Science.gov

Sample records for 2002-2004 stratospheric balloon

  1. Universal stratospheric balloon gradiometer

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  2. Stratospheric Balloon Gradient Geomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey; Tsvetkov, Yury

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth's crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). One of the examples of such sounding system have been designed, developed and maintained at IZMIRAN during already about 20 years. This system consists of three instrumental con-tainers uniformly placed along a vertical 6 km line. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one's name is -stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Data trans-mission is carried out by Globalstar satellite link. The obtained data are used in solving the problems of deep sounding of the Earth's crust magnetic structure -an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each instrumental container may be reaching 50 kg. More than ten testing flights (1986-2009) at stratospheric altitudes (20-30 km) have proven the reliability of this system.

  3. Stratospheric electric field measurements with transmediterranean balloons

    NASA Astrophysics Data System (ADS)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  4. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  5. Analysis and prediction of stratospheric balloons trajectories

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Memmo, A.; Musso, I.; Ibba, R.; Spoto, D.

    The first step to manage a balloon flight from a trajectory point of view is the definition of launch location and period. Analysis data are used to realize a statistical study of the trajectories that can be obtained. The goal is define the conditions able to maximize the probability to respect mission objectives and constrains. Ones started with operations the balloon control centre has to manage the flight respecting safety and science. To predict stratospheric balloon trajectories we must utilize data from different forecast models and real-time measurements of wind and other meteorological entities. These sources of information have to be merged along the simulation of the balloon flight. Great attention has be paid for long duration flight from Pole and Equator, where QBO plays an important role.

  6. The Ultimate Mountaintop: Astronomy Aboard Stratospheric Balloons

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher; White, Nicholas E. (Technical Monitor)

    2000-01-01

    As funding, for astronomy dwindles and the competition for observation time heats up, more astronomers may turn to balloons. Far above the Keck telescope on Hawaii's Mauna Kea, higher still than the hostile snowcapped peaks of Mt. Everest, there exists a 40-kilometer summit that will place their telescopes above 99% of the atmosphere. With the prospect of 100-day and even 1,000-day balloons, the climb to the summit is more and more tempting. Surely, given enough cash, most astronomers would opt for a lunar base or a platform beyond the Earth. Until then, many seem happy to settle for a stratospheric mountaintop.

  7. Stratospheric balloons trajectories predictions and optimizations

    NASA Astrophysics Data System (ADS)

    Musso, I.; Cardillo, A.; Memmo, A.

    Trajectory predictions are becoming an important part of the stratospheric balloons activities due to the increased safety and scientific requirements Often high-populated areas must be avoided while the balloon could be asked to reach regions interesting for scientific measurements The balloon trajectory s reconstruction is essentially a time propagation of local wind vectors along the expected altitudes As consequence the predictor is composed of two interconnected subsystems one for the definition of vertical position and one for the wind predictions and horizontal propagation at every time step Forecast data permits up to 6 days of wind vector predictions Below 10mb altitude mesoscale models reduce the wind prediction uncertainty Directly measured information comes from radiosoundings few hours before flight or during it GPS onboard the balloon telemetry is a second direct wind data source The software has to mesh these different flows of information giving to the measured values a weight inversely proportional to the time and space distance from wind measurements In this way sounding data if properly used are able to reduce the path s dispersion A thermodynamic model reconstructs the balloon vertical positions Heat exchanges between internal gas and external environment are very sensitive to air temperature infrared radiance and albedo Again forecast data have to be properly meshed with radiosoundings and satellite images to obtain the best values of these border conditions They will apply the thermodynamic balloon model We

  8. Gondola development for CNES stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.

  9. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  10. A Constitutive Equation for Stratospheric Balloon Materials

    NASA Technical Reports Server (NTRS)

    Rand, J. L.; Sterling, W. J.

    2004-01-01

    The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of properties. Due to a more desirable combination of properties, the low density polyethylene that has been used for the last half century has been replaced during the last decade by linear low density polyethylene (LLDPE). This paper describes the effort to characterize the time dependent properties of a 38 micron coextrusion of LLDPE. The nonlinear viscoelastic constitutive equation presented may be used to accurately describe the creep and/or relaxation of this film when subjected to a biaxial state of stress, such as might be required for an extended balloon flight. Recent laboratory data have been used to mod@ an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structural design optimization and reliability assessment, and may be further utilized as a predictive tool to benefit in-flight operations. Current structural analysis tech&ques based on linear elastic properties have predicted stresses in excess of those which would actually exist.

  11. Measurements of Load Train Motion on a Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Gruner, Timothy D.; Olney, David J.; Russo, Angela M.

    2005-01-01

    Attitude measurements using gyros and magnetometers placed on a stratospheric balloon during a non-pointed test flight were used to observe the natural azimuth and elevation motions of a balloon/load train/gondola at an altitude of 36 km over a total flight time of 400 minutes. Time traces of the entire flight are presented. This flight, conducted under nominal atmospheric conditions, had significant motion about the azimuth. Some discussion on balloon disturbances is also included.

  12. SAM 2 balloon test (stratospheric aerosol measurement)

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1976-01-01

    As a parallel effort to the LACATE balloon experiment a small optical system was constructed to enable a balloon test of a diode filter system similar to the type planned for the Nimbus-G SAM II experiment. The system was called the SAM II Balloon Test. Results of the balloon flight are summarized.

  13. Recent and Future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    Esrange Space Center located in northern Sweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have a unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern Canada. The Swedish Government and Swedish National Space Board are now finaliz-ing an agreement with Russia for peaceful uPersonNamese of space, which will permit circumpolar balloon flights. Within this agreement we will soon be able to of-fer the science community long duration balloon flights with durations for PersonNameseveral weeks. The balloon operations at Esrange Space Center are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern Sweden. We have also received a request from JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall will be ready for use at the beginning of 2011. January 24 we made an historical balloon flight in a very cold stratosphere with a Zodiac metricconverterProductID402?000 m3402ü ınbsp;000 m3402 000 m3 balloon carrying a 750kg gondola with the German Mipas-B/Telis instrument. The balloon reached 34kms alti-tude after a carefully piloted ascent in temperature levels down to -89 degrees Centigrade. The scientists received unique data during the 13 hours and 30 minutes long sailing at different altitudes during slow descent. The payload was recovered in very good condition 80 kms from the border between country-regionFinland and Russia.

  14. Polar Stratospheric Research Platforms -Ballooning in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Masi, Silvia; Debernardis, Paolo

    Tracing the history of ballooning in the Antarctic and Arctic, we can look at Nobile/Amundsen in the Arctic as well as Scott in Antarctica making use of balloons. Technological advances over the past few decades have lead to the development of relatively secure stratospheric research platforms that can not only lift 4 tons of instrumentation to over 38 kilometers into "near space", but can last at float altitudes for well over 30 days at float. This kind of performance comes at a relatively low cost compared to rocket propelled research. For the past 7 years the Italian Space Agency (ASI) has funded the development of the most northern launch facility for Long Duration Balloons from Longyearbyen, Svalbard, Norway. In 2009, the launch of the SORA experiment from Svalbard, suspended below an 800,000 m3 balloon proved concept of the feasibility of scientific heavy lift balloon launches from 79 deg N. From deep space observations to near space investigation, aerosols and Earth observations, polar stratospheric balloons offer the scientific investigators a stable platform to perform a wide range of research. This paper will discuss research opportunities, future scientific payloads scheduled for launching from Svalbard, and the development of Ultra Light Long Duration Balloon and the telemetry systems.

  15. Recent and future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    2012-07-01

    PlaceNameEsrange PlaceNameSpace PlaceTypeCenter located in northern country-regionplaceSweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have an unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern country-regionplaceCanada. The Swedish and Russian Governments have signed an agreement for peaceful exploration of space on 19 March 2010, which will permit circumpolar balloon flights. Within this agreement we are able to offer the science community long duration balloon flights in the Northern Hemisphere with durations for PersonNameseveral weeks. The balloon operations at placePlaceNameEsrange PlaceNameSpace PlaceTypeCenter are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern country-regionplaceSweden. We have also received requests from placePlaceNameJapanese PlaceTypeUniversities and JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall was ready for use in April 2011. Circumpolar balloon flights from PlaceNameplaceEsrange PlaceNameSpace PlaceTypeCenter are possible due to the specific conditions during the Arctic summer with continuous daylight and nearly constant solar heating keeping the balloon at a constant altitude with a minimum of ballast. In total 10 payloads have been flying for 4 to 5 days from Esrange westwards with landing in northern Canada since 2005. The SUNRISE balloon borne solar telescope is one example which made in June metricconverterProductID2009 a2009 a more than 4 days semi-circular balloon flight from Esrange. The CitySunrise project is a collaborative project between the Max Planck Institute for Solar System Research in Katlenburg-Lindau and

  16. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  17. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  18. Balloon Operation for Stratospheric Air Sampling at Antarctica

    NASA Astrophysics Data System (ADS)

    Honda, H.; Yajima, N.; Yamagami, T.; Aoki, S.; Hashida, G.; Machida, T.; Morimoto, S.

    On January 3rd, 1998, a cryogenic air sampling experiment was carried out at Syowa Station (69S, 40E), which is the first successful trial in the world for collection of large amount of stratospheric air over the Antarctic. The samples are analyzed for CO2, CH4, CFCs, and C and O isotope ratios in CO2 in the laboratories. As the meteorological conditions for launching and payload recovery are both critical, feasibility on wind conditions over Syowa Station was studied in detail. The balloon launching operations had to be performed without a specialist. Facilities for balloon launching, tracking, and other support systems were newly designed for ready-to- and easy-to-use. Realtime remote support from Japan for the balloon launching and flight control operations was applied using a computer network linked by INMARSAT

  19. USV test flight by stratospheric balloon: Preliminary mission analysis

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Musso, I.; Ibba, R.; Cosentino, O.

    The Unmanned Space Vehicle test flights will use a 7 m 1300 kg aircraft. The first three launches will take place at the Italian Space Agency ASI base in Trapani Milo, Sicily, through a stratospheric balloon that will drop the aircraft at a predefined height. After free fall acceleration to transonic velocities, the parachute deployment will allow a safe splash down in the central Mediterranean Sea. The goal of this article is to show the preliminary analysis results for the first USV flight. We carried out a statistical study for the year 2000 2003, evaluating the typical summer and winter launch windows of the Trapani Milo base. First, in the center Mediterranean, we define safe recovery areas. They cannot be reached during the balloon ascending phase so, after a sufficiently long floating part able to catch the open sea, the balloon will go down to the release height (24 km). The simulation foresees a 400,000 m3 balloon and 3 valves for the altitude transfer. A safe splash down must occur far enough from the nearest coast: the minimum distance is considered around 25 km. The vehicle should be released at a distance, from the nearest coast, greater than this minimum amount plus the USV model maximum horizontal translation, during its own trajectory from balloon separation to splash down. In this way we define safe release areas for some possible translations. Winter stratospheric winds are less stable. The winter average flight duration is 7 h and it is probably too long for the diurnal recovery requirement and its scheduled procedures. Comparing past stratospheric balloons flights and trajectories computed using measured meteorological data (analysis), with their predictions made using forecast models and soundings, we obtain the standard deviation of the trajectory forecast uncertainty at the balloon aircraft separation. Two cases are taken into account: predictions made 24 and 6 h before the launch. Assuming a Gaussian latitudinal uncertainty distribution for

  20. Electrodynamics of the stratosphere using 5000 cu m superpressure balloons

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.

    1983-01-01

    The Electrodynamics of the Middle Atmosphere research project encompasses the design of a microprocessor-controlled payload and the launch of up to eight small superpressure balloons in the 1982-1984 period. The primary payload instrument will measure the vector electric field from dc to 10 kHz, and the payloads will include instruments measuring local ionization, electrical conductivity, magnetic field, and temperature and pressure fluctuations. In addition, optical lightning will be recorded. The simultaneous measurement of these stratospheric parameters by several balloons, for periods extending over several solar rotations, will allow the study of electrical coupling between atmosphere and magnetosphere, of global current systems, and of global response to solar flares and magnetospheric storms.

  1. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  2. STRATO 02/2015 - The Perseids 2015 stratospheric balloon mission

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Lenža, L.; Kapuš, J.; Erdziak, J.; Slošiar, R.

    2016-02-01

    In this paper we present the first results of the MeteorCam03 experiment that allowed the observation of meteors from the stratosphere. The experiment provides a new perspective of meteor observations, mainly due to the lower extinction in these layers of the Earth's atmosphere. For the implementation of the experiment the Perseid meteor shower maximum was chosen, since the Perseids (together with the Geminid meteor shower) are one of the most active streams observable from the northern hemisphere. The MeteorCam03 experiment was part of a stratospheric balloon flight with platform JULO-X codenamed STRATO 02/2015, whose launch was carried out by the Slovak Organization for Space Activities (SOSA).

  3. Collection of Stratospheric Samples using Balloon-Borne Payload System

    NASA Astrophysics Data System (ADS)

    Prakash, Ajin; Safonova, Margarita; Murthy, Jayant; Sreejith, A. G.; Kumble, Sheshashayi; Mathew, Joice; Sarpotdar, Mayuresh; Kj, Nirmal; Suresh, Ambily; Chakravortty, Dipshikha; Rangarajan, Annapoorni

    2016-07-01

    Earth's atmosphere at stratospheric altitudes contains dust particles from soil lifted by weather, volcanic dust, man-made aerosols, IDP (Interplanetary Dust Particles) - remnants of comets and asteroids, and even interstellar dust. Satellite observations suggest that approximately 100--300 tons of cosmic dust enter Earth's atmosphere every day. However, very little is known about the microbial life in the upper atmosphere, where conditions are very much similar to that on Mars and possibly on some exoplanets. Stratosphere provides a good opportunity to study the existence or survival of biological life in these conditions. Despite the importance of this topic to astrobiology, stratospheric microbial diversity/survival remains largely unexplored, probably due to significant difficulties in the access and ensuring the absence of contamination of the samples. To conduct a detailed study into this, we are developing the balloon-borne payload system SAMPLE (Stratospheric Altitude Microbiology Probe for Life Existence) to collect dust samples from stratosphere and bring them in an hygienic and uncontaminated manner to a suitable laboratory environment, where further study will be conducted to establish the possibility of microbial life in the upper atmosphere. This balloon-borne payload system will rise through the atmosphere till it reaches an altitude of about 25-30 km above sea level. The payload consists of detachable pre-sterilized sampling chambers designed to collect and contain the dust samples and get them back to the surface without contamination during the flight, a microprocessor and a controller which will determine the altitude of the payload system to actively monitor the opening and closing of the sample collection chambers. For contamination control, we will have two extra chambers, one of which will fly but not open, and one will remain closed on the ground. Other onboard devices include environmental sensors, GPS tracking devices, cameras to monitor

  4. A comparison of Loon balloon observations and stratospheric reanalysis products

    NASA Astrophysics Data System (ADS)

    Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.

    2017-01-01

    Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.

  5. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  6. The CNES Balloon Program : an overview

    NASA Astrophysics Data System (ADS)

    Debouzy, G.; Cazaux, C.

    The CNES (French Space Agency) Balloon Program continues to support the scientific community providing enhanced measurements capabilities across different kind of balloons: zero pressure balloon (80 % of activities), Infra-Red Montgolfiere (MIR) and superpressure balloon. For ENVISAT satellite validation, CNES has set up with ESA an important international balloon program with six dedicated campaigns, in 2002 - 2004 period, from mid-latitude; northern and tropical balloon launch facilities. In the framework of an European program, CNES participates to HIBISCUS project by organizing balloon campaigns (2003 & 2004) in tropical region with the launches of zero-pressure balloon, MIR and superpressure balloon from the same facility. In cooperation with US, CNES is preparing the VORCORE project which consists to study the atmospheric circulation of Antarctica polar vortex, using superpressure balloons launched from the Mac-Murdo station. This paper will present the CNES balloon activities in the 2002-2004 period, mainly focused on atmospheric chemistry, will give an overview of balloon technology development, and will present also the JAXA / CNES cooperation for the HSFD shuttle drop from stratospheric balloons with a first flight realized in 2003.

  7. Long duration flights of stratospheric balloons in the frame of the Taranis project

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Catoire, Valery; Huret, Nathalie

    The satellite instrument TARANIS will be dedicated to the study of the Transient Luminous Events (TLE) above storms, and of the energy transfers between the Earth atmosphere and space. Such phenomena can affect the atmospheric chemistry. Stratospheric balloon instruments can be used for the detection of stratospheric ozone and nitrogen chemistry perturbations induced by these high energy phenomena. Obviously, it is difficult to know in advance when such phenomena can occur and then to be ready for opportune launching of a stratospheric balloon. Then, we propose to use long duration balloons that can reside in the lower and middle stratosphere for more than one week. Open stratospheric balloons could be used for such purpose. Some tests have shown that these balloons could stay several days in the middle stratosphere (around an altitude of 30 km) and can carry heavy gondolas, typically up to 200 kg. Such balloon can flown over large storms and cloud expanses without any risk. In the frame of the TARANIS project, we propose to use such balloons with gondolas carrying different kinds of instruments. Ozone and NO2 measurements can be conducted using remote sensing techniques, using Moon and Sun as light source (SALOMON-type instrument). The integrated path length of the measurements is between tens and few hundreds of km. Following the motion of the balloon (carried by winds) and the motion of the Moon and Sun, a part of the stratosphere above the balloon float motion can be sampled. On the other hand, the estimation of the position of the NO2 enhancements cannot be accurately determined. The second technique involves in situ measurements (SPIRIT-type instrument). In this case, the location of the enhancements can be accurately determined, as well as the absolute values of the species concentrations. On the other hand, the probability of detection is smaller than with remote sensing techniques. Finally, instruments dedicated to the detection of atmospheric "terrestrial

  8. Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Grassl, H. J.; Shetter, R. E.; Margitan, J. J.

    1980-01-01

    Eight balloon-borne in situ measurements of ClO in the stratosphere are analyzed and are compared with recent model calculations. While the use of in situ stratospheric studies of free radicals to test models by comparing observed and predicted concentration profiles is essential for a prognosis of changes in stratospheric ozone, resulting from future changes in stratospheric ozone, such studies provide only limited insight into the nature of stratospheric photochemistry, because natural variability and the large number of fast reactions which compete in the coupling among the key radicals frustrate a detailed comparison between a mean distribution provided by the models and an instantaneous distribution provided by a single observation.

  9. Stratospheric electrodynamics from superpressure balloons - A technical challenge for small payload environments

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Norville, K. W.; Hu, H.; Dowden, R. L.; Adams, C. D. D.; Gonzalez, W. D.; Pinto, O., Jr.

    1991-01-01

    The state-of-the-art in stratospheric balloon-borne vector electric field measurements, from its origins to the present is reviewed. Consideration is given to the Extended Life Balloon-Borne Observatories program that utilizes an extensively modified payload and dual telemetry systems to improve the measurements and increase the data rates.

  10. Preliminary feasibility study of sea-anchored stratospheric balloon for long duration flight

    NASA Astrophysics Data System (ADS)

    Akita, Daisuke

    Long duration flights are required for many scientific observations on stratospheric balloons. The flight duration of a super-pressure balloon is limited mainly by the flight distance due to limitations of the telemetry link, recovery possibility and national borders. A stratospheric super-pressure balloon which is anchored to the sea would have following ca-pabilities. 1) Long duration flight 2) Easy telemetry link to ground station 3) Wide launch window 4) Rapid gondola recovery 5) Fixed-point observation 6) Safety flight operation On the other hand, free-flying super-pressure balloons would be required to develop a flight trajectory control system for the long duration flight. Conventional quasi-static launch of a tethered bal-loon is difficult to ascent into the stratosphere through the jet stream. Because the dynamic pressure of the jet stream is significantly high for the balloon structure. The sea-anchored stratospheric balloon system consists of a long tether, a tether reel and a drag sail at the tether end. The flight sequence of the balloon is as follows. 1) Balloon launch with the reeled-in tether 2) Level flight at a designed altitude on the sea 3) Reel-out the tether with the drag sail 4) Sink the drag sail into the sea 5) Anchor the balloon by the drag sail 6) Observation 7) Cut the tether and terminate the flight The sea-anchored balloon does not require additional ground systems. The flight operation is same as normal balloon flights except for the reel-out and the cut of the tether. The sea-anchored balloon would have an appropriate altitude for its feasibility. The lower balloon altitude in the stratosphere results in significant increase of the dynamic pressure due to the jet stream, while the stress on the tether increases with increasing the balloon altitude by its own weight. In this study, the feasibility of the sea-anchored ballon is investigated in particular on the tether strength, balloon altitude and the system mass based on the present

  11. Comparison of Stratospheric Aerosol and Gas Experiment II and balloon-borne stratospheric water vapor measurements

    NASA Technical Reports Server (NTRS)

    Pruvost, P.; Ovarlez, J.; Lenoble, J.; Chu, W. P.

    1993-01-01

    The Stratospheric Aerosol and Gas Experiment II has one channel at 940 nm related to water vapor. Two inversion procedures were developed independently in order to obtain the water vapor profile: the Chahine method by the Langley Research Center, and the Mill method by the Laboratoire d'Optique Atmospherique. Comparisons were made between these two algorithms and some results are presented at midlatitudes (about 45 deg N) and tropical latitudes (12-25 deg S). They are compared with in situ frost point hygrometer data provided by balloon experiments from the Laboratoire de Meteorologie Dynamique. At +/- 0.5 ppmv, agreement between the inversion results and the experimental results was obtained in the altitude range from 18-19 to 26-27 km. Below 18-19 km and above 26-27 km the error is larger (sometimes 1 ppmv and more).

  12. Balloon experiments in the earth's stratosphere within the ``Mars-96'' project

    NASA Astrophysics Data System (ADS)

    Kremnev, R. S.; Pichkhadze, K. M.; Zashchirinskii, A. M.; Pavlov, V. A.; Trifonov, I. V.; Linkin, V. M.; Kerzhanovich, V. V.; Nazarov, D. N.; Kotov, B. B.; Kotelnikov, K. A.; Polukhina, N. G.; Lepazg, G.-P.; Avrar, J.; Ortis, J.; Makartsev, O. V.; Sazonov, L. B.

    1996-03-01

    For experimental testing of a Mars balloon probe in the upper layers of the Earth's atmosphere a specified parachute system was developed, fabricated and tested in 3 high-altitude balloon flights. The balloon volumes were 130000 and 180000 m^3 with the payloads of 500 - 900 kg; the maximum flight altitude reached 32 km. The experiments showed that one-canopy parachute system with the area of 1200 m^2 has certain advantages as compared to the four-canopy system and can be used both in Mars balloon tests in the Earth's stratosphere and as a parachute system of the descent apparatus for investigation of Mars.

  13. Astronomy from the Upper Stratosphere: Key Discoveries and New Opportunities from High Altitude Scientific Balloons

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.

    2017-01-01

    Stratospheric balloons offer a near-space astronomy platform for a small fraction of the cost of an equivalent satellite. These balloons can lift scientific payloads of up to 6,000 lbs as high as 40 km above the Earth’s surface (above >99.5% of the atmosphere). In this presentation I will discuss the contribution that scientific balloon experiments have made to astronomy, from the early days when astronomers had to accompany their telescopes to the stratosphere, to the present era where automated payloads are in some cases able to achieve a pointing precision of better than an arcsecond. In particular, I will discuss the important contributions that balloon telescopes have made to our current understanding of the Universe through detailed measurements of the Cosmic Microwave Background. I will also show how recent observations from sub-millimeter balloon telescopes such as BLAST and BLASTPol have been used to study both star formation and magnetic fields of nearby giant molecular clouds in unprecedented detail, and also to constrain models of interstellar dust composition. With improving ballooning technology, such as NASA’s new Super-Pressure Balloon program, we will soon have the capability for science flights of several months (rather than weeks) duration, thus beginning an exciting new era in balloon astronomy.

  14. Test of Re-Entry Systems at Estrange Using Sounding Rockets and Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Abrahamsson, M.; Florin, G.

    2015-09-01

    Stratospheric balloons and sounding rockets can provide an ideal in-flight platform for performing re-entry and other high speed tests off different types of vehicles and techniques. They are also ideal platforms for testing different types of recovery systems such as airbrakes and parachutes. This paper expands on some examples of platforms and missions for drop tests from balloons as well as sounding rockets launched from Esrange Space Center, a facility run by Swedish Space Corporation SSC in northern Sweden.

  15. Measurement of polar stratospheric NO2 from the 23rd and 24th Japanese Antarctic Research Expedition (JARE) balloon experiments

    NASA Technical Reports Server (NTRS)

    Shibasaki, K.; Iwagami, N.; Ogawa, T.

    1985-01-01

    As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.

  16. Feasibility study of a sea-anchored stratospheric balloon for long-duration flights

    NASA Astrophysics Data System (ADS)

    Akita, Daisuke

    2012-08-01

    Sea-anchored balloons are stratospheric super-pressure balloons that are anchored to the sea. The sea-anchored balloon is a simple system that has the capability for long-duration flights, fixed-point observations, flexible launch windows, easy telemetry links to ground stations, and quick recoveries. Such balloons are not required to fly through the jet stream while tethered to the ground or sea, because the tether is deployed from a reel on the balloon after reaching a floating altitude. In this study, the feasibility of the sea-anchored balloon is investigated, with particular emphasis on the tether strength, balloon altitude, and system mass, based on the present technological level of the tether's specific strength. Although the wind distribution with altitude is a dominant factor for feasibility, a sea-anchored balloon with an altitude of about 25 km would be feasible if the velocity of the jet stream is sufficiently low. The sea-anchored balloon can be simply flight-tested, since additional ground facilities and special flight operations are not necessary.

  17. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  18. Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1985-01-01

    Stratospheric levels of particles with r or = 0.15 microns were monitored with optical particle counters in approximately monthly balloon soundings at Laramie, Wyoming (41 deg N) since 1971. These measurements were used to characterize the background stratospheric aerosol layer and the disturbed layer following major volcanic eruptions. Levels of particles with r or = 0.01 microns have also been measured with balloon-borne counters since 1973. The latter are collectively called condensation nuclei (CN) as they are characteristic of aerosol in the early stages of growth. While they dominate the size distribution in the tropsophere, they are a trace species in the undisturbed stratosphere. From 1972 until 1980, annual balloon soundings from McMurdo Station (78 deg S) and/or Amundsen-Scott Station (90 deg S), in Antarctica, have also been conducted to crudely monitor Southern Hemisphere aerosol levels. These measurements were continued in 1983 and 1984. Profiles of r 0.15 microns aerosol concentrations as measured during January at the south pole from 1972 to 1975 and in 1980 are given. The former are typical of undisturbed conditions and indicate the small degree of variability under these conditions. The latter indicates the effect of minor volcanic activity, visible in the 10 to 15 km region.

  19. Balloon-borne remote sensing of stratospheric constituents

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Murcray, F. J.; Goldman, A.; Murcray, F. H.; Kosters, J. J.

    1983-01-01

    Data on species of interest in the photochemistry of the ozone layer obtained from balloon flights are presented. The flights made use of remote-sensing instruments that took measurements in the wavelength region from the ultraviolet to millimeter wavelengths. Most of the data were obtained with instruments whose readings were in the midinfrared wavelengths. Descriptions are given of the two techniques generally used in this type of research, namely solar absorption and atmospheric emission. The promise that these techniques hold for providing data on the photochemistry of the ozone layer is discussed.

  20. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  1. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  2. Comparison Of The Global Analytic Models Of The Main Geomagnetic Field With The Stratospheric Balloon Magnetic Data 335

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Filippov, S.; Frunze, A.

    2013-12-01

    Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.

