opposite direction, to produce a very large windmill without the need of additional set up units of windmills; by carrying the large sails high about the ground for better wind-contact thru a two level Aerial Cable Railway by means of a deep-groove roller wheel attached to the top end and to the bottom end of each sail-mast; by separating the two parallel lines of sails at least 100 feet apart for better wind-contact thru the use of set of three Terminal Gear Wheels at a Half-Hexagonal formation that hold the end loops of the Power Cable Chain being tugged by each sail; by making the windmill work during strong winds and storing the energy in compressed air tunnels, elevated water.

  14. Numerical Analysis of Magnetic Sail Spacecraft

    SciTech Connect

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-12-31

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  15. A 20mK temperature sensor

    SciTech Connect

    Wang, N.; Sadoulet, B.; Shutt, T.; Beeman, J.; Haller, E.E.; Lange, A.; Park, I.; Ross, R.; Stanton, C.; Steiner, H.

    1987-11-01

    We are developing a 20mK temperature sensor made of neutron transmutation doped (NTD) germanium for use as a phonon detector in a dark matter search. We find that NTD germanium thermistors around 20mK have resistances which are a strong function of temperature, and have sufficient sensitivity to eventually reach a base line rms energy fluctuation of 6eV at 25mK. Further work is needed to understand the extreme sensitivity of the thermistors to bias power. 13 refs., 18 figs.

  16. Sails, Wind and Water.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses maritime paintings addressing such topics as why artists are attracted to sailing vessels and the content of the paintings. Includes reproductions of paintings by Edward Hopper, John H. B. Everett, Lyonel Feininger, and Willem van de Velde the Younger. Selects works to help students realize that maritime art is quite varied. (CMK)

  17. The GEOS-20 m Cable Boom Mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Suttner, K.

    1977-01-01

    The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  18. GEOS-20 m cable boom mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, B. K.; Suttner, K.

    1977-01-01

    The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  19. Fast E-sail Uranus entry probe mission

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A.

    2014-12-01

    The electric solar wind sail is a novel propellantless space propulsion concept. According to numerical estimates, the electric solar wind sail can produce a large total impulse per propulsion system mass. Here we consider using a 0.5 N electric solar wind sail for boosting a 550 kg spacecraft to Uranus in less than 6 years. The spacecraft is a stack consisting of the electric solar wind sail module which is jettisoned roughly at Saturn distance, a carrier module and a probe for Uranus atmospheric entry. The carrier module has a chemical propulsion ability for orbital corrections and it uses its antenna for picking up the probe's data transmission and later relaying it to Earth. The scientific output of the mission is similar to what the Galileo Probe did at Jupiter. Measurements of the chemical and isotope composition of the Uranian atmosphere can give key constraints to different formation theories of the Solar System. A similar method could also be applied to other giant planets and Titan by using a fleet of more or less identical probes.

  20. Electric Sail Propulsion for Exploring Nearby Interstellar Space

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Wiegmann, Bruce; Bangham, Mike

    2015-01-01

    An Electric Sail is a revolutionary propellant-less propulsion system that is ideal for deep space missions to the outer planets, the Heliopause, and beyond. It is revolutionary in that it uses momentum exchange with the hypersonic solar wind to propel a spacecraft within the heliosphere. The momentum exchange is affected by the deflection of charged solar wind particles by an array of electrically biased wires that extend outward up to 30 km from a slowly rotating spacecraft. A high-voltage, positive bias on the wires, which are oriented normal to the solar wind flow, deflects the streaming protons, resulting in a reaction force on the wires that is also directed radially away from the sun. Over a period of months, this small force can accelerate the spacecraft to enormous speeds-on the order of 100-150 km/s (approximately 20 to 30 AU/yr). Unlike solar sails, Electric Sails do not rely on a fixed area to produce thrust. In fact, as they move away from the Sun and solar wind pressure decreases, the area for solar proton momentum transfer becomes larger, increasing system efficiency. As a result, thrust decreases at ˜1/r**(7/6) instead of the ˜1/r**2 rate typical for solar sails. The net effect is that an increased radial range of operation, together with increased thrust, both contribute to higher velocities and shorter total trip times to distant destinations. The MSFC Advanced Concepts Office (ACO) was awarded a Phase II NASA Innovative Advanced Concepts (NIAC) study to mature the technology for possible future demonstration and implementation. Preliminary results indicate that the physics of the system is viable and that a spacecraft propelled by an Electric Sail could reach the Heliopause in less than 15 years - and could be developed within a decade.

  1. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  2. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  3. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  4. Inside NanoSail-D: A Tiny Satellite with Big Ideas

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Agasid, Elwood; Casas, Joseph; Adams, Charles; O'Brien, Sue; Laue, Greg; Kitts, Chris

    2011-01-01

    "Small But Mighty" certainly describes the NanoSail-D experiment and mission. Its unique goals and designs were simple, but the implications of this technology are far reaching. From a tiny 3U CubeSat, NanoSail-D deployed a 10 square meter solar sail. This was the first sail vehicle to orbit the earth and was only the second time a sail was unfurled in space. The NanoSail-D team included: two NASA centers, Marshall and Ames, the universities of Alabama in Huntsville and Santa Clara in California, the Air Force Research Laboratory and many contractors including NeXolve, Gray Research and several others. The collaborative nature was imperative to the success of this project. In addition, the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. jointly sponsored the NanoSail-D project. This paper presents in-depth insight into the NanoSail-D development. Its design was a combination of left over space hardware coupled with cutting edge technology. Since this NanoSail-D mission was different from the first, several modifications were necessary for the second NanoSail-D unit. Unforeseen problems arose during refurbishment of the second unit and the team had to overcome these obstacles. Simple interfaces, clear responsibilities and division of effort allowed the team members to work independently on the common goal. This endeavor formed working relationships lasting well beyond the end of this mission. NanoSail-D pushed the technology envelop with future applications for all classes of satellites. NanoSail-D is truly a small but mighty satellite, which may cast a very big shadow for years to come.

  5. Investigation of the Airflow around a Sail.

    ERIC Educational Resources Information Center

    Gray, Rachel P.

    1986-01-01

    Shows how air flows around a sail, explaining why a dinghy is able to move toward the wind rather than be blown backwards. Also illustrates the effects of alternating the angle of a sail, using different sail shapes and using a rig consisting of two sails. (JN)

  6. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  7. Students Help Students with Sails.

    ERIC Educational Resources Information Center

    Toskas, Denny

    1987-01-01

    Outlines a student tutoring program called SAILS (Student Assistance in Learning and Support) that helps students who have chronic difficulties in mathematics, reading, English, and with personal problems. (MD)

  8. Electric sail option for cometary rendezvous

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Janhunen, Pekka

    2016-10-01

    The recent successes of the European Rosetta mission have shown the possibility of a close observation with one of the most evasive celestial bodies in the Solar System, the comets, and the practical feasibility of a comet rendezvous to obtain detailed information and in situ measurements. This paper discusses a preliminary study of the transfer trajectory toward the comet 67P/Churyumov-Gerasimenko (the same target used by Rosetta) for a spacecraft whose primary propulsion system is an electric solar wind sail. The use of a propellantless propulsion system with a continuous thrust is theoretically able to simplify the transfer trajectory by avoiding the need of intermediate flyby maneuvers. The problem is addressed in a parametric way, by looking for the possible optimal launch windows as a function of the propulsion system performance. The study is completed by a mass breakdown analysis of the spacecraft, for some mission scenarios of practical interest, based on the actual payload mass of the spacecraft Rosetta.

  9. Scale-model Experiment of Magnetoplasma Sail for Future Deep Space Missions

    SciTech Connect

    Funaki, Ikkoh; Yamakawa, Hiroshi; Ueno, Kazuma; Kimura, Toshiyuki; Ayabe, Tomohiro; Horisawa, Hideyuki

    2008-04-28

    When Magnetic sail (MagSail) spacecraft is operated in space, the supersonic solar wind plasma flow is blocked by an artificially produced magnetic cavity to accelerate the spacecraft in the direction leaving the Sun. To evaluate the momentum transferring process from the solar wind to the coil onboard the MagSail spacecraft, we arranged a laboratory experiment of MagSail spacecraft. Based on scaling considerations, a solenoidal coil was immersed into the plasma flow from a magnetoplasmadynamic arcjet in a quasi-steady mode of about 1 ms duration. In this setup, it is confirmed that a magnetic cavity, which is similar to that of the geomagnetic field, was formed around the coil to produce thrust in the ion Larmor scale interaction. Also, the controllability of magnetic cavity size by a plasma jet from inside the coil of MagSail is demonstrated, although the thrust characteristic of the MagSail with plasma jet, which is so called plasma sail, is to be clarified in our next step.

  10. Boltzmann electron PIC simulation of the E-sail effect

    NASA Astrophysics Data System (ADS)

    Janhunen, P.

    2015-12-01

    The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.

  11. Sailing and sports medicine: a literature review

    PubMed Central

    Allen, J B; De Jong, M R

    2006-01-01

    Sailing medicine has been mainly addressed by healthcare professionals who happen to sail. Although there has been an increase in the number of studies of various aspects of sailing over the last 15 years, efforts to advance evidence based knowledge of sailing and sports medicine face unique obstacles. Recent interest in research by groups such as Olympic and America's Cup teams has produced beneficial changes. PMID:16547146

  12. SETI via Leakage from Light Sails in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Loeb, Abraham

    2015-10-01

    The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecraft’s own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsion apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI).

  13. SETI VIA LEAKAGE FROM LIGHT SAILS IN EXOPLANETARY SYSTEMS

    SciTech Connect

    Guillochon, James; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2015-10-01

    The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecraft’s own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsion apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI)

  14. Indicators of sailing performance in youth dinghy sailing.

    PubMed

    Callewaert, Margot; Boone, Jan; Celie, Bert; De Clercq, Dirk; Bourgois, Jan G

    2015-01-01

    This study aimed to determine indicators of sailing performance in 2 (age) groups of youth sailors by investigating the anthropometric, physical and motor coordination differences and factors discriminating between elite and non-elite male optimist sailors and young dynamic hikers. Anthropometric measurements from 23 optimist sailors (mean ± SD age = 12.3 ± 1.4 years) and 24 dynamic youth hikers (i.e. Laser 4.7, Laser radial and Europe sailors <18 years who have to sail the boat in a very dynamic manner, due to a high sailor to yacht weight ratio) (mean ± SD age = 16.5 ± 1.6 years) were conducted. They performed a physical fitness test battery (EUROFIT), motor coordination test battery (Körperkoordinationstest für Kinder) and the Bucket test. Both groups of sailors were divided into two subgroups (i.e. elites and non-elites) based on sailing expertise. The significant differences, taking biological maturation into account and factors discriminating between elite and non-elite optimist sailors and dynamic hikers were explored by means of multivariate analysis of covariance and discriminant analysis, respectively. The main results indicated that 100.0% of elite optimist sailors and 88.9% of elite dynamic hikers could be correctly classified by means of two motor coordination tests (i.e. side step and side jump) and Bucket test, respectively. As such, strength- and speed-oriented motor coordination and isometric knee-extension strength endurance can be identified as indicators of sailing performance in young optimist and dynamic youth sailors, respectively. Therefore, we emphasise the importance of motor coordination skill training in optimist sailors (<15 years) and maximum strength training later on (>15 years) in order to increase their isometric knee-extension strength endurance.

  15. The Speed Limit for Graphene Interstellar Photon Sails

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    Graphene, a two-dimensional carbon molecular monolayer, has properties that may render it very useful for application to interstellar solar photon sailing. These include very low areal mass thickness, high melting point, high impermeability to fill gas in a hollow-body sail configuration, and high tensile strength. With appropriate "additives," graphene has a finite reflectance to sunlight and sunlight absorption of 40% or higher. Here, we evaluate the probably unobtainable ultimate performance of this material. It is assumed that absorption can be raised to 95% and reflectance to 5% without increasing areal mass thickness over the graphene value of 7.4 * 10-7 kg/m2. It is also assumed that the only limitations on perihelion distance are thermal; spaceenvironment effects and possible variation of optical properties with temperature are ignored. To evaluate ultimate performance, an initially parabolic solar orbit with a ~0.01 AU perihelion is assumed. A thin-film probe with the payload integrated with the sail can achieve an interstellar cruise velocity of ~0.046c in the highly unlikely event that accelerations of ~6,000g can be tolerated. Regardless of the final velocity, graphene "Starwisps" might see application in interstellar particle-beam propulsion.

  16. Optimal control laws for heliocentric transfers with a magnetic sail

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Aliasi, Generoso

    2013-08-01

    A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth-Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth-Venus transfer may be completed within about 380 days.

  17. Radar ''Sail'' satellite concept and design

    NASA Astrophysics Data System (ADS)

    Aguttes, Jean.-Paul; Sombrin, Jacques; Conde, Eric; Chaubet, Michel; Sebbag, Isabelle; Bousquet, Pierre

    2000-05-01

    The RADAR SAIL concept is based on the use of a rectangular antenna lying in the dawn-dusk orbital plane with the length (along speed vector) smaller than the height. Such geometry makes it possible to place the solar cells on the back of the antenna, to use gravity gradient stabilisation, and (optionally) to implement multipath-free GPS interferometric measurement of the antenna deformation thus allowing structural relaxation. Less obviously, the geometry favours the RADAR design too, by allowing grating lobes and therefore a lower density of built-in electronic in the active antenna. The antenna can be thin and packed for launch inside a cylinder-shaped bus having pyrotechnic doors for the antenna deployment and bearing the rest of the payload and the service equipment. With respect to a standard design of high performance missions, cost savings come from the bus, whose functions (AOCS, power supply) are simplified, from the launch since the mass budget and the stowing configuration become compatible with medium size rockets (LLV2/3, DELTA-LITE, LM-4…), and from the active antenna built-in electronics. Moreover, long satellite life-time can be achieved (10 years instead of 5). The RADAR SAIL concept is all the more cost effective when the mission requires a large, high and short antenna, i.e. high resolution (<5 m), low frequency band (L or S or even P), high revisiting, multiple frequencies. Mission implementation and funding can be favored by the new capability to share the satellite between autonomous regional operators. Combined with ground DBF (digital beam forming) technique, the concept allows extremely simple and low cost missions providing a fixed wide swath (10 to 15 m resolution within 500 km to 1000 km swath) for systematic surveillance or monitoring.

  18. A study on a vessel with multiple flat and hard sails to keep service speed in high winds

    NASA Astrophysics Data System (ADS)

    Onishi, Seiki; Momoki, Tsutomu; Ikeda, Yoshiho

    2010-06-01

    Ships which have large structures above water surface, such as pure car carriers (PCCs) and container vessels, have large speed reduction by wind pressure. In the present study, the running speed of a large PCC with two or more sails for using wind power is simulated. The simulated results demonstrate that the ship can keep a constant service speed even in winds of 20m/s except head and bow winds. This sail system can shorten annual average navigation time by about 4 hours per voyage.

  19. Age of sail - is it over

    SciTech Connect

    Morisseau, K.C.

    1981-04-01

    This paper explores the history, current trends and recent studies, experiments, and initiatives in the area of wind propulsion. The recent history of the development of sail as a means of ship propulsion is reviewed with regard to both sail and hull type. Studies and experiments are discussed. Potential uses of sail for naval and commercial applications are presented. The paper also discusses some of the characteristics of wind over the world's oceans and their impact on the use of sail in naval and commercial service. The need for auxiliary fossil-fuel propulsion systems also is reviewed. An economic comparison of the cost of building and operating various sized sail-powered ships on selected routes is provided. 20 refs.

  20. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  1. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  2. Heliocentric phasing performance of electric sail spacecraft

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso

    2016-10-01

    We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.

  3. Are sail-assisted tankers feasible

    SciTech Connect

    Not Available

    1980-02-01

    Nippon Kokan k.k., a research leader into sail-assisted ocean-going ships, predicts it will have the world's first sail-assisted tanker in operation within a few years. Feasibility studies, including wind tunnel tests, onshore experiments, and sea trails with the 77 ton ''Daioh'' winches for automatic sail handing, showed that fair winds up to 32 mph from a 90 heading would enable a 20,000 dwt ship to maintain a 15 knot speed without engines; that ship size effect on the sail power gain per sail area is small; that the simulated average power gain on a North Pacific route would be 770 hp/hour which would translate into 830 tons/year fuel savings; that the cost disadvantages of the repayment of the initial investment, freight reduction due to dead-weight tonnage lost, running and maintenance costs, and reduction in freight capability come to 36,100,000 yen/year; and that other disadvantages would be limited sail use in the slight winds prevalent in Japan's shipping lanes crossing the equator, and entry problems under bridges for ships with sails 180 feet above the water line. Diagrams and tables.

  4. The transpacific experimental sailing by YASEIGO 3

    NASA Astrophysics Data System (ADS)

    Ochiai, H.; Takeuchi, S.; Kadokawa, H.; Fujimoto, K.; Matsui, M.

    The ARGOS system was used to communicate with a double canoe built to an ancient design which sailed from Japan to California to test theories about Japanese castaways and early Pacific cultures. The craft took 51 days to complete the 4374 mile journey, at speeds up to 10 kt. The effectiveness of ARGOS for monitoring vessel location, sea state and crew condition, and detection of oceanographical information is demonstrated. In the evaluation of the scientific investigations such as detection of sailing distance or sailing speed, the frequency of data acquisition should be increased. Data transfer through the telex can be reduced. The emergency signal was not transmitted.

  5. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  6. Gas chromatographic retention characteristics of phenols with Superox-20M

    SciTech Connect

    White, C.M.; Li, N.C.

    1982-08-01

    The gas chromatographic retention characteristics of a variety of underivatized phenols have been studied by using Superox-20M coated on fused silica. The relative retention times of thes compounds were measured at 160, 150, and 140/sup 0/C in order to determine the effect of operating temperature on relative retention. This information is used to predict relative retention times of phenols for which we had no standards. The linear temperature-programmed retention indexes of the solutes were measured. The retention of phenols on this phase is a function of the compounds vapor pressure, its ability to hydrogen bond with the stationary phase, and the strengths of those hydrogen bonds. These properties are in turn governed by steric, inductive, and resonance effects of the substituents. Linear free-energy relations between the logarithm of the ratio of the activity coefficients of phenol to substituted phenol (calculated from relative retention data) and the chromatographic substituent constant, sigma/sub c/, have been determined for some phenols on Superox-20M. Lastly, it was shown by nuclear magnetic resonance experiments that Superox-20M is apparently a poly(ethylene glycol) (also called a polyoxiran or poly(ethylene oxide)). 5 figures, 3 tables.

  7. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  8. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  9. Unsteady Sail Dynamics in Olympic Class Sailboats

    NASA Astrophysics Data System (ADS)

    Williamson, Charles; Schutt, Riley

    2016-11-01

    Unsteady sailing techniques have evolved in competitive sailboat fleets, in cases where the relative weight of the sailor is sufficient to impart unsteady motions to the boat and sails. We will discuss three types of motion that are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. In all of our cases, body weight movements induce unsteady sail motion, increasing driving force and speed through the water. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and a 6-GoPro camera array. We shall briefly discuss "sail flicking", whereby the helmsman periodically rolls the sail into the apparent wind, at an angle which is distinct from classical heave (in our case, the oscillations are not normal to the apparent flow). We also demonstrate "roll tacking", where there are considerable advantages to rolling the boat during such a maneuver, especially in light wind. In both of the above examples from on-the-water studies, corresponding experiments using a towing tank exhibit increases in the driving force, associated with the formation of strong vortex pairs into the flow. Finally, we focus on a technique known as "S-curving" in the case where the boat sails downwind. In contrast to the previous cases, it is drag force rather than lift force that the sailor is trying to maximise as the boat follows a zig-zag trajectory. The augmented apparent wind strength due to the oscillatory sail motion, and the growth of strong synchronised low-pressure wake vortices on the low-pressure side of the sail, contribute to the increase in driving force, and velocity-made-good downwind.

  10. Viking-Age Sails: Form and Proportion

    NASA Astrophysics Data System (ADS)

    Bischoff, Vibeke

    2017-01-01

    Archaeological ship-finds have shed much light on the design and construction of vessels from the Viking Age. However, the exact proportions of their sails remain unknown due to the lack of fully preserved sails, or other definite indicators of their proportions. Key Viking-Age ship-finds from Scandinavia—the Oseberg Ship, the Gokstad Ship and Skuldelev 3—have all revealed traces of rigging. In all three finds, the keelson—with the mast position—is preserved, together with fastenings for the sheets and the tack, indicating the breadth of the sail. The sail area can then be estimated based on practical experience of how large a sail the specific ship can carry, in conjunction with hull form and displacement. This article presents reconstructions of the form and dimensions of rigging and sail based on the archaeological finds, evidence from iconographic and written sources, and ethnographic parallels with traditional Nordic boats. When these sources are analysed, not only do the similarities become apparent, but so too does the relative disparity between the archaeological record and the other sources. Preferential selection in terms of which source is given the greatest merit is therefore required, as it is not possible to afford them all equal value.

  11. A solar sailcraft simulation application

    NASA Astrophysics Data System (ADS)

    Čeleda, Tomáš

    2013-07-01

    An applicationAvailable online at the Aldebaran educational portal: www.aldebaran.cz/lab/plachetnice/SolarSail.html. was created to encourage students’ practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation pressure. The students’ goal can, for example, be to fly from the Earth to Mars.

  12. A Deweyian Framework for Youth Development in Experiential Education: Perspectives from Sail Training and Sailing Instruction

    ERIC Educational Resources Information Center

    Wojcikiewicz, Steven K.; Mural, Zachary B.

