Science.gov

Sample records for 2002-2004 stratospheric balloon

  1. Universal stratospheric balloon gradiometer

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  2. Stratospheric electric field measurements with transmediterranean balloons

    NASA Astrophysics Data System (ADS)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  3. The Ultimate Mountaintop: Astronomy Aboard Stratospheric Balloons

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher; White, Nicholas E. (Technical Monitor)

    2000-01-01

    As funding, for astronomy dwindles and the competition for observation time heats up, more astronomers may turn to balloons. Far above the Keck telescope on Hawaii's Mauna Kea, higher still than the hostile snowcapped peaks of Mt. Everest, there exists a 40-kilometer summit that will place their telescopes above 99% of the atmosphere. With the prospect of 100-day and even 1,000-day balloons, the climb to the summit is more and more tempting. Surely, given enough cash, most astronomers would opt for a lunar base or a platform beyond the Earth. Until then, many seem happy to settle for a stratospheric mountaintop.

  4. Observations from a constant-altitude stratospheric balloon

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Vermillion, Charles H.; Chan, Paul H.; Mcbrien, Gary E.; Ward, William; Coronado, Patrick

    1991-01-01

    The paper describes a constant-altitude stratospheric balloon system, called Earthwinds, designed for high-altitude atmospheric observations. Special attention is given to the balloon's variable ballast system for altitude control; reactions of the balloon system to air motions in a stratified atmosphere; instruments for locating the balloon position, controlling the altitude, and making observations of atmospheric movements; balloon dynamics; and the atmospheric phenomena that will be observed by the balloon instruments.

  5. Gondola development for CNES stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.

  6. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  7. A Constitutive Equation for Stratospheric Balloon Materials

    NASA Technical Reports Server (NTRS)

    Rand, J. L.; Sterling, W. J.

    2004-01-01

    The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of properties. Due to a more desirable combination of properties, the low density polyethylene that has been used for the last half century has been replaced during the last decade by linear low density polyethylene (LLDPE). This paper describes the effort to characterize the time dependent properties of a 38 micron coextrusion of LLDPE. The nonlinear viscoelastic constitutive equation presented may be used to accurately describe the creep and/or relaxation of this film when subjected to a biaxial state of stress, such as might be required for an extended balloon flight. Recent laboratory data have been used to mod@ an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structural design optimization and reliability assessment, and may be further utilized as a predictive tool to benefit in-flight operations. Current structural analysis tech&ques based on linear elastic properties have predicted stresses in excess of those which would actually exist.

  8. Measurements of Load Train Motion on a Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Gruner, Timothy D.; Olney, David J.; Russo, Angela M.

    2005-01-01

    Attitude measurements using gyros and magnetometers placed on a stratospheric balloon during a non-pointed test flight were used to observe the natural azimuth and elevation motions of a balloon/load train/gondola at an altitude of 36 km over a total flight time of 400 minutes. Time traces of the entire flight are presented. This flight, conducted under nominal atmospheric conditions, had significant motion about the azimuth. Some discussion on balloon disturbances is also included.

  9. Recent and Future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    Esrange Space Center located in northern Sweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have a unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern Canada. The Swedish Government and Swedish National Space Board are now finaliz-ing an agreement with Russia for peaceful uPersonNamese of space, which will permit circumpolar balloon flights. Within this agreement we will soon be able to of-fer the science community long duration balloon flights with durations for PersonNameseveral weeks. The balloon operations at Esrange Space Center are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern Sweden. We have also received a request from JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall will be ready for use at the beginning of 2011. January 24 we made an historical balloon flight in a very cold stratosphere with a Zodiac metricconverterProductID402?000 m3402ü ınbsp;000 m3402 000 m3 balloon carrying a 750kg gondola with the German Mipas-B/Telis instrument. The balloon reached 34kms alti-tude after a carefully piloted ascent in temperature levels down to -89 degrees Centigrade. The scientists received unique data during the 13 hours and 30 minutes long sailing at different altitudes during slow descent. The payload was recovered in very good condition 80 kms from the border between country-regionFinland and Russia.

  10. Balloon measurements of aerosol in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Morita, Y.; Takagi, M.; Iwasaka, Y.; Ono, A.

    1985-01-01

    Three balloon soundings of aerosol were conducted from Syowa Station, Antarctica in April, June and October 1983. Number concentration and the size distribution of aerosol particles with diameter greater than 0.3 microns were measured by using a light scattering aerosol particle counter. The influence of the eruption of Mt. El Chichon on the aerosol concentration in the stratosphere was observed on October 16. Very high aerosol concentration at stratospheric heights was obtained from the first successful aerosol sounding in winter Antarctic stratosphere. The result gives direct evidence of winter enhancement in the Antarctic stratosphere.

  11. ISBA system for CNES operations of stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, André; Cocquerez, Philippe; Escarnot, Jean-Pierre; Sosa-Sesma, Sergio; Ragazzo, Patrick; Spel, Martin

    For long duration flights of stratospheric balloons, the CNES has developed the ISBA Tracking, Telemetry Command system (TT and C), which comprises a house-keeping gondola (on board aerostat) and associated ground segments. The ISBA TT and C system permits to control and to monitor stratospheric balloons for long duration flights lasting a few days (zero-pressure balloon) to several months (superpressure balloon), flying anywhere in the world. This system has been implemented for scientific balloon campaigns : African Monsoon Multidisciplinary Analyzes (AMMA 2006) and Pacific Asian Regional Campaign (PARC 2008). The next balloon campaign with this system will be Concordiasi (2010 ), during which 20 superpressure balloons will be launched from the U.S. MacMurdo station (placeAntarctica) where the duration of the balloon flights are expected to reach 6 months. To enable monitoring and controlling of the flights in real time, regardless of the location of the balloons, the Iridium system is used as the communication link between the ground stations and the on-board house-keeping gondola. A mobile Control Station is activated on the balloon operation site for the launch, from where the ascent to flight level and the beginning of the flight is controlled by the team in charge of launching operations. Subsequently after checking the good health of the aerostat (balloon itself and house keeping gondola), the flight control of the balloon is transferred to the Control Center installed in the CNES at Toulouse from where the flight is further controlled : checking housekeeping and scientific telemetries, operations of ballast dropping and helium gas exhausting (superpressure balloons), monitoring the health of the balloon and the house keeping gondola, forecasts extensions of balloon trajectories for the 10 days to come, and management of the end of the flight to ensure a descent of the envelope of the balloon and flight train with its parachute in maximum safety conditions

  12. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  13. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  14. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  15. Balloon borne measurements of Stratospheric ozone over Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    We conducted a one year campaign for the study of stratospheric ozone concentration and its variability along with other metrological parameters over Hyderabad. The flights were made every 15 days using 5000 cu m plastic balloons except during the rainy days when rubber balloon were employed. Ozone plays important role in the chemistry and dynamics of the atmosphere. In troposphere, ozone represents one of the most active gases involved in photochemical reactions as many factors influence tropospheric ozone concentration. Tropospheric ozone also plays a central role in the oxidative chemistry of the troposphere and has an important impact on the radiative balance of the atmosphere and therefore continuous observation program is necessary to assess the ozone budget. The measurement of other meteorological parameters is also essential since an atmospheric composition is intimately linked to the meteorological conditions, under which chemical and transport processes occur. The measurements were made using ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde.

  16. STRATO 02/2015 - The Perseids 2015 stratospheric balloon mission

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Lenža, L.; Kapuš, J.; Erdziak, J.; Slošiar, R.

    2016-02-01

    In this paper we present the first results of the MeteorCam03 experiment that allowed the observation of meteors from the stratosphere. The experiment provides a new perspective of meteor observations, mainly due to the lower extinction in these layers of the Earth's atmosphere. For the implementation of the experiment the Perseid meteor shower maximum was chosen, since the Perseids (together with the Geminid meteor shower) are one of the most active streams observable from the northern hemisphere. The MeteorCam03 experiment was part of a stratospheric balloon flight with platform JULO-X codenamed STRATO 02/2015, whose launch was carried out by the Slovak Organization for Space Activities (SOSA).

  17. Collection of Stratospheric Samples using Balloon-Borne Payload System

    NASA Astrophysics Data System (ADS)

    Prakash, Ajin; Safonova, Margarita; Murthy, Jayant; Sreejith, A. G.; Kumble, Sheshashayi; Mathew, Joice; Sarpotdar, Mayuresh; Kj, Nirmal; Suresh, Ambily; Chakravortty, Dipshikha; Rangarajan, Annapoorni

    2016-07-01

    Earth's atmosphere at stratospheric altitudes contains dust particles from soil lifted by weather, volcanic dust, man-made aerosols, IDP (Interplanetary Dust Particles) - remnants of comets and asteroids, and even interstellar dust. Satellite observations suggest that approximately 100--300 tons of cosmic dust enter Earth's atmosphere every day. However, very little is known about the microbial life in the upper atmosphere, where conditions are very much similar to that on Mars and possibly on some exoplanets. Stratosphere provides a good opportunity to study the existence or survival of biological life in these conditions. Despite the importance of this topic to astrobiology, stratospheric microbial diversity/survival remains largely unexplored, probably due to significant difficulties in the access and ensuring the absence of contamination of the samples. To conduct a detailed study into this, we are developing the balloon-borne payload system SAMPLE (Stratospheric Altitude Microbiology Probe for Life Existence) to collect dust samples from stratosphere and bring them in an hygienic and uncontaminated manner to a suitable laboratory environment, where further study will be conducted to establish the possibility of microbial life in the upper atmosphere. This balloon-borne payload system will rise through the atmosphere till it reaches an altitude of about 25-30 km above sea level. The payload consists of detachable pre-sterilized sampling chambers designed to collect and contain the dust samples and get them back to the surface without contamination during the flight, a microprocessor and a controller which will determine the altitude of the payload system to actively monitor the opening and closing of the sample collection chambers. For contamination control, we will have two extra chambers, one of which will fly but not open, and one will remain closed on the ground. Other onboard devices include environmental sensors, GPS tracking devices, cameras to monitor

  18. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  19. Predicting the Response of Terrestrial Contamination on Mars with Balloon Experiments in Earth's Stratosphere

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; E-MIST Team

    2015-03-01

    A species-specific inactivation model that predicts the persistence of terrestrial microbes on the surface of Mars is one of many possible outcomes from high altitude balloon experiments in Earth's stratosphere.

  20. Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.

    1980-01-01

    Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.

  1. Balloon-borne measurements of the ultraviolet flux in the Arctic stratosphere during winter

    NASA Technical Reports Server (NTRS)

    Schiller, Cornelius; Mueller, Martin; Klein, Erich; Schmidt, Ulrich; Roeth, Ernst-Peter

    1994-01-01

    Filter radiometers sensitive from 280 to 320 nm and from 280 to 400 nm, respectively, were used for measurements of the actinic flux in the stratosphere. Since the instruments are calibrated for absolute spectral sensitivity the data can be compared with model calculations of the actinic flux. Data were obtained during seven balloon flights during the European Arctic Stratospheric Ozone Experiment (EASOE).

  2. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Technical Reports Server (NTRS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at midlatitudes (about 45 deg N) and tropical latitudes (12-25 deg S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At +/- 0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  3. Importance of electric field measurement over low latitudes at stratospheric heights by balloons

    NASA Astrophysics Data System (ADS)

    Gupta, S. P.

    The vertical field in the stratosphere around 35 km is predominantly of atmospheric origin whereas the horizontal electric field at these altitude is mainly of ionospheric origin. The electrical coupling between ionosphere and atmosphere is not known for low latitudes. Balloon borne electric field measurements are planned from Hyderabad, India (geographic latitude 17.5 deg N) to understand this coupling. Measurement of stratospheric electric fields are also important from the point of view of the sun-weather relationship. It is suggested that the balloon borne electric field measurements are important to understand the electrodynamics of the middle atmosphere.

  4. Test of Re-Entry Systems at Estrange Using Sounding Rockets and Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Abrahamsson, M.; Florin, G.

    2015-09-01

    Stratospheric balloons and sounding rockets can provide an ideal in-flight platform for performing re-entry and other high speed tests off different types of vehicles and techniques. They are also ideal platforms for testing different types of recovery systems such as airbrakes and parachutes. This paper expands on some examples of platforms and missions for drop tests from balloons as well as sounding rockets launched from Esrange Space Center, a facility run by Swedish Space Corporation SSC in northern Sweden.

  5. Measurement of stratospheric turbulence by balloon-borne 'glow-discharge' anemometer

    NASA Astrophysics Data System (ADS)

    Yamanaka, M. D.; Hirosawa, H.; Matsuzaka, Y.; Yamagami, T.; Tanaka, H.

    1985-06-01

    Attention is given to the specifications of a novel balloon-borne ionic anemometer which uses the type of glow discharge studied by Sekiguchi et al. (1963) and Hirosawa et al. (1964) as an ion source for long duration observations. The data obtained by the anemometer during its first flight, in September 1983, shows inhomogeneous fine structures within a stratospheric turbulence layer. A cursory analysis of the data obtained implies systematic stratospheric turbulence structures.

  6. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  7. Balloon stratospheric research flights, April 1976 to December 1976

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1977-01-01

    These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.

  8. Balloon stratospheric research flights, November 1974 to January 1976

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1976-01-01

    These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the photochemical system of the upper atmosphere. An overview of the specific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for each of the last five flights during this period are presented.

  9. Polaris Experiment: Data Collected During the Stratospheric Flight on the Balloon BEXUS 18

    NASA Astrophysics Data System (ADS)

    Paganini, D.; Cacco, C.; Cipriani, F.; Cocco, F.; Cortese, T.; Vecchia, R. D.; La Grassa, M.; Lora, M.; Zorzan, M.; Branz, F.; Olivieri, L.; Sansone, F.; Francesconi, A.

    2015-09-01

    POLARIS experiment, POLymer-Actuated Radiator with Independent Surfaces, is a technology demonstrator based on a new concept of heat radiator, conceived for space and planetary applications. This innovative radiator, named “multi-plate”, is able to influence actively the heat amount dissipated towards the environment through a simple geometry change, varying its equivalent thermal resistance. In order to better understand the potentialities of this radiator concept in one of its most likely scenario of application, POLARIS flew into stratosphere on the BEXUS1 8 balloon, in the framework of the REXUS-BEXUS programme; the flight took place from the ESRANGE Space Center on October 12th, 2014. The conditions that the experiment experienced during the flight allowed to evaluate the radiator in a realistic context, giving an extraordinary opportunity to characterize its capabilities. In this paper, POLARIS architecture is introduced and the main results obtained from the stratospheric balloon flight are presented and discussed.

  10. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  11. Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1985-01-01

    Stratospheric levels of particles with r or = 0.15 microns were monitored with optical particle counters in approximately monthly balloon soundings at Laramie, Wyoming (41 deg N) since 1971. These measurements were used to characterize the background stratospheric aerosol layer and the disturbed layer following major volcanic eruptions. Levels of particles with r or = 0.01 microns have also been measured with balloon-borne counters since 1973. The latter are collectively called condensation nuclei (CN) as they are characteristic of aerosol in the early stages of growth. While they dominate the size distribution in the tropsophere, they are a trace species in the undisturbed stratosphere. From 1972 until 1980, annual balloon soundings from McMurdo Station (78 deg S) and/or Amundsen-Scott Station (90 deg S), in Antarctica, have also been conducted to crudely monitor Southern Hemisphere aerosol levels. These measurements were continued in 1983 and 1984. Profiles of r 0.15 microns aerosol concentrations as measured during January at the south pole from 1972 to 1975 and in 1980 are given. The former are typical of undisturbed conditions and indicate the small degree of variability under these conditions. The latter indicates the effect of minor volcanic activity, visible in the 10 to 15 km region.

  12. Measurement of stratospheric trace constituent distributions from balloon-borne far infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.

    1987-01-01

    FIR limb thermal emission spectra obtained from balloon-borne measurements made as a part of the Balloon Intercomparison Campaign (BIC) have been analyzed for retrieval of stratospheric trace-constituent distributions. The measurements were made with a high-resolution Michelson interferometer and covered the 15-180/cm spectral range with an unapodized spectral resolution of 0.0033/cm. The retrieved vertical profiles of O3, H2O, HDO, HCN, CO, and isotopes of O3 are presented. The results are compared with the BIC measurements for O3 and H2O made from the same balloon gondola and with other published data. A comparison of the simultaneously retrieved profiles for several gases with the published data shows good agreement and indicates the validity of the FIR data and retrieval techniques and the accuracy of the inferred profiles.

  13. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  14. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  15. Comparison Of The Global Analytic Models Of The Main Geomagnetic Field With The Stratospheric Balloon Magnetic Data 335

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Filippov, S.; Frunze, A.

    2013-12-01

    Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.

  16. Assessing the Potential of Stratospheric Balloons for Planetary Science

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hibbitts, Karl; Young, Eliot; Landis, Robert; Noll, Keith; Baines, Kevin

    2013-01-01

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  17. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    PubMed

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  18. SOLAR-T: terahertz photometers to observe solar flare emission on stratospheric balloon flights

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Correia, E.; Diniz, J. A.; Fernandez, G.; Fernandes, L. O. T.; Giménez de Castro, C. G.; Godoy, R.; Hurford, G.; Kudaka, A. S.; Lebedev, M.; Lin, R. P.; Machado, N.; Makhmutov, V. S.; Marcon, R.; Marun, A.; Nicolaev, V. A.; Pereyra, P.; Raulin, J.-P.; da Silva, C. M.; Shih, A.; Stozhkov, Y. I.; Swart, J. W.; Timofeevsky, A. V.; Valio, A.; Villela, T.; Zakia, M. B.

    2012-09-01

    A new solar flare spectral component has been found with intensities increasing for larger sub-THz frequencies, spectrally separated from the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A twofrequency THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. 76 mm diameter telescopes were designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions at 3 and 7 THz. Golay cell detectors are preceded by low-pass filters to suppress visible and near IR radiation, band-pass filters, and choppers. It can detect temperature variations smaller than 1 K with time resolution of a fraction of a second, corresponding to small burst intensities. The telescopes are being assembled in a thermal controlled box to which a data conditioning and acquisition unit is coupled. While all observations are stored on board, a telemetry system will forward solar activity compact data to the ground station. The experiment is planned to fly on board of long-duration stratospheric balloon flights some time in 2013-2015. One will be coupled to the GRIPS gamma-ray experiment in cooperation with University of California, Berkeley, USA. One engineering flight will be flown in the USA, and a 2 weeks flight is planned over Antarctica in southern hemisphere summer. Another long duration stratospheric balloon flight over Russia (one week) is planned in cooperation with the Lebedev Physics Institute, Moscow, in northern hemisphere summer.

  19. Balloon measurements of stratospheric HCl and HF by far infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Shibasaki, Kazuo; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Traub, Wesley A.

    1994-01-01

    We have analyzed atmospheric thermal emission spectra obtained with the balloon-borne FIRS-2 far infrared Fourier transform spectrometer during balloon flights from Palestine, Texas on May 12-13, 1988 and from Fort Sumner, New Mexico on September 26-27, 1989 and on July 4-5, 1990. Seven and two pure rotational transition lines in 100-205 cm(exp -1) range are analyzed for deriving vertical profiles of stratospheric HCl and HF, respectively. We obtain both the daytime and nighttime average vertical profiles from 15 to 50 km. We compare these profiles with the ones obtained in June, 1983 with the first version of FIRS spectrometer during the Balloon Intercomparison Campaign (BIC-2). BIC-2 results were revised to be consistent with the present analysis which uses the latest spectral parameters. According to our comparison results no increase is recognized for HCl but about 3 percent per year increase for HF from 1983 to 1990, assuming a linear trend. These annual increase rates are smaller than those reported by other groups. Recently Rinsland et al. (1991) and Wallace and Livingston (1991) reported long term behavior of total HCl and HF observed on Kit Peak between 1977 and 1990. As Kit Peak is located near both balloon launching sites, Palestine and Fort Sumner, we think our results are favorably comparable with theirs. Comparison results with ours and ground-based measurements will be presented and discussed.

  20. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.

    1988-01-01

    Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.

  1. Small balloon flights for investigating the impact of convective overshooting on the tropical lower stratosphere

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre; Riviere, Emmanuel; Khaykin, Sergey; Held, Gerhard

    Thunderstorm convective overshooting over tropical land can reach an altitude of 20-21 km (Pommereau et al, Cospar 2018, Id 15676). For better understanding the process and the impact on the lower stratosphere, a small balloon flight program combining frequent flights of plastic and large rubber balloons next to thunderstorms has been carried in S-E Brazil in the frame of a French TROPICO project. Given the goal flying as close as possible from thunderstorms and ATC and safety requirements at landing, a specific control procedure was developed based on C-band radar observations and use of light-weight Iridium telemetry/remote control whose data were made available in real time to ATC by Internet for following the flight. A total of 37 flights have been carried out within two 3 weeks campaigns (20 in March 2012 and 17 in February 2013) of 3-40 kg payloads, among which FLASH Lyman alpha stratospheric hygrometers, PicoSDLA water vapor, N2O and CH4 diode laser sensors and COBALD cloud and aerosols detectors, operated and recovered in safe conditions. Altogether those balloon data, complemented by a variety of ground-based measurements of cloud altitude, atmospheric optical thickness and 4 radiosondes/day, allow confirming the stronger convective intensity over land in the southern tropics. An promising approach for further investigating the possible differences with other continents, i.e. Central Africa and Northern Australia, would be to carry similar measurements from long duration circumnavigating Infra Montgolfier, when their flights will be newly authorized. Details on technical aspects, payloads and procedures applied for carrying safe balloon flights in agreement with Brazilian authorities will be presented.

  2. Comparisons of observed ozone trends in the stratosphere through examination of Umkehr and balloon ozonesonde data

    SciTech Connect

    Miller, A.J.; Nagatani, R.M.; Tiao, G.C.

    1995-06-20

    During the past several years, several authors have published results of the annual and seasonal trends depicted in the total ozone data from both satellite and ground-based observations. The examination of the vertical profile data available from the balloon ozonesonde and Umkehr observations, however, has been generally restricted to limited periods and to nonseasonal trend calculations. Within this study, the authors have examined the nonseasonal and the seasonal trend behavior of the ozone profile data from both ozonesonde and Umkehr measurements in a consistent manner, covering the same extended time period, 1968-1991, thus providing the first overall comparison of results. Their results reaffirm the observation of significant negative ozone trends in both the lower stratosphere (15-20 km), about {minus}6% per decade, and upper stratosphere (35-50 km), about {minus}6% per decade, separated by a nodal point in the region of 25-30 km. The upper stratosphere decrease is, apparently, associated with the classic gas phase chemical effect of the chlorofluorocarbons, whereas the cause of the lower stratospheric decline is still under investigation, but may well be associated with the chlorine and bromine chemistry in this region. 27 refs., 9 figs., 4 tabs.

  3. Role Stratospheric Balloon Magnetic Surveys in Development of Analytical Global Models of the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Brekhov, O. M.; Tsvetkov, Yu. P.; Ivanov, V. V.; Filippov, S. V.; Tsvetkova, N. M.

    2015-09-01

    The results of stratospheric balloon gradient geomagnetic surveys at an altitude of ‘-~3O km with the use of the long (6 km) measuring base oriented along the vertical line are considered. The purposes of these surveys are the study of the magnetic field formed by deep sources, and the estimation of errors in modern analytical models of the geomagnetic field. The independent method of determination of errors in global analytical models of the normal magnetic field of the Earth (MFE) is substantiated. The new technique of identification of magnetic anomalies from surveys on long routes is considered. The analysis of gradient magnetic surveys on board the balloon, revealed the previously unknown features of the geomagnetic field. Using the balloon data, the EMM/720 model of the geomagnetic field (http://www.ngdc.noaa.gov/geomag/EMM) is investigated, and it is shown that this model unsatisfactorily represents the anomalous MFE, at least, at an altitude of 30 km, in the area our surveys. The unsatisfactory quality of aeromagnetic (ground-based) data is also revealed by the method of wavelet analysis of the ground-based and balloon magnetic profiles. It is shown, that the ground-based profiles do not contain inhomogeneities more than 1 30 km in size, whereas the balloon profiles (1000 km in the strike extent) contain inhomogeneities up to 600 km in size an the location of the latte coincides with the location of the satellite magnetic anomaly. On the basis of balloon data is shown, it that low-altitude aeromagnetic surveys, due to fundamental reasons, incorrectly reproduce the magnetic field of deep sources. This prevents the reliable conversion of ground-based magnetic anomalies upward from the surface of the Earth. It is shown, that an adequate global model of magnetic anomalies in the circumterrestrial space, developed up to 720 spherical harmonics, must be constructed only in accordance with the data obtained at satellite and stratospheric altitudes. Such a model

  4. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    NASA Astrophysics Data System (ADS)

    Stachnik, R. A.; Millán, L.; Jarnot, R.; Monroe, R.; McLinden, C.; Kühl, S.; Puķīte, J.; Shiotani, M.; Suzuki, M.; Kasai, Y.; Goutail, F.; Pommereau, J. P.; Dorf, M.; Pfeilsticker, K.

    2013-03-01

    Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO) were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor) submillimeterwave heterodyne limb sounder (SLS). The balloon was launched from Ft. Sumner, New Mexico (34° N) on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry), derived from BrO vmr (volume mixing ratio) using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  5. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    NASA Astrophysics Data System (ADS)

    Stachnik, R. A.; Millán, L.; Jarnot, R.; Monroe, R.; McLinden, C.; Kühl, S.; Pukīte, J.; Kasai, Y.; Goutail, F.; Pommereau, J. P.; Dorf, M.; Pfeilsticker, K.

    2012-11-01

    Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO) were made using observations of BrO otational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor) submillimeterwave heterodyne receiver. The balloon was launched from Ft. Sumner, New Mexico (34°N) on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry), derived from BrO vmr (volume mixing ratio) using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  6. SIDERALE plus BIT: a small stratospheric balloon CZT based experiment at Polar Latitudes

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Alderighi, Monica; Quadrini, Egidio M.; Cortiglioni, Stefano; Ronchi, Enrico; Miatto, Paolo; Del Sordo, Stefano; Natalucci, Lorenzo

    SIDERALE was a small experiment hosted as a piggy back payload on the SoRa LDB (Sounding Radar Long Distance Balloon) stratospheric balloon mission by the Italian Space Agency (ASI). The balloon was launched on July 1st from Longyearbyen, Svalbard (Norway), and flew for 4 days at a float altitude of about 39 km along the 78 North parallel and landed on the Baffin Island (Canada) on July 4th at 10:30 UTC. SIDERALE was aimed to test in a pseudo spatial environment a detector for high energy astrophysics applications based on a 44 pixel CZT solid state sensor. An onboard data handling computer, a mass memory and a power supply units were integrated in the SIDERALE payload. Furthermore an innovative modular and low cost telemetry system BIT (Bidirectional Iridium Telemetry), developed in a collaboration between INAF/IASF-Bologna and LEN srl, was used in order to make SIDERALE autonomous and independent from the hosting payload. The detector was measuring X and ray radiation for the whole flight according to dynamically set operating modes. Four to six events per second were measured by the sensitive detector volume in an energy range of between 40 keV and 400 keV. Acquired data were 100The overall payload (SIDERALE+BIT) was successfully recovered together with the onboard stored data and arrived back to Italy in autumn 2009. The paper presents the experiment and its main characteristics together with a preliminary analysis of flight and scientific data.

  7. Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro; Sato, Kaoru; Hirasawa, Naohiko; Tsutsumi, Masaki; Nakamura, Takuji

    2015-12-01

    Balloon-borne observations of lower stratospheric water vapor were conducted with the Cryogenic Frostpoint Hygrometer (CFH) in July, September, and November 2013 at Syowa Station (69.0oS, 39.6oE) in the Antarctic. High-precision and high vertical resolution data of water vapor concentration up to an altitude of about 28 km were obtained successfully except for a contamination in the observation of July 2013. A comparison between the CFH and coincident satellite (i.e., Aura/MLS) observations showed a good agreement within their uncertainty. A position of Syowa Station relative to the stratospheric polar vortex edge varied depending on both the observation date and altitude. Temperature and pressure histories of the observed air parcels were examined by 10-day backward trajectories. These analyses clearly demonstrated that most air parcels observed in the lower stratosphere above Syowa Station experienced final dehydration inside the polar vortex. On the other hand, a clear signature of rehydration or incomplete dehydration was also observed around a 25 hPa pressure level in the observation of July 2013.

  8. Reel Down - A balloon borne winch system for stratospheric sounding from above

    NASA Technical Reports Server (NTRS)

    Hazen, N. L.; Anderson, J. G.

    1984-01-01

    A balloon-borne winch system has been developed and flight tested which permits the repetitive lowering and hoisting of a stratospheric sampling payload for distances of up to 20 km from a float altitude of 35-40 km. This new approach to in situ stratospheric measurements permits multiple scans of various depths and velocities, closely spaced over a period of hours or days, thus dramatically increasing observational effectiveness. The motor driven winch permits control of ascent velocities from 0-9 m/s with energy derived from a large battery; for descent, the motors are used as generators, velocity is controlled over the same range, and the energy is dumped radiatively to space. The 1.75 mm diameter tether is of braided Kevlar construction with a nylon jacket; it exhibits a 2900 N break strength. Both the winch and the payload suspended by the tether are fully instrumented to evaluate potentially destructive system-induced dynamics and the effects of stratospheric wind shears. The system was successfully flight tested by lowering a 62 kg payload for a distance of 12 km from a float altitude of 38.5 km and hoisting it back up again, both at velocities ranging between 5-9 m/s. Observations indicated minimal system-induced dynamical effects, and no adverse effects due to the 8 m/s wind shear present during flight.

  9. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  10. A Balloon-borne Limb-Emission Sounder at 650-GHz band for Stratospheric observations

    NASA Astrophysics Data System (ADS)

    Irimajiri, Yoshihisa; Ochiai, Satoshi

    We have developed a Balloon-borne Superconducting Submillimeter-Wave Limb-Emission Sounder (BSMILES) to observe stratospheric minor constituents like ozone, HCl etc. BSMILES carries a 300mm-diameter offset parabolic antenna, a 650-GHz heterodyne superconducting (SIS) low-noise receiver, and an acousto-optical spectrometer (AOS) with the bandwidth of 1GHz and the resolution of 1MHz. Gondola size is 1.35 m x 1.35 m x 1.26 m. Total weight is about 500 kg. Limb observations are made by scanning the antenna beam of about 0.12 degrees (FWHM) in vertical direction. A calibrated hot load (CHL) and elevation angle of 50 degrees are ob-served after each scan for calibration. The DSB system noise temperature of the SIS receiver is less than 460 K at 624-639 GHz with a best value of 330 K that is 11 times as large as the quantum limit. Data acquisition and antenna control are made by on-board PCs. Observed data are recorded to PC card with 2 GB capacity to collect after the observations from the sea, and HK data are transmitted to the ground. Gondola attitude is measured by three-axis fiber-optical gyroscope with accuracy less than 0.01 degrees, three-axis accelerometer, and a two-axis geoaspect sensor. Electric power is supplied by lithium batteries. Total power con-sumption is about 150W. Almost all systems are put in pressurized vessels for waterproofing, heat dissipation, and noise shield, etc. BSMILES was launched from Sanriku Balloon Center of Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), at the east coast of Japan, in the summer of 2003, 2004, and 2006. The gondola was carried to an altitude of 35 km by a balloon of 100,000 m3 in volume and the observations were made for 1.5 hours in 2004. All systems operated normally by keeping their temperature within the limit of operation by keeping gondola warm with styrene foam. After the observations, the gondola was dropped and splashed on the Pacific Ocean by a parachute and

  11. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.

    1988-01-01

    The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.

  12. Crew Recovery and Contingency Planning for a Manned Stratospheric Balloon Flight - the StratEx Program.

    PubMed

    Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L

    2016-10-01

    stratospheric balloon flight - the StratEx program. Prehosp Disaster Med. 2016;31(5):524-531.

  13. The discrepancy between stratospheric ozone profiles from balloon soundings and from other techniques: A possible explanation

    NASA Technical Reports Server (NTRS)

    Demuer, Dirk; Debacker, Hugo

    1994-01-01

    Regular balloon ozone soundings with electrochemical sondes have been performed at Uccle since 1969. More than 450 ozone soundings between 1985 and 1989 were used to calculate the altitudes Zs from the VIZ radiosonde data and the altitudes Zr deduced from the tracking of the balloon train with a primary wind-finding radar. The values of Zs at fixed times appeared to be systematically too low as compared to Zr. The differences Zr-Zs increase with altitude; at 30 km the annual mean values of Zr-Zs (plus or minus standard deviation) vary between 590 plus or minus 910 m and 1410 plus or minus 1160 m, according to the pressure calibration of different manufacturing series of radiosondes. From these results it is found that around the 30 km level the ozone concentrations calculated from soundings with VIZ sondes are too low by 7.5 to 14 percent, depending upon the manufacturing series of radiosondes. At least part of the discrepancy which has often been found between ozone profiles from balloon soundings and from other techniques such as rocket observations or Umkehr measurements may be explained by this effect. An altitude correction would have important consequences as to the climatology of ozone in the middle stratosphere as adopted at the moment. About half of the day-to-day variability of ozone observed from soundings with VIZ radiosondes above the 30 km level, is induced by the variability of Zr-Zs. The agreement between altitudes calculated from radar data and Vaisala radiosondes is much better; from 34 comparative soundings a mean difference (plus or minus standard deviation) of about -300 plus/minus 180 m was found at 30 km.

  14. Crew Recovery and Contingency Planning for a Manned Stratospheric Balloon Flight - the StratEx Program.

    PubMed

    Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L

    2016-10-01

    stratospheric balloon flight - the StratEx program. Prehosp Disaster Med. 2016;31(5):524-531. PMID:27573155

  15. The stratospheric aerosol particle measurement by balloon at Syowa Station (69.00 deg S, 39.35 deg E): Outline of special sonde (rubber) campaign JARE 24

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Morita, T.; Itoh, T.; Shibazaki, K.; Makino, Y.; Tanaka, T.; Tsukamura, K.; Yano, T.; Kondoh, K.; Iwashita, G.

    1985-01-01

    During the period of AMA (Antarctic Middle Atmosphere), various style balloons were used to measure atmospheric parameters at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica. The measurements which were made using balloons specially designed to monitor stratospheric aerosol particles are discussed. This type balloon was first used by JARE (Japan Antarctic Research Expedition) 24th Team in 1983. Until that time, the Japan Antarctic Research Expedition Team had been using only a large plastic balloon to monitor various minor constituents in the stratosphere. The plastic balloon was very useful, but it took a long time to arrange a balloon launching. Additionally, launching time strongly depended on weather conditions. A timely launching of the balloon was carried out with this specially designed sonde.

  16. Stratospheric O3, H2O, and HDO distributions from balloon-based far-infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Bonetti, A.

    1987-01-01

    Limb thermal emission spectra of the earth's stratosphere in the FIR obtained as part of the Balloon Intercomparison Campaign (BIC), have been analyzed for retrieval of trace constituent distributions. The observations analyzed here were made with a balloon-borne high-resolution Michelson interferometer operating in the 20-100/cm region, with an unapodized spectral resolution of 0.0033/cm. In this paper the vertical profiles of O3, H2O, and HDO retrieved from the observed spectra are presented and compared with the results from other BIC experiments. The retrieved profiles are found to be in good agreement with other measurements. The measurement of the HDO profile provides information about the sources of stratospheric water vapor. The variation of the D/H ratio of water vapor is derived from an analysis of HDO and H2O lines observed in the FIR spectra and is compared with the available measurements in the literature.