  3. Assessing the Potential of Stratospheric Balloons for Planetary Science

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hibbitts, Karl; Young, Eliot; Landis, Robert; Noll, Keith; Baines, Kevin

    2013-01-01

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  4. Balloon borne optical particle counter for stratospheric observation

    NASA Astrophysics Data System (ADS)

    Kasai, Takeshi; Tsuchiya, Masayoshi; Takami, Katsumi; Hayashi, Masahiko; Iwasaka, Yasunobu

    2003-02-01

    This article presents the ambient air pressure effects on a balloon borne optical particle counter (an aerosol sonde: AS) equipped with a laser as the light source, and the relevant measures to overcome these effects. To investigate the effects of ambient air pressure varying from 1013 to 10 hPa (from ground level to an altitude of about 30 km) and estimate the general performance of the AS, a novel versatile pressure-variable test chamber was constructed equipped with a built-in nebulizer system. To overcome the direct effect of ambient air pressure on the sensing zone occurring when an open cavity laser (an external mirror-type laser) is used, a flat parallel window was adopted in place of the Brewster window, and in addition, only the laser tube was sealed in an aluminum tube under normal atmospheric pressure. Consequently, the laser power change was suppressed to within ±0.5% for the pressure variation range. To overcome the large dependence in the aerosol sampling flow rate on the ambient air pressure, a new flow rate ratio (flow rate at low pressure divided by that at 1013 hPa) was defined to fall within the ±0.5% variation, as measured using a newly developed technique for measuring the flow rate ratio, owing to an incorporated gear pump system devised to be speed controlled through a pressure sensor. The nonlinear increase of the noise component with decreasing ambient air pressure is discussed, and shown to be overcome electrically, confirming the presumption that this increase is ascribable to the corona discharge caused by high voltage. Thus, for polystyrene latex spheres 0.1 μm in diameter, the developed AS maintained signal-to-noise ratio larger than 2-3 for the pressure variation, as revealed from analysis of the histograms obtained with a multichannel analyzer. Finally, actual field measurements were performed at Bandong, Indonesia, and the results were subjected to a cross-check with those obtained almost simultaneously at the same location using

  5. A high-altitude balloon experiment to probe stratospheric electric fields from low latitudes

    NASA Astrophysics Data System (ADS)

    Gurubaran, Subramanian; Shanmugam, Manu; Jawahar, Kaliappan; Emperumal, Kaliappan; Mahavarkar, Prasanna; Buduru, Suneel Kumar

    2017-02-01

    The Earth's electrical environment hosts a giant electrical circuit, often referred to as the global electric circuit (GEC), linking the various sources of electrical generators located in the lower atmosphere, the ionosphere and the magnetosphere. The middle atmosphere (stratosphere and mesosphere) has been traditionally believed to be passively transmitting electric fields generated elsewhere. Some observations have reported anomalously large electric fields at these altitudes, and the scientific community has had to revisit the earlier hypothesis time and again. At stratospheric altitudes and especially at low latitudes, horizontal electric fields are believed to be of ionospheric origin. Though measurements of these fields from a balloon platform are challenging because of their small magnitudes (around a few mV m-1), a suitably designed long-duration balloon experiment capable of detecting such small fields can provide useful information on the time evolution of ionospheric electric fields, which is otherwise possible only using radar or satellite in situ measurements. We present herein details of one such experiment, BEENS (Balloon Experiment on the Electrodynamics of Near Space), carried out from a low-latitude site in India. The instrument package for this experiment is comprised of four deployable booms for measurements of horizontal electric fields and one inclined boom for vertical electric field measurements, all equipped with conducting spheres at the tip. The experiment was conducted from Hyderabad (17.5° N, 78.6° E) during the post-midnight hours on 14 December 2013. In spite of a few shortcomings we report herein, a noticeable feature of the observations has been the detection of horizontal electric fields of ˜ 5 mV m-1 at the stratospheric altitudes of ˜ 35 km.

  6. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    PubMed

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  7. Balloon measurements of stratospheric HCl and HF by far infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Shibasaki, Kazuo; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Traub, Wesley A.

    1994-01-01

    We have analyzed atmospheric thermal emission spectra obtained with the balloon-borne FIRS-2 far infrared Fourier transform spectrometer during balloon flights from Palestine, Texas on May 12-13, 1988 and from Fort Sumner, New Mexico on September 26-27, 1989 and on July 4-5, 1990. Seven and two pure rotational transition lines in 100-205 cm(exp -1) range are analyzed for deriving vertical profiles of stratospheric HCl and HF, respectively. We obtain both the daytime and nighttime average vertical profiles from 15 to 50 km. We compare these profiles with the ones obtained in June, 1983 with the first version of FIRS spectrometer during the Balloon Intercomparison Campaign (BIC-2). BIC-2 results were revised to be consistent with the present analysis which uses the latest spectral parameters. According to our comparison results no increase is recognized for HCl but about 3 percent per year increase for HF from 1983 to 1990, assuming a linear trend. These annual increase rates are smaller than those reported by other groups. Recently Rinsland et al. (1991) and Wallace and Livingston (1991) reported long term behavior of total HCl and HF observed on Kit Peak between 1977 and 1990. As Kit Peak is located near both balloon launching sites, Palestine and Fort Sumner, we think our results are favorably comparable with theirs. Comparison results with ours and ground-based measurements will be presented and discussed.

  8. Mid-stratospheric circulations in the southern hemisphere with super pressure balloon trajectories

    NASA Astrophysics Data System (ADS)

    Olivero, John J.; Shaw, A. W.; Williamson, P. R.; Megill, L. R.

    1984-04-01

    Three instrumented super pressure balloons were flown throughout the southern hemisphere at 18 mbar, over a period of 5 months. The balloon trajectories, reconstructued from NIMBUS 6 satellite location data, have proved to be valuable indicators of mid-stratospheric structure and dynamics in the Lagrangian frame of reference. Several examples of high zonal and meridional winds are reported. Also shown in the analysis is a feature encountered between 30°S-40°S during a 2 week period. The feature appears to be a breakdown of large-scale zonal flow and its replacement by weak cyclonic (stationary) eddies. During the observational period of balloon document the spring reversal (of zonal winds and meridional temperature gradient). This is accomplished by the movement of a planetary scale anticyclonic cell, which itself established the boundaries between the easterlies and the westerlies on a day to day basis. Men zonal wind speed analysis from balloon positions were obtained covering the area 15°S-6°S. The results presented here are in substantial agreement with those of Hartmann (1977).

  9. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.

    1994-09-01

    A helium cooled balloon-borne infrared spectrometer was launched from Aire-sur-l'Adour (France) in May, 1986. The experiment used the limb scan technique to measure height profiles of nine stratospheric trace gases prior to, during, and after sunrise. Mixing ration profiles of ozone (O3) and nitrogen pentoxide (N2O5) are presented here. The ozone measurements are compared to in situ measurements taken by electrochemical Brewer/Mast sondes. The N2O5 mixing ratios deduced from predawn measurements are found to be in good agreement with observations obtained by other experiments.

  10. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.

    1988-01-01

    Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.

  11. Infra-red measurements of stratospheric composition. I - The balloon instrument and water vapour measurements

    NASA Technical Reports Server (NTRS)

    Chaloner, C. P.; Drummond, J. R.; Houghton, J. T.; Roscoe, H. K.; Jarnot, R. F.

    1978-01-01

    The design and construction of a balloon-borne instrument for remote-sensing of stratospheric composition is described. Thermal emission from the constituents is detected and the spectral selectivity of the instrument is tailored to a specific gas by the use of a cell of the same gas in the optical path of the radiometer. The pressure of the gas in the cell is cycled and the resultant transmission function is shown to be highly selective to radiation from the same gas in the atmosphere. The first flight of the instrument and the retrieval of a water vapour profile in the range 15-40 km is described.

  12. Comparisons of observed ozone trends in the stratosphere through examination of Umkehr and balloon ozonesonde data

    SciTech Connect

    Miller, A.J.; Nagatani, R.M.; Tiao, G.C.

    1995-06-20

    During the past several years, several authors have published results of the annual and seasonal trends depicted in the total ozone data from both satellite and ground-based observations. The examination of the vertical profile data available from the balloon ozonesonde and Umkehr observations, however, has been generally restricted to limited periods and to nonseasonal trend calculations. Within this study, the authors have examined the nonseasonal and the seasonal trend behavior of the ozone profile data from both ozonesonde and Umkehr measurements in a consistent manner, covering the same extended time period, 1968-1991, thus providing the first overall comparison of results. Their results reaffirm the observation of significant negative ozone trends in both the lower stratosphere (15-20 km), about {minus}6% per decade, and upper stratosphere (35-50 km), about {minus}6% per decade, separated by a nodal point in the region of 25-30 km. The upper stratosphere decrease is, apparently, associated with the classic gas phase chemical effect of the chlorofluorocarbons, whereas the cause of the lower stratospheric decline is still under investigation, but may well be associated with the chlorine and bromine chemistry in this region. 27 refs., 9 figs., 4 tabs.

  13. Small balloon flights for investigating the impact of convective overshooting on the tropical lower stratosphere

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre; Riviere, Emmanuel; Khaykin, Sergey; Held, Gerhard

    Thunderstorm convective overshooting over tropical land can reach an altitude of 20-21 km (Pommereau et al, Cospar 2018, Id 15676). For better understanding the process and the impact on the lower stratosphere, a small balloon flight program combining frequent flights of plastic and large rubber balloons next to thunderstorms has been carried in S-E Brazil in the frame of a French TROPICO project. Given the goal flying as close as possible from thunderstorms and ATC and safety requirements at landing, a specific control procedure was developed based on C-band radar observations and use of light-weight Iridium telemetry/remote control whose data were made available in real time to ATC by Internet for following the flight. A total of 37 flights have been carried out within two 3 weeks campaigns (20 in March 2012 and 17 in February 2013) of 3-40 kg payloads, among which FLASH Lyman alpha stratospheric hygrometers, PicoSDLA water vapor, N2O and CH4 diode laser sensors and COBALD cloud and aerosols detectors, operated and recovered in safe conditions. Altogether those balloon data, complemented by a variety of ground-based measurements of cloud altitude, atmospheric optical thickness and 4 radiosondes/day, allow confirming the stronger convective intensity over land in the southern tropics. An promising approach for further investigating the possible differences with other continents, i.e. Central Africa and Northern Australia, would be to carry similar measurements from long duration circumnavigating Infra Montgolfier, when their flights will be newly authorized. Details on technical aspects, payloads and procedures applied for carrying safe balloon flights in agreement with Brazilian authorities will be presented.

  14. Improved and new balloon-borne instruments for the measurements of stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Gaubicher, Bertrand; Chartier, Michel; Brogniez, Colette; Verwaerde, Christian; Balois, Jean-Yves; Auriol, Frédérique; Palumbo, Pasquale

    order to unambiguously determine the true nature and the shape of the solid aerosols. We will present the instruments under stratospheric balloons involved in aerosols measurements, and the main results already obtained. Then, the strategy of measurements will be discussed for future flights.

  15. Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro; Sato, Kaoru; Hirasawa, Naohiko; Tsutsumi, Masaki; Nakamura, Takuji

    2015-12-01

    Balloon-borne observations of lower stratospheric water vapor were conducted with the Cryogenic Frostpoint Hygrometer (CFH) in July, September, and November 2013 at Syowa Station (69.0oS, 39.6oE) in the Antarctic. High-precision and high vertical resolution data of water vapor concentration up to an altitude of about 28 km were obtained successfully except for a contamination in the observation of July 2013. A comparison between the CFH and coincident satellite (i.e., Aura/MLS) observations showed a good agreement within their uncertainty. A position of Syowa Station relative to the stratospheric polar vortex edge varied depending on both the observation date and altitude. Temperature and pressure histories of the observed air parcels were examined by 10-day backward trajectories. These analyses clearly demonstrated that most air parcels observed in the lower stratosphere above Syowa Station experienced final dehydration inside the polar vortex. On the other hand, a clear signature of rehydration or incomplete dehydration was also observed around a 25 hPa pressure level in the observation of July 2013.

  16. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  17. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon

    NASA Astrophysics Data System (ADS)

    Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro

    2015-09-01

    This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.

  18. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.; Riese, M.; Wuebbels, D. J.

    1997-09-01

    A helium cooled balloon-borne infrared spectrometer was launched twice from Aire sur l'Adour (France; 44°N, 0°E) on 23 September 1983 and 4 May 1986. The experiment used the limb scan technique to measure mixing ratios of the stratospheric trace gases H2O, O3, N2O, NO2, CH4, HNO3 and N2O5 prior to, during, and after sunrise. The first flight was performed as part of the international MAP/Globus (Middle Atmosphere Program/Global Budget of Stratospheric Trace Constituents) campaign. The height profiles obtained during both flights are presented and compared here with data from other experiments. The ozone measurements are compared with in situ measurements taken by electrochemical Brewer/Mast sondes. N2O5 mixing ratios were deduced from predawn measurements. A maximum value of 1.6 ppbv was obtained for a tangent height of 33.7 km. The N2O5 height profile is found to be in good agreement with observations obtained by other experiments, indicating little latitudinal variation at sunrise. The height profile appears to be representative of an atmosphere with background aerosol levels.

  19. Halocarbons in the Stratosphere: A comprehensive NH climatology based on balloon measurements 1977-1999

    NASA Astrophysics Data System (ADS)

    Borchers, R.; Fabian, P.

    2003-04-01

    A 22 year database of stratospheric halocarbon profiles obtained by cryogenic whole air sampling and subsequent GC and GC-MS analyses is presented. Between 1977 and 1999, a total of 35 balloon ascents was carried out at 17.5^oN, 44^oN and 69^oN yielding vertical profiles of CCl_4, CCl_3F, CCl_2F_2, CClF_3, CF_4, CCl_2FCClF_2, CClF_2CClF_2, CClF_2CF_3, CF_3CF_3, CHClF_2, CH_3CCl_3, CH_3Br, CBrClF_2 and CBrF_3, along with those of CH_4 and N_2O and CFC replacement substances such as HFC-134a, HCFC-141b and HCFC-142b, for tropical, middle and high northern latitudes. A suitable regression was applied to the profiles for deriving respective tropospheric mixing ratios, which were compared with available data from surface monitoring within ALE/GAGE/AGAGE, NOAA and Japanese Programs. It turned out that these agreed, with few exceptions, within the absolute calibration uncertainties. Thus a con-sistent data base for all constituents could be established showing their changing abun-dances and the growing chlorine and bromine input into the stratosphere over the years up to 35 km altitude.

  20. Balloon borne Antarctic frost point measurements and their impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.

    1988-01-01

    The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.

  1. Crew Recovery and Contingency Planning for a Manned Stratospheric Balloon Flight - the StratEx Program.

    PubMed

    Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L

    2016-10-01

    stratospheric balloon flight - the StratEx program. Prehosp Disaster Med. 2016;31(5):524-531.

  2. The discrepancy between stratospheric ozone profiles from balloon soundings and from other techniques: A possible explanation

    NASA Technical Reports Server (NTRS)

    Demuer, Dirk; Debacker, Hugo

    1994-01-01

    Regular balloon ozone soundings with electrochemical sondes have been performed at Uccle since 1969. More than 450 ozone soundings between 1985 and 1989 were used to calculate the altitudes Zs from the VIZ radiosonde data and the altitudes Zr deduced from the tracking of the balloon train with a primary wind-finding radar. The values of Zs at fixed times appeared to be systematically too low as compared to Zr. The differences Zr-Zs increase with altitude; at 30 km the annual mean values of Zr-Zs (plus or minus standard deviation) vary between 590 plus or minus 910 m and 1410 plus or minus 1160 m, according to the pressure calibration of different manufacturing series of radiosondes. From these results it is found that around the 30 km level the ozone concentrations calculated from soundings with VIZ sondes are too low by 7.5 to 14 percent, depending upon the manufacturing series of radiosondes. At least part of the discrepancy which has often been found between ozone profiles from balloon soundings and from other techniques such as rocket observations or Umkehr measurements may be explained by this effect. An altitude correction would have important consequences as to the climatology of ozone in the middle stratosphere as adopted at the moment. About half of the day-to-day variability of ozone observed from soundings with VIZ radiosondes above the 30 km level, is induced by the variability of Zr-Zs. The agreement between altitudes calculated from radar data and Vaisala radiosondes is much better; from 34 comparative soundings a mean difference (plus or minus standard deviation) of about -300 plus/minus 180 m was found at 30 km.

  3. The stratospheric aerosol particle measurement by balloon at Syowa Station (69.00 deg S, 39.35 deg E): Outline of special sonde (rubber) campaign JARE 24

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Morita, T.; Itoh, T.; Shibazaki, K.; Makino, Y.; Tanaka, T.; Tsukamura, K.; Yano, T.; Kondoh, K.; Iwashita, G.

    1985-01-01

    During the period of AMA (Antarctic Middle Atmosphere), various style balloons were used to measure atmospheric parameters at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica. The measurements which were made using balloons specially designed to monitor stratospheric aerosol particles are discussed. This type balloon was first used by JARE (Japan Antarctic Research Expedition) 24th Team in 1983. Until that time, the Japan Antarctic Research Expedition Team had been using only a large plastic balloon to monitor various minor constituents in the stratosphere. The plastic balloon was very useful, but it took a long time to arrange a balloon launching. Additionally, launching time strongly depended on weather conditions. A timely launching of the balloon was carried out with this specially designed sonde.

  4. Measuring the vertical distributions of the upper tropospheric and stratospheric dust with a LOAC aerosol counter under meteorological balloons

    NASA Astrophysics Data System (ADS)

    Vignelles, Damien; Renard, Jean-Baptiste; Berthet, Gwenael; Dulac, François; Coute, Benoit; Jeannot, Matthieu; Jegou, Fabrice; Olafsson, Haraldur; Dagsson Waldhauserova, Pavla

    2014-05-01

    The aerosol issue is in a constant growing. At ground, the airborne particles in boundary layer represent a real risk for population and must be control. In the middle troposphere, aerosols play an important role in the microphysics and meteorology, the heterogeneous chemistry is not well understood. In the stratosphere, several teams of researchers have shown that solid aerosols might exist, the question of the dynamic of these solid aerosol in the stratosphere is open. The aim was to develop an instrument that it can make measurements from the ground to the middle stratosphere. This instrument must be able to be put under meteorological balloons, which represent the worst conditions for the development of such instruments in terms of weight, resistance under large variations of temperature and pressure, autonomy and cost if we consider that something throw under a meteorological balloon can be lost after the fly. In the consideration of these conditions, we have developed a new instrument able to make such kind of measurements. This instrument is call LOAC for Light Optical Aerosol Counter. LOAC provides the concentration and size distribution of aerosols on 19 channels from 0.2 μm to 50.0 μm every ten seconds, and determine the main nature of particles (carbonaceous aerosol, mineral, droplets of water or sulfuric acid) in relation with a large range of samples in laboratory. The physical technique is based on the observation of the scattered light by particles at two angles. LOAC is light enough (1 kilogram) to be placed under a meteorological balloon that is very easy to launch such balloons. The goal is to perform a large number of flights to gather information about the dust distribution in stratosphere and to understand the various mechanisms controlling their spatial and temporal variability. About 25 flights with have been performed in the stratosphere with the LOAC above the Mediterranean Sea, from south of Paris, from Aire-Sur-l'Adour (South-West of

  5. MAPLE: reflected light from exoplanets with a 50-cm diameter stratospheric balloon telescope

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Bradley, Colin; Pazder, John; Nash, Reston; Metchev, Stanimir; Grandmont, Frédéric; Maire, Anne-Lise; Belikov, Ruslan; Macintosh, Bruce; Currie, Thayne; Galicher, Raphaël.; Marchis, Franck; Mawet, Dimitri; Serabyn, Eugene; Steinbring, Eric

    2014-08-01

    Detecting light reflected from exoplanets by direct imaging is the next major milestone in the search for, and characterization of, an Earth twin. Due to the high-risk and cost associated with satellites and limitations imposed by the atmosphere for ground-based instruments, we propose a bottom-up approach to reach that ultimate goal with an endeavor named MAPLE. MAPLE first project is a stratospheric balloon experiment called MAPLE-50. MAPLE-50 consists of a 50 cm diameter off-axis telescope working in the near-UV. The advantages of the near-UV are a small inner working angle and an improved contrast for blue planets. Along with the sophisticated tracking system to mitigate balloon pointing errors, MAPLE-50 will have a deformable mirror, a vortex coronograph, and a self-coherent camera as a focal plane wavefront-sensor which employs an Electron Multiplying CCD (EMCCD) as the science detector. The EMCCD will allow photon counting at kHz rates, thereby closely tracking telescope and instrument-bench-induced aberrations as they evolve with time. In addition, the EMCCD will acquire the science data with almost no read noise penalty. To mitigate risk and lower costs, MAPLE-50 will at first have a single optical channel with a minimum of moving parts. The goal is to reach a few times 109 contrast in 25 h worth of flying time, allowing direct detection of Jovians around the nearest stars. Once the 50 cm infrastructure has been validated, the telescope diameter will then be increased to a 1.5 m diameter (MAPLE-150) to reach 1010 contrast and have the capability to image another Earth.

  6. Science measurements and instruments for a planetary science stratospheric balloon platform

    NASA Astrophysics Data System (ADS)

    Hibbitts, C. A.; Young, E.; Kremic, T.; Landis, R.

    Balloon platforms operating in Earth's upper stratosphere offer a unique platform to conduct new, high value planetary science observations of our solar system and exoplanets. There are compelling science drivers for conducting observations from such a balloon platform, with several potential high value science measurements that can be accomplished with one of several instrument concepts. Observations from 100,000 to 120,000 feet, which can last from hours to months, night and day, offer significant advantages over observations from ground and aircraft platforms. The stability of the airmass at float altitude is indistinguishable from space so that diffraction-limited performance can be obtained without adaptive optics, resulting in performance at visible wavelengths better than many ground based assets with larger apertures. With > 99% of the atmosphere, and almost all the telluric water and CO2, beneath the platform, previously obscured spectral windows are also now open (e.g. water, CO2, and the organic fingerprint region of 5-8 μ m), others are now fully free from telluric contributions, and observations in the mid through thermal infrared (IR), as well as shortward into the near ultraviolet (NUV), experience more than an order of magnitude less downwelling radiance than do ground based measurements enabling longer integration times and higher contrast observations. Instrument types that would support high value science include broadband and multispectral high spatial resolution NUV-NIR imagers, multispectral and hyper spectral imagers in the 2.5-5 μ m range, as well as in the 5-8 μ m range.

  7. New spectral features of stratospheric trace gases identified from high-resolution infrared balloon-borne and laboratory spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1989-01-01

    A new Michelson-type interferometer system operating in the infrared at very high resolution has been used to record numerous balloon-borne solar absorption spectra of the stratosphere, ground-based solar absorption spectra, and laboratory spectra of molecules of atmospheric interest. In the present work results obtained for several important stratospheric trace gases, HNO3, CIONO2, HO2NO2, NO2, and COF2, in the 8- to 12-micron spectral region are reported. Many new features of these gases have been identified in the stratospheric spectra. Comparison of the new spectra with line-by-line simulations shows that previous spectral line parameters are often inadequate and that new analysis of high-resolution laboratory and atmospheric spectra and improved theoretical calculations will be required for many bands. Preliminary versions of several sets of improved line parameters under development are discussed.

  8. Huygens Atmospheric Structure Instrument (HASI) test by a stratospheric balloon experiment

    NASA Astrophysics Data System (ADS)

    Fulchignoni, M.; Gaborit, V.; Aboudam, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Lion Stoppato, P.

    2002-09-01

    We developped a series of balloon experiments parachuting a 1:1 scale mock up of the Huygens probe from an altitude larger than 30 km in order to simulate at planetary scale the final part of the descent of the probe in the Titan atmosphere. The Earth atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, with the exception of temperature. A first balloon experiment has been carried out in June 2001 and the results have been reported at the last DPS (V. Gaborit et al., BAAS 33, 38.03) The mock up of the probe descending in the Titan atmosphere for the Huygens Cassini Mission has been successfully launched with stratospheric balloon from Italian Space Agency Base "Luigi Broglio" in Sicily and recovered on May 30th 2002. The probe has been lifted at 32 km altitude and then released to perform a 45 minutes descent decelerated by parachute, to simulate Huygens mission at Titan. Preliminary aerodynamics study of the probe has focused on the achievement of a descent velocity profile and a spin rate profile, satisfying the Huygens mission to Titan requirements. The descent velocity and spin rate have been calculated by solving a system of ODE describing the translational and rotational motion of the probe trough the earth atmosphere during parachute aided descent Results of these calculations have driven the choice of an appropriate angle of attack of the blades in the bottom of the probe and ballast weight during flight. The probe is hosting spares of HASI sensors, housekeeping sensors and other dedicated sensors, Beagle II UV Sensors and Huygens SSP Tilt Sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. Main goals are i) to verify sensor performance and perform a realistic functional test in dynamical and environmental conditions similar to those during the descent in Titan atmosphere; ii) to investigate impact at ground to check the

  9. Atmospheric measurements by Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    2010-05-01

    Results of the first two experiments using semiconductor pixel detectors of the Medipix family for cosmic ray imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an "active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of similar duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere below 24km altitude on 11th October 2009. This balloon platform is quite ideal for such in-situ measurements. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eurolaunch - Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, also testing proper detector calibration by detecting fluxes of ionizing radiation, while evaluating instrumentation endurance and performance.

  10. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  11. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under funding from this proposal we evaluated measurements of stratospheric sulfate aerosols from three platforms. Two were satellite platforms providing solar extinction measurements, the Stratospheric Aerosol and Gas Experiment (SAGE) II using wavelengths from 0.386 - 1.02 microns, and the Halogen Occultation Experiment (HALOE) using wavelengths from 2.45 to 5.26 microns. The third set of measurements was from in situ sampling by balloonborne optical particle counters (OPCs). The goal was to determine the consistency among these data sets. This was accomplished through analysis of the existing measurement records, and through additional balloonborne OPC flights coinciding with new SAGE II observations over Laramie, Wyoming. All analyses used the SAGE II v 6.0 data. This project supported two balloon flights per year over Laramie dedicated to SAGE II coincidence. Because logistical factors, such as poor surface weather or unfavorable payload impact location, can make it difficult to routinely obtain close coincidences with SAGE II, we attempt to conduct nearly every Laramie flight (roughly one per month) in conjunction with a SAGE II overpass. The Laramie flight frequency has varied over the years depending on field commitments and funding sources. Current support for the Laramie measurements is from the National Science Foundation in addition to support from this NASA grant. We have also completed a variety of comparisons using aerosol measurements from SAGE II, OPCs, and HALOE. The instruments were compared for their various estimates of aerosol extinction at the SAGE II wavelengths and for aerosol surface area. Additional results, such as illustrated here, can be found in a recently accepted manuscript describing comparisons between SAGE II, HALOE, and OPCs for the period 1982 - 2000. While overall, the impression from these results is encouraging, the agreement of the measurements changes with latitude, altitude, time, and parameter. In the broadest sense

  12. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  13. Study of the lower stratosphere dynamics by use of super-pressure balloons

    NASA Astrophysics Data System (ADS)

    Vial, F.; Hertzog, A.; Basdevant, C.; Cocquerez, P.; Mechoso, C.

    The use of super-pressure balloons (SPB) to study the tropospheric dynamics, and more generally for weather forecast purposes, was proposed in the fifties. During 1971-1972 CNES, the French Space Agency, conducted the EOLE experiment to study the circulation of the Southern Hemisphere at 200 hPa. For EOLE approximately 500 3.5-meter diameter SPBs where deployed. Since then, satellite communication system (ARGOS) and precise positioning system (GPS) have been developed, allowing frequent and accurately positioned meteorological measurements. This leaded to revisit the SPB concept, in particular in the frame of the STRATEOLE project to study the austral polar vortex dynamics in relation with the ozone hole. For STRATEOLE, CNES has developed a 10-meter diameter SPB designed to drift at 50 hPa, whereas LMD has developed a lightweight measurement gondola for 2month duration flights in cold conditions. This system has been deployed successfully during several test-campaigns in long duration. Scientific results obtained during these campaigns will be briefly presented to illustrate the usefulness of SPB long-duration flights. This observing system is now operational and CNES will conduct VORCORE, the first phase of STRATEOLE, in September 2003. During this experiment, which will be presented in this talk, up to 25 SPBs will be launched from McMurdo to study the Antarctic vortex core. Several other campaigns that are using SPBs have been proposed to CNES to further study tropical and mid-latitudes stratospheric dynamics in the next years. They will be briefly discussed at the end of this presentation.