    2010-01-01

    In this piece, we put forth a Deweyian framework for youth development activities in outdoor and adventure education programs, and we show how such a framework may be exemplified by activities in sail training and sailing instruction. The paper begins with a discussion of the theoretical features of Deweyian educational experiences and makes…

  13. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

    NASA Astrophysics Data System (ADS)

    Heller, René; Hippke, Michael

    2017-02-01

    At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10‑4 gram m‑2) in orbit around Proxima is about 13,800 km s‑1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s‑1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.

  14. Rethinking Use of the OML Model in Electric Sail Development

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    In 1924, Irvin Langmuir and H. M. Mott-Smith published a theoretical model for the complex plasma sheath phenomenon in which they identified some very special cases which greatly simplified the sheath and allowed a closed solution to the problem. The most widely used application is for an electrostatic, or "Langmuir," probe in laboratory plasma. Although the Langmuir probe is physically simple (a biased wire) the theory describing its functional behavior and its current-voltage characteristic is extremely complex and, accordingly, a number of assumptions and approximations are used in the LMS model. These simplifications, correspondingly, place limits on the model's range of application. Adapting the LMS model to real-life conditions is the subject of numerous papers and dissertations. The Orbit-Motion Limited (OML) model that is widely used today is one of these adaptions that is a convenient means of calculating sheath effects. Since the Langmuir probe is a simple biased wire immersed in plasma, it is particularly tempting to use the OML equation in calculating the characteristics of the long, highly biased wires of an Electric Sail in the solar wind plasma. However, in order to arrive at the OML equation, a number of additional simplifying assumptions and approximations (beyond those made by Langmuir-Mott-Smith) are necessary. The OML equation is a good approximation when all conditions are met, but it would appear that the Electric Sail problem lies outside of the limits of applicability.

  15. Communicating LightSail: Embedded Reporting and Web Strategies for Citizen-Funded Space Missions

    NASA Astrophysics Data System (ADS)

    Hilverda, M.; Davis, J.

    2015-12-01

    The Planetary Society (TPS) is a non-profit space advocacy group with a stated mission to "empower the world's citizens to advance space science and exploration." In 2009, TPS began work on LightSail, a small, citizen-funded spacecraft to demonstrate solar sailing propulsion technology. The program included a test flight, completed in June 2015, with a primary mission slated for late 2016. TPS initiated a LightSail public engagement campaign to provide the public with transparent mission updates, and foster educational outreach. A credentialed science journalist was given unrestricted access to the team and data, and provided regular reports without editorial oversight. An accompanying website, sail.planetary.org, provided project updates, multimedia, and real-time spacecraft data during the mission. Design approaches included a clean layout with text optimized for easy reading, balanced by strong visual elements to enhance reader comprehension and interest. A dedicated "Mission Control" page featured social media feeds, links to most recent articles, and a ground track showing the spacecraft's position, including overflight predictions based on user location. A responsive, cross-platform design allowed easy access across a broad range of devices. Efficient web server performance was prioritized by implementing a static content management system (CMS). Despite two spacecraft contingencies, the test mission successfully completed its primary objective of solar sail deployment. Qualitative feedback on the transparent, embedded reporting style was positive, and website metrics showed high user retention times. The website also grew awareness and support for the primary 2016 mission, driving traffic to a Kickstarter campaign that raised $1.24 million. Websites constantly evolve, and changes for the primary mission will include a new CMS to better support multiple authors and a custom dashboard to display real-time spacecraft sensor data.

  16. 20-mN Variable Specific Impulse (Isp) Colloid Thruster

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel

    2015-01-01

    Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.

  17. SAIL--stereo-array isotope labeling.

    PubMed

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  18. Design and development of a gossamer sail system for deorbiting in low earth orbit

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan M.; Visagie, Lourens; Schenk, Mark; Stohlman, Olive R.; Aglietti, Guglielmo S.; Lappas, Vaios J.; Erb, Sven

    2014-10-01

    The accumulation of space debris in low Earth orbits poses an increasing threat of collisions and damage to spacecraft. As a low-cost solution to the space debris problem the Gossamer Deorbiter proposed herein is designed as a scalable stand-alone system that can be attached to a low-to-medium mass host satellite for end-of-life disposal from low Earth orbit. It consists of a 5 m by 5 m square solar/drag sail that uses four bistable carbon fiber booms for deployment and support. Prior to deployment of the gossamer structure, a telescopic enclosure system is used to displace the sail from the host craft in order to extend the sail without hindrance from the host peripherals, and also provide passive stabilization. The principal advantage of an entirely passive operational mode allows the drag augmentation system to act as a “fail-safe” device that would activate if the spacecraft suffers a catastrophic failure. Several scenarios are analyzed to study the potential application and performance of the system to current and future missions. A detailed breakdown of the mechanical subsystems of the Gossamer Deorbiter is presented, as well as the characterization process of the deployable booms and sail membrane and the full qualification testing campaign at component and system levels. Finally, the performance scalability of the concept is analyzed.

  19. Use of magnetic sails for advanced exploration missions

    NASA Technical Reports Server (NTRS)

    Andrews, Dana G.; Zubrin, Robert M.

    1990-01-01

    The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.

  20. Voyager Sails into Market for Reading

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2006-01-01

    This article reports how the Voyager Universal Literacy core program, which is sailing successively into the market for reading programs, has been the target of several speculations over its secrets of success. Use of the Voyager Universal Literacy program has since spread to 1,000 districts throughout the country since its introduction into the…

  1. The International Sailing Canoe: A Technical Review

    DTIC Science & Technology

    1994-10-01

    Mermaid , considered the ultimate develop- ment in the 16 x 30 class, as she with skipper Leo Friede won the New York Cup in 1914. Various sailing...canoes, including Kestrel (circa 1890), Bee (circa 1890), Argonaut (cirea 1910), Mermaid (ci rca 1913, 1923) and an example of a "Rob Roy" Canoe (circa

  2. 46 CFR 177.330 - Sailing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.330 Sailing vessels. The design, materials, and construction... strength and resistance to plate buckling. The cognizant OCMI may require the owner to submit detailed calculations on the strength of the mast, post, yards, booms, bowsprits, and standing rigging to the...

  3. 46 CFR 116.330 - Sailing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 116.330 Sailing vessels. The design, materials, and construction of masts, posts, yards, booms... structure must be adequately reinforced to ensure sufficient strength and resistance to plate buckling. The cognizant OCMI may require the owner to submit detailed calculations on the strength of the mast,...

  4. 46 CFR 177.330 - Sailing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.330 Sailing vessels. The design, materials, and construction... strength and resistance to plate buckling. The cognizant OCMI may require the owner to submit detailed calculations on the strength of the mast, post, yards, booms, bowsprits, and standing rigging to the...

  5. 46 CFR 177.330 - Sailing vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.330 Sailing vessels. The design, materials, and construction... strength and resistance to plate buckling. The cognizant OCMI may require the owner to submit detailed calculations on the strength of the mast, post, yards, booms, bowsprits, and standing rigging to the...

  6. Validation of a Scalable Solar Sailcraft

    NASA Technical Reports Server (NTRS)

    Murphy, D. M.

    2006-01-01

    The NASA In-Space Propulsion (ISP) program sponsored intensive solar sail technology and systems design, development, and hardware demonstration activities over the past 3 years. Efforts to validate a scalable solar sail system by functional demonstration in relevant environments, together with test-analysis correlation activities on a scalable solar sail system have recently been successfully completed. A review of the program, with descriptions of the design, results of testing, and analytical model validations of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed. The scaled performance of the validated system is projected to demonstrate the applicability to flight demonstration and important NASA road-map missions.

  7. Combining Magnetic and Electric Sails for Interstellar Deceleration

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Hein, Andreas M.

    2016-07-01

    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using both sails sequentially outperforms using only the magnetic or electric sail for various mission scenarios and velocity ranges, at a constant total spacecraft mass. For example, for decelerating from 5% c, to interplanetary velocities, a spacecraft with both sails needs about 29 years, whereas the electric sail alone would take 35 years and the magnetic sail about 40 years with a total spacecraft mass of 8250 kg. Furthermore, it is assessed how the combined deceleration system affects the optimal overall mission architecture for different spacecraft masses and cruising speeds. Future work would investigate how operating both systems in parallel instead of sequentially would affect its performance. Moreover, uncertainties in the density of interstellar matter and sail properties need to be explored.

  8. Mission analysis and performance comparison for an Advanced Solar Photon Thruster

    NASA Astrophysics Data System (ADS)

    Dachwald, Bernd; Wurm, Patrick

    2011-12-01

    The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT), which does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. After having presented the equations that describe the force on the ASPT and after having performed a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: an Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large change in orbital eccentricity is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2 mm/s 2. Our results show that an SPT is not superior to the flat solar sail unless very idealistic assumptions are made.

  9. Spontaneous neonatal pneumomediastinum: the "spinnaker sail" sign.

    PubMed

    Lawal, T A; Glüer, S; Reismann, M; Dördelmann, M; Schirg, E; Ure, B

    2009-02-01

    Spontaneous pneumomediastinum is a rare condition in the newborn, not associated with identifiable trauma or mechanical ventilation. It is diagnosed by a combination of physical examination and confirmatory chest radiograph, with various recognized signs identifiable in this condition. We report the case of a male neonate, who had pneumomediastinum confirmed by the presence of a wind blown spinnaker sail sign and was managed conservatively. We also reviewed the literature.

  10. Antimatter Driven Sail for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Jackson, Gerald P.

    2005-02-01

    The concept of the Antimatter Driven Sail (ADS) has been examined in three major areas: Mission Architecture, Subsystem Technologies, and a Technology Roadmap. The Mission Architecture effort has focused on developing an integrated systems model to evaluate the performance of the entire spacecraft for a mission. The Subsystem Technologies investigation examined 1) the fundamental reactions between the antiprotons and the sail material and the subsequent momentum transfer, 2) a concept for storing antihydrogen at high densities, and 3) an entirely new concept for electrical power production. The new electrical-power concept may have applicability to nearer-term space missions as a power supply if the availability of antiprotons becomes common. In developing the Technology Roadmap, we examined the potential 1) for using recent developments in antiproton storage and antihydrogen formation to create a path to ultra-high density antihydrogen storage, and 2) for increasing production of antiprotons by modifying the existing Fermilab facility. Our system analysis indicates that a 10 kg instrument pay load could be sent to 250 AU in 10 years using 30 milligrams of antihydrogen. This amount of antimatter is clearly within the production potential of the US within the next 40 years using currently accepted accelerator technologies. Major aspects of the architecture remain to be investigated but the first-cut assessment of the mission profile, the subsystem technologies, and the technology development path have all been identified. The antimatter driven sail may in-fact allow humanity to consider sending probes to the stars.

  11. Fast Radio Bursts from Extragalactic Light Sails

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-03-01

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  12. Sail-assisted commercial marine vehicles: bibliography and abstracts

    SciTech Connect

    Shortall, J.W. III

    1983-01-01

    A bibliography that contains abstracts of 331 articles published on the subject of commercial sailing vessels and sail-assisted work boats of all kinds is presented. This is part of a continuing project supported both by the University of South Florida and the Florida Sea Grant College, and is an update of the previous publication of abstracts, Florida Sea Grant College Technical Paper No.24, May, 1982. Abstracts are compiled regularly, and subsequent reports will be issued periodically. A brief discussion of modern and historical commercial sail, the reasons for serious interest in same, and commercial sailing fishing vessels is presented.

  13. Stability of a Light Sail Riding on a Laser Beam

    NASA Astrophysics Data System (ADS)

    Manchester, Zachary; Loeb, Abraham

    2017-03-01

    The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.

  14. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  15. School-Based Adolescent Groups: The Sail Model.

    ERIC Educational Resources Information Center

    Thompson, John L.; And Others

    The manual outlines the processes, policies, and actual program implementation of one component of a Minnesota program for emotionally disturbed adolescents (Project SAIL): the development of school-based therapy/intervention groups. The characteristics of SAIL students are described, and some considerations involved in providing group services…

  16. Success and Interactive Learning: Sailing toward Student Achievement

    ERIC Educational Resources Information Center

    Midcap, Richard; Seitzer, Joan; Holliday, Randy; Childs, Amy; Bowser, Dana

    2008-01-01

    Success and Interactive Learning's (SAIL) front-loaded retention activities and unique financial incentives have combined to improve retention, persistence, and success of first-time college students. Its effectiveness has been validated through a comparison of retention rates and aggregate quality-point averages of SAIL cohorts with those rates…

  17. Ideologies of Adventure: Authority and Decision Making in Sail Training

    ERIC Educational Resources Information Center

    McCulloch, Kenneth H.

    2004-01-01

    Case studies of the contemporary UK sail training movement are used to illustrate the competing expressions of purpose in this field. Two sail training organisations are described and a case study voyage under the aegis of each is presented. The differences between the approaches are analysed as "traditions" or ideologies, articulated…

  18. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  19. Space Applications Industrial Laser System (SAILS)

    NASA Astrophysics Data System (ADS)

    McCay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-10-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  20. Exploring Unsteady Sail Propulsion in Olympic Class Sailboats

    NASA Astrophysics Data System (ADS)

    Schutt, Riley; Williamson, C. H. K.

    2014-11-01

    Unsteady sailing techniques, defined as ``flicking,'' ``roll-tacking'' and ``roll-gybing'' are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. Body weight movements induce unsteady sail motion, increasing driving force and enhancing maneuvering performance. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section (induced by the sailor's body movement) is not perpendicular to the sail's motion through the air. This leads to an ``exotic heave,'' with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed, along with a measurement of thrust and lift forces. When combined with turning maneuvers, these heaving sail motions can lead to significant increases in velocity made good, a critical variable used when assessing racing performance.

  1. Effect of surface-specific training on 20-m sprint performance on sand and grass surfaces.

    PubMed

    Binnie, Martyn J; Peeling, Peter; Pinnington, Hugh; Landers, Grant; Dawson, Brian

    2013-12-01

    This study compared the effect of an 8-week preseason conditioning program conducted on a sand (SAND) or grass (GRASS) surface on 20-m sprint performance. Twelve team-sport athletes were required to attend three 1-hour training sessions per week, including 2 surface-specific sessions (SAND, n = 6 or GRASS, n = 6) and 1 group session (conducted on grass). Throughout the training period, 20-m sprint times of all athletes were recorded on both sand and grass surfaces at the end of weeks 1, 4, and 8. Results showed a significant improvement in 20-m sand time in the SAND group only (p < 0.05), whereas 20-m grass time improved equally in both training subgroups (p < 0.05). These results suggest that surface-specificity is essential for 20-m speed improvements on sand and also that there is no detriment to grass speed gains when incorporating sand surfaces into a preseason program.

  2. Hiking strap force decreases during sustained upwind sailing.

    PubMed

    Buchardt, R; Bay, J; Bojsen-Møller, J; Nordsborg, N B

    2017-05-01

    The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2 × 10 min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2 of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10 min sailing periods (430 ± 131 vs. 285 ± 130 N, P < .001 and 369 ± 74 vs. 267 ± 97 N, P < .001, respectively), but MVC was similar before, between and after the two 10 min sailing periods (878 ± 215 vs. 852 ± 202 vs. 844 ± 211 130 N). In part 2, a significant positive correlation (r(2) = 0.619, P < .01) was observed between hMVC and regatta results. In conclusion, upwind sailing in wind speeds above 12 knots causes sailing-specific fatigue as evidenced by a marked reduction in exerted hiking strap force. However, MVC of the knee extensors was not compromised ∼45 s after hiking was terminated. Additionally, sailing performance is related to maximal hiking force.

  3. Re-Thinking the Use of the OML Model in Electric-Sail Development

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    The Orbit Motion Limited (OML) model commonly forms the basis for calculations made to determine the effect of the long, biased wires of an Electric Sail on solar wind protons and electrons (which determines the thrust generated and the required operating power). A new analysis of the results of previously conducted ground-based experimental studies of spacecraft-space plasma interactions indicate that the expected thrust created by deflected solar wind protons and the current of collected solar wind electrons could be considerably higher than the OML model would suggest. Herein the experimental analysis will be summarized and the assumptions and approximations required to derive the OML equation-and the limitations they impose-will be considered.

  4. A Solar Sailcraft Simulation Application

    ERIC Educational Resources Information Center

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  5. TALC: a new deployable concept for a 20m far-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal

    2014-08-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This

  6. Astronaut Terry Hart in orbiter training in the SAIL

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, 'punches up' a display in an orbiter trainer in the JSC Shuttle Avionics Integration Laboratory (SAIL). The scenes Hart controls here appear in the 'windows' of the trainer.

  7. View south of sail loft mid loft area. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south of sail loft - mid- loft area. Note inflatable boats undergoing pressure testing. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  8. 26. STARBOARD PROFILE OF ALABAMA (ALABAMIAN) WITH SAILS SET Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. STARBOARD PROFILE OF ALABAMA (ALABAMIAN) WITH SAILS SET Original 2-3/4'x2-1/4' photograph taken c. 1930? - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  9. Interior view of the entry to the sail loft. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the entry to the sail loft. View facing west southwest - U.S. Naval Base, Pearl Harbor, Shipfitter's Shop, Seventh Street near Avenue C, Adjacent to Repair Basins, Pearl City, Honolulu County, HI

  10. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  11. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  12. Fundamentals of Plasma Sails Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Kabin, K.; Delamere, P. A.

    2002-01-01

    The Mini-Magnetospheric Plasma Propulsion (M2P2), originally proposed by Winglee et al. [2000], is based on the two-fluid plasma model and requires a 15-km frontal standoff distance (or 20-km cross-sectional diameter) in order for the magnetic bubble to absorb sufficient momentum from the SW to accelerate a spacecraft to the unprecedented speeds of 50-80 km/s after an acceleration period of about three months. Winglee et al. [2000] derived the above size requirement based on an extrapolation of their simulated results in which a system much smaller than a M2P2 was used (p. 21,074 of their study). We submit, however, that a fluid model has no validity for such a small scale size-even in the region near the plasma source! It is assumed in the MHD fluid model, normally applied to the magnetosphere, that the characteristic scale-size is much greater than the Larmor radius and ion skin depth of the SW. In the case of the M2P2, however, the size of the magnetic bubble is actually less than or, at best, comparable to, the scale of these characteristic parameters and, therefore, a kinetic approach, which addresses the smallscale physical mechanisms involved, must be used. A fully three-dimensional version of the hybrid code is used in our M2P2 (Plasma Sails) studies was originally developed by Delamere et al. [1999]. The M2P2 plasma sail is an excellent application for this hybrid code. The primary advantage of this code is the seamless interface between fluid and kinetic descriptions of the ion populations. A kinetic description is not necessary for the dense inner regions of the magnetic bubble and tremendous computational savings can be realized by treating this dense, magnetized ion population with the fluid description. It is essential, however, that the outer bubble regions be treated kinetically as well as the SW protons. Comparison of full size M2P2 simulation based on 3D MHD and kinetic models show that kinetic treatment introduces much more asymmetry to the

  13. 53. Photographer unknown, date unknown. E.C. COLLIER under sail, dredging ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photographer unknown, date unknown. E.C. COLLIER under sail, dredging oysters. Please credit Chesapeake Bay Maritime Museum, St. Michaels, Maryland. - Two-Sail Bateau E. C. COLLIER, Chesapeake Bay Maritime Museum, Mills Street, Saint Michaels, Talbot County, MD

  14. Transactional Instruction of Comprehension Strategies: The Montgomery County, Maryland, SAIL Program.

    ERIC Educational Resources Information Center

    Pressley, Michael; And Others

    1994-01-01

    Describes a comprehension strategies instruction program called Students Achieving Independent Learning (SAIL). Relates the program to reader response and transactional theories of reading. Shows how the program works in one school system. Compares SAIL with basal series instruction programs. (HB)

  15. 33 CFR 83.25 - Sailing vessels underway and vessels under oars (Rule 25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exhibited in sufficient time to prevent collision. (2) A vessel under oars may exhibit the lights prescribed... collision. (e) Vessels proceeding under sail. A vessel proceeding under sail when also being propelled...

  16. 33 CFR 83.25 - Sailing vessels underway and vessels under oars (Rule 25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhibited in sufficient time to prevent collision. (2) A vessel under oars may exhibit the lights prescribed... collision. (e) Vessels proceeding under sail. A vessel proceeding under sail when also being propelled...

  17. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  18. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hull centerlines in meters (feet). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of the sail area above the deck, in meters (feet). W=the total...). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of...

  19. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hull centerlines in meters (feet). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of the sail area above the deck, in meters (feet). W=the total...). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of...

  20. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hull centerlines in meters (feet). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of the sail area above the deck, in meters (feet). W=the total...). As=the maximum sail area in square meters (square feet). Hc=the height of the center of effort of...

  1. Japanese-built tanker expected to realize fuel savings with sails

    SciTech Connect

    Not Available

    1981-03-01

    Nippon Kokan K.K. determined that motor power supplemented by sail power would result in at least 10% fuel savings. Sails were tested first with a 1/15-scale model of a 480,000-dwt oil tanker, then the 1600-dwt Shin Aitoku Maru was built with computer-controlled sails. 4 figures. (DLC)

  2. 33 CFR 165.T11-0551 - Safety Zone; America's Cup Sailing Events.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sailing Events. 165.T11-0551 Section 165.T11-0551 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.T11-0551 Safety Zone; America's Cup Sailing Events. (a) Definitions—(1) America's Cup Racing... 34th America's Cup sailing events. (2) Patrol Commander. As used in this section, “Patrol Commander”...