  17. Measuring the vertical distributions of the upper tropospheric and stratospheric dust with a LOAC aerosol counter under meteorological balloons

    NASA Astrophysics Data System (ADS)

    Vignelles, Damien; Renard, Jean-Baptiste; Berthet, Gwenael; Dulac, François; Coute, Benoit; Jeannot, Matthieu; Jegou, Fabrice; Olafsson, Haraldur; Dagsson Waldhauserova, Pavla

    2014-05-01

    The aerosol issue is in a constant growing. At ground, the airborne particles in boundary layer represent a real risk for population and must be control. In the middle troposphere, aerosols play an important role in the microphysics and meteorology, the heterogeneous chemistry is not well understood. In the stratosphere, several teams of researchers have shown that solid aerosols might exist, the question of the dynamic of these solid aerosol in the stratosphere is open. The aim was to develop an instrument that it can make measurements from the ground to the middle stratosphere. This instrument must be able to be put under meteorological balloons, which represent the worst conditions for the development of such instruments in terms of weight, resistance under large variations of temperature and pressure, autonomy and cost if we consider that something throw under a meteorological balloon can be lost after the fly. In the consideration of these conditions, we have developed a new instrument able to make such kind of measurements. This instrument is call LOAC for Light Optical Aerosol Counter. LOAC provides the concentration and size distribution of aerosols on 19 channels from 0.2 μm to 50.0 μm every ten seconds, and determine the main nature of particles (carbonaceous aerosol, mineral, droplets of water or sulfuric acid) in relation with a large range of samples in laboratory. The physical technique is based on the observation of the scattered light by particles at two angles. LOAC is light enough (1 kilogram) to be placed under a meteorological balloon that is very easy to launch such balloons. The goal is to perform a large number of flights to gather information about the dust distribution in stratosphere and to understand the various mechanisms controlling their spatial and temporal variability. About 25 flights with have been performed in the stratosphere with the LOAC above the Mediterranean Sea, from south of Paris, from Aire-Sur-l'Adour (South-West of

  18. MAPLE: reflected light from exoplanets with a 50-cm diameter stratospheric balloon telescope

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Bradley, Colin; Pazder, John; Nash, Reston; Metchev, Stanimir; Grandmont, Frédéric; Maire, Anne-Lise; Belikov, Ruslan; Macintosh, Bruce; Currie, Thayne; Galicher, Raphaël.; Marchis, Franck; Mawet, Dimitri; Serabyn, Eugene; Steinbring, Eric

    2014-08-01

    Detecting light reflected from exoplanets by direct imaging is the next major milestone in the search for, and characterization of, an Earth twin. Due to the high-risk and cost associated with satellites and limitations imposed by the atmosphere for ground-based instruments, we propose a bottom-up approach to reach that ultimate goal with an endeavor named MAPLE. MAPLE first project is a stratospheric balloon experiment called MAPLE-50. MAPLE-50 consists of a 50 cm diameter off-axis telescope working in the near-UV. The advantages of the near-UV are a small inner working angle and an improved contrast for blue planets. Along with the sophisticated tracking system to mitigate balloon pointing errors, MAPLE-50 will have a deformable mirror, a vortex coronograph, and a self-coherent camera as a focal plane wavefront-sensor which employs an Electron Multiplying CCD (EMCCD) as the science detector. The EMCCD will allow photon counting at kHz rates, thereby closely tracking telescope and instrument-bench-induced aberrations as they evolve with time. In addition, the EMCCD will acquire the science data with almost no read noise penalty. To mitigate risk and lower costs, MAPLE-50 will at first have a single optical channel with a minimum of moving parts. The goal is to reach a few times 109 contrast in 25 h worth of flying time, allowing direct detection of Jovians around the nearest stars. Once the 50 cm infrastructure has been validated, the telescope diameter will then be increased to a 1.5 m diameter (MAPLE-150) to reach 1010 contrast and have the capability to image another Earth.

  19. Transport of tropospheric and stratospheric ozone over India: Balloon-borne observations and modeling analysis

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Sahu, L. K.; Manchanda, R. K.; Sheel, V.; Deushi, M.; Kajino, M.; Schultz, M. G.; Nagendra, N.; Kumar, P.; Trivedi, D. B.; Koli, S. K.; Peshin, S. K.; Swamy, Y. V.; Tzanis, C. G.; Sreenivasan, S.

    2016-04-01

    This study describes the spatio-temporal variation of vertical profiles of ozone (O3) measured by balloon-borne ozonesondes over two tropical sites of Trivandrum (TVM) and Hyderabad (HYD) in India from January 2009 to December 2010. In the lower troposphere, the mixing ratios of O3 over HYD (18-66 ppbv) were similar to TVM (18-65 ppbv). In the free troposphere, the O3 mixing ratios over HYD were higher than those over TVM throughout the year. In the tropical tropopause layer (TTL) region (above 15 km), the mixing ratios of O3 over TVM were higher (83-358 ppbv) compared to those measured over HYD (89-216 ppbv). Prevailing of O3 laminae between about 14 and 17 km is seen for both sites for most profiles. A strong seasonal variation of O3 is observed in the lower stratosphere between 18 and 24 km over TVM, however, it is not pronounced for HYD. Transport of air masses from the biomass burning region of the central Africa, Southeast Asia and the Indo Gangetic plains (IGP) influenced and led to enhancements of lower and mid-tropospheric O3 over HYD and TVM while, the isentropic (325 K) potential vorticity (PV) at 100 hPa showed transport of O3-rich air from the lower stratosphere to the upper troposphere during winter and spring months over both sites. The free tropospheric O3 mixing ratios (FT-O3; 0-4 km) contribute substantially to the tropospheric column O3 (TCO) with an annual average fraction of 30% and reveal the similar seasonal variations over HYD and TVM. The vertical profiles of O3 obtained from the Monitoring Atmospheric Composition and Climate - Interim Implementation (MACC-II) reanalysis and the Meteorological Research Institute-Chemistry Climate Model version 2 (MRI-CCM2) are compared with the ozonesonde data over both sites. The simulated magnitude, phase and vertical gradient of O3 from both MRI-CCM2 and MACC-II are in good agreement with measurements in the stratosphere while there are significant differences in the tropospheric columns.

  20. A sensitivity study for far infrared balloon-borne limb emission sounding of stratospheric trace gases

    NASA Astrophysics Data System (ADS)

    Xu, J.; Schreier, F.; Vogt, P.; Doicu, A.; Trautmann, T.

    2013-05-01

    This paper presents a sensitivity study performed for trace gases retrieval from synthetic observations by TELIS (TErahertz and submillimeter LImb Sounder) which is a stratospheric balloon-borne cryogenic heterodyne spectrometer. Issues pertaining to hydroxyl radical (OH) retrieval from the far infrared measurements by the 1.8 THz channel are addressed. The study is conducted by a retrieval code PILS (Profile Inversion for Limb Sounding) developed to solve the nonlinear inverse problems arising in the analysis of infrared/microwave limb sounding measurements. PILS combines a line-by-line forward model with automatic differentiation for computing Jacobians and employs regularized nonlinear least squares inversion. We examine the application of direct and iterative regularization methods and evaluate the performance of single- and multi-profile retrievals. Sensitivities to expected errors in calibration procedure, instrumental knowledge and atmospheric profiles have been analyzed. Nonlinearity effect, inaccurate sideband ratio, and pointing error turned out to be the dominant error sources. Furthermore, the capability of multi-channel simultaneous retrieval from the far infrared and submillimeter data has been investigated. The errors and averaging kernels infer that the quality of the obtained hydrogen chloride (HCl) can be improved by significantly better exploitation of information from the observations.

  1. Atmospheric measurements by Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    2010-05-01

    Results of the first two experiments using semiconductor pixel detectors of the Medipix family for cosmic ray imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an "active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of similar duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere below 24km altitude on 11th October 2009. This balloon platform is quite ideal for such in-situ measurements. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eurolaunch - Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, also testing proper detector calibration by detecting fluxes of ionizing radiation, while evaluating instrumentation endurance and performance.

  2. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  3. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under funding from this proposal we evaluated measurements of stratospheric sulfate aerosols from three platforms. Two were satellite platforms providing solar extinction measurements, the Stratospheric Aerosol and Gas Experiment (SAGE) II using wavelengths from 0.386 - 1.02 microns, and the Halogen Occultation Experiment (HALOE) using wavelengths from 2.45 to 5.26 microns. The third set of measurements was from in situ sampling by balloonborne optical particle counters (OPCs). The goal was to determine the consistency among these data sets. This was accomplished through analysis of the existing measurement records, and through additional balloonborne OPC flights coinciding with new SAGE II observations over Laramie, Wyoming. All analyses used the SAGE II v 6.0 data. This project supported two balloon flights per year over Laramie dedicated to SAGE II coincidence. Because logistical factors, such as poor surface weather or unfavorable payload impact location, can make it difficult to routinely obtain close coincidences with SAGE II, we attempt to conduct nearly every Laramie flight (roughly one per month) in conjunction with a SAGE II overpass. The Laramie flight frequency has varied over the years depending on field commitments and funding sources. Current support for the Laramie measurements is from the National Science Foundation in addition to support from this NASA grant. We have also completed a variety of comparisons using aerosol measurements from SAGE II, OPCs, and HALOE. The instruments were compared for their various estimates of aerosol extinction at the SAGE II wavelengths and for aerosol surface area. Additional results, such as illustrated here, can be found in a recently accepted manuscript describing comparisons between SAGE II, HALOE, and OPCs for the period 1982 - 2000. While overall, the impression from these results is encouraging, the agreement of the measurements changes with latitude, altitude, time, and parameter. In the broadest sense

  4. GReAT (General Relativity Accuracy Test): a free fall test of Weak Equivalence Principle from stratospheric balloon altitude .

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Nozzoli, S.; Peron, R.; Persichini, M.; Reale, A.; Santoli, F.; Lorenzini, E. C.; Shapiro, I. I.; Ashenberg, J.; Bombardelli, C.; Glashow, S.

    GReAT (General Relativity Accuracy Test) is a free fall experiment from stratospheric balloon altitude to test the Weak Equivalence Principle (WEP) with an accuracy of (5 \\cdot 10^{-15}). The key components of the experiments are a very high accuracy (sensitivity close to (10^{-14}) g/(\\sqrt{Hz}) in a 25-s integration time) differential acceleration detector to detect a possible violation of the WEP and the facility necessary to perform the experiment. The detector will be released to free fall inside an evacuated capsule (Einstein elevator) which has been previously dropped from a stratospheric balloon, and will be slowly rotated about a horizontal axis to modulate the gravity signal and then released inside the capsule, immediately after the capsule's release from the balloon. In this paper, we report the progress in the development of the differential accelerometer that must be able to test the WEP with the declared accuracy. Following a brief description of the overall experiment, we present experimental results obtained with a differential accelerometer prototype, in particular the ability of the sensor to reject common-mode noise components. Finally, we present a new configuration of the differential accelerometer which is less sensitive to higher-order mass moments generated by nearby masses.

  5. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  6. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Renard, Jean-Baptiste; Robert, Claude; Dalaudier, Francis

    2008-02-01

    Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.

  7. Stratospheric temperature profile from balloon-borne measurements of the 10.4-micron band of CO2

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F.J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1983-01-01

    The technique of nonlinear least squares spectral curve fitting has been used to derive the stratospheric vertical temperature profile from balloon-borne measurements of the 10.4 micron band of CO2. The spectral data were obtained at sunset with the approximately 0.02 per cm resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The r.m.s. deviation between the retrieved temperature profile and correlative radiosonde measurements is 2.2 K.

  8. Stratospheric temperature profile from balloon-borne measurements of the 10.4-micron band of CO2

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1983-10-01

    The technique of nonlinear least squares spectral curve fitting has been used to derive the stratospheric vertical temperature profile from balloon-borne measurements of the 10.4 micron band of CO2. The spectral data were obtained at sunset with the approximately 0.02 per cm resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The r.m.s. deviation between the retrieved temperature profile and correlative radiosonde measurements is 2.2 K.

  9. Upper&lower Atmosphere Level and Stratospheric Utilities by Groundbased Observations with Helium Balloon Experiments Via Launching Systems

    NASA Astrophysics Data System (ADS)

    Kucuk, Furkan Ali

    2016-07-01

    We have initiated a low budget project, named "ULUGHBEG", that allows some high altitude experiments at stratosphere level. The main target is launching payloads weigh less than 2,5 kg to stratosphere. We used temperature and humidity insulated boxes made of Styrofoam (thickness:50 mm). Aerogel units which will be installed on the surfaces of boxes will be used for collecting micrometeorites which were spreaded out into stratosphere, after certain meteor showers.Air & light pollution sensors and IR cameras which are installed in our systems can easily detect air and light pollution. Thus, it will be possible to construct air and light pollution database in Turkey from stratosphere level. In this study, all devices and instruments necessary for this project are GPS modules, air & light pollution quality meters, pressure sensors, IR cameras, HD cameras and other specific sensors (i.e. temperature, humidity, radiation etc.). All tests (i.e. vacuum, temperature (ECSS-E-10-03A, ECSS-E-10-04A standarts)) were performed at Istanbul Technical University's Space Systems Test and Design Laboratory. As a summary, this project will help to develop researches related to space and atmospheric sciences in Turkey. Keywords: High Altitude Balloon, Atmospheric Effects, Astroparticle Physics

  10. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  11. Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    1984-01-01

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  12. Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  13. [Biological effects of weightlessness at the cellular level. Comparative study of cultures of Paramecia aboard the orbital station Salyut-6 and a stratospheric balloon].

    PubMed

    Richoilley, G; Templier, J; Bes, J C; Gasset, G; Planel, H; Tixador, R

    1984-01-01

    In order to distinguish the effects of cosmic rays from those of weightlessness at the cellular level, we performed experiments aboard stratospheric balloon, where gravity is equal to 1 g and cosmic radiation roughly equal to that aboard Salyut-6. The results suggest that the stimulation of cell proliferation is probably due to cosmic rays, metabolic changes being related to microgravity.

  14. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  15. Balloon-Borne Measurements of Total Reactive Nitrogen, Nitric Acid, and Aerosol in the Cold Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Matthews, W. A.; Fahey, D. W.; Murcray, D. G.; Hofmann, D. J.; Johnston, P. V.; Iwasaka, Y.; Iwata, A.; Sheldon, W. R.

    1990-01-01

    Total reactive nitrogen (NO(Y)) between 15 and 29 km was measured for the first time on board a balloon within the Arctic cold vortex. Observations of HNO3, aerosol, and ozone were made by instruments on the same balloon gondola which was launched from Esrange, Sweden (68 deg N, 20 deg E) on January 23, 1989. The NO(y) mixing ratio was observed to increase very rapidly from 6 ppbv at 18 km altitude to a maximum of 21 ppbv at 21 km, forming a sharp layer with a thickness of about 2 km. A minimum in the NO(y) mixing ratio of 5 ppbv was found at 27 km. The measured HNO3 profile shows broad similarities to that of NO(y). This observation, together with the observed very low column amount of NO2, shows that NO(x) had been almost totally converted to HNO3, and that NO(y) was composed mainly of HNO3. The enhanced aerosol concentration between 19 and 22 km suggests that the maximum abundance of HNO3 trapped in the form of nitric acid trihydrate (NAT) was about 6 ppbv at 21 km. The sampled air parcels were highly supersaturated with respect to NAT. Although extensive denitrification throughout the stratosphere did not prevail, an indication of denitrification was found at altitudes of 27 and 22 km, and between 18 and 15 km.

  16. Measurement of trace stratospheric constituents with a balloon borne laser radar

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Mcgee, Thomas J.

    1990-01-01

    The objective of this research was to measure the concentration of the stratospheric hydroxyl radical and related chemical species as a function of altitude, season, and time of day. Although hydroxyl plays a very important role in the chemistry controlling stratospheric ozone, little is known about its behavior because it has been a difficult species to measure. The instrument employed in this program was a laser radar, employing the technique of remote laser induced fluorescence. This instrument offers a number of attractive features including extreme specificity and sensitivity, a straightforward relationship between observed quantity and the desired concentration, and immunity to self-contamination.

  17. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  18. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  19. Results from the Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon student campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    Results of the first two experiments using the semiconductor pixel detectors of the Medipix fam-ily for energetic particle imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of 3.5 hour duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere till ceiling altitude of 24km on 11th October 2009. Stratospheric balloon platform is the optimal realization for all in-situ measurements of atmo-spheric electricity. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eu-rolaunch -Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, si-multaneously testing proper detector calibration by detecting fluxes of ionizing radiation while evaluating instrumentation endurance and performance.

  20. Stratospheric constituent distributions from balloon-based limb thermal emission measurements

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Kunde, Vigil G.

    1990-01-01

    This research task deals with an analysis of infrared thermal emission observations of the Earth's atmosphere for determination of trace constituent distributions. Infrared limb thermal emission spectra in the 700-2000 cm(exp -1) region were obtained with a liquid nitrogen cooled Michelson interferometer-spectrometer (SIRIS) on a balloon flight launched from Palestine, Texas, at nighttime on September 15-16, 1986. An important objective of this work is to obtain simultaneously measured vertical mixing ratio profiles of O3, H2O, N2O, NO2, N2O5, HNO3 and ClONO2 and compare with measurements made with a variety of techniques by other groups as well as with photochemical model calculations. A portion of the observed spectra obtained by SIRIS from the balloon flight on September 15-16, 1986, has been analyzed with a focus on calculation of the total nighttime odd nitrogen budget from the simultaneously measured profiles of important members of the NO(sub x) family. The measurements permit first direct determination of the nighttime total odd nitrogen concentrations NO(sub y) and the partitioning of the important elements of the NO(sub x) family.

  1. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  2. A Study of Stratospheric Aerosols and Their Effect on Inorganic Chlorine Partitioning Using Balloon, In Situ, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Osterman, G. B.; Salawitch, R. J.; Sen, B.; Toon, G. C.

    1999-01-01

    Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.

  3. Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-08-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile.

  4. Balloon-borne radiometer measurements of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-12-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. We therefore find no evidence of long-term changes in the HNO3 summer mid-latitude profile, although the uncertainty of our measurements precludes a conclusive trend analysis.

  5. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  6. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    NASA Technical Reports Server (NTRS)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  7. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  8. Balloon-borne cryogenic frost-point hygrometer observations of water vapour in the tropical upper troposphere and lower stratosphere over India: First results

    NASA Astrophysics Data System (ADS)

    Sunilkumar, S. V.; Muhsin, M.; Emmanuel, Maria; Ramkumar, Geetha; Rajeev, K.; Sijikumar, S.

    2016-03-01

    Balloon-borne cryogenic frost-point hygrometer (CFH) observations of water vapour in the upper troposphere and lower stratosphere (UTLS) region carried out over India, from Trivandrum [8.5°N, 76.9°E] and Hyderabad [17.5°N, 78.6°E], were compared with that obtained from quasi-collocated Aura-Microwave Limb Sounder (MLS) satellite observations. Comparisons show a small dry bias for MLS in the stratosphere. Saturated or super-saturation layers observed near the base of tropical tropopause layer (TTL) are consistent with the quasi-collocated space-based observations of tropical cirrus from KALPANA-1 and CALIPSO. Disturbance of large scale waves in the upper troposphere appears to modulate the water vapour and cirrus distribution.

  9. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  10. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  11. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  12. Simultaneous balloon-borne measurements of the key inorganic bromine species BrO and BrONO2 in the stratosphere: DOAS and MIPAS-B evaluation

    NASA Astrophysics Data System (ADS)

    Kazarski, Sebastian; Maucher, Guido; Ebersoldt, Andreas; Butz, André; Friedl-Vallon, Felix; Höpfner, Michael; Kleinert, Anne; Nordmeyer, Hans; Oelhaf, Hermann; Pfeilsticker, Klaus; Sinnhuber, Björn-Martin; Wetzel, Gerald; Orphal, Johannes

    2015-04-01

    Inorganic bromine contributes to a loss of stratospheric ozone of about 25 - 30%. Past studies have demonstrated several uncertainties in the photochemistry of stratospheric bromine, especially by considering the three body reaction (kBrONO2) BrO + NO2 + M → BrONO2 + M, and the photolysis frequencies of BrONO2 (jBrONO2). Hence, an improved knowledge of the ratio jBrONO2/kBrONO2 is crucial to better assess the bromine-related loss of ozone as well as the total amount of bromine in the stratosphere. Here, we report on the first simultaneous balloon-borne measurements of NO2, BrO, and BrONO2 in the stratosphere, performed over Timmins (Ontario, 49 °N, Canada) on Sept., 7th and 8th, 2014. During the flight the targeted species were monitored by remote sensing in the UV, visible and mid-IR spectral ranges by Differential Optical Absorption Spectroscopy (DOAS) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B), respectively. The analysis and interpretation of the measurements involves radiative transfer as well as photochemical modelling. Major features of the applied techniques are reported and first results of the DOAS as well as MIPAS-B evaluation are discussed. Further investigations address inter-comparisons of the retrieved NO2, BrO, and O3 concentrations and volume mixing ratios, to demonstrate validations of both evaluation methods.

  13. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Yung, Y. L.; Toon, G. C.; Sen, B.; Blavier, J. F.

    1996-01-01

    Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.

  14. Balloon Borne Soundings of Water Vapor, Ozone and Temperature in the Upper Tropospheric and Lower Stratosphere as Part of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-2)

    NASA Technical Reports Server (NTRS)

    Voemel, Holger

    2004-01-01

    The main goal of our work was to provide in situ water vapor and ozone profiles in the upper troposphere and lower stratosphere as reference measurements for the validation of SAGE III water vapor and ozone retrievals. We used the NOAA/CMDL frost point hygrometer and ECC ozone sondes on small research balloons to provide continuous profiles between the surface and the mid stratosphere. The NOAA/CMDL frost point hygrometer is currently the only lightweight balloon borne instrument capable of measuring water vapor between the lower troposphere and middle stratosphere. The validation measurements were based in the arctic region of Scandinavia for northern hemisphere observations and in New Zealand for southern hemisphere observations and timed to coincide with overpasses of the SAGE III instrument. In addition to SAGE III validation we also tried to coordinate launches with other instruments and studied dehydration and transport processes in the Arctic stratospheric vortex.

  15. Design of modular probes for stratospheric balloon mission: Thermo mechanical aspects and lession learned from SORA mission.

    NASA Astrophysics Data System (ADS)

    Bettanini, Carlo; Friso, Enrico; Colombatti, Giacomo; Aboudan, Alessio; Flamini, Enrico; Pirrotta, Simone; Debei, Stefano

    Stratospheric balloon missions provide a very effective facility for testing instruments in a space-like environment with drastically lower requirements in funding and sensibly shorter timelines than common space mission. Mainly during ascent to operative altitude and parachuted de-scent the flight units face fast changing environmental conditions which may induce issues in the mechanical and thermal behavior of the equipment. A new concept modular gondola was engineered by CISAS "G.Colombo" at University of Padova,to be easily reconfigured to host scientific experiments with different power and thermal requirements thus sensibly reducing development times and costs. The gondola was mechanically designed to withstand dynamic loads related to parachute opening and ground impact and provided a 1 m x 1m x 0.3 m volume for scientific payloads which is pressure regulated with the use of relief valves and thermally controlled by main CDMU.Furthermore the whole system was able to float in case of descent in water thanks to an optmised design of the main aluminium structure and use of hermetic connections. A custom Command and Data Management Unit with hard-real-time control capabilities has been developed to manage sensors acquisition, data storage, and experiments monitoring and control. The gondola was equipped with IMU, GPS, a downward looking cam-era and a set of health check and housekeeping sensors which sample key parameters as attitude, acceleration and temperature in several parts of the structure feeding housekeeping data to the main pc in order to monitor overall system health. The unit was successfully assembled and tested at University of Padova and used in the flight of the SORA mission launched in summer 2009 from Svalbard islands to map with a penetrating radar the stratification of ice and rock above Northern Greenland. Because of unexpected wind directions the mission trajectory was several hundred kilometers southern than predicted terminating with a

  16. In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 microm.

    PubMed

    Durry, G; Megie, G

    2000-10-20

    A distributed-feedback InGaAs laser diode emitting near 1.393 microm is used in conjunction with an optical multipass cell that is open to the atmosphere to yield ambient water-vapor measurements by infrared absorption spectroscopy. To obtain the high dynamic range for the measurements that is required for continuous water-vapor monitoring in the upper troposphere and the lower stratosphere, we used a simple circuit that combined differential and direct detection. Furthermore, the laser emission wavelength was tuned to balance the steep decrease in H2O concentration with altitude by sweeping molecular transitions of stronger line strengths. The technique was implemented by use of the Spectromètre à Diodes Laser Accordables (SDLA), a tunable diode laser spectrometer operated from a stratospheric balloon. Absorption spectra of H2O in the 5-30-km altitude range obtained at 1-s intervals during recent balloon flights are reported. Water-vapor mixing ratios were retrieved from the absorption spectra by a fit to the full molecular line shape in conjunction with in situ pressure and temperature measurements, with a precision error ranging from 5% to 10%.

  17. Balloon Profiles of Stratospheric NO(sub 2) and HNO(sub 3) for Testing the Heterogeneous Hydrolysis of N(sub 2)O(sub 5) on Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; McCormick, M. P.

    1993-01-01

    Simultaneous in situ measurements of stratospheric NO(sub 2), HNO(sub 3), HCI, and CH(sub 4) from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS)tunable diode laser spectrometer.

  18. Vertical distribution of non-volatile species of upper tropospheric and lower stratospheric aerosol observed by balloon-borne optical particle counter above Ny-Aalesund, Norway in the winter of 2015

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Hayashi, M.; Shibata, T.; Neuber, R.; Ruhe, W.

    2015-12-01

    The polar lower stratosphere is the sink area of stratospheric global circulation. The composition, concentration and size distribution of aerosol in the polar stratosphere are considered to be strongly influenced by the transportations from mid-latitude to polar region and exchange of stratosphere to troposphere. In order to study the aerosol composition and size distribution in the Arctic stratosphere and the relationship between their aerosol microphysical properties and transport process, we carried out balloon-borne measurement of aerosol volatility above Ny-Aalesund, Norway in the winter of 2015. In our observation, two optical particle counters and a thermo denuder were suspended by one rubber balloon. A particle counter measured the heated aerosol size distribution (after heating at the temperature of 300 degree by the thermo denuder) and the other measured the ambient aerosol size distribution during the observation. The observation was carried out on 15 January, 2015. Balloon arrived at the height of 30km and detailed information of aerosol size distributions in upper troposphere and lower stratosphere for both heated aerosol and ambient aerosol were obtained. As a Result, the number ratio of non-volatile particles to ambient aerosol particles in lower stratosphere (11-15km) showed different feature in particle size range of fine mode (0.3

  19. Land mobile satellite transmission measurements at 869 MHz: Selected results from the dedicated stratospheric balloon experiment of November 12 and 13, 1984

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.

    1985-01-01

    Satellite transmissions were simulated by placing an 869 MHz and a 1501 MHz transmitter aboard a stratospheric balloon. The balloon was followed on the ground by a van equipped with receivers and data acquisition equipment capable of creating a permanent record of the variations of the received signal amplitude and phase at the two signal frequencies. Results from simulated satellite transmission measurements at 869 MHz are presented. The data show that attenuation by roadside trees can be a limiting factor in systems with a 5 dB fade margin, if 84% availability is not acceptable. In less extreme environments, fading is much less severe. Without fading present, the signal power density function often could be described as Ricean with direct to scattered ratio power ratios of about 100. Phase fluctuations were apparent whenever the signal amplitude fluctuated. The duration of the fades and nonfades tended to cluster close to one wavelength. The power spectrum of both the amplitude and the phase show that most of the fluctuations occur at frequencies below the Doppler shift.

  20. Balloon profiles of stratospheric NO2 and HNO3 for testing the heterogeneous hydrolysis of N2O5 on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; Mccormick, M. P.

    1994-01-01

    Simultaneous in situ measurements of stratospheric NO2, HNO3, HCl, and CH4 from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS) tunable diode laser spectrometer. Although the measurements of NO2, HNO3, and NO2/HNO3 agree well with gas-phase model calculations near 34 km where Stratospheric Aerosol and Gas Experiment (SAGE) 2 data show little sulfate aerosol, this is not true at the lower altitudes where SAGE 2 shows high aerosol loadings. At 24 km the BLISS NO2 and HNO3 measurements are 70% lower and 50% higher, respectively, than the gas phase model predictions, with a measured NO2/HNO3 ratio 5 times smaller. When the heterogeneous hydrolysis of N2O5 and ClONO2 on sulfate aerosol of surface area densities matching the SAGE 2 measurements is added to the model, good agreement with the BLISS measurements is found over the whole altitude range.

  1. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; ValverdeCanossa, J. M.; Selkirk, H. B.; Oltmans, S. J.

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  2. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Astrophysics Data System (ADS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-10-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  3. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  4. Diurnal variation of turbulence in troposphere and lower stratosphere using balloon borne radiosonde observations over two tropical stations

    NASA Astrophysics Data System (ADS)

    Muhammed, Muhsin; Sunilkumar, S. V.; Parameswaran, Krishnaswamy; Venkat Ratnam, Madineni; Krishna Murthy, B. V.

    2016-07-01

    A study on the diurnal variabilities of atmospheric stability and occurrence and strength of turbulence in the troposphere and lower stratosphere at two tropical stations, Trivandrum (8.5N, 76.9E) and Gadanki (13.5N, 79.2E), situated in the Indian peninsula is carried out using three years of GPS-radiosonde observations obtained as a part of the Tropical Tropopause Dynamics (TTD) Experiment under the CAWSES-India program. Thorpe method is adopted to estimate the turbulent parameters from radiosonde observations. This study showed that in the Atmospheric Boundary Layer (ABL), both stability and turbulence parameters depict a clear diurnal variation. Over Trivandrum, the occurrence of turbulence as well as its strength peaks during night time and falls off during the day, while at. Gadanki it peaks during the day and falls off during night Above ABL, in the 3-10 km region, the occurrence of turbulence is high with significant strength during night at both the stations. At both the stations, turbulence strength in 10-15 km region does not show any significant diurnal variation when compared to the lower region. But the occurrence frequency of turbulence shows a clear diurnal pattern (high during the day) especially over Trivandrum. This study showed that in the middle troposphere while the occurrence of convective instability is fairly the same at both the stations, wind shear is significantly large at Trivandrum compared to Gadanki and is high during night compared to the day. Thus, below 15 km, while convective instability is mainly responsible for the generation of turbulence at Gadanki, wind shear induced dynamic instability is also responsible for the generation of turbulence at Trivandrum at least during night. In the upper troposphere above 15 km, turbulence at both the stations does not show significant diurnal variability, where wind shear driven instability leads the convective instability in the generation of turbulence. In the Lower Stratosphere (LS

  5. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  6. Measurement of Elements in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.

    1985-01-01

    Balloon-borne winch system; stratospheric free radicals; stratospheric sounding; copper vapor lasers; ozone measurement; NO2 analysis; chlorine chemistry; trace elements; and ClO observations are discussed.

  7. Lead exposure from indoor firing ranges among students on shooting teams--Alaska, 2002-2004.

    PubMed

    2005-06-17

    CDC recognizes blood lead levels (BLLs) of >/=25 microg/dL in adults and >/=10 microg/dL in children aged 2002-2004, the Alaska Environmental Public Health Program (EPHP) conducted lead-exposure assessments of school-based indoor shooting teams in the state, after a BLL of 44 microg/dL was reported in a man aged 62 years who coached a high school shooting team in central Alaska. This report summarizes the results of the EPHP investigation of potential lead exposure in 66 members of shooting teams, aged 7-19 years, who used five indoor firing ranges. The findings suggest that improper design, operation, and maintenance of ranges were the likely cause of elevated BLLs among team members at four of the five firing ranges. Public health officials should identify indoor firing ranges that have not implemented lead-safety measures and offer consultation to reduce the risk for lead exposure among shooters, coaches, and employees.

  8. Update: hydrogen cyanamide-related illnesses--Italy, 2002-2004.

    PubMed

    2005-04-29

    Hydrogen cyanamide is used in agriculture as a plant growth regulator and is applied to many deciduous plants to stimulate uniform budbreak after dormancy, resulting in uniform flowering and maturity. Hydrogen cyanamide is highly toxic, and adverse health effects from contact include severe irritation and ulceration of the eyes, skin, and respiratory tract. The substance also inhibits aldehyde dehydrogenase and can produce acetaldehyde syndrome (e.g., vomiting, parasympathetic hyperactivity, dyspnea, hypotension, and confusion) when exposure coincides with alcohol use. After Dormex (Degussa AG, Trostberg, Germany), a pesticide product containing hydrogen cyanamide (49% by weight), was introduced in Italy in 2000, a total of 23 cases of acute illness associated with exposure to this chemical were identified in early 2001. This led to a temporary suspension of sales and usage of Dormex on February 23, 2002, and strengthening of protective measures, as specified on the pesticide label when sales were resumed on June 20, 2003. This report describes 28 additional cases of hydrogen cyanamide-related illness that occurred during 2002-2004, 14 of which occurred after sales resumed. These illnesses suggest that the preventive measures adopted in Italy in 2003 to protect workers using hydrogen cyanamide are inadequate. Workers exposed to hydrogen cyanamide should be provided adequate information, training, personal protective equipment (PPE), and engineering controls. PMID:15858460

  9. Incidence of Self-Reported Diabetes in New York City, 2002, 2004, and 2008

    PubMed Central

    Chamany, Shadi; Driver, Cynthia R.; Kerker, Bonnie; Silver, Lynn

    2012-01-01

    Introduction Prevalence and incidence of diabetes among adults are increasing in the United States. The purpose of this study was to estimate the incidence of self-reported diabetes in New York City, examine factors associated with diabetes incidence, and estimate changes in the incidence over time. Methods We used data from the New York City Community Health Survey in 2002, 2004, and 2008 to estimate the age-adjusted incidence of self-reported diabetes among 24,384 adults aged 18 years or older. Multiple logistic regression analysis was performed to examine factors associated with incident diabetes. Results Survey results indicated that the age-adjusted incidence of diabetes per 1,000 population was 9.4 in 2002, 11.9 in 2004, and 8.6 in 2008. In multivariable-adjusted analysis, diabetes incidence was significantly associated with being aged 45 or older, being black or Hispanic, being overweight or obese, and having less than a high school diploma. Conclusion Our results suggest that the incidence of diabetes in New York City may be stabilizing. Age, black race, Hispanic ethnicity, elevated body mass index, and low educational attainment are risk factors for diabetes. Large-scale implementation of prevention efforts addressing obesity and sedentary lifestyle and targeting racial/ethnic minority groups and those with low educational attainment are essential to control diabetes in New York City. PMID:22698175

  10. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  11. High Altitude Weather Balloons to Support Rayleigh and Sodium Lidar Studies of the Troposphere, Stratosphere and Mesosphere at the Amundsen-Scott South Pole Station

    NASA Technical Reports Server (NTRS)

    Papen, George

    1995-01-01

    This proposal funded 100 high altitude weather balloons costing $15,500 to support the deployment of a Rayleigh/Raman/Na lidar at the South Pole. One year of measurements have been completed and it is estimated that the balloons will provide another 1-2 years of data.

  12. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17

    radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and estimating the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for the Enewetak Atoll population group along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.

  13. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17

    programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining as well as the implementation, cost and effectiveness of potential intervention options, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for resettlement workers living on Rongelap Island along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating the Marshall Islands Radiological Surveillance Program.

  14. Detailed Structure of the Tropical Upper Troposphere and Lower Stratosphere as Revealed by Balloon Sonde Observations of Water Vapor, Ozone, Temperature, and Winds During the NASA TCSP and TC4 Campaigns

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Vomel, Holger; Canossa, Jessica Maria Valverde; Pfister, Leonhard; Diaz, Jorge Andres; Fernandez, Walter; Amador, Jorge; Stolz, Werner; Peng, Grace S.

    2010-01-01

    We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 N, 84.2 W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July - August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above approx 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above approx 360 K. The average minima in this 360 C380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder.

  15. Stratospheric sulfate from El Chichon and the Mystery Volcano

    SciTech Connect

    Mroz, E.J.; Mason, A.S.; Sedlacek, W.A.

    1983-09-01

    Stratospheric sulfate was collected by high-altitude aircraft and balloons to assess the impacts of El Chichon and an unidentified volcano on the stratosphere. The Mystery Volcano placed about 0.85 Tg of sulfate in the northern hemisphere stratosphere. El Chicon injected about 7.6 Tg sulfate into the global stratosphere.

  16. Accuracy estimates for some global analytical models of the Earth's main magnetic field on the basis of data on gradient magnetic surveys at stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.

    2014-03-01

    Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.

  17. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-12-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  18. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  19. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  20. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  1. The stratcom 8 effort. [stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Reed, E. I. (Editor)

    1980-01-01

    The ozone-nitrogen oxides ultraviolent flux interactions were investigated to obtain data on stratospheric photochemistry. The balloon, rocket, and aircraft operations are described along with the instruments, parameter measurements, and payloads.