  14. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Renard, Jean-Baptiste; Robert, Claude; Dalaudier, Francis

    2008-02-01

    Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.

  15. Upper&lower Atmosphere Level and Stratospheric Utilities by Groundbased Observations with Helium Balloon Experiments Via Launching Systems

    NASA Astrophysics Data System (ADS)

    Kucuk, Furkan Ali

    2016-07-01

    We have initiated a low budget project, named "ULUGHBEG", that allows some high altitude experiments at stratosphere level. The main target is launching payloads weigh less than 2,5 kg to stratosphere. We used temperature and humidity insulated boxes made of Styrofoam (thickness:50 mm). Aerogel units which will be installed on the surfaces of boxes will be used for collecting micrometeorites which were spreaded out into stratosphere, after certain meteor showers.Air & light pollution sensors and IR cameras which are installed in our systems can easily detect air and light pollution. Thus, it will be possible to construct air and light pollution database in Turkey from stratosphere level. In this study, all devices and instruments necessary for this project are GPS modules, air & light pollution quality meters, pressure sensors, IR cameras, HD cameras and other specific sensors (i.e. temperature, humidity, radiation etc.). All tests (i.e. vacuum, temperature (ECSS-E-10-03A, ECSS-E-10-04A standarts)) were performed at Istanbul Technical University's Space Systems Test and Design Laboratory. As a summary, this project will help to develop researches related to space and atmospheric sciences in Turkey. Keywords: High Altitude Balloon, Atmospheric Effects, Astroparticle Physics

  16. Impact of spatial inhomogeneities on stratospheric species vertical profiles from remote-sensing balloon-borne instruments

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude

    Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.

  17. Huygens probe mission simulation in Earth's atmosphere: a stratospheric balloon experiment for the Huygens Atmospheric Structure Instrument (HASI)

    NASA Astrophysics Data System (ADS)

    Colombatti, G.; Gaborit, V.; Ferri, F.; Bettanini, C.; Bastianello, S.; Flamini, E.; Antonello, M.; Aboudan, A.; Lion Stoppano, P. F.; Fulchignoni, M.

    2003-04-01

    On May, 30th 2002, a balloon experiment was successfully performed from the ASI stratospheric balloons launch base of Trapani-Milo in Sicily, in order to simulate the descent of the Huygens probe into Titan's atmosphere. This test consisted of the release in the Earth's atmosphere of a 1:1 scale mockup of the Huygens probe, lifted up to the altitude of 32.5 km by means of a stratospheric balloon and decelerated by a parachute. The on-board payload consisted of the HASI instrumentation (pressure, temperature sensors and accelerometers), Huygens SSP tilt sensor, Beagle2 UV sensor and an add-on package of complementary sensors. The descent lasted about 54 minutes and was a unique opportunity to investigate the behaviour of the HASI sensors and to get a real data set for trajectory reconstruction. Other added sensors such as a three axial magnetometer, sun sensors and the tilt sensor were used to investigate the attitude of the probe along the descent. During the flight, all the instrumentation was nominally functioning providing data for the determination of the atmospheric vertical pressure and temperature profiles and the acceleration descent profile of the mockup. The whole data set has been used for the determination of the mockup descent and attitude, and to test the algorithms developed for the Huygens trajectory reconstruction. In the same way, the data analysis improved our understanding of the probe motion (mainly pendulum) and how this motion affects accelerometer measurements. From a scientific point of view, this flight was a success and a new balloon experiment is foreseen in summer 2003 in order to integrate other instruments of the real Huygens probe and to improve and complete the existing results.

  18. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  19. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  20. Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenaël; Jégou, Fabrice; Catoire, Valéry; Krysztofiak, Gisèle; Renard, Jean-Baptiste; Bourassa, Adam E.; Degenstein, Doug A.; Brogniez, Colette; Dorf, Marcel; Kreycy, Sebastian; Pfeilsticker, Klaus; Werner, Bodo; Lefèvre, Franck; Roberts, Tjarda J.; Lurton, Thibaut; Vignelles, Damien; Bègue, Nelson; Bourgeois, Quentin; Daugeron, Daniel; Chartier, Michel; Robert, Claude; Gaubicher, Bertrand; Guimbaud, Christophe

    2017-02-01

    The major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only moderate but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are assumed to be one cause for the reported increase in the global aerosol content over the past 15 years. This particularly enhanced aerosol context raises questions about the effects on stratospheric chemistry which depend on the latitude, altitude and season of injection. In this study, we focus on the midlatitude Sarychev volcano eruption in June 2009, which injected 0.9 Tg of sulfur dioxide (about 20 times less than Pinatubo) into a lower stratosphere mainly governed by high-stratospheric temperatures. Together with in situ measurements of aerosol amounts, we analyse high-resolution in situ and/or remote-sensing observations of NO2, HNO3 and BrO from balloon-borne infrared and UV-visible spectrometers launched in Sweden in August-September 2009. It is shown that differences between observations and three-dimensional (3-D) chemistry-transport model (CTM) outputs are not due to transport calculation issues but rather reflect the chemical impact of the volcanic plume below 19 km altitude. Good measurement-model agreement is obtained when the CTM is driven by volcanic aerosol loadings derived from in situ or space-borne data. As a result of enhanced N2O5 hydrolysis in the Sarychev volcanic aerosol conditions, the model calculates reductions of ˜ 45 % and increases of ˜ 11 % in NO2 and HNO3 amounts respectively over the August-September 2009 period. The decrease in NOx abundances is limited due to the expected saturation effect for high aerosol loadings. The links between the various chemical catalytic cycles involving chlorine, bromine, nitrogen and HOx compounds in the lower stratosphere are discussed. The increased BrO amounts (˜ 22 %) compare rather well with the balloon

  1. A comparison of lidar and balloon-borne particle counter measurements of the stratospheric aerosol 1974-1980

    NASA Astrophysics Data System (ADS)

    Swissler, T. J.; Hamill, P.; Osborn, M.; Russell, P. B.; McCormick, M. P.

    1982-04-01

    The optical radar measurements considered in the present investigation are those which have been obtained routinely at Hampton, VA (37.1 deg N, 76.3 deg W) since 1974. The dustsonde measurements are those made monthly at Laramie, WY (41.2 deg N, 105 deg W). The extensive data sets acquired with these two instruments during the time period 1974-80 permit a long-term comparison of the two different measurement techniques. The balloon-borne dustsonde pumps ambient air in a well-defined stream through an illuminated chamber where individual aerosol particles scatter light into photodetectors. The optical radar system used in the studies has a ruby laser with a 48-inch Cassegrainian configured telescope mounted on a mobile platform to collect the backscattered laser light. The investigation shows that optical radar measurements, dustsonde measurements, and realistic optical models together give a very consistent picture of stratospheric aerosol behavior.

  2. Validation of GOMOS vertical profiles using the stratospheric balloon-borne AMON and SALOMON UV-visible spetrometers

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Chartier, M.; Berthet, G.; Robert, C.; Lemaire, T.; Pepe, F.; George, M.; Pirre, M.

    2003-08-01

    The stratospheric balloon-borne UV-visible spectrometers AMON and SALOMON, which use stars and Moon as light source, respectively, are involved in the validation of the UV-visible spectrometer GOMOS onboard ENVISAT, which uses also stars as light source. A low spectral resolution UV-visible spectrometer, AMON-RA, is also implanted in the AMON gondola, for the analysis of the chromatic scintillation effect. A flight of SALOMON occurred in September 19, 2002, at mid latitude from Aire sur l'Adour, France. An AMON (and AMON-RA) flight occurred at high latitude from Kiruna (northern Sweden) on March 1, 2003. The vertical profiles are compared to those obtained by GOMOS. Taking into account the effect of the chromatic scintillation on the transmission spectra, recommendations will be proposed in order to improve the GOMOS retrievals.

  3. Stratospheric balloon observations of comets C/2013 A1 (Siding Spring), C/2014 E2 (Jacques), and Ceres

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Hibbitts, C. A.; Espiritu, R.; McMichael, R.; Fletcher, Z.; Bernasconi, P.; Adams, J. D.; Lisse, C. M.; Sitko, M. L.; Fernandes, R.; Young, E. F.; Kremic, T.

    2017-01-01

    The Balloon Observation Platform for Planetary Science (BOPPS) was launched from Fort Sumner, New Mexico on September 26, 2014 and observed Oort Cloud comets from a stratospheric balloon observatory, using a 0.8 meter aperture telescope, a pointing system that achieved < 1 arc second pointing stability, and an imaging instrument suite covering the near-ultraviolet to mid-infrared. BOPPS observed two Oort Cloud comets, C/2013 A1 (Siding Spring) and C/2014 E2 (Jacques), at the 2.7 μm wavelength of water emission. BOPPS also observed Ceres at 2.7 μm wavelength to characterize the nature of hydrated materials on Ceres. Absolute flux calibrations were made using observations of A0V stars at nearly the same elevations as each target. The Comet Siding Spring brightness in R-band was magnitude R = 10.8 in a photometric aperture of 17.4″. The inferred H2O production rate from Comet Siding Spring was 6 × 1027 s-1, assuming optically thin emissions, which may be a lower limit if optical depth effects are important. A superheat dust population was discovered at Comet Jacques, producing a bright infrared continuum without evidence for line emission. Observations of Ceres from BOPPS and from IRTF, obtained the same night, did not find evidence for a strong water vapor emission near 2.7 μm and led to an approximate upper limit < 7 × 1027 s-1 for water emission from Ceres.

  4. Precision CMB measurements with long-duration stratospheric balloons: activities in the Arctic

    NASA Astrophysics Data System (ADS)

    de Bernardis, P.; Masi, S.; OLIMPO and LSPE Teams

    2013-01-01

    We report on the activities preparing long duration stratospheric flights, suitable for CMB (Cosmic Microwave Background) measurements, in the Arctic region. We focus on pathfinder flights, and on two forthcoming experiments to be flown from Longyearbyen (Svalbard islands): the OLIMPO Sunyaev-Zeldovich spectrometer, and the Large-Scale Polarization Explorer (LSPE).

  5. Improvement of stratospheric balloon positioning and the impact on Antarctic gravity wave parameter estimation

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Haase, J. S.; Hertzog, A.; Lou, Y.; Vincent, R. A.

    2015-12-01

    Gravity waves (GWs) play an important role in transferring energy and momentum from the troposphere to the middle atmosphere. However, shorter period GWs are generally not explicitly resolved in general circulation models but need to be parameterized instead. Super pressure balloons, which float on the isopycnal surfaces, provide a direct access to measure GW characteristics as a function of wave intrinsic frequency that are needed for these parameterizations. The 30 s sampling rate of the GPS receivers carried on the balloons deployed in 2010 Concordiasi campaign in the Antarctic region is much higher compared to the previous campaigns and can cover the full range of the GW spectrum. Two among 19 balloons in the Concordiasi campaign are also equipped with the high-accuracy dual-frequency GPS receivers initially developed for GPS radio occultation research in addition to the regular single-frequency receivers, which enables us to expect a better accuracy of balloon positions for the purpose of GW momentum flux estimates. The positions are estimated using the Precise Point Positioning with Ambiguity Resolution (PPPAR) method based on the GPS data. Improvements of the positions are significant, from ~3-10 m to ~0.1-0.2 m in 3-D positions, which makes it possible to resolve the Eulerian pressure independently of height for the estimation of the intrinsic phase speed. The impacts of the position improvements on the final GW parameters (momentum flux and intrinsic phase speed) retrievals are highlighted, with ~0.54 mPa difference of the mean absolute momentum flux in Antarctic region and considerable difference in the distribution of the intrinsic phase speed.

  6. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  7. Results from the Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon student campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    Results of the first two experiments using the semiconductor pixel detectors of the Medipix fam-ily for energetic particle imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of 3.5 hour duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere till ceiling altitude of 24km on 11th October 2009. Stratospheric balloon platform is the optimal realization for all in-situ measurements of atmo-spheric electricity. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eu-rolaunch -Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, si-multaneously testing proper detector calibration by detecting fluxes of ionizing radiation while evaluating instrumentation endurance and performance.

  8. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  9. Stratospheric constituent distributions from balloon-based limb thermal emission measurements

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Kunde, Vigil G.

    1990-01-01

    This research task deals with an analysis of infrared thermal emission observations of the Earth's atmosphere for determination of trace constituent distributions. Infrared limb thermal emission spectra in the 700-2000 cm(exp -1) region were obtained with a liquid nitrogen cooled Michelson interferometer-spectrometer (SIRIS) on a balloon flight launched from Palestine, Texas, at nighttime on September 15-16, 1986. An important objective of this work is to obtain simultaneously measured vertical mixing ratio profiles of O3, H2O, N2O, NO2, N2O5, HNO3 and ClONO2 and compare with measurements made with a variety of techniques by other groups as well as with photochemical model calculations. A portion of the observed spectra obtained by SIRIS from the balloon flight on September 15-16, 1986, has been analyzed with a focus on calculation of the total nighttime odd nitrogen budget from the simultaneously measured profiles of important members of the NO(sub x) family. The measurements permit first direct determination of the nighttime total odd nitrogen concentrations NO(sub y) and the partitioning of the important elements of the NO(sub x) family.

  10. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  11. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  12. A Study of Stratospheric Aerosols and Their Effect on Inorganic Chlorine Partitioning Using Balloon, In Situ, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Osterman, G. B.; Salawitch, R. J.; Sen, B.; Toon, G. C.

    1999-01-01

    Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.

  13. Measurements of Bromoform and Dibromomethane in the Seacoast Region of NH, 2002-2004

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Russo, R.; Varner, R.; Wingenter, O.; Blake, D.; Talbot, R.; Sive, B.

    2005-12-01

    Relatively short-lived halocarbons, such as bromoform and dibromomethane, have been shown to be sources of the halogen oxide radical BrO to the atmosphere which can influence tropospheric oxidation processes in both polar and temperate regions. Under strong convective conditions, which are predominate in the tropics, relatively short lived gases can be transported to the stratosphere or reach it as inorganic bromine, thus contributing to ozone depletion. In addition, short-lived marine halocarbons have been frequently used as tracers to investigate the marine influence on air masses. Measurements of these marine tracers are important for improving our understanding of the atmospheric processes that control the production and distribution of air pollutants along coastal marine regions. Halocarbons were measured at two AIRMAP monitoring sites, Thompson Farm (TF), 25 km inland in Durham, NH from 2002-2004 and Appledore Island (AI), 10 km off the coast of NH during the ICARTT 2004 campaign. For this work, we present measurements of bromoform and dibromomethane made at TF, NH (June 1-August 31, 2002, July 3-September 17, 2003, and July 1-August 15, 2004) and at AI, ME (July 2-August 13, 2004). Additionally, results from measurements of these two gases onboard the NASA DC-8 as part of INTEX-A as well as surface seawater measurements of bromoform made onboard the NOAA ship Ronald H. Brown as part of the NEAQS 2002 campaign are presented. Average mixing ratios of bromoform and dibromomethane at AI (14 and 3 pptv, respectively) were higher than at TF in 2002, 2003, and 2004 (5-9 pptv for bromoform and 1-2 pptv for dibromomethane). Mixing ratios of bromoform and dibromomethane at Appledore Island were significantly higher and more variable than those observed at Thompson Farm, indicating the influence of the local marine sources. Thompson Farm and Appledore Island were significantly impacted by coastal sources of marine halocarbons. At both sites, higher mixing ratios of

  14. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  15. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    NASA Technical Reports Server (NTRS)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  16. Validation of GOMOS vertical profiles using the stratospheric balloon-borne AMON and SALOMON UV-Visible spectrometers

    NASA Astrophysics Data System (ADS)

    Renard, J. B.; Chartier, M.; Berthet, G.; Robert, C.; Lemaire, T.; Pepe, F.; George, M.; Pirre, M.

    2003-04-01

    The stratospheric balloon-borne UV-visible spectrometers AMON and SALOMON, which uses stars and Moon as light source, respectively, were involved in the validation of the UV-visible spectrometer GOMOS onboard ENVISAT, which uses also stars as light source. A low spectral resolution UV-visible spectrometer, AMON-RA, is also implanted in the AMON gondola, for the validation of the GOMOS algorithm dedicated to the correction of the chromatic scintillation effect. A flight of SALOMON occurred in September 19, 2002, at mid latitude from Aire sur l’Adour, France. The night-time SALOMON and GOMOS measurements were conducted at the same time (around 21h30 TU) and with a spatial coincidence less than 250 km. Comparison of vertical profiles was done for an altitude in the 15-40 km range. While the global shape of the GOMOS and SALOMON ozone profiles are quite in agreement, the GOMOS NO2 and NO3 profiles are unrealistic when compared to SALOMON profiles. A reanalysis of the GOMOS transmission using algorithms already developed for SALOMON shows that accurate NO2 and NO3 profiles can be retrieved if DOAS technique and dedicated spectral windows are used. An AMON (and AMON-RA) flight and a new SALOMON flight should occurred at high latitude from Kiruna (northern Sweden) in January and March 2003, respectively. The same analyses as for the September 2002 flight will be conducted, including this time the OClO and aerosols extinction coefficient retrievals. Taking into account the effect of the chromatic scintillation on the transmission spectra, recommendations will be proposed in order to improve the GOMOS retrievals.

  17. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  18. Balloon-borne cryogenic frost-point hygrometer observations of water vapour in the tropical upper troposphere and lower stratosphere over India: First results

    NASA Astrophysics Data System (ADS)

    Sunilkumar, S. V.; Muhsin, M.; Emmanuel, Maria; Ramkumar, Geetha; Rajeev, K.; Sijikumar, S.

    2016-03-01

    Balloon-borne cryogenic frost-point hygrometer (CFH) observations of water vapour in the upper troposphere and lower stratosphere (UTLS) region carried out over India, from Trivandrum [8.5°N, 76.9°E] and Hyderabad [17.5°N, 78.6°E], were compared with that obtained from quasi-collocated Aura-Microwave Limb Sounder (MLS) satellite observations. Comparisons show a small dry bias for MLS in the stratosphere. Saturated or super-saturation layers observed near the base of tropical tropopause layer (TTL) are consistent with the quasi-collocated space-based observations of tropical cirrus from KALPANA-1 and CALIPSO. Disturbance of large scale waves in the upper troposphere appears to modulate the water vapour and cirrus distribution.

  19. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Yung, Y. L.; Toon, G. C.; Sen, B.; Blavier, J. F.

    1996-01-01

    Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.

  20. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols.

    PubMed

    Jaegle, L; Yung, Y L; Toon, G C; Sen, B; Blavier, J F

    1996-07-01

    Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.

  1. Balloon Borne Soundings of Water Vapor, Ozone and Temperature in the Upper Tropospheric and Lower Stratosphere as Part of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-2)

    NASA Technical Reports Server (NTRS)

    Voemel, Holger

    2004-01-01

    The main goal of our work was to provide in situ water vapor and ozone profiles in the upper troposphere and lower stratosphere as reference measurements for the validation of SAGE III water vapor and ozone retrievals. We used the NOAA/CMDL frost point hygrometer and ECC ozone sondes on small research balloons to provide continuous profiles between the surface and the mid stratosphere. The NOAA/CMDL frost point hygrometer is currently the only lightweight balloon borne instrument capable of measuring water vapor between the lower troposphere and middle stratosphere. The validation measurements were based in the arctic region of Scandinavia for northern hemisphere observations and in New Zealand for southern hemisphere observations and timed to coincide with overpasses of the SAGE III instrument. In addition to SAGE III validation we also tried to coordinate launches with other instruments and studied dehydration and transport processes in the Arctic stratospheric vortex.

  2. The Cost-Effectiveness of Military Advertising: Evidence from 2002-2004

    DTIC Science & Technology

    2009-01-01

    time these data were collected. In addition, gathering historic information on marketing programs, especially when the identities of advertising ...very least, there is a significant market expansion. However, the Army-only model also indicates that other Services’ advertising draws enlistments...TITLE AND SUBTITLE The Cost-Effectiveness of Military Advertising : Evidence from 2002?2004 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  3. Design of modular probes for stratospheric balloon mission: Thermo mechanical aspects and lession learned from SORA mission.

    NASA Astrophysics Data System (ADS)

    Bettanini, Carlo; Friso, Enrico; Colombatti, Giacomo; Aboudan, Alessio; Flamini, Enrico; Pirrotta, Simone; Debei, Stefano

    Stratospheric balloon missions provide a very effective facility for testing instruments in a space-like environment with drastically lower requirements in funding and sensibly shorter timelines than common space mission. Mainly during ascent to operative altitude and parachuted de-scent the flight units face fast changing environmental conditions which may induce issues in the mechanical and thermal behavior of the equipment. A new concept modular gondola was engineered by CISAS "G.Colombo" at University of Padova,to be easily reconfigured to host scientific experiments with different power and thermal requirements thus sensibly reducing development times and costs. The gondola was mechanically designed to withstand dynamic loads related to parachute opening and ground impact and provided a 1 m x 1m x 0.3 m volume for scientific payloads which is pressure regulated with the use of relief valves and thermally controlled by main CDMU.Furthermore the whole system was able to float in case of descent in water thanks to an optmised design of the main aluminium structure and use of hermetic connections. A custom Command and Data Management Unit with hard-real-time control capabilities has been developed to manage sensors acquisition, data storage, and experiments monitoring and control. The gondola was equipped with IMU, GPS, a downward looking cam-era and a set of health check and housekeeping sensors which sample key parameters as attitude, acceleration and temperature in several parts of the structure feeding housekeeping data to the main pc in order to monitor overall system health. The unit was successfully assembled and tested at University of Padova and used in the flight of the SORA mission launched in summer 2009 from Svalbard islands to map with a penetrating radar the stratification of ice and rock above Northern Greenland. Because of unexpected wind directions the mission trajectory was several hundred kilometers southern than predicted terminating with a

  4. Balloon Profiles of Stratospheric NO(sub 2) and HNO(sub 3) for Testing the Heterogeneous Hydrolysis of N(sub 2)O(sub 5) on Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; McCormick, M. P.

    1993-01-01

    Simultaneous in situ measurements of stratospheric NO(sub 2), HNO(sub 3), HCI, and CH(sub 4) from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS)tunable diode laser spectrometer.

  5. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. III. Presence of aerosols in the middle stratosphere.

    PubMed

    Renard, Jean-Baptiste; Ovarlez, Joëlle; Berthet, Gwenaël; Fussen, Didier; Vanhellemont, Filip; Brogniez, Colette; Hadamcik, Edith; Chartier, Michel; Ovarlez, Henri

    2005-07-01

    The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.

  6. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. III. Presence of aerosols in the middle stratosphere

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Ovarlez, Joëlle; Berthet, Gwenaël; Fussen, Didier; Vanhellemont, Filip; Brogniez, Colette; Hadamcik, Edith; Chartier, Michel; Ovarlez, Henri

    2005-07-01

    The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO_x (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.

  7. Trajectory analysis of Polar Patrol Balloon (PPB) flights in the stratosphere over Antarctica in summer and spring: A preliminary result

    NASA Technical Reports Server (NTRS)

    Kanzawa, Hiroshi; Fujii, Ryoichi; Yamazaki, Koji; Yamanaka, Manabu D.

    1994-01-01

    Actual trajectories of two PPB's which flew in the Antarctic stratosphere in austral summer and spring are compared with those calculated based on objective analysis data of Japan Meteorological Agency (JMA). The differences between the actual and calculated trajectories are discussed to check reliability of the JMA objective analysis data for the stratosphere, and to detect subsynoptic scale variability due to gravity waves and others.

  8. Vertical distribution of non-volatile species of upper tropospheric and lower stratospheric aerosol observed by balloon-borne optical particle counter above Ny-Aalesund, Norway in the winter of 2015

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Hayashi, M.; Shibata, T.; Neuber, R.; Ruhe, W.

    2015-12-01

    The polar lower stratosphere is the sink area of stratospheric global circulation. The composition, concentration and size distribution of aerosol in the polar stratosphere are considered to be strongly influenced by the transportations from mid-latitude to polar region and exchange of stratosphere to troposphere. In order to study the aerosol composition and size distribution in the Arctic stratosphere and the relationship between their aerosol microphysical properties and transport process, we carried out balloon-borne measurement of aerosol volatility above Ny-Aalesund, Norway in the winter of 2015. In our observation, two optical particle counters and a thermo denuder were suspended by one rubber balloon. A particle counter measured the heated aerosol size distribution (after heating at the temperature of 300 degree by the thermo denuder) and the other measured the ambient aerosol size distribution during the observation. The observation was carried out on 15 January, 2015. Balloon arrived at the height of 30km and detailed information of aerosol size distributions in upper troposphere and lower stratosphere for both heated aerosol and ambient aerosol were obtained. As a Result, the number ratio of non-volatile particles to ambient aerosol particles in lower stratosphere (11-15km) showed different feature in particle size range of fine mode (0.3

  9. Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Luce, H.; Hassenpflug, G.; Yamamoto, M.; Fukao, S.

    2007-02-01

    Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST) radar echo power is proportional to the generalized refractive index gradient squared M2 when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-Väisälä frequency N2) at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne) radiosonde-derived M2 and N2 are shown at a better vertical resolution of 50 m with the MU radar (34.85° N, 136.15° E; Japan) by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of M2, as well as profiles of N2. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1) the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR) over the analyzed region of the lower stratosphere, 2) the proportionality of the radar echo power to M2 at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3) the MU radar can provide stability profiles with a vertical resolution of 50 m at heights where humidity is negligible, 4) stable stratospheric layers as thin

  10. Land mobile satellite transmission measurements at 869 MHz: Selected results from the dedicated stratospheric balloon experiment of November 12 and 13, 1984

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.

    1985-01-01

    Satellite transmissions were simulated by placing an 869 MHz and a 1501 MHz transmitter aboard a stratospheric balloon. The balloon was followed on the ground by a van equipped with receivers and data acquisition equipment capable of creating a permanent record of the variations of the received signal amplitude and phase at the two signal frequencies. Results from simulated satellite transmission measurements at 869 MHz are presented. The data show that attenuation by roadside trees can be a limiting factor in systems with a 5 dB fade margin, if 84% availability is not acceptable. In less extreme environments, fading is much less severe. Without fading present, the signal power density function often could be described as Ricean with direct to scattered ratio power ratios of about 100. Phase fluctuations were apparent whenever the signal amplitude fluctuated. The duration of the fades and nonfades tended to cluster close to one wavelength. The power spectrum of both the amplitude and the phase show that most of the fluctuations occur at frequencies below the Doppler shift.

  11. Balloon profiles of stratospheric NO2 and HNO3 for testing the heterogeneous hydrolysis of N2O5 on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; Mccormick, M. P.

    1994-01-01

    Simultaneous in situ measurements of stratospheric NO2, HNO3, HCl, and CH4 from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS) tunable diode laser spectrometer. Although the measurements of NO2, HNO3, and NO2/HNO3 agree well with gas-phase model calculations near 34 km where Stratospheric Aerosol and Gas Experiment (SAGE) 2 data show little sulfate aerosol, this is not true at the lower altitudes where SAGE 2 shows high aerosol loadings. At 24 km the BLISS NO2 and HNO3 measurements are 70% lower and 50% higher, respectively, than the gas phase model predictions, with a measured NO2/HNO3 ratio 5 times smaller. When the heterogeneous hydrolysis of N2O5 and ClONO2 on sulfate aerosol of surface area densities matching the SAGE 2 measurements is added to the model, good agreement with the BLISS measurements is found over the whole altitude range.

  12. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; ValverdeCanossa, J. M.; Selkirk, H. B.; Oltmans, S. J.