  3. Kiteships, sailing vessels pulled and powered with a kite

    SciTech Connect

    Winter, F. de; Swenson, R.B.; Culp, D.

    1999-07-01

    Current windpower technology and future petroleum supply scenarios make it likely that it will become desirable to consider sailing vessels again for the merchant marine. For the wind-powered propulsion it seems possible to use tethered kites, instead of the traditional combination of masts and booms supporting a system of sails. This may be both safer and more cost-effective. The authors are on boat No. 2 in an R and D program aimed at this large scale application, and the present paper represents a progress report. Boat No. 1 was used to achieve speed and power, achieving a speed of 33 knots (over 60 km per hour), and sailing speeds at times of twice the wind velocity. Boat No. 2 will not be used for speed, but for the development of kite deployment and retrieval techniques, with kites of up to 300 sq ft (28 sq m) in surface area.

  4. BOREAS TE-18 GeoSail Canopy Reflectance Model

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Huemmrich, K. Fred

    2000-01-01

    The SAIL (Scattering from Arbitrarily Inclined Leaves) model was combined with the Jasinski geo metric model to simulate canopy spectral reflectance and absorption of photosynthetically active radiation for discontinuous canopies. This model is called the GeoSail model. Tree shapes are described by cylinders or cones distributed over a plane. Spectral reflectance and transmittance of trees are calculated from the SAIL model to determine the reflectance of the three components used in the geometric model: illuminated canopy, illuminated background, shadowed canopy, and shadowed background. The model code is Fortran. sample input and output data are provided in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  5. Diode-laser-based high-precision absolute distance interferometer of 20 m range.

    PubMed

    Pollinger, Florian; Meiners-Hagen, Karl; Wedde, Martin; Abou-Zeid, Ahmed

    2009-11-10

    We present a hybrid absolute distance measurement method that is based on a combination of frequency sweeping, variable synthetic, and two-wavelength, fixed synthetic wavelength interferometry. Both experiments were realized by two external cavity diode lasers. The measurement uncertainty was experimentally and theoretically demonstrated to be smaller than 12 microm at a measurement distance of 20 m.

  6. Synthesis of stereoarray isotope labeled (SAIL) lysine via the "head-to-tail" conversion of SAIL glutamic acid.

    PubMed

    Terauchi, Tsutomu; Kamikawai, Tomoe; Vinogradov, Maxim G; Starodubtseva, Eugenia V; Takeda, Mitsuhiro; Kainosho, Masatsune

    2011-01-07

    A stereoarray isotope labeled (SAIL) lysine, (2S,3R,4R,5S,6R)-[3,4,5,6-(2)H(4);1,2,3,4,5,6-(13)C(6);2,6-(15)N(2)]lysine, was synthesized by the "head-to-tail" conversion of SAIL-Glu, (2S,3S,4R)-[3,4-(2)H(2);1,2,3,4,5-(13)C(5);2-(15)N]glutamic acid, with high stereospecificities for all five chiral centers. With the SAIL-Lys in hand, the unambiguous simultaneous stereospecific assignments were able to be established for each of the prochiral protons within the four methylene groups of the Lys side chains in proteins.

  7. Vegetation canopy PAR absorptance and the normalized difference vegetation index - An assessment using the SAIL model

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Huemmrich, Karl F.

    1992-01-01

    Relationships are studied between the normalized-difference vegetation index (NDVI) and absorbed photosynthetically active radiation (APAR) in a vegetation canopy. The SAIL model of bidirectional canopy radiative transfer is employed to compare NDVI measurements that are instantaneous with diurnally integrated canopy APAR capacity. The NDVI measurements - taken at solar-zenith angles of more than 60 deg and sensor views of less than 40 deg from nadir - give stable near-linear estimates of diurnal APAR capacity. Discrepancies in the relations between APAR and NDVI are associated with variations in the optical properties of the canopy and with background spectral reflectance. The results are significant for the practical use of these remote sensing techniques but suggest that instantaneous observations can be used to characterize the diurnally integrated APAR in vegetation canopies.

  8. 33 CFR 161.19 - Sailing Plan (SP).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 161.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY VESSEL TRAFFIC MANAGEMENT Vessel Movement Reporting System § 161.19 Sailing Plan..., and other required information as set out in § 160.211 and § 160.213 of this chapter, if applicable....

  9. Sail Training as Education: More than Mere Adventure

    ERIC Educational Resources Information Center

    McCulloch, K.; McLaughlin, P.; Allison, P.; Edwards, V.; Tett, L.

    2010-01-01

    This paper describes the process and findings of a multinational study of the characteristics of sail training for young people. The study used a structured qualitative method and involved "indigenous practitioner-researchers" who collected the majority of the data. Our findings show that participation provides an opportunity for…

  10. Project SAIL: A Summer Program Brings History Alive for Students.

    ERIC Educational Resources Information Center

    Hollingsworth, Patricia

    2001-01-01

    This project describes Project SAIL (Schools for Active Interdisciplinary Learning), a federally funded project providing in-depth staff development during a 3-week summer program for teachers, parents, and their gifted/talented economically disadvantaged students. The program theme, "Searching for Patterns in History," has been used with students…

  11. Project SAIL: An Evaluation of a Dropout Prevention Program.

    ERIC Educational Resources Information Center

    Thompson, John L.; And Others

    Project SAIL (Student Advocates Inspire Learning) is a Title IV-C Project located in Hopkins, Minnesota, designed to prevent students from dropping out of school by keeping them successfully involved in the mainstream environment. This study presents a review of other dropout prevention approaches, describes the intervention strategies involved in…

  12. The Boom Design of the De-Orbit Sail Satellite

    NASA Astrophysics Data System (ADS)

    Hillebrandt, Martin; Meyer, Sebastian; Zander, Martin; Staubel, Marco; Huhne, Chritian

    2014-06-01

    DE-ORBIT SAIL is a cubesat based drag sail for the de-orbiting of satellites in a low earth orbit. It is scheduled for launch in late 2014 and will deploy a 25m2 sail supported by deployable carbon fiber booms designed and manufactured by DLR. This boom possesses a closed cross-section formed by two omega-shaped half-shells. Due to this cross-sectional design the boom features a high torsional stiffness. Thereby a high bending strength is achieved compared to other boom concepts for similar applications as the boom is less sensitive to flexural torsional buckling. The boom concept selection is based on a detailed analysis of three types of deployable booms which differ in their cross- sectional design. From this analysis the double- omega boom was determined as most suited for DE- ORBIT SAIL. For the manufacturing of the booms a novel method is used where the booms are manufactured in an integral way in one piece.

  13. Assessment of Inquiry Skills in the SAILS Project

    ERIC Educational Resources Information Center

    Harrison, Chris

    2014-01-01

    Inquiry provides both the impetus and experience that helps students acquire problem solving and lifelong learning skills. Teachers on the Strategies for Assessment of Inquiry Learning in Science Project (SAILS) strengthened their inquiry pedagogy, through focusing on seeking assessment evidence for formative action. This paper reports on both the…

  14. The Strategies To Advance the Internationalization of Learning (SAIL) Program.

    ERIC Educational Resources Information Center

    Ebert, Kenneth B.; Burnett, Jane

    This report documents the Strategies to Advance the Internalization of Learning (SAIL) program developed at Michigan State University (MSU) to promote international, comparative, and cross-cultural learning and cross-cultural understanding in the university community. A total of 350 foreign and U.S. students who had international experience…

  15. Learning the Ropes: A SpeyGrian Sailing Tale.

    ERIC Educational Resources Information Center

    McEwen, Christian

    2003-01-01

    Fourteen educators went Scottish island-hopping on a 100-year-old sailing boat to learn journal writing and new techniques in outdoor learning, gain confidence for teaching about controversial issues, and experience creative education in general. This narrative of their journey eloquently captures the essence and power of experiential, outdoor…

  16. The epidemiology and aetiology of injuries in sailing.

    PubMed

    Neville, Vernon; Folland, Jonathan P

    2009-01-01

    Sailors are at risk of injury and an understanding of the risks and causes of injury are important in helping to reduce their frequency and severity. Injuries are specific to the class of sailing. In elite Olympic-class sailing the incidence of injury is approximately 0.2 injuries/athlete/year, with the lumbar and thoracic spine and the knee most commonly injured. Poor hiking technique and inadequate leg strength are thought to predispose the knee to injury. Injuries in novice and recreational sailing are predominantly acute in nature with contusions and abrasions typically occurring as a result of collisions with the boom or other equipment during manoeuvres. The only report of injuries in Paralympic-class sailing found a high rate of approximately 100 injuries/1000 days of sailing, likely due to severe sailing conditions. The majority of injuries were chronic in nature, predominantly sprains and strains of the upper extremity. The risk of windsurfing injury ranged from 1.1 to 2.0 injuries/person/year, with the majority of injuries being acute, typically due to impact with equipment. Severe injuries are frequent, with competitive male windsurfers often admitted to hospital for treatment. Chronic lower back injuries are also common in windsurfers and may be related to prolonged lordosis (lumbar extension) of the spine while 'pumping' the sail. In professional big-boat sailing, America's Cup studies have reported an incidence of approximately 2.2 injuries/1000 hours of sailing, with one study reporting a higher incidence of injury during fitness training sessions (8.6 injuries/1000 hours of fitness training). The main cause of injury seems to be non-specific overuse, with joint and ligament sprains and tendinopathies being the most common. Grinders and bowmen are at greatest risk of injury, with the repetitive nature of 'grinding' a contributing factor. In round-the-world offshore racing, 1.5 injuries/person/round-the-world race (amateur), and 3.2 injuries

  17. Starship Sails Propelled by Cost-Optimized Directed Energy

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  18. Microvibrations in a 20 M Long Ka-Band SAR Interferometer

    NASA Astrophysics Data System (ADS)

    Rodriques, G.; Ludwig, M.; Santiago-Prowald, J.

    2014-06-01

    Interferometric SAR operating at Ka-band has the potential for offering high-resolution 3D images of the surface of the Earth taken from a single-platform.The stability of the mechanical baseline of such an instrument has been considered as a key critical area for the feasibility of the concept.This paper is devoted to the analysis of the micro- vibrations in a 20-m long Ka-band SAR interferometer arising during typical attitude changing manoeuvers and the mechanical noise transmitted from reaction wheels. It is preliminarily concluded that the expected microvibration levels are within the requirements of the instrument.

  19. Simulating wheat crop residue reflectance with the SAIL model.

    SciTech Connect

    Su, H.; Ransom, M. D.; Kanemasu, E. T.; Environmental Assessment; Kansas State Univ.; Univ. of Georgia

    1997-01-01

    Estimating crop residue is important for soil conservation and tillage management. Remote sensing could provide the potential of estimating amount of crop residue using reflectance measurement and model simulation procedures. The purpose of this study was (1) to use the SAIL (Scattering by Arbitrarily Inclined Leaves) model to simulate crop residue reflectance from wheat, Triticum aestivum (L.), at visible and near-infrared wavelengths; and (2) to compare the simulated reflectance with field-measured reflectance for evaluating the simulation model. Simulated reflectance in visible and near-infrared wavebands was overestimated about 1 to 5 per cent, compared with measured reflectance in the field. However, overestimation was within the experimental errors. Results suggest that the SAIL model can be used to simulate crop residue reflectance in different wheat crop residue covers and that wheat crop residue cover could be estimated by inverting the model.

  20. Sail training: an innovative approach to graduate nurse preceptor development.

    PubMed

    Nicol, Pam; Young, Melisa

    2007-01-01

    A 1-day sail-training program that aims to increase graduate nurse preceptor skills was evaluated. Preliminary results suggest that this experiential learning is an effective way to develop graduate nurse preceptors. Awareness of graduate nurses' needs has been heightened, and skills in clinical teaching have been developed. It is indicated from the limited results that the outcomes are sustained over time, but further evaluation is needed.

  1. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination.

    PubMed

    Takeda, Mitsuhiro; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (epsilon- and zeta-SAIL Phe) and tyrosine (epsilon-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized delta-SAIL Phe and delta-SAIL Tyr, which allow us to observe and assign delta-(13)C/(1)H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the delta-, epsilon- or zeta-(13)C/(1)H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the delta-, epsilon-, and zeta-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly (13)C, (15)N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of zeta-SAIL Phe and epsilon-SAIL Tyr would be practically the best choice for protein structural determinations.

  2. Simulations of optical autofocus algorithms based on PGA in SAIL

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Xu, Qian; Zhou, Yu; Sun, Jianfeng

    2011-09-01

    The phase perturbations due to propagation effects can destroy the high resolution imagery of Synthetic Aperture Imaging Ladar (SAIL). Some autofocus algorithms for Synthetic Aperture Radar (SAR) were developed and implemented. Phase Gradient Algorithm (PGA) is a well-known one for its robustness and wide application, and Phase Curvature Algorithm (PCA) as a similar algorithm expands its applied field to strip map mode. In this paper the autofocus algorithms utilized in optical frequency domain are proposed, including optical PGA and PCA respectively implemented in spotlight and strip map mode. Firstly, the mathematical flows of optical PGA and PCA in SAIL are derived. The simulations model of the airborne SAIL is established, and the compensation simulations of the synthetic aperture laser images corrupted by the random errors, linear phase errors and quadratic phase errors are executed. The compensation effect and the cycle index of the simulation are discussed. The simulation results show that both the two optical autofocus algorithms are effective while the optical PGA outperforms the optical PCA, which keeps consistency with the theory.

  3. Sailing Directions of the North Atlantic Viking Age (from about the year 860 to 1400)

    NASA Astrophysics Data System (ADS)

    Thirslund, Søren

    As long as man has ventured to go to sea, sailing directions have existed. Man's survival depended upon knowing the best fishing and hunting places and how to find these were secrets, told only to family or friends.Later, sailing directions covered areas in the world where trade or new settlements had begun and, as early as 500 years B.C., some of these sailing directions were written down. They covered the Mediterranean Sea and part of western Europe and they were called PERIPLUS meaning . They contained almost the same information as sailing directions today, namely: harbours, anchorages, currents, possibilities for fresh water, provisions and other supplies.

  4. A multi-purpose SAIL demonstrator design and its principle experimental verification

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Yan, Aimin; Xu, Nan; Wang, Lijuan; Luan, Zhu; Sun, Jianfeng; Liu, Liren

    2009-08-01

    A fully 2-D synthetic aperture imaging ladar (SAIL) demonstrator is designed and being fabricated to experimentally investigate and theoretically analyze the beam diffraction properties, antenna function, imaging resolution and signal processing algorithm of SAIL. The design details of the multi-purpose SAIL demonstrator are given and, as the first phase, a laboratory-scaled SAIL system based on bulk optical elements has been built to verify the principle of design, which is similar in construction to the demonstrator but without the major antenna telescope. The system has the aperture diameter of about 1mm and the target distance of 3.2m.

  5. A new 3 mm band receiver for the Onsala 20 m antenna

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Lapkin, I.; Fredrixon, M.; Sundin, E.; Helldner, L.; Pettersson, L.; Ferm, S.-E.; Pantaleev, M.; Billade, B.; Bergman, P.; Olofsson, A. O. H.; Lerner, M. S.; Strandberg, M.; Whale, M.; Pavolotsky, A.; Flygare, J.; Olofsson, H.; Conway, J.

    2015-08-01

    A new receiver for the Onsala 20 m antenna with the possibility of being equipped with 3 mm and 4 mm bands has been built and the 3 mm channel has been commissioned during the Spring 2014. For single-dish operation, the receiver uses an innovative on-source/off-source optical switch. In combination with additional optical components and within the same optical layout, the switch provides two calibration loads (for the 3 mm and 4 mm channels), sideband rejection measurement, and tuning possibilities. The optical layout of the receiver employs all cold (4 K) offset elliptical mirrors for both channels, whereas the on-off switch employs flat mirrors only. The 3 mm channel employs a sideband separation (2SB) dual polarization receiver with orthomode transducer (OMT), 4-8 GHz intermediate frequency (IF), x 2pol x upper and lower sidebands (USB + LSB). The cryostat has four optical windows made of high density polyethylene (HDPE) with anti-reflection corrugations, two for the signal and two for each frequency band cold load. The cryostat uses a two-stage cryocooler produced by Sumitomo HI RDK 408D2 with anti-vibration suspension of the cold-head to minimize impact of the vibrations on the receiver stability. The local oscillator (LO) system is based on a Gunn oscillator with aphase lock loop (PLL) and four mechanical tuners for broadband operation, providing independently tunable LO power for each polarization. This paper provides a technical description of the receiver and its technology and could be useful for instrumentation engineers and observers using the Onsala 20 m telescope.

  6. Permanent Monitoring of the Reference Point of the 20m Radio Telescope Wettzell

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Losler, Michael; Eschelbach, Cornelia; Schenk, Andreas

    2010-01-01

    To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.

  7. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equation: ER10JA96.008 Where— B=the distance between hull centerlines in meters (feet). As=the maximum sail... be designed to satisfy the following equation: ER10JA96.007 Where— B=the distance between hull centerlines in meters (feet). As=the maximum sail area in square meters (square feet). Hc=the height of...

  8. Living at Sea: Learning from Communal Life Aboard Sail Training Vessels

    ERIC Educational Resources Information Center

    McCulloch, Ken

    2007-01-01

    This paper considers features of domestic and social life aboard sail training vessels, exploring the particular character of life at sea, and how these features contribute to the distinctive character of sail training experience as a context for learning. Methodologically, the study lies in the sociological tradition of ethnography, focusing on…

  9. A System for Individualizing Instruction. Practical Answers to U-SAIL Implementation Questions. Monograph No. 4.

    ERIC Educational Resources Information Center

    Utah System Approach to Individualized Learning Project.

    The U-SAIL system is a practical approach to individualization of instruction in which a problem-solving process is employed to install a program in logical sequential phases. U-SAIL is a nationally validated, successfully replicated, cost-feasible system for individualization of instruction which can be implemented in a variety of settings with…

  10. Images in pediatrics: the thymic sail sign and thymic wave sign.

    PubMed

    Alves, Nuno D; Sousa, Marta

    2013-01-01

    The authors present a radiographic image portraying the "thymic sail sign" and the "thymic wave sign," both normal findings in infant radiographs and present a short description of these signs. These are distinguished from pathologic findings such as the "spinnaker-sail sign" in pneumomediastinum.

  11. The sail wing windmill and its adaptation for use in rural India

    NASA Technical Reports Server (NTRS)

    Sherman, M. M.

    1973-01-01

    An 8 meter-diameter prototype sail wing windmill is reported that uses a one meter-diameter bullock cartwheel to which three bamboo poles are latched in a triangular pattern with overlapping ends, to form the airframe for cloth sails. This device lifts 300 pounds to a height of 20 feet in one minute in a 10 mph wind.

  12. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently...

  13. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently...

  14. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently...

  15. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently...

  16. 46 CFR 169.721 - Storm sails and halyards (exposed and partially protected waters only).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm sails and halyards (exposed and partially... § 169.721 Storm sails and halyards (exposed and partially protected waters only). (a) Unless clearly unsuitable, each vessel must have one storm trysail of appropriate size. It must be sheeted independently...

  17. What Is Our Maritime Heritage? A Marine Education Infusion Unit on Ships and Sailing. Revised Edition.

    ERIC Educational Resources Information Center

    Butzow, John W.; And Others

    The heritage of ships and boats of northern New England serves as the focal point of this interdisciplinary unit for fifth- through ninth-grade students. Information on maritime heritage, buoyancy and flotation, building a whitehall rowing boat, masts and sails, basics of sailing, and northern New England ships and shipping is provided in the…

  18. A Systems Engineering Approach to the Development of an Autonomous Sailing Vessel

    DTIC Science & Technology

    2011-01-01

    from the Naval Architecture program that de- sign and fabricate the vessels. In this paper, we discuss the pedagogy of robotic sailing as a...the pedagogy of robotic sailing as a capstone for Systems Engineering students and discuss our approach to interdisciplinary tasks such as this. We...2 B. E. Bishop, J. Bradshaw, C. Keef and N. Taschner 1 The Pedagogy of Robotic

  19. Power augmentation of cheap, sail-type, horizontal-axis wind-turbines

    NASA Astrophysics Data System (ADS)

    Fleming, P. D.; Probert, S. D.

    1982-09-01

    A history of the development of windpowered machinery is presented, and the installation of tipvanes and centerbodies to enhance the performance of low cost WECS for developing countries are examined experimentally. Particular attention is given to sail wing rotors equipped with tip fins, peristaltic pumps reparable by semiskilled labor, and various configurations of tip fins and center bodies, which deflect the wind outward from the hub to the sails. Cheap, flat-plate tip fins were found to effective in augmenting rotor performance by as much as 1.6 when facing only downwind. Best results were obtained with one tip vane per sail, with the fins downwind a distance at least equal to the pitch of a wind-filled sail. Further experimentation with stationary deflectors which redirect wind into the buckets of a Savonius rotor or the sails of a horizontal axis WECS are suggested.

  20. Scheduling Algorithm for Improving Lift (SAIL): Phase 1, documentation

    SciTech Connect

    Hawthorne, J.E.; MeLaren, R.A.

    1988-07-01

    The Military Sealift Command, a component of the United States Transportational Command, is responsible for the Sealift of military personnel and material during a crisis. Conceptual plans for these complex moves, called ''deliberate plans,'' are continually being prepared. A computer-based scheduling system, the Sealift Strategic Analysis Subsystem (SEASTRAT), is under development for assisting on the production of these plans. The ship scheduling portion of this system, the Scheduling Algorithm foe Improving Lift (SAIL), combines linear optimization and heuristic methods to determine ship routes and cargo loadings which honor a variety of complex operational constraints. 13 refs., 2 figs., 2 tabs.