  2. "War on Terror" Is a Curative: Recontextualization and Political Myth-Making in Gloria Macapagal-Arroyo's 2002-2004 State of the Nation Addresses

    ERIC Educational Resources Information Center

    Navera, Gene Segarra

    2011-01-01

    The article examines the State of the Nation addresses (SONA) delivered by Philippine President Gloria Macapagal-Arroyo (2001-2010) from 2002-2004, during which time she actively invoked the need to engage in the U.S. government-led "global war on terror." It specifically investigates how these presidential speeches recontextualized the war on…

  3. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  4. Breakthrough in Mars balloon technology

    NASA Astrophysics Data System (ADS)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  5. Stratospheric hydroperoxyl measurements

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Johnson, David G.; Chance, Kelly V.

    1990-01-01

    The hydroperoxyl radical plays a key role in stratospheric chemistry through the HO(x) catalytic cycle of ozone destruction. Earlier measurements of stratospheric HO2 have given mixed results. Some measured mixing ratios greatly exceed theoretical predictions. Measurements of HO2 have now been made with a balloon-borne FIR spectrometer. The measured daytime profile is in excellent agreement with theory up to 40 kilometers. Above this level the measurements exceed theory by 30 percent, perhaps because of underprediction of ozone at these altitudes. The nighttime HO2 profile is strongly depressed with respect to the daytime profile, in general agreement with theory.

  6. Measurements of stratospheric bromine

    NASA Technical Reports Server (NTRS)

    Sedlacek, W. A.; Lazrus, A. L.; Gandrud, B. W.

    1984-01-01

    From 1974 to 1977, molecules containing acidic bromine were sampled in the stratosphere by using tetrabutyl ammonium hydroxide impregnated filters. Sampling was accomplished by WB-57F aircraft and high-altitude balloons, spanning latitudes from the equator to 75 deg N and altitudes up to 36.6 km. Analytical results are reported for 4 years of measurements and for laboratory simulations that determined the filter collection efficiencies for a number of brominated species. Mass mixing ratios for the collected bromine species in air average about 27 pptm in the stratosphere. Seasonal variability seems to be small.

  7. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  8. Measurements of the earth`s stratosphere using balloon-borne far infrared spectroscopy: Simultaneous measurements of HO{sub x}, NO{sub x}, and Cl{sub x}

    SciTech Connect

    Chance, K.

    1995-12-31

    The Smithsonian Astrophysical Observatory far-infrared spectrometer (FIRS-2) measures vertical mixing ratio profiles in the stratosphere from a balloon platform. The FIRS-2 is a high-resolution (0.004 cm{sup -1} unapodized) two-beam Fourier transform spectrometer which measures thermal emission in the regions 80-210 cm{sup -1} and 350-700 cm{sup -1}. Observations are made at various elevation angles, with absolute pointing referenced to a gyroscope- and accelerometer-stabilized single-axis platform. Molecules currently measured include OH, HO{sub 2}, H{sub 2}O, H{sub 2}O{sub 2}, O{sub 3}P, O{sub 2}, O{sub 3}, HCl, HF, HBr, HOCl, HOBr, CO, CO{sub 2}, N{sub 2}O, NO{sub 2}, HNO{sub 3}, and HCN. The measurements, the development of the relevant spectroscopy, and the application of the measurements to improving models of the photochemistry of the ozone layer are discussed.

  9. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2006-01-01

    -flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component

  10. Seeing in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Chen, Pin; Traub, W. A.; Kern, B. D.; Matsuo, T.

    2009-01-01

    Anticipating NASA's reinvigoration of suborbital programs, we present a quantitative analysis of seeing in the stratosphere and its implications for direct detection of mature exoplanets using a visible-wavelength, coronagraphic telescope onboard a balloon platform. We analyze two sources of dynamic wavefront perturbations: turbulence in the free atmosphere and locally generated turbulence. This paper concentrates on the former, as the local-seeing measurement and analysis results are detailed in a previous paper1. Using published, space-borne observations of optical inhomogeneities in the stratosphere, we calculate speckle intensities arising from aberrations of stellar wavefronts propagating through the atmosphere above a balloon-borne observatory. Specifically, we demonstrate that the inner scale of turbulence is critically important in determining speckle intensities for planet-star separations greater than 0.1 arcsecond. Therefore, a turbulence model such as the Hill-Andrews spectrum is required to account for the effects of the inner scale. Results derived from the (conventional) Komolgorov, von Karman, and Hill-Andrews spectra are presented vis-á-vis requirements of Planetscope, a balloon-borne coronagraph concept that would directly characterize known extrasolar planets and debris disks around nearby stars. Footnotes 1 Traub, WA; Chen, P; Kern B. "Planetscope: An Exoplanet Coronagraph on a Balloon Platform.” Proceedings of the SPIE - The International Society for Optical Engineering, 7010(70103S), DOI:10.1117/12.788087

  11. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements.

    PubMed

    Renard, Jean-Baptiste; Berthet, Gwenaël; Robert, Claude; Chartier, Michel; Pirre, Michel; Brogniez, Colette; Herman, Maurice; Verwaerde, Christian; Balois, Jean-Yves; Ovarlez, Joëlle; Ovarlez, Henri; Crespin, Jacques; Deshler, Terry

    2002-12-20

    The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one band, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurement of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect ofthe presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

  12. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  13. Middle Atmosphere Program. Handbook for MAP. Volume 15: Balloon techniques

    NASA Technical Reports Server (NTRS)

    Murcray, D. G. (Editor)

    1985-01-01

    Some techniques employed by investigators using balloons to obtain data on the properties of the middle atmosphere are discussed. Much effort has gone into developing instruments which could be used on small balloons to measure temperature and variable species. These efforts are discussed. Remote sensing techniques used to obtain data on atmospheric composition are described. Measurement of stratospheric ions and stratospheric aerosols are also discussed.

  14. Stratospheric Airship Design Sensitivity

    NASA Astrophysics Data System (ADS)

    Smith, Ira Steve; Fortenberry, Michael; Noll, . James; Perry, William

    2012-07-01

    The concept of a stratospheric or high altitude powered platform has been around almost as long as stratospheric free balloons. Airships are defined as Lighter-Than-Air (LTA) vehicles with propulsion and steering systems. Over the past five (5) years there has been an increased interest by the U. S. Department of Defense as well as commercial enterprises in airships at all altitudes. One of these interests is in the area of stratospheric airships. Whereas DoD is primarily interested in things that look down, such platforms offer a platform for science applications, both downward and outward looking. Designing airships to operate in the stratosphere is very challenging due to the extreme high altitude environment. It is significantly different than low altitude airship designs such as observed in the familiar advertising or tourism airships or blimps. The stratospheric airship design is very dependent on the specific application and the particular requirements levied on the vehicle with mass and power limits. The design is a complex iterative process and is sensitive to many factors. In an effort to identify the key factors that have the greatest impacts on the design, a parametric analysis of a simplified airship design has been performed. The results of these studies will be presented.

  15. Power Systems Design for Long Duration Ballooning

    NASA Technical Reports Server (NTRS)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  16. Balloon Launch.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1994-01-01

    This article describes a science learning experience in which intermediate grade students launched balloons with attached postcards to study wind currents. More than 200 (of over 900 balloons) were returned, and their analysis supported the students' hypothesis about the direction of wind currents. (DB)

  17. Balloons Revisited

    ERIC Educational Resources Information Center

    Jeskova, Z.; Featonby, D.; Fekova, V.

    2012-01-01

    Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…

  18. Balloons for Science.

    ERIC Educational Resources Information Center

    Lally, Vincent E.

    1982-01-01

    Discusses the nature and use of scientific balloons. Topics addressed include: (1) types of balloons; (2) lifting gases; (3) polyethylene balloons; (4) duration of balloon flight; and (5) use of balloons in scientific research. (JN)

  19. First results from the EUSO-Balloon campaign

    NASA Astrophysics Data System (ADS)

    Eser, J.; Adams, J.; Christl, M.; Kuznetsov, E.; Rodencal, M.; Sawatzki, J.; Wiencke, L.; JEM-EUSO Collaboration

    2015-04-01

    EUSO-Balloon is a prototype detector of the Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO). JEM-EUSO is a planned cosmic ray detector for the International Space Station (ISS). EUSO-Balloon was flown successfully as a balloon payload from the Timmins Stratospheric Balloon Launch Facility in Ontario, Canada the night of August 24/25. The time at float altitude was 4 hours. Three light sources, including a UV laser, were flown in a helicopter under the balloon, for 2 hours, to mimic the optical signatures of extensive air showers We describe Timmins campaign and present first results.

  20. ORISON, a stratospheric project

    NASA Astrophysics Data System (ADS)

    Ortiz Moreno, Jose Luis; Mueller, Thomas; Duffard, Rene; Juan Lopez-Moreno, Jose; Wolf, Jürgen; Schindler, Karsten; Graf, Friederike

    2016-07-01

    Astronomical research based on satellites is extremely expensive, complex, requires years of development, and the overall difficulties are immense. The ORISON project addresses the feasibility study and the design of a global solution based on platforms on-board stratospheric balloons, which allows overcoming the limitations of the Earth's atmosphere, but at a much lower cost and with fewer complications than on satellite platforms. The overall idea is the use of small low-cost stratospheric balloons, either individually or as a fleet, equipped with light-weight medium-sized telescopes and other instruments to perform specific tasks on short-duration missions. They could carry different payloads for specific "experiments" too, and should be configurable to some degree to accommodate variable instrumentation. These balloon-based telescopes should be designed to be launched from many sites on Earth, not necessarily from remote sites such as Antarctica or near the North Pole, and at low cost. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690013.

  1. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  2. Ballooning Interest.

    ERIC Educational Resources Information Center

    Mebane, Robert C.; Rector, Bronwyn

    1991-01-01

    Presents activities that utilize balloons to encourage students to explore questions related to scientific concepts. Concepts explored include light, heat, charged ions, polarization, and the sense of smell. (MDH)

  3. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  4. Curing of epoxy matrix composite in stratosphere

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.

  5. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  6. Stratosphere and Troposphere: Transport of Material between Them.

    PubMed

    Kroening, J L

    1965-02-19

    Data from two almost simultaneous balloon soundings show that ozone and dust in combination are transported from their stratospheric reservoirs into the troposphere by way of thin laminae measuring about 1 kilometer vertically by at least 480 kilometers horizontally. Transport in this layer occurs across the top of the jet stream in a region of very great vertical wind shear. Stratospheric aerosol may be an important instrument for the destruction of ozone within the stratosphere.

  7. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  8. Chlorine Chemistry of the Lower Stratosphere: Aircraft (ALIAS, ER-2) and Balloon (BLISSs) In-Situ Measurements of HC1,NO(sub 2), andN(sub 2)O for Testing Heterogeneous Chemistry

    NASA Technical Reports Server (NTRS)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Scott, D.; Stimpfle, R.; Salawitch, R.; Fahey, D.; Woodbridge, E.; Proffitt, M.; Margitan, J.

    1994-01-01

    Stratospheric concentrations of HC1 measured in the northern hemisphere from the ER-2 aircraft are significantly lower than model predictions using both gas phase and heterogeneous chemistry, but measurements in the southern hemisphere are in much better agreement.

  9. Development overview of the revised NASA Ultra Long Duration Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2008-11-01

    The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ˜176,000 m3 (˜6.2 MCF Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ˜176,000 m3 (˜6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.

  10. Body Mass Index and Poor Self-Rated Health in 49 Low-Income and Middle-Income Countries, By Sex, 2002-2004.

    PubMed

    Wang, Aolin; Arah, Onyebuchi A

    2015-01-01

    This study investigated whether the relationship between body mass index (BMI) and poor self-rated health differed by sex in low-income countries and middle-income countries. We analyzed data from the World Health Survey (2002-2004) on 160,099 participants from 49 low-income and middle-income countries by using random-intercept multilevel logistic regressions. We found a U-shaped relationship between BMI and poor self-rated health among both sexes in both low-income and middle-income countries, but the relationship differed by sex in strength and direction between low-income countries and middle-income countries. Differential perception of body weight and general health might explain some of the observed sex differences. PMID:26292064

  11. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  12. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  13. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  14. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  15. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  16. Fourier spectroscopy of the stratospheric emission

    NASA Technical Reports Server (NTRS)

    Carli, B.; Mencaraglia, F.; Bonetti, A.

    1980-01-01

    Stratospheric emission spectra in the submillimeter range have been recorded with a resolution of 0.0033/cm with a balloon-borne interferometer. Several minor atmospheric constituents have been identified in a preliminary analysis of the spectra; these are water vapor, oxygen, ozone isotopes, nitric acid, nitrous oxide, hydrofluoric and hydrochloric acids, and carbon monoxide.

  17. Balloons and Science Kit.

    ERIC Educational Resources Information Center

    Balloon Council, Washington, DC.

    This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…

  18. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  19. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  20. The French Balloon Program 2013 - 2017

    NASA Astrophysics Data System (ADS)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  1. Exposing Microorganisms in the Stratosphere for Planetary Protection Project

    NASA Technical Reports Server (NTRS)

    Smith, David J. (Compiler)

    2015-01-01

    Earths stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently rotating skewers that hold known quantities of spore-forming bacteria isolated from spacecraft assembly facilities at NASA. Knowing the survival profile of microbes in the stratosphere can uniquely contribute to NASA Planetary Protection for Mars.Objectives 1. Collect environmental data in the stratosphere to understand factors impacting microbial survival. 2. Determine of surviving microbes (compared to starting quantities). 3. Examine microbial DNA mutations induced by stratosphere exposure.

  2. Investigation of hydroacoustic flow-monitoring alternatives at the Sacramento River at Freeport, California: results of the 2002-2004 pilot study

    USGS Publications Warehouse

    Ruhl, Catherine A.; DeRose, James B.

    2004-01-01

    The Sacramento River at Freeport is a tidally affected channel approximately 620 feet wide located at the northern boundary of the Sacramento?San Joaquin River Delta, California. In 1978, an acoustic velocity meter was installed at Freeport to monitor the flow. The acoustic velocity meter was calibrated successfully and has been used continuously since that time. Although the calibration has been extremely stable, an increasing number of maintenance problems prompted a search for alternatives to monitor discharge at this location. Two sideward-looking acoustic Doppler velocity meters were tested in a pilot study from 2002-2004: a short-range system and a long-range system. The pilot study was conducted over a wide range of hydrologic conditions and both sideward-l-ooking acoustic Doppler velocity meters have performed well at this location and have been calibrated successfully. As of February 2004, the short-range system had a robust calibration and a higher data-recovery rate, therefore, it was selected as the primary replacement of the acoustic velocity meter, with the long-range system providing real-time data redundancy to minimize data loss.

  3. Superpressure stratospheric vehicle

    SciTech Connect

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  4. Scientific Report (2002-2004)

    SciTech Connect

    Bedros Afeyan

    2004-05-11

    OAK-B135 An overview of our work as well as two recent publications are contained in this scientific report. The work reported here revolves around the discovery of new coherent nonlinear kinetic waves in laser produced plasmas, we call KEEN waves (kinetic, electrostatic electron nonlinear waves), and optical mixing experiments on the Imega laser system at LLE with blue-green light for the exploration of ways to suppress parametric instabilities in long scale length, long pulsewidth laser-plasmas such as those which will be found on NIF or LMJ.

  5. Evidence for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1987-01-01

    A statistically significant measurement of H2O2 in the stratosphere has been obtained. The results were obtained from the 112.19/cm RQ5 branch of the torsional-rotational spectrum with a remote-sensing far-infrared Fourier transform spectrometer during the Balloon Intercomparison Campaign (BIC-2), on June 20, 1983. The concentration above the balloon gondola is unexpectedly large, corresponding to 0.68 + or - 0.21 parts per billion by volume (ppbv) at an effective altitude of 38.3 km. Below the gondola altitude the concentration of H2O2 is slightly less than expected from the model predictions at 33.2 km (0.19 + or - 0.05 ppbv) and significantly less than expected at 29.3 km (0.08 + or - 0.03 ppbv).

  6. Energy from solar balloons

    SciTech Connect

    Grena, Roberto

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  7. The stratosphere.

    PubMed

    Taylor, F W

    2003-01-15

    The stratosphere is that part of the atmosphere which lies between ca. 10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  8. On the Stratospheric Chemistry of Hydrogen Cyanide

    NASA Technical Reports Server (NTRS)

    Kleinbohl, Armin; Toon, Geoffrey C.; Sen, Bhaswar; Blavier, Jean-Francois L.; Weisenstein, Debra K.; Strekowski, Rafal S.; Nicovich, J. Michael; Wine, Paul H.; Wennberg, Paul O.

    2006-01-01

    HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of approx.30% from the reaction of CH3CN with OH is consistent with the measurements.

  9. Stratospheric air sampling platform/sensor tradeoffs

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Page, W.

    1976-01-01

    Results of a study are described in which in-situ and remote sensing instrumentation are considered for accommodation on airborne platforms capable of reaching stratospheric altitudes. The instrumentation measures trace species of importance to present concerns regarding stratospheric pollution and possible ozone depletion. The platforms examined were the U-2, modified U-2, balloon, rocket, F-15 flown in a zoom-climb maneuver, YF-12, and remotely piloted vehicle (RPV). The sensors and performance characteristics of the platforms are described and special problems of sensor-platform integration are discussed. A typical latitudinal sampling mission is utilized to describe platform logistics problems and how the platforms might perform such missions.

  10. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  11. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  12. Overview of the Scientific Balloon Activity in Sweden

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student

  13. Balloon-based interferometric techniques

    NASA Technical Reports Server (NTRS)

    Rees, David

    1985-01-01

    A balloon-borne triple-etalon Fabry-Perot Interferometer, observing the Doppler shifts of absorption lines caused by molecular oxygen and water vapor in the far red/near infrared spectrum of backscattered sunlight, has been used to evaluate a passive spaceborne remote sensing technique for measuring winds in the troposphere and stratosphere. There have been two successful high altitude balloon flights of the prototype UCL instrument from the National Scientific Balloon Facility at Palestine, TE (May 80, Oct. 83). The results from these flights have demonstrated that an interferometer with adequate resolution, stability and sensitivity can be built. The wind data are of comparable quality to those obtained from operational techniques (balloon and rocket sonde, cloud-top drift analysis, and from the gradient wind analysis of satellite radiance measurements). However, the interferometric data can provide a regular global grid, over a height range from 5 to 50 km in regions of clear air. Between the middle troposphere (5 km) and the upper stratosphere (40 to 50 km), an optimized instrument can make wind measurements over the daylit hemisphere with an accuracy of about 3 to 5 m/sec (2 sigma). It is possible to obtain full height profiles between altitudes of 5 and 50 km, with 4 km height resolution, and a spatial resolution of about 200 km, along the orbit track. Below an altitude of about 10 km, Fraunhofer lines of solar origin are possible targets of the Doppler wind analysis. Above an altitude of 50 km, the weakness of the backscattered solar spectrum (decreasing air density) is coupled with the low absorption crosssection of all atmospheric species in the spectral region up to 800 nm (where imaging photon detectors can be used), causing the along-the-track resolution (or error) to increase beyond values useful for operational purposes. Within the region of optimum performance (5 to 50 km), however, the technique is a valuable potential complement to existing wind

  14. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. 1. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers.

    PubMed

    Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel

    2002-12-20

    Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurement in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NO(chi) (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO(chi) (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

  15. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  16. Balloon-based infrared solar occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/ and CF/sub 2/Cl(sub 2)

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 an infrared solar occultation experiment was performed with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data were retrieved simultaneous mixing ratio profiles of ozone, water vapor, nitric acid, and CFC-12 between 12 and 35 km. The retrieved ozone and water vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECCs) and frost-point hygrometers, respectively. The retrieved ozone profile was in good agreement with the correlative data. The retrieved values of water vapor mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although there was no concurrent in-situ data for nitric acid and CFC-12, the retrieved profiles were consistent with measurements in the literature.

  17. Balloon-based infrared solar-occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/, and CF/sub 2/Cl/sub 2/. Technical report

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 the authors performed an infrared solar-occultation experiment with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data, the authors retrieved simultaneous mixing-ratio profiles of ozone, water vapor, nitric acid, and CF/sub 2/Cl/sub 2/ between 12 and 35 km. The retrieved ozone and water-vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECC's) and frost-point hygrometers, respectively. The retrieved-ozone profile was in good agreement with the correlative data. The retrieved values of water-vapor-mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although the authors had no concurrent in-situ data for nitric acid and CF/sub 2/Cl/sub 2/, the retrieved profiles were consistent with measurements in the literature.

  18. Sinuplasty (Balloon Catheter Dilation)

    MedlinePlus

    ... development of the balloon dilating catheter and its adaptation to sinus surgery. In the 1980s, the field ... used in endoscopic sinus surgery. It is the adaptation or application of minimally-invasive balloon technology to ...

  19. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  20. Scientific ballooning in Japan

    NASA Astrophysics Data System (ADS)

    Makino, Fumiyoshi

    Activities in scientific ballooning in Japan during 1998-1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.

  1. Flight demonstration of a superpressure balloon by three-dimensional gore design

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Ohta, S.; Honda, H.; Kurokawa, H.; Matsushima, K.

    On May 15, 1999, a balloon with a volume of 3,100 cubic meters was successfully launched from Sanriku Balloon Center of Japan. It became a superpressure balloon at 19.2km in altitude with 20% pressure difference to the ambient atmosphere. This is the first superpressure balloon capable of suspending a heavy payload. It was designed by the new 'three-dimensional gore design' method and was based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. The balloon climbed up to 21.6km in altitude by dropping the ballast and held out against a 64% pressure difference over the ambient atmosphere. This flight test proved the capability of large stratospheric superpressure balloons by this new design method.

  2. Development of a tiny tandem balloon system for atmospheric observation

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  3. Chlorine monoxide radical, ozone, and hydrogen peroxide: stratospheric measurements by microwave limb sounding

    SciTech Connect

    Waters, J.W.; Hardy, J.C.; Jarnot, R.F.; Pickett, H.M.

    1981-10-02

    Profiles of stratospheric ozone and chlorine monoxide radical (ClO) were obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The ClO measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory. The predicted decrease of ClO at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.

  4. Chlorine monoxide radical, ozone, and hydrogen peroxide - Stratospheric measurements by microwave limb sounding

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Hardy, J. C.; Jarnot, R. F.; Pickett, H. M.

    1981-01-01

    Profiles of stratospheric ozone and chlorine monoxide radical (ClO) have been obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The ClO measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory. The predicted decrease of ClO at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.

  5. Benefits, risks, and costs of stratospheric geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Marquardt, Allison; Kravitz, Ben; Stenchikov, Georgiy

    2009-10-01

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  6. Sources of particulates in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Bigg, E. Keith

    2011-10-01

    The dominant forms of particles collected at altitudes of 39, 42 and 45km during three balloon flights over Australia were aggregates having components with diameters typically 40 to 50nm. Their partial electron transparency suggested an organic composition and all were accompanied by a volatile liquid that could be stabilised by reaction with a thin copper film. They closely resembled particles called "fluffy micrometeorites" collected earlier in the mesosphere from rockets and their properties were consistent with those of particles collected from a comet by a recent spacecraft experiment. Particles in the upper stratosphere included some that resembled viruses and cocci, the latter being one of the organisms cultured from upper stratospheric air in a recent experiment. A plausible source of the stratospheric, mesospheric and cometary aggregates is consistent with the "panspermia" theory, that microorganisms present in space at the birth of the solar system could have reproduced in water within comets and brought life to Earth.

  7. Development of Ultra-Thin Polyethylene Balloons for High Altitude Research upto Mesosphere

    NASA Astrophysics Data System (ADS)

    Kumar, B. Suneel; Nagendra, N.; Ojha, D. K.; Peter, G. Stalin; Vasudevan, R.; Anand, D.; Kulkarni, P. M.; Reddy, V. Anmi; Rao, T. V.; Sreenivasan, S.

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 μm for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000-gram rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenization of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 μm for fabrication of balloons capable of penetrating mesosphere to meet the needs of user scientists working in the area of atmospheric dynamics commenced in 2011. Pursuant to the successful trials with 61,000-m3 balloon made of 3.8-μm Antrix film reaching stratopause (48 km) for the first time in the history of balloon facility in the year 2012, fine tuning of launch parameters like percentage free lift was carried out to take the same volume balloons to higher mesospheric altitudes. Three successful flights with a total suspended load of 10 kg using 61,000-m3 balloons were carried out in the month of January 2014 and all the three balloons crossed into the mesosphere reaching altitudes of over 51 km. All the balloons flown so far are closed system with no escape ducts. Balloon fabrication, development of launch hardware, flight control instruments and launch technique for these mesospheric balloon flights are discussed in this paper.

  8. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  9. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  10. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    NASA Astrophysics Data System (ADS)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (< 1 ppm in 1 second integration time for the CO2 sensor, and smaller than several tenths of ppb in 1 second integration time for the CH4 sensor). The instrument should be lighter than 2.5 kg in order to facilitate authorizations, costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  11. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  12. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  13. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  14. Attitude determination for balloon-borne experiments

    NASA Astrophysics Data System (ADS)

    Gandilo, N. N.; Ade, P. A. R.; Amiri, M.; Angilè, F. E.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Golwala, S.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of Spider, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. In the 2010 and 2012 BLASTPol flights from McMurdo Station, Antarctica, the system demonstrated an accuracy of < 5' rms in-flight, and < 5" rms post-flight.

  15. National Report France: The French Balloon Programme 2013-2016

    NASA Astrophysics Data System (ADS)

    Dubourg, V.; Vassaux, D.; Vargas, A.; Cocquerez, P.; Louvel, S.; Douchin, F.; Saccocio, M.; Mirc, F.

    2015-09-01

    With over 50 years' experience in the field, the French Centre National dEtudes Spatiales (CNES) goes on supporting a significant scientific ballooning program. In particular so because balloons still give a unique access to near space science. Over the past 6 years, most of the systems, beginning by the Zero Pressure Balloons, had to be renewed to comply with more stringent Safety constraints and to growing performance and reliability requirements from the scientific missions. This paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2014 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for zero pressure balloons, qualified in 2013. The ChArMEx campaign (Chemistry-AeRosol Mediterranean Experiment) performed in 2013 from the Baleares islands and from the south of France, with Boundary Layer Pressurized Balloons will also be presented as well as the LOAC-VOLTAIRE experiment, carried out from Aire-sur-l'Adour (France), through the flights of 20 instrumented light expandable balloons. An outlook of the new stratospheric long duration flight systems currently studied at CNES will be given. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  16. Cosmic ray abundance measurements with the CAKE balloon experiment

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; Chiarusi, T.; Giacomelli, G.; Manzoor, S.; Medinaceli, E.; Patrizii, L.; Togo, V.

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z > 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of \\~ 1.7 m2 sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  17. GHOST balloons around Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  18. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  19. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  20. Clefting in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  1. The Great Balloon Controversy.

    ERIC Educational Resources Information Center

    Chase, Valerie

    1989-01-01

    Discusses the harmful effects of balloon launches and the dumping of plastic debris into oceans. Cites several examples of plastic materials being discovered inside the bodies of sick and/or dead marine animals. Offers alternative activities to releasing balloons into the atmosphere. (RT)

  2. The Japanese Balloon Program

    NASA Astrophysics Data System (ADS)

    Nishimura, J.

    The Japanese scientific ballooning program has been organized by ISAS since the institute was founded in mid 1960s. Since then, the balloon group of ISAS has been engaged in the development of the balloon technologies and scientific observations in collaboration with scientists and engineers in other universities and organizations. Here, I describe several subjects of recent activities, the details of some items will also be reported in the separate papers in this meeting.Preparation of a new mobile receiving station.

  3. Balloons of made of the EVAL (Ethylene-Vinyl-Alcohol) films. EVAL film has specific Infra-red absorption bands, and is expected to be useful for saving the ballast for a long duration flight.
  4. A high altitude balloon with thin polyethylene films achieving at an altitude of above 50km. Further improvement of this type of balloons is continued by inventing how to extrude thin films less than 5 microns of thickness.
  5. Recent achievement of Antarctica Flights under the collaboration of ISAS and National Polar Institute.
  6. Other new efforts to long duration flights such as satellite link boomerang balloon systems and others.
  7. New balloon borne scientific instrumentation for observations of high energy electrons and Anti-protons in cosmic-rays.
  8. Stratospheric aircraft: Impact on the stratosphere?

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  9. Stratospheric aircraft: Impact on the stratosphere

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  10. Development of a Super-Pressure Balloon with an Improved Design

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  11. Balloon Design Software

    NASA Technical Reports Server (NTRS)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  12. Intercomparison of measurements of stratospheric hydrogen fluoride

    NASA Technical Reports Server (NTRS)

    Mankin, William G.; Coffey, M. T.; Chance, K. V.; Traub, W. A.; Carli, B.; Mencaraglia, F.; Piccioli, S.; Farmer, C. B.; Seals, R. K.

    1990-01-01

    Observations of the vertical profile of hydrogen fluoride (HF) vapor in the stratosphere and of the vertical column amounts of HF above certain altitudes were made using a variety of spectroscopic instruments in the 1982 and 1983 Balloon Intercomparison Campaigns. Both emission instruments working in the far-infrared spectral region and absorption instruments using solar occultation in the 2.5-micron region were employed. No systematic differences were seen in results from the two spectral regions. A mean profile from 20 - 45 km is presented, with uncertainties ranging from 20 to 50 percent. Total columns measured from ground and from 12 km are consistent with the profile if the mixing ratio for HF is small in the troposphere and low stratosphere.

  13. Balloon Catheter Prevents Contamination

    NASA Technical Reports Server (NTRS)

    Higginson, Gregory A.; Bouffard, Marc R.; Hoehicke, Beth S.; King, Bradley D.; Peterson, Sandra L.

    1994-01-01

    Balloon catheter similar to that used in such medical procedures as angioplasty and heart surgery protects small orifices against contamination and blockage by chips generated in machining operations. Includes small, inflatable balloon at end of thin, flexible tube. Contains additional features adapting it to anticontamination service: balloon larger to fit wider channel it must block; made of polyurethane (rather than latex), which does not fragment if bursts; material made thicker to resist abrasion better; and kink-resistant axial wire helps catheter negotiate tight bends.

  14. Stratospheric ozone measurements at the equator

    NASA Technical Reports Server (NTRS)

    Ilyas, Mohammad

    1994-01-01

    A balloon-borne project for ozone layer measurements was undertaken using the MAST ozone sondes and ASTOR radiosondes. Previously published data on this series (Ilyas, 1984) was recently re-analyzed using a rigorous technique to evaluate correction factors (ranging between 1.2 to 1.4). The revised data presented here, show that at the tropospheric and lower stratospheric levels, the ozone concentrations at the equator are much lower than the mid-latitude concentrations. The layer of peak concentration is found to be shifted upward compared to the mid-latitude profile and above this the two profiles get closer.

  15. LOAC: A light aerosol counter/sizer for atmospheric balloons

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Verdier, Nicolas; Dulac, François; Mallet, Marc; Berthet, Gwenael; Gaubicher, Bertrand; Coute, Benoit

    The estimation of the total amount of aerosols in the upper troposphere and in lower -middle stratosphere is necessary to constraint the model calculations of the species that are sensi-tive to heterogeneous chemical reactions, to improve calculations on the atmospheric radiative transfer, and to better establish the sources of aerosols that are vertically transported up to the middle stratosphere. It is now known that different natures of aerosols can be found in the troposphere and in the stratosphere. These aerosols are made of liquid particles, and/or solid particles like soot, sands, meteoritic debris... The identification of the main nature of aerosols is not easily feasible using conventional aerosol counters, which perform in situ scat-tering measurements from a light source at a single angle typically in the 70-110 degrees range. Also, such counters are not very sensitive to soot particles that absorb the light but can be the main population of aerosols in the lower and middle stratosphere. In this work we describe a new generation of aerosol counters under development in the framework of the project LOAC (Light Optical Aerosol Counter) supported by the French ANR/Ecotech programme. LOAC will be a light particle counter/sizer, less than metricconverterProductID1 kg1 kg, designed to be mounted on the various kinds of tropospheric and stratospheric balloons. The measurements will be conducted at 2 scattering angles: the first one, at 10 degrees, is used to determine the aerosols concentration of several size classes within diameter range 0.3 and 20 micrometeres. At such low scattering angle close to forward scattering, the signal is much more intense and the measurements are not strongly sensitive to the nature of the aerosols. The second angle is at 60 degrees, where the light scattered is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the 2 angles is used to determine the main

  16. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  17. Stratospheric HF and HCl observations /15 June 1981/

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.

    1981-01-01

    Balloon measurements of the stratospheric HF/HCl ratio are reported. Seven far-infrared rotational lines of HF and HCl were observed at elevation angles of 25, 18 and 8 deg by a far-infrared Fourier-transform spectrometer on board a balloon platform at 28.5 km. Analysis of line intensities yields an average HF/HCl ratio of 0.18 + or - 0.02 at an effective altitude of 33 km, with a water vapor mixing ratio of about 4 ppmv. Results are noted to be in reasonable agreement with the calculated profile of Sze and Ko (1981) with 4.5 ppmv H2O.

  18. Persistent disparities in stratospheric water vapor measurements drive large uncertainties in the radiative forcing by lower stratospheric water vapor

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Portmann, R. W.; Voemel, H.; Schiller, C.; Smith, J. B.; Thornberry, T. D.; Rollins, A. W.; Hall, E.; Jordan, A.; Oltmans, S. J.

    2011-12-01

    Lower stratospheric water vapor is a powerful attenuator of outgoing long wave radiation, hence its strong influence on the Earth's radiation budget. The radiative forcing by lower stratospheric water vapor is, however, quite uncertain because of significant disparities in lower stratospheric water vapor measurements by different instruments. Specifically, measurement discrepancies of 0.5 to 2 ppmv H2O (15 to 60%) between several well-established aircraft- and balloon-borne instruments have now persisted for almost two decades. The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) in April 2011 provided not only a fresh opportunity to reexamine and reevaluate these persistent measurement discrepancies, but also to compare water vapor measurements by additional aircraft-based instrumentation. Here we compare the in situ measurements of lower stratospheric water vapor by five different instruments during MACPEX. Three of these instruments (Harvard water, FISH, and NOAA CIMS) were aboard the NASA WB-57 aircraft, while two (CFH and NOAA FPH) were launched on balloons. Substantial efforts were made to coordinate aircraft and balloon measurements in space and time, such that the aircraft would reach maximum altitude en route to the balloon rendezvous point, then both aircraft and balloon would descend together. Lower stratospheric water vapor measurements during MACPEX generally fall into two groups: CFH, NOAA FPH and FISH are in good agreement, while Harvard water and NOAA CIMS agree with each other but are significantly different than the other group. Differences between the two groups range from 0.5 to 1.0 ppmv (15 to 30%), with Harvard and NOAA CIMS mixing ratios consistently higher. Though these differences seem relatively large, they are smaller than some previously observed differences between the FPH/CFH and Harvard water. For example, Harvard stratospheric water vapor measurements during the 1993 CEPEX and 2006 CR-AVE campaigns were 1.5 and 2 ppmv

  19. Research on the visual simulation system of a stratospheric satellite's trajectory control

    NASA Astrophysics Data System (ADS)

    Guo, Juan; Shun, Si-liang; Chang, Xiao-fei; Yan, Jie

    2011-08-01

    A stratospheric satellite, which is a new type of low-cost and low-energy-consumption spacecraft, can be controlled by a stratosail to orbit around the Earth's stratosphere from east to west at the height of 35 km. This paper researches on the visual simulation system of the stratospheric satellite's trajectory control. First, based on the more complete investigation of the characteristics of stratospheric environment and stratospheric winds, the trajectory control method of the stratospheric satellite is proposed, and then the components of the stratospheric satellite and their functions are given: a super-pressure helium balloon is used to balance the gravity, a stratosail to control the trajectory, and a 15km-long tether to connect the balloon and the stratosail to make them located in different wind strata. Second, the dynamic models of the balloon and stratosail are derived more compactly due to the appropriate options and definitions of various coordinate systems. After that, various simulations are carried out in scenarios of different wind conditions. Third, according to the dynamic models, the trajectory control scheme is proposed. In the end, the Creator and Vega Prime software platforms are applied to develop a visual simulation system for the trajectory control of the stratospheric satellite using the results of numerical simulations as input. The results of the visual simulation system show that the stratosail can be used to control the trajectory of stratospheric satellites precisely. Moreover, in the presence of wind disturbances the stratospheric satellite can still be controlled by the stratosail to fly from east to west along the predefined trajectory, namely, the control of the south-north direction is stable. Furthermore, through the visual simulation system, the trajectory control can be demonstrated visually, which means the control performance can be evaluated more intuitively.