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  13. Organochlorine pesticides and PCBs in air of southern Mexico (2002-2004)

    NASA Astrophysics Data System (ADS)

    Alegria, Henry A.; Wong, Fiona; Jantunen, Liisa M.; Bidleman, Terry F.; Figueroa, Miguel Salvador; Bouchot, Gerardo Gold; Moreno, Victor Ceja; Waliszewski, Stefan M.; Infanzon, Raul

    Air samples were collected in southern Mexico in 2002-2004 to determine the extent of contamination with organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs). The ΣDDTs ranged from 239 to 2360 pg m -3. Other prominent OC pesticides were endosulfans, toxaphene and lindane. Pesticides detected in lower concentrations include chlordanes, dieldrin, and heptachlor. Proportions of DDT compounds suggested fresh use of DDT in some locations and a mix of fresh and aged residues at others. Ratios of trans-chlordane/ cis-chlordane were consistent with fresh chlordane usage or emission of residues from former termiticide applications. The ΣPCBs was relatively low at all sites. Concentrations of OC pesticides measured with passive samplers agreed well with those measured using high-volume samplers. Air back trajectory analysis suggests a complex pattern of regional atmospheric transport.

  14. Analysis of OBrO, IO, and OIO absorption signature in UV-visible spectra measured at night and at sunrise by stratospheric balloon-borne instruments

    NASA Astrophysics Data System (ADS)

    Berthet, GwenaëL.; Renard, Jean-Baptiste; Chartier, Michel; Pirre, Michel; Robert, Claude

    2003-03-01

    Absorption bands of OBrO, IO, and OIO in the visible region have been investigated in the data of the AMON ("Absorption par les Minoritaires Ozone et Nox") and SALOMON ("Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et Nox") balloon-borne spectrometers used to obtain measurements in the nighttime stratosphere, since 1992 and 1998 respectively. The absorption features initially detected in AMON residual spectra and attributed to OBrO are also observable in SALOMON data with better accuracy. New estimates of OBrO cross-section amplitudes taking into account recent laboratory measurements are used for the OBrO retrieval. A consequence is that previously published OBrO concentration and mixing ratio values are revised downwards of around 40%. Further tests are performed to assess the consistency of the OBrO detection. No correlation exists between OBrO and NO2 vertical profiles which practically rules out the possibility for the structures ascribed to OBrO absorption to be due to remaining NO2 contributions. It is shown that variability of OBrO quantities at high latitudes obtained from various AMON and SALOMON flights is possibly linked to the chemical processes involving the production of OClO. At midlatitudes, the exceptional and unexpected conditions of the April 28, 1999 SALOMON flight allow us to observe the drop in OBrO concentrations just after sunrise. As expected, if previous studies of stratospheric iodine species are considered, IO and OIO absorption lines are never detected in the residual spectra. The presence of unknown structures in the residual spectra in the IO and OIO absorption regions is obvious and tends to distort the retrievals. The possibility that these remaining features result from a temperature dependence effect or uncertainties of O3 and/or NO2 cross-sections is suggested. Thus, more accurate laboratory measurements and sets of cross-sections for low temperature are needed.

  15. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  16. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  17. Measurement of Elements in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.

    1985-01-01

    Balloon-borne winch system; stratospheric free radicals; stratospheric sounding; copper vapor lasers; ozone measurement; NO2 analysis; chlorine chemistry; trace elements; and ClO observations are discussed.

  18. Diurnal variation of turbulence in troposphere and lower stratosphere using balloon borne radiosonde observations over two tropical stations

    NASA Astrophysics Data System (ADS)

    Muhammed, Muhsin; Sunilkumar, S. V.; Parameswaran, Krishnaswamy; Venkat Ratnam, Madineni; Krishna Murthy, B. V.

    2016-07-01

    A study on the diurnal variabilities of atmospheric stability and occurrence and strength of turbulence in the troposphere and lower stratosphere at two tropical stations, Trivandrum (8.5N, 76.9E) and Gadanki (13.5N, 79.2E), situated in the Indian peninsula is carried out using three years of GPS-radiosonde observations obtained as a part of the Tropical Tropopause Dynamics (TTD) Experiment under the CAWSES-India program. Thorpe method is adopted to estimate the turbulent parameters from radiosonde observations. This study showed that in the Atmospheric Boundary Layer (ABL), both stability and turbulence parameters depict a clear diurnal variation. Over Trivandrum, the occurrence of turbulence as well as its strength peaks during night time and falls off during the day, while at. Gadanki it peaks during the day and falls off during night Above ABL, in the 3-10 km region, the occurrence of turbulence is high with significant strength during night at both the stations. At both the stations, turbulence strength in 10-15 km region does not show any significant diurnal variation when compared to the lower region. But the occurrence frequency of turbulence shows a clear diurnal pattern (high during the day) especially over Trivandrum. This study showed that in the middle troposphere while the occurrence of convective instability is fairly the same at both the stations, wind shear is significantly large at Trivandrum compared to Gadanki and is high during night compared to the day. Thus, below 15 km, while convective instability is mainly responsible for the generation of turbulence at Gadanki, wind shear induced dynamic instability is also responsible for the generation of turbulence at Trivandrum at least during night. In the upper troposphere above 15 km, turbulence at both the stations does not show significant diurnal variability, where wind shear driven instability leads the convective instability in the generation of turbulence. In the Lower Stratosphere (LS

  19. Ecoepidemiological and Social Factors Related to Rabies Incidence in Venezuela during 2002-2004

    PubMed Central

    Rifakis, Pedro M.; Benitez, Jesus A.; Rodriguez-Morales, Alfonso J.; Dickson, Sonia M.; De-La-Paz-Pineda, Jose

    2006-01-01

    Rabies in Venezuela has been important in last years, affecting dogs, cats, and human, among other animals, being a reportable disease. In Zulia state, it is considered a major public health concern. Recently, a considerable increase in the incidence of rabies has been occurring, involving many epidemiological but also ecoepidemiological and social factors. These factors are analyzed in this report. During 2002-2004, 416 rabies cases were recorded. Incidence has been increasingly significantly, affecting mainly dogs (88.94%). Given this epidemiology we associated ecoepidemiological and social factors with rabies incidence in the most affected state, Zulia. In this period 411 rabies cases were recorded. Zulia has varied environmental conditions. It is composed mostly of lowlands bordered in the west by mountain system and in the south by the Andes. The mean is temperature 27.8°C, and mean yearly rainfall is 750 mm. Climatologically, 2002 corresponded with El Niño (drought), middle 2003 evolved to a Neutral period, and 2004 corresponded to La Niña (rainy); this change may have affected many diseases, including rabies. Ecological analysis showed that most cases occurred in lowland area of the state and during rainy season (p<0.05). Additionally, there is an important social problem due to educational deficiencies in the native population. Many ethnic groups live un Zulia, many myths about rabies are in circulation, and the importance of the disease is not widely realized. The full scale of the rabies burden is unknown, owing to inadequate disease surveillance. Although there have been important advances in our knowledge and ability to diagnose and prevent it, enormous challenges remain in animal rabies control and provision of accessible-appropriate human prophylaxis worldwide. Human and animal surveillance including ecological and social factors is needed. PMID:23674960

  20. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  1. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17

    programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining as well as the implementation, cost and effectiveness of potential intervention options, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for resettlement workers living on Rongelap Island along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating the Marshall Islands Radiological Surveillance Program.

  2. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17

    radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and estimating the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for the Enewetak Atoll population group along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.

  3. High Altitude Weather Balloons to Support Rayleigh and Sodium Lidar Studies of the Troposphere, Stratosphere and Mesosphere at the Amundsen-Scott South Pole Station

    NASA Technical Reports Server (NTRS)

    Papen, George

    1995-01-01

    This proposal funded 100 high altitude weather balloons costing $15,500 to support the deployment of a Rayleigh/Raman/Na lidar at the South Pole. One year of measurements have been completed and it is estimated that the balloons will provide another 1-2 years of data.

  4. Recent developments in scientific ballooning and launching of stratopause balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2012-07-01

    The Balloon Facility, Hyderabad has been launching stratospheric zero pressure balloons for scientific, engineering experiments and sounding balloons for getting winds at balloon float altitudes. Sounding balloons of volume 4,000 cubic meters made with thin film of 5.8 microns can reach up to 43 kilometers with a maximum payload of 1 kilogram. To keep pace with growing demand from user scientists in terms of higher payload capability and higher float altitude, developmental work in the area of very thin film continued, resulting in the development of very thin film of 3.8 microns thickness. Using this very thin film, four balloons of volume 60,000 cubic meters each, capable of carrying 10 kilograms payload to stratopause (approximately 47 kilometers) were fabricated for the first time for trial and evaluation. These balloons are precursors to our ultimate aim of developing still thinner film of 2.7 microns, to be used in balloons for reaching mesosphere with 10 kilogram payload. Raw material selection, manufacturing process, test and evaluation of the film in laboratory, new launching techniques for handling the very thin film balloons are described. A summary of the successful balloon flights carried out in last two years for scientific experiments and launching results of very thin film balloon is presented.

  5. Detailed Structure of the Tropical Upper Troposphere and Lower Stratosphere as Revealed by Balloon Sonde Observations of Water Vapor, Ozone, Temperature, and Winds During the NASA TCSP and TC4 Campaigns

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Vomel, Holger; Canossa, Jessica Maria Valverde; Pfister, Leonhard; Diaz, Jorge Andres; Fernandez, Walter; Amador, Jorge; Stolz, Werner; Peng, Grace S.

    2010-01-01

    We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 N, 84.2 W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July - August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above approx 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above approx 360 K. The average minima in this 360 C380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder.

  6. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-12-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  7. Space Weather Ballooning

    NASA Astrophysics Data System (ADS)

    Phillips, Tony; Johnson, Sam; Koske-Phillips, Amelia; White, Michael; Yarborough, Amelia; Lamb, Aaron; Herbst, Anna; Molina, Ferris; Gilpin, Justin; Grah, Olivia; Perez, Ginger; Reid, Carson; Harvey, Joey; Schultz, Jamie

    2016-10-01

    We have developed a "Space Weather Buoy" for measuring upper atmospheric radiation from cosmic rays and solar storms. The Buoy, which is carried to the stratosphere by helium balloons, is relatively inexpensive and uses off-the-shelf technology accessible to small colleges and high schools. Using this device, we have measured two Forbush Decreases and a small surge in atmospheric radiation during the St. Patrick's Day geomagnetic storm of March 2015.

  8. "War on Terror" Is a Curative: Recontextualization and Political Myth-Making in Gloria Macapagal-Arroyo's 2002-2004 State of the Nation Addresses

    ERIC Educational Resources Information Center

    Navera, Gene Segarra

    2011-01-01

    The article examines the State of the Nation addresses (SONA) delivered by Philippine President Gloria Macapagal-Arroyo (2001-2010) from 2002-2004, during which time she actively invoked the need to engage in the U.S. government-led "global war on terror." It specifically investigates how these presidential speeches recontextualized the…

  9. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  10. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  11. The stratcom 8 effort. [stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Reed, E. I. (Editor)

    1980-01-01

    The ozone-nitrogen oxides ultraviolent flux interactions were investigated to obtain data on stratospheric photochemistry. The balloon, rocket, and aircraft operations are described along with the instruments, parameter measurements, and payloads.

  12. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  13. Measurements of stratospheric bromine

    NASA Technical Reports Server (NTRS)

    Sedlacek, W. A.; Lazrus, A. L.; Gandrud, B. W.

    1984-01-01

    From 1974 to 1977, molecules containing acidic bromine were sampled in the stratosphere by using tetrabutyl ammonium hydroxide impregnated filters. Sampling was accomplished by WB-57F aircraft and high-altitude balloons, spanning latitudes from the equator to 75 deg N and altitudes up to 36.6 km. Analytical results are reported for 4 years of measurements and for laboratory simulations that determined the filter collection efficiencies for a number of brominated species. Mass mixing ratios for the collected bromine species in air average about 27 pptm in the stratosphere. Seasonal variability seems to be small.

  14. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2006-01-01

    -flow samples from Beaty Creek was significantly less than phosphorus in base-flow samples from Spavinaw Creek downstream from the Maysville station. Nitrogen concentrations in runoff samples were not significantly different among the stations on Spavinaw Creek; however, the concentrations at Beaty Creek were significantly less than at all other stations. Phosphorus concentrations in runoff samples were not significantly different among the three downstream stations on Spavinaw Creek, and not significantly different at the Maysville station on Spavinaw Creek and the Beaty Creek station. Phosphorus and nitrogen concentrations in runoff samples from all stations generally increased with increasing streamflow. Estimated mean annual nitrogen total loads from 2002-2004 were substantially greater at the Spavinaw Creek stations than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2 times that of Maysville station. Estimated mean annual nitrogen base-flow loads at the Spavinaw Creek stations were about 5 to 11 times greater than base-flow loads at Beaty Creek. The runoff component of the annual nitrogen total load for Beaty Creek was 85 percent, whereas, at the Spavinaw Creek stations, the range in the runoff component was 60 to 66 percent. Estimated mean annual phosphorus total loads from 2002-2004 were greater at the Spavinaw Creek stations from Cherokee to Colcord than at Beaty Creek and increased in a downstream direction from Maysville to Colcord in Spavinaw Creek, with the load at the Colcord station about 2.5 times that of Maysville station. Estimated mean annual phosphorus base-flow loads at the Spavinaw Creek stations were about 2.5 to 19 times greater than at Beaty Creek. Phosphorus base-flow loads increased about 8 times from Maysville to Cherokee in Spavinaw Creek; the base-flow loads were about the same at the three downstream stations. The runoff component

  15. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  16. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  17. Breakthrough in Mars balloon technology

    NASA Astrophysics Data System (ADS)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  18. Measurements of the earth`s stratosphere using balloon-borne far infrared spectroscopy: Simultaneous measurements of HO{sub x}, NO{sub x}, and Cl{sub x}

    SciTech Connect

    Chance, K.

    1995-12-31

    The Smithsonian Astrophysical Observatory far-infrared spectrometer (FIRS-2) measures vertical mixing ratio profiles in the stratosphere from a balloon platform. The FIRS-2 is a high-resolution (0.004 cm{sup -1} unapodized) two-beam Fourier transform spectrometer which measures thermal emission in the regions 80-210 cm{sup -1} and 350-700 cm{sup -1}. Observations are made at various elevation angles, with absolute pointing referenced to a gyroscope- and accelerometer-stabilized single-axis platform. Molecules currently measured include OH, HO{sub 2}, H{sub 2}O, H{sub 2}O{sub 2}, O{sub 3}P, O{sub 2}, O{sub 3}, HCl, HF, HBr, HOCl, HOBr, CO, CO{sub 2}, N{sub 2}O, NO{sub 2}, HNO{sub 3}, and HCN. The measurements, the development of the relevant spectroscopy, and the application of the measurements to improving models of the photochemistry of the ozone layer are discussed.

  19. High-latitude stratospheric winds near summer solstice - The diurnal and semidiurnal solar tides

    NASA Technical Reports Server (NTRS)

    Neubert, T.; Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1983-01-01

    A technique for studying winds and tides at altitudes of approximately 30 km is the continuous and precise tracking of zero-pressure, stratospheric balloons. The CONSOL navigation system allows tracking of a balloon over the North Atlantic for two days or longer. Tidal wind data from 14 balloon trajectories (approximately 670 balloon hours) are presented and compared with theoretical predictions.

  20. Recent progress in planetary balloons

    NASA Astrophysics Data System (ADS)

    Kerzhanovich, Viktor V.; Cutts, James A.

    2001-08-01

    In the last 15 years several balloon mission cencepts have been proposed for Mars and Venus, one of them - Russian-French Mars Aerostat - was extensively developed in 1988-1995 but was terminated before completion. It became clear that a number of critical technologies still needed to be developed prior to committing a costly space mission. In recent years significant progress has been made in two critical fields: aerial deployment and inflation of thin-film balloons for specific planetary applications, and in the development of envelope design for stratospheric applications. This paper describes requirements, proposed concepts, critical elements and trade-offs in planetary balloon missions as well as current results of some of JPL balloon programs.

  1. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Robert, Claude; Chartier, Michel; Pirre, Michel; Brogniez, Colette; Herman, Maurice; Verwaerde, Christian; Balois, Jean-Yves; Ovarlez, Joëlle; Ovarlez, Henri; Crespin, Jacques; Deshler, Terry

    2002-12-01

    The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one hand, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurements of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect of the presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

  2. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  3. Stratospheric Airship Design Sensitivity

    NASA Astrophysics Data System (ADS)

    Smith, Ira Steve; Fortenberry, Michael; Noll, . James; Perry, William

    2012-07-01

    The concept of a stratospheric or high altitude powered platform has been around almost as long as stratospheric free balloons. Airships are defined as Lighter-Than-Air (LTA) vehicles with propulsion and steering systems. Over the past five (5) years there has been an increased interest by the U. S. Department of Defense as well as commercial enterprises in airships at all altitudes. One of these interests is in the area of stratospheric airships. Whereas DoD is primarily interested in things that look down, such platforms offer a platform for science applications, both downward and outward looking. Designing airships to operate in the stratosphere is very challenging due to the extreme high altitude environment. It is significantly different than low altitude airship designs such as observed in the familiar advertising or tourism airships or blimps. The stratospheric airship design is very dependent on the specific application and the particular requirements levied on the vehicle with mass and power limits. The design is a complex iterative process and is sensitive to many factors. In an effort to identify the key factors that have the greatest impacts on the design, a parametric analysis of a simplified airship design has been performed. The results of these studies will be presented.

  4. Middle Atmosphere Program. Handbook for MAP. Volume 15: Balloon techniques

    NASA Technical Reports Server (NTRS)

    Murcray, D. G. (Editor)

    1985-01-01

    Some techniques employed by investigators using balloons to obtain data on the properties of the middle atmosphere are discussed. Much effort has gone into developing instruments which could be used on small balloons to measure temperature and variable species. These efforts are discussed. Remote sensing techniques used to obtain data on atmospheric composition are described. Measurement of stratospheric ions and stratospheric aerosols are also discussed.

  5. Power Systems Design for Long Duration Ballooning

    NASA Technical Reports Server (NTRS)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  6. ORISON, a stratospheric project

    NASA Astrophysics Data System (ADS)

    Ortiz Moreno, Jose Luis; Mueller, Thomas; Duffard, Rene; Juan Lopez-Moreno, Jose; Wolf, Jürgen; Schindler, Karsten; Graf, Friederike

    2016-07-01

    Astronomical research based on satellites is extremely expensive, complex, requires years of development, and the overall difficulties are immense. The ORISON project addresses the feasibility study and the design of a global solution based on platforms on-board stratospheric balloons, which allows overcoming the limitations of the Earth's atmosphere, but at a much lower cost and with fewer complications than on satellite platforms. The overall idea is the use of small low-cost stratospheric balloons, either individually or as a fleet, equipped with light-weight medium-sized telescopes and other instruments to perform specific tasks on short-duration missions. They could carry different payloads for specific "experiments" too, and should be configurable to some degree to accommodate variable instrumentation. These balloon-based telescopes should be designed to be launched from many sites on Earth, not necessarily from remote sites such as Antarctica or near the North Pole, and at low cost. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690013.

  7. Balloons for Science.

    ERIC Educational Resources Information Center

    Lally, Vincent E.

    1982-01-01

    Discusses the nature and use of scientific balloons. Topics addressed include: (1) types of balloons; (2) lifting gases; (3) polyethylene balloons; (4) duration of balloon flight; and (5) use of balloons in scientific research. (JN)

  8. Balloons Revisited

    ERIC Educational Resources Information Center

    Jeskova, Z.; Featonby, D.; Fekova, V.

    2012-01-01

    Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…

  9. Project Together into the Stratosphere

    NASA Astrophysics Data System (ADS)

    Lenza, L.; Kapus, J.; Zavodsky, O.; Erdziak, J.; Zitka, J.; Kizek, R.; Peciva, T.

    2015-09-01

    Stratosphere is easily accessible near-space environment with potential to be extensively used for experiments and interdisciplinary research requiring harsh conditions difficult to simulate on Earth. But it turns out that it has other properties as well. It can also connect people. In this case young people, students and scientists from both sides of former Czechosloyak border, which led to project called "Together into stratosphere". It is a cross-border collaboration project between Valasské Mezirici Observatory in Czech Republic and Slovak Organization for Space Activities in Slovakia, which started in 2013. By sending probes on meteorological balloons to stratosphere, members of this project already executed multiple experiments, which involved biological experiments, measurements of cosmic radiation, technology experiments like tests of photovoltaic panels, JR radiation measurements, R-wave measurements, tests of picosatellite, communication between ground station and stratospheric platform and tests of GPS.

  10. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  11. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  12. Global electrodynamics from superpressure balloons

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; Hu, H.

    1995-08-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  13. Global electrodynamics from superpressure balloons

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Hu, H.

    1995-01-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  14. Curing of epoxy matrix composite in stratosphere

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.

  15. Ballooning Interest.

    ERIC Educational Resources Information Center

    Mebane, Robert C.; Rector, Bronwyn

    1991-01-01

    Presents activities that utilize balloons to encourage students to explore questions related to scientific concepts. Concepts explored include light, heat, charged ions, polarization, and the sense of smell. (MDH)

  16. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  17. Chlorine Chemistry of the Lower Stratosphere: Aircraft (ALIAS, ER-2) and Balloon (BLISSs) In-Situ Measurements of HC1,NO(sub 2), andN(sub 2)O for Testing Heterogeneous Chemistry

    NASA Technical Reports Server (NTRS)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Scott, D.; Stimpfle, R.; Salawitch, R.; Fahey, D.; Woodbridge, E.; Proffitt, M.; Margitan, J.

    1994-01-01

    Stratospheric concentrations of HC1 measured in the northern hemisphere from the ER-2 aircraft are significantly lower than model predictions using both gas phase and heterogeneous chemistry, but measurements in the southern hemisphere are in much better agreement.

  18. Development overview of the revised NASA Ultra Long Duration Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2008-11-01

    The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ˜176,000 m3 (˜6.2 MCF Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ˜176,000 m3 (˜6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.

  19. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  20. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  1. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  2. Balloon Sculpture

    ERIC Educational Resources Information Center

    Warwick, James F.

    1976-01-01

    For the adventurous teacher and student there is an alternative to the often messy mixing, pouring, casting, cutting, scoring and sanding of plaster of Paris for casting or sculptural projects. Balloon sculpture, devised, designed and shown here by a sculptor/teacher, is an eye appealing sculptural form and holds a strong interest for students.…

  3. Fourier spectroscopy of the stratospheric emission

    NASA Technical Reports Server (NTRS)

    Carli, B.; Mencaraglia, F.; Bonetti, A.

    1980-01-01

    Stratospheric emission spectra in the submillimeter range have been recorded with a resolution of 0.0033/cm with a balloon-borne interferometer. Several minor atmospheric constituents have been identified in a preliminary analysis of the spectra; these are water vapor, oxygen, ozone isotopes, nitric acid, nitrous oxide, hydrofluoric and hydrochloric acids, and carbon monoxide.

  4. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  5. Pegaso: Long durations balloons from polar regions

    NASA Astrophysics Data System (ADS)

    Romeo, G. R.; di Stefano, G. D. S.; di Felice, F. D. F.; Masi, S. M.; Cardillo, A. C.; Musso, I. M.; Ibba, R. I.; Palangio, P. P.; Caprara, F. C.; Peterzen, S. P.; Pegaso Group

    Launched from the Mario Zuccelli Station Baia Terra Nova in Antarctica during the 2005 06 austral summer the PEGASO-D payload lifted into the stratospheric anticyclone over the southern polar region This effort marks the first Long Duration Scientific payload to be launched from this location and is the fourth such payload launched in the polar regions Performing in the framework of the NOBILE AMUNDSEN collaborative LDB development between ASI-ARR The Italian Institute of Geophysics and Volcanology INGV with the sponsorship of the Italian Antarctic Program PNRA and the Italian Space Agency ASI designed and built the Ultra-Light system together with three Universities in Italy The Pegaso program has been created to investigate the Earth magnetic field and provide a precursor series of small payload launches for the bigger LDB program such as OLIMPO BOOMERanG and BArSPOrt through this collaboration between ASI and ARR The Italian scientific community aware of the big advantages that LDB balloons can offer to their experiments proposed to extend the LDB program to Southern polar regions besides performing launches from the newly initiated Nobile Amundsen Stratospheric Balloon Center in Svalbard Norway Three PEGASO Polar Explorer for Geomagnetics And other Scientific Observations payloads have been launched from the Svalbard No in collaboration with Andoya Rocket Range ASI and ISTAR Operations and logistics during the past two northern summers These stratospheric altitude m 35000 small 10kmc balloons have floated in the stratosphere between 14 to

  6. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  7. Balloons and Science Kit.

    ERIC Educational Resources Information Center

    Balloon Council, Washington, DC.

    This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…

  8. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  9. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  10. Scientific Report (2002-2004)

    SciTech Connect

    Bedros Afeyan

    2004-05-11

    OAK-B135 An overview of our work as well as two recent publications are contained in this scientific report. The work reported here revolves around the discovery of new coherent nonlinear kinetic waves in laser produced plasmas, we call KEEN waves (kinetic, electrostatic electron nonlinear waves), and optical mixing experiments on the Imega laser system at LLE with blue-green light for the exploration of ways to suppress parametric instabilities in long scale length, long pulsewidth laser-plasmas such as those which will be found on NIF or LMJ.

  11. Exposing Microorganisms in the Stratosphere for Planetary Protection Project

    NASA Technical Reports Server (NTRS)

    Smith, David J. (Compiler)

    2015-01-01

    Earths stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently rotating skewers that hold known quantities of spore-forming bacteria isolated from spacecraft assembly facilities at NASA. Knowing the survival profile of microbes in the stratosphere can uniquely contribute to NASA Planetary Protection for Mars.Objectives 1. Collect environmental data in the stratosphere to understand factors impacting microbial survival. 2. Determine of surviving microbes (compared to starting quantities). 3. Examine microbial DNA mutations induced by stratosphere exposure.

  12. Balloon Kyphoplasty

    PubMed Central

    2004-01-01

    Executive Summary Objective To review the evidence on the effectiveness and cost-effectiveness of balloon kyphoplasty for the treatment of vertebral compression fractures (VCFs). Clinical Need Vertebral compression fractures are one of the most common types of osteoporotic fractures. They can lead to chronic pain and spinal deformity. They are caused when the vertebral body (the thick block of bone at the front of each vertebra) is too weak to support the loads of activities of daily living. Spinal deformity due to a collapsed vertebral body can substantially affect the quality of life of elderly people, who are especially at risk for osteoporotic fractures due to decreasing bone mass with age. A population-based study across 12 European centres recently found that VCFs have a negative impact on health-related quality of life. Complications associated with VCFs are pulmonary dysfunction, eating disorders, loss of independence, and mental status change due to pain and the use of medications. Osteoporotic VCFs also are associated with a higher rate of death. VCFs affect an estimated 25% of women over age 50 years and 40% of women over age 80 years. Only about 30% of these fractures are diagnosed in clinical practice. A Canadian multicentre osteoporosis study reported on the prevalence of vertebral deformity in Canada in people over 50 years of age. To define the limit of normality, they plotted a normal distribution, including mean and standard deviations (SDs) derived from a reference population without any deformity. They reported a prevalence rate of 23.5% in women and a rate of 21.5% in men, using 3 SDs from the mean as the limit of normality. When they used 4 SDs, the prevalence was 9.3% and 7.3%, respectively. They also found the prevalence of vertebral deformity increased with age. For people older than 80 years of age, the prevalence for women and men was 45% and 36%, respectively, using 3 SDs as the limit of normality. About 85% of VCFs are due to primary

  13. The French Balloon Program 2013 - 2017

    NASA Astrophysics Data System (ADS)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  14. Superpressure stratospheric vehicle

    SciTech Connect

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  15. A balloon-borne survey of the mm/sub-mm sky: OLIMPO

    NASA Astrophysics Data System (ADS)

    Masi, S.; Calvo, M.; Conversi, L.; de Bernardis, P.; de Petris, M.; de Troia, G.; Iacoangeli, A.; Lamagna, L.; Marini Bettolo, C.; Melchiorri, A.; Melchiorri, F.; Nati, L.; Nati, F.; Piacentini, F.; Polenta, G.; Valiante, E.; Ade, P.; Hargrave, P.; Mauskopf, P.; Orlando, A.; Pisano, G.; Savini, G.; Tucker, C.; Boscaleri, A.; Peterzen, S.; Colafrancesco, S.; Rephaeli, Y.; Romeo, G.; Salvaterra, L.; Delbart, A.; Juin, J. B.; Magneville, C.; Pansart, J. P.; Yvon, D.