  1. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction

  2. Solar breeze power package and saucer ship

    SciTech Connect

    Veazey, S. E.

    1985-11-12

    A solar breeze power package having versatile sail and windmast options useful both on land and sea and especially useful in the saucer ship type design. The Vertical Axis Wind Turbine (VAWT) of the several Darrieus designs in conjunction with roll-up or permanently mounted solar cells combine in a hybrid or are used separately to provide power to a battery bank or other storage device.

  3. Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis

    PubMed Central

    Mayorga-Vega, Daniel; Aguilar-Soto, Pablo; Viciana, Jesús

    2015-01-01

    The main purpose of the present meta-analysis was to examine the criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness. Relevant studies were searched from twelve electronic databases up to December 2014, as well as from several alternative modes of searching. The Hunter-Schmidt’s psychometric meta-analysis approach was conducted to estimate the population criterion-related validity of the 20-m shuttle run test. From 57 studies that were included in the present meta-analysis, a total of 78 correlation values were analyzed. The overall results showed that the performance score of the 20-m shuttle run test had a moderate-to-high criterion-related validity for estimating maximum oxygen uptake (rp = 0.66-0.84), being higher when other variables (e.g. sex, age or body mass) were used (rp = 0.78-0.95). The present meta-analysis also showed that the criterion-related validity of Léger’s protocol was statistically higher for adults (rp = 0.94, 0.87-1.00) than for children (rp = 0.78, 0.72-0.85). However, sex and maximum oxygen uptake level do not seem to affect the criterion-related validity values. When an individual’s maximum oxygen uptake attained during a laboratory-based test is not feasible, the 20-m shuttle run test seems to be a useful alternative for estimating cardiorespiratory fitness. In adults the performance score only seems to be a strong estimator of cardiorespiratory fitness, in contrast among children the performance score should be combined with other variables. Nevertheless, as in the application of any physical fitness field test, evaluators must be aware that the performance score of the 20-m shuttle run test is simply an estimation and not a direct measure of cardiorespiratory fitness. Key points Overall the 20-m shuttle run test has a moderate-to-high mean criterion-related validity for estimating cardiorespiratory fitness. The criterion-related validity of the 20-m shuttle run test is significantly

  4. A study of fraction of absorbed photosynthetically active radiation characteristics based on SAIL model simulation

    NASA Astrophysics Data System (ADS)

    Li, Li; Du, Yongming; Tang, Yong; Liu, Qinhuo

    2012-10-01

    The photosynthetically Active Radiation reached to plant canopy could be divided into two parts that are direct radiation and diffuse radiation. The paths into the vegetation canopy are different of these two kinds of radiation. It makes Fraction of Absorbed Photosynthetically Active Radiation (FPAR) different. So this difference between direct FPAR and diffuse FPAR must be determined to decide whether it should be considered into the FPAR inversion model. In this study, the SAIL model was modified which could output direct FPAR and diffuse FPAR. Then with the change of input parameters such as solar zenith angle, visiblity and LAI, the direct FPAR and diffuse FPAR would be change. When the visibility is set as 5km, 15km and 30km, the contribution of scattering of FPAR on the total FPAR is 52.6%, 29.3% and 21.7%. The error between whole FPAR and direct FPAR is reduced with the increasing of visibility and increased with the reducing of LAI. The maximum relative error is 13.2%. From the simulation analyses, we could see that direct and diffuse FPAR are different with the changes of environment variables. So when modeling of FPAR, the diffuse part cannot be ignored. Direct FPAR and diffuse FPAR must be modeled respectively. This separation will help improve the accuracy of FPAR inversion.

  5. SAIL: Summation-bAsed Incremental Learning for Information-Theoretic Text Clustering.

    PubMed

    Cao, Jie; Wu, Zhiang; Wu, Junjie; Xiong, Hui

    2013-04-01

    Information-theoretic clustering aims to exploit information-theoretic measures as the clustering criteria. A common practice on this topic is the so-called Info-Kmeans, which performs K-means clustering with KL-divergence as the proximity function. While expert efforts on Info-Kmeans have shown promising results, a remaining challenge is to deal with high-dimensional sparse data such as text corpora. Indeed, it is possible that the centroids contain many zero-value features for high-dimensional text vectors, which leads to infinite KL-divergence values and creates a dilemma in assigning objects to centroids during the iteration process of Info-Kmeans. To meet this challenge, in this paper, we propose a Summation-bAsed Incremental Learning (SAIL) algorithm for Info-Kmeans clustering. Specifically, by using an equivalent objective function, SAIL replaces the computation of KL-divergence by the incremental computation of Shannon entropy. This can avoid the zero-feature dilemma caused by the use of KL-divergence. To improve the clustering quality, we further introduce the variable neighborhood search scheme and propose the V-SAIL algorithm, which is then accelerated by a multithreaded scheme in PV-SAIL. Our experimental results on various real-world text collections have shown that, with SAIL as a booster, the clustering performance of Info-Kmeans can be significantly improved. Also, V-SAIL and PV-SAIL indeed help improve the clustering quality at a lower cost of computation.

  6. Gulf of Mexico Monitoring Via The Remotely Controlled CMR SailBuoy

    NASA Astrophysics Data System (ADS)

    Wienders, N.; Hole, L. R.; Peddie, D.

    2013-12-01

    The CMR SailBuoy is an unmanned ocean vessel capable of traveling the oceans for extended periods of time. It navigates the oceans autonomously - transmitting data at regular intervals using the Iridium network for two way communication. The SailBuoy can be used for a wide variety of ocean applications from measuring ocean and atmospheric parameters to tracking oil spills or acting as a communication relay station for subsea instrumentation. As part of the Deep-C project(Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico), a two month campaign was carried out from March to May 2013 with the purpose of collecting sea surface data (temperature, salinity and oxygen) during the spring bloom. The campaign was unique in that the SailBouy was remotely controlled from Norway after being deployed from the RV Apalachee. The SailBuoy was deployed approximately 11 nautical miles (nm) south of Cape San Blas. During its mission she sailed approximately 840nm on a cruise track across the Gulf coast, from the Florida Panhandle to Louisiana. The SailBuoy project is part of Deep-C's physical oceanography research which seeks to, among other things, understand how particles and dissolved substances (such as oil) travel from the deep sea to the Louisiana, Mississippi, Alabama and Florida shorelines. This involves cross-shelf transport and upwelling mechanisms, which the SailBuoy is capable of measuring. An other focus was the sampling of the Mississippi river plume, which has been shown to influence the distribution of particles, oil, dissolved substances in the water, at least at the surface level. Sea surface salinity measurement via satellite do not provide, at the moment, sufficient resolution and accuracy and instead, the SailBuoy seems to be a very convenient instrument to track river plumes. In this presentation we describe the collected data and include comparisons with high resolution ocean model outputs. We also present further plans for SailBuoy campaigns.

  7. Prediction of VO2peak from the 20-m shuttle-run test in youth with Down syndrome.

    PubMed

    Agiovlasitis, Stamatis; Pitetti, Kenneth H; Guerra, Myriam; Fernhall, Bo

    2011-04-01

    This study examined whether 20-m shuttle-run performance, sex, body mass index (BMI), age, height, and weight are associated with peak oxygen uptake (VO2peak) in youth with Down syndrome (DS; n = 53; 25 women, age 8-20 years) and whether these variables can be used to develop an equation to predict VO2peak. BMI, 20-m shuttle-run performance, and sex were significantly associated with VO2peak in youth with DS, whereas age, height, and weight were not. A regression model included only shuttle-run performance as a significant predictor of VO2peak; however, the developed prediction equation had low individual predictability. Therefore, 20-m shuttle-run performance alone does not provide valid prediction of VO2peak in youth with DS. Sex, BMI, age, height, and weight do not improve the prediction of VO2peak.

  8. Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake.

    PubMed

    Paradisis, Giorgos P; Zacharogiannis, Elias; Mandila, Dafni; Smirtiotou, Athanasia; Argeitaki, Polyxeni; Cooke, Carlton B

    2014-06-28

    The multi-stage 20-m shuttle run fitness test (20mMSFT) is a popular field test which is widely used to measure aerobic fitness by predicting maximum oxygen uptake (VO2max) and performance. However, the velocity at which VO2max occurs (vVO2max) is a better indicator of performance than VO2max, and can be used to explain inter-individual differences in performance that VO2max cannot. It has been reported as a better predictor for running performance and it can be used to monitor athletes' training for predicting optimal training intensity. This study investigated the validity and suitability of predicting VO2max and vVO2max of adult subjects on the basis of the performance of the 20mMST. Forty eight (25 male and 23 female) physical education students performed, in random order, a laboratory based continuous horizontal treadmill test to determine VO2max, vVO2max and a 20mMST, with an interval of 3 days between each test. The results revealed significant correlations between the number of shuttles in the 20mMSFT and directly determined VO2max (r = 0.87, p<0.05) and vVO2max (r = 0.93, p<0.05). The equation for prediction of VO2max was y = 0.0276x + 27.504, whereas for vVO2max it was y = 0.0937x + 6.890. It can be concluded that the 20mMSFT can accurately predict VO2max and vVO2max and this field test can provide useful information regarding aerobic fitness of adults. The predicted vVO2max can be used in monitoring athletes, especially in determining optimal training intensity.

  9. Sailing the skies: the improbable aeronautical success of the pterosaurs.

    PubMed

    Wilkinson, Matthew T

    2007-05-01

    Pterosaur wings bore a striking resemblance to sails, having a bony spar at the leading edge, formed by the forelimb and one enormously elongated digit, and an elastic wing membrane. Such simple wings would be expected to have performed badly due to excessive deformation, membrane flutter and poor control characteristics. Here I discuss how certain anatomical features, specifically a forewing membrane in the inner part of the wing and a system of fibres embedded in the distal part, may have countered these shortcomings. The forewing, supported by the unique pteroid bone, would have reduced the wings' geometric twist, and has been shown in wind tunnel tests to improve membrane stability at low angles of attack and dramatically increase the maximum lift coefficient at high angles of attack. The function of the fibres is poorly understood, but it is suggested that they improved membrane stability and optimised twist nearer the wingtips.

  10. POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.; Reinhart, Felix

    2012-01-01

    Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.

  11. NewsMars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

  12. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  13. Economic feasibility of sail power devices on Great Lakes bulk carriers

    SciTech Connect

    Not Available

    1982-03-24

    Progress is reported in a project to determine whether retro-fitting existing Great Lakes bulk carriers with auxiliary sail powering devices is economically feasible. The approach being used is to apply known technology both in terms of sail devices and calculation methods to determine the amount of fuel that can be saved and the probable cost of the sail device. Progress includes the identification and collection of data needed to determine the state of the art as well as to model the problem. Several sail powering devices were compared and an unstayed cat rig was chosen for further analysis and its performance characteristics were incorporated into a computer model, which is flow charted. (LEW)

  14. Initial Experimental Evaluation of a Circulation Controlled Sail on a Submersible Vehicle for Enhanced Maneuverability

    DTIC Science & Technology

    2007-03-14

    Coanda - effect trailing edge region slots. The sail was mounted on, and tested in conjunction with, an exploratory submarine hull design. Test results...to the Coanda - effect trailing edge slot. This technology was applied to the sail (bridge fairwater) of an investigative underwater vehicle model...CC), uses trailing edge mass ejection and the Coanda effect . This nonmechanical ability to vary control forces has the potential to reduce cost and

  15. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies.

    PubMed

    Kim, S Y; Theunissen, J-W; Balibalos, J; Liao-Chan, S; Babcock, M C; Wong, T; Cairns, B; Gonzalez, D; van der Horst, E H; Perez, M; Levashova, Z; Chinn, L; D'Alessio, J A; Flory, M; Bermudez, A; Jackson, D Y; Ha, E; Monteon, J; Bruhns, M F; Chen, G; Migone, T-S

    2015-05-29

    Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody-drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs.

  16. Solar Manuvering Spacecraft Guidance and Control System Applications

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2010-05-01

    The purpose of this project is to discuss the time of a transfer trajectory by consideration of the Earth's shadow. The time of transfer trajectory of a sail spacecraft was determined by consideration of the Earth's shadow and it was compared with the results in a case where the Earth's shadow was not taken into account. The solar sail spacecraft was demonstrated to be oriented in such a way that the solar force applies in one appropriate direction. The mathematical concept and feature shape of solar sail spacecraft were proven as correct design approaches. The equations of motion that were developed in the project were proven in correct format for transfer trajectory approach by means of the purposed CN (Cyrus Nejat) Equations of Motion. Four important comments were discussed from the observed results. The problem statement was depened along with appropriate assumptions. The solar sail craft was defined appropriately. The equations of motion were determined in order to evaluate the transfer trajectory of solar sail spacecraft. In this case, the time of flight was determined for two cases: with Earth's shadow, and without Earth's shadow. The results showed that the time of fight with the Earth's shadow consideration is higher than the time of fight without the Earth's shadow, but it had close responses due to small amount of force from the solar radiation pressure. The future of this project should also apply the Moon's shadow in the problem statement and determine the shadow of the Earth as it can be seen in a cone zone. There are also appropriate control system devices that should be designed for attitude determination. It is also necessary to apply appropriate damper system, composite and smart materials to remedy vibration problems.

  17. Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species.

    PubMed Central

    Mackie, G A

    1987-01-01

    I have tested whether selective degradation of mRNA for ribosomal protein S20 of Escherichia coli occurs under conditions for which the expression of S20 is regulated posttranscriptionally. Blot hybridization of total RNA extracted from cultures at different times after addition of rifampin has permitted the estimation of relative levels of the two S20 mRNA species and their half-lives. In a strain harboring a plasmid containing the complete gene for S20, including the transcriptional terminator, moderate posttranscriptional repression of S20 synthesis is accompanied by a substantial increase in the half-lives of both S20 mRNAs relative to those in the haploid parental strain. In an otherwise identical strain in which the transcriptional terminator is deleted from the plasmid-borne S20 genes, the half-life of total S20 mRNA declines more than twofold relative to that in the haploid parent. Thus accelerated decay of the mRNAs for ribosomal protein S20 appears to be an artifact of deletion of the transcriptional terminator, rather than a physiologically significant consequence of translational repression. Images PMID:2438268

  18. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    NASA Astrophysics Data System (ADS)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  19. Optimizing ships’ behaviour when sailing in following seas

    NASA Astrophysics Data System (ADS)

    Acomi, O. C.; Boştină, A.; Boştină, A. L.; Acomi, N.

    2015-11-01

    Ships are built for sailing and transporting cargo on seas and oceans in weather conditions that are not friendly all the time. Even if the weather forecast is transmitted to vessels, the way of acting is a matter of officers’ judgement, based on their knowledge and experience. The subject of this paper is to analyse the behaviour of a port container vessel in different weather conditions. The method consists in using a specially developed software which takes into account the main particulars, the actual stability and the dynamic characteristics of the individual ship in the real voyage conditions, in order to obtain the Dangerous Zone Diagram. In order to avoid surf-riding and broaching the master should reduce speed to less than the critical speed. The results of the study are presented in a diagram that allow us to analyse the situation and to determine the ways for avoiding dangerous conditions by changing the course or the speed. The study should be regarded as a supporting tool during the decision making process.

  20. Image processing algorithm of equiarm delay line in SAIL

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Lu, Wei

    2010-08-01

    The phase errors due to the nonlinear chirp of a tunable laser reduce the range resolution in Synthetic Aperture Imaging Ladar (SAIL). The analogue and digital image processing algorithms were developed, and all the image processing algorithms employed matched or nonmatched optical delay line. In this paper a theory of equiarm delay line to compensate the nonlinear chirp phase errors is proposed. This image processing algorithm includes three methods with different compensation precision and implementation difficulties, and promotes the application flexibility. Firstly, we derive the theory that the impact of the nonlinear chirp is suppressed with decreasing the delay time difference of the echo signal and the LO signal. Based on the theory, we propose three methods to establish the equiarm delay line: establishing matched target LO path, establishing reference path and dual coherent detections, establishing reference path and phase shifting calculation. Then the construction of the signal processing system and the mathematical flow of the algorithm are established. The simulations of the airborne synthetic aperture imaging ladar model approve that three methods suppress the phase errors of the nonlinear chirp to various extent, and improve the range resolution. The characteristics and the applicabilities of three methods are discussed finally.

  1. The solar photon thruster as a terrestrial pole sitter.

    PubMed

    Matloff, Gregory L

    2004-05-01

    Geosynchronous satellites are invisible at high latitudes. A pole-sitting spacecraft would have communication, climate-studies, and near-polar Earth observation applications. We present a pole-sitter based on the solar photon thruster (SPT), a two-sail variant of the solar sail using a large curved collector sail (always normal to the Sun) to direct sunlight against a much smaller thruster. Thrust decreases slower for an SPT than for a conventional sail arrangement as the angle between sunlight and the collector normal increases. An SPT pole-sitter is offset from the terrestrial pole so that a component of Earth gravity balances the solar radiation-pressure component pushing the SPT off station. The component of gravitational attraction of the Earth pulling the spacecraft towards Earth is also balanced by a solar radiation-pressure component. Results are presented for 80-100% collector/thruster reflectivities. For a spacecraft areal mass thickness of 0.002 kg/m(2), collector and thruster reflectivities of 0.9, the SPT can be situated above latitude 45 degrees at a distance of approximately 60 Earth radii. An SPT pole sitter would be affected by lunar perturbation, which can be compensated for by an on-board rocket thruster producing 2 x 10(-6) g acceleration, a second SPT thruster sail thrusting against the influence of the Moon, or by directing a microwave beam against the spacecraft. Since an SPT pole sitter is in a position rather than an orbit, the effect of terrestrial gravitation limits the size and design of the payload package, which limits terrestrial target resolution.

  2. Reduction of energy needs for fish harvesting through the use of sails on fishing vessels

    SciTech Connect

    Not Available

    1983-05-10

    The fishing industry has been hurt by rising fuel costs. This study was undertaken to determine the fuel savings that might occur if sails were used on fishing vessels as an auxiliary means of propulsion. Attention was also paid to vessel safety, crew efficiency and 'come-home' capabilities as they were effected by the use of sails. A boat was designed, built and equipped for sail assisted fishing operations. Data was collected during sea trials, test runs and actual fishing operations. These data were analysed with the help of the Virginia Institute of Marine Science to determine the fuel savings and the economic viability of the configuration. Assessment of the observations of crew performance and vessel safety were analyzed.

  3. Economic feasibility of sail power devices on Great Lakes bulk carriers

    SciTech Connect

    1982-09-22

    Three ships were examined, the ED RYERSON, the ST. CLAIR, and the STEWART CORT to determine if retro-fitting these ships with a 3000 sq ft soft sail cat rig is economically feasible. By using existing weather data taken from recorded observations on Lake Michigan and Lake Superior and known performance characteristics of both the sailplan and hull, a computer program was written to model the problem. Three cases for each ship were estimated. The first was the average fuel savings, second was an optimistic estimate of fuel savings, and the third was a pessimistic estimate of fuel savings. Several considerations had to be taken into account that had serious consequences for the economic viability of the idea. One was the fact that all of the aforementioned ships have self unloading equipment that require about 80% of the deck space to be clear. This limited the choice of sailplans to one per ship. Another consideration is that due to bridge clearance problems an air draft of less than 125' was required. These two factors limited the size and efficiency of the sail plan. The third consideration is that due to the very tight shipping channels on the Great Lakes, there is no provision for altering course to take advantage of prevailing winds in order to maximize the usefulness of the sail device. The sail device on the ED RYERSON does not seem to be economically feasible. Even at the lowest interest rate investigated in this study (8%) the average annual cost improves only in the optimistic estimates. At 12% interest even this slight advantage disappears. The sail devices on the STEWART CORT and ST. CLAIR seem to be marginally feasible at low interest rates and the present cost of fuel. The STEWART CORT seems to benefit most from the fitting of a sail device. A modest increase in fuel prices, perhaps possible, will make both of these ships look substantially better.

  4. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  5. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  6. Fission thrust sail as booster for high Δv fusion based propulsion

    NASA Astrophysics Data System (ADS)

    Ceyssens, Frederik; Wouters, Kristof; Driesen, Maarten

    2015-12-01

    The fission thrust sail as booster for nuclear fusion-based rocket propulsion for future starships is introduced and studied. First order calculations are used together with Monte Carlo simulations to assess system performance. If a D-D fusion rocket such as e.g. considered in Project Icarus has relatively low efficiency (~30%) in converting fusion fuel to a directed exhaust, adding a fission sail is shown to be beneficial for the obtainable delta-v. In addition, this type of fission-fusion hybrid propulsion has the potential to improve acceleration and act as a micrometeorite shield.

  7. Improved prediction of parachute line sail during lines-first deployment

    SciTech Connect

    Purvis, J.W.

    1984-04-01

    A numerical deployment simulation with the capability to predict line sail is presented. A finite element approach is used in which both canopy and suspension lines are modeled as flexible, distributed-mass structures connected to a finite-mass forebody. Translation and rotation of both the forebody and the deployment bag are determined from three-degree-of-freedom flight mechanics equations. The model includes all aspects of the deployment problem, such as suspension line aerodynamics, line ties, and canopy/deployment bag friction. The model has been verified by comparison with experimental data and used to investigate proposed solutions for a system with a line sail problem.