  20. Free radicals in the stratosphere - A new observational technique

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Hazen, N. L.; Mclaren, B. E.; Rowe, S. P.; Schiller, C. M.; Schwab, M. J.; Solomon, L.; Thompson, E. E.; Weinstock, E. M.

    1985-01-01

    A new approach to in situ observations of trace reactive species in the stratosphere is described. A balloon-borne system, floating 40 kilometers above the earth's surface, successfully lowered and then retracted a cluster of instruments a distance of 12 kilometers on a filament of Kevlar. This instrument cluster is capable of detecting gas-phase free radicals at the part-per-trillion level. The suspended instrument array has excellent stability and has been used to measured atomic oxygen concentrations in the stratosphere.

  21. NASA Now: Balloon Research

    NASA Video Gallery

    In this NASA Now program, Debbie Fairbrother discusses two types of high-altitude balloons that NASA is using to test scientific instruments and spacecraft. She also talks about the Ideal Gas Law a...

  22. Ballooning Interest in Science.

    ERIC Educational Resources Information Center

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  23. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  24. Balloon aortic valvuloplasty.

    PubMed

    Wang, A; Harrison, J K; Bashore, T M

    1997-01-01

    Balloon aortic valvuloplasty is a percutaneous, therapeutic option for patients with severe aortic stenosis, yet the effectiveness of this procedure is dependent on the morphology of the stenotic aortic valve and the respective mechanism of dilation. In younger patients with congenital aortic stenosis, acute and intermediate-term results are good. However, in adult patients, in whom degenerative aortic stenosis is the most common cause, the acute clinical and hemodynamic benefits of balloon aortic valvuloplasty are not lasting, as restenosis occurs in most patients within 6 months. Sympatomatic relief for adults undergoing balloon aortic valvuloplasty is only apparent in patients with normal left ventricular function, who generally are also candidates for aortic valve replacement. Furthermore, the long-term survival for adults after balloon aortic valvuloplasty is similar to the natural history of untreated severe aortic stenosis. In this article, the mechanism of balloon aortic valvuloplasty, as well as its clinical and hemodynamic effects, are reviewed in the context of the different morphological types of aortic stenosis. In addition, two large registries of adult patients treated with balloon aortic valvuloplasty provide important information regarding the acute and long-term results of this procedure and are reviewed.

  25. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    NASA Astrophysics Data System (ADS)

    Schur, W.

    The scientific community's desire for large capacity, constant altitude, long duration stratospheric platforms is not likely going to be met by un-reinforced spherical super-pressure balloons. More likely, the pneumatic envelope for the large-scale super-pressure balloon of the future will be a tendon reinforced structure in which the tendons perform the primary pressure load confining function and the skin serves as a gas barrier and transfers the local pressure load to the tendons. NASA's Ultra Long Duration Balloon (ULDB), which is currently under development, is of that type. By separating the load carrying function of the tendons and the skin a number of advantages are gained. Perhaps most important is the fact that the required skin strength remains to first order independent of the balloon size. Only the size and number of tendons are dictated by the balloon size. By designing the balloon to be at least quasi statically determinate, the stress distributions are more certain, and stress raisers due to fabrication imperfections are more easily controlled and it becomes unnecessary to account for load path uncertainties by providing everywhere excessive strength and structural weight. Furthermore, it becomes possible to use for the envelope skin a visco-elastic film (polyethylene) that has proven performance in the stratospheric environment. The silhouette shape of this balloon type has prompted early researchers to name this design a "pumpkin" shape balloon. Later investigators accepted this terminology. The pumpkin shape balloon concept was adopted by NASA for its ULDB design at the end of 1998 when advantages of that design over a spherical shape design were convincingly demonstrated. Two stratospheric test flights of large-scale super-pressure balloons demonstrated the functioning of this balloon type. In the second successful flight the switch was made from an excessively strong and heavy skin, a holdover from the earlier concept of a spherical design, to

  1. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  2. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  3. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 KM

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.

    1988-01-01

    The major events and results to date of the ongoing program of measuring stratospheric composition by the technique of far-infrared Fourier-transform spectroscopy from a balloon-borne platform are reviewed. The highlights of this period were the two balloon flight campaigns which were performed at Palestine, Texas, both of which produced large amounts of scientifically useful data.

  4. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  5. Stratospheric constituent measurements using UV solar occultation technique

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Gillis, J.; Goldman, A.; Kosters, J. J.

    1981-01-01

    The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset.

  6. Ozone in the troposphere and stratosphere, part 2

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D. (Editor)

    1994-01-01

    This is the second of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  7. Optical Studies of Nitrogen Oxides in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Noxon, J. F.

    1984-01-01

    Several observational approaches were used to study the oxides of nitrogen in the stratosphere. Two species are accessible in the visible range: NO2 (400 to 450 nm) and NO3 (620 to 670 nm). In the infrared NO, NO2 and HNO3 can be studied easily only if measurements are made from above the tropopause where the water density becomes low. Measurements were carried out both by ground-based techniques as well as aircraft and balloons.

  8. Ozone in the Troposphere and Stratosphere, part 1

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1994-01-01

    This is the first part of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at the Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  9. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  10. Recent lidar measurements of stratospheric ozone and temperature within the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Ferrare, Richard; Butler, James J.; Frost, Robert L.; Gross, Michael; Margitan, James

    1991-01-01

    The Goddard mobile lidar was deployed at Cannon Air Force Base near Clovis, New Mexico during the Spring of 1990. Measurements of stratospheric ozone and temperature were made over a period of six weeks. Data from the lidar system is compared with data from a balloon-borne, ultraviolet instrument launched from nearby Ft. Sumner, New Mexico. Along with several improvements to this instrument which are now underway, a second lidar dedicated to temperature and aerosol measurements is now being developed.

  11. Stability of lobed balloons

    NASA Astrophysics Data System (ADS)

    Pagitz, M.; Xu, Y.; Pellegrino, S.

    This paper presents a computational study of the stability of simple lobed balloon structures. The particular structure that is investigated is a stack of pumpkin-shaped envelopes with a common axis of symmetry, and hence forming a kind of lobed cylinder. The number of the pumpkin envelopes is one of the variables that is investigated; a number of shape imperfections are also considered. This lobed cylinder is an axi-symmetric, idealised version of the lobed pumpkin balloons that have occasionally deployed into anomalous, clefted configurations. By studying in detail the behaviour of lobed cylinder we are able to draw some preliminary conclusions about general features of the behaviour of lobed pumpkin balloons.

  12. Balloon gondola diagnostics package

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.

    1986-01-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  13. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  14. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  15. Balloon borne Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Lubin, Philip M.

    2015-08-01

    We report on modeling of a balloon borne mission to survey the 1-5 micron region with sensitivity close to the zodiacal light limits in portions of this band. Such a survey is compelling for numerous science programs and is complimentary to the upcoming Euclid, WFIRST and other orbital missions. Balloons borne missions offer much lower cost access and rapid technological implementation but with much less exposure time and increased backgrounds. For some science missions the complimentary nature of these is extremely useful. .

  16. Troposphere-to-stratosphere transport in the tropics

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre

    2010-04-01

    The analysis of the data collected over Brazil, Northern Australia and Africa from balloons, high altitude aircraft and satellites during the recent HIBISCUS, TROCCINOX, SCOUT-O3 and AMMA European campaigns, has led to significant revision in the understanding of troposphere-to-stratosphere transport. Repeated observations of strong updrafts of adiabatically cooled and washed-out tropospheric air rich in chemical and greenhouse gases by convective overshooting over the three continents, demonstrate the high frequency of occurrence of such events in contrast to their generally assumed scarcity. Moreover, global scale information provided by ODIN and CALIPSO satellite observations suggests that the mechanism could play a major, if not dominant, role in troposphere-to-stratosphere transport in contrast to the generally evoked slow ascent by radiative heating. Ignored by global scale models because of their limited extension and duration, convective overshootings might have a significant impact on the chemistry and climate of the stratosphere.

  17. Electrodynamics of the Middle Atmosphere: Superpressure Balloon Program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1990-01-01

    This project called Electrodynamics of the Middle Atmosphere (EMA): Superpressure Balloon Program was begun by the PI at the Aerospace Corporation in Los Angeles under joint NSF and NASA funding originally combined in one grant ATM80-17071 and has continued at the University of Washington under grants ATM8212283, ATM84-11326 and ATM86-15628 and NASA grants NAGW-724 and NAGS-635. In the EMA experiment a comprehensive set of electrical parameters was measured during eight long-duration balloon flights in the Southern Hemisphere stratosphere. These flights resulted in the largest vector electric field data set ever collected from the stratosphere which has been a treasure-trove of new phenomena. Since the stratosphere has never been electrodynamically sampled in this systematic manner before, it is perhaps not surprising that several new discoveries have been made and reported. Another way to measure the success of this first EMA project is to note that all together the total data rate was about 1 bit/sec/payload amounting to 12 MBytes (1/3 of 1 standard 1600 BPI magnetic tape) which nevertheless has resulted in 14 papers and 2 masters theses (so far! . Ten of these papers and one masters thesis specifically acknowledge the support by NASA grant NAGS-635 are discussed herein.

  18. Electrodynamics of the middle atmosphere: Superpressure balloon program

    NASA Astrophysics Data System (ADS)

    Holzworth, Robert H.

    1990-08-01

    This project called Electrodynamics of the Middle Atmosphere (EMA): Superpressure Balloon Program was begun by the PI at the Aerospace Corporation in Los Angeles under joint NSF and NASA funding originally combined in one grant ATM80-17071 and has continued at the University of Washington under grants ATM8212283, ATM84-11326 and ATM86-15628 and NASA grants NAGW-724 and NAGS-635. In the EMA experiment a comprehensive set of electrical parameters was measured during eight long-duration balloon flights in the Southern Hemisphere stratosphere. These flights resulted in the largest vector electric field data set ever collected from the stratosphere which has been a treasure-trove of new phenomena. Since the stratosphere has never been electrodynamically sampled in this systematic manner before, it is perhaps not surprising that several new discoveries have been made and reported. Another way to measure the success of this first EMA project is to note that all together the total data rate was about 1 bit/sec/payload amounting to 12 MBytes (1/3 of 1 standard 1600 BPI magnetic tape) which nevertheless has resulted in 14 papers and 2 masters theses (so far] . Ten of these papers and one masters thesis specifically acknowledge the support by NASA grant NAGS-635 are discussed herein.

  19. Dehydration of the stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dessler, A.

    2011-03-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories, we find, in agreement with previous authors, that the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. The diabatic simulations, on the other hand, produce stratospheric water vapor mixing ratios very close to that observed by Aura's Microwave Limb Sounder. Convective moistening, which will increases stratospheric HDO, also increases stratospheric water vapor while gravity waves do the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, dehydration over Tropical South America is also important. Antarctica also makes a contribution to the overall stratospheric water vapor budget by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  20. Balloon occlusion aortography.

    PubMed

    Ino, T; Shimazaki, S; Nishimoto, K; Akimoto, K; Iwahara, M; Yabuta, K; Watanabe, M; Tanaka, A; Hosoda, Y

    1991-02-01

    We review the validity of balloon occlusion aortography (BOA) on the basis of our personal experience with 18 patients with congenital heart disease (mean weight 4.55 g, including 8 neonates). Four of the 18 patients underwent aortic arch angiography using balloon occlusion of the descending aorta. Pulmonary angiography was also performed in 9 patients via a patent ductus arteriosus and in 3 patients via a Blalock-Taussig shunt. The remaining 2 patients underwent coronary arteriography by balloon occlusion of the ascending aorta. The information obtained was satisfactory in 17 of the 18 patients. However, in one patient with a double-outlet right ventricle and pulmonary stenosis, the pulmonary arteries were not clearly visualized because of dominant antegrade flow from the right ventricle. BOA is a safe and useful procedure which can be used to image the aortic arch, pulmonary artery, and coronary arteries in infants with congenital heart diseases. In children over 3 years of age, however, the balloon may not be able to occlude the appropriate site of the aorta, so selective angiography is required to obtain precise information.

  1. Comments on ideal ballooning

    SciTech Connect

    Dagazian, R.Y.; Paris, R.B.

    1982-01-01

    Ideal ballooning modes are investigated for the case of plane magnetized slab geometry. Toroidal effects are simulated by a gravitational acceleration periodically varying along magnetic field lines. High shear is shown to be very effective in stabilizing these modes even when field line curvature is most unfavorable to their stability.

  2. Retroperitoneoscopy: the balloon technique.

    PubMed

    Gaur, D D

    1994-07-01

    Retroperitoneoscopy was performed in 101 patients using the author's recently described balloon technique. Various urological procedures, were undertaken including renoscopy and renal biopsy, para-aortic lymph node biopsy, varicocelectomy, ureterolithotomy, pyelolithotomy, pyeloplasty, nephrolithotomy, nephrectomy, decortication of renal cyst, adrenalectomy, pelvic lymphadenectomy and ligation of deep penile veins.

  3. Simulations of the trend and annual cycle in stratospheric CO{sub 2}

    SciTech Connect

    Hall, T.M.; Prather, M.J.

    1993-06-20

    The distribution and evolution of stratospheric CO{sub 2} in response to the observed annual cycle, interannual variations, and long-term trends in tropospheric CO{sub 2} is simulated with the GISS 23 layer stratospheric general circulation model. Carbon dioxide is a tracer of stratospheric transport which has essentially no local sources or sinks but still displays gradients due to the forcing at the surface. Consequently, observations of stratospheric CO{sub 2}, until recently limited to a few flask samples, but now included as a high frequency in situ sampling in aircraft campaigns, provide a test of tracer transport in stratospheric simulations independent of model chemistry. In the authors model, CO{sub 2} enters the stratosphere primarily through the tropical tropopause, where air parcels are effectively labeled in time by their CO{sub 2} values (although not uniquely because of the cycles in the tropospheric concentration). Parcels of differing ages are subsequently mixed in the stratosphere. Only when the growth is purely linear can the CO{sub 2} offset in a parcel relative to the troposphere be interpreted as the average time since stratospheric air was last in contact with the troposphere, i.e., the {open_quotes}age{close_quotes} of the stratosphere. This model is in qualitative agreement with multiyear averages of balloon soundings at northern mid- and high latitudes; the stratosphere at 30 km at mid-latitudes is about 4 years (6 ppm of CO{sub 2}) behind the troposphere. The authors predict significant propagation of the CO{sub 2} annual cycle into the lower stratosphere, an effect which must be accounted for when interpreting observations. While the annual cycle is negligible above the lower stratosphere, interannual oscillations, such as those associated with El Ninos, can propagate well into the middle stratosphere as positive offsets from the linear trend lasting significantly longer than their duration in the troposphere. 30 refs., 9 figs.

  4. Global budget of stratospheric trace constituents (GLOBUS). MAP/GLOBUS 1983: A review

    NASA Technical Reports Server (NTRS)

    Offermann, D.

    1989-01-01

    MAP/GLOBUS 1983 was a project for the study of stratospheric trace gases and dynamics. A respective field campaign was performed in September/October 1983 in Western Europe. A large number of measurements were taken by instruments based on the ground, on airplane, balloons, and satellite. The structure of the campaign is described, and a survey of the results are given.

  5. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    NASA Astrophysics Data System (ADS)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  6. Trends in stratospheric temperature

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Newman, P. A.; Rosenfield, J. E.; Angell, J.; Barnett, J.; Boville, B. A.; Chandra, S.; Fels, S.; Fleming, E.; Gelman, M.

    1989-01-01

    Stratospheric temperatures for long-term and recent trends and the determination of whether observed changes in upper stratospheric temperatures are consistent with observed ozone changes are discussed. The long-term temperature trends were determined up to 30mb from radiosonde analysis (since 1970) and rocketsondes (since 1969 and 1973) up to the lower mesosphere, principally in the Northern Hemisphere. The more recent trends (since 1979) incorporate satellite observations. The mechanisms that can produce recent temperature trends in the stratosphere are discussed. The following general effects are discussed: changes in ozone, changes in other radiatively active trace gases, changes in aerosols, changes in solar flux, and dynamical changes. Computations were made to estimate the temperature changes associated with the upper stratospheric ozone changes reported by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus-7 and the Stratospheric Aerosol and Gas Experiment (SAGE) instruments.

  7. Flow Past a Descending Balloon

    NASA Technical Reports Server (NTRS)

    Baginski, Frank

    2001-01-01

    In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.

  8. Venus Balloons using Water Vapor

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Honda, H.; Imamura, T.

    We propose an inflatable balloon using water vapor for the lifting gas, which is liquid in the transportation stage before entry into the high temperature atmosphere. The envelope of the balloon has an outer layer for gas barrier (a high-temperature resistant film) and an inner layer for liquid water keeping. In the descent stage using a parachute, water widely held just inside the balloon envelope can be quickly vaporized by a lot of heat flux from the surrounding high-temperature atmosphere owing to the large surface area of the balloon. As neither gas containers nor heat exchangers are necessary, we can construct a simple, lightweight and small size Venus balloon probe system. Tentative floating altitude is 35 km below the thick clouds in the Venusian atmosphere. Selection of balloon shape and material for balloon envelope are discussed in consideration of the Venusian environment such as high-temperature, high-pressure, and sulfuric acid. Balloon deployment and inflation sequence is numerically simulated. In case of the total floating mass of 10 kg at the altitude of 35 km, the volume and mass of the balloon is 1.5 cubic meters, and 3.5 kg, respectively. The shape of the balloon is chosen to be cylindrical with a small diameter. The mass of li fting gas can be determined as 4.3 kg and the remaining 2.2 kg becomes the payload mass. The mass of the total balloon system is also just 10 kg excluding the entry capsule.

  9. Is there a stratospheric fountain?

    NASA Astrophysics Data System (ADS)

    Pommereau, J.-P.; Held, G.

    2007-06-01

    The impact of convection on the thermal structure of the Tropical Tropopause Layer (TTL) was investigated from a series of four daily radiosonde ascents and weather S-band radar observations carried out during the HIBISCUS campaign in the South Atlantic Convergence Zone in Southeast Brazil in February 2004. The temperature profiles display a large impact of convective activity on the thermal structure of the TTL. Compared to non-active periods, convection is observed to result in a cooling of 4.5°C to 7.5°C at the Lapse Rate Tropopause at 16 km, propagating up to 19 km or 440 K potential temperature levels in the stratosphere in most intense convective cases. Consistent with the diurnal cycle of echo top heights seen by a S-band weather radar, a systematic temperature diurnal cycle is observed in the layer, displaying a rapid cooling of 3.5°C on average (-9°, -2°C extremes) during the development phase of convection in the early afternoon during the most active period. Since the cooling occurs during daytime within a timescale of 6-h, its maximum amplitude is at the altitude of the Cold Point Tropopause at 390 K and temperature fluctuations associated to gravity waves do not display significant diurnal change, the afternoon cooling of the TTL cannot be attributed to radiation, advection, gravity waves or adiabatic lofting. It implies a fast insertion of adiabatically cooled air parcels by overshooting turrets followed by mixing with the warmer environment. During most intense convective days, the overshoot is shown to penetrate the stratosphere up to 450 K potential temperature level. Such fast updraft offers an explanation for the presence of ice crystals, and enhanced water vapour layers observed up to 18-19 km (410-430 K) in the same area by the HIBISCUS balloons and the TROCCINOX Geophysica aircraft, as well as high tropospheric chemical species concentrations in the TTL over land observed from space. Overall, injection of cold air by irreversible mixing

  10. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  11. A feasibility study for measuring stratospheric turbulence using metrac positioning system

    NASA Technical Reports Server (NTRS)

    Gage, K. S.; Jasperson, W. H.

    1975-01-01

    The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.

  12. Gasless balloon laparoscopy

    PubMed Central

    Lienert, Mark; Horstmann, Olaf

    2009-01-01

    Background The concept of balloon laparoscopy (B-LSC) pursues the simplification of conventional diagnostic laparoscopy (LSC). The pneumoperitoneum is replaced by a transparent balloon, which is positioned in front of the optical system. It shall be shown that with this arrangement diagnostic LSC can be performed outside of the operating room without requiring general anesthesia. Methods An inflatable balloon was developed for a 30°/3.5-mm rod lens. Intra-abdominally the balloon was expanded to a diameter of 30 mm by air insufflation, and B-LSC was performed. Twelve patients were examined in general anesthesia before laparoscopic surgery. Twelve patients were subjected to B-LSC fully awake or with sedation (midazolam or propofol/S-ketamine) as a “second-look” procedure by way of a flexible trocar (port) left in the abdominal wall at the end of previous operation. Eight patients have been first provided with a trocar under sedation (midazolam or propofol/S-ketamine) combined with local anesthesia, and B-LSC was performed before laparoscopic surgery. Results On a scale of 1–5, the general impression was rated 1.9, the navigability to the different abdominal organs 2.5, the resolution 1.5, the stability of the system optic/trocar 2.1, the suitability of the balloon format 1.9, and the stability of the balloon against lateral shear forces 2.4. The degree of painfulness of the examination was rated 2.8, the tolerance of the port 1.4, and the degree of painfulness of trocar placement at 2.5. On a scale of 1 to 3, the strain of the abdominal musculature was rated 1.4 and the obstruction by adhesions 1.7. Discussion B-LSC is technically practicable with good imaging qualities and without requiring pneumoperitoneum. It is tolerated in great extent under slight sedation and particularly well under deep sedation. The procedure is suitable for diagnostics of unclear abdominal conditions, as a second-look LSC and also as a staging LSC. PMID:20039067

  13. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  14. Dehydration of the Stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.

    2011-12-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity (RH) with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories driven by the MERRA reanalysis, we find that the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. We also show that the kinematically driven parcels are more likely to encounter the coldest tropopause temperatures than the diabatic trajectories. The diabatic simulations produce stratospheric water vapor mixing ratios close to that observed by Aura's Microwave Limb Sounder and are consistent with the MERRA tropical tropopause temperature biases. Convective moistening increases stratospheric water vapor while our parameterized gravity waves does the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, but dehydration over Tropical South America is also important. Antarctica makes a small contribution to the overall stratospheric water vapor budget as well by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  15. Observations of volcanic plumes using small balloon soundings

    NASA Astrophysics Data System (ADS)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  16. Studies of thin film nonlinear viscoelasticity for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D.

    2010-01-01

    In order to provide scientists with a stratospheric platform from which to conduct long duration research, a superpressure balloon is desired which will maintain a relatively constant volume for weeks at a time. The pumpkin shaped balloon has been developed by making use of the surface lobing to limit the circumferential stress and meridional tendons to carry the loads in the other direction. However, in order to prevent geometric instabilities during deployment and after pressurization, the design should eliminate as much excess material as possible while not exceeding the permissible stresses of the material. This paper will describe the behavior of the very thin membrane material selected for this application and the limits of the film in a biaxial state of stress. In addition, it is shown that the viscoelastic nature of the film will limit the stress by causing a reduced radius of curvature in the lobe of the pumpkin.

  17. Remote Sensing of Stratospheric Trace Gases by TELIS

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Birk, Manfred; Wagner, Georg; Trautmann, Thomas

    2015-06-01

    TELIS (TErahertz and submillimeter LImb Sounder) is a balloon-borne cryogenic heterodyne spectrometer with two far infrared and submillimeter channels (1.8 THz and 480-650 GHz developed by DLR and SRON, respectively). The instrument was designed to investigate atmospheric chemistry and dynamics with a focus on the stratosphere. Between 2009 and 2011, TELIS participated in three winter campaigns in Kiruna, Sweden. The recent campaign took place in 2014 over Timmins, Canada. During previous campaigns, TELIS shared a stratospheric balloon gondola with the balloon version of MIPAS (MIPAS-B) and mini-DOAS. The primary scientific goal of these campaigns has been to monitor the time-dependent chemistry of chlorine and bromine, and to achieve the closure of chemical families inside the polar vortex. In this work, we present retrieved profiles of ozone (O3), hydrogen chlorine (HCl), carbon monoxide (CO), and hydroxyl radical (OH) obtained by the 1.8 THz channel from the polar winter flights during 2009-2011. Furthermore, the corresponding retrieval algorithm is briefly described. The quality of the retrieval products is analyzed in a quantitative manner including: error characterization, internal comparisons of the two different channels, and external comparisons with coincident spaceborne observations. The errors due to the instrument parameters and pressure dominate in the upper troposphere and lower stratosphere, while the errors at higher altitudes are mainly due to the spectroscopic parameters and the radiometric calibration. The comparisons with other limb sounders help us to assess the measurement capabilities and instrument characteristics of TELIS, thereby establishing the instrument as a valuable tool to study the chemical interactions in the stratosphere.

  18. Balloon-borne observations of mid-latitude hydrofluoric acid

    NASA Technical Reports Server (NTRS)

    Sen, B.; Toon, G. C.; Blavier, J.-F.; Szeto, J. T.; Fleming, E. L.; Jackman, C. H.

    1995-01-01

    Measurements of stratospheric hydrofluoric acid (HF) have been made by the JPL MkIV interferometer during high-altitude balloon flights. Infrared solar absorption spectra were acquired near 35 deg N at altitudes between local tropopause and 38 km. Volume mixing ratio profiles of HF derived from 4 flights (1990-93), in conjunction with simultaneously observed N2O profiles, indicate an average rate of HF increase of (5.5 +/- 0.3)% per year, in agreement with time-dependent, two-dimensional model simulations (6% per year) and ATMOS measurements.

  19. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  20. Balloon-borne air traffic management (ATM) as a precursor to space-based ATM

    NASA Astrophysics Data System (ADS)

    Brodsky, Yuval; Rieber, Richard; Nordheim, Tom

    2012-01-01

    The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.

  1. New Deflation Systems for Zero Pressure Balloons

    NASA Astrophysics Data System (ADS)

    Huens, Thomas

    Balloon flights in populated countries like France are seriously constrained in terms of safety. Flight window opportunities have been reduced in order to comply a minimal damage probability (material and human damages). Although we could use different launch sites, the enormous and useful data base collected by Scientists during 40 years in France encourages to keep the sites of Aire sur l'Adour and Gap operational. Developments were initiated in order to cope with these problems and improve the landing precision. More precisely for the last four years, the CNES balloon engineers have focused on developing a new deflation system and a new parachute system for zero pressure balloons (ZPB), in order to reduce the size of the impact uncertainty zone. We have observed that the envelope deflation phase has an important impact on the envelope drag coefficient. Residual helium inside the envelope can maintain a residual lift reducing the expected descent rate and generating a dispersion in the descent trajectory from flight to flight that increase the size of the potential landing zone. As for consequence, the deflation system installed on the new envelope shall allow a quick and efficient evacuation of the helium. The final shape of the envelope in descent with a drag coefficient is about constant, is quickly reached and the portion of residual helium is negligible. The way to improve the deflation system's efficiency -with a negligible impact on the envelope relia-bility -is a true challenge. It requires a significant amount of ground validation before the first flight test. Due to the difficulty of simulating the stratospheric environment in a volume large enough to test a ZPB, the ground validation is based on a group of tests, defined to be as close as possible to the real conditions. To reach this goal, we use (a)low speed little size tear tests in universal testing machine, at cold and ambient temperature; (b)high speed medium size tear tests, at ambient

  2. A method for establishing a long duration, stratospheric platform for astronomical research

    NASA Astrophysics Data System (ADS)

    Fesen, Robert; Brown, Yorke

    2015-10-01

    During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.

  3. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  4. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  5. Optimum designs for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Rainwater, E. L.

    2004-01-01

    The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.

  6. Annual variations of water vapor in the stratosphere and upper troposphere observed by the Stratospheric Aerosol and Gas Experiment II

    SciTech Connect

    McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Chiou, E.W.; Larsen, J.C. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a description of the annual variations of water vapor in the stratosphere and the upper troposphere derived from observations of the Stratospheric Aerosol and Gas Experiment II (SAGE II). The altitude-time cross sections exhibit annually repeatable patterns in both hemispheres. The appearance of a yearly minimum in water vapor in both hemispheres at approximately the same time supports the idea of a common source(s) for stratospheric dry air. Annual patterns observed at northern mid-latitudes, like the appearance of a hygropause in winter and the weakening and upward shifting of the hygropause from January to May, agree with in situ balloon observations previously obtained over Boulder and Washington, DC. An increase in water vapor with altitude in the tropics is consistent with methane oxidation in the upper stratosphere to lower mesosphere as a source for water vapor. A poleward gradient is also shown as expected based on a Lagrangian mean circulation. A linear regression analysis using SAGE II data from January 1986 to December 1988 shows that little annual variation occurs in the middle and upper stratosphere with the region of large annual variability near the tropopause. The semi-annual variability is relatively marked at altitudes of 24 and 40 km in the tropics. 30 refs., 4 figs., 1 tab.

  7. Dehydration of the stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.

    2011-08-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity (RH) with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories driven by the MERRA reanalysis, we find that, unlike the results from Liu et al. (2010), the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. We also show that the kinematically driven parcels are more likely to encounter the coldest tropopause temperatures than the diabatic trajectories. The diabatic simulations produce stratospheric water vapor mixing ratios close to that observed by Aura's Microwave Limb Sounder and are consistent with the MERRA tropical tropopause temperature biases. Convective moistening, which will increase stratospheric HDO, also increases stratospheric water vapor while the addition of parameterized gravity waves does the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, but dehydration over Tropical South America is also important. Antarctica makes a small contribution to the overall stratospheric water vapor budget as well by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  8. Cleft formation in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  9. VEGA Balloon System and Instrumentation.

    PubMed

    Kremnev, R S; Linkin, V M; Lipatov, A N; Pichkadze, K M; Shurupov, A A; Terterashvili, A V; Bakitko, R V; Blamont, J E; Malique, C; Ragent, B; Preston, R A; Elson, L S; Crisp, D

    1986-03-21

    The VEGA Venus balloon radio transmissions received on Earth were used to measure the motion of the balloons and to obtain the data recorded by onboard sensors measuring atmospheric characteristics. Thus the balloons themselves, the gondolas, the onboard sensors, and the radio transmission system were all components of the experiment. A description of these elements is given, and a few details of data sampling and formatting are discussed.

  10. Temporal and latitudinal distributions of stratospheric N2O isotopomers

    NASA Astrophysics Data System (ADS)

    Toyoda, Sakae; Yoshida, Naohiro; Urabe, Taichiro; Nakayama, Yusuke; Suzuki, Takeshi; Tsuji, Kazuhide; Shibuya, Kazuhiko; Aoki, Shuji; Nakazawa, Takakiyo; Ishidoya, Shigeyuki; Ishijima, Kentaro; Sugawara, Satoshi; Machida, Toshinobu; Hashida, Gen; Morimoto, Shinji; Honda, Hideyuki

    2004-04-01

    Temporal and latitudinal variations of vertical profiles of N2O isotopomers were observed in the stratosphere over Japan (39°N, 142°E), Sweden (68°N, 20°E), and Antarctica (69°N, 40°E) during the period between 1990 and 2001. Samples were collected with a balloon-borne cryogenic sampler and analyzed by mass spectrometry in the laboratory. Observed enrichment factors for heavier isotopomers (15N14N16O, 14N15N16O, and 14N14N18O) relative to 14N14N16O were nearly constant in the lower stratosphere (less than ˜22 km) but increased at higher altitudes (˜22-35 km) while showing seasonal and latitudinal differences. Enrichment factors during the photolysis and photo-oxidation of N2O were also obtained in laboratory experiments and compared with those observed. We found that in the higher-altitude region (1) fractionation of the isotopomers is mainly determined by photolysis, but is also affected by physical processes, (2) subsidence of air masses in the winter polar vortex induces the intrusion of an upper stratospheric air mass depleted in N2O, and (3) decay of the vortex in the local spring leads to rapid horizontal advection of midlatitude air masses. At lower altitudes, isotopomer ratios are determined by photolysis, photo-oxidation, and the mixing of air masses within the stratosphere or between the stratosphere and the troposphere. Secular trend of isotopomer profiles was not detectable over Japan during 11 years. Assuming that the lower stratospheric air over midlatitudes is exchanged with the troposphere, isotopomer ratios of the N2O "back-flux" from the stratosphere were estimated. These values can be used in the isotopomeric mass balance model to constrain the global N2O budget.

  11. Detection of living cells in stratospheric samples

    NASA Astrophysics Data System (ADS)

    Harris, Melanie J.; Wickramasinghe, N. C.; Lloyd, David; Narlikar, J. V.; Rajaratnam, P.; Turner, Michael P.; Al-Mufti, Shirwan; Wallis, Max K.; Ramadurai, S.; Hoyle, Fred

    2002-02-01

    Air samples collected aseptically over tropical India at various stratospheric altitudes ranging from 20 to 41 km using cryosampler assemblies carried on balloons flown from Hyderabad have shown evidence of living microbial cells. Unambiguous evidence of living cells came from examining micropore filters on which the samples were recovered with the use of voltage sensitive lipophilic dyes that could detect the presents of active cells. Clumps of viable cells were found at all altitudes using this technique, and this conclusion was found to be consistent with images obtained from electron microscopy. Since the 41 km sample was collected well above the local tropopause, a prima facie case for a space incidence of these microorganisms is established. Further work on culturing, PCR analysis and isotopic analysis is in progress.

  12. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  13. Tricuspid balloon valvuloplasty: a more simplified approach using inoue balloon.

    PubMed

    Patel, T M; Dani, S I; Shah, S C; Patel, T K

    1996-01-01

    We report a more simplified technique of the balloon tricuspid valvuloplasty using inoue balloon set in a patient suffering from severe rheumatic tricuspid stenosis. We believe that this technique may be useful in a difficult case of tricuspid valvuloplasty. PMID:8770490

  14. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  15. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    NASA Astrophysics Data System (ADS)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  16. Buddy balloon for TAVI.

    PubMed

    Balkin, Jonathan; Silberman, Shuli; Almagor, Yaron

    2013-11-15

    Percutaneous transfemoral aortic valve replacement is a new rapidly evolving technique that has made significant progress in recent years. The technology is however limitted and in some cases has resulted in failure to deliver the prosthetic valve. We describe a new technique using a buddy balloon, from the contralateral femoral artery, to assist in crossing the native aortic valve in those cases where extreme calcification and or tortuosity have caused the delivery system to hang up on the aortic wall. The technique is easily applied and facilitates the success of the procedure in cases which may otherwise have to be converted to open surgical aortic valve replacement.

  17. Progress of the super-pressure balloon developments in Japan

    NASA Astrophysics Data System (ADS)

    Fuke, Hideyuki; Izutsu, Naoki; Akita, Daisuke; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Saito, Yoshitaka; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michi-Hiko; Yamada, Kazuhiko; Yamagami, Takamasa; Yoshida, Tetsuya

    Zero-pressure balloon (ZPB) used for the scientific observation in the stratosphere has an un-avoidable limitation of flight duration. The ZPB cannot fly for a long day and nights, because it cannot keep its floating altitude during nighttime without dropping ballasts. On the other hand, super-pressure balloon (SPB) can keep its volume, and thus it can keep its altitude for a long duration. Therefore, the SPB is expected to provide a very useful way of a long flight to the science communities. The basic principle of the SPB had been well known for several tens of years. However, it was not easy to develop a large, light-weight, and pressure-tight SPB, which can lift a heavy (heavier than a few hundred kg) payload to an altitude of around 35 km. In these ten years, we have developed the SPB based on a unique lobed-pumpkin design. We have carried out a number of ground tests and flight tests to improve the every component of the SPB developments. Recently, we have begun an additional development of an advanced shape of SPB, named `tawara', which is a lobed-pumpkin with a lobed-cylinder. We have performed tests of the tawara-SPB to verify its advantages over the conventional pumpkin SPB. The tawara-SPB can make it easier to enlarge the SPB volume with keeping a single basic design and saving the balloon weight. The tawara-SPB may improve the balloon deployment stability, and can be utilized as a powered balloon. At the conference, we will report a summary of our tests over the past few years as well as of the prospects in the near future.

  18. Microorganisms in the Stratosphere (MIST): In-flight Sterilization with UVC Leds

    NASA Technical Reports Server (NTRS)

    Wong, Gregory Michael; Smith, David J.