    2005-08-01

    The main objective of the OLIMPO project, a large stratospheric telescope, is the measurement of the Sunyaev-Zeldovich effect in many clusters of galaxies during a long-duration balloon flight. We describe the OLIMPO experiment, and outline the scientific rationale of balloon-borne measurements of the effect.

  16. Evidence for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1987-01-01

    A statistically significant measurement of H2O2 in the stratosphere has been obtained. The results were obtained from the 112.19/cm RQ5 branch of the torsional-rotational spectrum with a remote-sensing far-infrared Fourier transform spectrometer during the Balloon Intercomparison Campaign (BIC-2), on June 20, 1983. The concentration above the balloon gondola is unexpectedly large, corresponding to 0.68 + or - 0.21 parts per billion by volume (ppbv) at an effective altitude of 38.3 km. Below the gondola altitude the concentration of H2O2 is slightly less than expected from the model predictions at 33.2 km (0.19 + or - 0.05 ppbv) and significantly less than expected at 29.3 km (0.08 + or - 0.03 ppbv).

  17. The stratosphere

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.

    2003-01-01

    The stratosphere is that part of the atmosphere which lies between ca.10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  18. The stratosphere.

    PubMed

    Taylor, F W

    2003-01-15

    The stratosphere is that part of the atmosphere which lies between ca. 10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  19. Artemis: A Stratospheric Planet Finder

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Petro, L. D.; Burrows, C.; Ftaclas, C.; Roggemann, M. C.; Trauger, J. T.

    2003-01-01

    The near-space environment of the stratosphere is far superior to terrestrial sites for optical and infrared observations. New balloon technologies will enable flights and safe recovery of 2-ton payloads at altitudes of 35 km for 100 days and longer. The combination of long flights and superb observing conditions make it possible to undertake science programs that otherwise could only be done from orbit. We propose to fly an "Ultra-Hubble" Stratospheric Telescope (UHST) equipped with a coronagraphic camera and active optics at 35 km to search for planets around 200 of the nearest stars. This ULDB mission will establish the frequency of solar-type planetary systems, and provide targets to search for earth-like planets.

  20. Wind-Driven Montgolfiere Balloons for Mars

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  1. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  2. On the Stratospheric Chemistry of Hydrogen Cyanide

    NASA Technical Reports Server (NTRS)

    Kleinbohl, Armin; Toon, Geoffrey C.; Sen, Bhaswar; Blavier, Jean-Francois L.; Weisenstein, Debra K.; Strekowski, Rafal S.; Nicovich, J. Michael; Wine, Paul H.; Wennberg, Paul O.

    2006-01-01

    HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of approx.30% from the reaction of CH3CN with OH is consistent with the measurements.

  3. Interferometer Measurements Of Stratospheric HC1 From 1976 To 1985

    NASA Astrophysics Data System (ADS)

    Fast, Hans; Evans, W. F.

    1989-12-01

    Atmospheric absorption spectra obtained by means of balloon-borne BOMEM interferometers have been analyzed for trends in stratospheric gases. The interferograms were recorded, using the sun as the light source, on stratospheric balloon flights conducted by the Atmospheric Environment Service from 1976 to 1985. In this presentation the altitude distributions of hydrochloric acid derived from the near-infrared fundamental vibration-rotation band are reported. The R(1), R(2), and R(3) spectral lines of H35C1 at 2925.90 cm-1, 2944.91 cm-1, and 2963.29 cm-1, respectively, were used in the analysis. The results and the evidence for an increase in stratospheric HC1 are discussed in relation to other reported measurements and with respect to model calculations of stratospheric ozone depletion.

  4. Energy from solar balloons

    SciTech Connect

    Grena, Roberto

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  5. Stratospheric trace gas sampling with chemical absorption filters

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Lazrus, A. L.; Gandrud, B. W.

    1978-01-01

    Recent interest in stratospheric chemistry, sparked in part by the suggested roles of atomic chlorine (Cl) and nitrogen oxides (NOx) in the catalytic destruction of ozone (O3), has made sampling and measurement of trace constituents above the tropopause highly desirable. An ongoing research program in the In Situ Studies Project at the National Center for Atmospheric Research carries out aircraft and balloon-borne stratospheric chemical sampling at regular intervals by using chemically impregnated filters to collect particles and reactive gases.

  6. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  7. Long Duration Balloon flights development. (Italian Space Agency)

    NASA Astrophysics Data System (ADS)

    Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.

  8. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  9. Overview of the Scientific Balloon Activity in Sweden

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student

  10. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. 1. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers.

    PubMed

    Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel

    2002-12-20

    Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurement in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NO(chi) (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO(chi) (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

  11. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. I. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenaël; Renard, Jean-Baptiste; Brogniez, Colette; Robert, Claude; Chartier, Michel; Pirre, Michel

    2002-12-01

    Aerosol extinction coefficients have been derived in the 375-700-nm spectral domain from measurements in the stratosphere since 1992, at night, at mid- and high latitudes from 15 to 40 km, by two balloonborne spectrometers, Absorption par les Minoritaires Ozone et NOx (AMON) and Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON). Log-normal size distributions associated with the Mie-computed extinction spectra that best fit the measurements permit calculation of integrated properties of the distributions. Although measured extinction spectra that correspond to background aerosols can be reproduced by the Mie scattering model by use of monomodal log-normal size distributions, each flight reveals some large discrepancies between measurement and theory at several altitudes. The agreement between measured and Mie-calculated extinction spectra is significantly improved by use of bimodal log-normal distributions. Nevertheless, neither monomodal nor bimodal distributions permit correct reproduction of some of the measured extinction shapes, especially for the 26 February 1997 AMON flight, which exhibited spectral behavior attributed to particles from a polar stratospheric cloud event.

  12. Water vapor - Stratospheric injection by thunderstorms.

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Lojko, M. S.; Petersen, E. V.

    1971-01-01

    Infrared radiometric inference measurements of the mass of water vapor injected into the lower stratosphere and upper troposphere by a number of plains thunderstorms show an average threefold increase over the fair weather background mass of water vapor. These airborne measurements, made from the National Aeronautics and Space Administration Convair 990 jet laboratory, extended over a sample size much larger than that possible by balloon and other techniques.

  13. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  14. Chlorine monoxide radical, ozone, and hydrogen peroxide - Stratospheric measurements by microwave limb sounding

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Hardy, J. C.; Jarnot, R. F.; Pickett, H. M.

    1981-01-01

    Profiles of stratospheric ozone and chlorine monoxide radical (ClO) have been obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The ClO measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory. The predicted decrease of ClO at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.

  15. Examining the quasibiennial oscillation of total ozone and ozone concentrations at separate stratospheric levels according to data of TOMS satellite instrumentation

    NASA Astrophysics Data System (ADS)

    Bazhenov, O. E.; Makeev, A. P.

    2014-11-01

    The pattern of the quasibiennial oscillation of total ozone over northern territories of Russia (1996-2013) and ozone concentrations at separate stratospheric levels over Arctic sites (2005-2013) are analyzed according to data of TOMS satellite instrumentation. It is shown that the entire period of 1996-2013 can be divided into three intervals: before 2002- 2004, interval between 2002-2004 and 2008-2010, and period after 2008-2010. The quasibiennial oscillation is quite clearly manifested in the first and third periods and is distorted in the second period. The time series of the mixing ratio, composed for separate altitudinal levels, exhibit quasibiennial oscillation, which takes shape at heights of ~30 km and weakens in overlying regions.

  16. Balloon-based infrared solar occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/ and CF/sub 2/Cl(sub 2)

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 an infrared solar occultation experiment was performed with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data were retrieved simultaneous mixing ratio profiles of ozone, water vapor, nitric acid, and CFC-12 between 12 and 35 km. The retrieved ozone and water vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECCs) and frost-point hygrometers, respectively. The retrieved ozone profile was in good agreement with the correlative data. The retrieved values of water vapor mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although there was no concurrent in-situ data for nitric acid and CFC-12, the retrieved profiles were consistent with measurements in the literature.

  17. Balloon-based infrared solar-occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/, and CF/sub 2/Cl/sub 2/. Technical report

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 the authors performed an infrared solar-occultation experiment with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data, the authors retrieved simultaneous mixing-ratio profiles of ozone, water vapor, nitric acid, and CF/sub 2/Cl/sub 2/ between 12 and 35 km. The retrieved ozone and water-vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECC's) and frost-point hygrometers, respectively. The retrieved-ozone profile was in good agreement with the correlative data. The retrieved values of water-vapor-mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although the authors had no concurrent in-situ data for nitric acid and CF/sub 2/Cl/sub 2/, the retrieved profiles were consistent with measurements in the literature.

  18. Flight demonstration of a superpressure balloon by three-dimensional gore design

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Ohta, S.; Honda, H.; Kurokawa, H.; Matsushima, K.

    On May 15, 1999, a balloon with a volume of 3,100 cubic meters was successfully launched from Sanriku Balloon Center of Japan. It became a superpressure balloon at 19.2km in altitude with 20% pressure difference to the ambient atmosphere. This is the first superpressure balloon capable of suspending a heavy payload. It was designed by the new 'three-dimensional gore design' method and was based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. The balloon climbed up to 21.6km in altitude by dropping the ballast and held out against a 64% pressure difference over the ambient atmosphere. This flight test proved the capability of large stratospheric superpressure balloons by this new design method.

  19. Benefits, risks, and costs of stratospheric geoengineering

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Marquardt, Allison; Kravitz, Ben; Stenchikov, Georgiy

    2009-10-01

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  20. Sources of particulates in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Bigg, E. Keith

    2011-10-01

    The dominant forms of particles collected at altitudes of 39, 42 and 45km during three balloon flights over Australia were aggregates having components with diameters typically 40 to 50nm. Their partial electron transparency suggested an organic composition and all were accompanied by a volatile liquid that could be stabilised by reaction with a thin copper film. They closely resembled particles called "fluffy micrometeorites" collected earlier in the mesosphere from rockets and their properties were consistent with those of particles collected from a comet by a recent spacecraft experiment. Particles in the upper stratosphere included some that resembled viruses and cocci, the latter being one of the organisms cultured from upper stratospheric air in a recent experiment. A plausible source of the stratospheric, mesospheric and cometary aggregates is consistent with the "panspermia" theory, that microorganisms present in space at the birth of the solar system could have reproduced in water within comets and brought life to Earth.

  1. Development of a tiny tandem balloon system for atmospheric observation

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  2. Venus Altitude Cycling Balloon

    NASA Astrophysics Data System (ADS)

    de Jong, M. L.

    2015-04-01

    A novel balloon concept is demonstrated that uses mechanical compression as altitude control mechanism to sustain long duration balloon probe flight in the cloud level region of Venus’ atmosphere between 45 and 58 km altitude.

  3. Sinuplasty (Balloon Catheter Dilation)

    MedlinePlus

    ... development of the balloon dilating catheter and its adaptation to sinus surgery. In the 1980s, the field ... used in endoscopic sinus surgery. It is the adaptation or application of minimally-invasive balloon technology to ...

  4. Scientific ballooning in Japan

    NASA Astrophysics Data System (ADS)

    Makino, Fumiyoshi

    Activities in scientific ballooning in Japan during 1998-1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.

  5. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  6. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  7. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  8. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    NASA Astrophysics Data System (ADS)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (< 1 ppm in 1 second integration time for the CO2 sensor, and smaller than several tenths of ppb in 1 second integration time for the CH4 sensor). The instrument should be lighter than 2.5 kg in order to facilitate authorizations, costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  9. POST: Polar Stratospheric Telescope

    NASA Astrophysics Data System (ADS)

    Bely, Pierre Y.; Ford, Holland C.; Burg, Richard; Petro, Larry; White, Rick; Bally, John

    1995-10-01

    The tropopause, typically at 16 to 18 km altitude at the lower latitudes, dips to 8 km in the polar regions. This makes the cold, dry and nonturbulent lower stratosphere accessible to tethered aerostats. Tethered aerostats can fly as high as 12 km and are extremely reliable, lasting for many years. In contrast to free-flying balloons, they can stay on station for weeks at a time, and payloads can be safely recovered for maintenance and adjustment and relaunched in a matter of hours. We propose to use such a platform, located first in the Arctic (near Fairbanks, Alaska) and, potentially, later in the Antarctic, to operate a new technology 6-meter, diluted aperture telescope with diffraction-limited performance in the near infrared. Thanks to the low ambient temperature (220 K), thermal emission from the optics is of the same order as that of the zodiacal light in the 2 to 3 micron band. Since this wavelength interval is the darkest part of the zodiacal light spectrum from optical wavelengths to 100 microns, the combination of high resolution images and a very dark sky make it the spectral region of choice for observing the redshifted light from galaxies and clusters of galaxies at moderate to high redshifts.

  10. Smithsonian stratospheric far-infrared spectrometer and data reduction system

    NASA Technical Reports Server (NTRS)

    Johnson, D. G.; Jucks, K. W.; Traub, W. A.; Chance, K. V.

    1995-01-01

    The Smithsonian far-infrared spectrometer (FIRS) is a remote sensing Fourier transform spectrometer that measures the mid- and far-infrared thermal emission spectrum of the stratosphere from balloon and aircraft platforms. The spectrometer has had nine successful balloon flights from 1987 to 1994, flying at float altitudes of 36 - 39 km and collecting 131 hours of midlatitude stratospheric limb spectra. The spectrometer also flew on a NASA CD-8 aircraft, as part of the second Airborne Arctic Stratospheric Expedition (AASE-2), collecting 140 hours of overhead spectra at latitudes ranging from the equator to the north pole. We present here a brief description of the instrument, a discussion of data reduction procedures, an estimation of both random and systematic errors, an outline of the procedure for retrieving mixing ratio profiles, and an explanation of the method of deriving temperature and pressure from the far- and mid-infrared spectra.

  11. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  12. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  13. Balloon observations of spatial coherence in the Global Circuit

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; Polar Patrol Balloon Team

    The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990-1991 and 1992-1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002-2003. This paper will present the global circuit results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (3 balloons). Payloads of these 3 flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a "Balloon Cluster" is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ˜ 60 to ˜ 500 km. This paper will present the global circuit observations with emphasis on the times of apparent spatial variation in the vertical fair weather field.

  14. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  15. Unmanned powered balloons

    NASA Technical Reports Server (NTRS)

    Korn, A. O.

    1975-01-01

    In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.

  16. Percutaneous balloon pericardiotomy: a double-balloon technique.

    PubMed

    Iaffaldano, R A; Jones, P; Lewis, B E; Eleftheriades, E G; Johnson, S A; McKiernan, T L

    1995-09-01

    We describe a double-balloon technique for performing a percutaneous balloon pericardiotomy. This technique was employed when the large, single dilation balloon customarily used for this procedure failed to fully inflate across the parietal pericardium. Two smaller balloons were advanced through the same skin tract and simultaneously inflated, thus producing an adequate pericardial window. This double-balloon technique allowed for the more secure anchoring of the balloons across the pericardium and for the delivery of greater dilation pressures.

  17. Advances in balloon endoscopes.

    PubMed

    Araki, Akihiro; Tsuchiya, Kiichiro; Watanabe, Mamoru

    2014-06-01

    In September 2003, a double-balloon endoscope (DBE) composed of balloons attached to a scope and an overtube was released in Japan prior to becoming available in other parts of the world. The DBE was developed by Dr. Yamamoto (1), and 5 different types of scopes with different uses have already been marketed. In April 2007, a single-balloon small intestinal endoscope was released with a balloon attached only to the overtube as a subsequent model. This article presents a detailed account of the development of these scopes up to the present time.

  18. GHOST balloons around Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  19. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  20. Stratospheric aircraft: Impact on the stratosphere

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  1. Stratospheric aircraft: Impact on the stratosphere?

    SciTech Connect

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  2. Airborne Arctic Stratospheric Expedition 2: Air Parcel Trajectories

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An overview of Airborne Arctic Stratospheric Expedition 2 is given. Effects of Pinatubo aerosol on stratospheric ozone at mid-latitudes, in situ measurements of ClO and ClO/HCl ratio, balloon-borne measurements of ClO, NO, and O3 in a volcanic cloud, and new observations of the NO(y)/N2O correlation in the lower stratosphere are discussed. Among other topics addressed are the following: in situ tracer correlations of methane, nitrous oxide, and ozone as observed aboard the DC-8, in situ measurements of changes in stratospheric aerosol and the N2O-aerosol relationship inside and outside of the polar vortex, measurements of halogenated organic compounds near the tropical tropopause, and airborne brightness measurements of the polar winter troposphere.

  3. Observations and parameterization of the stratospheric electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hu, Hua; Holzworth, Robert H.

    1996-12-01

    Simultaneous in situ measurements of the stratospheric electrical conductivity, made from multiple balloon platforms during the 1992-1993 Extended Life Balloon-Borne Observatories (ELBBO) experiment, have yielded the most comprehensive data set on the stratospheric electrical conductivity. The ELBBO project involved launches of five superpressure balloons into the stratosphere from Dunedin, New Zealand, beginning November 10, 1992, and lasting through March 18, 1993. Most of the balloons floated at a constant altitude of 26 km for over 3 months, covered a wide range of latitudes from the South Pole to 28°S, and circled around the southern hemisphere several times. On average, the positive polar conductivity (conductivity of positive ions alone) was about 15% higher than that of the negative conductivity, suggesting that differences may exist between the mobilities of positive and negative ions. Data from each polarity of polar conductivity also indicate persistent, apparently organized, short-term and localized variations, with amplitude within 30% of the mean value. In corrected geomagnetic (CGM) coordinates the conductivity variations were found to be a function of latitude but not of longitude. The total conductivity can increase 150% from low latitude to high latitude, and does remain nearly constant at latitudes above 55° (namely, the cosmic ray knee latitude). Calculations based on ionization theory demonstrate that the latitudinal variations in the conductivity measurements were mainly due to the latitudinal variations in incident galactic cosmic ray intensity, with only little effect from the air temperature variations. The calculations shown here also suggest that small ions (as opposed to large ions) provide the main contribution to the stratospheric conductivity. The comparisons between conductivity measurements and models show that commonly used models can underestimate the latitudinal variation by a factor of 2. In this paper the stratospheric

  4. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  5. The Great Balloon Controversy.

    ERIC Educational Resources Information Center

    Chase, Valerie

    1989-01-01

    Discusses the harmful effects of balloon launches and the dumping of plastic debris into oceans. Cites several examples of plastic materials being discovered inside the bodies of sick and/or dead marine animals. Offers alternative activities to releasing balloons into the atmosphere. (RT)

  6. Balloon film strain measurement

    NASA Astrophysics Data System (ADS)

    Rand, James L.

    In order to understand the state of stress in scientific balloons, a need exists for the measurement of film deformation in flight. The results of a flight test program are reported where material strain was measured for the first time during the inflation, launch, ascent and float of a typical natural shape, zero pressure scientific balloon.

  7. Clefting in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  8. Development of a Super-Pressure Balloon with an Improved Design

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  9. Intercomparison of measurements of stratospheric hydrogen fluoride

    NASA Technical Reports Server (NTRS)

    Mankin, William G.; Coffey, M. T.; Chance, K. V.; Traub, W. A.; Carli, B.; Mencaraglia, F.; Piccioli, S.; Farmer, C. B.; Seals, R. K.

    1990-01-01

    Observations of the vertical profile of hydrogen fluoride (HF) vapor in the stratosphere and of the vertical column amounts of HF above certain altitudes were made using a variety of spectroscopic instruments in the 1982 and 1983 Balloon Intercomparison Campaigns. Both emission instruments working in the far-infrared spectral region and absorption instruments using solar occultation in the 2.5-micron region were employed. No systematic differences were seen in results from the two spectral regions. A mean profile from 20 - 45 km is presented, with uncertainties ranging from 20 to 50 percent. Total columns measured from ground and from 12 km are consistent with the profile if the mixing ratio for HF is small in the troposphere and low stratosphere.

  10. Is stratospheric air getting younger with time?

    NASA Astrophysics Data System (ADS)

    Monge-Sanz, Beatriz; Chipperfield, Martyn; Dee, Dick; Simmons, Adrian; Stiller, Gabriele

    2014-05-01

    Most climate models have predicted that with the increase in greenhouse gases concentrations, the stratospheric circulation will intensify, showing younger age-of-air (AoA) values in this region (e.g. Butchart et al., 2010; WMO, 2011). However, balloon and satellite observations do not agree with the widespread modelled trend towards younger age-of-air (Engel et al., 2009; Stiller et al., 2012). To increase our confidence in climate-chemistry projections, the causes for the apparent age-of-air disagreement between observations and most models need to be identified. Here we have carried out stratospheric simulations with a chemistry transport model (CTM) to evaluate the stratospheric circulation with the ERA-Interim dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim reanalysis provides age-of-air (AoA) distributions in very good agreement with observations in the lower stratosphere. Given this agreement, we have used our simulations to quantify interannual variability and trends in the stratospheric AoA for the whole ERA-Interim period (1979-present). Our model results with ERA-Interim fields disagree with the decreasing tendency in age-of-air widespread in most models, but are in good agreement with the recent age-of-air studies based on observations. To explore potential causes for the AoA trends in our model, Lagrangian calculations are also performed to assess mixing processes for the ERA-Interim period. Potential links between our modelled AoA trends and stratospheric ozone evolution are also shown. References: Butchart, et al., 2010. J. Climate, 23, 5349-5374, doi:10.1175/2010JCLI3404.1. Engel et al., 2009. Nat. Geosci. 2: 28-31, doi:10.1038/ngeo388. Stiller et al., 2012. Atmos. Chem. Phys. 12: 3311-3331, doi:10.5194/acp-12-3311-2012. WMO. 2011. Global Ozone Research and Monitoring Project -Report No. 52.

  11. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  12. Stratospheric ozone measurements at the equator

    NASA Technical Reports Server (NTRS)

    Ilyas, Mohammad

    1994-01-01

    A balloon-borne project for ozone layer measurements was undertaken using the MAST ozone sondes and ASTOR radiosondes. Previously published data on this series (Ilyas, 1984) was recently re-analyzed using a rigorous technique to evaluate correction factors (ranging between 1.2 to 1.4). The revised data presented here, show that at the tropospheric and lower stratospheric levels, the ozone concentrations at the equator are much lower than the mid-latitude concentrations. The layer of peak concentration is found to be shifted upward compared to the mid-latitude profile and above this the two profiles get closer.

  13. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  14. Free radicals in the stratosphere - A new observational technique

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Hazen, N. L.; Mclaren, B. E.; Rowe, S. P.; Schiller, C. M.; Schwab, M. J.; Solomon, L.; Thompson, E. E.; Weinstock, E. M.

    1985-01-01

    A new approach to in situ observations of trace reactive species in the stratosphere is described. A balloon-borne system, floating 40 kilometers above the earth's surface, successfully lowered and then retracted a cluster of instruments a distance of 12 kilometers on a filament of Kevlar. This instrument cluster is capable of detecting gas-phase free radicals at the part-per-trillion level. The suspended instrument array has excellent stability and has been used to measured atomic oxygen concentrations in the stratosphere.

  15. Free radicals in the stratosphere: a new observational technique.

    PubMed

    Anderson, J G; Hazen, N L; McLaren, B E; Rowe, S P; Schiller, C M; Schwab, M J; Solomon, L; Thompson, E E; Weinstock, E M

    1985-06-14

    A new approach to in situ observations of trace reactive species in the stratosphere is described. A balloon-borne system, floating 40 kilometers above the earth's surface, successfully lowered and then retracted a cluster of instruments a distance of 12 kilometers on a filament of Kevlar. This instrument cluster is capable of detecting gas-phase free radicals at the part-per-trillion level. The suspended instrument array has excellent stability and has been used to measure atomic oxygen concentrations in the stratosphere.

  16. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  17. Balloon Catheter Prevents Contamination

    NASA Technical Reports Server (NTRS)

    Higginson, Gregory A.; Bouffard, Marc R.; Hoehicke, Beth S.; King, Bradley D.; Peterson, Sandra L.

    1994-01-01

    Balloon catheter similar to that used in such medical procedures as angioplasty and heart surgery protects small orifices against contamination and blockage by chips generated in machining operations. Includes small, inflatable balloon at end of thin, flexible tube. Contains additional features adapting it to anticontamination service: balloon larger to fit wider channel it must block; made of polyurethane (rather than latex), which does not fragment if bursts; material made thicker to resist abrasion better; and kink-resistant axial wire helps catheter negotiate tight bends.

  18. Balloon Study of the Global Circuit: Spatial Coherence and Correlation with Lightning Observations

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; Bering, E. A.; Kokorowski, M.; Reddell, B.; Kadokura, A.; Yamagishi, H.; Sato, N.; Ejiri, M.; Hirosawa, H.; Yamagami, T.; Torii, S.; Tohyama, F.; Nakagawa, M.; Okada, T.

    2004-12-01

    The second campaign of the Polar Patrol Balloon (PPB) experiment (2nd-PPB) was carried out at Syowa Station in Antarctica during 2002-2003. This paper will present the global circuit results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (3 balloons). Payloads of these 3 flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a ``Balloon Cluster'' is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ˜60 to ˜500 km. This paper will present the global circuit observations with emphasis on the times of apparent spatial variation in the vertical fair weather field. This paper will also present stratospheric conductivity observations with emphasis on the temporal and spatial variations that were observed. Finally, the inferred current density will be compared with data from the WWLL (TOGA) lightning monitor experiment.

  19. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  20. Orbit control of a stratospheric satellite with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  1. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 KM

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.

    1988-01-01

    The major events and results to date of the ongoing program of measuring stratospheric composition by the technique of far-infrared Fourier-transform spectroscopy from a balloon-borne platform are reviewed. The highlights of this period were the two balloon flight campaigns which were performed at Palestine, Texas, both of which produced large amounts of scientifically useful data.

  2. Ballooning Interest in Science.

    ERIC Educational Resources Information Center

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  3. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  4. NASA Now: Balloon Research

    NASA Video Gallery

    In this NASA Now program, Debbie Fairbrother discusses two types of high-altitude balloons that NASA is using to test scientific instruments and spacecraft. She also talks about the Ideal Gas Law a...

  5. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    NASA Astrophysics Data System (ADS)

    Schur, W.

    The scientific community's desire for large capacity, constant altitude, long duration stratospheric platforms is not likely going to be met by un-reinforced spherical super-pressure balloons. More likely, the pneumatic envelope for the large-scale super-pressure balloon of the future will be a tendon reinforced structure in which the tendons perform the primary pressure load confining function and the skin serves as a gas barrier and transfers the local pressure load to the tendons. NASA's Ultra Long Duration Balloon (ULDB), which is currently under development, is of that type. By separating the load carrying function of the tendons and the skin a number of advantages are gained. Perhaps most important is the fact that the required skin strength remains to first order independent of the balloon size. Only the size and number of tendons are dictated by the balloon size. By designing the balloon to be at least quasi statically determinate, the stress distributions are more certain, and stress raisers due to fabrication imperfections are more easily controlled and it becomes unnecessary to account for load path uncertainties by providing everywhere excessive strength and structural weight. Furthermore, it becomes possible to use for the envelope skin a visco-elastic film (polyethylene) that has proven performance in the stratospheric environment. The silhouette shape of this balloon type has prompted early researchers to name this design a "pumpkin" shape balloon. Later investigators accepted this terminology. The pumpkin shape balloon concept was adopted by NASA for its ULDB design at the end of 1998 when advantages of that design over a spherical shape design were convincingly demonstrated. Two stratospheric test flights of large-scale super-pressure balloons demonstrated the functioning of this balloon type. In the second successful flight the switch was made from an excessively strong and heavy skin, a holdover from the earlier concept of a spherical design, to

  6. How stratospheric are deep stratospheric intrusions?

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Giehl, H.; Scheel, H.-E.; Sprenger, M.; Stohl, A.