  8. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  9. Psycho-Physiological Responses of Obese Adolescents to an Intermittent Run Test Compared with a 20-M Shuttle Run

    PubMed Central

    Rey, Olivier; Maïano, Christophe; Nicol, Caroline; Mercier, Charles-Symphorien; Vallier, Jean-Marc

    2016-01-01

    Among the running field tests that measure aerobic fitness indirectly, the 20-m shuttle run test is the one most commonly used among obese youth. However, this back and forth running test induces premature cessation of exercise in this population. The present study aimed to examine the psycho-physiological responses of obese adolescents to an intermittent (15-15) progressive and maximal run test as compared with a continuous shuttle run test. Eleven obese adolescents (age: 14-15 years; BMI = 34.01 ± 5.30 kg·m-2) performed both tests. A two-way ANOVA examined the main effects of the running test, participant’s sex, and their interaction on maximal aerobic performance (net exercise duration and final velocity), physiological values (heart rate, pulmonary oxygen uptake, respiratory exchange ratio and blood lactate concentration) and psychological responses (rating of perceived exertion, and physical self-perceptions). Oxygen uptake and heart-rate values at 9 km·h-1 were also compared. Compared with a 20-m shuttle run, the 15-15 test induced lower pulmonary oxygen uptake values at 9 km/h (28.3 ± 2.7 vs. 35.4 ± 2.7 ml·min-1·kg-1) and finished with higher maximal velocity and net exercise duration (566 ± 156 vs. 346 ± 156 s, p < 0.001), with no inter-test physiological difference. The 15-15 test also resulted in higher ratings of perceived exertion (16.0 ± 1.2 vs. 12.7 ± 1.6, p < 0.001) and improved perceived physical condition compared with the 20-m shuttle run (+1.4 ± 1.4 vs. +0.2 ± 1.0, p < 0.05). Both tests induced a maximal aerobic power of obese adolescents, but the 15-15 test provided a more progressive speed increment and longer exercise duration. The 15-15 test also elicited a significant improvement of perceived physical condition. In conclusion the 15-15 test can be considered a relevant field test for assessing the aerobic fitness of obese adolescents. Key points In agreement with the previous results of Rey et al. (2013), the present study

  10. Accuracy of a 10 Hz GPS Unit in Measuring Shuttle Velocity Performed at Different Speeds and Distances (5 - 20 M).

    PubMed

    Beato, Marco; Bartolini, Davide; Ghia, Gianluigi; Zamparo, Paola

    2016-12-01

    The aim of this study was to validate the accuracy of a 10 Hz GPS device (STATSports, Ireland) by comparing the instantaneous values of velocity determined with this device with those determined by kinematic (video) analysis (25 Hz). Ten male soccer players were required to perform shuttle runs (with 180° change of direction) at three velocities (slow: 2.2 m·s(-1); moderate: 3.2 m·s(-1); high: maximal) over four distances: 5, 10, 15 and 20 m. The experiments were video-recorded; the "point by point" values of speed recorded by the GPS device were manually downloaded and analysed in the same way as the "frame by frame" values of horizontal speed as obtained by video analysis. The obtained results indicated that shuttle distance was smaller in GPS than video analysis (p < 0.01). Shuttle velocity (shuttle distance/shuttle time) was thus smaller in GPS than in video analysis (p < 0.001); the percentage difference (bias, %) in shuttle velocity between methods was found to decrease with the distance covered (5 m: 9 ± 6%; 20 m: 3 ± 3%). The instantaneous values of speed were averaged; from these data and from data of shuttle time, the distance covered was recalculated; the error (criterion distance-recalculated distance) was negligible for video data (0.04 ± 0.28 m) whereas GPS data underestimated criterion distance (0.31 ± 0.55 m). In conclusion, the inaccuracy of this GPS unit in determining shuttle speed can be attributed to inaccuracy in determining the shuttle distance.

  11. How Stable is a Light Sail Riding on a Laser Beam?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    The Breakthrough Starshot Initiative made headlines last year when the plan was first announced to send tiny spacecraft to our nearest stellar neighbors. But just how feasible is this initiative? A new study looks at just one aspect of this plan: whether we can propel the spacecraft successfully.Propelling a FleetThe Alpha Centauri star system, which consists of Alpha (left) and Beta (right) Centauri as well as Proxima Centauri (circled). [Skatebiker]The goal behind the Breakthrough Starshot Initiative is to build a fleet of tiny, gram-scale spacecraft to travel to the Alpha Centauri star system a systemin whicha planet was recently discovered around Proxima Centauri, the star nearest to us.To propel the spacecraft, the team plans to attach a reflective sail to each one. When a high-power laser beam is pointed at that sail from Earth, the impulse of the photons bouncing off the sail can acceleratethe lightweight spacecraft to a decent fraction of the speed of light, allowing it to reach the Alpha Centauri system within decades.Among the many potential engineering challenges forsuch a mission, one interesting one is examined in a recent study by Zachary Manchester and Avi Loeb of Harvard University: how do wekeep the spacecrafts light sail centered on the laser beam long enough to accelerate it?Beam profile (left) and corresponding potential function (right) for a laser beam made up of four Gaussians. With this configuration, the potential well pushes the spacecraft back to the center if it drifts toward the edges of the well. [Manchester Loeb 2017]The Search for StabilityManchester and Loeb arguethat any slight perturbations to the light sails position relative to the laser beam in the form of random disturbances, misalignments, or manufacturing imperfections could cause it to slide off the beam, preventing it from continuing toaccelerate. Ideally, the project would use a sail that could be passively stable: the sail wants to stay centered on the beam, rather than

  12. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  13. Anaerobic capacity, isometric endurance, and Laser sailing performance.

    PubMed

    Vangelakoudi, A; Vogiatzis, I; Geladas, N

    2007-08-01

    Laser sailors have to tolerate fatiguing contractions of the lower-body muscles for prolonged periods. The aims of the present study were (1) to evaluate the difference between top-ranked and club sailors, in their capacity to resist fatigue during sustained isometric and maximal power exercise, and (2) to examine the relationships between the above parameters and performance on a Laser simulator and competitive racing performance according to the national ranking list. Eight Greek nationally ranked Laser sailors were compared with eight club sailors. Each sailor performed: (a) an effort to the limit of tolerance on the Laser simulator, (b) an effort to the limit of tolerance of isometric endurance for the right leg on an isokinetic dynamometer, and (c) a Wingate test of maximal lower-body anaerobic power on a cycle ergometer. In the nationally ranked sailors, isometric endurance time (mean 160 s, s = 50) and endurance time on the Laser simulator (1381 s, s = 1354) were significantly (P < 0.05) longer than in the club sailors (101 s, s = 29 and 565 s, s = 367, respectively), whereas the final minute heart rate (in both groups: 149 beats . min(-1), s = 22) and the mean arterial pressure (nationally ranked sailors: 129 mmHg, s = 16; club sailors: 120 mmHg, s = 21) on the Laser simulator were not different between groups. During the Wingate test, the nationally ranked sailors had a significantly lower index of fatigue (42%, s = 5) than the club sailors (49%, s = 6). Isometric endurance time was significantly correlated with the Wingate index of fatigue (r = -0.73; P < 0.001). The nationally ranked sailors' mean and maximal anaerobic powers were significantly correlated with their national ranking positions (r = -0.83 and -0.71, respectively). It is suggested that isometric endurance and anaerobic power are well-developed in Laser class sailors and may influence their sailing performance. Furthermore, compared with club sailors, the nationally ranked sailors are able

  14. 33 CFR 83.25 - Sailing vessels underway and vessels under oars (Rule 25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhibit: (1) Sidelights; and (2) A sternlight. (b) Sailing vessels of less than 20 meters in length. In a... combined in one lantern carried at or near the top of the mast where it can best be seen. (c) Additional..., exhibit at or near the top of the mast, where they can best be seen, two all-round lights in a...

  15. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following equation: ER10JA96.008 Where— B=the distance between hull centerlines in meters (feet... waters must be designed to satisfy the following equation: ER10JA96.007 Where— B=the distance between hull centerlines in meters (feet). As=the maximum sail area in square meters (square feet)....

  16. The Rudder and the Sail: Assessment for Staff, Program, and Organizational Development.

    ERIC Educational Resources Information Center

    Ratcliff, James L.

    1999-01-01

    States that comprehensive, systematic plans to assess student learning can be both the rudder guiding and the sail driving change in staff, program, and organizational development. Explores the nature of assessment and how it can and does serve such roles, driving change in the college or adapting to emerging community needs. Contains 27…

  17. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    PubMed

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  18. Operation SAIL: One Effective Model for the Assimilation of New Students into a School District.

    ERIC Educational Resources Information Center

    Panagos, Jane L.; And Others

    1981-01-01

    Operation SAIL was designed to facilitate the assimilation of children who relocate from the inner city to suburban schools. The project includes faculty inservice training, parent orientation and involvement, and student cognitive and affective development. The methodology and results of the program's first year are described herein. (GC)

  19. SAIL--A Way to Success and Independence for Low-Achieving Readers.

    ERIC Educational Resources Information Center

    Bergman, Janet L.

    1992-01-01

    Argues that providing students with a repertoire of important learning strategies is one crucial way of helping all students to become independent readers, thinkers, and learners. Describes a third grade reading environment and the practices of the Students Achievement Independent Learning Program (SAIL). (PRA)

  20. Effects of a Tall Ship Sail Training Experience on Adolescents' Self-Concept

    ERIC Educational Resources Information Center

    Capurso, Michele; Borsci, Simone

    2013-01-01

    This study investigates the impact of a sail training education programme on the self-concept of a group of 147 adolescents. The Competence and Social domains of Bracken's self-concept scale were assessed by a quasi-experimental design in three phases: before commencement of the activities, on the last day of the voyage, and three months after…

  1. Deep Play. Rationality in the Life World with Special Reference to Sailing

    ERIC Educational Resources Information Center

    Goold, Patrick

    2014-01-01

    In an essay on the rationality of play, the author characterizes rationality by the three distinct demands it makes on the individual--demands for autonomy, solidarity, and integrity. He develops each of these as they apply to the sport of sailing, using the example of two deep-ocean expeditions to arrive at a concept of deep play he sees as one…

  2. 76 FR 36311 - Special Local Regulation; Extreme Sailing Series Boston; Boston Harbor, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ..., design, or operation; test methods; sampling procedures; and related management systems practices) that... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulation; Extreme Sailing Series Boston; Boston Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard...

  3. 46 CFR 178.325 - Intact stability requirements for a sailing vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Commanding Officer, Marine Safety Center, may prescribe additional or different stability requirements for a... 46 Shipping 7 2010-10-01 2010-10-01 false Intact stability requirements for a sailing vessel. 178... VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Intact Stability Standards §...

  4. 46 CFR 178.325 - Intact stability requirements-monohull sailing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protected waters or partially protected waters. (d) The Commanding Officer, Marine Safety Center, may... 46 Shipping 7 2014-10-01 2014-10-01 false Intact stability requirements-monohull sailing vessels... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Intact Stability Standards §...

  5. 77 FR 22706 - Special Local Regulation and Safety Zone; America's Cup Sailing Events, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... the ``America's Cup World Series,'' the ``Louis Vuitton Cup'' challenger selection series, and the ``America's Cup Finals Match'' sailing regattas that may be conducted in the waters of San Francisco Bay... SECURITY Coast Guard 33 CFR Parts 100 and 165 Special Local Regulation and Safety Zone; America's...

  6. Experimental investigation of laser-pushed light sails in a vacuum

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.; Knowles, Timothy R.; Bagford, John O.; Seibert, Daniel B., II

    2000-08-01

    Laser-boosted light sail experiments were carried out on 13 - 20 Dec. 1999 with the 150 kW LHMEL II carbon dioxide CW laser at Wright Patterson Air Force Base, using a 2.74-m long, 2.13-m diameter vacuum chamber evacuated to 36 - 44 microTorr. The 5-cm diameter laser sail discs (i.e., the test articles) were fabricated from an ultralight carbon microtruss fabric that was sputter-coated with molybdenum on one side only, to improve its reflectivity to 10.6 micrometer laser radiation. Four laser sails discs with three different areal densities (one at 6.6 g/sq.m., two at 27 g/sq.m., and one at 28 g/sq.m.) were tested as magnetically-supported pendulums with an overall length of 18 cm. Pendulum deflections for the three heavier sails, ranged from 2.4 to 11.4 degrees, measured as a function of incident laser powers from 7.9 to 13.9-kW. These pendulum sails had masses of 83.7, 87.3, and 88 milligrams each; their center-of-mass was located at 11.5, 11.7, and 11.9 cm (respectively) below the magnetic bearing. Laser photon thrust ranged from 3.0 to 13.8 dynes, as calculated from pendulum deflections. Seven of the 10 data points fell in the feasible range of 3.3 to 6.67 N/GW for photon propulsion physics; the other three (higher laser power) data points exceeded the 6.67 N/GW limit by as much as 50%. From this data set, the onset for significant ablation was clearly identified to be 12.9-kW. Laser sail temperature was monitored with an optical pyrometer, and fell in the range of 2270- K to above 2823-K for laser powers from 8-kW to 20.8-kW, respectively. The experiments are the first known measurements of laser photonic thrust performance with real candidate light sail materials.

  7. Crossvalidation of two 20-m shuttle-run tests for predicting VO2max in female collegiate soccer players.

    PubMed

    Green, Michael S; Esco, Michael R; Martin, Tyler D; Pritchett, Robert C; McHugh, Aindrea N; Williford, Henry N

    2013-06-01

    The aim of this study was twofold: (a) to compare the maximal attained speed (MAS) from the 20-m shuttle (MST) and 20-m square-shuttle (SST) tests and (b) to crossvalidate 2 equations for predicting maximal oxygen consumption (VO2max) that were previously developed from MST and SST in a group of female collegiate soccer players. Thirty-nine subjects (age: 20.1 ± 1.5 years) participated in the study. A maximal graded exercise treadmill test was used to measure VO2max. In addition, VO2max was predicted from the MAS obtained during MST ((pred)VO2maxMST) and SST ((pred)VO2maxSST) using previously developed equations. Measured VO2max for the group was 44.2 ± 3.3 ml·kg(-1)·min(-1). The MAS was 12.5 ± 0.6 km·h(-1) for MST and 13.3 ± 0.8 km·h(-1) for SST (p < 0.05). The prediction methods yielded a (pred)VO2maxMST of 49.6 ± 3.9 ml·kg(-1)·min(-1) and predVO2maxSST of 41.8 ± 3.1 ml·kg(-1)·min(-1), which were significantly different from measured VO2max (p < 0.05). The validity statistics revealed the following constant error (CE), correlation coefficient (r), standard error of estimate (SEE), and total error (TE) for (pred)VO2maxMST and (pred)VO2maxSST: CE = 5.35 ± 3.83, r = 0.45 (p < 0.05), SEE = 2.97 ml·kg(-1)·min(-1), TE = 6.39 ml·kg(-1)·min(-1); and CE = -2.43 ± 2.49, r = 0.69 (p < 0.05), SEE = 2.39 ml·kg(-1)·min(-1), TE = 3.43 ml·kg(-1)·min(-1), respectively. Residual plots indicated no proportional bias for either prediction model. The results of this study suggest that female collegiate soccer players had a higher MAS from SST compared with that from MST. In addition, SST appeared to be a more accurate predictor of VO2max than MST in the group of athletes.

  8. Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Portnov, A.; Mienert, J.; Cherkashov, G. A.

    2013-12-01

    We study the West-Yamal Shelf in the Kara Sea, offshore Western Russia. We present new high-resolution seismic data (2-16 kHz) and gas geochemical data from 2012 cruises. In high-resolution seismic data, we found extensive acoustic anomalies in the water column, which we interpreted to be gas (bubble) flares rising from the seafloor. These anomalies were widespread throughout the study area, but seemed to be limited to water depths > 20 meters below sea level (mbsl). One seepage site in ~6m water depth released gas that reached almost to the sea surface. The hydroacoustic anomalies are limited by the 20 m isobaths, and it may be controlled by the extension of permafrost that is still present below the seafloor at these depths providing an impermeable layer through which gas and other fluids cannot migrate. We detected acoustically transparent zones in sediments in the upper 2-5 meters below seafloor (mbsf). We interpret these acoustic anomalies to record the presence of free gas. Deeper seismic data show that acoustic anomalies in sediments near the seafloor are connected to gas chimneys that extend to depths >2000 mbsf. This suggests that gas is migrating from deeper hydrocarbon reservoirs and therefore it has very likely a thermogenic origin. In addition to the more widespread and disperse acoustically transparent zones, we discovered two prominent transparent mounds that are 1.5-2 km in diameter and that are elevated 10-15 meters above the seafloor. These features bear striking resemblance to the pingo-like features (PLF) that have been studied on the Beaufort Shelf (e.g. Shearer et al., 1971; Paull et al., 2007), and Pechora Sea (Rokos, 2009). Tentative results of numerical modelling estimate the thickness of permafrost, which was during the last sea level regression 170-300 meters thick. Based on the model of permafrost melting we state, that continuous sub-seabed permafrost may extend to water depths of ~20 m offshore creating a seal through which gas cannot

  9. Project Dragonfly: A feasibility study of interstellar travel using laser-powered light sail propulsion

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.

    2016-12-01

    Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.

  10. Feasibility Study of Interstellar Missions Using Laser Sail Probes Ranging in Size from the Nano to the Macro

    NASA Technical Reports Server (NTRS)

    Malroy, Eric T.

    2010-01-01

    This paper presents the analysis examining the feasibility of interstellar travel using laser sail probes ranging in size from the nano to the macro. The relativistic differential equations of motion for a laser sail are set up and solved using the Pasic Method. The limitations of the analysis are presented and discussed. The requirements for the laser system are examined, including the thermal analysis of the laser sails. Black holes, plasma fields, atmospheric collisions and sun light are several methods discussed to enable the deceleration of the interstellar probe. A number of novel mission scenarios are presented including the embryonic transport of plant life as a precursor to the arrival of space colonies

  11. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; Kim, Tony; Cirtain, Jonathan

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  12. An analytical description of three-dimensional heliocentric solar sail orbits

    NASA Astrophysics Data System (ADS)

    Stewart, Brian; Palmer, Phil; Roberts, Mark

    2016-12-01

    When gravitational aggregates are spun to fission they can undergo complex dynamical evolution, including escape and reconfiguration. Previous work has shown that a simple analysis of the full 2-body problem provides physically relevant insights for whether a fissioned system can lead to escape of the components and the creation of asteroid pairs. In this paper we extend the analysis to the full 3-body problem, utilizing recent advances in the understanding of fission mechanics of these systems. Specifically, we find that the full 3-body problem can eject a body with as much as 0.31 of the total system mass, significantly larger than the 0.17 mass limit previously calculated for the full 2-body problem. This paper derives rigorous limits on a fissioned 3-body system with regards to whether fissioned system components can physically escape from each other and what other stable relative equilibria they could settle in. We explore this question with a narrow focus on the Spherical Full Three Body Problem studied in detail earlier.

  13. Analysis and assessment of film materials and associated manufacturing processes for a solar sail

    NASA Technical Reports Server (NTRS)

    Bradbury, E. J.; Jakobsen, R. J.; Sliemers, F. A.

    1978-01-01

    Candidate resin manufacturers and film producers were surveyed to determine the availability of key materials and to establish the capabilities of fabricators to prepare ultrathin films of these materials within the capacity/cost/time constraints of the Halley program. Infrared spectra of three candidate samples were obtained by pressing each sample against an internal reflection crystal with the polymer sandwiched between the crystal and the metal backing. The sample size was such that less than one-fourth of the surface of the crystal was covered with the sample. This resulted in weak spectra requiring a six-fold expansion. Internal reflection spectra of the three samples were obtained using both a KRS-5 and a Ge internal reflection crystal. Subtracted infrared spectra of the three samples are presented.

  14. Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA.

    PubMed

    Ikeya, Teppei; Terauchi, Tsutomu; Güntert, Peter; Kainosho, Masatsune

    2006-07-01

    Recently we have developed the stereo-array isotope labeling (SAIL) technique to overcome the conventional molecular size limitation in NMR protein structure determination by employing complete stereo- and regiospecific patterns of stable isotopes. SAIL sharpens signals and simplifies spectra without the loss of requisite structural information, thus making large classes of proteins newly accessible to detailed solution structure determination. The automated structure calculation program CYANA can efficiently analyze SAIL-NOESY spectra and calculate structures without manual analysis. Nevertheless, the original SAIL method might not be capable of determining the structures of proteins larger than 50 kDa or membrane proteins, for which the spectra are characterized by many broadened and overlapped peaks. Here we have carried out simulations of new SAIL patterns optimized for minimal relaxation and overlap, to evaluate the combined use of SAIL and CYANA for solving the structures of larger proteins and membrane proteins. The modified approach reduces the number of peaks to nearly half of that observed with uniform labeling, while still yielding well-defined structures and is expected to enable NMR structure determinations of these challenging systems.

  15. Abundances of La138 and Ta180 Through ν-Nucleosynthesis in 20 M ⊙ Type II Supernova Progenitor, Guided by Stellar Models for Seeds

    NASA Astrophysics Data System (ADS)

    Lahkar, N.; Kalita, S.; Duorah, H. L.; Duorah, K.