    2014-01-01

    The stratosphere (10 km to 50 km above sea level) is a unique place on Earth for astrobiological studies of microbes in extreme environments due to the combination of harsh conditions (high ultraviolet radiation, low pressure, desiccation, and low temperatures). Microorganisms in the Stratosphere (MIST) will attempt to characterize the diversity of microbes at these altitudes using a balloon collection device on a meteorological weather balloon. A major challenge of such an aerobiology study is the potential for ground contamination that makes it difficult to distinguish between collected microbes and contaminants. One solution is to use germicidal ultraviolet light emitting diodes (UV LEDs) to sterilize the collection strip. To use this solution, an optimal spatial arrangement of the lights had to be determined to ensure the greatest chance of complete sterilization within the 30 to 60 minute time of balloon ascent. A novel, 3D-printed test stand was developed to experimentally determine viable Bacillus pumilus SAFR-032 spore reduction after exposure to ultraviolet radiation at various times, angles, and distances. Taken together, the experimental simulations suggested that the UV LEDs on the MIST flight hardware should be active for at least 15 minutes and mounted within 4 cm of the illuminated surface at any angle to achieve optimal sterilization. These findings will aid in the production of the balloon collection device to ensure pristine stratospheric microbial samples are collected. Flight hardware capable of in-flight self-sterilization will enable future life detection missions to minimize both forward contamination and false positives.

  19. Large-scale stirring in the southern stratospheric polar vortex during the final warming of 2005

    NASA Astrophysics Data System (ADS)

    de La Camara, Alvaro; Mechoso, Carlos R.; Ide, Kayo; Walterscheid, Richard; Schubert, Gerard

    2010-05-01

    The present work examines the large-scale stirring during the final warming of the Southern Hemisphere stratosphere in the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks o tow different isopycnic levels in the lower stratosphere. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of Lagrangian properties of the stratospheric flow. An approximation to coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and distributions of FTLE maxima reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic surface are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.

  20. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    NASA Astrophysics Data System (ADS)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  1. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  2. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  3. Cryogenics on the stratospheric terahertz observatory (STO)

    NASA Astrophysics Data System (ADS)

    Mills, G.; Young, A.; Dominguez, R.; Duffy, B.; Kulesa, C.; Walker, C.

    2015-12-01

    The Stratospheric TeraHertz Observatory (STO) is a NASA funded, Long Duration Balloon experiment designed to address a key problem in modern astrophysics: understanding the Life Cycle of the Interstellar Medium. STO surveys a section of the Galactic plane in the dominant interstellar cooling line at 1.9 THz and the important star formation tracer at 1.46 THz, at ∼1 arc minute angular resolution, sufficient to spatially resolve atomic, ionic, and molecular clouds at 10 kpc. The STO instrument package uses a liquid helium cryostat to maintain the THz receiver at < 9 K and to cool the low noise amplifiers to < 20 K. The first STO mission (STO-1) flew in January of 2012 and the second mission (STO-2) is planned for December 2015. For the STO-2 flight a cryocooler will be added to extend the mission lifetime. This paper discusses the integration of the STO instrument into an existing cryostat and the cryogenic aspects of the launch and operation of the STO balloon mission in the challenging Antarctic environment.

  4. SAGE observations of stratospheric nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.

    1986-01-01

    The global distribution of nitrogen dioxide in the middle to upper stratosphere (25-45 km altitude) for the period February 1979 to November 1981 has been determined from observations of attenuated solar radiation in the visible region 0.385-0.45 micron by the Stratospheric Aerosol and Gas Experiment (SAGE) satellite instrument. The SAGE-derived NO2 vertical profiles compare well with observations by balloon- and aircraft-borne sensors. The global SAGE NO2 distributions generally show a maximum in mixing ratio of 8 parts per billion by volume at about 35 km altitude near the equatorial latitudes at local sunset. The location of the mixing ratio peak moves synchronously with the overhead sun for the four different seasons. High-latitude NO2 column content shows strong seasonal variation, with a maximum in local summer and a minimum in local winter. Selected data at high-latitude winter seasons are presented, suggesting that the large variation shown could be explained by the coupling of both dynamics and photochemistry of the NO(x) species. Finally, profiles of the ratio of sunset to sunrise NO2 mixing ratios, peaking at about a factor of two at 30 km, are shown.

  5. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  6. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  7. ASTERIA: A Balloon-Borne Experiment for Infrasound Detection

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Wahl, Kerry; Ballard, Courtney; Daugherty, Emily; Dullea, Connor; Garner, Kyle; Heaney, Martin; Thom, Ian; Von Hendy, Michael; Young, Emma; Diller, Jed; Dischner, Zach; Drob, Douglas; Boslough, Mark; Brown, Peter

    2015-04-01

    ASTERIA (Aloft Stratospheric Testbed for Experimental Research on Infrasonic Activity) is a small (<20 kg) payload designed to measure infrasound disturbances from a balloon-borne platform at altitudes near 60,000 ft (~20 km). A balloon platform is expected to have two advantages over ground-based infrasound stations: a relatively benign wind environment and exposure to higher signal strengths within a stratospheric duct. ASTERIA's nominal sensitivity requirements are to measure waves between 0.1 to 20 Hz at the 0.1 Pa level with signal-to-noise ratios of 5 or better. At the time of this writing, we have tested wave sensors based on the differential pressure transducers recently flown by Bowman et al. (2014) on a NASA/HASP (High Altitude Student Payload); our modified pressure sensor was tested in a NOAA piston-bellows facility in Boulder, CO. Our goal of characterizing 0.1 Pa amplitude waves requires that combined noise sources are below the the 0.02 Pa rms level. ASTERIA carries five differential transducers with port inlets arranged a diamond-like pattern (one zenith- and one nadir-facing port, plus three horizontal ports equally spaced in azimuth). Baffling for these sensors is a hybrid of perforated tubing and porous barriers, as described in Hedlin (2014). Other noise sources of concern include the electronic amplification of the transducer voltages and low-frequency pressure waves caused by pendulum or twisting modes of the payload. We will report on our plans to characterize and reduce these noise sources. The ASTERIA payload is intended to fly on long-duration super-pressure balloons for intervals of ~100 days. We plan to conduct an experiment in the summer or fall of 2015 in which a calibrated disturbance is set off and detected simultaneously from stratospheric ASTERIA payloads and ground-based stations. References: 1) Bowman et al. 2014, "Balloons over Volcanoes Scientific Report," HASP 2014 final report. 2) Hedlin 2003, "Infrasonic Wind-noise Reduction

  8. [Extrascleral ballooning. 2. New approaches: double and sector ballooning].

    PubMed

    Movshovich, A I; Saksonova, E O; Il'nitskiĭ, V V

    1991-01-01

    Treatment of retinal detachment with the use of distended balloons (extrascleral ballooning) holds good promise due to ease of operation and low traumatism. Unfortunately it may be used only in cases with fresh not high detachments of the retina with solitary or multiple ruptures up to 1-2 optic disk diameters in length. That is why the authors suggest two new modifications of the method: double and sector ballooning, widening the indications for the employment of the method. Double ballooning is recommended for cases with retinal detachments with 2 ruptures up to 2 disc diameters in length, located at a distance of 2-3 disc diameters from each other within one quadrant or in different quadrants of the fundus oculi. Sector ballooning is recommended for cases with retinal detachments with ruptures or breaks off 3-6 disc diameters in length. The results of 24 surgeries are analyzed. Double ballooning is effective in 77 percent of cases, sector ballooning in 82 percent. The presence of proliferative vitreoretinopathy, stages C3-D, is a contraindication against the use of this technique.

  9. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  10. Measurement of HO2 and Other Trace Gases in the Stratosphere Using a High Resolution Far-Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.

    2004-01-01

    This report covers the time period 1 November 2003 to 31 October 2004. During this period we had one balloon flight, analyzed the data from the previous 2 flights, explored issues such as radical partitioning, stratospheric transport, and molecular spectroscopy and further developed our beamsplitter technology.

  11. Measurement of H02 and other Trace Gases in the Stratosphere Using a High Resolution Far-Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Jucks, Kenneth W.; Johnson, David G.

    2003-01-01

    This report covers the time period 1 January 2002 to 31 October 2003. During this period we had two balloon flights, continued analyzing data from past and recent flights, exploring issues such as radical partitioning, stratospheric transport, and molecular spectroscopy and further developed our beamsplitter technology.

  12. Stratéole 2: a long-duration balloon campaign at the Equator

    NASA Astrophysics Data System (ADS)

    Hertzog, Albert; Cocquerez, Philippe; Plougonven, Riwie; Venel, Stephanie

    The tropical tropopause layer (TTL) is the low-latitude atmospheric region located between 14 and 20 km altitude, with intermediate tropospheric and stratospheric characteristics. Air parcels that have been rapidly lofted by the underlying deep convection to the bottom of the TTL are radiatively heated in the TTL and slowly ascends to the stratosphere. In particular, the water vapour mixing ratio of air entering the stratosphere is set in the TTL under the influence of a number of dynamical (e.g., planetary and gravity waves) and microphysical (e.g., nucleation) processes that cover a wide range of scales. Despite recent improvements of spaceborne sensors, providing accurate observations at global scale of these processes has proved rather challenging. At the same time, observed inter-annual variations of the stratospheric water content, which have profound consequences on the Earth radiative budget and on ozone chemistry, are poorly simulated in climate models. Stratéole 2 is hence a superpressure balloon campaign aimed at improving our knowledge of small and mesoscale processes in the TTL. Superpressure balloons, which have been successfully used in previous campaigns in Antarctica (Vorcore 2005, Concordiasi 2010), can fly for several months in the lower stratosphere (18-20 km). Advected by the winds on constant-density surfaces, they behave as quasi-Lagrangian tracers of air-parcel motions, and can circle around the equatorial belt to provide observations at global scale. During Stratéole 2, many in-situ and remote-sensing instruments aimed at characterizing the TTL dynamics and composition will be hosted on the balloon and make high-resolution measurements along the flight. Stratéole 2 observations will be used to document the occurrence of subvisible cirrus clouds in the TTL, as well as the mechanisms responsible for their formation. They will also serve to quantify the momentum flux associated with gravity waves generated by deep convection, and their

  13. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  14. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  15. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  16. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  17. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth`s Stratosphere. Progress report, 1 January-31 December 1995

    SciTech Connect

    Anderson, J.G.

    1996-02-01

    Research executed over calendar year 1995 focused on three primary objectives. The first is the dissection of free radical catalytic cycles. The objective is to determine both the mechanisms for ozone loss in the lower stratosphere, by establishing the hierarchy of rate limiting steps in the nitrogen, halogen, and hydrogen cycles, and to determine the response of the stratosphere to changing levels of NO(sub x), aerosols, etc., by directly observing the partial derivatives of the constituent concentrations. Observations are made from the NASA ER-2 aircraft. The second is to incorporate fast-response water vapor measurements into the ER-2 payload, to obtain high spatial resolution data on water vapor. This is a particularly powerful technique for diagnosing dynamical behavior of the stratosphere when combined with the rapid time-response CO2 observations available on the ER-2. The third objective is the development of a new instrument designed for the ER-2 superpod, which will observe ClONO2 in situ for the first time, and also will observe ClO, BrO, and NO2 simultaneously. The authors present the progress made in each category.

  18. Detection of stratospheric ozone intrusions by windprofiler radars.

    PubMed

    Hocking, W K; Carey-Smith, T; Tarasick, D W; Argall, P S; Strong, K; Rochon, Y; Zawadzki, I; Taylor, P A

    2007-11-01

    Stratospheric ozone attenuates harmful ultraviolet radiation and protects the Earth's biosphere. Ozone is also of fundamental importance for the chemistry of the lowermost part of the atmosphere, the troposphere. At ground level, ozone is an important by-product of anthropogenic pollution, damaging forests and crops, and negatively affecting human health. Ozone is critical to the chemical and thermal balance of the troposphere because, via the formation of hydroxyl radicals, it controls the capacity of tropospheric air to oxidize and remove other pollutants. Moreover, ozone is an important greenhouse gas, particularly in the upper troposphere. Although photochemistry in the lower troposphere is the major source of tropospheric ozone, the stratosphere-troposphere transport of ozone is important to the overall climatology, budget and long-term trends of tropospheric ozone. Stratospheric intrusion events, however, are still poorly understood. Here we introduce the use of modern windprofiler radars to assist in such transport investigations. By hourly monitoring the radar-derived tropopause height in combination with a series of frequent ozonesonde balloon launches, we find numerous intrusions of ozone from the stratosphere into the troposphere in southeastern Canada. On some occasions, ozone is dispersed at altitudes of two to four kilometres, but on other occasions it reaches the ground, where it can dominate the ozone density variability. We observe rapid changes in radar tropopause height immediately preceding these intrusion events. Such changes therefore serve as a valuable diagnostic for the occurrence of ozone intrusion events. Our studies emphasize the impact that stratospheric ozone can have on tropospheric ozone, and show that windprofiler data can be used to infer the possibility of ozone intrusions, as well as better represent tropopause motions in association with stratosphere-troposphere transport.

  19. Measurement of stratospheric HBr using high resolution far infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carlotti, M.; Ade, P. A. R.; Carli, B.; Ciarpallini, P.; Cortesi, U.; Griffin, M. J.; Lepri, G.; Mencaraglia, F.; Murray, A. G.; Nolt, I. G.; Park, J. H.; Radostitz, J. V.

    Far infrared spectral features of HBr have been observed in the stratospheric emission spectrum using a balloon borne high resolution Fourier transform spectrometer equipped with a high sensitivity detector specially designed for this purpose. The value of 1.6±0.6 parts per trillion in volume for the HBr mixing ratio has been retrieved, from the global-fit analysis of 121 spectra, in the 25-36.5 km altitude range. The result is briefly compared with models and previous assessments.

  20. Ozone Hole Airborne Arctic Stratospheric Expedition (Pre-Flight)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first segment of this video gives an overview of the Ozone Hole Airborne Arctic Stratospheric Expedition, an international effort using balloon payloads, ground based instruments, and airborne instruments to study ozone depletion and the hole in the ozone over Antarctica which occurs every spring. False color imagery taken from NASA's Nimbus 7 satellite which documents daily changes in ozone is also shown. The second segment of this video shows actual take-off and flight footage of the two aircraft used in the experiment: the DC-8 Flying Laboratory and the high flying ER-2.

  1. A Circumpolar Stratospheric Telescope for Observations of Planets - FUJIN

    NASA Astrophysics Data System (ADS)

    Taguchi, Makoto; Takahashi, Yukihiro; Shoji, Yasuhiro; Yoshida, Kazuya; Sakamoto, Yuji; Watanabe, Makoto; Nakano, Toshihiko; Maeda, Atsunori; Nakamoto, Junpei; Imai, Masataka; Gouda, Yuya

    It is important to conduct long-term continuous observations of time-dependent events in planetary atmospheres and plasmaspheres. The aim of the FUJIN project is to carry out continuous observations of planets using a telescope that is lifted by a balloon to the polar stratosphere. The FUJIN-1 experiment was organized at Taiki Aerospace Research Field in Taiki-cho, Hokkaido, Japan, from May to June 2013, but the experiment was canceled due to a failure found in the balloon operation system provided by JAXA. However, the results of various prelaunch ground tests clearly established the feasibility of the experiment. We have recently begun organizing the FUJIN-2 experiment, in which scientific observations of planets will be conducted in the Arctic. Wind speed in the stratosphere is very low during April and May. The FUJIN-2 experiment will be conducted during this period in 2015 at ESRANGE in Kiruna, Sweden, since this is when Venus will be in the most favorable position for observations. The gondola will be recovered somewhere in the Scandinavian peninsula after one or two days of continuous observations. In summer, an eastern circumpolar wind is dominant in the stratosphere. If a balloon is flown under these conditions, it will take a week to fly from Kiruna to Alaska and more than two weeks for it to fly back to Scandinavia along a constant-latitude path around the Earth. We are currently organizing another experiment (FUJIN-3) involving such a circumpolar flight that will be conducted in 2017 or later. The system used in FUJIN-2 will also be used for FUJIN-3, but with the inclusion of a high-sensitivity CCD camera and a liquid-crystal tunable filter. Venus, Jupiter, and Mercury will be the planets of interest for FUJIN-3. Moreover, a next-generation stratospheric telescope with a meter-class aperture, a mobile gondola to approach the center of the polar vortex, and a super-pressure balloon for year-round observations are being studied to upgrade the FUJIN system

  2. Feasibility of an orbital simulator of stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Hoffert, M. I.

    1978-01-01

    It is proposed that a stratospheric photochemistry simulator could be created in sun-synchronous orbit, so that diffusion and photochemistry could be decoupled and uncertainties in photochemical reaction rates could be substantially reduced. The proposed test chamber is described, and it is suggested that the technology of superpressure balloons seems to be the best short-term solution to the construction of the proposed facility. Both unreinforced polyester films and gelatin films are considered as candidate chamber coatings. It is noted that the experiments can be performed early in the space-manufacturing era and that at least three dedicated Shuttle launches will be required to establish the proposed facility.

  3. Measurements and modeling of contemporary radiocarbon in the stratosphere

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Comfort, L. L.; Guilderson, T. P.; Cameron-Smith, P. J.; Bergmann, D. J.; Atlas, E. L.; Schauffler, S.; Boering, K. A.

    2016-02-01

    Measurements of the 14C content of carbon dioxide in air collected by high-altitude balloon flights in 2003-2005 reveal the contemporary radiocarbon distribution in the northern midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric testing of nuclear weapons. Comparisons with results from a 3-D chemical-transport model show that the 14CO2 distribution is now largely governed by the altitude/latitude dependence of the natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere of the decreasing radiocarbon trend in tropospheric CO2 due to fossil fuel combustion. From the observed correlation of 14CO2 with N2O mixing ratios, an annual global mean net flux of 14CO2 to the troposphere of 1.6(±0.4) × 1017‰ mol CO2 yr-1 and a global production rate of 2.2(±0.6) × 1026 atoms 14C yr-1 are empirically derived. The results also indicate that contemporary 14CO2 observations provide highly sensitive diagnostics for stratospheric transport and residence times in models.

  4. Simulation of stratospheric water vapor and trends using three reanalyses

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-07-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is extended to the 1979-2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi 100 hPa temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The trajectory models' lower northern high latitude stratosphere tends to be dry because too little methane-derived water descends from the middle stratosphere. Using the MLS tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The trajectory model reproduces the observed reduction in the amplitude of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade-1 trend in water vapor both at mid-latitudes and in the tropics.

  5. Simulation of stratospheric water vapor and trends using three reanalyses

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-03-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is extended to the 1979-2010 period. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses with HALOE, MLS, and balloon observations. The CFSR based simulation produces a wetter stratosphere than MERRA, and ERAi produces a drier stratosphere than MERRA. We find that ERAi temperatures are cold biased compared to Singapore sondes and MERRA, which explains the ERAi result, and the CFSR grid does not resolve the cold point tropopause, which explains its relatively higher water vapor concentration. The pattern of dehydration locations is also different among the three reanalyses. ERAi dehydration pattern stretches across the Pacific while CFSR and MERRA are concentrate dehydration activity in the West Pacific. CSFR and ERAi also show less dehydration activity in the West Pacific Southern Hemisphere than MERRA. The models' lower stratospheres tend to be dry at high northern latitudes because of too little methane-derived water appears to be descending from the middle stratosphere. Using the tropical tape recorder signal, we find that MERRA vertical ascent is 15% too weak while ERAi is 30% too strong. The models tend to reproduce the observed weakening of the 100-hPa annual cycle in zonal mean water vapor as it propagates to middle latitudes. Finally, consistent with the observations, the models show less than 0.2 ppm decade-1 trends in water vapor both at mid-latitudes and in the tropics.

  6. A method for sampling microbial aerosols using high altitude balloons.

    PubMed

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. PMID:25455021

  7. Stability of Lobed Balloons

    NASA Technical Reports Server (NTRS)

    Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.

    2004-01-01

    This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.

  8. Balloon catheter coronary angioplasty

    SciTech Connect

    Angelini, P.

    1987-01-01

    The author has produced a reference and teaching book on balloon angioplasty. Because it borders in surgery and is performed on an awake patient without circulatory assistance, it is a complex and demanding procedure that requires thorough knowledge before it is attempted. The text is divided into seven sections. The first section describes coronary anatomy and pathophysiology, defines the objectives and mechanisms of the procedure and lists four possible physiologic results. The next section describes equipment in the catheterization laboratory, catheters, guidewires and required personnel. The following section is on the procedure itself and includes a discussion of examination, testing, technique and follow-up. The fourth section details possible complications that can occur during the procedure, such as coronary spasms, occlusion, thrombosis, perforations and ruptures, and also discusses cardiac surgery after failed angioplasty. The fifth section details complex or unusual cases that can occur. The sixth and seventh sections discuss radiation, alternative procedures and the future of angioplasty.

  9. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon

  10. Direct measurements of stratospheric fluoride

    NASA Technical Reports Server (NTRS)

    Mroz, E. J.; Lazrus, A. L.; Bonelli, J. E.

    1977-01-01

    Stratospheric fluoride mass mixing ratios were measured by passing stratospheric air through filters half of which is impregnated in a base. Measurements of stratospheric fluoride were obtained at altitudes from 15 to 40 km at latitude 30-33 N and longitude 95-105 W at different months of the year. The significant amount of fluoride collected on the base-impregnated portion of the filters suggests that fluoride is present in the stratosphere as an acid gas. The mixing ratios decrease markedly at altitudes less than 20-25 km, suggesting the troposphere as the major sink for stratospheric fluoride.

  11. Detection of atomic oxygen and further line assignments in the far-infrared stratospheric spectrum

    NASA Technical Reports Server (NTRS)

    Carli, B.; Mencaraglia, F.; Bonetti, A.; Carlotti, M.; Nolt, I.

    1985-01-01

    Recent progress in high-resolution measurement of sub-millimeter and far-infrared emission in the stratosphere is reviewed. Attention is given to the results of recent balloon measurements of the minor stratospheric constituents in the spectral range 40-190 per cm. Emission spectra are presented for HCl; HF; and OH. Emission spectra were also obtained for atomic oxygen; hydrobromic acid; and hydroperoxyl radical. The possibility of detecting HO2 and H2O2 in the far-infrared is also briefly discussed.

  12. Chlorofluoromethanes and the Stratosphere

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor)

    1977-01-01

    The conclusions of a workshop held by the National Aeronautics and Space Administration to assess the current knowledge of the impact of chlorofluoromethane release in the troposphere on stratospheric ozone concentrations. The following topics are discussed; (1) Laboratory measurements; (2) Ozone measurements and trends; (3) Minor species and aerosol measurements; (4) One dimensional modeling; and (5) Multidimensional modeling.

  13. Turbulent dispersion of balloons and drifters

    NASA Astrophysics Data System (ADS)

    Lacasce, J. H.

    2010-12-01

    The relative motion of pairs of particles in flows is of central importance when describing environmental dispersion, for example of spilled oil. Pair statistics have been examined previously with data from the atmosphere and ocean, and from turbulence experiments. The focus frequently is on the dispersion, the second moment of the pair separations. Less attention is usually paid to the probability density functions (PDFs) of the pair displacements, from which the moments derive. The PDFs provide important additional information, for example on how Gaussian the dispersion is. Here we consider dispersion at large scales and examine displacement PDFs from three data sets: 1) the EOLE balloons from the Southern Hemisphere stratosphere, 2) the SCULP surface drifters from the Gulf of Mexico and 3) the POLEWARD surface drifters from the Nordic Seas. We examine how the PDFs evolve in time and compare them to several analytical predictions which exist for the turbulent inertial ranges. The results are largely consistent at the smallest scales, suggesting that the dispersion below the deformation radius is ``non-local''. Non-locality implies that the kinetic energy spectra are steeper than k^(-3). We discuss the implications for atmospheric and oceanic turbulence at submesoscales, and for the parametrization of these scales.

  14. CNES super pressure balloons assessment and new developments to prepare Strateole-2 campaign

    NASA Astrophysics Data System (ADS)

    Venel, Stephanie; Spel, Martin; Cocquerez, Philippe; Meyer, Jean-Renaud; Nicot, Jean-Marc.; Parot, Gael; Perraud, Sophie

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payloada. This paper will describe the main results and lessons achieved during the last CONCORDIASI campaign in 2010 over the Antarctic region. Thus, anomalies on the on-board system were investigated and explained by the effect of atmospheric particles fluxes. Also related to these flights, an accurate thermal model was built to evaluate the temperature distribution in the balloon, and several ageing tests have been made to better understand the effect of solar exposure on the different balloon materials. This paper will also present the new developments in progress for the future STRATEOLE-2 campaign dedicated to advance the knowledge of coupling processes between the troposphere and the stratosphere in the deep tropics, and foreseen in 2018-2019. In particular, a new command-control system will be developed to be in conformity with the CNES safety rules, and in continuation with the new zero pressure balloons system named NOSYCA. New solar panels are under investigation. Finally, two new balloon sizes will grow the SPB family to respond to the scientist demand of two special altitude densities.

  15. Balloon system and balloon-borne experiments in China

    NASA Astrophysics Data System (ADS)

    Gu, Yi-Dong

    The Chinese scientific balloon project was started in 1979 by the Academia Sinica which has now established a permanent balloon facility. It consists of 1500 m2 launching site complete with telecontrol and PCM and FM telemetry, and meteorological and communications equipment. A series of 5×102 to 5×104 m3 zero-pressure natural shape balloons produced in China have served for scientific observations with a maximum payload weight of 250 kg and with flight durations up to 18 hrs. The balloon envelope is made of LDPE (MI = 0.3) with 18.6 thickness and 1.4 m width. For astronomical observations an attitude system is available. The ``binding-off'' technique using a parachute has increased the landing accuracy of the gondola. In almost any case the gondola can be recovered within 12 hrs. Successful scientific observations using this balloon facility included: - Observations of the primary cosmic ray nuclei and cross-section measurements of high energy heavy nuclei interactions. - Measurement of the vertical distribution of aerosols in the atmosphere. - Hard X-ray astronomy observations. - Remote sensing in the infra-red band at balloon altitudes. - Observations of solar far infra-red radiation.

  16. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 km

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Wofsy, Steven C.

    1993-01-01

    This report covers the time period 1 January 1993 to 30 June 1993. During this reporting period we had our third Upper Atmosphere Research Satellite (UARS) correlative balloon flight and submitted the results from this flight to the Central Data Handling Facility (CDHF). We made a number of improvements in our data processing software in preparation for a new analysis of our old balloon data sets. Finally, we continue to analyze the data obtained during the second Airborne Arctic Stratospheric Expedition (AASE 2).

  17. Improvement of the basic knowledge of the climatology of the vertical ozone layer by enhanced balloon sounding

    NASA Technical Reports Server (NTRS)

    Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.

    1984-01-01

    Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.

  18. Pioneering Space Research with Balloons

    NASA Astrophysics Data System (ADS)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  19. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-10-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically

  20. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    NASA Astrophysics Data System (ADS)

    de La Cámara, Alvaro; Mechoso, C. R.; Ide, K.; Walterscheid, R.; Schubert, G.

    2010-11-01

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.

  1. Planetary-scale variability of the fair-weather vertical electric field in the stratosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Onsager, T.; Kintner, P.; Powell, S.

    1984-01-01

    The paper reports the discovery of short-term variability in the planetary-scale-size vertical electric field measured in the stratosphere. Measurements were made on superpressure balloons at 26-km altitude separated by up to 3000 km. Data are presented which show that the large-scale current system is variable, with twice the amplitude of the average diurnal variations, on time scales of tens of minutes to hours.

  2. Observations of the upper troposphere and lower stratosphere using the urbana coherent-scatter radar

    NASA Technical Reports Server (NTRS)

    Goss, L. D.; Bowhill, S. A.

    1983-01-01

    The Urbana coherent-scatter radar was used to observe the upper troposphere and lower stratosphere, and 134 hours of data were collected. Horizontal wind measurements show good agreement with balloon-measured winds. Gravity waves were frequently observed, and were enhanced during convective activity. Updrafts and downdrafts were observed within thunderstorms. Power returns are related to hydrostatic stability, and changes in echo specularity are shown.

  3. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  4. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  5. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  6. Changes in stratospheric ozone.

    PubMed

    Cicerone, R J

    1987-07-01

    The ozone layer in the upper atmosphere is a natural feature of the earth's environment. It performs several important functions, including shielding the earth from damaging solar ultraviolet radiation. Far from being static, ozone concentrations rise and fall under the forces of photochemical production, catalytic chemical destruction, and fluid dynamical transport. Human activities are projected to deplete substantially stratospheric ozone through anthropogenic increases in the global concentrations of key atmospheric chemicals. Human-induced perturbations may be occurring already.

  7. High-resolution turbulence observations in the stratosphere with LITOS

    NASA Astrophysics Data System (ADS)

    Gerding, M.; Schneider, A.; Luebken, F. J.; Söder, J.

    2015-12-01

    Although the stratosphere is mostly stably stratified, breaking gravity waves and instabilities produce turbulence and energy dissipation. This modifies the energy distribution from the troposphere to the mesosphere and is an important parameter for the vertical mixing of trace species. In order to precisely infer energy dissipation rates, the viscous subrange has to be resolved, which in the stratosphere lies at scales of centimeters and below. Our balloon-borne system LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) observes small-scale wind fluctuations with a vertical resolution of less than 1 mm. The dissipation rate is obtained by fitting a turbulence model to the measured spectrum of fluctuations. Between 2008 and 2011 three flights were performed from Kiruna/Sweden (68°N, 21°E) during BEXUS campaigns as part of a large (~120 kg) payload. Recently, a new small version of LITOS (overall ~4 kg) was flown several times from Kühlungsborn/Germany (54°N, 12°E), thereof one during nighttime. Various turbulent layers with a vertical thickness in the order of a few 10 m have been observed. Stratospheric energy dissipation rates greatly vary within only a few 10 m, roughly between 10-8 and 10 W/kg, with a mean value of roughly 10-3 W/kg. Huge differences have been found in the altitudinal structure and strength of stratospheric turbulence. Results and differences between flights will be discussed in the geophysical context. Turbulence data will be compared with results from simultaneous radiosonde data (5-10 m vertical resolution).

  8. A stratospheric water vapor feedback

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-12-01

    Variations in stratospheric water vapor play a role in the evolution of our climate. We show here that variations in water vapor since 2004 can be traced to tropical tropopause layer (TTL) temperature perturbations from at least three processes: the quasi-biennial oscillation, the strength of the Brewer-Dobson circulation, and the temperature of the troposphere. The connection between stratospheric water vapor and the temperature of the troposphere implies the existence of a stratospheric water vapor feedback. We estimate the feedback in a chemistry-climate model to have a magnitude of +0.3 W/m2/K, which could be a significant contributor to the overall climate sensitivity. About two-thirds of the feedback comes from the extratropical stratosphere below ~16 km (the lowermost stratosphere), with the rest coming from the stratosphere above ~16 km (the overworld).

  9. CHEOPS III: An ozone research campaign in the arctic winter stratosphere 1989/90

    SciTech Connect

    Pommereau, J.P. ); Schmidt, U. )

    1991-04-01

    CHEOPS ( = CHemistry of Ozone in the Polar Stratosphere) is a research project that began in 1987 as an initiative to join efforts of scientists from Germany and France combining their resources and capacities to conduct field experiments in the winter Arctic stratosphere. On February 5, two experiments, a cryogenic whole air sampler and an active chemical ionization mass spectrometer, were launched with a large scientific balloon from the ESA/SSC Rocket Base ESRANGE near Kiruna in Northern Sweden (68{degree} N, 20{degree} E). The scientific objective was to look for a possible latitudinal difference in the vertical distributions of various minor constituents in the lower and middle stratosphere during winter. The International Ozone Trends Panel reported a systematic decrease in total ozone by about 6% in the Arctic winter stratosphere over the period 1969-86. This finding motivated several European research groups to continue the CHEOPS program by regular field campaigns organized in the Arctic region. During the CHEOPS II campaign conducted in winter 1987/88 four payloads were launched in cooperation with the balloon launching team of the French Centre National d'Etudes Spatiales (CNES). On the basis of the tests and improvements of the instrumentation achieved during the previous winter campaign, CHEOPS III was planned for winter 1989/90 as a more ambitious field experiment. In addition to balloon-borne and ground-based observations, the program included an increased number of regular ozone sonde launches at various Scandinavian stations. The primary objective was to investigate the composition of the lower Arctic stratosphere during winter until early February, when temperatures were lowest and episodes of perturbed chemistry during PSC events were most likely to occur.

  10. Science in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Lester, Dan

    1997-01-01

    The Science in the Stratosphere program, first established in 1992, was conceived to introduce K-6 teachers to airborne infrared astronomy through the Kuiper Airborne Observatory (KAO), and to use this venue as a basis for seeing scientists at work in a mission-intensive program. The teachers selected for this program would bring their new perspectives back to their schools and students. Unlike the related FOSTER program, the emphasis of this program was on more intensive exposure of the KAO mission to a small number of teachers. The teachers in the Science in the Stratosphere program essentially lived with the project scientists and staff for almost a week. One related goal was to imbed the KAO project with perspectives of working teachers, thereby sensitizing the project staff and scientists to educational outreach efforts in general, which is an important goal of the NASA airborne astronomy program. A second related goal was to explore the ways in which K-5 educators could participate in airborne astronomy missions. Also unlike FOSTER, the Science in the Stratosphere program was intentionally relatively unstructured, in that the teacher participants were wholly embraced by the science team, and were encouraged to 'sniff out' the flavor of the whole facility by talking with people.

  11. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  12. Age of stratospheric air unchanged within uncertainties over the past 30years

    NASA Astrophysics Data System (ADS)

    Engel, A.; Möbius, T.; Bönisch, H.; Schmidt, U.; Heinz, R.; Levin, I.; Atlas, E.; Aoki, S.; Nakazawa, T.; Sugawara, S.; Moore, F.; Hurst, D.; Elkins, J.; Schauffler, S.; Andrews, A.; Boering, K.

    2009-01-01

    The rising abundances of greenhouse gases in the atmosphere is associated with an increase in radiative forcing that leads to warming of the troposphere, the lower portion of the Earth's atmosphere, and cooling of the stratosphere above. A secondary effect of increasing levels of greenhouse gases is a possible change in the stratospheric circulation, which could significantly affect chlorofluorocarbon lifetimes, ozone levels and the climate system more generally. Model simulations have shown that the mean age of stratospheric air is a good indicator of the strength of the residual circulation, and that this mean age is expected to decrease with rising levels of greenhouse gases in the atmosphere. Here we use balloon-borne measurements of stratospheric trace gases over the past 30years to derive the mean age of air from sulphur hexafluoride (SF6) and CO2 mixing ratios. In contrast to the models, these observations do not show a decrease in mean age with time. If models are to make valid predictions of future stratospheric ozone levels, and of the coupling between ozone and climate change, a correct description of stratospheric transport and possible changes in the transport pathways are necessary.

  13. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  14. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  15. Taking the Hot Air Out of Balloons.

    ERIC Educational Resources Information Center

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  16. Tensile set behavior of Foley catheter balloons.

    PubMed

    Joseph, R; Ramesh, P; Sivakumar, R

    1999-01-01

    The removal of indwelling urinary balloon catheters from patients is usually associated with many problems. The problems such as balloon deflation failure; encrustations on balloons, eyes, and lumen; and catheter associated infections are widely discussed in the literature. The tensile set exhibited by the catheter balloon material could also play a role and further complicate the removal process. This article addresses this issue by comparing the tensile set behavior of the balloon material from three commercially available Foley catheters. The balloon materials were subjected to aging in synthetic urine at 37 degrees C for 28 days to simulate clinical conditions. The deflation time of catheter balloons aged in similar conditions were also measured. It was found that different brands of catheters exhibited statistically significant differences in their properties. The tensile set data of the aged samples could be correlated with the deflation time of the balloons. The clinical significance of the tensile set is also highlighted.

  17. Yellow Balloon in a Briar Patch.

    ERIC Educational Resources Information Center

    Cooper, Frank; Fitzmaurice, Robert W.

    1978-01-01

    As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)

  18. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.

    2013-11-01

    We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.

  19. CNES super pressure balloons upgrade for Strateole-2 campaign

    NASA Astrophysics Data System (ADS)

    Venel, Stephanie; Cocquerez, Philippe; Hertzog, Albert

    2016-07-01

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payload. The SPB housekeeping gondola used from 2005 to 2011 now needs to be upgraded in order to increase the flights' safety and to improve its performance with up to date equipment's. The control center will also be redesigned. These modifications take into account the experience acquired during the last SPB campaigns, mainly during CONCORDIASI, with 19 flights over Antarctica from September 2010 to January 2011. After a successful preliminary design review, the project is now conducting the detailed conception phase. This new system is developed for STRATEOLE-2, a project dedicated to the coupling processes between the troposphere and the stratosphere in the deep tropics, using several types of instruments, both for in situ and remote measurements in the atmosphere. STRATEOLE -2 includes two measurement campaigns, three years spaced to study the quasi biennial oscillation. Since the scientific payloads are fully self-standing, some technical solutions will be common with the CNES housekeeping gondola, such as the renewable power system. This paper will describe the STRATEOLE-2 project and the developments in progress for the SPB system upgrade.