    2014-06-01

    Preliminary attempts of quantifying the stratospheric ozone contribution in the observations at the Zugspitze summit (2962 m a.s.l.) next to Garmisch-Partenkirchen in the German Alps had yielded an approximate doubling of the stratospheric fraction of the Zugspitze ozone during the time period 1978 and 2004. These investigations had been based on data filtering by using low relative humidity and elevated 7Be as the criteria for selecting half-hour intervals of ozone data representative of stratospheric intrusion air. For quantifying the residual stratospheric component in stratospherically influenced air masses, however, the mixing of tropospheric air into the stratospheric intrusion layers must be taken into account. In fact, the dew-point-mirror instrument at the Zugspitze summit station rarely registers relative humidity (RH) values lower than 10% in stratospheric air intrusions. Since 2007 a programme of routine lidar sounding of ozone, water vapour and aerosol has been conducted in the Garmisch-Partenkirchen area. The lidar results demonstrate that the intrusion layers are dryer by roughly one order of magnitude than indicated in the in-situ measurements. Even in thin layers frequently RH values clearly below 1% have been observed. These thin, undiluted layers present an important challenge for atmospheric modelling. Although the ozone values never reach values typical of the lower-stratosphere it becomes, thus, obvious that, without strong wind shear or convective processes, mixing of stratospheric and tropospheric air must be very slow in most of the free troposphere. As a consequence, the analysis the Zugspitze data can be assumed to be more reliable than anticipated. Finally, the concentrations of Zugspitze carbon monoxide rarely drop inside intrusion layers and normally stay clearly above full stratospheric values. This indicates that most of the CO and, thus, the intrusion air mass originate in the shallow "mixing layer" around the thermal tropopause

  7. How stratospheric are deep stratospheric intrusions?

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Giehl, H.; Scheel, H.-E.; Sprenger, M.; Stohl, A.

    2014-09-01

    Preliminary attempts of quantifying the stratospheric ozone contribution in the observations at the Zugspitze summit (2962 m a.s.l.) next to Garmisch-Partenkirchen in the German Alps had yielded an approximate doubling of the stratospheric fraction of the Zugspitze ozone during the time period 1978 to 2004. These investigations had been based on data filtering by using low relative humidity (RH) and elevated 7Be as the criteria for selecting half-hour intervals of ozone data representative of stratospheric intrusion air. To quantify the residual stratospheric component in stratospherically influenced air masses, however, the mixing of tropospheric air into the stratospheric intrusion layers must be taken into account. In fact, the dewpoint mirror instrument at the Zugspitze summit station rarely registers RH values lower than 10% in stratospheric air intrusions. Since 2007 a programme of routine lidar sounding of ozone, water vapour and aerosol has been conducted in the Garmisch-Partenkirchen area. The lidar results demonstrate that the intrusion layers are drier by roughly one order of magnitude than indicated in the in situ measurements. Even in thin layers RH values clearly below 1% have frequently been observed. These thin, undiluted layers present an important challenge for atmospheric modelling. Although the ozone values never reach values typical of the lower-stratosphere it becomes, thus, obvious that, without strong wind shear or convective processes, mixing of stratospheric and tropospheric air must be very slow in most of the free troposphere. As a consequence, the analysis the Zugspitze data can be assumed to be more reliable than anticipated. Finally, the concentrations of Zugspitze carbon monoxide rarely drop inside intrusion layers and normally stay clearly above full stratospheric values. This indicates that most of the CO, and thus the intrusion air mass, originates in the shallow "mixing layer" around the thermal tropopause. The CO mixing ratio in

  8. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  9. Ozone in the troposphere and stratosphere, part 2

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D. (Editor)

    1994-01-01

    This is the second of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  10. Optical Studies of Nitrogen Oxides in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Noxon, J. F.

    1984-01-01

    Several observational approaches were used to study the oxides of nitrogen in the stratosphere. Two species are accessible in the visible range: NO2 (400 to 450 nm) and NO3 (620 to 670 nm). In the infrared NO, NO2 and HNO3 can be studied easily only if measurements are made from above the tropopause where the water density becomes low. Measurements were carried out both by ground-based techniques as well as aircraft and balloons.

  11. Ozone in the Troposphere and Stratosphere, part 1

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1994-01-01

    This is the first part of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at the Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  12. Stratospheric constituent measurements using UV solar occultation technique

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Gillis, J.; Goldman, A.; Kosters, J. J.

    1981-01-01

    The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset.

  13. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  14. A balloon ozone measurement utilizing an optical absorption cell and an ejector air sampler

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Ashenfelter, T. E.

    1976-01-01

    Stratospheric ozone was measured from a balloon utilizing an ultraviolet absorption cell. The ambient air was sampled by means of an aspirator attached to the output end of the optical cell. A nominal ozone distribution was obtained from 16 km to the float altitude of 38 km.

  15. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  16. Recent lidar measurements of stratospheric ozone and temperature within the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Ferrare, Richard; Butler, James J.; Frost, Robert L.; Gross, Michael; Margitan, James

    1991-01-01

    The Goddard mobile lidar was deployed at Cannon Air Force Base near Clovis, New Mexico during the Spring of 1990. Measurements of stratospheric ozone and temperature were made over a period of six weeks. Data from the lidar system is compared with data from a balloon-borne, ultraviolet instrument launched from nearby Ft. Sumner, New Mexico. Along with several improvements to this instrument which are now underway, a second lidar dedicated to temperature and aerosol measurements is now being developed.

  17. Drop test of the Huygens probe from a stratospheric balloon

    NASA Astrophysics Data System (ADS)

    Jäkel, E.; Rideau, P.; Nugteren, P. R.; Underwood, J.; Faucon, P.; Lebreton, J.-P.

    Huygens is an atmospheric Probe designed for the in-situ exploration of the atmosphere of Titan. Huygens is the ESA-provided element of the joint NASA/ESA Cassini-Huygens mission to Saturn and Titan. The Cassini-Huygens launch is foreseen in October 1997. After a 7-year journey through the Solar system, Huygens will separate from the mother spacecraft, the Cassini Saturn Orbiter, in early November 2004. About 3 weeks after separation, the Huygens Probe will enter into the upper atmosphere of Titan protected by its heat shield. Following the ejection of the heat shield, the parachute will be deployed for controlling the descent through the atmosphere of Titan down to the surface. The descent will last between 2 and 2 1/2 hours. For the drop test, a full scale model of the Huygens Probe, which included all flight-like mechanisms and parachutes, was developed. The main objective of the test was to demonstrate the parachute deployment sequence; a secondary objective was to characterise the science-driven probe stability and spin design features during the parachute descent phase.

  18. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  19. About ozone depletion in stratosphere over Brazil in last decade

    NASA Astrophysics Data System (ADS)

    Martin, Inácio M.; Imai, Takeshi; Seguchi, Tomio

    The depletion of stratospheric ozone, resulting from the emission of chlorofluorocarbons (CFCs), has become a major issue since 1980. The decrease in stratospheric ozone over the polar regions has been pronounced at the South Pole than at the North Pole. In mid-latitude and equatorial regions, ozone depletion becomes less important; it depends on seasonal effects and on the characteristics of a particular region. The detailed mechanism by which the polar ozone holes form is different from that for the mid-latitude thinning, but the most important process in both trends is the catalytic destruction of ozone by atomic chlorine and bromine. The main source of these halogen atoms in the stratosphere is photodissociation of CFC compounds, commonly called freons, and of bromofluorocarbon compounds known as halons. These compounds are transported into the stratosphere after being emitted at the surface. Both ozone depletion mechanisms strengthened as emissions of CFCs and halons increased [1]. Measurements of stratospheric ozone carried out on several locations in Brazil and on the South Pole in the last decade (1996-2005), using detectors placed on ground, stratospheric balloons and Earth Probe TOMS satellites, are presented here. Detailed series analysis from 1980 up to the present describes a mean ozone depletion of 4[1] http://en.wikipedia.org/wiki/Ozone/depletion.

  20. A new reeling technique for very long extension scanning in the stratosphere

    NASA Astrophysics Data System (ADS)

    Hazen, N. L.; Anderson, J. G.

    A balloon borne winching system has been developed for extending a very long tether with payload down into the stratosphere and recovering it; this has been flight proven by being carried to an altitude of 40 km, lowering a 62 kg stratospheric photochemistry experiment 12 km at a descent velocity of ~6-8 m/sec and recovering it at comparable velocities. During the first flight, data gave no evidence of dynamic instabilities due to the system or the stratospheric interactions. The future utility of this payload is discussed with attention to the design factors that bound the range of performance of this type of system.

  1. Troposphere-to-stratosphere transport in the tropics

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre

    2010-04-01

    The analysis of the data collected over Brazil, Northern Australia and Africa from balloons, high altitude aircraft and satellites during the recent HIBISCUS, TROCCINOX, SCOUT-O3 and AMMA European campaigns, has led to significant revision in the understanding of troposphere-to-stratosphere transport. Repeated observations of strong updrafts of adiabatically cooled and washed-out tropospheric air rich in chemical and greenhouse gases by convective overshooting over the three continents, demonstrate the high frequency of occurrence of such events in contrast to their generally assumed scarcity. Moreover, global scale information provided by ODIN and CALIPSO satellite observations suggests that the mechanism could play a major, if not dominant, role in troposphere-to-stratosphere transport in contrast to the generally evoked slow ascent by radiative heating. Ignored by global scale models because of their limited extension and duration, convective overshootings might have a significant impact on the chemistry and climate of the stratosphere.

  2. Deliberating stratospheric aerosols for climate geoengineering and the SPICE project

    NASA Astrophysics Data System (ADS)

    Pidgeon, Nick; Parkhill, Karen; Corner, Adam; Vaughan, Naomi

    2013-05-01

    Increasing concerns about the narrowing window for averting dangerous climate change have prompted calls for research into geoengineering, alongside dialogue with the public regarding this as a possible response. We report results of the first public engagement study to explore the ethics and acceptability of stratospheric aerosol technology and a proposed field trial (the Stratospheric Particle Injection for Climate Engineering (SPICE) 'pipe and balloon' test bed) of components for an aerosol deployment mechanism. Although almost all of our participants were willing to allow the field trial to proceed, very few were comfortable with using stratospheric aerosols. This Perspective also discusses how these findings were used in a responsible innovation process for the SPICE project initiated by the UK's research councils.

  3. Development of a balloon volume sensor for pulsating balloon catheters.

    PubMed

    Nolan, Timothy D C; Hattler, Brack G; Federspiel, William J

    2004-01-01

    Helium pulsed balloons are integral components of several cardiovascular devices, including intraaortic balloon pumps (IABP) and a novel intravenous respiratory support catheter. Effective use of these devices clinically requires full inflation and deflation of the balloon, and improper operating conditions that lead to balloon under-inflation can potentially reduce respiratory or cardiac support provided to the patient. The goal of the present study was to extend basic spirographic techniques to develop a system to dynamically measure balloon volumes suitable for use in rapidly pulsating balloon catheters. The dynamic balloon volume sensor system (DBVSS) developed here used hot wire anemometry to measure helium flow in the drive line from console to catheter and integrated the flow to determine the volume delivered in each balloon pulsation. An important component of the DBVSS was an algorithm to automatically detect and adjust flow signals and measured balloon volumes in the presence of gas composition changes that arise from helium leaks occurring in these systems. The DBVSS was capable of measuring balloon volumes within 5-10% of actual balloon volumes over a broad range of operating conditions relevant to IABP and the respiratory support catheter. This includes variations in helium concentration from 70-100%, pulsation frequencies from 120-480 beats per minute, and simulated clinical conditions of reduced balloon filling caused by constricted vessels, increased driveline, or catheter resistance.

  4. Simulations of the trend and annual cycle in stratospheric CO{sub 2}

    SciTech Connect

    Hall, T.M.; Prather, M.J.

    1993-06-20

    The distribution and evolution of stratospheric CO{sub 2} in response to the observed annual cycle, interannual variations, and long-term trends in tropospheric CO{sub 2} is simulated with the GISS 23 layer stratospheric general circulation model. Carbon dioxide is a tracer of stratospheric transport which has essentially no local sources or sinks but still displays gradients due to the forcing at the surface. Consequently, observations of stratospheric CO{sub 2}, until recently limited to a few flask samples, but now included as a high frequency in situ sampling in aircraft campaigns, provide a test of tracer transport in stratospheric simulations independent of model chemistry. In the authors model, CO{sub 2} enters the stratosphere primarily through the tropical tropopause, where air parcels are effectively labeled in time by their CO{sub 2} values (although not uniquely because of the cycles in the tropospheric concentration). Parcels of differing ages are subsequently mixed in the stratosphere. Only when the growth is purely linear can the CO{sub 2} offset in a parcel relative to the troposphere be interpreted as the average time since stratospheric air was last in contact with the troposphere, i.e., the {open_quotes}age{close_quotes} of the stratosphere. This model is in qualitative agreement with multiyear averages of balloon soundings at northern mid- and high latitudes; the stratosphere at 30 km at mid-latitudes is about 4 years (6 ppm of CO{sub 2}) behind the troposphere. The authors predict significant propagation of the CO{sub 2} annual cycle into the lower stratosphere, an effect which must be accounted for when interpreting observations. While the annual cycle is negligible above the lower stratosphere, interannual oscillations, such as those associated with El Ninos, can propagate well into the middle stratosphere as positive offsets from the linear trend lasting significantly longer than their duration in the troposphere. 30 refs., 9 figs.

  5. Gradient magnetometer system balloons

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Tsvetkov, Yury

    2005-08-01

    Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.

  6. Stability of lobed balloons

    NASA Astrophysics Data System (ADS)

    Pagitz, M.; Xu, Y.; Pellegrino, S.

    This paper presents a computational study of the stability of simple lobed balloon structures. The particular structure that is investigated is a stack of pumpkin-shaped envelopes with a common axis of symmetry, and hence forming a kind of lobed cylinder. The number of the pumpkin envelopes is one of the variables that is investigated; a number of shape imperfections are also considered. This lobed cylinder is an axi-symmetric, idealised version of the lobed pumpkin balloons that have occasionally deployed into anomalous, clefted configurations. By studying in detail the behaviour of lobed cylinder we are able to draw some preliminary conclusions about general features of the behaviour of lobed pumpkin balloons.

  7. Balloon gondola diagnostics package

    NASA Astrophysics Data System (ADS)

    Cantor, K. M.

    1986-10-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  8. Trends in stratospheric temperature

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Newman, P. A.; Rosenfield, J. E.; Angell, J.; Barnett, J.; Boville, B. A.; Chandra, S.; Fels, S.; Fleming, E.; Gelman, M.

    1989-01-01

    Stratospheric temperatures for long-term and recent trends and the determination of whether observed changes in upper stratospheric temperatures are consistent with observed ozone changes are discussed. The long-term temperature trends were determined up to 30mb from radiosonde analysis (since 1970) and rocketsondes (since 1969 and 1973) up to the lower mesosphere, principally in the Northern Hemisphere. The more recent trends (since 1979) incorporate satellite observations. The mechanisms that can produce recent temperature trends in the stratosphere are discussed. The following general effects are discussed: changes in ozone, changes in other radiatively active trace gases, changes in aerosols, changes in solar flux, and dynamical changes. Computations were made to estimate the temperature changes associated with the upper stratospheric ozone changes reported by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus-7 and the Stratospheric Aerosol and Gas Experiment (SAGE) instruments.

  9. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  10. Hybrid Global Communication Architecture with Balloons and Satellites

    NASA Astrophysics Data System (ADS)

    Pignolet, G.; Celeste, A.; Erb, B.

    2002-01-01

    Global space communication systems have been developed now for more than three decades, based mainly on geostationary satellites or almost equivalent systems such as the Molnya orbit concepts. The last decade of the twentieth century has seen the emergence of satellite constellations in low or medium Earth orbit, in order to improve accessibility in terms of visibility at higher latitudes and limited size or power requirement for ground equipment. However such systems are complex to operate, there are still many situations where connection may remain difficult to achieve, and commercial benefits are still to be proven. A new concept, using a network combination of geostationary relay satellites and high altitude stratospheric platforms may well overcome the inconveniences of both geostationary systems and satellite constellations to improve greatly global communication in the future. The emergence of enabling technologies developed in Japan and in several other countries will soon make it possible to fly helium balloons in the upper layers of the atmosphere, at altitudes of 20 km or more. At such an altitude, well above the meteorological disturbances and the jet-streams, the stratosphere enjoys a regular wind at moderate speeds ranging between 10 m/s and 30 m/s, depending on latitude and also on season. It is possible for balloons powered by electric engines to fly non- stop upstream of the wind in order to remain stationary above a particular location. Large balloons, with sizes up to 300 m in length, would be able to carry sub-satellite communication payloads, as well as observation apparatus and scientific equipment. The range of visibility for easy both-way communication between the balloon and operators or customers on the ground could be as large as 200 km in radius. Most current studies consider a combination of solar cells and storage batteries to power the balloons, but microwave beam wireless power transportation from the ground could be a very

  11. Global budget of stratospheric trace constituents (GLOBUS). MAP/GLOBUS 1983: A review

    NASA Technical Reports Server (NTRS)

    Offermann, D.

    1989-01-01

    MAP/GLOBUS 1983 was a project for the study of stratospheric trace gases and dynamics. A respective field campaign was performed in September/October 1983 in Western Europe. A large number of measurements were taken by instruments based on the ground, on airplane, balloons, and satellite. The structure of the campaign is described, and a survey of the results are given.

  12. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    NASA Astrophysics Data System (ADS)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  13. Electrodynamics of the Middle Atmosphere: Superpressure Balloon Program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1990-01-01

    This project called Electrodynamics of the Middle Atmosphere (EMA): Superpressure Balloon Program was begun by the PI at the Aerospace Corporation in Los Angeles under joint NSF and NASA funding originally combined in one grant ATM80-17071 and has continued at the University of Washington under grants ATM8212283, ATM84-11326 and ATM86-15628 and NASA grants NAGW-724 and NAGS-635. In the EMA experiment a comprehensive set of electrical parameters was measured during eight long-duration balloon flights in the Southern Hemisphere stratosphere. These flights resulted in the largest vector electric field data set ever collected from the stratosphere which has been a treasure-trove of new phenomena. Since the stratosphere has never been electrodynamically sampled in this systematic manner before, it is perhaps not surprising that several new discoveries have been made and reported. Another way to measure the success of this first EMA project is to note that all together the total data rate was about 1 bit/sec/payload amounting to 12 MBytes (1/3 of 1 standard 1600 BPI magnetic tape) which nevertheless has resulted in 14 papers and 2 masters theses (so far! . Ten of these papers and one masters thesis specifically acknowledge the support by NASA grant NAGS-635 are discussed herein.

  14. Balloons of the Civil War

    DTIC Science & Technology

    1994-06-03

    summer. The indirect path involved transporting the Army of the Potomac south, via the water network , to some point nearer Richmond, and thence...using the telegraph. and signal stations near his balloons to communicate with headquarters. Logistic support for the balloons flowed via the water ... network to Aquia Creek Station Landing and then overland to the balloon camps. Two of four balloons available were sent back to Washington for repairs

  15. Balloon borne Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Lubin, Philip M.

    2015-08-01

    We report on modeling of a balloon borne mission to survey the 1-5 micron region with sensitivity close to the zodiacal light limits in portions of this band. Such a survey is compelling for numerous science programs and is complimentary to the upcoming Euclid, WFIRST and other orbital missions. Balloons borne missions offer much lower cost access and rapid technological implementation but with much less exposure time and increased backgrounds. For some science missions the complimentary nature of these is extremely useful. .

  16. Is there a stratospheric fountain?

    NASA Astrophysics Data System (ADS)

    Pommereau, J.-P.; Held, G.

    2007-06-01

    The impact of convection on the thermal structure of the Tropical Tropopause Layer (TTL) was investigated from a series of four daily radiosonde ascents and weather S-band radar observations carried out during the HIBISCUS campaign in the South Atlantic Convergence Zone in Southeast Brazil in February 2004. The temperature profiles display a large impact of convective activity on the thermal structure of the TTL. Compared to non-active periods, convection is observed to result in a cooling of 4.5°C to 7.5°C at the Lapse Rate Tropopause at 16 km, propagating up to 19 km or 440 K potential temperature levels in the stratosphere in most intense convective cases. Consistent with the diurnal cycle of echo top heights seen by a S-band weather radar, a systematic temperature diurnal cycle is observed in the layer, displaying a rapid cooling of 3.5°C on average (-9°, -2°C extremes) during the development phase of convection in the early afternoon during the most active period. Since the cooling occurs during daytime within a timescale of 6-h, its maximum amplitude is at the altitude of the Cold Point Tropopause at 390 K and temperature fluctuations associated to gravity waves do not display significant diurnal change, the afternoon cooling of the TTL cannot be attributed to radiation, advection, gravity waves or adiabatic lofting. It implies a fast insertion of adiabatically cooled air parcels by overshooting turrets followed by mixing with the warmer environment. During most intense convective days, the overshoot is shown to penetrate the stratosphere up to 450 K potential temperature level. Such fast updraft offers an explanation for the presence of ice crystals, and enhanced water vapour layers observed up to 18-19 km (410-430 K) in the same area by the HIBISCUS balloons and the TROCCINOX Geophysica aircraft, as well as high tropospheric chemical species concentrations in the TTL over land observed from space. Overall, injection of cold air by irreversible mixing

  17. A feasibility study for measuring stratospheric turbulence using metrac positioning system

    NASA Technical Reports Server (NTRS)

    Gage, K. S.; Jasperson, W. H.

    1975-01-01

    The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.

  18. Balloon angioplasty - short segment

    MedlinePlus

    Angioplasty is a procedure to open narrowed or blocked arteries caused by deposits of plaque. If the blockage is not major, the problem may be corrected by inflating the balloon several times to compact the plaque against the arterial wall, widening the passage for the blood ...

  19. Particle Astrophysics Using Balloons

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays, energetic particles coming from outer space, bring us information about the physical processes that accelerate particles to relativistic energies, about the effects of those particles in driving dynamical processes in our Galaxy, and about the distribution of matter and fields in interstellar space. Cosmic rays were discovered in the early twentieth century using a balloon-borne electroscope. Balloons are currently being used for answering fundamental questions about the cosmos: (1) Is the Universe symmetric, and if so where is the antimatter? (2) What is the dark matter? (3) How do cosmic rays get their enormous energies? (4) Can the entire energy spectrum of cosmic rays result from a single acceleration mechanism? (5) Are supernovae really the sources of cosmic rays? (6) What is the history of cosmic rays in the Galaxy? (7) What is the origin of the "knee" in the cosmic ray energy spectrum? etc. The status of results from past balloon-borne measurements and expected results from ongoing and planned future balloon-borne particle astrophysics experiments will be reviewed.

  20. Flow Past a Descending Balloon

    NASA Technical Reports Server (NTRS)

    Baginski, Frank

    2001-01-01

    In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.

  1. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  2. Hardware, integration & support for the ASI BIRBA balloon campaigns since year 2000

    NASA Astrophysics Data System (ADS)

    Donati, A.; Petracchi, L.; Neri, G.; Zolesi, V.

    In the history of the space exploration, the stratospheric balloons have been among the first platforms used to carry out scientific experiments. The Italian Space Agency (ASI) has a long experience of missions with sounding balloons, managing the launch base of Trapani-Milo and executing launches over the Mediterranean sea with flight duration of about 24 hours. From year 2000 Kayser Italia (KI) have been commissioned by ASI to develop incubators for biology and physical science to be used for balloon missions, and to provide mission support during the balloon campaigns. On this basis KI developed the BIRBA incubator, that was used in four mission campaigns from 2000 to 2002. A large set of BIRBA incubators are currently available at ASI for carrying out new mission campaigns.

  3. Assessment of explanted PTCA balloons.

    PubMed

    Behrend, D; Zinner, G; Sternberg, K; Schroeder, M; Schmitz, K P; Haubold, A

    2000-10-01

    The data presented here are part of a on-going study to define the surface characteristics and properties of explanted PTCA catheters in a further effort to address some of the ramifications of the re-use issue. PTCA balloon catheter were examined after angioplasty in one hundred and sixty-eight patients (n = 168). This series included six balloon types from three manufacturers. The fresh fixed and dehydrated balloons were examined at first with light microscopy and then in a scanning electron microscope. X-ray semiquantitative microanalysis and FT-IR-ATR analysis were also performed on the balloons. Because most blood proteins are water soluble, we examined unfixed balloons with a protein silver staining kit for detection of adhered proteins described by Heukeshoven. A further method for protein detection is the Lowry-analysis. With this method water insoluble proteins can be observed. Our study has shown convincingly that all deployed angioplasty catheters were coated with adherent protein layers. Plaque particles were found embedded in the surfaces of most of the balloons examined. Fissuring and micro tearing of balloon surfaces was noted. FT-IR-ATR analyses of the blood contacted balloon surfaces did not show any peaks indicative of proteins on the balloon surface. The silver staining method also did not show any evidence of protein adsorption on the balloons. On the other hand, the Lowry-analysis yielded clear evidence that water insoluble proteins were adherent to the balloon surfaces. The average measured protein concentration was 17 microg/ml.

  4. Venus Balloons using Water Vapor

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Honda, H.; Imamura, T.

    We propose an inflatable balloon using water vapor for the lifting gas, which is liquid in the transportation stage before entry into the high temperature atmosphere. The envelope of the balloon has an outer layer for gas barrier (a high-temperature resistant film) and an inner layer for liquid water keeping. In the descent stage using a parachute, water widely held just inside the balloon envelope can be quickly vaporized by a lot of heat flux from the surrounding high-temperature atmosphere owing to the large surface area of the balloon. As neither gas containers nor heat exchangers are necessary, we can construct a simple, lightweight and small size Venus balloon probe system. Tentative floating altitude is 35 km below the thick clouds in the Venusian atmosphere. Selection of balloon shape and material for balloon envelope are discussed in consideration of the Venusian environment such as high-temperature, high-pressure, and sulfuric acid. Balloon deployment and inflation sequence is numerically simulated. In case of the total floating mass of 10 kg at the altitude of 35 km, the volume and mass of the balloon is 1.5 cubic meters, and 3.5 kg, respectively. The shape of the balloon is chosen to be cylindrical with a small diameter. The mass of li fting gas can be determined as 4.3 kg and the remaining 2.2 kg becomes the payload mass. The mass of the total balloon system is also just 10 kg excluding the entry capsule.

  5. Optimum Designs for Superpressure Balloons

    NASA Astrophysics Data System (ADS)

    Smith, M.; Rainwater, E.

    Natural shape balloons have been employed for minimum stress envelope design in zero pressure scientific balloons since the 1940's. Superpressure balloons, on the other hand, have traditionally been spheres with tangential load attachment points. Application of natural shape design principles to superpressure balloons is relatively new. The resulting natural shape superpressure balloon shape generally fits Euler's Elastica. There are numerous examples of superpressure cylinder balloons which take on the elastica shape when pressurized. Techniques tried for reducing circumferential stresses in the NASA ULDB natural shape superpressure balloons have revealed new challenges both for design and manufacture. This paper will present a thorough background in the development of the current design concept as well as a review of the current challenges associated with manufacturing these envelopes. Approaches for achieving an optimum design will be presented along with ground and flight test data.