    2017-03-01

    Yields of nature's rarest isotopes La138 and Ta180 are calculated by neutrino processes in the Ne-shell of density ρ ≈ 104 g/cc in a type II supernova (SN II) progenitor of mass 20 M ⊙. Two extended sets of neutrino temperature - T ν e = 3, 4, 5, 6 MeV and T ν( μ/ τ)= 4, 6, 8, 10, 12 MeV respectively for charged and neutral current processes are taken. Solar mass fractions of the seeds La 139, Ta 181, Ba 138 and Hf 180 are taken for calculation. They are assumed to be produced in some s-processing events of earlier generation massive `seed stars' with average interior density range < ρ>≈103-106 g/cc. The abundances of these two elements are calculated relative to O 16 and are found to be sensitive to the neutrino temperature. For neutral current processes with the neutron emission branching ratio, b n = 3.81 × 10-4 and b n = 9.61 × 10-1, the relative abundances of La138 lie in the ranges 4.48 × 10-14-2.94 × 10-13 and 1.13 × 10-10-7.43 × 10-10 respectively. Similarly, the relative abundances of Ta180 lie in the ranges 1.80 × 10-15-1.17 × 10-14 and 4.53 × 10-12-2.96 × 10-11 respectively for the lower and higher values of the neutron emission branching ratio. For charged current processes, the relative abundances of La138 and Ta180 are found to be in the ranges 1.38 × 10-9-7.62 × 10-9 and 2.09 × 10-11-1.10 × 10-10 respectively. Parametrized by density of the `seed stars', the yields are found to be consistent with recent supernova simulation results throughout the range of neutrino temperatures. La138 and Ta180 are found to be efficiently produced in charged current interaction.

  16. Simulation of synthetic aperture imaging ladar (SAIL) for three-dimensional target model

    NASA Astrophysics Data System (ADS)

    Yi, Ning; Wu, Zhen-Sen

    2010-11-01

    In conventional imaging laser radar, the resolution of target is constrained by the diffraction-limited, which includes the beamwidth of the laser in the target plane and the telescope's aperture. Synthetic aperture imaging Ladar (SAIL) is an imaging technique which employs aperture synthesis with coherent laser radar, the resolution is determined by the total frequency spread of the source and is independent of range, so can achieve fine resolution in long range. Ray tracing is utilized here to obtain two-dimensional scattering properties from three-dimensional geometric model of actual target, and range-doppler algorithm is used for synthetic aperture process in laser image simulation. The results show that the SAIL can support better resolution.

  17. Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes

    DTIC Science & Technology

    2011-01-01

    display with500μm pixel pitch being developed for the Army have developed materials that can maintain fidelity for thousands of impressions at...particles in TFT stack that can lead to electrical failure. A second common defect occurs during the imprint process when the elastomeric imprint...SAIL),” J. Soc. Inf. Display 17, 963 (2009) [2] C. Taussig et al., “Architecture and Materials for R2R Manufactured OLED Displays using Self-Aligned

  18. Unique sail-like structure of cor triatriatum dexter in three-dimensional echocardiogram.

    PubMed

    Low, Ting Ting; Uy, Celia Catherine C; Wong, Raymond Ching Chiew

    2014-08-01

    Cor triatriatum dexter (CTD) is an extremely rare congenital condition arising from the persistence of the right valve of the sinus venosus. It divides the right atrium (RA) into 2 separate chambers. We report a case of a 50-year-old man who had an incidental finding of CTD on transesophageal echocardiogram. An incomplete membrane of the RA was seen, and three-dimensional echocardiogram delineated the structure clearly as a triangular sail-like structure with multiple orifices and a fenestration.

  19. Tribute to Dr Jacques Rogge: muscle activity and fatigue during hiking in Olympic dinghy sailing.

    PubMed

    Bourgois, Jan G; Dumortier, Jasmien; Callewaert, Margot; Celie, Bert; Capelli, Carlo; Sjøgaard, Gisela; De Clercq, Dirk; Boone, Jan

    2017-03-19

    'A tribute to Dr J. Rogge' aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge's merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors' muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30-40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking.

  20. Cardiorespiratory and muscular responses to simulated upwind sailing exercise in Optimist sailors.

    PubMed

    Callewaert, Margot; Boone, Jan; Celie, Bert; De Clercq, Dirk; Bourgois, Jan G

    2014-02-01

    The aim of this work was to gain more insight into the cardiorespiratory and muscular (m. vastus lateralis) responses to simulated upwind sailing exercise in 10 high-level male and female Optimist sailors (10.8-14.4 years old). Hiking strap load (HSL) and cardiorespiratory variables were measured while exercising on a specially developed Optimist sailing ergometer. Electromyography (EMG) was used to determine mean power frequency (MPF) and root mean square (RMS). Near-infrared spectroscopy was used to measure deoxygenated Hemoglobin and Myoglobin concentration (deoxy[Hb+Mb]) and re-oxygenation. Results indicated that HSL and integrated EMG of the vastus lateralis muscle changed in accordance with the hiking intensity. Cardiorespiratory response demonstrated an initial significant increase and subsequently steady state in oxygen uptake (VO₂), ventilation (VE), and heart rate (HR) up to circa 40% VO₂peak, 30% VEpeak and 70% HRpeak respectively. At muscle level, results showed that highly trained Optimist sailors manage to stabilize the muscular demand and fatigue development during upwind sailing (after an initial increase). However, approaching the end of the hiking exercise, the MPF decrease, RMS increase, and deoxy[Hb+Mb] increase possibly indicate the onset of muscle fatigue.

  1. Visual search, movement behaviour and boat control during the windward mark rounding in sailing.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Hoozemans, Marco J M; Savelsbergh, Geert J P

    2015-01-01

    In search of key-performance predictors in sailing, we examined to what degree visual search, movement behaviour and boat control contribute to skilled performance while rounding the windward mark. To this end, we analysed 62 windward mark roundings sailed without opponents and 40 windward mark roundings sailed with opponents while competing in small regattas. Across conditions, results revealed that better performances were related to gazing more to the tangent point during the actual rounding. More specifically, in the condition without opponents, skilled performance was associated with gazing more outside the dinghy during the actual rounding, while in the condition with opponents, superior performance was related to gazing less outside the dinghy. With respect to movement behaviour, superior performance was associated with the release of the trimming lines close to rounding the mark. In addition, better performances were related to approaching the mark with little heel, yet heeling the boat more to the windward side when being close to the mark. Potential implications for practice are suggested for each phase of the windward mark rounding.

  2. Automated structure determination of proteins with the SAIL-FLYA NMR method.

    PubMed

    Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune

    2007-01-01

    The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.

  3. Administration Of Anti-CD20 mAb Is Highly Effective In Preventing But Ineffective In Treating Chronic GVHD While Preserving Strong GVL Effects

    PubMed Central

    Johnston, Heather F.; Xu, Yajing; Racine, Jeremy J.; Cassady, Kaniel; Ni, Xiong; Wu, Tao; Chan, Andrew; Forman, Stephen; Zeng, Defu

    2014-01-01

    Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome, and donor B cells play important roles in augmenting its pathogenesis. B cell-depleting anti-CD20 mAb has been administered before or after cGVHD onset for preventing or treating cGVHD in clinic. Although administration before onset appeared to be more effective, the effect is variable and sometimes minimal. Here, we used two mouse cGVHD models to evaluate the preventive and therapeutic effect of anti-CD20 mAb. With the model of DBA/2 donor to MHC-matched BALB/c recipient, one intravenous injection of anti-CD20 mAb (40 mg/kg) the following day or on day 7 after HCT when serum autoantibodies were undetectable effectively prevented induction of cGVHD and preserved strong graft-versus-leukemia (GVL) effect. The separation of GVL effect from GVHD was associated with a significant reduction of donor CD4+ T cell proliferation and expansion, and protection of host thymic medullary epithelial cells. Anti-CD20 mAb administration also prevented expansion of donor T cells and induction of cGVHD in another mouse model of C57BL/6 donor to MHC-mismatched BALB/c recipients. In contrast, administration of anti-CD20 mAb after GVHD onset was not able to effectively deplete donor B cells or ameliorate cGVHD in either model. These results indicate that administration of anti-CD20 mAb prior to signs of cGVHD can prevent induction of autoimmune-like cGVHD while preserving GVL effect; there is little effect if administered after cGVHD onset. This provides new insights into clinical prevention and therapy of cGVHD with B cell-depleting reagents. PMID:24796279

  4. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer

    NASA Astrophysics Data System (ADS)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.

    2016-10-01

    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  5. Sailing Can Improve Quality of Life of People with Severe Mental Disorders: Results of a Cross Over Randomized Controlled Trial

    PubMed Central

    Carta, Mauro Giovanni; Maggiani, Federica; Pilutzu, Laura; Moro, Maria Francesca; Mura, Gioia; Sancassiani, Federica; Vellante, Vellante; Migliaccio, Gian Mario; Machado, Sergio; Nardi, Antonio Egidio; Preti, Antonio

    2014-01-01

    The aim of this study was to evaluate the impact of a sailing rehabilitation program on the quality of life (QoL) in a sample of patients with severe mental disorders. The study adopted a randomized, crossover, waiting-list controlled design. The participants enrolled in the study were outpatients diagnosed with severe chronic mental disorders. The participants (N=40) exposed to rehabilitation with sailing took part in a series of supervised cruises near the gulf of Cagliari, South Sardinia, and showed a statistically significant improvement of their quality of life compared to the control group. This improvement was comparable to the improvement in psychopathologic status and social functioning as shown in a previous report of the same research project. The improvement was maintained at follow-up only during the trial and for a few months later: after 12 months, patients returned to their baseline values and their quality of life showed a worsening trend. This is the first study to show that rehabilitation with sailing may improve the quality of life of people with severe chronic mental disorders. In all likelihood, a program grounded on learning how to manage a sailing vessel - during which patients perform cruises that emphasize the exploration of the marine environment by sailing - might be interesting enough and capture the attention of the patients so as to favour greater effectiveness of standard rehabilitation protocols, but this should be specifically tested. PMID:25191521

  6. Sailing can improve quality of life of people with severe mental disorders: results of a cross over randomized controlled trial.

    PubMed

    Carta, Mauro Giovanni; Maggiani, Federica; Pilutzu, Laura; Moro, Maria Francesca; Mura, Gioia; Sancassiani, Federica; Vellante, Vellante; Migliaccio, Gian Mario; Machado, Sergio; Nardi, Antonio Egidio; Preti, Antonio

    2014-01-01

    The aim of this study was to evaluate the impact of a sailing rehabilitation program on the quality of life (QoL) in a sample of patients with severe mental disorders. The study adopted a randomized, crossover, waiting-list controlled design. The participants enrolled in the study were outpatients diagnosed with severe chronic mental disorders. The participants (N=40) exposed to rehabilitation with sailing took part in a series of supervised cruises near the gulf of Cagliari, South Sardinia, and showed a statistically significant improvement of their quality of life compared to the control group. This improvement was comparable to the improvement in psychopathologic status and social functioning as shown in a previous report of the same research project. The improvement was maintained at follow-up only during the trial and for a few months later: after 12 months, patients returned to their baseline values and their quality of life showed a worsening trend. This is the first study to show that rehabilitation with sailing may improve the quality of life of people with severe chronic mental disorders. In all likelihood, a program grounded on learning how to manage a sailing vessel - during which patients perform cruises that emphasize the exploration of the marine environment by sailing - might be interesting enough and capture the attention of the patients so as to favour greater effectiveness of standard rehabilitation protocols, but this should be specifically tested.

  7. Sailing for Rehabilitation of Patients with Severe Mental Disorders: Results of a Cross Over Randomized Controlled Trial

    PubMed Central

    Carta, Mauro G; Maggiani, Federica; Pilutzu, Laura; Moro, Maria F; Mura, Gioia; Cadoni, Federica; Sancassiani, Federica; Vellante, Marcello; Machado, Sergio; Preti, Antonio

    2014-01-01

    This study set out to evaluate the effectiveness of a sailing and learning-to-sail rehabilitation protocol in a sample of patients diagnosed with severe mental disorders. The study was a randomized, crossover, waiting-list controlled trial, following recruitment in the Departments of Mental Health of South Sardinia. Participants were outpatients diagnosed with severe mental disorders, recruited through announcements to the directors of the Departments of Mental Health of South Sardinia. Out of the 40 patients enrolled in the study, those exposed to rehabilitation with sailing during a series of guided and supervised sea expeditions near the beach of Cagliari (Sardinia), where the aim to explore the marine environment while sailing was emphasized, showed a statistically significant improvement of their clinical status (measured by BPRS) and, as well, of their general functioning (measured by HoNOS Scale) against the control group. The improvement was maintained at follow-up for some months only: after 12 months, the patients returned to their baseline values on the measures of psychopathology and showed a worsening trend of their quality of life. Sailing can represent a substitute of important experiences that the patients with severe mental disorders miss because of their illness. PMID:25191520

  8. Sailing for rehabilitation of patients with severe mental disorders: results of a cross over randomized controlled trial.

    PubMed

    Carta, Mauro G; Maggiani, Federica; Pilutzu, Laura; Moro, Maria F; Mura, Gioia; Cadoni, Federica; Sancassiani, Federica; Vellante, Marcello; Machado, Sergio; Preti, Antonio

    2014-01-01

    This study set out to evaluate the effectiveness of a sailing and learning-to-sail rehabilitation protocol in a sample of patients diagnosed with severe mental disorders. The study was a randomized, crossover, waiting-list controlled trial, following recruitment in the Departments of Mental Health of South Sardinia. Participants were outpatients diagnosed with severe mental disorders, recruited through announcements to the directors of the Departments of Mental Health of South Sardinia. Out of the 40 patients enrolled in the study, those exposed to rehabilitation with sailing during a series of guided and supervised sea expeditions near the beach of Cagliari (Sardinia), where the aim to explore the marine environment while sailing was emphasized, showed a statistically significant improvement of their clinical status (measured by BPRS) and, as well, of their general functioning (measured by HoNOS Scale) against the control group. The improvement was maintained at follow-up for some months only: after 12 months, the patients returned to their baseline values on the measures of psychopathology and showed a worsening trend of their quality of life. Sailing can represent a substitute of important experiences that the patients with severe mental disorders miss because of their illness.

  9. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries.

    PubMed

    Olds, Tim; Tomkinson, Grant; Léger, Luc; Cazorla, Georges

    2006-10-01

    This study is a meta-analysis of 109 reports of the performance of children and adolescents on the 20-m shuttle run test (20-mSRT). The studies were performed in 37 countries and included data on 418,026 children, tested between 1981 and 2003. Results were expressed as running speed (km x h(-1)) at the final completed stage of the 20-mSRT. Raw data were combined with pseudodata using Monte Carlo simulation. The 20-mSRT performances were expressed as z-scores relative to all children of the same age and sex from all countries. An overall "performance index" was derived for each country as the average of the age- and sex-specific z-scores for all children from that country. Factorial analysis of variance was used to compare scores among countries and regions, and between boys and girls of the same age. There was wide and significant (P < 0.0001) global variability in the performance of children. The best performing children were from the Northern European countries Estonia, Iceland, Lithuania, and Finland (0.6 - 0.9 standard deviations above the global average). The worst performing children were from Singapore, Brazil, USA, Italy, Portugal, and Greece (0.4 - 0.9 standard deviations below the global average). There is evidence that performance was negatively related to being overweight, as well as to a country's average temperature.

  10. Comparison of VO[subscript 2] Maximum Obtained from 20 m Shuttle Run and Cycle Ergometer in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent

    2010-01-01

    Oxygen consumption at peak physical exertion (VO[subscript 2] maximum) is the most widely used indicator of cardiorespiratory fitness. The purpose of this study was to compare two protocols for its estimation, cycle ergometer testing and the 20 m shuttle run, among children with and without probable developmental coordination disorder (pDCD). The…

  11. Sea Education Association's sailing research vessels as innovative platforms for long-term research and education

    NASA Astrophysics Data System (ADS)

    Joyce, P.; Carruthers, E. A.; Engels, M.; Goodwin, D.; Lavender Law, K. L.; Lea, C.; Schell, J.; Siuda, A.; Witting, J.; Zettler, E.

    2012-12-01

    Sea Education Association's (SEA) two research vessels, the SSV Corwith Cramer and the SSV Robert C. Seamans are unique in the research world. Not only do these ships perform advanced research using state of the art equipment, they do so under sail with high school, undergraduate, and graduate students serving as both the science team and the crew. Because of SEA's educational mission and reliance on prevailing winds for sailing, the vessels have been studying repeated tracks for decades, providing valuable long-term data sets while educating future marine scientists. The Corwith Cramer has been collecting data in the North Atlantic between New England, the Sargasso Sea, Bermuda, and the Caribbean since 1987 while the Robert C. Seamans has been operating in the Eastern Pacific between the US West Coast, Hawaii, and French Polynesia since 2001. The ships collect continuous electronic data from hull mounted ADCP, chirp, and a clean flowing seawater system logging temperature, salinity, in-vivo chlorophyll and CDOM fluorescence, and beam attenuation. The ships also periodically collect data from profiling CTDs with chlorophyll and CDOM fluorometers, transmissometers, and dissolved oxygen and PAR sensors. In addition to electronic data, archived long term data sets include physical samples from net tows such as marine plastic debris and tar, and plankton including Halobates (a marine insect), leptocephali (eel larvae), and phyllosoma (spiny lobster larvae). Both vessels are 134' brigantine rig tall ships and are designated sailing school vessels (SSV) by the US Coast Guard, and both have received instrumentation grants from NSF to provide high quality, reliable data that is submitted to the NSF R2R archives. Students sailing on these ships spend time on shore at the SEA campus in Woods Hole, MA taking classes in oceanography, nautical science, maritime studies and public policy. Each student is required to write a proposal for their research before heading to sea, and

  12. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  13. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  14. Scheduling Algorithm for Improving Lift (SAIL): Documentation for initial operating capability

    SciTech Connect

    Hawthorne, J.E.; McLaren, R.A.

    1990-04-01

    The Military Sealift Command, a component of the United States Transportation Command, is responsible for the sealift of military personnel and material during a crisis. Conceptual plans for these complex moves, called deliberate plans, are continually being prepared. A computer-based scheduling system, the Sealift Strategic Analysis Subsystem (SEASTRAT), is under development for assisting in the production of these plans. The ship scheduling portion of this system, the Scheduling Algorithm for Improving Lift (SAIL), combines linear optimization and heuristic methods to determine ship routes and cargo loadings which honor a variety of complex operational constraints.

  15. Compensating algorithm of nonlinear phase errors using scan filter in SAIL

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Lu, Wei

    2009-08-01

    The phase errors due to the nonlinear chirp of tunable laser reduce the range resolution in synthetic aperture imaging ladar(SAIL). The compensating algorithms establishing matched and nonmatched reference paths were developed, and the phase errors were compensated in the whole echo pulse. In this paper a compensating algorithm by scan filtering is proposed. Compared to the compensation in the whole echo pulse, this compensating algorithm promotes precision and range resolution. Every echo pulse includes different echo components from all target points in footprint. The heterodyne signals of these different echoes are scan filtered from the heterodyne signal of one whole echo pulse in the spectrum. The phase errors of these heterodyne signals are measured by phase shifting algorithm in nonmatched reference path and compensated separately. Then the compensated signals are combined into whole heterodyne pulse and compressed in range. After all echo pulses are compressed in range the azimuth compensation and compression is followed. The mathematical flow of this algorithm is established. The simulation of the airborne SAIL model validates the feasibility, and the BW of range compression decreases obviously. The effects of width of the scan filter and nonlinear chirp are discussed. The conclusion of adequate width of the scan filter is given finally.

  16. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].

    PubMed

    Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng

    2012-12-01

    This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.

  17. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).

    PubMed

    Meadmore, Katie L; Cai, Zhonglun; Tong, Daisy; Hughes, Ann-Marie; Freeman, Chris T; Rogers, Eric; Burridge, Jane H

    2011-01-01

    A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation.

  18. Goal Attainment Scaling: A Primary Method of Treatment and Program Evaluation in Project SAIL - A Special Education Dropout Prevention Program.

    ERIC Educational Resources Information Center

    Harris, Linda Hall; Thompson, John L.

    The manual discusses Project SAIL's (a special dropout prevention program) use of Goal Attainment Scaling as part of individualized education plans in the treatment of troubled adolescents and in overall program evaluation. The scaling is characterized as an explicit, respectful treatment contact through which the adolescent can learn to set…

  19. The 2009 NCTE Presidential Address: Sailing over the Edge--Navigating the Uncharted Waters of a World Gone Flat

    ERIC Educational Resources Information Center

    Beers, Kylene

    2010-01-01

    This article presents the text of the author's presidential address, delivered at the National Council of Teachers of English (NCTE) Annual Convention in Philadelphia, Pennsylvania, on November 22, 2009. For the author, the title of this president's address, "Sailing over the Edge: Navigating the Uncharted Waters of a World Gone Flat," calls to…

  20. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  1. Smooth Sailing.

    ERIC Educational Resources Information Center

    Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen

    1999-01-01

    Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…

  2. Illumination from space with orbiting solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Canady, J. E., Jr.; Allen, J. L., Jr.

    1982-01-01

    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed.

  3. Collimated proton acceleration in light sail regime with a tailored pinhole target

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2014-06-01

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  4. WINTER 90 Hydrographics Data Report: CTD station profiles, sections, nutrients, SAIL, January--February 1990

    SciTech Connect

    Chandler, W.S.; Atkinson, L.P.

    1991-01-01

    The WINTER '90 Hydrographic Data Report includes CTD (conductivity, temperature and depth) data listings and profile plots of each station taken aboard the R/V Cape Hatteras from 27 January--9 February 1990. This report also contains vertical section contour plots, time series contour plots, nutrient, chlorophyll, and SAIL (Shipboard Serial Ascii Instrumentation Loop) data. The Winter 90 cruise further tested our ideas of shelf break processes. These ideas were based on the GALE observations in January 1986. During those observations we discovered that intense southward winds and heat loss caused onshore flow of nutrients and enhanced production. GALE was primarily a meteorological and oceanographic study with limited biological observations. Winter 90 repeated the GALE experiment with added chemical and biological measurements. 5 refs., 3 figs.