  20. Saturn's Stratospheric Oxygen Compounds

    NASA Astrophysics Data System (ADS)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  1. The stratosphere: Present and future

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor); Reed, E. I. (Editor)

    1979-01-01

    The present status of stratospheric science is discussed. The three basic elements of stratospheric science-laboratory measurements, atmospheric observations, and theoretical studies are presented along with an attempt to predict, with reasonable confidence, the effect on ozone of particular anthropogenic sources of pollution.

  2. Stratospheric ozone intercomparison campaign (STOIC) 1989: Overview

    NASA Astrophysics Data System (ADS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.; Whiteman, D.

    1995-05-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE II) aboard the Earth Radiation Budget Satellite and the total ozone mapping spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  3. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  4. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  5. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  6. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  7. Driftsonde on Long-Duration Balloons: Development, Deployment and Scientific Highlights

    NASA Astrophysics Data System (ADS)

    Wang, Junhong June; Hock, Terry; Cohn, Steve

    The NCAR Driftsonde system was developed to provide cost-effective, in-situ upper air observations over oceans and remote areas from days to months. The Driftsonde system consists of a stratospheric balloon attached to a gondola that contains up to 56 Miniature In-situ Sounding Technology (MIST) dropsondes. The balloon is lifted up from the ground to the stratosphere and drifts with the wind. Dropsonde can be dropped either at a pre-scheduled time or by command from the ground. It descends through the atmosphere on a parachute to make high-quality measurements of pressure, temperature, relative humidity, and wind speed and direction in a half or quarter second resolution from the stratosphere to the surface. The Driftsonde system has been used in three large field projects, AMMA (African Monsoon Multidisciplinary Analysis) in 2006, T-PARC (THORPEX-Pacific Asian Regional Campaign) in 2008, and Concordiasi in 2010. The driftsonde’s promising science applications are evident from the data collected from these projects and will be highlighted in this presentation.

  8. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  9. A semi-automatic Parachute Separation System for Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Farman, M. E.; Barsic, J. E.

    When operating stratospheric balloons with scientific payloads at the National Scientific Balloon Facility, the current practice for separating the payload from the parachute after descent requires the sending of manual commands over a UHF channel from the chase aircraft or the ground control site. While this procedure generally works well, there have been occasions when, due to shadowing of the receive antenna, unfavorable aircraft attitude or even lack of a chase aircraft, the command has not been received and the parachute has failed to separate. In these circumstances, the payload may be dragged, with the consequent danger of damage to expensive and sometimes irreplaceable scientific instrumentation. The NSBF has developed a system designed to automatically separate the parachute without the necessity for commanding after touchdown. The most important criterion for such a design is that it should be fail-safe; a free-fall of the payload would of course be a disaster. This design incorporates many safety features and underwent extensive evaluation and testing for several years before it was adopted operationally. It is currently used as a backup to the commanded release, activated only when a chase aircraft is not available, at night or in exceptionally poor visibility conditions. This paper describes the design, development, testing and operation of the system, which is known as the Semi-Automatic Parachute Release (SAPR).

  10. Defining Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    Butler, Amy; Seidel, Dian; Hardiman, Steven; Butchart, Neal; Birner, Thomas; Match, Aaron

    2015-04-01

    The general form of the definition for Sudden Stratospheric Warmings (SSWs) is largely agreed to be a reversal of the temperature gradient and of the zonal circulation polewards of 60° latitude at the 10 hPa level, as developed by the World Meteorological Organization (WMO) in the 1960s and 1970s. However, the details of the definition and its calculation are ambiguous, resulting in inconsistent classifications of SSW events. These discrepancies are problematic for understanding the observed frequency and statistical relationships with SSWs, and for maintaining a robust metric with which to assess wintertime stratospheric variability in observations and climate models. To provide a basis for community-wide discussion, we examine how the SSW definition has changed over time and how sensitive the detection of SSWs is to the definition used. We argue that the general form of the SSW definition should be clarified to ensure that it serves current research and forecasting purposes, and propose possible ways to update the definition.

  11. Simulating clefts in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  12. Balloon atmospheric propagation experiment measurements

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    High altitude balloon measurements on laser beam fading during propagation through turbulent atmosphere show that a correlation between fading strength and stellar scintillation magnitudes exists. Graphs for stellar scintillation as a function of receiver aperture are used to predict fading bit error rates for neodymium-yag laser communication system.

  13. Comparison between S. T. radar and in situ balloon measurements

    NASA Technical Reports Server (NTRS)

    Dalaudier, F.; Barat, J.; Bertin, F.; Brun, E.; Crochet, M.; Cuq, F.

    1986-01-01

    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity.

  14. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  15. Stability of the pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  16. Scientific ballooning: Past, present and future

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    2013-02-01

    Balloons have been used for scientific research since they were invented in France more than 200 years ago. Cosmic rays were discovered 100 years ago with an experiment flown on a manned balloon. A major change in balloon design occurred in 1950 with the introduction of the socalled natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for the past half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing a super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. Ultra-long-duration balloon (ULDB) flights enabled by constant-volume balloons should result in an even greater sea change in scientific ballooning than the inauguration of long-duration balloon (LDB) flights in Antarctica during the 1990-91 austral summer.

  17. Trace Gas Trends in the Stratosphere: 1991-2005

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Dutton, G. S.; Hurst, D. F.; Ray, E. A.; Montzka, S. A.; Butler, J. H.; Fahey, D. W.; Hall, B. H.; Atlas, E.; Wofsy, S. C.; Romashkin, P. A.

    2005-05-01

    The first NOAA airborne gas chromatograph measured chlorofluorocarbon-11 (CFC-11) and CFC-113 during the Arctic Airborne Stratospheric Experiment in 1991-1992. In 1994, we added nitrous oxide (N2O), sulfur hexafluoride (SF6), CFC-12, halon-1211, methyl chloroform, carbon tetrachloride, methane, and hydrogen. NOAA scientists have since operated five airborne gas chromatographs on NASA airborne platforms, including the NASA Jet Propulsion Laboratory (JPL) balloon gondola and ER-2, WB-57F, DC-8, and NASA Altair Unmanned Air Vehicle (UAV) aircraft. Using these in situ measurements and tracer-tracer correlations from flask observations for the unmeasured halogen species (HCFCs and methyl halides including methyl chloride and bromide), we have estimated trends of total chlorine and bromine in the stratosphere. The determination of inorganic equivalent chlorine (Cl + 45*Br) requires the trend of tropospheric equivalent chlorine and the mean age of the parcel of stratospheric air. In general, there is good agreement between the mean age of the air mass calculations using carbon dioxide and SF6, except for regions of extreme down welling of mesospheric air where SF6 is consumed. Tropospheric trends of the methyl halides have been compiled against stable standards. We operated a airborne gas chromatograph on the Sage 3 Ozone Loss Validation Experiment (SOLVE-II) mission from Kiruna, Sweden during 2002. It measured the major HCFCs and methyl halides, so that these compounds do not have to be estimated from tracer-tracer correlations in the future. In 2005, we have added a new lightweight airborne instrument (<25 kg) that can measure CFC-11, CFC-12, halon-1211, SF6, N2O, and ozone. This instrument can operate on small or UAV aircraft and will be used for Aura satellite validation. This presentation will show trends for selected trace gases and our estimates of total equivalent chlorine stratospheric trends since 1991.

  18. Quantifying the impact of moderate volcanic eruptions on the stratosphere

    NASA Astrophysics Data System (ADS)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Vignelles, Damien; Bègue, Nelson; Portafaix, Thierry; Bencherif, Hassan; Couté, Benoît; Duverger, Vincent; Payen, Guillaume; Metzger, Jean-Marc; Posny, Françoise

    2016-04-01

    We have investigated the impact of two recent moderate volcanic eruptions upon the sulphur dioxide and sulphate loading in the stratosphere, with the use of the CESM numerical global model. Through the use of the WACCM/CARMA module in CESM, which provides with a comprehensive modelling of the sulphur cycle, and at a ˜2° spatial resolution, we have investigated the impacts of the eruptions of the Kelud (13 February 2014, 7° S, 112° E) and Calbuco (22 April 2015, 41° S, 72° W) volcanoes on the lower stratosphere. The input SO2 quantities and altitudes of injection were estimated from satellite observations, and correspond in both cases to several hundreds of kT of SO2 injected directly at upper troposphere/lower stratosphere heights, over a few kilometres of altitude span. Our results have been compared with satellite measurements, from IASI for SO2, and the CALIOP space-borne lidar for aerosols. We also provide cross-comparisons with in-situ measurements performed above La Réunion Island (21° S, 55° E), first comparing our simulation results to the data obtained through the launch of a balloon-borne light optical aerosol counter (LOAC), and also by cross-comparison with in-situ lidar measurements. To investigate the role of dynamical barriers around those volcanic events, our simulations have been run using two different sets of meteorological forcing data (namely MERRA vs. ERA-Interim), which can differ in that respect, especially regarding the vertical advection at tropical latitudes. Our overall aim is to assess the impact of such moderate eruptions over the lower stratosphere, on the one hand chemically, and on the other hand in terms of radiative effects.

  19. Arctic stratospheric dehydration - Unprecedented observations and microphysical modeling study

    NASA Astrophysics Data System (ADS)

    Engel, Ines; Luo, Beiping P.; Khaykin, Sergey; Wienhold, Frank G.; Vömel, Holger; Kivi, Rigel; Pitts, Michael C.; Poole, Lamont R.; Santee, Michelle L.; Grooß, Jens-Uwe; Peter, Thomas

    2013-04-01

    Polar stratospheric clouds (PSCs) may form in the lower stratosphere above the winter poles at sufficiently low temperatures. Ice PSCs require the coldest conditions, with temperatures some degrees below the frost point to nucleate ice particles. When the particles grow to sizes large enough to sediment, they may result in dehydration, i.e. irreversible redistribution of water vapor, as it frequently occurs above the Antarctic. Conversely, there are no observations above the Arctic that would have provided clear evidence for vertical redistribution of water vapor. Here we report on unequivocal in situ observations in January 2010 above Sodankylä, Finland, which mesh with vortex-wide satellite measurements. Within the LABPIAT-II field campaign, a series of balloon-borne aerosol backscatter and water vapor measurements has been performed. The balloon payload comprised the backscatter sonde COBALD in combination with the cryogenic frost point hygrometer CFH and the fluorescent Lyman-Alpha stratospheric hygrometer FLASH-B. Together with satellite measurements from the Aura microwave limb sounder MLS and the cloud-aerosol lidar CALIOP, a unique and coherent picture of de- and rehydration in the Arctic vortex will be presented within this paper. An extensive coverage of synoptic scale ice PSCs has been observed by CALIOP and COBALD by mid-January due to exceptionally low temperatures in the Arctic vortex. This observation goes along with a simultaneously measured strong reduction in water vapor by 1.6 ppmv relative to background conditions. Subsequent sedimentation and sublimation of ice particles led to a vertical redistribution of water inside the vortex, which was tracked remotely and could be quantified again by in situ measurements some five days later. By means of a microphysical column model, we are able to connect the individual balloon soundings by trajectories and simulate the formation, evolution and sedimentation of the ice particles. Simulated water vapor

  20. Balloon-borne ozonesonde and rocket temperature and wind data gathered during the July 1977 intertropical convergence zone experiment

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Kloos, G.

    1979-01-01

    In middle latitudes, it is possible for large concentrations of stratospheric air to be brought down to the tropopause through folds or breaks in the tropopause. The exchange of air from the tropopause into higher altitudes is not well understood. Thus, the ITCZ (Intertropical Convergence Zone) experiment, conducted from July 16 through July 31, 1977, included a series of balloon-borne ozone soundings. The results of these soundings are presented and explain in the vertical exchange of air and provide information on the short vertical scales-of-motion. Rocketsonde data was also gathered in the ITCZ experiment in support of a stratospheric scales-of-motion study. The investigation was to determine whether rocketsonde and satellite information currently used yield information on the stratospheric horizontal wave spectrum and its importance with respect to tropospheric and mesospheric interaction and transport.

  1. Freezing of stratospheric aerosol droplets

    SciTech Connect

    Luo, B.; Peter, T.; Crutzen, P. )

    1994-06-22

    The authors discuss the freezing of sulfuric acid droplets under stratospheric conditions from a thermodynamic point of view. They argue that the primary candidate for freezing is likely to be sulfuric acid tetrahydrate (H[sub 2]SO[sub 4][center dot]4H[sub 2]O). Their theoretical results suggest that the homogeneous freezing rate of this molecule is too low at stratospheric temperatures to explain measured results. Thus experimental values are likely to be due to heterogeneous freezing. This means that an appropriate nuclei must be present for freezing to commence, and has implications also for the formation of nitric acid trihydrates in the stratosphere.

  2. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  3. Stratospheric aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  4. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  5. The Many Problems with Geoengineering Using Stratospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2009-05-01

    In response to the global warming problem, there has been a recent renewed call for geoengineering ``solutions'' involving injecting particles into the stratosphere or blocking sunlight with satellites between the Sun and Earth. While volcanic eruptions have been suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog actually argues against geoengineering because of ozone depletion and regional hydrologic and temperature responses. In this talk, I consider the suggestion to create an artificial stratospheric aerosol layer. No systems to conduct geoengineering now exist, but a comparison of different proposed stratospheric injection schemes, airplanes, balloons, artillery, and a space elevator, shows that using airplanes would not be that expensive. We simulated the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE. We simulated the injection of SO2 and the model converts it to sulfate aerosols, transports them and removes them through dry and wet deposition, and calculates the climate response to the radiative forcing from the aerosols. We conducted simulations of future climate with the Intergovernmental Panel on Climate Change A1B business-as-usual scenario both with and without geoengineering, and compare the results. We found that if there were a way to continuously inject SO2 into the lower stratosphere, it would produce global cooling. Acid deposition from the sulfate would not be enough to disturb most ecosystems. Tropical SO2 injection would produce sustained cooling over most of the world, with more cooling over continents. Arctic SO2 injection would not just cool the Arctic. But both tropical and Arctic SO2 injection would disrupt the Asian and African summer monsoons, reducing precipitation to the food supply

  6. Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences

    NASA Technical Reports Server (NTRS)

    Mccormack, John P.; Hood, Lon L.

    1994-01-01

    A one-dimensional radiative transfer model with fixed dynamical heating is used to calculate the approximate latitude and seasonal dependences of lower stratospheric temperature changes associated with observed ozone trends. The spatial and temporal distribution of ozone profile trends in the lower stratosphere is estimated from a combination of Nimbus 7 Solar Backscattered Ultraviolet (SBUV) global measurements of the ozone column below 32 mbar for the period 1979-1990 and balloon ozonesonde profile trends at northern middle latitudes. The calculated temperature trends near 100 mbar compare favorably with those recently derived by Randel and Cobb (1994) using data from Channel 4 of the Microwave Sounding Unit (MSU) on the NOAA operational satellites, although a number of quantitative differences are found. An independent analysis reported here of 100 mbar temperatures derived from northern hemisphere radiosonde data at the Free University of Berlin (FUB) supports the validity of the satellite-derived lower stratospheric temperature trends. These results are therefore generally consistent with the hypothesis that observed lower stratospheric cooling trends are predominantly determined by reductions in radiative heating associated with stratospheric ozone depletion.

  7. Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers

    NASA Astrophysics Data System (ADS)

    Pommereau, J.

    2008-12-01

    Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.

  8. Infrared balloon experiment: improved instrumental configuration and assessment of instrument performance.

    PubMed

    Bianchini, G; Boscaleri, A; Carli, B; Mencaraglia, F; Palchetti, L; Pascale, E

    2006-02-10

    During the 2002 environmental satellite Envisat mid-latitude validation campaign, a new upgraded configuration of the Infrared Balloon Experiment (IBEX) Fourier transform spectrometer, which had its first flight in 1978, performed a stratospheric balloon flight across the Mediterranean Sea. Among the substantial upgrades made to the instrument, the use of photon-noise-limited detectors permitted us to reach the theoretical limits in terms of signal-to-noise ratio. Also, important modifications were made to the interferometric system and electronics, such as the installation of a solid-state laser reference source and an onboard data recording system. During the flight, measurement of volume-mixing-ratio vertical profiles of O3, HNO3, N2O, and ClO from an altitude of approximately 38 km were performed with a vertical resolution of approximately 1.5 km.

  9. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Salawitch, Ross J.; Xue, Jim Changqin; Ciarpallini, Paola

    1995-01-01

    This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.

  10. Greenhouse gases in the stratosphere

    SciTech Connect

    Wenyi Zhong; Haigh, J.D. ); Pyle, J.A. )

    1993-02-20

    The potential radiative forcing in the stratosphere of changing concentrations of ozone, methane, nitrous oxide and chlorofluorocarbons 11 and 12 is assessed. Significant changes in heating rate in the lower stratosphere are found. The response of a fully interactive radiative-photochemical-dynamical two-dimensional model to such changes in gaseous concentrations is investigated. The inclusion of CH[sub 4], N[sub 2]O and the CFC in the radiation scheme causes a small (1 K) decrease in temperature throughout the stratosphere after 50 model years with a resulting increase in ozone column up to 1% in summer high latitudes. An experiment in which lower stratospheric ozone concentrations were forcibly reduced in line with recent satellite observations results in significant (several degrees) temperature decrease in this region. Such decreases may be very significant in maintaining polar ozone loss. 20 refs., 12 figs., 2 tabs.

  11. Recent volcanism and the stratosphere.

    PubMed

    Cronin, J F

    1971-05-21

    In the quiet years after the 1956 eruption of the Bezymianny volcano in central Kamchatka, it is doubtful that any volcano vented into the stratosphere until the 1963 eruptions of Agung (Bali), Trident (Alaska), and Surtsey (Iceland). From 1963 to the Hekla (Iceland) event in May 1970, two latitudinal belts of volcanoes have ejected ash and gases into the stratosphere. One belt is equatorial and the other is just below the Arctic Circle. The latter, where the tropopause is considerably lower, may have been the principal source of replenishment of volcanic dust and gases to the stratosphere. Submarine and phreatic volcanic eruptions may have been the sources of reported increase of water vapor in the stratosphere. PMID:17792942

  12. Recent volcanism and the stratosphere.

    PubMed

    Cronin, J F

    1971-05-21

    In the quiet years after the 1956 eruption of the Bezymianny volcano in central Kamchatka, it is doubtful that any volcano vented into the stratosphere until the 1963 eruptions of Agung (Bali), Trident (Alaska), and Surtsey (Iceland). From 1963 to the Hekla (Iceland) event in May 1970, two latitudinal belts of volcanoes have ejected ash and gases into the stratosphere. One belt is equatorial and the other is just below the Arctic Circle. The latter, where the tropopause is considerably lower, may have been the principal source of replenishment of volcanic dust and gases to the stratosphere. Submarine and phreatic volcanic eruptions may have been the sources of reported increase of water vapor in the stratosphere.

  13. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  14. Thermal modeling of stratospheric airships

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Fang, Xiande; Wang, Zhenguo; Hou, Zhongxi; Ma, Zhenyu; Zhang, Helei; Dai, Qiumin; Xu, Yu

    2015-05-01

    The interest in stratospheric airships has increased and great progress has been achieved since the late 1990s due to the advancement of modern techniques and the wide range of application demands in military, commercial, and scientific fields. Thermal issues are challenging for stratospheric airships, while there is no systematic review on this aspect found yet. This paper presents a comprehensive literature review on thermal issues of stratospheric airships. The main challenges of thermal issues on stratospheric airships are analyzed. The research activities and results on the main thermal issues are surveyed, including solar radiation models, environmental longwave radiation models, external convective heat transfer, and internal convective heat transfer. Based on the systematic review, guides for thermal model selections are provided, and topics worthy of attention for future research are suggested.

  15. Scientific ballooning in India: recent developments

    NASA Astrophysics Data System (ADS)

    Joshi, M. N.; Damle, S. V.

    The National Scientific Balloon Facility (NBF) of the Tata Institute of Fundamental Research (TIFR) has been conducting regular balloon flights for various experiments in the areas of Space Astronomy and Atmospheric Sciences. A continuous improvement in all aspects of Scientific Ballooning through a sustained R and D programme ensures uptodate services and a better handle on the design specifications for the balloon. Recent developments in balloon grade films, continuous improvements in design specifications, balloon manufacturing methods, flight operational procedures and improved balloon flight capabilities have resulted in a greatly improved flight performance in the last five years. A launch capability upgradation programme in terms of new launch spool and new launch vehicle has been initiated to be able to safely launch balloons with gross lifts upto 3500 kg, balloon volumes upto 450,000 m^3 and payloads upto 1400 kg. A series of steps have been initiated to improve long duration flight capabilities. In this paper, we present details on some of these aspects of Scientific Ballooning in India.

  16. A Challenge to the Highest Balloon Altitude

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Kawada, Jiro; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michihiko; Yamagami, Takamasa; Yamada, Kazuhiko; Yoshida, Tetsuya; Matsushima, Kiyoho; Tanaka, Shigeki

    Development of a balloon to fly at higher altitudes is one of the most attractive challenges in scientific balloon technologies. After reaching the highest record setting balloon altitude of 53.0 km using the 3.4 µm film in 2002, a thinner balloon film with a thickness of 2.8 µm using a higher density resin was developed. In 2004, a 5,000 m3 balloon with the film was successfully launched, however, 60,000 m3 balloons launched in 2005, 2006, and 2007, were broken during the ascending phase. The problem was suspected to be due to the properties of the film including the uniformity and the strength, neither of which can be estimated by the conventional tensile test. Thus, we checked the strength of the film with large sample, the bi-axial tensile test properties, the creep properties, and the viscoelasticity, comparing with these to the other thick balloon films. In this conference, we are going to report our new test procedure of the balloon film, results of our current and a new 2.8 µm balloon film, and our future plan to launch the highest altitude balloon.

  17. A method for balloon trajectory control

    NASA Astrophysics Data System (ADS)

    Aaron, K. M.; Heun, M. K.; Nock, K. T.

    A balloon trajectory control system is discussed that is under development for use on NASA's Ultra Long Duration Balloon Project. The trajectory control system exploits the natural wind field variation with altitude to generate passive lateral control forces on a balloon using a tether-deployed aerodynamic surface below the balloon. A lifting device, such as a wing on end, is suspended on a tether well beneath the balloon to take advantage of this variation in wind velocity with altitude. The wing generates a horizontal lift force that can be directed over a wide range of angles. This force, transmitted to the balloon by a tether, alters the balloon's path providing a bias velocity of a few meters per second to the balloon drift rate. The trajectory control system enables the balloon to avoid hazards, reach targets, steer around avoidance countries and select convenient landing zones. No longer will balloons be totally at the mercy of the winds. Tests in April 1999 of a dynamically-scaled model of the trajectory control system were carried out by Global Aerospace Corporation in ground level winds up to 15 m/s. The size of the scale model was designed to simulate the behavior of the full scale trajectory control system operating at 20 km altitude. The model confirmed many aspects of trajectory control system performance and the results will be incorporated into future development.

  18. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  19. Scientific ballooning payload termination loads

    NASA Astrophysics Data System (ADS)

    Robbins, E.

    1993-02-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial virtical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occuring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly surpressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  20. Stratospheric dynamics and transport studies

    NASA Technical Reports Server (NTRS)

    Grose, William L.; Turner, R. E.; Blackshear, W. T.; Eckman, R. S.

    1990-01-01

    A three dimensional General Circulation Model/Transport Model is used to simulate stratospheric circulation and constituent distributions. Model simulations are analyzed to interpret radiative, chemical, and dynamical processes and their mutual interactions. Concurrent complementary studies are conducted using both global satellite data and other appropriate data. Comparisons of model simulations and data analysis studies are used to aid in understanding stratospheric dynamics and transport processes and to assess the validity of current theory and models.

  1. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  2. Balloon tracer for atmospheric pollutants

    SciTech Connect

    Lichfield, E.W.; Ivey, M.D.; Zak, B.D.; Church, H.W.

    1985-01-01

    An operational prototype of the Balloon Tracer was developed and described. This prototype was designed to be capable of meeting all of the desired specifications for the Balloon Tracer. Its buoyancy adjustment subsystem is shown. Three Gilian instrument pumps operating in parallel provide a flow of about 12 litres per minute, depending upon backpressure. The miniature Klippard mechanical valves are actuated by a servo mechanism which only requires power when the state of the valves is being changed. The balloon itself for the operational prototype is just under 3 meters in diameter. A block diagram of the operational prototype payload measures ambient pressure, temperature, and humidity obtained from AIR which outputs its data in ASCII format. The vertical anemometer, which has a measured starting speed of under 2 cm/s, makes use of a Gill styrofoam propeller and a Spaulding Instruments rotation sendor. The command decoder is built around a chip developed originally for remote control television tuners. The command receiver operating on 13.8035 MHz was developed and built by Hock Engineering. The Argos transmitter is a Telonics platform transmitter terminal. The heart of the control system is an Intel 8052AH BASIC microcomputer with both random access and read only memory.

  3. Viscoelastic behaviour of pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  4. The Origin of Stratospheric Air

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2012-12-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler [2011] is used to investigate the origin of air that enters the stratosphere, and the origin of the driest and wettest air parcels. We compare results from NASA's MERRA, NCEP's CFSR, and ECMWF's ERAi reanalyses in a non-convection simulation. The stratospheric air parcel origin is related to but distinct from the location of final dehydration zones. Final dehydration zones control stratospheric water vapor, but stratospheric air origin tells about the origin of non-water soluble constituents such as HCN or CO. The models broadly agree that stratospheric air parcel origins follow the ITCZ in winter with maxima over the tropical west Pacific and South America. The origins are more broadly dispersed in summer. Somewhat surprisingly, the seasonal cycle for the origins is small with most of the air parcels entering the stratosphere from 360K originate in non-DJF months. The origin of the wettest and driest parcels shows that the driest parcels (1-3 ppmv) originate in the tropical West Pacific while the wettest (6-10 ppmv) parcels originate in the East Pacific/ Central America.

  5. Nitric acid trihydrate (NAT) in polar stratospheric clouds.

    PubMed

    Voigt, C; Schreiner, J; Kohlmann, A; Zink, P; Mauersberger, K; Larsen, N; Deshler, T; Kröger, C; Rosen, J; Adriani, A; Cairo, F; Di Donfrancesco, G; Viterbini, M; Ovarlez, J; Ovarlez, H; David, C; Dörnbrack, A

    2000-12-01

    A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to 197 kelvin). Particle composition analysis showed that a large fraction of the cloud layers was composed of nitric acid trihydrate (NAT) particles, containing water and nitric acid at a molar ratio of 3:1; this confirmed that these long-sought solid crystals exist well above ice formation temperatures. The presence of NAT particles enhances the potential for chlorine activation with subsequent ozone destruction in polar regions, particularly in early and late winter.

  6. Nighttime reactive nitrogen measurements from stratospheric infrared thermal emission observations

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Kunde, Virgil G.; Brasunas, J. C.; Herman, J. R.; Massie, Steven T.

    1991-01-01

    IR thermal emission spectra of the earth's atmosphere in the 700-2000/cm region were obtained with a cryogenically cooled high-resolution interferometer spectrometer on a balloon flight from Palestine, Texas, on September 15-16, 1986. The observations exhibit spectral features of a number of stratospheric constituents, including important species of the reactive nitrogen family. An analysis of the observed data for simultaneously measured vertical distributions of O3, H2O, N2O, NO2, N2O5, HNO3, and ClONO2 is presented. These measurements permit the first direct determination of the nighttime total reactive nitrogen concentrations, and the partitioning of the important elements of the NO(x) family. Comparisons of the total reactive nitrogen budget are made with the measurements by the ATMOS experiment and with the predictions of one-dimensional and two-dimensional photochemical models.

  7. Conductivity and electric field variations with altitude in the stratosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1991-01-01

    Data regarding electric field, derived current density, and conductivity are presented for two balloons from the Electrodynamics of the Middle Atmosphere experiment which underwent the longest period of daily altitude variation. The magnetic L values range from 4.3 to 9.5 for the 18 days of Southern Hemisphere statistics, and the average conductivity and vertical electric fields are given. Simultaneous measurements of the average conductivity scale height and the vertical electric-field scale height indicate that vertical current density does not vary with altitude in the 10-28-km range. The measured conductivity varies significantly at a given altitude on a particular day, and some conductivity data sets are similar to other measurements between 10 and 30 km. Comparisons of the measured data to predictions from models of stratospheric conductivity demonstrate significant discrepancies.

  8. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2008-02-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  9. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2007-05-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  10. Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Harper, David Brent; Elsayed-Ali, Hani

    1998-01-01

    The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.

  11. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months. PMID:27521613

  12. Age of stratospheric air in the ERA-Interim

    NASA Astrophysics Data System (ADS)

    Diallo, M.; Legras, B.; Chedin, A.

    2012-07-01

    The age of stratospheric air is calculated over 22 yr of the ERA-Interim reanalysis using an off-line Lagrangian transport model and heating rates. At low and mid-latitudes, the mean age of air is in good agreement with observed ages from aircraft flights, high altitude balloons and satellite observations of CO2 and SF6. The mid-latitude age spectrum in the lower stratosphere exhibits a long tail with a peak at 0.5 yr, which is maximum at the end of the winter, and a secondary flat maximum between 4 and 5 yr due to the combination of fast and slow branches of the Brewer-Dobson circulation and the reinforced barrier effect of the jet. At higher altitudes, the age spectrum exhibits the footprint of the annual modulation of the deep Brewer-Dobson circulation. The variability of the mean age is analysed through a decomposition in terms of annual cycle, QBO, ENSO and trend. The annual modulation is the dominating signal in the lower stratosphere and in the tropical pipe with amplitude up to one year. The phase of the oscillation is opposite in both hemisphere beyond 20° and is also reversed below and above 25 km with maximun arising in mid-March in the Northern Hemisphere and in mid-September in the Southern Hemisphere. The tropical pipe signal is in phase with the lower southern stratosphere and the mid northern stratosphere. The maximum amplitude of the QBO modulation is of about 0.5 yr and is mostly concentrated within the tropics between 25 and 35 km. It lags the QBO wind at 30 hPa by about 8 months. The ENSO signal is small and limited to the lower northen stratosphere. The trend is significant and negative, of the order of -0.3 to -0.5 yr dec-1, within the lower stratosphere in the Southern Hemisphere and under 40° N in the Northern Hemisphere below 25 km. It is positive (of the order of 0.3 yr dec-1) in the mid stratosphere but there is no region of consistent significance. This suggests that the shallow and deep Brewer-Dobson circulations may evolve in

  13. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  14. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  15. Upper Limits of Stratsopsheric Io and Oio Inferred From Center-to-limb Darkening Corrected Balloon Borne Solar Occultation Spectra: Implication For Total Gaseous Iodine and Stratsopsheric Ozone

    NASA Astrophysics Data System (ADS)

    Boesch, H.; Camy Peyret, C.; Dorf, M.; Fitzenberger, R.; Platt, U.; Weidner, F.; Pfeilsticker, K.

    We report upper limits of lower stratospheric IO (0.055+/-0.004) ppt and OIO (0.056+/-0.003) ppt inferred from balloon-borne solar occultation UV/visible spec- troscopy (<20 km). The spectra were recorded during a series of LPMA/DOAS (Labo- ratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spec- troscopy) balloon flights that were conducted at different geophysical conditions i.e., inside the arctic winter vortex, at mid-, and high latitudes in spring, summer, and fall. Photochemical modeling that accounts for the iodine partitioning

  16. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  17. Design considerations for a Martian Balloon Rover

    NASA Technical Reports Server (NTRS)

    Redd, F.; Levesque, R. J.; Williams, G. E.

    1987-01-01

    The present NASA-sponsored design feasibility study for a balloon-borne sensor platform that is to be used over environmentally dissimilar sites on Mars gives attention to specific environmental and configurational parameters of a baseline balloon design, with a view to day/night altitude variations in response to temperature extremes. It is concluded that a Martian Balloon Rover can be developed using current technology; projected reductions in high-strength fabric density and radiation-resistant coatings will further enhance mission effectiveness, permitting either balloon size reductions or payload capacity increases.

  18. Production of glass balloons for laser targets

    SciTech Connect

    Hendricks, C.D.; Dressler, J.L.

    1982-09-28

    An apparatus for producing small quantities of glass balloons for use as laser fusion targets is described. To produce precise quantities of the ingredients of one glass balloon, a jet of an aqueous solution of the glass constituents and a blowing agent is metered into uniformly sized drops by Rayleigh breakup. A small fraction of these uniform drops is then passed through an oven where the water is evaporated, the remaining solid material is fused into glass, and a blowing agent decomposes or water of hydration evolves as a vapor to blow the drop into a balloon. Photographs of the resulting glass balloons are presented.

  19. Innovative Balloon Buoyancy Techniques for Atmospheric Exploration

    NASA Technical Reports Server (NTRS)

    Jones, J.

    2000-01-01

    Until quite recently, the only practical means to control balloon buoyancy, and thus altitude, required consuming large amounts of fuel or the limited venting of helium balloons and/or dropping of ballast. With recent discoveries at JPL, novel long-life, balloon buoyancy techniques have been discovered that for the first time allow balloons to float in the primarily hydrogen atmospheres of Jupiter, Saturn, Uranus, and Neptune (using ambient fill-gas), and by using renewable energy sources, allow multiple controlled landings on Venus (using atmospheric temperature differences), Mars (solar heat), Titan (RTG heat), and Earth (planet radiant heat).

  20. Stratospheric processes: Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Cox, R. Anthony; Turco, Richard; Brasseur, Guy P.; Matthews, W. Andrew; Zhou, Xiuji; Douglass, Anne; Zander, Rudi J.; Prendez, Margarita; Rodriguez, Jose M.

    1991-01-01

    Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.

  1. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  2. Measurements of stratospheric ozone by rocket ozonesondes in Japan

    NASA Technical Reports Server (NTRS)

    Watanabe, Takashi; Ogawa, Toshihiro

    1994-01-01

    A small optical ozone instrument has been developed for a rocket-borne dropsonde to measure the altitude profile of stratospheric ozone. It consists of a four-color filter photometer that measures the attenuation of sunlight as a function of altitude at four wavelengths in the middle ultraviolet. The ozone dropsonde is launched aboard a meteorological rocket MT-135, providing the altitude profiles of ozone as well as atmospheric temperature and wind. The rocket launchings have been carried out five times since August 1990 at Uchinoura (31 deg N, 131 deg E), Japan to measure ozone concentration from 52 to 20 km altitudes during the slow fall of the dropsonde. The ozone profiles measured in summer (August 27, 1990; Sep. 11 and 12, 1991) were very stable above an altitude of 28km. where as those measured in winter (Feb. 9, and 11, 1991) showed considerable day-to-day variations at the stratospheric altitudes. Ozone, temperature and wind profiles measured simultaneously by both rocket and balloon ozonsondes are compared with CIRA 1986 model atmosphere.

  3. An implementation of Software Defined Radios for federated aerospace networks: Informing satellite implementations using an inter-balloon communications experiment

    NASA Astrophysics Data System (ADS)

    Akhtyamov, Rustam; Cruz, Ignasi Lluch i.; Matevosyan, Hripsime; Knoll, Dominik; Pica, Udrivolf; Lisi, Marco; Golkar, Alessandro

    2016-06-01

    Novel space mission concepts such as Federated Satellite Systems promise to enhance sustainability, robustness, and reliability of current missions by means of in-orbit sharing of space assets. This new paradigm requires the utilization of several technologies in order to confer flexibility and re-configurability to communications systems among heterogeneous spacecrafts. This paper illustrates the results of the experimental demonstration of the value proposition of federated satellites through two stratospheric balloons interoperating with a tracking ground station through Commercial Off-The-Shelf Software Defined Radios (SDRs). The paper reports telemetry analysis and characterizes the communications network that was realized in-flight. Furthermore, it provides details on an in-flight anomaly experienced by one of the balloons, which was recovered through the use of the federated technology that has been developed. The anomaly experienced led to the early loss of the directional link from the ground station to the affected stratospheric balloon node after 15 min in flight. Nevertheless, thanks to the federated approach among the systems, the ground station was still able to retrieve the balloon's data in real time through the network system, for which the other balloon operated as a federated relay for 45 min in flight, uninterrupted. In other words, the federated approach to the system allowed triplicating the useful lifetime of the defective system, which would have not been possible to realize otherwise. Such anomaly coincidentally demonstrated the value of the federated approach to space systems design. The paper paves the way for future tests on space assets.