  6. Long-term variability of stratospheric temperature above central Antarctica

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Shirochkov, A. V.

    Long-term variations of atmospheric temperature at different isobaric surfaces above central Antarctica were studied. Data of atmospheric balloon soundings at two Antarctic intercontinental stations Vostok and Amundsen-Scott (South Pole) taken for the last 40 years were used in this study. It was found that stratospheric temperature at both stations averaged seasonally or annually does not demonstrate any meaningful correlation with correspondent sunspot number variations. On the other hand, there is a notable correlation between stratospheric temperature at both stations and annually averaged values of the solar wind dynamic pressure. Mutual coupling between stratosphere thermal regimes at two stations demonstrates obvious seasonal dependence: there is a good correlation between them in summer while it disappears in winter and equinoxes. It was found also that stratospheric temperature above South Pole Station varies in the same manner as correspondent parameter above North Pole as reported previously by Labitzke and Naujokat [SPARC Newsletter 15 (2000) 11]. At both geographic poles, stratospheric temperature had obvious tendency to warming in 1972-1995. On the other hand, the correspondent Vostok data demonstrates clear tendency to cooling in this period. Possible explanations of these results are given.

  7. Evaluation of new stratospheric age tracers and SF6

    NASA Astrophysics Data System (ADS)

    Laube, J. C.; Gallacher, E.; Oram, D.; Boenisch, H.; Engel, A.; Fraser, P. J.; Röckmann, T.; Sturges, W. T.

    2015-12-01

    Sulphur hexafluoride (SF6) is a very long-lived, potent greenhouse gas. Its abundances continue to increase in the atmosphere. Due to its inert behaviour it has also been extensively used as a tracer of transport in the ocean, the troposphere and the stratosphere. We here combine long-term tropospheric records obtained from the Cape Grim Baseline station, Tasmania, with stratospheric data from high-altitude aircraft and balloon campaigns. We then assess the novel use of several alternative transport tracers (e.g. C2F6, C3F8 and HFC-23) in the stratosphere. The results indicate good suitability for some of these gases in terms of their inertness, tropospheric growth rates and measurement precisions. In addition we and compare the derived mean ages to those obtained from SF6 and find indications for the possibility of the existence of a stratospheric SF6 sink. The latter finding would also imply that the total atmospheric lifetime of SF6 is substantially shorter than previously believed, with further implications for its use as a transport tracer in the stratosphere.

  8. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  9. Studies of thin film nonlinear viscoelasticity for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D.

    2010-01-01

    In order to provide scientists with a stratospheric platform from which to conduct long duration research, a superpressure balloon is desired which will maintain a relatively constant volume for weeks at a time. The pumpkin shaped balloon has been developed by making use of the surface lobing to limit the circumferential stress and meridional tendons to carry the loads in the other direction. However, in order to prevent geometric instabilities during deployment and after pressurization, the design should eliminate as much excess material as possible while not exceeding the permissible stresses of the material. This paper will describe the behavior of the very thin membrane material selected for this application and the limits of the film in a biaxial state of stress. In addition, it is shown that the viscoelastic nature of the film will limit the stress by causing a reduced radius of curvature in the lobe of the pumpkin.

  10. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  11. A method for establishing a long duration, stratospheric platform for astronomical research

    NASA Astrophysics Data System (ADS)

    Fesen, Robert; Brown, Yorke

    2015-10-01

    During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.

  12. Stratospheric H2O

    NASA Technical Reports Server (NTRS)

    Ellsaesser, H. W.; Harries, J. E.; Kley, D.; Penndorf, R.

    1980-01-01

    The present state of our knowledge and understanding of H2O in the stratosphere is reviewed. This reveals continuing discrepancies between observations and expectations following from the Brewer-Dobson hypothesis of stratospheric circulation. In particular, available observations indicate unexplained upward and poleward directed H2O gradients immediately downstream from the tropical tropopause and variable vertical gradients above 20 km which generally disagree with those expected from oxidation of CH4.

  13. Stratospheric ozone is decreasing

    NASA Astrophysics Data System (ADS)

    Kerr, Richard A.

    1988-03-01

    The recent discovery that chlorofluorocarbons create the Antarctic ozone hole every October through reactions mediated by ice particles formed at the lowest temperatures of the stratosphere is discussed. A large-scale reanalysis of measurements reveals that protective stratospheric ozone has decreased during the past 17 yrs with some decreases greatly exceeding predictions. It is noted that standard models did not, and still do not, include the ice in their reaction schemes. A tendency toward larger losses at higher colder latitudes is seen.

  14. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  15. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  16. Dilatation balloons: polymer selection, balloon design and assembly.

    PubMed

    Crittenden, J F

    1987-01-01

    The current status of coronary dilating instruments is presented from the designer's perspective. Catheter shaft design is considered by important features, common catheter materials and types of catheter construction. Among the seven companies manufacturing balloon dilating instruments, only three types of catheter and four materials are offered. Balloon design is presented by important features and by materials selected. Performance comparisons are made between the three materials used to fabricate dilating balloons: PVC, PE and PET.

  17. Vega balloon meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Ingersoll, A. P.; Hildebrand, C. E.; Preston, R. A.

    1990-01-01

    The Vega balloons obtained in situ measurements of pressure, temperature, vertical winds, cloud density, ambient illumination, and the frequency of lightning during their flights in the Venus middle cloud layer. The Vega measurements were used to develop a comprehensive description of the meteorology of the Venus middle cloud layer. The Vega measurements provide the following picture: large horizontal temperature gradients near the equator, vigorous convection, and weather conditions that can change dramatically on time scales as short as one hour.

  18. NASA Super Pressure Balloon

    NASA Technical Reports Server (NTRS)

    Fairbrother, Debbie

    2016-01-01

    NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tonne of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.

  19. New Deflation Systems for Zero Pressure Balloons

    NASA Astrophysics Data System (ADS)

    Huens, Thomas

    Balloon flights in populated countries like France are seriously constrained in terms of safety. Flight window opportunities have been reduced in order to comply a minimal damage probability (material and human damages). Although we could use different launch sites, the enormous and useful data base collected by Scientists during 40 years in France encourages to keep the sites of Aire sur l'Adour and Gap operational. Developments were initiated in order to cope with these problems and improve the landing precision. More precisely for the last four years, the CNES balloon engineers have focused on developing a new deflation system and a new parachute system for zero pressure balloons (ZPB), in order to reduce the size of the impact uncertainty zone. We have observed that the envelope deflation phase has an important impact on the envelope drag coefficient. Residual helium inside the envelope can maintain a residual lift reducing the expected descent rate and generating a dispersion in the descent trajectory from flight to flight that increase the size of the potential landing zone. As for consequence, the deflation system installed on the new envelope shall allow a quick and efficient evacuation of the helium. The final shape of the envelope in descent with a drag coefficient is about constant, is quickly reached and the portion of residual helium is negligible. The way to improve the deflation system's efficiency -with a negligible impact on the envelope relia-bility -is a true challenge. It requires a significant amount of ground validation before the first flight test. Due to the difficulty of simulating the stratospheric environment in a volume large enough to test a ZPB, the ground validation is based on a group of tests, defined to be as close as possible to the real conditions. To reach this goal, we use (a)low speed little size tear tests in universal testing machine, at cold and ambient temperature; (b)high speed medium size tear tests, at ambient

  20. Optimum designs for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Rainwater, E. L.

    2004-01-01

    The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.

  1. Cleft formation in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  2. The data processor of the EUSO-Balloon experiment

    NASA Astrophysics Data System (ADS)

    Scotti, V.; Osteria, G.

    2014-03-01

    The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region being proposed for attachment to the Japanese Experiment Module (JEM) onboard International Space Station (ISS). The main scientific goal of the mission is the study of Extreme Energy Cosmic Rays (EECR) above 5 × 1019 eV. The instrument consists of high transmittance optical Fresnel lenses with a diameter of 2.5 m, a focal surface covered by ~ 5000 Multi Anode Photo Multiplier Tubes of 64 pixels, front-end readout, trigger and system electronics. The EUSO-Balloon experiment is a pathfinder mission in which a telescope of smaller dimension than the one designed for the ISS will be mounted onboard a stratospheric balloon. The main objective of this pathfinder mission, planned for 2014, is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. Furthermore, EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers from above, paving the way for any future large scale, space-based EECR observatory. In this paper we will present the Data Processor (DP) of EUSO-Balloon, which is the component of the Electronics System which performs the data management and the instrument control. More in detail, the DP controls the front-end electronics, performs the 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages the Mass Memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor, and handles the interface to the telemetry system. The DP has to operate at high altitude

  3. Microorganisms in the Stratosphere (MIST): In-flight Sterilization with UVC Leds

    NASA Technical Reports Server (NTRS)

    Wong, Gregory Michael; Smith, David J.

    2014-01-01

    The stratosphere (10 km to 50 km above sea level) is a unique place on Earth for astrobiological studies of microbes in extreme environments due to the combination of harsh conditions (high ultraviolet radiation, low pressure, desiccation, and low temperatures). Microorganisms in the Stratosphere (MIST) will attempt to characterize the diversity of microbes at these altitudes using a balloon collection device on a meteorological weather balloon. A major challenge of such an aerobiology study is the potential for ground contamination that makes it difficult to distinguish between collected microbes and contaminants. One solution is to use germicidal ultraviolet light emitting diodes (UV LEDs) to sterilize the collection strip. To use this solution, an optimal spatial arrangement of the lights had to be determined to ensure the greatest chance of complete sterilization within the 30 to 60 minute time of balloon ascent. A novel, 3D-printed test stand was developed to experimentally determine viable Bacillus pumilus SAFR-032 spore reduction after exposure to ultraviolet radiation at various times, angles, and distances. Taken together, the experimental simulations suggested that the UV LEDs on the MIST flight hardware should be active for at least 15 minutes and mounted within 4 cm of the illuminated surface at any angle to achieve optimal sterilization. These findings will aid in the production of the balloon collection device to ensure pristine stratospheric microbial samples are collected. Flight hardware capable of in-flight self-sterilization will enable future life detection missions to minimize both forward contamination and false positives.

  4. SAGE observations of stratospheric nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.

    1986-01-01

    The global distribution of nitrogen dioxide in the middle to upper stratosphere (25-45 km altitude) for the period February 1979 to November 1981 has been determined from observations of attenuated solar radiation in the visible region 0.385-0.45 micron by the Stratospheric Aerosol and Gas Experiment (SAGE) satellite instrument. The SAGE-derived NO2 vertical profiles compare well with observations by balloon- and aircraft-borne sensors. The global SAGE NO2 distributions generally show a maximum in mixing ratio of 8 parts per billion by volume at about 35 km altitude near the equatorial latitudes at local sunset. The location of the mixing ratio peak moves synchronously with the overhead sun for the four different seasons. High-latitude NO2 column content shows strong seasonal variation, with a maximum in local summer and a minimum in local winter. Selected data at high-latitude winter seasons are presented, suggesting that the large variation shown could be explained by the coupling of both dynamics and photochemistry of the NO(x) species. Finally, profiles of the ratio of sunset to sunrise NO2 mixing ratios, peaking at about a factor of two at 30 km, are shown.

  5. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    NASA Astrophysics Data System (ADS)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  6. Stratospheric ozone intercomparison campaign (STOIC) 1989: Overview

    SciTech Connect

    Margitan, J.J.; McDermid, I.S.; Walsh, T.D.

    1995-05-20

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric aerosol and Gas Experiment (SAGE II) aboard the Earth Radiation Budget Satellite and the total ozone mapping spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. 37 refs., 5 figs., 3 tabs.

  7. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  8. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  9. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    NASA Astrophysics Data System (ADS)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  10. Progress of the super-pressure balloon developments in Japan

    NASA Astrophysics Data System (ADS)

    Fuke, Hideyuki; Izutsu, Naoki; Akita, Daisuke; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Saito, Yoshitaka; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michi-Hiko; Yamada, Kazuhiko; Yamagami, Takamasa; Yoshida, Tetsuya

    Zero-pressure balloon (ZPB) used for the scientific observation in the stratosphere has an un-avoidable limitation of flight duration. The ZPB cannot fly for a long day and nights, because it cannot keep its floating altitude during nighttime without dropping ballasts. On the other hand, super-pressure balloon (SPB) can keep its volume, and thus it can keep its altitude for a long duration. Therefore, the SPB is expected to provide a very useful way of a long flight to the science communities. The basic principle of the SPB had been well known for several tens of years. However, it was not easy to develop a large, light-weight, and pressure-tight SPB, which can lift a heavy (heavier than a few hundred kg) payload to an altitude of around 35 km. In these ten years, we have developed the SPB based on a unique lobed-pumpkin design. We have carried out a number of ground tests and flight tests to improve the every component of the SPB developments. Recently, we have begun an additional development of an advanced shape of SPB, named `tawara', which is a lobed-pumpkin with a lobed-cylinder. We have performed tests of the tawara-SPB to verify its advantages over the conventional pumpkin SPB. The tawara-SPB can make it easier to enlarge the SPB volume with keeping a single basic design and saving the balloon weight. The tawara-SPB may improve the balloon deployment stability, and can be utilized as a powered balloon. At the conference, we will report a summary of our tests over the past few years as well as of the prospects in the near future.

  11. Demonstration of a Balloon Borne Arc-second Pointer Design

    NASA Astrophysics Data System (ADS)

    Deweese, K.; Ward, P.

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear

  12. Measurement of H02 and other Trace Gases in the Stratosphere Using a High Resolution Far-Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Jucks, Kenneth W.; Johnson, David G.

    2003-01-01

    This report covers the time period 1 January 2002 to 31 October 2003. During this period we had two balloon flights, continued analyzing data from past and recent flights, exploring issues such as radical partitioning, stratospheric transport, and molecular spectroscopy and further developed our beamsplitter technology.

  13. Measurement of HO2 and Other Trace Gases in the Stratosphere Using a High Resolution Far-Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.

    2004-01-01

    This report covers the time period 1 November 2003 to 31 October 2004. During this period we had one balloon flight, analyzed the data from the previous 2 flights, explored issues such as radical partitioning, stratospheric transport, and molecular spectroscopy and further developed our beamsplitter technology.

  14. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  15. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  16. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    SciTech Connect

    Park, J.H. ); Carli, B. ); Barbis, A. )

    1989-08-01

    Emission features of HBr isotopes have been identified in high-resolution far-infrared emission spectra obtained with a balloon-born Fourier transform spectrometer in the spring of 1979 at 32{degree}N latitude. When six single-scan spectra at a zenith angle of 93.2{degree} were averaged, two features of HBr isotopes at 50.054 and 50.069 cm{sup {minus}1} were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 {times} 10{sub {minus}11}, which is assumed to be constant above 28 km, with an uncertainty of 35%. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus, HBr could be the major stratospheric bromine species.

  17. Stratospheric temperature-ozone relationships 1978-1986

    NASA Technical Reports Server (NTRS)

    Gelman, M. E.; Nagatani, R. M.; Miller, A. J.; Johnson, K. W.

    1989-01-01

    Global stratospheric temperature and geopotential height at eight pressure levels (70, 50, 30, 10, 5, 2, 1, and 0.4 hPa) were derived at NMC daily since October 1978. These fields are based on NOAA operational satellite sounder information. Comparable daily global fields of stratospheric ozone (30 to 0.4 hPa and total ozone) were derived from the SBUV instrument on Nimbus 7 and are now derived from the operational NOAA SBUV/2 instrument. The ozone and meteorological fields are verified against ground based measurements (Umkehr, balloon, rocket, lidar) to determine fields of temperature and ozone was assembled. Some of the interesting features of correlation between the synoptic patterns of the two data sets as well as their change with time are discussed. Seasonal as well as interannual variations in the patterns of correlation are compared in the Northern and Southern Hemisphere polar regions. Other outstanding features in both the temperature and ozone fields are highlighted.

  18. Feasibility of an orbital simulator of stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Hoffert, M. I.

    1978-01-01

    It is proposed that a stratospheric photochemistry simulator could be created in sun-synchronous orbit, so that diffusion and photochemistry could be decoupled and uncertainties in photochemical reaction rates could be substantially reduced. The proposed test chamber is described, and it is suggested that the technology of superpressure balloons seems to be the best short-term solution to the construction of the proposed facility. Both unreinforced polyester films and gelatin films are considered as candidate chamber coatings. It is noted that the experiments can be performed early in the space-manufacturing era and that at least three dedicated Shuttle launches will be required to establish the proposed facility.

  19. A Circumpolar Stratospheric Telescope for Observations of Planets - FUJIN

    NASA Astrophysics Data System (ADS)

    Taguchi, Makoto; Takahashi, Yukihiro; Shoji, Yasuhiro; Yoshida, Kazuya; Sakamoto, Yuji; Watanabe, Makoto; Nakano, Toshihiko; Maeda, Atsunori; Nakamoto, Junpei; Imai, Masataka; Gouda, Yuya

    It is important to conduct long-term continuous observations of time-dependent events in planetary atmospheres and plasmaspheres. The aim of the FUJIN project is to carry out continuous observations of planets using a telescope that is lifted by a balloon to the polar stratosphere. The FUJIN-1 experiment was organized at Taiki Aerospace Research Field in Taiki-cho, Hokkaido, Japan, from May to June 2013, but the experiment was canceled due to a failure found in the balloon operation system provided by JAXA. However, the results of various prelaunch ground tests clearly established the feasibility of the experiment. We have recently begun organizing the FUJIN-2 experiment, in which scientific observations of planets will be conducted in the Arctic. Wind speed in the stratosphere is very low during April and May. The FUJIN-2 experiment will be conducted during this period in 2015 at ESRANGE in Kiruna, Sweden, since this is when Venus will be in the most favorable position for observations. The gondola will be recovered somewhere in the Scandinavian peninsula after one or two days of continuous observations. In summer, an eastern circumpolar wind is dominant in the stratosphere. If a balloon is flown under these conditions, it will take a week to fly from Kiruna to Alaska and more than two weeks for it to fly back to Scandinavia along a constant-latitude path around the Earth. We are currently organizing another experiment (FUJIN-3) involving such a circumpolar flight that will be conducted in 2017 or later. The system used in FUJIN-2 will also be used for FUJIN-3, but with the inclusion of a high-sensitivity CCD camera and a liquid-crystal tunable filter. Venus, Jupiter, and Mercury will be the planets of interest for FUJIN-3. Moreover, a next-generation stratospheric telescope with a meter-class aperture, a mobile gondola to approach the center of the polar vortex, and a super-pressure balloon for year-round observations are being studied to upgrade the FUJIN system

  20. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  1. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  2. Measurements and modeling of contemporary radiocarbon in the stratosphere

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Comfort, L. L.; Guilderson, T. P.; Cameron-Smith, P. J.; Bergmann, D. J.; Atlas, E. L.; Schauffler, S.; Boering, K. A.

    2016-02-01

    Measurements of the 14C content of carbon dioxide in air collected by high-altitude balloon flights in 2003-2005 reveal the contemporary radiocarbon distribution in the northern midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric testing of nuclear weapons. Comparisons with results from a 3-D chemical-transport model show that the 14CO2 distribution is now largely governed by the altitude/latitude dependence of the natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere of the decreasing radiocarbon trend in tropospheric CO2 due to fossil fuel combustion. From the observed correlation of 14CO2 with N2O mixing ratios, an annual global mean net flux of 14CO2 to the troposphere of 1.6(±0.4) × 1017‰ mol CO2 yr-1 and a global production rate of 2.2(±0.6) × 1026 atoms 14C yr-1 are empirically derived. The results also indicate that contemporary 14CO2 observations provide highly sensitive diagnostics for stratospheric transport and residence times in models.

  3. Effects of stratospheric radiations on human glioblastoma cells.

    PubMed

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  4. ASTERIA: A Balloon-Borne Experiment for Infrasound Detection

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Wahl, Kerry; Ballard, Courtney; Daugherty, Emily; Dullea, Connor; Garner, Kyle; Heaney, Martin; Thom, Ian; Von Hendy, Michael; Young, Emma; Diller, Jed; Dischner, Zach; Drob, Douglas; Boslough, Mark; Brown, Peter

    2015-04-01

    ASTERIA (Aloft Stratospheric Testbed for Experimental Research on Infrasonic Activity) is a small (<20 kg) payload designed to measure infrasound disturbances from a balloon-borne platform at altitudes near 60,000 ft (~20 km). A balloon platform is expected to have two advantages over ground-based infrasound stations: a relatively benign wind environment and exposure to higher signal strengths within a stratospheric duct. ASTERIA's nominal sensitivity requirements are to measure waves between 0.1 to 20 Hz at the 0.1 Pa level with signal-to-noise ratios of 5 or better. At the time of this writing, we have tested wave sensors based on the differential pressure transducers recently flown by Bowman et al. (2014) on a NASA/HASP (High Altitude Student Payload); our modified pressure sensor was tested in a NOAA piston-bellows facility in Boulder, CO. Our goal of characterizing 0.1 Pa amplitude waves requires that combined noise sources are below the the 0.02 Pa rms level. ASTERIA carries five differential transducers with port inlets arranged a diamond-like pattern (one zenith- and one nadir-facing port, plus three horizontal ports equally spaced in azimuth). Baffling for these sensors is a hybrid of perforated tubing and porous barriers, as described in Hedlin (2014). Other noise sources of concern include the electronic amplification of the transducer voltages and low-frequency pressure waves caused by pendulum or twisting modes of the payload. We will report on our plans to characterize and reduce these noise sources. The ASTERIA payload is intended to fly on long-duration super-pressure balloons for intervals of ~100 days. We plan to conduct an experiment in the summer or fall of 2015 in which a calibrated disturbance is set off and detected simultaneously from stratospheric ASTERIA payloads and ground-based stations. References: 1) Bowman et al. 2014, "Balloons over Volcanoes Scientific Report," HASP 2014 final report. 2) Hedlin 2003, "Infrasonic Wind-noise Reduction

  5. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  6. Global distribution of CO2 in the upper troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Diallo, Mohamadou; Legras, Bernard; Ray, Eric; Engel, Andreas; Añel, Juan A.

    2017-03-01

    In this study, we construct a new monthly zonal mean carbon dioxide (CO2) distribution from the upper troposphere to the stratosphere over the 2000-2010 time period. This reconstructed CO2 product is based on a Lagrangian backward trajectory model driven by ERA-Interim reanalysis meteorology and tropospheric CO2 measurements. Comparisons of our CO2 product to extratropical in situ measurements from aircraft transects and balloon profiles show remarkably good agreement. The main features of the CO2 distribution include (1) relatively large mixing ratios in the tropical stratosphere; (2) seasonal variability in the extratropics, with relatively high mixing ratios in the summer and autumn hemisphere in the 15-20 km altitude layer; and (3) decreasing mixing ratios with increasing altitude from the upper troposphere to the middle stratosphere ( ˜ 35 km). These features are consistent with expected variability due to the transport of long-lived trace gases by the stratospheric Brewer-Dobson circulation. The method used here to construct this CO2 product is unique from other modelling efforts and should be useful for model and satellite validation in the upper troposphere and stratosphere as a prior for inversion modelling and to analyse features of stratosphere-troposphere exchange as well as the stratospheric circulation and its variability.

  7. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  8. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth`s Stratosphere. Progress report, 1 January-31 December 1995

    SciTech Connect

    Anderson, J.G.

    1996-02-01

    Research executed over calendar year 1995 focused on three primary objectives. The first is the dissection of free radical catalytic cycles. The objective is to determine both the mechanisms for ozone loss in the lower stratosphere, by establishing the hierarchy of rate limiting steps in the nitrogen, halogen, and hydrogen cycles, and to determine the response of the stratosphere to changing levels of NO(sub x), aerosols, etc., by directly observing the partial derivatives of the constituent concentrations. Observations are made from the NASA ER-2 aircraft. The second is to incorporate fast-response water vapor measurements into the ER-2 payload, to obtain high spatial resolution data on water vapor. This is a particularly powerful technique for diagnosing dynamical behavior of the stratosphere when combined with the rapid time-response CO2 observations available on the ER-2. The third objective is the development of a new instrument designed for the ER-2 superpod, which will observe ClONO2 in situ for the first time, and also will observe ClO, BrO, and NO2 simultaneously. The authors present the progress made in each category.

  9. Upper limit for stratospheric HBr using far-infrared thermal emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Johnson, D. G.; Jucks, K. W.; Chance, K. V.

    1992-01-01

    An upper limit is measured for stratospheric HBr from three balloon flights. The observations were made with the FIRS-2 far-infrared Fourier transform spectrometer. The 1sigma upper limits from the 1988, 1989, and 1990 balloon flights are 13 pptv at 35 km, 7 pptv at 32 km, and 3 pptv at 31 km, respectively. Combining all 3 flights, the weighted average 1sigma upper limit for HBr is 4 pptv at 32 km. This value is significantly smaller than the only other previously published spectroscopic value of 20 +/- 7 pptv (2sigma), but is consistent with a theoretical estimate which predicts roughly 0.4 pptv at this altitude.

  10. Solar irradiance in the stratosphere - Implications for the Herzberg continuum absorption of O2

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Mentall, J. E.

    1982-01-01

    A set of solar irradiance observations is analyzed that were performed from the third Solar Absorption Balloon Experiment (SABE-3) as the payload ascended through the stratosphere from 32 to 39 km. Comparison of these data with calculations of the attenuated irradiance based on simultaneous ozone and pressure measurements made from the payload suggests a refinement of the cross section values used in photochemical models. More ultraviolet radiation in the 200-210 nm spectral region reaches the middle stratosphere than is predicted by the absorption data presently available. It is suggested that significantly smaller values for the Herzberg continuum of O2 be used in future models.

  11. Chlorofluoromethanes and the Stratosphere

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor)

    1977-01-01

    The conclusions of a workshop held by the National Aeronautics and Space Administration to assess the current knowledge of the impact of chlorofluoromethane release in the troposphere on stratospheric ozone concentrations. The following topics are discussed; (1) Laboratory measurements; (2) Ozone measurements and trends; (3) Minor species and aerosol measurements; (4) One dimensional modeling; and (5) Multidimensional modeling.

  12. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  13. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  14. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    NASA Astrophysics Data System (ADS)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  15. Zodiac: A Balloon Facility for Exoplanet Debris Disk Observations

    NASA Astrophysics Data System (ADS)

    Unwin, S.; Traub, W.

    2010-10-01

    Zodiac is a telescope-coronagraph system, operating at visible wavelengths, mounted on a balloon-borne gondola in the stratosphere. The science objective is to image debris disks around nearby stars. Debris disks, usually found in the outer reaches of a planetary system, are significant for exoplanet science because (a) they tell us that planet formation did actually get started around a star, (b) they are a contributing source of potentially obscuring dust to the inner part of the disk where we will someday start searching for terrestrial planets, and (c) for a disk with an inner edge, this feature is a signpost for a shepherding planet and thus a sign that planet formation did indeed proceed to completion around that star. The telescope has a 1-m diameter, clear-aperture primary mirror, designed to operate in the cold stratospheric environment. The coronagraph is designed to suppress starlight, including its diffracted and scattered components, and allow a faint surrounding debris disk to be imaged. We will control the speckle background to be about 7 orders of magnitude fainter than the star, with detection sensitivity about one more order of magnitude fainter, in order to comfortably image the expected brightness of typical debris disks. Zodiac will be designed to make scientifically useful measurements on a conventional overnight balloon flight, but would also be fully compatible with future Ultra Long Duration Balloon flights. Zodiac has a technical objective of advancing the technology levels of future mission components from the lab to near-space flight status. These components include deformable mirrors, wavefront sensors, coronagraph masks, lightweight mirrors, precision pointing, and speckle rejection by wavefront control.

  16. Zodiac: A Balloon Facility for Exoplanet Debris Disk Observations

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; Traub, W.; Bryden, G.