  5. Collimated proton acceleration in light sail regime with a tailored pinhole target

    SciTech Connect

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  6. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  7. A Lunar-Based Spacecraft Propulsion Concept - The Ion Beam Sail

    NASA Technical Reports Server (NTRS)

    Brown, Ian G.; Lane, John E.; Youngquist, Robert C.

    2006-01-01

    We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios, and consider some of the constraints limiting the concept. We find that the "ion beam sail' approach can be viable and attractive for journey distances not too great, for example within the Earth-Moon system, and could potentially provide support for journeys to the inner planets.

  8. The Marinfosec study: Use of ERS-1 for cruise and sailing boats

    NASA Astrophysics Data System (ADS)

    Komp, K.-U.

    A study within the ERS-1 framework, Marinfosec (improvement of nautical information for yachting, touristic cruising and tourisitic marine security), is presented. Actual and reliable information on wave direction and height could increase marine security in many fields, especially for cruise and sailing boats. ERS-1 data from SAR (Synthetic Aperture Radar) and AMI (Active Microwave Instrument) recordings will provide all weather data on wave direction and length, wave height and wind vectors. A broad range of applications of those data would be welcomed if presented right in time in a simple form. The objective is to provide actual wave maps distributed by weather fax. The demand structure and marketing potentials are studied, potentials of acceptance are evaluated, a model for later real time data processing and distribution is designed, future satellite configuration and the terms for a practical test phase are defined.

  9. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  10. Mutational and Structural Analysis of l-N-Carbamoylase Reveals New Insights into a Peptidase M20/M25/M40 Family Member

    PubMed Central

    García-Pino, Abel; Las Heras-Vázquez, Francisco Javier; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; García-Ruiz, Juan M.; Loris, Remy; Gavira, Jose Antonio

    2012-01-01

    N-Carbamoyl-l-amino acid amidohydrolases (l-carbamoylases) are important industrial enzymes used in kinetic resolution of racemic mixtures of N-carbamoyl-amino acids due to their strict enantiospecificity. In this work, we report the first l-carbamoylase structure belonging to Geobacillus stearothermophilus CECT43 (BsLcar), at a resolution of 2.7 Å. Structural analysis of BsLcar and several members of the peptidase M20/M25/M40 family confirmed the expected conserved residues at the active site in this family, and site-directed mutagenesis revealed their relevance to substrate binding. We also found an unexpectedly conserved arginine residue (Arg234 in BsLcar), proven to be critical for dimerization of the enzyme. The mutation of this sole residue resulted in a total loss of activity and prevented the formation of the dimer in BsLcar. Comparative studies revealed that the dimerization domain of the peptidase M20/M25/M40 family is a “small-molecule binding domain,” allowing further evolutionary considerations for this enzyme family. PMID:22904279

  11. Corrosion inhibition in 2.0 M sulfuric acid solutions of high strength maraging steel by aminophenyl tetrazole as a corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Sherif, El-Sayed M.

    2014-02-01

    The corrosion of high strength maraging steel after varied immersion times in concentrated solution, 2.0 M, of sulfuric acid has been investigated. The work was also extended to study the effect of 5-(3-aminophenyl)-tetrazole (APTA) on the inhibition of the steel corrosion. The study has been carried out using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and scanning electron microscope (SEM) along with energy dispersive X-ray analyzer (EDX) investigations. EIS spectra showed that the corrosion and polarization resistances decrease with increasing the immersion time of the steel before measurement and increase in the presence of APTA and the increase of its concentration. Polarization data agreed with the EIS measurements and indicated that the increase of immersion time increases the corrosion of steel by increasing its corrosion current and corrosion rate and lowering its polarization resistance. On the other hand, the addition of APTA and the increase of its concentration minimized the corrosion of steel through decreasing the corrosion current and corrosion rate and increasing the polarization resistance at all exposure test periods. SEM and EDX investigations confirmed that the inhibition of the maraging steel in the 2.0 M H2SO4 solutions is achieved via the adsorption of the APTA molecules onto the steel protecting its surface from being dissolved easily.

  12. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  13. Skylab Solar Shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A sail like sunshade for possible use as a sunscreen for the Skylab Orbital Workshop (OWS) is shown being fabricated in the GE Building across the street from Johnson Space Center, Houston Texas. Three people help the steamstress feed the material through the sewing machine. The three-layered sunshade will be composed of a top layer of aluminized mylar, a middle layer of laminated nylon ripstop, and a bottom layer of thin nylon. Working on the sunshade are from left to right: Dale Gentry, Elizabeth Gauldin, Alyene Baker, and James H. Barnett Jr. Mrs. Baker, a GE employee, operates the double needle Singer sewing machine. Barnett is head of the Crew Equipment Development Section of JSC Crew Systems Division. Mrs. Gauldin is also with the Crew Systems Division. Gentry works for GE. The work shown here is part of the crash program underway to prepare a sunshield for Skylab to replace the orginal shield which was lost when Skylab 1 was launched on May 14, 1973. The improvised solar shield selected to be used will be carried to Earth orbit by the Skylab 2 crewman who will then deploy the reflective parasol to shade part of the OWS from the hot rays of the sun. Loss of the orginal sun shield has caused an overheating problem. in the Orbital Work Shop.

  14. Accuracy of a 10 Hz GPS Unit in Measuring Shuttle Velocity Performed at Different Speeds and Distances (5 – 20 M)

    PubMed Central

    Bartolini, Davide; Ghia, Gianluigi; Zamparo, Paola

    2016-01-01

    Abstract The aim of this study was to validate the accuracy of a 10 Hz GPS device (STATSports, Ireland) by comparing the instantaneous values of velocity determined with this device with those determined by kinematic (video) analysis (25 Hz). Ten male soccer players were required to perform shuttle runs (with 180° change of direction) at three velocities (slow: 2.2 m·s-1; moderate: 3.2 m·s-1; high: maximal) over four distances: 5, 10, 15 and 20 m. The experiments were video-recorded; the “point by point” values of speed recorded by the GPS device were manually downloaded and analysed in the same way as the “frame by frame” values of horizontal speed as obtained by video analysis. The obtained results indicated that shuttle distance was smaller in GPS than video analysis (p < 0.01). Shuttle velocity (shuttle distance/shuttle time) was thus smaller in GPS than in video analysis (p < 0.001); the percentage difference (bias, %) in shuttle velocity between methods was found to decrease with the distance covered (5 m: 9 ± 6%; 20 m: 3 ± 3%). The instantaneous values of speed were averaged; from these data and from data of shuttle time, the distance covered was recalculated; the error (criterion distance-recalculated distance) was negligible for video data (0.04 ± 0.28 m) whereas GPS data underestimated criterion distance (0.31 ± 0.55 m). In conclusion, the inaccuracy of this GPS unit in determining shuttle speed can be attributed to inaccuracy in determining the shuttle distance. PMID:28031753

  15. The mortality and morbidity of deep sea fishermen sailing from Grimsby in one year1

    PubMed Central

    Moore, S. R. W.

    1969-01-01

    Moore, S. R. W. (1969).Brit. J. industr. Med.,26, 25-46. The mortality and morbidity of deep sea fishermen sailing from Grimsby in one year. The injuries, illnesses, and deaths of Grimsby deep sea fishermen in the year 1963 have been studied using the trawler log-book as the basic source of information. Additional information has been obtained from other sources. The numbers of man-days sailed by Grimsby deep sea fishermen, by age and rating in 1963, have been ascertained. From these, incapacity rates for the measurement of morbidity due to injury and illness, and the mortality rate, have been calculated. There were 14 deaths, six due to accidental causes and eight to natural causes, giving a mortality rate of 5·7 per 1,000 for Grimsby deep sea fishermen in 1963. In a year when there was no foundering or loss of Grimsby trawlers, the fatal accident rate of Grimsby trawlermen was more than twice that of fishermen of the United Kingdom, four times the rate for miners, and 40 times that for the manufacturing industries. The most common injuries were, in order of incidence, contusions of varying degrees of severity, infected lesions, sprains and strains, lacerations, and fractures. More than half (56·3%) of the trawlermen were incapacitated by their injuries. The highest rates of incapacity were caused by fractures, contusions, and infected lesions. The upper limb, especially the hands and fingers, was most often affected, resulting most commonly in infected lesions. Third hands, mates, deck hands, deck trimmers, and deck learners had the highest incapacity rates due to injury. Third hands are especially at risk to injury. Most injuries and two deaths caused by casualties to boats occurred in fires aboard trawlers. The most common illnesses suffered by trawlermen were gastrointestinal, respiratory, and skin diseases. Illness caused incapacity in 68·8% of the trawlermen affected. The greatest incapacity was due to gastrointestinal, cardiac, psychiatric, and

  16. The SAIL Databank: building a national architecture for e-health research and evaluation

    PubMed Central

    Ford, David V; Jones, Kerina H; Verplancke, Jean-Philippe; Lyons, Ronan A; John, Gareth; Brown, Ginevra; Brooks, Caroline J; Thompson, Simon; Bodger, Owen; Couch, Tony; Leake, Ken

    2009-01-01

    Background Vast quantities of electronic data are collected about patients and service users as they pass through health service and other public sector organisations, and these data present enormous potential for research and policy evaluation. The Health Information Research Unit (HIRU) aims to realise the potential of electronically-held, person-based, routinely-collected data to conduct and support health-related studies. However, there are considerable challenges that must be addressed before such data can be used for these purposes, to ensure compliance with the legislation and guidelines generally known as Information Governance. Methods A set of objectives was identified to address the challenges and establish the Secure Anonymised Information Linkage (SAIL) system in accordance with Information Governance. These were to: 1) ensure data transportation is secure; 2) operate a reliable record matching technique to enable accurate record linkage across datasets; 3) anonymise and encrypt the data to prevent re-identification of individuals; 4) apply measures to address disclosure risk in data views created for researchers; 5) ensure data access is controlled and authorised; 6) establish methods for scrutinising proposals for data utilisation and approving output; and 7) gain external verification of compliance with Information Governance. Results The SAIL databank has been established and it operates on a DB2 platform (Data Warehouse Edition on AIX) running on an IBM 'P' series Supercomputer: Blue-C. The findings of an independent internal audit were favourable and concluded that the systems in place provide adequate assurance of compliance with Information Governance. This expanding databank already holds over 500 million anonymised and encrypted individual-level records from a range of sources relevant to health and well-being. This includes national datasets covering the whole of Wales (approximately 3 million population) and local provider-level datasets

  17. Recent Developments in Smart Adaptive Structures for Solar Sailcraft

    NASA Technical Reports Server (NTRS)

    Worton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.

    2007-01-01

    The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.

  18. Distribution of Streptococcus mutans and Streptococcus sobrinus in Dental Plaque of Indian Pre-School Children Using PCR and SB-20M Agar Medium

    PubMed Central

    Sharma, Arun; Sachdev, Vinod; Chopra, Radhika

    2016-01-01

    Introduction Dental caries is one of the most common infectious diseases affecting the oral cavity. Among the oral bacteria, mutans streptococci have been implicated as major cariogenic bacteria as they can produce high levels of dental caries causing substances such as lactic acid and extracellular polysaccharides. Aim The aim of the study was to detect the presence of Streptococcus mutans and Streptococcus sobrinus in dental plaque by using Polymerase Chain Reaction (PCR) method, quantification of these micro-organisms using Modified Sucrose-Bacitracin (SB-20M) agar medium and to correlate their presence in Caries Active (CA) and Caries Free (CF) pre-school children. Materials and Methods Sixty-eight pre-school children, in the age group of 3-5 years were divided equally into 34 CA and 34 CF children. Dental plaque samples were obtained for detection of these microorganisms by PCR method and quantification was done using SB-20M culture medium. The data was analyzed using statistical software SPSS version 16. For statistical analysis, the frequencies and means of Colony Forming Units (CFU) were used with CI = 95%. For bivariate analysis, Fisher exact test was used at 5% level of significance. The comparison of mean of number of CFU of S. mutans and S. sobrinus was made by Mann Whitney U test and Spearman’s Rho test at 1% level of significance was used for correlation between dmft and CFU in CA group. Results The results showed that S. sobrinus was significantly higher in CA group as compared to CF group whereas S. mutans showed no significant difference. On quantification of these micro-organisms, S. sobrinus was present in significantly higher numbers in CA group as compared to CF group. On correlating the CFU/ml of the micro-organisms with the dmft index, both the micro-organisms showed a positive correlation. Conclusion We conclude that S. mutans and S. sobrinus were detected in higher numbers in CA children as compared to CF children. PCR is a sensitive

  19. The rigid bi-functional sail, new concept concerning the reduction of the drag of ships

    NASA Astrophysics Data System (ADS)

    Țicu, I.; Popa, I.; Ristea, M.

    2015-11-01

    The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.

  20. Spatial and Seasonal Distribution of American Whaling and Whales in the Age of Sail

    PubMed Central

    Smith, Tim D.; Reeves, Randall R.; Josephson, Elizabeth A.; Lund, Judith N.

    2012-01-01

    American whalemen sailed out of ports on the east coast of the United States and in California from the 18th to early 20th centuries, searching for whales throughout the world’s oceans. From an initial focus on sperm whales (Physeter macrocephalus) and right whales (Eubalaena spp.), the array of targeted whales expanded to include bowhead whales (Balaena mysticetus), humpback whales (Megaptera novaeangliae), and gray whales (Eschrichtius robustus). Extensive records of American whaling in the form of daily entries in whaling voyage logbooks contain a great deal of information about where and when the whalemen found whales. We plotted daily locations where the several species of whales were observed, both those caught and those sighted but not caught, on world maps to illustrate the spatial and temporal distribution of both American whaling activity and the whales. The patterns shown on the maps provide the basis for various inferences concerning the historical distribution of the target whales prior to and during this episode of global whaling. PMID:22558102

  1. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL

    NASA Astrophysics Data System (ADS)

    Vohland, M.; Mader, S.; Dorigo, W.

    2010-04-01

    This study describes the retrieval of state variables (LAI, canopy chlorophyll, water and dry matter contents) for summer barley from airborne HyMap data by means of a canopy reflectance model (PROSPECT + SAIL). Three different inversion techniques were applied to explore the impact of the employed method on estimation accuracies: numerical optimization (downhill simplex method), a look-up table (LUT) and an artificial neural network (ANN) approach. By numerical optimization (Num Opt), reliable estimates were obtained for LAI and canopy chlorophyll contents (LAI × Cab) with r2 of 0.85 and 0.94 and RDP values of 1.81 and 2.65, respectively. Accuracies dropped for canopy water (LAI × Cw) and dry matter contents (LAI × Cm). Nevertheless, the range of leaf water contents ( Cw) was very narrow in the studied plant material. Prediction accuracies generally decreased in the order Num Opt > LUT > ANN. This decrease in accuracy mainly resulted from an increase in offset in the obtained values, as the retrievals from the different approaches were highly correlated. The same decreasing order in accuracy was found for the difference between the measured spectra and those reconstructed from the retrieved variable values. The parallel application of the different inversion techniques to one collective data set was helpful to identify modelling uncertainties, as shortcomings of the retrieval algorithms themselves could be separated from uncertainties in model structure and parameterisation schemes.

  2. Control of sinter quality for blast furnaces of SAIL through characterization of high temperature properties

    SciTech Connect

    Mishra, U.N.; Thakur, B.; Mediratta, S.R.

    1996-12-31

    Quality of blast furnace (BF) burden materials and their performance inside the furnace have attracted increased importance worldwide. High productivity, low fuel rate and stable operation of BF can be achieved by suitably controlling the quality of input materials particularly that of sinter which is the main constituent of the burden. Reduction Degradation Index (RDI), Reducibility Index (RI) and Softening-melting characteristics are some of the quality indicators of sinter. The effect of chemical composition of sinter in the ranges of CaO/SiO{sub 2} 1.4--2.0, FeO 4.0--8.0, Al{sub 2}O{sub 3} 1.3--2.0 and MgO 1.2--2.0 on the above mentioned properties have been reported in literature. Due to the peculiarity of Indian raw materials, i.e., high ash content of coke and high Al{sub 2}O{sub 3} content of iron ore, the sinter composition varies over a wide range of CaO/SiO{sub 2} 2.0--2.5, FeO 8--11%, Al{sub 2}O{sub 3} 2--4% and MgO 2--5% in different plants of SAIL. This paper discusses the effect of above constituents in higher ranges as compared to earlier study on RDI, RI and Softening-melting properties so that sinter composition can be optimized for achieving desirable properties for better BF performance.

  3. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    PubMed

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  4. A Light Sail Inspired Model to Harness Casimir Forces for Propellantless Propulsion

    SciTech Connect

    DeBiase, R. L.

    2010-01-28

    The model used to calculate Casimir forces for variously shaped conducting plates in this paper assumes the vacuum energy pervades all space and that photons randomly pop into and out of existence. While they exist, they possess energy and momentum that can be transferred by reflection as in a light sail. Quantum mechanics in the model is entirely bound up in the Casimir equation of force per unit area. This model is compared with two different experiments: that of Chen and Mohideen demonstrating lateral Casimir forces for sinusoidally corrugated spherical and flat plates and Lamoreaux demonstrating normal Casimir forces between a conducting sphere and flat plate. The calculated forces using this model were compared to the forces obtained in these experiments as well as with calculations using the proximity force approximation. In both cases the results (when compared to the actual plates measured and calculated using non-corrected equations) were less than a few parts per thousand different for the range of separation distances used. When the model was used to calculate forces on the opposite plates, different force magnitudes were obtained seemingly indicating prospects for propellentless propulsion but requiring skeptical verification.

  5. [Efficacy of dolutegravir in treatment-experienced patients: the SAILING and VIKING trials].

    PubMed

    Moreno, Santiago; Berenguer, Juan

    2015-03-01

    Dolutegravir is an HIV integrase inhibitor with a high genetic barrier to resistance and is active against raltegravir- and/or elvitegravir-resistant strains. The clinical development of dolutegravir for HIV infection rescue therapy is based on 3 clinical trials. In the SAILING trial, dolutegravir (5 mg once daily) in combination with 2 other antiretroviral agents was well tolerated and showed greater virological effect than raltegravir (400 mg twice daily) in the treatment of integrase inhibitor-naïve adults with virological failure infected with HIV strains with at least two-class drug resistance. The VIKING studies were designed to evaluate the efficacy of dolutegravir as rescue therapy in treatment-experienced patients infected with HIV strains with resistance mutations to raltegravir and/or elvitegravir. VIKING-1-2 was a dose-ranging phase IIb trial. VIKING-3 was a phase III trial in which dolutegravir (50 mg twice daily) formed part of an optimized regimen and proved safe and effective in this difficult-to-treat group of patients. Dolutegravir is the integrase inhibitor of choice for rescue therapy in multiresistant HIV infection, both in integrase inhibitor-naïve patients and in those previously treated with raltegravir or elvitegravir.

  6. Trail formation by ice-shoved "sailing stones" observed at Racetrack Playa, Death Valley National Park

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Norris, J. M.; Jackson, B. K.; Norris, R. D.; Chadbourne, J. W.; Ray, J.

    2014-08-01

    Trails in the usually-hard mud of Racetrack Playa in Death Valley National Park attest to the seemingly-improbable movement of massive rocks on an exceptionally flat surface. The movement of these rocks, previously described as "sliding stones", "playa scrapers", "sailing stones" etc., has been the subject of speculation for almost a century but is an exceptionally rare phenomenon and until now has not been directly observed. Here we report documentation of multiple rock movement and trail formation events in the winter of 2013-2014 by in situ observation, video, timelapse cameras, a dedicated meteorological station and GPS tracking of instrumented rocks. Movement involved dozens of rocks, forming fresh trails typically of 10s of meters length at speeds of ~5 cm s-1 and were caused by wind stress on a transient thin layer of floating ice. Fracture and local thinning of the ice decouples some rocks from the ice movement, such that only a subset of rocks move in a given event.

  7. Spatial and seasonal distribution of American whaling and whales in the age of sail.

    PubMed

    Smith, Tim D; Reeves, Randall R; Josephson, Elizabeth A; Lund, Judith N

    2012-01-01

    American whalemen sailed out of ports on the east coast of the United States and in California from the 18(th) to early 20(th) centuries, searching for whales throughout the world's oceans. From an initial focus on sperm whales (Physeter macrocephalus) and right whales (Eubalaena spp.), the array of targeted whales expanded to include bowhead whales (Balaena mysticetus), humpback whales (Megaptera novaeangliae), and gray whales (Eschrichtius robustus). Extensive records of American whaling in the form of daily entries in whaling voyage logbooks contain a great deal of information about where and when the whalemen found whales. We plotted daily locations where the several species of whales were observed, both those caught and those sighted but not caught, on world maps to illustrate the spatial and temporal distribution of both American whaling activity and the whales. The patterns shown on the maps provide the basis for various inferences concerning the historical distribution of the target whales prior to and during this episode of global whaling.

  8. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.

    PubMed

    Dale, John; Hughes, Ben; Lancaster, Andrew J; Lewis, Andrew J; Reichold, Armin J H; Warden, Matthew S

    2014-10-06

    We present an implementation of an absolute distance measurement system which uses frequency scanning interferometry (FSI). The technique, referred to as dynamic FSI, uses two frequency scanning lasers, a gas absorption cell and a reference interferometer to determine the unknown optical path length difference (OPD) of one or many measurement interferometers. The gas absorption cell is the length reference for the measurement system and is traceable to international standards through knowledge of the frequencies of its absorption features. The OPD of the measurement interferometers can vary during the measurement and the variation is measured at the sampling rate of the system (2.77 MHz in the system described here). The system is shown to measure distances from 0.2 m to 20 m with a combined relative uncertainty of 0.41 × 10⁻⁶ at the two sigma level (k = 2). It will be shown that within a scan the change in OPD of the measurement interferometer can be determined to a resolution of 40 nm.