  4. Mean Ages of Stratospheric Air Derived From in Situ Observations of CO2, CH4, and N2O

    NASA Technical Reports Server (NTRS)

    Andrews, A. E.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Jost, H.; Podolske, J. R.; Webster, C. R.; Herman, R. L.; Scott, D. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N2O obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are less than 0.5 year throughout the stratosphere and less than 0.3 year for air older than 2 years (N2O less than 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is approximately 2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (approx. 25-32 km) is relatively constant with respect to altitude at 5 plus or minus 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within 11 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N2O. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.

  5. Merging the OSIRIS and SAGE II stratospheric aerosol records

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2015-09-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on the Odin satellite, launched in 2001 and currently operational, measures limb-scattered sunlight from which profiles of stratospheric aerosol extinction are retrieved. The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched in 1984 and provided measurements of stratospheric aerosol extinction until mid-2005. This provides approximately 4 years of mission overlap which has allowed us to consistently extend the SAGE II version 7.00 record to the present using OSIRIS aerosol extinction retrievals. In this work we first compare coincident aerosol extinction observations during the overlap period by interpolating the SAGE II 525nm and 1020nm channels to the OSIRIS extinction wavelength of 750nm. In the tropics to midlatitudes mean differences are typically less than 10%, although larger biases are seen at higher latitudes and at altitudes outside the main aerosol layer. OSIRIS aerosol extinction retrievals at 750nm are used to create a monthly time series zonally averaged in 5°bins and qualitatively compared to SAGE II 525nm observations averaged in the same way. The OSIRIS time series is then translated to 525nm with an Ângström exponent relation and bias corrected. For most locations, this provides agreement during the overlap time period to better than 15%. Uncertainty in the resulting OSIRIS time series is estimated through a series of simulation studies over the range of aerosol particle size distributions observed by in situ balloon instruments and is found to be approximately 20% for background and moderately volcanic aerosol loading conditions for the majority of OSIRIS measurement conditions.

  6. Stratospheric Aerosol Extinction Retrieval for SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, S.; Pukite, J.; Penning de Vries, M.; Beirle, S.; Wagner, T.

    2015-12-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellites measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra violet, visible and near infra red spectral range between 2002 and 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g., size distribution) have to be made which results in potential uncertainties especially for wavelengths below 700 nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. Comparisons with SAGE II measurement in occultation geometry and balloon borne measurements with an optical particle counter confirm the viability of our retrieval algorithm.

  7. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  8. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  9. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.

    1981-01-01

    Stratospheric electric field and conductivity measurements are presented for sites of latitude greater than 50 deg N GG, during the months of either April or August, in a variety of weather and solar conditions. Vertical electric field data from balloon flights with an average duration of 18 hours at ceiling, in fair weather, are shown to be appropriately modeled by a simple, exponential, altitude-dependent equation. Data collected over electrified clouds and thunderstorms are presented, along with a discussion of the thunderstorm-related electric currents. Current surges in the atmosphere due to DC currents as well as the spheric are calculated, and it is found that in over 1000 hours of balloon data, no direct solar influence is identified except during major flares.

  10. The United Kingdom rocket and balloon program

    NASA Astrophysics Data System (ADS)

    Delury, J. T.

    1980-06-01

    The United Kingdom civilian scientific balloon and rocket program for 1979, 1980, 1981 are summarized and the areas of scientific interest for the period 1981 to 1985 are mentioned. Ten balloons up to 40 cu m to be launched from the USA or Australia and launches of up to ten 7.5 in. diameter Petrel rockets are planned.

  11. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  12. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  13. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  14. Chemistry and Pollution of the Stratosphere.

    ERIC Educational Resources Information Center

    Donovan, R. J.

    1978-01-01

    Presents an outline of the chemistry involved and the steps which are being taken to gain a better understanding of the stratosphere. Chemical composition of natural stratosphere and depletion of ozone in the stratosphere by man-made pollutants are covered. (HM)

  15. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  16. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    Anderson, A. D.

    1974-01-01

    Links between the upper atmosphere and the stratosphere were studied to explain stratospheric warmings, and to correlate the warmings with other terrestrial and solar phenomena. Physical mechanisms for warming, or which may act as a trigger are discussed along with solar and geophysical indices. Two stratospheric warming cases are analyzed.

  17. Statistical Perspectives on Stratospheric Transport

    NASA Technical Reports Server (NTRS)

    Sparling, L. C.

    1999-01-01

    Long-lived tropospheric source gases, such as nitrous oxide, enter the stratosphere through the tropical tropopause, are transported throughout the stratosphere by the Brewer-Dobson circulation, and are photochemically destroyed in the upper stratosphere. These chemical constituents, or "tracers" can be used to track mixing and transport by the stratospheric winds. Much of our understanding about the stratospheric circulation is based on large scale gradients and other spatial features in tracer fields constructed from satellite measurements. The point of view presented in this paper is different, but complementary, in that transport is described in terms of tracer probability distribution functions (PDFs). The PDF is computed from the measurements, and is proportional to the area occupied by tracer values in a given range. The flavor of this paper is tutorial, and the ideas are illustrated with several examples of transport-related phenomena, annotated with remarks that summarize the main point or suggest new directions. One example shows how the multimodal shape of the PDF gives information about the different branches of the circulation. Another example shows how the statistics of fluctuations from the most probable tracer value give insight into mixing between different regions of the atmosphere. Also included is an analysis of the time-dependence of the PDF during the onset and decline of the winter circulation, and a study of how "bursts" in the circulation are reflected in transient periods of rapid evolution of the PDF. The dependence of the statistics on location and time are also shown to be important for practical problems related to statistical robustness and satellite sampling. The examples illustrate how physically-based statistical analysis can shed some light on aspects of stratospheric transport that may not be obvious or quantifiable with other types of analyses. An important motivation for the work presented here is the need for synthesis of the

  18. Demonstration of a Balloon Borne Arc-Second Pointer Design

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith D.; Ward, Philip R.

    2006-01-01

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup

  19. Technologies developed by CNES balloon team

    NASA Astrophysics Data System (ADS)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  20. Stratospheric HBr concentration profile obtained from far-infrared emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Nolt, I. G.; Ade, P. A. R.; Alboni, F.; Carli, B.; Carlotti, M.; Cortesi, U.; Epifani, M.; Griffin, M. J.; Hamilton, P. A.; Lee, C.; Lepri, G.; Mencaraglia, F.; Murray, A. G.; Park, J. H.; Park, K.; Raspollini, P.; Ridolfi, M.; Vanek, M. D.

    Hydrogen bromide (HBr) is the principal bromine sink species for the ozone loss chemistry induced by bromine-containing gases in the stratosphere. We report a 1994 balloon-based measurement of the daytime stratospheric HBr profile between 20 and 36.5 km altitude. The average concentration result of 1.31±0.39 parts per trillion in volume (pptv) and an analysis for the concentration versus altitude profile are consistent with previously reported measurements. These results strengthen the evidence for a significantly higher HBr concentration than that predicted by current photochemical models which, on the basis of recent kinetics results, do not include significant HBr production by the reaction branch, BrO + HO2 → HBr + O3.

  1. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; Santee, M. L.; Sen, B.; Stachnik, R. A.; Waters, J. W.

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  2. Volatility and composition of aerosols in tropical stratosphere and TTL over Biak, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, T.; Hara, K.; Hasebe, F.

    2014-12-01

    Number concentration and volatility of aerosols in the Tropical Tropopause Layer (TTL) over Biak (1.2 oS, 136.1 oE) were observed using balloon-borne dual optical particle counters (OPC) in January 2011, 2012, and 2013. One OPC observed number concentration of ambient aerosols and another OPC had an inlet with a thermo denuder, whose temperature were set at 100 to 300 oC, in order to observe volatility. The results suggest that major composition of aerosol change with altitude, from sulfate in upper troposphere to sulfuric acid in stratosphere through TTL region. The ratios of number concentrations of un-volatile aerosol, to those of ambient aerosol in sub-micrometer size range are few percent in stratosphere and several percent in TTL. In addition, un-volatile aerosol concentrations were similar to the concentration of ice particle in sub-visible cirrus.

  3. In situ measurements of OH and HO{sub 2} in the upper troposphere and stratosphere

    SciTech Connect

    Wennberg, P.O.; Hanisco, T.F.; Cohen, R.C.

    1995-10-01

    Recent aircraft and balloon borne measurements of OH and HO{sub 2} are reviewed. The authors demonstrate the ability of the laser-induced fluorescence technique to provide accurate, high signal to noise ratio measurements of OH throughout the upper troposphere and stratosphere. HO{sub 2} is measured as OH after gas phase chemical titration with nitric oxide. The addition of the HO{sub x} measurement capability to the suite of instruments aboard the NASA ER-2 aircraft has provided a wealth of new information about the processes that determine the concentration of ozone in the lower stratosphere. These simultaneous, in situ measurements provide a unique test of present understanding of the mechanisms that control the odd-hydrogen chemistry of the lower atmosphere. 17 refs., 8 figs., 1 tab.

  4. Measurement of the stratospheric hydrogen peroxide concentration profile using far infrared thermal emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.; Jucks, K. W.

    1991-01-01

    The first unequivocal measurement of hydrogen peroxide in the stratosphere have been made, a concentration profile obtained from a balloon platform using Fourier transform thermal emission spectroscopy in the far infrared. Measurements were made using the 112/cm R-Q5 branch of the rotational-torsional spectrum, with some confirmation from the 94/cm R-Q4 branch. The volume mixing ratio of H2O2 is 1.6 x 10 to the -10th at 38.4 km, decreasing to 0.6 x 10 to the -10th at 23.8 km, with uncertainties of about 16 percent. These measurements are compared to a recent stratospheric model calculation.

  5. Biological entities isolated from the stratosphere (22-27km): case for their space origin

    NASA Astrophysics Data System (ADS)

    Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra

    2013-09-01

    Biological entities were isolated at a height of between 22-27 km in the stratosphere. Sampling of this region was carried out in the UK in July 2013 using a relatively simple low-cost balloon-borne sampler carrying aseptically clean scanning electron microscope stubs onto which aerosols were directly captured. The entities varied from a presumptive colony of ultra-small bacteria to two unusual individual organisms - part of a diatom frustule and a 200 micron-sized particle mass interlaced with biological filaments. Biological entities of this nature have not previously been reported occurring in the stratosphere; their likely origin is discussed and we provide arguments to support our view that such biological entities may have arrived from space. The new data gives strong confirmation of the Hoyle-Wickramasinghe theory of cometary panspermia.

  6. Chlorine oxide in the stratospheric ozone layer: ground-based detection and measurement.

    PubMed

    Parrish, A; DE Zafra, R L; Solomon, P M; Barrett, J W; Carlson, E R

    1981-03-13

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204-gigahertz, millimeter-wave receiver. Data taken at latitude 42 degrees N on 17 days between 10 January and 18 February 1980 yield an average chlorine oxide column density of approximately 1.05 x 10(14) per square centimeter or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of 14 July 1977) made over the past 4 years at 32 degrees N. We find less chlorine oxide below 35 kilometers and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer.

  7. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    NASA Technical Reports Server (NTRS)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  8. The function and response of an improved stratospheric condensation nucleus counter

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Hyun, J. H.; Blackshear, E. D.

    1983-01-01

    An improved condensation nucleus counter (CNC) for use in the stratosphere is described. The University of Minnesota CNC (UMCNC) has a sequential saturator and condenser and uses n-butyl alcohol as the working fluid. The use of a coaxial saturator flow, with aerosol in the center and filtered, alcohol-laden air around it, speeds the response of this instrument and improves its stability as pressure changes. The counting efficiency has been studied as a function of particle size and pressure. The UMCNC provides an accurate measure of submicron aerosol concentration as long as the number distribution is not dominated by sub-0.02 micron diameter aerosol. The response of the UMCNC is compared with that of other stratospheric condensation nucleus counters, and the results of a (near) comparison with a balloon-borne condensation nucleus counter are presented. The UMCNC has operated 14 times on a NASA U-2 aircraft at altitudes from 8 to 21.5 km.

  9. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  10. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  11. Stratospheric ozone effects on temperature.

    PubMed

    Reck, R A

    1976-05-01

    Calculated surface temperature changes, DeltaT(8), due to stratospheric ozone depletion (at 35 degrees N latitude in April) are less than previously estimated and range between -0.6 and +0.9 degrees K. The sign of DeltaT(8), is determined by the surface albedo and the presence or absence of a low-lying particulate layer (heating with particles, cooling without particles). The calculations indicate that a 90 percent stratospheric ozone depletion does not cause the temperature inversion at the tropopause to vanish, although it is weakened substantially.

  12. The Effects of Stratospheric Chemistry and Transport on the Isotopic Compositions of Long-Lived Gases Measured at Earth's Surface

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Boering, K. A.

    2014-12-01

    The isotopic compositions of a number of long-lived gases in Earth's atmosphere, including those for carbon dioxide (δ18O, Δ17O, and Δ14C), nitrous oxide (δ15N, δ15Nα, and δ18O), methane (δ13C and δD), and molecular hydrogen (δD) undergo large changes in the stratosphere. These changes arise from the often unique photochemical isotope fractionation occurring there as well as the long residence times and mean ages of stratospheric air with respect to exchange with the troposphere of up to 5 years. Stratospheric air then returns to the troposphere and, in each case, can affect the isotopic composition of these gases measured at Earth's surface. In this work, we estimate the effect of stratospheric isotope fractionation on free tropospheric isotope compositions of CO2, N2O, CH4, and H2 on an annual and global mean basis. To do so, we calculate net isotope fluxes between the stratosphere and troposphere empirically from the correlation of the measured isotope compositions of these species with measured N2O mixing ratios on whole air samples collected in the stratosphere from stratospheric aircraft and balloons coupled with independent information on the global, annually-averaged loss rate of N2O. In each case, the effect is large enough to include in global models. In addition, we present arguments and evidence that deconvolving the stratospheric influence on surface measurements from source (or other) signals on higher spatial and temporal scales than 'global' and 'annually-averaged' is also necessary when using surface measurements of isotopic compositions to constrain the magnitudes and geographic distributions of the sources of these gases to the atmosphere.

  13. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  14. Modeling and path-following control of a vector-driven stratospheric satellite

    NASA Astrophysics Data System (ADS)

    Zheng, Zewei; Chen, Tian; Xu, Ming; Zhu, Ming

    2016-05-01

    The stratospheric satellite driven by steady prevailing winds in the stratosphere must be controlled in its longitudinal excursion to keep a latitudinal orbital flight. In a reliable and high-precision control system, an available system model must come first. In this paper, we study the 6 degree-of-freedom (DOF) modeling and path-following problem of a novel stratospheric satellite which consists of a high-altitude helium balloon, a truss and two vector-motor-driven propellers. To keep a latitudinal flight orbit, an algorithm for accurate latitudinal path following is proposed based on the theories of vector field and sliding mode control. Moreover, a forward velocity controller is added to the control algorithm to maintain a constant velocity. Finally, a series of open-loop control simulations are completed to verify the effectiveness of the model in the performance of the stratospheric satellite dynamics, and path-following control simulation results demonstrate the effectiveness of the proposed control algorithm.

  15. The Aerosol Limb Imager: acousto-optic imaging of limb scattered sunlight for stratospheric aerosol profiling

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Loewen, P. R.; Lloyd, N. D.; Degenstein, D. A.

    2015-12-01

    The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large aperture Acousto-Optic Tunable Filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicate that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650-1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

  16. In-situ measurements of tropospheric and stratospheric ozone over Hyderabad

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    The Study of the ozone concentration and its variability is one of the key indexes for environmental and ecological degradation While the stratospheric ozone absorbs the harmful ultraviolet radiation between 280-320 nm band, the tropospheric ozone is formed in the elevated layers up to 10km above ground level through the photochemical decomposition of the precursor gases like NOx, VOCs and non-methane hydrocarbons (NMHCs) released from the earth surface. Ozone studies are also vital for the understanding of solar terrestrial coupling as well as the ozone chemistry on a given site and its surroundings. Continuous measurements of vertical profile of ozone and various meteorological parameters (i.e. temperature, pressure, humidity, wind speed and direction) over one year period were made over Hyderabad using high altitude plastic balloons, in order to investigate i. variations of ozone in the troposphere and stratosphere, ii. stratospheric warming iii. coupling between upper troposphere and lower stratosphere (UTLS) region. Ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde was used for the measurement of Ozone and meteorological parameters.

  17. In-situ turbulence observations in the stratospheric wind and temperature field with LITOS

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Theuerkauf, A.; Gerding, M.; Lübken, F.-J.

    2012-04-01

    Although stably stratified, turbulence occurs in the stratosphere due to breaking gravity waves. This leads to energy dissipation which modifies the energy transfer from the troposphere to the mesosphere. Stratospheric turbulence is also important for vertical mixing of trace species. In order to derive turbulent parameters accurately very small scales on the order of centimeters and below have to be resolved. This can only be performed applying in-situ techniques. Our balloon-borne in-situ measurement system LITOS (Leibniz Institute Turbulence Observations in the Stratosphere) utilizes constant temperature anemometer (CTA) and constant current anemometer (CCA) for simultaneous observation of small scale fluctuations of wind and temperature with high vertical resolution (~1 mm). The CTA consists of a small, thin (5 µm) wire kept at constant temperature; its principle of operation is based on the cooling effect of the air flow around the wire. The CCA is a thin (3.8 µm) wire which is basically operated as a resistance thermometer. Three flights in different configurations have been carried out at Kiruna, Sweden (67°N, 21°E) within the BEXUS programme in 2008, 2009 and 2011. The balloons reached altitudes of typically 27 km. To our knowledge, during the flights in 2009 and 2011 the first simultaneous turbulence measurements of winds and temperatures in the stratosphere were performed. Turbulent layers with a vertical thickness in the order of several 10 m have been observed. Results for energy dissipation rates computed directly from the spectrum of wind or temperature fluctuations will be presented. We will compare measurements from different flights for both wind and temperature fluctuations and consider a potential dependence on background conditions.

  18. Mid-stratospheric measurements of CO2, CH4, and CO using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Newberger, T.; Sweeney, C.; Andrews, A. E.; Tans, P. P.

    2011-12-01

    AirCore, a long tube descending from a high altitude with one end open and the other closed, has been demonstrated to be a reliable, cost-effective sampling system for CO2 and CH4 measurements. Previous studies show that vertical profiles from the ground level up to ~ 20 km (~ 40 mbar) can be achieved during a balloon flight. The ceiling of the profile is restricted mainly by the diffusion of air in the AirCore and the resolution of the analyzer used for the analysis. Here air with an extremely high CO mixing ratio (~ 10 ppm) has been employed as the initial fill air in the AirCore. This high CO fill gas is used as a label to track the mixing between sampled air and fill air at the top of the profile thus providing the ability to retrieve full profiles for CO2 and CH4 up to the balloon's ceiling height of ~ 30 km (~ 11 mbar). Stratospheric measurements of CO lack agreement among previous studies, (i.e. cryogenic sampling, in-situ measurements, and remote sensing) due to difficulties that are inherent to the various techniques and possibly due to latitudinal and seasonal variations that could not be represented by the available sparse observations. Efforts to collect an accurate profile of stratospheric CO using the AirCore, are complicated by the reaction of CO and O3 in the coil, which is particular important for stratospheric air with high O3. To remove the influence of O3 on the CO measurements from AirCore, we have investigated three O3 scrubbers: 1) Manganese dioxide (MnO2); 2) Sodium Sulfite (Na2SO3); 3) Sodium thiosulfate (Na2S2O3). Laboratory tests reveal that Sodium thiosulfate is the best choice as it has sufficient capacity to absorb O3 and does not impact measurements of CO2 and CH4. We will show experimental results from both aircraft and balloon flights. Regular ongoing stratospheric profiles of CO2, CH4, and CO are necessary to improve and validate total column measurements by remote sensing techniques, such as FTS and satellite. Such measurements

  19. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes; Fix, Andreas; Schäfler, Andreas; Wirth, Martin; Calpini, Bertrand; Levrat, Gilbert; Romanens, Gonzague; Apituley, Arnoud; Wilson, Keith M.; Begbie, Robert; Reichardt, Jens; Vömel, Holger; Sprenger, Michael

    2016-07-01

    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study ("Part 1", Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in "Part 1" from the Zugspitze CO observations. The trajectories qualitatively explain

  20. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  1. Stratospheric sudden warming and lunar tide

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael

    2016-07-01

    A stratospheric sudden warming is a large-scale disturbance in the middle atmosphere. Recent studies have shown that the effect of stratospheric sudden warnings extends well into the upper atmosphere. A stratospheric sudden warming is often accompanied by an amplification of lunar tides in the ionosphere/theremosphere. However, there are occasionally winters when a stratospheric sudden warming occurs without an enhancement of the lunar tide in the upper atmosphere, and other winters when large lunar tides are observed without a strong stratospheric sudden warming. We examine the winters when the correlation breaks down and discuss possible causes.

  2. Polar stratospheric clouds and the ozone hole

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Toon, Owen B.

    1991-01-01

    An account is given of physical processes governing the formation of stratospheric particles, in order to dramatize the interactions between polar stratospheric clouds and the Antarctic ozone-destruction mechanism. Attention is given to the successive stages of particle nucleation, condensation/evaporation and sedimentation/coagulation phenomena, and the ways in which polar stratospheric clouds are observed. Considerable evidence exists that polar stratospheric cloud particles are composed of nitric acid. The relatively small Arctic ozone hole depletion is due to the much smaller duration of Arctic stratospheric clouds.

  3. Stable isotope enrichment in stratospheric nitrous oxide

    SciTech Connect

    Rahn, T.; Wahlen, M.

    1997-12-05

    Nitrous oxide is a greenhouse gas that also plays a role in the cycling of stratospheric ozone. Air samples from the lower stratosphere exhibit {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O enrichment in nitrous oxide, which can be accounted for with a simple model describing an irreversible destruction process. The observed enrichments are quite large and incompatible with those determined for the main stratospheric nitrous oxide loss processes of photolysis and reaction with excited atomic oxygen. Thus, although no stratospheric source needs to be invoked, the data indicate that present understanding of stratospheric nitrous oxide chemistry is incomplete. 21 refs., 1 fig., 1 tab.

  4. Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS

    NASA Astrophysics Data System (ADS)

    Ghysels, Mélanie; Riviere, Emmanuel D.; Khaykin, Sergey; Stoeffler, Clara; Amarouche, Nadir; Pommereau, Jean-Pierre; Held, Gerhard; Durry, Georges

    2016-03-01

    In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, São Paulo state, Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within small-volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for balloon-borne measured stratospheric water mixing ratio constitutes one of the best agreement reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B data sets are mutually consistent.

  5. 21 Layer troposphere-stratosphere climate model

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Lacis, A.; Russell, G.; Hansen, J.

    1984-01-01

    The global climate model is extended through the stratosphere by increasing the vertical resolution and raising the rigid model top to the 0.01 mb (75 km) level. The inclusion of a realistic stratosphere is necessary for the investigation of the climate effects of stratospheric perturbations, such as changes of ozone, aerosols or solar ultraviolet irradiance, as well as for studying the effect on the stratosphere of tropospheric climate changes. The observed temperature and wind patterns throughout the troposphere and stratosphere are simulated. In addition to the excess planetary wave amplitude in the upper stratosphere, other model deficiences include the Northern Hemisphere lower stratospheric temperatures being 5 to 10 C too cold in winter at high latitudes and the temperature at 50 to 60 km altitude near the equator are too cold. Methods of correcting these deficiencies are discussed.

  6. Measurements of springtime Antarctic ozone depletion and development of a balloon borne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon borne ultraviolet photometer to measure ozone and the results of a flight using this instrument. The second part describes modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. Photometric measurements of ozone in the atmosphere can be accomplished by exploiting 253.65 nanometer absorption feature of ozone. Using a single light source and beam splitting optics, matched optical paths can be generated through two absorption cells. The ozonesonde data gave a very clear picture of the development of the Ozone Hole. The results can be summarized as follows: (1) Depletion occurs between about 12 and 20 km. (2) The most efficient region of ozone depletion decreases in altitude with time. Height profiles show subregions where ozone removal is highly efficient. (3) At 18 km, the ozone mixing ratio decays with a half-life of 25 days.

  7. Flight Dynamics of High Altitude Research Balloons

    NASA Astrophysics Data System (ADS)

    Sohl, Ian

    2010-10-01

    Dramatic motions have been observed by instrumentation loaded in payloads attached to high altitude weather balloons. Several HARBOR flights have been completed with six-axis attitude sensors and a high definition video camera that allowed us to analyze the balloon's motion. Turbulence in the atmosphere, especially near the jet stream, results in dramatic oscillations---sometimes swinging the payload above the balloon. Other unexpected motions include rapid spinning (as in a barrel roll) of the entire package. We are correlating these motions with observed atmospheric conditions and addressing issues related to payload safety, mission tracking, and recovery. Also of interest are the dynamics of balloon rupture at low atmospheric pressure and the response of the parachute recovery system to that environment. HARBOR (High Altitude Reconnaissance Balloon for Outreach and Research) is a program in which scientific payloads are designed, constructed, and flown by students using weather balloons to reach the edge of space. These flights are similar to the hundreds of weather balloons launched twice a day by the National Oceanic and Atmospheric Administration for which very little is actually known about the flight dynamics.

  8. Reevaluation of the balloon in gastrointestinal manometry.

    PubMed

    Wilkes, P R; Hoskin, R W; Semlacher, E A; MacCannell, K L; Tyberg, J V

    1994-09-01

    Although the flow-through catheter (FTC) system has been useful and satisfactorily accurate for gastrointestinal manometry, we hypothesized that a cylindrical, liquid-filled balloon would also accurately reflect stress imposed by a sphincter. Latex balloons were fitted over the side ports of a closed-end catheter. The responses of the balloon and FTC system were compared in a cylindrical chamber commonly identified as a Starling resistor. Independent, constant-pressure sources were used to control both the inwardly directed "contact pressure" of the Starling resistor (Ps) and the intraluminal fluid pressure (P(lum)). The balloon transducers responded linearly and accurately (slope = 1) to changes in both Ps and P(lum) within the test range (0-200 mmHg, 0-26.7 kPa). When either P(lum) or Ps was held constant and the other changed, the balloon transducers always accurately measured the higher of the two pressures. Although the performance of the FTC system was improved after the Starling resistor was lubricated, the FTC system sometimes responded inaccurately to changes in Ps. The ability of the balloon transducers to measure the contractions of the lower esophageal sphincter and of the esophagus was demonstrated. We conclude that the balloon transducer can measure sphincter pressure accurately and suggest that, in certain circumstances, it might be advantageous relative to the FTC system. PMID:7842396

  9. Trajectory Control For High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Aaron, K.; Nock, K.; Heun, M.; Wyszkowski, C.

    We will discuss the continuing development of the StratoSailTM Balloon Trajectory Control System presented at the 33rd COSPAR in 2000. A vertical wing suspended on a 15-km tether from a high altitude balloon uses the difference in wind velocity between the altitude of the balloon and the altitude of the wing to create an aerodynamic sideforce. This sideforce, transmitted to the balloon gondola via the tether, causes the balloon to move laterally. Although the balloon's resultant drift velocity is quite small (a few meters per second), the effect becomes significant over long periods of time (hours to days). Recently, a full-scale wing, rudder and boom assembly has been fabricated, a winch system testbed has been completed, and a lightweight tether with reduced susceptibility to ultraviolet damage has been developed. The development effort for this invention, with pending international patents, has been funded by the NASA/SBIR program in support of the Ultra Long Duration Balloon (ULDB) program.

  10. Fracture characteristics of balloon films

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1989-01-01

    An attempt was made to determine the failure modes of high altitude scientific balloons through an investigation of the fracture characteristics of the thin polyethylene films. Two films were the subject of the evaluation, Winzen Int.'s Stratafilm SF-85 and Raven Industries' Astro-E. Research began with an investigation of the film's cold brittleness point and it's effect on the ultimate strength and elasticity of the polyethylene film. A series of preliminary investigations were conducted to develop an understanding of the material characteristics. The primary focus of this investigation was on the notch sensitivity of the films. Simple stress strain tests were also conducted to enable analysis employing fracture toughness parameters. Studies were conducted on both film types at 23 C (room temperature), -60 C, -90 C, and -120 C.

  11. The testing of balloon fabrics

    NASA Technical Reports Server (NTRS)

    Edwards, Junius David; Moore, Irwin L

    1920-01-01

    Report describes methods and materials used in waterproofing and fireproofing airplane fabrics using dopes. The determination of the probable life of a balloon fabric in service by experimental means is of great value in choosing the most suitable fabrics for a given purpose and in pointing the way to improvements in compounding and construction. The usefulness of exposure to the weather for this purpose has been amply demonstrated. Various attempts have been made to reproduce by artificial means the conditions promoting deterioration in service, but without marked success. Exposure to the weather remains the most satisfactory method for this purpose, and a consideration of the characteristics of such tests is therefore important. This report presents the results of a typical series of exposure tests made in 1917.

  12. Ultraviolet Radiation and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R.

    2003-01-01

    Ultraviolet radiation from the sun produces ozone in the stratosphere and it participates in the destruction of ozone. Absorption of solar ultraviolet radiation by ozone is the primary heating mechanism leading to the maximum in temperature at the stratopause. Variations of solar ultraviolet radiation on both the 27-day solar rotation period and the 11-year solar cycle affect ozone by several mechanisms. The temperature and ozone in the upper stratosphere respond to solar uv variations as a coupled system. An increase in uv leads to an increase in the production of ozone through the photolysis of molecular oxygen. An increase in uv leads to an increase in temperature through the heating by ozone photolysis. The increase in temperature leads to a partially-offsetting decrease in ozone through temperature-dependent reaction rate coefficients. The ozone variation modulates the heating by ozone photolysis. The increase in ozone at solar maximum enhances the uv heating. The processes are understood and supported by long-term data sets. Variation in the upper stratospheric temperatures will lead to a change in the behavior of waves propagating upward from the troposphere. Changes in the pattern of wave dissipation will lead to acceleration or deceleration of the mean flow and changes in the residual or transport circulation. This mechanism could lead to the propagation of the solar cycle uv variation from the upper stratosphere downward to the lower stratosphere. This process is not well-understood and has been the subject of an increasing number of model studies. I will review the data analyses for solar cycle and their comparison to model results.

  13. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, Brigette E.; Bjoraker, Gordon L.; Achterberg, Richard K.; Romani, Paul N.; Irwin, Patrick G. J.

    2015-11-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn’s atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn’s main rings (via neutral infall and/or ions transported along magnetic field lines - “Ring Rain”), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn’s stratospheric water.Cassini’s Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn’s equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether “Ring Rain” also contributes to the inventory of water in Saturn’s upper atmosphere.

  14. Saturn's Stratospheric Water Vapor Distribution

    NASA Astrophysics Data System (ADS)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  15. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  16. Accurate Determination of the Volume of an Irregular Helium Balloon

    ERIC Educational Resources Information Center

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  17. First results of tropospheric and stratospheric aerosols measurements during the Iceland Polar Vortex 2016 (IPV2016) campaign

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Renard, Jean-Baptiste; Berthet, Gwenaël; Duverger, Vincent; Vignelles, Damien

    2016-04-01

    The Iceland Polar Vortex 2016 (IPV2016) campaign was carried out during the passage of the stratospheric polar vortex over Iceland in early January 2016. During the period 9-13 January, a total of four meteorological balloon sondes were sent into the stratosphere, carrying the Light Optical Aerosol Counter (LOAC) up to altitude of 26 km. LOAC provides concentrations, size distribution and typology of the aerosols in the 0.2 - 100 micrometer size range. The measurements show background liquid and solid aerosol concentrations greater than conventional values in the mid-latitude stratosphere. LOAC has detected layers of cirrus around the tropopause and has provided their size distribution in the 5 - 40 micrometre range. Liquid polar stratospheric cloud particles, greater than a few micrometre, were detected in the 12 - 24 km altitude range. Finally, abornmal high concentrations of submicronic carbonaceus particles were observed from the middle tropopshere to the middle stratosphere. The origin of all these particles will be tentatively interpreted using modelling calculation and backward trajectories

  18. Hugging balloons: coronary angioplasty of oversized vessels with side-by-side balloons.

    PubMed

    Teirstein, P S; Johnson, W L; Rutherford, B D; Hartzler, G O

    1988-01-01

    Angioplasty of large (greater than 4.0-mm) saphenous vein grafts using the largest available (4.0-mm) balloon catheters may result in inadequate graft dilatation. To avoid leaving a significant residual stenosis, two balloon catheters can be inflated side by side across the stenosis. Herein, we report two cases where this "hugging balloon" technique was used to achieve wide graft patency. PMID:2970301

  19. Tentative Identification of the 780/cm nu(sub 4) Band Q Branch of Chlorine Nitrate in High-Resolution Solar Absorption Spectra of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Bonomo, F. S.; Blatherwick, R. D.; Devi, V. Malathy; Smith, M. A. H.; Rinsland, P. L.

    1985-01-01

    Absorption by the Q branch of the nu(sub 4), band of ClONO2 at 780.2/cm has been tentatively identified in a series of 0.02/cm resolution balloon-borne solar absorption spectra of the stratosphere. The spectral data were recorded at sunset from a flot altitude of 33.5 km during a balloon flight from Holloman Air Force Base (32.8deg N, 106.0 deg W) near Alamogordo, New Mexico, on March 23 1998. A preliminary ClONO2 vertical profile has been determined from the stratospheric spectra by using the technique of nonlinear least squares spectral curve fitting and new spectroscopic parameters deduced from high-resolution laboratory spectra of ClONO2 and O3.

  20. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  1. Impacts of Stratospheric Particles Injection on Stratospheric Ozone: Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Rkiouak, Laylla; Fuller, Steve; Pope, Francis; Cox, Tony; Watson, Matt; Kalberer, Markus

    2013-04-01

    The stratospheric injection of aerosols is a geoengineering scheme designed to reduce the impacts of climate change. The injected particles scatter solar radiation back to space and hence reduce the radiative forcing of the Earth. The scattering ability of a particle depends on both its size and composition. Particles composed of titania (TiO2) have recently been highlighted as a possible candidate aerosol because of their impressive light scattering ability by virtue of a high refractive index (Pope et al. 2012). The impact of particles injection on stratospheric ozone needs to be systematically assessed via laboratory and modelling studies. In this work, the heterogeneous reactions of airborne TiO2 particles with N2O5 and HCl are investigated by using an atmospheric pressure aerosol flow tube. A Chemical Ionization Mass Spectrometer is used to detect trace gases, and a Scanning Mobility Particle Sizer is used to measure aerosol number concentration and size distribution. The kinetics of the uptake of N2O5 onto TiO2 particles and the influence of HCl will be presented, and the result will be compared to the uptake onto natural sulphate stratospheric particles.

  2. Nimbus 4/IRLS Balloon Interrogation Package (BIP)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The balloon interrogation package (BIP), an integral part of the overall interrogation, recording, and location subsystems (IRLS) for the Nimbus 4 program, is described. The BIP is a self-contained, integrated transponder designed to be carried aloft by a constant altitude, superpressure balloon to an altitude of 67,000 or 78,000 feet. After launch the BIP senses high-altitude balloon overpressure and temperature, and upon receipt of an interrogated command from the IRLS aboard the Nimbus 4 satellite, the BIP enodes the data on a real-time basis into a pulse-code modulation (PCM) format and transmits this data to the satellite. A summary of the program activity to produce 30 BIP systems and to support balloon launches from Ascension Island is presented.

  3. Ballooning Ideas for the Science Classroom.

    ERIC Educational Resources Information Center

    Park, John C.; Carter, Glenda S.

    1988-01-01

    Introduces three demonstrations using rubber balloons: rate of reaction, air pressure, and solubility of gases in liquids. Provides the materials, procedure, questions, further investigation, and discussion in each demonstration. (YP)

  4. Investigations of Balloon and Aeroplane Fabrics

    NASA Technical Reports Server (NTRS)

    Gibbons, Willis A; Smith, Omar H

    1917-01-01

    Report presents the experimental results of fabrics used for balloons and aeroplanes. Tensile properties, surface roughness, skin friction, flammability, permeability, and water absorption were tested for different combinations of materials.