  9. Suppression of Rituximab-resistant B-cell lymphoma with a novel multi-component anti-CD20 mAb nanocluster

    PubMed Central

    Zhao, He; Sun, Yun; Zhao, Mengxin; Chen, Di; Zhu, Xiandi; Zhang, Li; Li, Bohua; Dai, Jianxin; Li, Wei

    2015-01-01

    Although the anti-CD20 antibody Rituximab has revolutionized the treatment of Non-Hodgkin Lymphoma (NHL), resistance to treatment still existed. Thus, strategies for suppressing Rituximab-resistant NHLs are urgently needed. Here, an anti-CD20 nanocluster (ACNC) is successfully constructed from its type I and type II mAb (Rituximab and 11B8). These distinct anti-CD20 mAbs are mass grafted to a short chain polymer (polyethylenimine). Compared with parental Rituximab and 11B8, the ACNC had a reduced “off-rate”. Importantly, ACNC efficiently inhibited Rituximab-resistant lymphomas in both disseminated and localized human NHL xenograft models. Further results revealed that ACNC is significantly potent in inducing caspase-dependent apoptosis and lysosome-mediated programmed cell death (PCD). This may help explain why ACNC is effective in suppressing rituximab-resistant lymphoma while Rituximab and 11B8 are not. Additionally, ACNC experienced low clearance from peripheral blood and high intratumor accumulation. This improved pharmacokinetics is attributed to the antibody-antigen reaction (active targeting) and enhanced permeability and retention (ERP) effect (passive targeting). This study suggested that ACNC might be a promising therapeutic agent for treatment of rituximab-resistant lymphomas. PMID:26284588

  10. Normative reference values for the 20 m shuttle‐run test in a population‐based sample of school‐aged youth in Bogota, Colombia: the FUPRECOL study

    PubMed Central

    Palacios‐López, Adalberto; Humberto Prieto‐Benavides, Daniel; Enrique Correa‐Bautista, Jorge; Izquierdo, Mikel; Alonso‐Martínez, Alicia; Lobelo, Felipe

    2016-01-01

    Abstract Objectives Our aim was to determine the normative reference values of cardiorespiratory fitness (CRF) and to establish the proportion of subjects with low CRF suggestive of future cardio‐metabolic risk. Methods A total of 7244 children and adolescents attending public schools in Bogota, Colombia (55.7% girls; age range of 9–17.9 years) participated in this study. We expressed CRF performance as the nearest stage (minute) completed and the estimated peak oxygen consumption (V˙O2peak). Smoothed percentile curves were calculated. In addition, we present the prevalence of low CRF after applying a correction factor to account for the impact of Bogota's altitude (2625 m over sea level) on CRF assessment, and we calculated the number of participants who fell below health‐related FITNESSGRAM cut‐points for low CRF. Results Shuttles and V˙O2peak were higher in boys than in girls in all age groups. In boys, there were higher levels of performance with increasing age, with most gains between the ages of 13 and 17. The proportion of subjects with a low CRF, suggestive of future cardio‐metabolic risk (health risk FITNESSGRAM category) was 31.5% (28.2% for boys and 34.1% for girls; X2 P = .001). After applying a 1.11 altitude correction factor, the overall prevalence of low CRF was 11.5% (9.6% for boys and 13.1% for girls; X2 P = .001). Conclusions Our results provide sex‐ and age‐specific normative reference standards for the 20 m shuttle‐run test and estimated V˙O2peak values in a large, population‐based sample of schoolchildren from a large Latin‐American city at high altitude. PMID:27500986

  11. Student Experiences: the 2013 Cascadia Initiative Expedition Team's Apply to Sail Program

    NASA Astrophysics Data System (ADS)

    Mejia, H.; Hooft, E. E.; Fattaruso, L.

    2013-12-01

    During the summer of 2013, the Cascadia Initiative Expedition Team led six oceanographic expeditions to recover and redeploy ocean bottom seismometers (OBSs) across the Cascadia subduction zone and Juan de Fuca plate. The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates with the overarching goal of understanding the entire subduction zone system. The Cascadia Initiative Expedition Team is a team of scientists charged with leading the oceanographic expeditions to deploy and recover CI OBSs and developing the associated Education and Outreach effort. Students and early career scientists were encouraged to apply to join the cruises via the Cascadia Initiative Expedition Team's Apply to Sail Program. The goal of this call for open participation was to help expand the user base of OBS data by providing opportunities for students and scientists to directly experience at-sea acquisition of OBS data. Participants were required to have a strong interest in learning field techniques, be willing to work long hours at sea assisting in OBS deployment, recovery and preliminary data processing and have an interest in working with the data collected. In total, there were 51 applicants to the Apply to Sail Program from the US and 4 other countries; 21 graduate students as well as a few undergraduate students, postdocs and young scientists from the US and Canada were chosen to join the crew. The cruises lasted from 6 to 14 days in length. OBS retrievals comprised the three first legs, of which the first two were aboard the Research Vessel Oceanus. During each of the retrievals, multiple acoustic signals were sent while the vessel completed a semi-circle around the OBS to accurately determine its position, a final signal was sent to drop the seismometer's anchor, and finally the ship and crew

  12. Geo-morphological changes of the Wanpingkou tidal system arising from the building of a sailing boat station in Rizhao of China.

    PubMed

    Bian, Shuhua; Zhang, Yuanzhi; Feng, Aiping; Chiu, Long; Wu, Sangyun; Hu, Zejian

    2008-03-01

    This paper examines a small tidal system in Wanpingkou, Rizhao of China. The tidal system was originally maintained by a balance of the natural interaction between tidal currents and waves. But this tidal system was diminishing by reclamation processes since the 1980s, especially in 2003 when a sailing boat station was built in the study area. To investigate the stability and development mechanism of the tidal system, its feasibility was evaluated before the sailing boat station was built. The erosion and deposition in and out of the tidal system was analyzed, forecasted and compared with the data from field monitoring. The results show that the tidal system would remain relatively stable, although its adjacent shoreline might change somewhat after the newly built sailing boat station. This change would also affect the coastal water and wetland environment in the study area. Further field monitoring in the area is still necessary.

  13. Reconstruction of internal nasal valve, septum, dorsum, and anterior structures of the nose in a single procedure with a molded bone graft: the sail graft.

    PubMed

    Guneren, Ethem; Ciftci, Mehmet; Karaaltin, Mehmet Veli; Yildiz, Kemalettin

    2012-05-01

    Excessive surgical removal or traumatic loss of the tissues supporting the nasal roof can result in the "saddle nose" deformity. It involves both cartilage and bone deficiencies. Two main resources are used to reconstruct this difficult deformity: autogenous bone and cartilage grafts and alloplastic materials. This study presents the reconstruction of the dorsum, septum, internal nasal valve, and anterior structures and the tip of the nose using a block of molded autogenous bone graft. We called it the "sail graft," because it looks like a sail from a lateral view. The mast of the sail is oriented in a superior-to-inferior direction, beginning in the frontonasal region to the tip of the nose to form a straight, well-rounded dorsum. The longest postoperative follow-up of 13 cases is now 10 years; the median follow-up is 2 years. The results have been satisfactory.

  14. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Li, Qiongzhen; Gu, Yedan; Wang, Youji; Liu, Qigen

    2015-11-01

    Bloom forming algae and hypoxia are considered to be two main co-occurred stressors associated with eutrophication. The aim of this study was to evaluate the interactive effects of harmful algae Microcystis aeruginosa and hypoxia on an ecologically important mussel species inhabiting lakes and reservoirs, the triangle sail mussel Hyriopsis cumingii, which is generally considered as a bio-management tool for eutrophication. A set of antioxidant enzymes involved in immune defence mechanisms and detoxification processes, i.e. glutathione-S-transferases (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), lysozyme (LZM) in mussel haemolymph were analyzed during 14days exposure along with 7days depuration duration period. GST, GSH, SOD, GPX and LZM were elevated by toxic M. aeruginosa exposure, while CAT activities were inhibited by such exposure. Hypoxia influenced the immune mechanisms through the activation of GSH and GPX, and the inhibition of SOD, CAT, and LZM activities. Meanwhile, some interactive effects of M. aeruginosa, hypoxia and time were observed. Independently of the presence or absence of hypoxia, toxic algal exposure generally increased the five tested enzyme activities of haemolymph, except CAT. Although half of microcystin could be eliminated after 7days depuration, toxic M. aeruginosa or hypoxia exposure history showed some latent effects on most parameters. These results revealed that toxic algae play an important role on haemolymph parameters alterations and its toxic effects could be affected by hypoxia. Although the microcystin depuration rate of H. cumingii is quick, toxic M. aeruginosa and/or hypoxia exposure history influenced its immunological mechanism recovery.

  15. Quadriceps muscle blood flow and oxygen availability during repetitive bouts of isometric exercise in simulated sailing.

    PubMed

    Vogiatzis, Ioannis; Andrianopoulos, Vasileios; Louvaris, Zafeiris; Cherouveim, Evgenia; Spetsioti, Stavroula; Vasilopoulou, Maroula; Athanasopoulos, Dimitrios

    2011-07-01

    In this study, we wished to determine whether the observed reduction in quadriceps muscle oxygen availability, reported during repetitive bouts of isometric exercise in simulated sailing efforts (i.e. hiking), is because of restricted muscle blood flow. Six national-squad Laser sailors initially performed three successive 3-min hiking bouts followed by three successive 3-min cycling tests sustained at constant intensities reproducing the cardiac output recorded during each of the three hiking bouts. The blood flow index (BFI) was determined from assessment of the vastus lateralis using near-infrared spectroscopy in association with the light-absorbing tracer indocyanine green dye, while cardiac output was determined from impedance cardiography. At equivalent cardiac outputs (ranging from 10.3±0.5 to 14.8±0.86 L · min(-1)), the increase from baseline in vastus lateralis BFI across the three hiking bouts (from 1.1±0.2 to 3.1±0.6 nM · s(-1)) was lower (P = 0.036) than that seen during the three cycling bouts (from 1.1±0.2 to 7.2±1.4 nM · s(-1)) (Cohen's d: 3.80 nM · s(-1)), whereas the increase from baseline in deoxygenated haemoglobin (by ∼17.0±2.9 μM) (an index of tissue oxygen extraction) was greater (P = 0.006) during hiking than cycling (by ∼5.3±2.7 μM) (Cohen's d: 4.17 μM). The results suggest that reduced vastus lateralis muscle oxygen availability during hiking arises from restricted muscle blood flow in the isometrically acting quadriceps muscles.

  16. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  17. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Montgomery, E.; Johnson, L.; Thomas, H.

    2016-09-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  18. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.

    2016-01-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  19. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    NASA Astrophysics Data System (ADS)

    Yano, H.

    2013-12-01

    Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep

  20. Impact of the Extended Learning Opportunities Summer Adventures in Learning (ELO SAIL) Program on Student Academic Performance: Part 1, Results from Fall 2012 to Fall 2015

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth; Wolanin, Natalie; Jang, Seong; Modarresi, Shahpar; Zhao, Huafang

    2016-01-01

    Extended Learning Opportunities Summer Adventures in Learning (ELO SAIL) is a Montgomery County Public Schools summer program for students in all Title I elementary schools; it targets students who will be in kindergarten-Grade 2 in the fall following the program. This report analyzed demographic characteristics of attendees and the impact of the…

  1. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  2. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  3. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  4. SAIL-Thermique: a model for land surface spectral emissivity in the thermal infrared. Evaluation and reassesment of the temperature - emissivity separation (TES) algorithm in presence of vegetation canopies.

    NASA Astrophysics Data System (ADS)

    Olioso, A.; Jacob, F.; Lesaignoux, A.

    2014-12-01

    The SAIL-Thermique model was developed to simulate thermal infrared (TIR) radiative transfers inside vegetation canopies and land surface emissivity. It is based on the SAIL model developed by Verhoef (1984) for simulating spectral reflectances in the solar domain. Due to the difficulty to measure land surface emissivity, no emissivity model was validated against ground measurements. In this study, several datasets extracted from the literature and from recent databases were used for evaluating emissivity simulations. Model simulations were performed from the knowledge of leaf area index, leaf inclination distribution, direction of viewing, and leaf and soil optical properties. As data on leaf inclination and leaf optical properties were usually not available, stochastic simulations were performed from a priori knowledges on their distribution (extracted from the literature and recent databases). Simulated 8-14 μm emissivities were favorably compared to measurements with a root mean square difference (RMSD) around 0.006 (0.004 when considering only herbaceous species). The model was then used for simulating emissivity spectra for providing information for the interpretation of TIR multispectral data from the ASTER sensor. We used the land surface emissivity simulations for re-assessing the TES algorithm used to separate emissivity and land surface temperature. We showed that the inclusion of vegetated land surfaces significantly modified the relationship between minimum emissivity and minimum maximum difference (ɛmin- MMD) which is at the heart of the TES algorithm. This relationship was originally established on the ASTER spectral library which did not include vegetated land surface (Schmugge et al. 1998). On a synthetic database, estimations of spectral emissivities and surface temperature were significantly improved when using the new ɛmin- MMD relationship in comparison to the classical one: RMSD dropped from ~0.012 to ~0.006 for spectral emissivity and from

  5. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  6. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  7. Sedimentary record of the obduction of the Samail ophiolite in northern Oman: the Muti Formation in the Sail Hatat window

    NASA Astrophysics Data System (ADS)

    Ducassou, Céline; Robin, Cecile; Poujol, Marc; Al-Rahbi, Basim; Estournes, Guilhem

    2016-04-01

    The obduction of the Samail Ophiolite in Oman took place during the Upper Cretaceous. Since then, the northern part of Oman has been relatively preserved from deformation and is therefore one of the best places to study obduction processes. In addition, radiometric data provide good constraints on the timing of obduction from the formation of the metamorphic sole until the exhumation of the high-pressure / low-temperature metamorphic rocks involved in the subduction zone below the oceanic lithosphere. However, the response of the continental margin during the obduction is still poorly constrained. If most of the models suggest the development of a flexural basin and an associated forebulge such as in continental collision, their recognition within the syn-tectonic deposits led to different interpretations. The geometry of the youngest syn-tectonic deposits (Fiqa Formation) is relatively well constrained by sub-surface data that suggest a southward migration of the depocenter and progressive onlaps on the southern margin of the basin. The context of sedimentation of the oldest syn-tectonic deposits (Muti Formation) preserved below the nappes in the Oman Mountains is, however, still poorly understood. The location of the sedimentation area with respect of the forebulge, for instance, remains unclear. In order to acquire better constraints on the record, on the Arabian platform, of first steps of the obduction, the analysis of several sections of the Muti Formation has been performed. We present here our main results for the north-eastern part of the Oman Mountains, in the Sail Hatat window, where the thickest successions have been described in Quryat and Bidbid area, respectively located in the eastern and western part of the Sail Hatat window. Sedimentological and structural analysis have been combined to reconstitute the evolution of depositional environments in areas strongly affected by deformation. In addition, systematic measurements and restoration of

  8. Sail-Type Wind Turbine for Autonomous Power Supplay: Possible Use in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.

    2014-12-01

    Under the conditions of continuous increase in the energy consumption, sharply rising prices of basic energy products (gas, oil, coal), deterioration of environment, etc., it is of vital importance to develop methods and techniques for heat and power generation from renewables. The paper considers the possibility to use a sail-type wind turbine for autonomous power supply in Latvia, taking into account its climatic conditions. The authors discuss the problems of developing a turbine of the type that would operate efficiently at low winds, being primarily designed to supply power to small buildings and farms distant from centralized electricity networks. The authors consider aerodynamic characteristics of such a turbine and the dependence of the thrust moment of its pilot model on the airflow rate at different angles of attack. The pilot model with a changeable blade shape has been tested and shows a good performance. Darbs veltīts vienam no atjaunojamo enerģiju veidiem - vēja enerģijai, analizētas tās izmantošanas iespējas. Vispirms īsi raksturota vēja enerģijas izmantošana pasaulē, kā arī vērtētas izmantošanas perspektīvas no inženiertehniskā un klimatisko apstākļu viedokļa. Turpinājumā raksturota situācija Latvijā, t. sk., arī vēja potenciāla pieejamība dažādos reģionos, kā arī vēja enerģijas izmantošanas efektivitāti raksturojošie lielumi. Konstatējot problēmu, rast vēja turbīnu risinājumus Latvijas apstākļiem ar maziem vidējiem vēja ātrumiem, izveidots buras tipa turbīnas modelis. Šī modeļa raksturlielumu izpēte veikta vēja tunelī Karagandas universitātē, konstatējot relatīvi labus efektivitātes rādītājus tiešai un pretējai vēja plūsmai. Izmantojot mērījumu rezultātus, ierosināti sistēmas uzlabojumi, kurus plānots pētīt turpmāk. Šādas sistēmas potenciāli var rast lietojumu tur, kur nepieciešami autonomi enerģijas avoti.

  9. Generating Point Clouds of Drifting Iceberg Sails with Helicopter-borne Photogrammetry: Trials from Offshore Newfoundland, April 2015

    NASA Astrophysics Data System (ADS)

    Crawford, A. J.; Mueller, D.; Crocker, G.

    2015-12-01

    Accurate characterization and volume determination of iceberg sails is important for calculating wind drag effects on iceberg drift and estimating total iceberg mass, respectively. This information is of direct relevance to the shipping and offshore hydrocarbon industries operating on Canada's east coast. A field campaign was completed in April 2015 offshore Newfoundland and Labrador, Canada to assess the precision of point clouds generated from successive helicopter-borne aerial surveys of two drifting iceberg sails. A minimum of three GPS tracking beacons or survey-grade GPS units were deployed per iceberg and were paired with ground control points (GCPs). Two to eight flight lines were conducted per survey of the large (0.12 km2) and small (0.02 km2) icebergs, with altitudes varying from 750 to 1000 m. The nadir images were captured via a wireless connection to the DSLR camera which was contained within a 'pod' externally mounted on an MBB Bo105 helicopter. Drift was primarily translational over the survey periods, with average drift speeds of 0.59 and 0.95 km hr-1 and total drift magnitudes of 194 and 272 m for the large and small icebergs, respectively. Iceberg volumes varied by 15 to 17% between surveys as initially calculated in AgiSoft Photoscan after manual point cloud cleaning. Additional results of a cloud-to-cloud differencing algorithm, after drift correction with the georeferenced GCPs, suggest that repeat photogrammetric surveying is an effective method for identifying local iceberg deterioration on the order of > 0.8 m. This method of iceberg aerial survey was determined to be effective but challenges included helicopter use in a remote offshore location, GCP deployment on a moving and possibly unstable target and difficulty in acquiring adequate coverage of vertical sidewalls with a nadir camera angle.

  10. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  11. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  12. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  13. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  14. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  15. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  16. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  17. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  18. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  19. Protective Effects of Calcium on Cadmium Accumulation in Co-Cultured Silver Carp (Hypophthalmichthys molitrix) and Triangle Sail Mussel (Hyriopsis cumingii).

    PubMed

    Li, Deliang; Pi, Jie; Wang, Jianping; Zhu, Pengfei; Lei, Liuping; Zhang, Ting; Liu, Deming

    2016-12-01

    Discovering cost effective strategies to reduce cadmium (Cd) uptake is of great concern for consumer food safety in the aquaculture industry. This study investigated the protective effects of calcium (Ca) on Cd uptake in co-cultured silver carp (Hypophthalmichthys molitrix) and triangle sail mussel (Hyriopsis cumingii). The results show that Ca-depending on its applied concentration-caused a significant decrease in the Cd uptake into muscle (by 48 %-72 %), gills (by 51 %-57 %), liver (by 52 %-81 %) and kidney (by 54 %-81 %) of silver carp (p < 0.001), as well as foot (by 8 %-32 %) and visceral mass (by 40 %-47 %) of triangle sail mussels (p < 0.05). The results indicate that Ca treatment is an effective means of reducing Cd accumulation in aquaculture. Since Ca is often used to increase the quality of pearls produced by triangle sail mussel, the quality of co-cultured edible fish might improve as a consequence of the potentially reduced Cd uptake.

  20. Inertial Electrostatic Confinement Fusion: The Laser Elevator Solar System Survey for Propellants Abstract

    NASA Technical Reports Server (NTRS)

    Pryor, Wayne

    1999-01-01

    Dr. Wayne Pryor worked on three projects this summer. These were: 1) Inertial Electrostatic Confinement; 2) The Laser Elevator; and 3) Solar System Survey for Propellants Abstract. We Assisted Jon Nadler from Richland Community College in assembling and operating a table-top nuclear fusion reactor. We successfully demonstrated neutron production in a deuterium plasma. Pryor also obtained basic spectroscopic information on the atomic and molecular emissions in the plasma. The second project consisted of the completion of a paper on a novel propulsion concept (due to Tom Meyer of Colorado, the first author): a laser sail that bounces light back to the laser source. Recycling the photons from source to sail perhaps 100-1000 times dramatically improves the energy efficiency of this system, which may become very important for high-velocity missions in the future. Lastly, we compiled a very basic inventory of solar system propellant resources, their locations, and their accessibility. This initial inventory concentrates on sunlight availability, water availability, and the difficulty (delta-velocity requirement and radiation environment) in getting there.