  5. The Helium Balloon Project: Expanding Student Horizons...

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1973-01-01

    An activity involving future elementary school teachers designed around inexpensive balloons which when launched contained postcards to determine the geographic location of the landing. The investigation is student-centered, involving unknown questions, and was conducted for enjoyment. (DF)

  6. Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012

    NASA Astrophysics Data System (ADS)

    Rolf, C.; Afchine, A.; Bozem, H.; Buchholz, B.; Ebert, V.; Guggenmoser, T.; Hoor, P.; Konopka, P.; Kretschmer, E.; Müller, S.; Schlager, H.; Spelten, N.; Sumińska-Ebersoldt, O.; Ungermann, J.; Zahn, A.; Krämer, M.

    2015-08-01

    Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is annually observed by satellites and occasionally observed by balloon-borne measurements. However, in situ measurements of dehydrated air masses in the Antarctic vortex are very rare. Here, we present detailed observations with the in situ and GLORIA remote sensing instrument payload aboard the German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S in an altitude between 12 and 13 km in the lowermost stratosphere. The dehydration can be traced back to individual ice formation events above the Antarctic Peninsula and Plateau, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high-resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic lowermost stratosphere down to 7 km. With the help of a backward trajectory analysis, a midlatitude origin of the moist filaments in the vortex can be identified, while the dry air masses down to 7 km have stratospheric origins. Antarctic stratosphere-troposphere exchange (STE) and transport of dehydrated air masses into the troposphere are investigated. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic exchange of air masses across the thermal tropopause. The transport into the troposphere is caused by air masses that are detached from the potential vorticity (PV) structure by Rossby wave breaking events and subsequently transported diabatically across the dynamical tropopause. Once transported to the troposphere, air masses with stratospheric origin can reach near-surface levels within several days.

  7. Advances in scientific balloon thermal modeling

    NASA Astrophysics Data System (ADS)

    Bohaboj, T.; Cathey, H.

    The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  8. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  9. Hybrid designs for super-pressure balloons

    NASA Astrophysics Data System (ADS)

    Schur, W.; Baginski, F.

    The desire of the scientific community to fly large payloads at mid latitudes over durations of months while keeping altitude has propelled NASA on the path of developing an Ultra Long Duration Balloon (ULDB) design. The first design considered for ULDB was a spherical balloon, but the strength of its fabric composite fell far short of the capacity goal set by NASA. Therefore, an alternative design, the pumpkin-shape balloon, was chosen. For large balloons with a large number of gores, the pumpkin design is found to be susceptible to flawed deployment. While research on pumpkin balloon deployment is on-going, the spherical balloon design has stirred new interest for certain applications. Current spherical super-pressure designs have a load skirt that consists of straps that are attached tangentially to the fully inflated sphere. The attachment points constitute stress raisers, and the straps provide an opportunity for entanglement. The pneumatic envelope is a compliant structure that accommodates concentrated loads by large out-of-plane deformation. By embedding sufficient unidirectional strength elements in the skin that radiate from the nadir upward, we will demonstrate that the load skirt is unnecessary and the entanglement problem is avoided. We will use analytical investigations to establish the advantages of this hybrid design.

  10. New stent delivery balloon: a technical note.

    PubMed

    di Mario, C; Reimers, B; Reinhardt, R; Ferraro, M; Moussa, I; Colombo, A

    1997-12-01

    This study reports the first clinical application of a new noncompliant balloon composed of a middle polyurethane layer sandwiched between an inner layer of polyethylene terephtalate and an outer membrane that provides for consistent even expansion. With this balloon design, the very low compliance and high pressure resistance of polyethylene terephthalate are associated with the high elasticity of polyurethane, preventing balloon damage from stent crimping and expansion and allowing a firm embedding of the stent struts. Palmaz-Schatz stent implantation was successful in 33/35 stents (94%), and the two stents that could not be advanced up to the lesion were successfully withdrawn. High pressure expansion of the stent was obtained during deployment with no balloon ruptures at inflation pressures equal or lower than 16 atmospheres (atm). Accurate positioning of the stent was facilitated by the two markers at the balloon ends and by the optimal visualization after contrast injection, even with 6 Fr guiding catheters. This new delivery system maintains the advantages of hand-crimped stents on noncompliant balloons, reducing the risk of stent loss. PMID:9408637

  11. 2002-2004 and the Transformation of CCTE

    ERIC Educational Resources Information Center

    Maxie, Andrea

    2015-01-01

    In 2001, the California Council on the Education of Teachers (CCET), the State of California Association of Teacher Educators (SCATE), and the California Association of Colleges for Teacher Education (CACTE) became a single merged organization--the California Council on Teacher Education (CCTE). As the last president of CACTE, Andrea Maxie was…

  12. The President's Council on Bioethics 2002-2004: an overview.

    PubMed

    Mahowald, Mary B

    2005-01-01

    The President's Council on Bioethics, headed by Leon Kass, was created by President George W. Bush to advise the President on issues of ethical import raised by advances in biomedical science. Between 2002 and 2004, members of the Council from diverse disciplines addressed topics such as human cloning, stem cell research, assisted reproduction, and medical interventions intended to enhance human capability or appearance. This article provides background on the Council and reviews its published reports. It also considers key definitions and distinctions, specific recommendations of the Council, and positions articulated by members who contributed to the development of its reports.

  13. Psychological Reactions to Crime in Italy: 2002-2004

    ERIC Educational Resources Information Center

    Amerio, Piero; Roccato, Michele

    2007-01-01

    We performed a secondary analysis of the data collected by the Observatory of the North-West (a mail panel representative of the Italian population over 18), describing the trends in the distribution of fear of crime (FC) and of concern about crime as a social problem (CC) in Italy between the end of 2002 and the beginning of 2004. After analyzing…

  14. Stratospheric emissions effects database development

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.; Hertel, Peter S.; Maggiora, Debra R.; Oncina, Carlos A.

    1994-01-01

    This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burn and emissions of nitrogen oxides (NO(x) as NO2), carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

  15. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  16. Stratospheric emissions effects database development

    SciTech Connect

    Baughcum, S.L.; Henderson, S.C.; Hertel, P.S.; Maggiora, D.R.; Oncina, C.A.

    1994-07-01

    This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burn and emissions of nitrogen oxides (NO(x) as NO2), carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

  17. Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number

    NASA Astrophysics Data System (ADS)

    Haack, A.; Gerding, M.; Lübken, F.-J.

    2014-09-01

    Based on high-resolution turbulence measurements performed with the newly established balloon-borne instrument Leibniz Institute Turbulence Observations in the Stratosphere (LITOS) during the Balloon Experiments for University Students (BEXUS) 6 and BEXUS 8 campaigns from Kiruna, we derived characteristics of stratospheric turbulence layers, like their thickness and distance in between. Typically, the layers are ˜15-130 m thick and have a distance of ˜60-270 m, and their number increases with altitude. Due to the very high measurement resolution of LITOS in the range of millimeters, we obtain energy dissipation rate profiles with unprecedented precision. Within the turbulent layers we get a mean dissipation rate of 3.4×10-2W/kg (BEXUS 6) and 1.1 × 10-2 W/kg (BEXUS 8) corresponding to a heating rate of 1 to ˜3 K/d. The profiles show an increase of the energy dissipation with altitude. Comparisons with the Richardson number Ri preclude a clear correlation between the occurrence of turbulence and Ri<1/4. Despite the expected occurrence of turbulence at Ri<1/4, we also observed turbulent layers where Ri was >1/4 and far beyond, independent of the scale over which Ri has been determined.

  18. Stratospheric Age Spectra and Mean Ages From In Situ Observations of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Boering, Kristie A.; Daube, Bruce C., Jr.; Wofsy, Steven C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Tropospheric CO2 mixing ratios exhibit latitudinally varying seasonal and interannual oscillations superimposed on the long-term positive trend due to fossil fuel combustion. In situ observations of CO2 obtained from 1992-2000 using the NASA ER-2 aircraft and high-altitude balloons show that these time-varying signals propagate into the stratosphere, providing information about the transport history of sampled air. We have used these data to derive age spectra and mean ages that can be compared with results from models of the stratospheric circulation. Age spectra have been derived for altitudes below approximately 20 km for the tropics and for northern midlatitudes, where there is sufficient data and where the amplitudes of the seasonal and interannual oscillations are large enough to be detected. The midlatitude CO2 data are consistent with bimodal age spectra, which may result from a subtropical "barrier" to horizontal exchange. Seasonally resolved mean ages are available with nearly pole-to-pole coverage below 20 km and in the tropics and at middle and high northern latitudes up to the maximum altitude reached by the balloons (approximately 30 km). The oldest air sampled was in the Arctic polar vortex with a mean age of 6.5 +/- 0.5 years.

  19. Results from the 1995 Stratospheric Ozone Profile Intercomparison at Mauna Loa (MLO3)

    NASA Technical Reports Server (NTRS)

    McPeters, R. D.; Hofmann, D. J.; Clark, M.; Flynn, L.; Froidevaux, L.; Gross, M.; Johnson, B.; Koenig, G.; Liu, X.; McDermid, S.; McGee, T.; Murcray, F.; Newchurch, M. J.; Oltmans, S.; Parrish, A.; Schnell, R.; Singh, U.; Tsou, J. J.; Walsh, T.; Zawodny, J. M.

    1998-01-01

    In August 1995 multiple instruments that measure the stratospheric ozone vertical distribution were intercompared at the Mauna Loa Observatory, Hawaii, under the auspices of the Network for the Detection of Stratospheric Change. The instruments included two UV lidar systems, one from JPL and the other from Goddard Space Flight Center, ECC balloon-sondes, a ground-based microwave instrument, Umkehr measurements, and a new ground-based FTIR instrument. The MLS instrument on the UARS satellite provided correlative profiles of ozone, and there was one close overpass of the SAGE II instrument. The results show that much better consistency among instruments is being achieved than even a few years ago, usually to within the instrument uncertainties. The different measurement techniques in this comparison agree to within +/-10% at almost all altitudes, and in the 20 km to 45 km region most agreed within +/-5%. The results show that the current generation of lidars are capable of accurate measurement of the ozone profile to a maximum altitude of 50 km. SAGE agreed well with both lidar and balloon-sonde down to at least 17 km. The ground-based microwave measurement agreed with other measurements from 22 km to above 50 km. One minor source of disagreement continues to be the pressure-altitude conversion needed to compare a measurement of ozone density versus altitude with a measurement of ozone mixing ratio versus pressure.

  20. Focal plane actuation to achieve ultra-high resolution on suborbital balloon payloads

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; Miller, Alex; Challa, Priya; Veach, Todd; Groppi, Chris; Mauskopf, Phil

    2014-07-01

    Over the past few years there has been remarkable success flying imaging telescope systems suspended from suborbital balloon payload systems. These imaging systems have covered optical, ultraviolet, sub-­-millimeter and infrared passbands (i.e. BLAST, STO, SBI, Fireball and others). In recognition of these advances NASA is now considering ambitious programs to promote planetary imaging from high altitude at a fraction of the cost of similar fully orbital systems. The challenge with imaging from a balloon payload is delivering the full diffraction-­-limited resolution of the system from a moving payload. Good progress has been made with damping mechanisms and oscillation control to remove most macroscopic movement in the departures of the imaging focal plane from a static configuration, however a jitter component remains that is difficult to remove using external corrections. This paper reports on work to demonstrate in the laboratory the utility and performance of actuating a detector focal plane (of whatever type) to remove the final jitter terms using an agile hexapod design. The input to this demonstration is the jitter signal generated by the pointing system of a previously flown balloon mission (the Stratospheric Terahertz Observatory, STO). Our group has a mature jitter compensation system that thermally isolates the control head from the focal plane itself. This allows the hexapod to remain at ambient temperature in a vacuum environment with the focal plane cooled to cryogenic temperatures. Our lab design mounts the focal plane on the hexapod in a custom cryostat and delivers an active optical stimulus together with the corresponding jitter signal, using the actuation of the hexapod to correct for the departures from a static, stable configuration. We believe this demonstration will make the case for inclusion of this technological solution in future balloon-­-borne imaging systems requiring ultra-­-high resolution.

  1. Laboratory chemistry and stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1989-01-01

    Results are presented from laboratory experiments on the chemistry of ice particles to study the role of HCl and ClONO2 from CFCs in stratospheric ozone depletion over Antarctica. It is found that gaseous HCl is scavenged with high efficiency by the ice and the gas phase chlorine nitrate may react with the HCL-containing ice to produce Cl2. Also, consideration is given ot the behavior of solid nitric acid trihydrate and sulfuric acid aerosols.

  2. Two-Dimensional Model Simulations of Interannual Variability in the Tropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Rosenfeld, Joan; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Meteorological data from the United Kingdom Meteorological Office (UKMO) and constituent data from the Upper Atmospheric Research Satellite (UARS) are used to construct yearly zonal mean dynamical fields for the 1990s for use in the GSFC 2-D chemistry and transport model. This allows for interannual dynamical variability to be included in the model constituent simulations. In this study, we focus on the tropical stratosphere. We find that the phase of quasi-biennial oscillation (QBO) signals in equatorial CH4, and profile and total column 03 data is resolved quite well using this empirically- based 2-D model transport framework. However. the QBO amplitudes in the model constituents are systematically underestimated relative to the observations at most levels. This deficiency is probably due in part to the limited vertical resolutions of the 2-D model and the UKMO and UARS input data sets. We find that using different heating rate calculations in the model affects the interannual and QBO amplitudes in the constituent fields, but has little impact on the phase. Sensitivity tests reveal that the QBO in transport dominates the ozone interannual variability in the lower stratosphere. with the effect of the temperature QBO being dominant in the tipper stratosphere via the strong temperature dependence of the ozone loss reaction rates. We also find that the QBO in odd nitrogen radicals, which is caused by the QBO modulated transport of NOy, plays a significant but not dominant role in determining the ozone QBO variability in the middle stratosphere. The model mean age of air is in good overall agreement with that determined from tropical lower,middle stratospheric OMS balloon observations of SF6 and CO2. The interannual variability of tile equatorial mean age in the model increases with altitude and maximizes near 40 km, with a range, of 4-5 years over the 1993-2000 time period.

  3. In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-alpha hygrometer

    NASA Technical Reports Server (NTRS)

    Schwab, J. J.; Weinstock, E. M.; Nee, J. B.; Anderson, J. G.

    1990-01-01

    In situ measurements of water vapor in the stratosphere with a new instrument are reported. The instrument has been designed to observe daytime water vapor from a multiinstrument balloon gondola that simultaneously measures free radicals such as OH, HO2, and O3 in the stratosphere up to 40 km. Lyman-alpha photofragment fluorescence is used to measure water molecules in a flowing sample of ambient air. A brief description of the instrument is given, followed by the results of the first four balloon flights. The measured mixing ratio for this flight varies from 3.0-5.5 ppmv over the altitude range of 17-34 km. Adjustments in the cooling protocol for the flights of July 6, 1988, July 28, and August 25, 1989, result in a much higher signal-to-noise ratio. Profiles from these three flights are similar to, but somewhat higher, than the 1987 profile. Implications of measurements are discussed, as are the issues of short- and long-term variability of stratospheric water vapor.

  4. Deriving stratospheric trace gases from balloon-borne infrared/microwave limb sounding measurements

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Vogt, Peter; Trautmann, Thomas

    2013-05-01

    Infrared (IR)/microwave limb sounding is a well-established technique for remote sensing of the Earth's atmosphere. The developments in IR/microwave limb sounding have triggered the demand for adequate and reliable analysis models and methods.

  5. GranaSat Multi-Sensor Altitude Determination System Tested in BEXUS 19 Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Milla, M.; Martinez, E. J.; Gamundi, E.; Garcia, A.; Roldan, A. M.; Aparicio, T.; Burgos, V.; Garcia, E.; Garcia, L.; Morales, C. M.; Vallejo, P. M.

    2015-09-01

    GranaSAT designed and built a low-cost attitude determination system, a fundamental system for any spacecraft, based on a star and horizon sensor, acceleration and Earth's magnetic field measurements. The same Charge Coupled Device was used for both the star sensor and the horizon sensor. For the star sensor the Lost in Space functionality was designed, the identification algorithm used is a variation of the Matching Group algorithm proposed by Van Benzooijen; for the horizon sensor a simple detection algorithm is proposed, with the circle fitting method based on Umbach and Jones work, and for the magnetometer and accelerometer sensors the attitude was estimated by a two vector matching procedure based on Wahba solution.

  6. Stratospheric Age Spectra and Mean Ages from In Situ Observations of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Boering, Kristie A.; Daube, Bruce C., Jr.; Wofsy, Steven C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In situ observations of CO2 obtained from 1992 through 2000 using the NASA ER-2 aircraft and high-altitude balloons show that seasonal and interannual variations in CO2 mixing ratios propagate from the troposphere into the lower stratosphere via the tropical tropopause, along with the long-term trend due to fossil fuel combustion. These signals spread laterally and vertically, providing detailed quantitative information about the transport history of sampled air. We have used these data to derive age spectra and mean ages that can be compared with results from models of the stratospheric circulation. For an air parcel at a point in the stratosphere, the age spectrum is defined as the probability distribution function for transit times from the tropical tropopause for each fluid element comprising the parcel. The mean age is the average transit time, corresponding to the first moment of the age spectrum. Age spectra have been derived for altitudes below approximately 20 km for the tropics and for northern midlatitudes where there is sufficient data and where the amplitudes of the seasonal and interannual oscillations in CO2 mixing ratios are large enough to be detected. Tropical age spectra are narrow, with seasonal variation indicating faster ascent during northern winter, consistent with a circulation driven by breaking of extratropical waves. The midlatitude CO2 data are consistent with bimodal age spectra, which could result from a subtropical "barrier" to horizontal exchange over a substantial altitude region. Seasonally resolved mean ages are available with nearly pole-to-pole coverage below 20 km and in the tropics and at middle and high northern latitudes up to the maximum altitude reached by the balloons (approximately 30 km). At ER-2 altitudes, steep meridional gradients in mean age are observed in the subtropics. Between 20 and 30 km, midlatitude air is approximately 2 years older than tropical air at the same altitude. The oldest air sampled was in the

  7. Sampling of Trace Atmospheric Constituents Above the Surface of Mars from a Montgolfiere Balloon

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Mahaffy, Paul; Farrell, William; Niemann, Hasso B. (Technical Monitor)

    2001-01-01

    release hot gas, as has been tested at JPL, or be means of a simple, internal winch mechanism to decrease the volume of the balloon. JPL has successfully deployed three polyethylene Montgolfieres at 4-6 mbar pressure in the Earth's stratosphere and will be deploying a 20-m diameter polyethylene Montgolfiere later in 2001.

  8. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  9. The mystery of recent stratospheric temperature trends.

    PubMed

    Thompson, David W J; Seidel, Dian J; Randel, William J; Zou, Cheng-Zhi; Butler, Amy H; Mears, Carl; Osso, Albert; Long, Craig; Lin, Roger

    2012-11-29

    A new data set of middle- and upper-stratospheric temperatures based on reprocessing of satellite radiances provides a view of stratospheric climate change during the period 1979-2005 that is strikingly different from that provided by earlier data sets. The new data call into question our understanding of observed stratospheric temperature trends and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone-depleting substances. Here we highlight the important issues raised by the new data and suggest how the climate science community can resolve them. PMID:23192146

  10. Seasonal evolution of Saturn's stratosphere

    NASA Astrophysics Data System (ADS)

    Sylvestre, Melody; Fouchet, Thierry; Spiga, Aymeric; Guerlet, Sandrine

    2015-11-01

    The exceptional duration of the Cassini-Huygens mission enables unprecedented study of Saturn's atmospheric dynamics and chemistry. In Saturn's stratosphere (from 20 hPa to 10-4 hPa), photochemical and radiative timescales are in the same order as Saturn's revolution period (29.5 years). Consequently, the large seasonal insolation variations experienced by this planet are expected to influence significantly temperatures and abundances of photochemical by-products in this region. We investigate the seasonal evolution of Saturn's stratosphere by measuring meridional and seasonal variations (from 2005 to 2012) of temperature and C2H6, C2H2, and C3H8 abundances using Cassini/CIRS limb observations. We complete this study with the development of a GCM (Global Climate Model), in order to understand the physical processes behind this seasonal evolution.The analysis of the CIRS limb observations show that the lower and upper stratospheres do not exhibit the same trends in their seasonal variations, especially for temperature. In the lower stratosphere, the seasonal temperature contrast is maximal (at 1 hPa) and can be explained by the radiative contributions included in our GCM. In contrast, upper stratospheric temperatures (at 0.01 hPa) are constant from northern winter to spring, at odds with our GCM predictions. This behavior indicates that other physical processes such as gravity waves breaking may be at play. At 1 hPa, C2H6, C2H2, and C3H8 abundances exhibit a striking seasonal stability, consistently with the predictions of the photochemical models of Moses and Greathouse, 2005 and Hue et al., 2015. However, the meridional distributions of these species do not follow the predicted trends, which gives insight on atmospheric dynamics. We perform numerical simulations with the GCM to better understand dynamical phenomena in Saturn's atmosphere. We investigate how the large insolation variations induced by the shadow of the rings influence temperatures and atmospheric

  11. Endoscopic papillary balloon dilation: revival of the old technique.

    PubMed

    Jeong, Seung Uk; Moon, Sung-Hoon; Kim, Myung-Hwan

    2013-12-01

    Radiologists first described the removal of bile duct stones using balloon dilation in the early 1980s. Recently, there has been renewed interest in endoscopic balloon dilation with a small balloon to avoid the complications of endoscopic sphincterotomy (EST) in young patients undergoing laparoscopic cholecystectomy. However, there is a disparity in using endoscopic balloon papillary dilation (EPBD) between the East and the West, depending on the origin of the studies. In the early 2000s, EST followed by endoscopic balloon dilation with a large balloon was introduced to treat large or difficult biliary stones. Endoscopic balloon dilation with a large balloon has generally been recognized as an effective and safe method, unlike EPBD. However, fatal complications have occurred in patients with endoscopic papillary large balloon dilation (EPLBD). The safety of endoscopic balloon dilation is still a debatable issue. Moreover, guidelines of indications and techniques have not been established in performing endoscopic balloon dilation with a small balloon or a large balloon. In this article, we discuss the issue of conventional and large balloon endoscopic dilation. We also suggest the indications and optimal techniques of EPBD and EPLBD.

  12. [Intragastric balloon: a review concerning alternative balloons compared to the classical ones (Bioenterics)].

    PubMed

    Martínez Olmos, Miguel Ángel; Cancer, Emilia; Bretón, Irene; Álvarez, Visitación; Abilés, Verónica; Abilés, Jimena; Peláez, Noelia; Mellado, Carmen; Mazure, Rose-Anne; Culebras, Jesús Manuel

    2014-10-06

    Since de Tarpon Springs Consensus Conference in 1987, the Bioenterics Intragastric Balloon represents the standard model for obesity treatment with this technique. Nevertheless, over the last 30 years, especially for the last ten years, novel concept of balloons has appeared, as well as new alternative models, which are reviewed in this paper.

  13. Balloon Angioplasty Optimization: Should We Measure Balloon Volume As Well As Pressure?

    SciTech Connect

    Shehab, M.; Michalis, L. K.; Rees, M. R.

    2008-01-15

    Purpose. To investigate the influence that measurement of balloon volume as a controlled variable in addition to balloon pressure has on the outcome of balloon angioplasty in an experimental model. Methods. One hundred and three segments of explanted normal porcine carotid arteries were obtained. Five were used as controls, and the remaining 98 were subjected to balloon angioplasty with simultaneous measurement of balloon volume and pressure. These arteries were randomized into two groups. In one group the endpoint of the angioplasty was determined by balloon pressure (pressure-limited group, PLG) and in the other group by balloon volume (volume-limited group, VLG). Pressure/volume curves for each procedure were constructed by continuous measurement of both parameters by a purpose-designed computer-controlled inflation device. The diameter of each arterial segment was measured by intravascular ultrasound (IVUS) and the ratio of the inflated balloon to arterial diameter calculated. Arterial appearances after angioplasty were recorded using IVUS. Results. The balloon volumes measured at the endpoint of angioplasty were significantly smaller in the PLG compared with the VLG (p < 0.001). Three types of pressure/volume curves were identified: A, B, and C. In the type A curves, IVUS identified fissures in 28% (17/60) and the examination was normal in 72% (43/60). In the type B curves, IVUS identified fissures in 44% (4/9), dissections in 22% (2/9), and the examination was normal in 33% (3/9). In the type C curves, IVUS identified fissures in 44% (4/9) and dissection in 56% (5/9) with no normal examinations. In undamaged arterial segments a very high correlation was achieved between balloon volume and the balloon/artery ratio (Pearson correlation = -0.979, R{sup 2} = 0.957, p < 0.0001, n = 27). Conclusion. The measurement of pressure and volume during angioplasty enabled the construction of pressure/volume curves that showed deviations from the curves obtained in air. The

  14. Cutaneous balloon cell dermatofibroma (fibrous histiocytoma).

    PubMed

    Tran, Tien Anh; Hayner-Buchan, Alida; Jones, David M; McRorie, Duane; Carlson, J Andrew

    2007-04-01

    Dermatofibroma (DF) or cutaneous fibrous histiocytoma is a common benign skin tumor that exhibits multiple, distinct histologic variants. Although clear cell DF has been described in the literature, balloon cell degeneration causing a clear cell DF phenotype has been not been reported to date. Herein, we describe the clinicopathologic findings of balloon cell DF arising on the heel of a 43-year-old man. Clinically, it presented as enlarging tan-white, ulcerated, firm 1.5 cm nodule, clinically suspected to be pyogenic granuloma. Excisional biopsy revealed a circumscribed fibrous tumor populated by mostly clear and spindle cells. A zonal arrangement separated the varied tumor cells where the most superficial, polypoid area showed large, clear polygonal balloon cells; the mid-dermal zone demonstrated a transition between balloon cells, epithelioid cells, and spindle cells; and the deep dermal zone had storiform arrangement of spindle cells, with the fascicles separated by coarse collagen bundles. A CD10+ > CD68+ > Factor XIIIa+ immunophenotype was identified with negative immunolabeling for S-100 protein, HMB-45, cytokeratin AE1/AE3, desmin, smooth muscle actin, lysozyme, and leukocyte common antigen (LCA). Ultrastructurally, the clear tumor cells were filled with multiple, empty, nonmembrane bound vacuoles of varying size. No recurrence has been described after complete excision and 7 months of follow up. DF with balloon cell change, likely secondary to persistent irritation, should be added to the differential diagnosis of cutaneous primary and metastatic neoplasms showing balloon cell degeneration such as balloon cell melanocytic nevi and renal cell carcinoma, respectively.

  15. Modeling Stratospheric Constituents: Reactive Species That Regulate Ozone

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross J.

    2000-01-01

    Photochemical loss of stratospheric ozone occurs primarily by catalytic cycles whose rates are limited by the concentration of OH, HO2, NO2, ClO, and/or BrO as well as the concentration of either atomic oxygen or of ozone itself. Once the concentrations of these gases are established, the photochemical loss rate of O3 depends on the rate coefficient of only a handful of key reactions. We have developed a method for testing our understanding of stratospheric ozone photochemistry by comparing measured and modeled concentrations of reactive hydrogen, nitrogen, chlorine and bromine radicals using a photochemical steady state model constrained by observed concentrations of long-lived precursors (e.g., NO(y), Cl(y), Br(y), O3, H2O, CH4) and environmental parameters such as ozone column, reflectivity, and aerosol surface area. We will show based on analyses of observations obtained by aircraft, balloon, and satellite platforms during the POLARIS campaign that our overall understanding of the processes that regulate these radical species is very good. The most notable current discrepancies are the tendency to underestimate observed NO2 by 15 to 30% for air masses that experience near continuous solar illumination over a 24 hour period and the tendency to underestimate observed OH and H02 by about 10 to 20% during midday and by much larger amounts at high solar zenith angle (SZA > 85). Possible resolutions to these discrepancies will be discussed. This study was carried out in close collaboration with many members of the POLARIS science team.

  16. Measurements in polar stratospheric clouds over Antarctica in September 1989

    NASA Technical Reports Server (NTRS)

    Deshler, Terry

    1991-01-01

    The results of six balloon flights at McMurdo Station, Antarctica, under varying temperature conditions, are used in a study of polar stratospheric clouds during Sept. 1989. A particle counter, with size resolution in the 0.5 micron radius region, indicates that cloud size distributions are always bimodal. Mode radii ranging from 0.05 to 0.10 microns were observed for the small particle mode, representing the sulfate layer or condensational growth enhancements of it. The data are not inconsistent with the expected increase in size with decreasing temperature of the small particle mode in the sulfate layer owing to deliquescence although this phenomenon is often masked by nitric acid trihydrate (NAT) condensation when temperatures are sufficiently low. Mode radii generally ranged from 1.5 to 3.5 micron for the large particle mode at concentrations 3 to 4 orders of magnitude lower than the small particle mode. The large particle mode, which normally comprises most of the mass, is presumably caused by NAT condensation on larger particles of the sulfate layer and indicates HNO3 mixing ratios of 1 to 5 ppbv for most of the cloud layers observed, suggesting substantial denitrification. On several occasions, distributions were observed with mode radii as high as 7 microns, and correspondingly large inferred mass, indicating water ice clouds in the 12 to 15 km region. On other occasions, absence of such clouds at very low temperatures indicated water vapor mixing ratios of less than 3 ppmv suggesting dehydration. Generally, the inferred HNO3 mixing ratios were higher in the lower stratosphere, suggesting redistribution through particle sedimentation.

  17. Comparison of POAM III ozone measurements with correlative aircraft and balloon data during SOLVE

    NASA Astrophysics Data System (ADS)

    Lumpe, Jerry D.; Fromm, Mike; Hoppel, Karl; Bevilacqua, Richard M.; Randall, Cora E.; Browell, Edward V.; Grant, William B.; McGee, Thomas; Burris, John; Twigg, Laurence; Richard, Erik C.; Toon, Geoffrey C.; Margitan, James J.; Sen, Bhaswar; Pfeilsticker, Klaus; Boesch, Hartmut; Fitzenberger, Richard; Goutail, Florence; Pommereau, Jean-Pierre

    2003-03-01

    The Polar Ozone and Aerosol Measurement (POAM) III instrument operated continuously during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) mission, making approximately 1400 ozone profile measurements at high latitudes both inside and outside the Arctic polar vortex. The wealth of ozone measurements obtained from a variety of instruments and platforms during SOLVE provided a unique opportunity to compare correlative measurements with the POAM III data set. In this paper, we validate the POAM III version 3.0 ozone against measurements from seven different instruments that operated as part of the combined SOLVE/THESEO 2000 campaign. These include the airborne UV Differential Absorption Lidar (UV DIAL) and the Airborne Raman Ozone and Temperature Lidar (AROTEL) instruments on the DC-8, the dual-beam UV-Absorption Ozone Photometer on the ER-2, the MkIV Interferometer balloon instrument, the Laboratoire de Physique Molèculaire et Applications and Differential Optical Absorption Spectroscopy (LPMA/DOAS) balloon gondola, the JPL in situ ozone instrument on the Observations of the Middle Stratosphere (OMS) balloon platform, and the Système D'Analyze par Observations Zénithales (SAOZ) balloon sonde. The resulting comparisons show a remarkable degree of consistency despite the very different measurement techniques inherent in the data sets and thus provide a strong validation of the POAM III version 3.0 ozone. This is particularly true in the primary 14-30 km region, where there are significant overlaps with all seven instruments. At these altitudes, POAM III agrees with all the data sets to within 7-10% with no detectable bias. The observed differences are within the combined errors of POAM III and the correlative measurements. Above 30 km, only a handful of SOLVE correlative measurements exist and the comparisons are highly variable. Therefore, the results are inconclusive. Below 14 km, the SOLVE comparisons also show

  18. Comparison of POAM III ozone measurements with correlative aircraft and balloon data during SOLVE

    NASA Astrophysics Data System (ADS)

    Lumpe, Jerry D.; Fromm, Mike; Hoppel, Karl; Bevilacqua, Richard M.; Randall, Cora E.; Browell, Edward V.; Grant, William B.; McGee, Thomas; Burris, John; Twigg, Laurence; Richard, Erik C.; Toon, Geoffrey C.; Margitan, James J.; Sen, Bhaswar; Pfeilsticker, Klaus; Boesch, Hartmut; Fitzenberger, Richard; Goutail, Florence; Pommereau, Jean-Pierre

    2002-03-01

    The Polar Ozone and Aerosol Measurement (POAM) III instrument operated continuously during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) mission, making approximately 1400 ozone profile measurements at high latitudes both inside and outside the Arctic polar vortex. The wealth of ozone measurements obtained from a variety of instruments and platforms during SOLVE provided a unique opportunity to compare correlative measurements with the POAM III data set. In this paper, we validate the POAM III version 3.0 ozone against measurements from seven different instruments that operated as part of the combined SOLVE/THESEO 2000 campaign. These include the airborne UV Differential Absorption Lidar (UV DIAL) and the Airborne Raman Ozone and Temperature Lidar (AROTEL) instruments on the DC-8, the dual-beam UV-Absorption Ozone Photometer on the ER-2, the MkIV Interferometer balloon instrument, the Laboratoire de Physique Molèculaire et Applications and Differential Optical Absorption Spectroscopy (LPMA/DOAS) balloon gondola, the JPL in situ ozone instrument on the Observations of the Middle Stratosphere (OMS) balloon platform, and the Système D'Analyze par Observations Zénithales (SAOZ) balloon sonde. The resulting comparisons show a remarkable degree of consistency despite the very different measurement techniques inherent in the data sets and thus provide a strong validation of the POAM III version 3.0 ozone. This is particularly true in the primary 14-30 km region, where there are significant overlaps with all seven instruments. At these altitudes, POAM III agrees with all the data sets to within 7-10% with no detectable bias. The observed differences are within the combined errors of POAM III and the correlative measurements. Above 30 km, only a handful of SOLVE correlative measurements exist and the comparisons are highly variable. Therefore, the results are inconclusive. Below 14 km, the SOLVE comparisons also show

  19. Accurate Determination of the Volume of an Irregular Helium Balloon

    NASA Astrophysics Data System (ADS)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-02-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular mass and density of the impure helium. This experiment required that the volume of the near-spherical balloon be determined by some approach, such as measuring the girth. The accuracy of the experiment was largely determined by the balloon volume, which had a reported uncertainty of about 4%.

  20. ESTADIUS: A High Motion "One Arcsec" Daytime Attitude Estimation System for Stratospheric Applications

    NASA Astrophysics Data System (ADS)

    Montel, J.; Andre, Y.; Mirc, F.; Etcheto, P.; Evrard, J.; Bray, N.; Saccoccio, M.; Tomasini, L.; Perot, E.

    2015-09-01

    ESTADIUS is an autonomous, accurate and daytime attitude estimation system, for stratospheric balloons that require a high level of attitude measurement and stability. The system has been developed by CNES. ESTADIUS is based on star sensor an pyrometer data fusion within an extended Kalman filter. The star sensor is composed of a 16 MPixels visible-CCD camera and a large aperture camera lens (focal length of 135mm, aperture f/1.8, 10ºx15º field of view or FOV) which provides very accurate stars measurements due to very low pixel angular size. This also allows detecting stars against a bright sky background. The pyrometer is a 0.01º/h performance class Fiber Optic Gyroscope (FOG). The system is adapted to work down to an altitude of ~25km, even under high cinematic conditions. Key elements of ESTADIUS are: daytime conditions use (as well as night time), autonomy (automatic recognition of constellations), high angular rate robustness (a few deg/s thanks to the high performance of attitude propagation), stray-light robustness (thanks to a high performance baffle), high accuracy (<1", 1σ). Four stratospheric qualification flights were very successfully performed in 2010/2011 and 2013/2014 in Kiruna (Sweden) and Timmins (Canada). ESTADIUS will allow long stratospheric flights with a unique attitude estimation system avoiding the restriction of night/day conditions at launch. The first operational flight of ESTADIUS will be in 2015 for the PILOT scientific missions (led by IRAP and CNES in France). Further balloon missions such as CIDRE will use the system ESTADIUS is probably the first autonomous, large FOV, daytime stellar attitude measurement system. This paper details the technical features and in-flight results.