    2011-01-01

    Zodiac is a telescope-coronagraph system, operating at visible wavelengths, mounted on a balloon-borne gondola in the stratosphere. The science objective is to image debris disks around nearby stars. Debris disks, usually found in the outer reaches of a planetary system, are significant for exoplanet science because (a) they tell us that planet formation did actually get started around a star, (b) they are a contributing source of potentially obscuring dust to the inner part of the disk where we will someday start searching for terrestrial planets, and (c) for a disk with an inner edge, this feature is a signpost for a shepherding planet and thus a sign that planet formation did indeed proceed to completion around that star. The telescope has a 1-m diameter, clear-aperture primary mirror, designed to operate in the cold stratospheric environment. The coronagraph is designed to suppress starlight, including its diffracted and scattered components, and allow a faint surrounding debris disk to be imaged. We will control the speckle background to be about 7 orders of magnitude fainter than the star, with detection sensitivity about one more order of magnitude fainter, in order to comfortably image the expected brightness of typical debris disks. Zodiac will be designed to make scientifically useful measurements on a conventional overnight balloon flight, but would also be fully compatible with future Ultra Long Duration Balloon flights. Zodiac has a technical objective of advancing the technology levels of future mission components from the lab to near-space flight status. These components include deformable mirrors, wavefront sensors, coronagraph masks, lightweight mirrors, precision pointing, and speckle rejection by wavefront control. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

  17. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon

  18. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 km

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Wofsy, Steven C.

    1993-01-01

    This report covers the time period 1 January 1993 to 30 June 1993. During this reporting period we had our third Upper Atmosphere Research Satellite (UARS) correlative balloon flight and submitted the results from this flight to the Central Data Handling Facility (CDHF). We made a number of improvements in our data processing software in preparation for a new analysis of our old balloon data sets. Finally, we continue to analyze the data obtained during the second Airborne Arctic Stratospheric Expedition (AASE 2).

  19. Ground based instruments and basic structures supporting rocket & balloon campaigns at Esrange

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    2005-08-01

    Many campaigns at Esrange are involving validation of scientific instruments onboard satellites. The validation is often done by balloon borne flights within different stratospheric conditions. Several campaigns are also coordinated programs including rocket, balloon and ground-based instruments. For testing of unmanned vehicles and parachute systems we are taking advantage of the huge land recovery area near Esrange and the Vidsel test field 300km south of Esrange. Several flights within the NEAT concept have been performed. An optical observatory called KEOPS, located at Esrange, is the main site for ground based instruments. The observatory is mainly dedicated for optical instruments like photometers, cameras, FPIs and an IR interferometer. The major expansion of the launch pad for stratospheric balloons and the cooperation with NASA will result in long duration balloon flights from Esrange to Alaska carrying heavy astronomical payloads. First flight will start summer 2005 and with annual flights. The accommodation complex is also extended to a total of more than 100 rooms.

  20. Interventional balloon-enteroscopy.

    PubMed

    Albert, Jörg G

    2012-01-01

    Balloon assisted enteroscopy (BE) expands greatly the therapeutic options in interventional endoscopy; bleeding sites, strictures, polyps, and other small bowel lesions are increasingly been treated by use of BE in the last 10 years. Treatment options for small bowel bleeding include Argon plasma coagulation (APC), injection therapy, and application of TTS metal clips, and thereby bleeding is stopped in most cases. Dilating symptomatic strictures, resecting polyps as seen in Peutz-Jeghers syndrome (PJS), and removing foreign bodies, BE carries most endoscopic treatment techniques to the small bowel. Another new indication field for BE are interventions at the biliary system in patients with surgically modified anatomy such as Roux-Y anastomosis. This review offers a full overview on indications of BE and refers to the practical use of the method for all endoscopic interventions.

  1. Balloon catheter coronary angioplasty

    SciTech Connect

    Angelini, P.

    1987-01-01

    The author has produced a reference and teaching book on balloon angioplasty. Because it borders in surgery and is performed on an awake patient without circulatory assistance, it is a complex and demanding procedure that requires thorough knowledge before it is attempted. The text is divided into seven sections. The first section describes coronary anatomy and pathophysiology, defines the objectives and mechanisms of the procedure and lists four possible physiologic results. The next section describes equipment in the catheterization laboratory, catheters, guidewires and required personnel. The following section is on the procedure itself and includes a discussion of examination, testing, technique and follow-up. The fourth section details possible complications that can occur during the procedure, such as coronary spasms, occlusion, thrombosis, perforations and ruptures, and also discusses cardiac surgery after failed angioplasty. The fifth section details complex or unusual cases that can occur. The sixth and seventh sections discuss radiation, alternative procedures and the future of angioplasty.

  2. Stability of Lobed Balloons

    NASA Technical Reports Server (NTRS)

    Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.

    2004-01-01

    This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.

  3. Improvement of the basic knowledge of the climatology of the vertical ozone layer by enhanced balloon sounding

    NASA Technical Reports Server (NTRS)

    Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.

    1984-01-01

    Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.

  4. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  5. CNES super pressure balloons assessment and new developments to prepare Strateole-2 campaign

    NASA Astrophysics Data System (ADS)

    Venel, Stephanie; Spel, Martin; Cocquerez, Philippe; Meyer, Jean-Renaud; Nicot, Jean-Marc.; Parot, Gael; Perraud, Sophie

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payloada. This paper will describe the main results and lessons achieved during the last CONCORDIASI campaign in 2010 over the Antarctic region. Thus, anomalies on the on-board system were investigated and explained by the effect of atmospheric particles fluxes. Also related to these flights, an accurate thermal model was built to evaluate the temperature distribution in the balloon, and several ageing tests have been made to better understand the effect of solar exposure on the different balloon materials. This paper will also present the new developments in progress for the future STRATEOLE-2 campaign dedicated to advance the knowledge of coupling processes between the troposphere and the stratosphere in the deep tropics, and foreseen in 2018-2019. In particular, a new command-control system will be developed to be in conformity with the CNES safety rules, and in continuation with the new zero pressure balloons system named NOSYCA. New solar panels are under investigation. Finally, two new balloon sizes will grow the SPB family to respond to the scientist demand of two special altitude densities.

  6. Three-meter balloon-borne telescope

    NASA Technical Reports Server (NTRS)

    Hoffmann, William F.; Fazio, G. G.; Harper, D. A.

    1988-01-01

    The Three-Meter Balloon-Borne Telescope is planned as a general purpose facility for making far-infrared and submillimeter astronomical observations from the stratosphere. It will operate throughout the spectral range 30 microns to 1 millimeter which is largely obscurred from the ground. The design is an f/13.5 Cassegrain telescope with an f/1.33 3-meter primary mirror supported with a 3-axis gimbal and stabilization system. The overall structure is 8.0 m high by 5.5 m in width by 4.0 m in depth and weighs 2000 kg. This low weight is achieved through the use of an ultra lightweight primary mirror of composite construction. Pointing and stabilization are achieved with television monitoring of the star field, flex-pivot bearing supports, gyroscopes, and magnetically levitated reaction wheels. Two instruments will be carried on each flight; generally a photometric camera and a spectrometer. A 64-element bolometer array photometric camera operating from 30 to 300 microns is planned as part of the facility. Additional instruments will be derived from KAO and other development programs.

  7. Antarctic stratospheric ice crystals

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Toon, O. B.; Pueschel, R. F.; Snetsinger, K. G.; Verma, S.

    1989-01-01

    Ice crystals were replicated over the Palmer Peninsula at approximately 72 deg S on six occasions during the 1987 Airboirne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  8. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  9. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  10. Coronary artery balloon angioplasty - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100160.htm Coronary artery balloon angioplasty - series—Normal anatomy To use the ... slide 9 out of 9 Overview The coronary arteries supply blood to the heart muscle. The right ...

  11. Balloon exoplanet nulling interferometer (BENI)

    NASA Astrophysics Data System (ADS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-08-01

    We evaluate the feasibility of a balloon-borne nulling interferometer to detect and characterize an exosolar planet and the surrounding debris disk. The existing instrument consists of a three-telescope Fizeau imaging interferometer with thre fast steering mirrors and three delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer would be coupled to the imaging interferometer and in principle, allows deep starlight suppression. Atmospheric simulations of the environment above 100,000 feet show that balloonborne payloads are a possible path towards the direct detection and characterization of a limited set of exoplanets and debris disks. Furthermore, rapid development of lower cost balloon payloads provide a path towards advancement of NASA technology readiness levels for future space-based exoplanet missions. Discussed are the BENI mission and instrument, the balloon environment and the feasibility of such a balloon-borne mission.

  12. Ballooning Modes and Sustorm Onset

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Zaharia, S.

    2002-12-01

    Based on the AMPTE/CCE observations [Cheng and Lui, GRL, 1998], a low frequency instability with period on the order of 1 min is observed about 2-3 minutes before the substorm onset and is identified as a kinetic ballooning instability. Kinetic effects such as ion gyroradii, magnetic drift, and trapped electrons can strongly enhance the beta threshold over that of ideal MHD ballooning mode theory prediction. However, the ballooning instability threshold based on the ideal MHD model in realistic magnetospheres is still unresolved. Here, we present the stability property of ideal MHD ballooning modes in numerical 3D magnetospheric equilibria with thin current sheet. The coupling effects between perpendicular and parallel (compressional) perturbed magnetic fields are included. The calculations make use of numerical 3D magnetospheric equilibria including thin current sheet by assuming pressure to be constant along a field line. We then, estimate the stability threshold including kinetic effects and compare with observations.

  13. Science in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Lester, Dan

    1997-01-01

    The Science in the Stratosphere program, first established in 1992, was conceived to introduce K-6 teachers to airborne infrared astronomy through the Kuiper Airborne Observatory (KAO), and to use this venue as a basis for seeing scientists at work in a mission-intensive program. The teachers selected for this program would bring their new perspectives back to their schools and students. Unlike the related FOSTER program, the emphasis of this program was on more intensive exposure of the KAO mission to a small number of teachers. The teachers in the Science in the Stratosphere program essentially lived with the project scientists and staff for almost a week. One related goal was to imbed the KAO project with perspectives of working teachers, thereby sensitizing the project staff and scientists to educational outreach efforts in general, which is an important goal of the NASA airborne astronomy program. A second related goal was to explore the ways in which K-5 educators could participate in airborne astronomy missions. Also unlike FOSTER, the Science in the Stratosphere program was intentionally relatively unstructured, in that the teacher participants were wholly embraced by the science team, and were encouraged to 'sniff out' the flavor of the whole facility by talking with people.

  14. Cutting-Balloon-Associated Vascular Rupture After Failed Standard Balloon Angioplasty

    SciTech Connect

    Chakraverty, S. Meier, M.A.J.; Aarts, J.C.N.M.; Ross, R.A.; Griffiths, G.D.

    2005-06-15

    The following case reports illustrate a possible complication of vascular rupture when cutting balloon dilatation is performed immediately after failed standard balloon angioplasty to the same diameter. Deferral of the cutting balloon dilatation should be considered in such circumstances.

  15. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-10-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically

  16. The Brazilian scientific balloon program

    NASA Astrophysics Data System (ADS)

    Braga, Joao

    The Brazilian scientific balloon program is based almost entirely at the National Institute for Space Research -INPE, which has a facility for research and development of scientific balloon systems such as telemetry, command, power supply, separation and flight train devices, ballast control systems, ATC transponders, shock absorbers and especially different launching tech-niques. The Balloon Launching Center of INPE operates since the early 70s, when the first launches were performed in cooperation with French groups for astronomical gamma-ray obser-vations. Since then, the center was involved in a large numbers of international collaborations with France, Japan, United Kingdom, USA, Italy, Germany and Tasmania. INPEs high-energy astrophysics group developed several X and Gamma-ray experiments that were launched in balloons since the early 80s. The most complex of these payloads is the MASCO experiment, launched in 2004. It consists in a 2-ton experiment with a large gamma-ray imaging coded-mask telescope and an attitude control system developed at INPE. Currently, the high-energy group is developing a prototype balloon experiment for the MIRAX satellite, named protoMIRAX. Others scientists at INPE have also used balloons for cosmic rays, geophysics and atmospheric electricity experiments.

  17. Trends in Stratospheric Water Vapor over Boulder, Colorado: Revelations of the 30-year Boulder Record

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Oltmans, S. J.; Voemel, H.; Rosenlof, K. H.; Davis, S. M.; Ray, E. A.; Hall, E.; Jordan, A.

    2010-12-01

    The NOAA frost point hygrometer (FPH) has made in situ, balloon-borne measurements of stratospheric water vapor over Boulder, Colorado, since 1980. The 30-year data record is divided into four periods of multiple-year water vapor trends, including two that span the well-examined but unattributed 1980-2000 period of stratospheric water vapor growth. Trends are determined for five 2-km stratospheric layers (16-26 km) utilizing weighted, piecewise regression analyses. Over the entire 30-year span stratospheric water vapor increased by an average of 1.0 ± 0.2 ppmv (27 ± 6%) with significant shorter-term variations along the way, including an abrupt decrease starting in mid-2000 followed by a significant increase starting in mid-2005. Water vapor growth during some of the trend periods strengthens with altitude, revealing contributions from at least one mechanism that strengthens with altitude, such as methane oxidation. However, though atmospheric methane abundance increased considerably during 1980-2010, additional methane oxidation in the NH midlatitude stratosphere below 26 km can account for at most 25% of the net stratospheric water vapor increase over the last three decades. Moving averages of water vapor mixing ratios over Boulder, Colorado, averaged in 2-km altitude layers. The averaging window was ±1 yr and the averaging threshold was a minimum of 12 data points. Black markers with colored vertical bars define the four trend periods for each altitude layer.

  18. Can fractional release be used as a diagnostic of changes in stratospheric transport?

    NASA Astrophysics Data System (ADS)

    Ostermöller, Jennifer; Bönisch, Harald; Andreas, Engel; Joeckel, Patrick

    2015-04-01

    Mean age of air (AOA), the time elapsed since the entry of an air parcel into the stratosphere, is used as a diagnostic tool for changes in the stratospheric circulation. Different Chemistry Climate Models (CCMs) show a decrease in AOA which is indicative of acceleration of the Brewer-Dobson-Circulation (BDC). The available observation however cannot confirm this acceleration. In principle, AOA could mask changes of the relative strength of different stratospheric transport pathways and thus may not be sufficient for general predictions on the BDC. We suggest to use the concept of fractional release factors (FRF) and their correlations with AOA as an additional tool to investigate changes in circulation. The FRF can be understood as the fraction of a trace gas that has been dissociated in the stratosphere by chemical processes. Changes of FRF at constant age surfaces for chemical active species with different stratospheric lifetimes may then be an evidence for circulation changes. Par example, the changing of the amount of recirculated stratospheric air parcels would alter the relation between FRF and AOA. Analysing the temporal evolution of FRF for different CFC species calculated by the EMAC Model, we find an increase of FRF with time in the mid-latitudes which is in agreement with other CCMs. Observations of FRF and mean age are very sparse: We will present and discuss an analysis of FRF and its relation to AOA from available balloon and aircraft flights in comparison to the model results.

  19. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  20. Age of stratospheric air unchanged within uncertainties over the past 30years

    NASA Astrophysics Data System (ADS)

    Engel, A.; Möbius, T.; Bönisch, H.; Schmidt, U.; Heinz, R.; Levin, I.; Atlas, E.; Aoki, S.; Nakazawa, T.; Sugawara, S.; Moore, F.; Hurst, D.; Elkins, J.; Schauffler, S.; Andrews, A.; Boering, K.

    2009-01-01

    The rising abundances of greenhouse gases in the atmosphere is associated with an increase in radiative forcing that leads to warming of the troposphere, the lower portion of the Earth's atmosphere, and cooling of the stratosphere above. A secondary effect of increasing levels of greenhouse gases is a possible change in the stratospheric circulation, which could significantly affect chlorofluorocarbon lifetimes, ozone levels and the climate system more generally. Model simulations have shown that the mean age of stratospheric air is a good indicator of the strength of the residual circulation, and that this mean age is expected to decrease with rising levels of greenhouse gases in the atmosphere. Here we use balloon-borne measurements of stratospheric trace gases over the past 30years to derive the mean age of air from sulphur hexafluoride (SF6) and CO2 mixing ratios. In contrast to the models, these observations do not show a decrease in mean age with time. If models are to make valid predictions of future stratospheric ozone levels, and of the coupling between ozone and climate change, a correct description of stratospheric transport and possible changes in the transport pathways are necessary.

  1. Isotopic ozone in the 5 μ region from high resolution balloon-borne and ground-based FTIR solar spectra.

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Schoenfeld, W. G.; Stephen, T. M.; Murcray, F. J.; Rinsland, C. P.; Barbe, A.; Hamdouni, A.; Flaud, J.-M.; Camy-Peyret, C.

    1998-05-01

    High resolution (0.002-0.004 cm-1) i.r. solar absorption spectra of the stratosphere obtained during University of Denver balloon flights, and from the ground-based Network for the Detection of Stratospheric Change (NDSC) observatory at Mauna Loa, Hawaii, show numerous spectral features of several isotopic species of O3, in both the 10 μ and 5 μ regions. Many of the 5 μ lines reported here have not been previously observed in atmospheric spectra. The identification and quantification of the lines proceed by combined analyses of the atmospheric spectra, laboratory spectra of enriched samples, and updated line parameter calculations.

  2. Model Simulations of Ozone in the Summer Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Kawa, S. R.

    1998-01-01

    The Goddard 3D chemistry and transport model (CTM) uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System (GEOS DAS); thus CTM simulations can be compared directly with observations from satellite, balloon and aircraft. In general, aspects of these comparisons show remarkable agreement between observation and model. One significant difference is that the model ozone is high biased below the ozone peak. The bias is apparently largest at high latitudes during the summer months. At the same time, comparisons with HALOE observations show that at mid to high latitudes, the ozone mixing ratio peak appears persistently at a lower altitude than observed by HALOE; the peak mixing ratio is also overestimated by the model. Both transport and photochemistry are possible contributors to the biased ozone in the lower stratosphere - excessive downward motion would increase lower stratospheric ozone, as would a too large vertical gradient in ozone. On the other hand, comparisons of model N2O and NOy with observations suggest transport deficiencies in the opposite sense, i.e., model N2O can be high relative to observations (particularly during winter), suggesting the need for stronger downward transport. Sensitivity studies have been carried out using parameterizations for ozone production and loss, NOy production and loss, and N2O loss. The goal of these studies is to clarify how problems in the photochemical scheme at and above the ozone peak influence the lower stratospheric ozone.

  3. Measurements of chlorine partitioning in the winter Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Stachnik, Robert A.; Salawitch, Ross; Engel, Andreas; Schmidt, Ulrich

    Measurements of the concentration profiles of key stratospheric reactive, reservoir and source gases, ClO, O3, HCl, N2O and CCl2F2, were made during two balloon flights in the Arctic on 27 January and 08 March 1995 that were part of the Second European Stratospheric Arctic and Mid-latitude Experiment (SESAME). On 27 January, low abundances of HCl (∼250 ppt at 50 hPa) were measured in air parcels that had been at temperatures below the type I PSC existence threshold accompanied by high concentrations of ClO (1.6 ppb at 50 hPa). Calculations using the currently recommended photochemical data yield a ratio of [ClO]+2[Cl2O2]+[HCl] to [Cly] near unity in these air parcels. The 08 March flight sampled warm stratospheric conditions outside the vortex with normal mid-latitude ClO (<100ppt at 50 hPa) and HCl abundances comprising about half of the available chlorine at 50 hPa.

  4. Trend Analysis and Detection of Changes in the Stratospheric Circulation

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, A. R.; Rodriquez, J. M.; Stolarski, R. S.; Waugh, D. W.

    2010-01-01

    Increases in the circulation of the stratosphere appear to be a robust result of climate change in chemistry-climate models over decadal time scales. To date observations have yet to show a significant change in this circulation. It is important for the design of future observational missions to identify suitable atmospheric constituents and to determine the accuracy and length of record needed to identify a significant trend that can be attributed to circulation change. First, we determine what atmospheric variables can be used as proxies for stratospheric circulation changes. A few examples are changes in tropical lower stratospheric ozone, phase lag of the water vapor tape recorder, CO2, and SF6. Then, using both the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) and observations from satellites and balloon soundings, we calculate the number of years needed to detect a significant trend, taking into account observational uncertainty. Model simulations will be evaluated to see how well they represent observed variability. In addition, the impacts of autocorrelation among the output or data and gaps in the observational record will be discussed.

  5. A negative ion model in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Kawamoto, H.; Ogawa, T.

    1985-12-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  6. A negative ion model in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Kawamoto, H.; Ogawa, T.

    1985-01-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  7. Saturn's Stratospheric Oxygen Compounds

    NASA Astrophysics Data System (ADS)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  8. The stratosphere: Present and future

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor); Reed, E. I. (Editor)

    1979-01-01

    The present status of stratospheric science is discussed. The three basic elements of stratospheric science-laboratory measurements, atmospheric observations, and theoretical studies are presented along with an attempt to predict, with reasonable confidence, the effect on ozone of particular anthropogenic sources of pollution.

  9. Jupiter Stratospheric Haze Comparison

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These two views of Jupiter obtained by the imaging system aboard the Galileo spacecraft show evidence of strikingly different stratospheric hazes between the polar regions and low or mid latitudes. The Great Red Spot shows in one mosaic, centered at about 20 degrees South latitude and taken on June 26, 1996 at a range of 1.46 million kilometers. The other mosaic is centered near 50 degrees North latitude, and was taken on November 4, 1996 at a range of 1.60 million kilometers.

    North is at the top in both images. In the Red Spot image, the edge of the planet (limb) runs in a single arc from lower left to upper right, with dark space at lower right. In the polar image, the limb runs in two segments across the top right corner, with dark space at top right. Both images are mosaics; the offset of the individual frames of the mosaic produces the jagged border and the break in the polar limb.

    These are false color images, constructed specifically to reveal cloud elevation differences. Three color channels are used. The red channel is an image taken at a near infrared wavelength where methane in Jupiter's atmosphere is strongly absorbing, and therefore gives no information about deep clouds but reveals high clouds. The green channel is a weaker methane band, and the blue channel is assigned to a wavelength where Jupiter's atmosphere is transparent. Thus red features indicate high hazes. A view near the edge of the planet accentuates the high hazes because of the slanting path of the line of sight.

    The pronounced reddening near the edge of the planet in polar regions indicates a high stratospheric haze. Comparison with the Great Red Spot shows that such a high haze is absent at that latitude. Detailed analysis shows that a stratospheric haze exists at both latitudes but is approximately 50 km higher near the poles. It is likely that the high polar haze is produced by magnetospheric particles, which travel along magnetic field lines and bombard the upper atmosphere

  10. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  11. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  12. Constraints on JN2O5 from balloon-borne limb scanning measurements of NO2 in the tropics

    NASA Astrophysics Data System (ADS)

    Kritten, Lena; Butz, Andre; Deutschmann, Tim; Dorf, Marcel; Kreycy, Sebastian; Prados-Roman, Cristina; Pfeilsticker, Klaus

    2010-05-01

    The NOx ozone cycle (NOx = NO + NO2) is of great importance for the budget of stratospheric ozone and in future may even become more important due to increasing stratospheric N2O concentrations (Ravishankara et al., 2009). A regulating process for the amount of stratospheric NOx and thus for the efficiency of the NOx mediated ozone loss cycle is photolytic release of N2O5 at daytime since N2O5 acts as a nighttime reservoir gas for stratospheric NOx radicals. Observations of UV/vis scattered skylight by balloon-borne limb scanning spectrometry support the detection of time dependent trace gas and radical profiles, in particular of NO2. Here we present balloon borne measurements of time dependent NO2 profiles from the tropical stratosphere - taken at north-eastern Brazil (5° S, 43° W) in June 2005 - where excess stratospheric ozone is produced and transported to higher latitudes by the Brewer-Dobson circulation. The photolysis rate of N2O5 - uncertain by a factor of 2 (JPL-2006) - is constrained from the comparison of the measured and modelled diurnal variation of NO2. For the photochemical model initial conditions are based on our own observations of O3 and NO2, MIPAS-B measurements and on output of the 3-D SLIMCAT model. The kinetic and thermodynamic parameters and absorption cross-sections are taken from the JPL-2006 compilation (Sander et. al, 2006). Overall it is found that, the observed rate of diurnal NO2 increase requires a N2O5 photolysis frequency at the upper limit of values possible according to the uncertainty range given by the JPL-2006 compilation. In conclusion it suggested that the NOx mediated ozone loss in the tropical stratosphere is probably larger than assumed by many photochemical models, and in future may even relatively become more important.

  13. Near Space Observations: Planetary Science from a Balloon-Borne Telescope

    NASA Astrophysics Data System (ADS)

    Young, E.; Hibbitts, C.; Cheng, A.; Dolloff, M.; Kremic, T.

    2015-10-01

    On 25-SEP-2014, the BOPPS balloon mission (Balloon Observation Platform for Planetary Science) launched from Ft Sumner, NM. During its 17-hour flight, BOPPS observed three comets in wavelengths from 0.8 to 4.6 μm with its infrared camera and demonstrated 66 mas image stability with its visible- UV cameras. The BOPPS payload was intended to develop and demonstrate two key capabilities of balloonborne telescopes: the ability to acquire IR wavelengths that are obscured from the ground or from SOFIA, and the ability to obtain diffraction-limited images at wavelengths shortward of 1 μm, where ground-based adaptive optics systems typically provide poor Strehl ratios. Now that the successful BOPPS mission is behind us, there is the potential to re-use the BOPPS instrumentation for additional long-duration balloon missions to address other planetary science investigations: a planetary observatory in the stratosphere, with the possibility of performing observations that are proposed and competed by the planetary community. NASA's Columbia Scientific Balloon Facility just flew a record-setting 32-day circumglobal super-pressure balloon mission at southern mid-latitudes. Unlike previous long-duration flights from Antarctica (zeropressure balloons flying in constant daylight), this recent flight launched from New Zealand and passed through day/night cycles, demonstrating the ability of balloons to carry science payloads weighing up to 3000 lb and provide hundreds of hours of dark time above 99.5 % of the atmosphere. We will provide an overview of the BOPPS payload and a review of the BOPPS flight. We will highlight the recommended changes that would allow BOPPS to become a general purpose infrared and visible/UV observatory.

  14. Low cost multi-purpose balloon-borne platform for wide-field imaging and video observation

    NASA Astrophysics Data System (ADS)

    Ocaña, Francisco; Sánchez de Miguel, Alejandro; Conde, Aitor

    2016-07-01

    Atmosphere layers, especially the troposphere, hinder the astronomical observation. For more than 100 years astronomers have tried observing from balloons to avoid turbulence and extinction. New developments in cardsize computers, RF equipment and satellite navigation have democratised the access to the stratosphere. As a result of a ProAm collaboration with the Daedalus Team we have developed a low-cost multi-purpose platform with stratospheric balloons carrying up to 3 kg of scientific payload. The Daedalus Team is an amateur group that has been launching sounding probes since 2010. Since then the first two authors have provided scienti fic payloads for nighttime flights with the purpose of technology demonstration for astronomical observation. We have successfully observed meteor showers (Geminids 2012, Camelopardalis 2014, Quadrantids 2016 and Lyrids 2016) and city light pollution emission with image and video sensors covering the 400-1000nm range.

  15. Is There Evidence of Convectively Injected Water Vapor in the Lowermost Stratosphere Over Boulder, Colorado?

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Rosenlof, K. H.; Davis, S. M.; Hall, E. G.; Jordan, A. F.

    2014-12-01

    Anderson et al. (2012) reported the frequent presence of convectively injected water vapor in the lowermost stratosphere over North America during summertime, based on aircraft measurements. They asserted that enhanced catalytic ozone destruction within these wet stratospheric air parcels presents a concern for UV dosages in populated areas, especially if the frequency of deep convective events increases. Schwartz et al.(2013) analyzed 8 years of more widespread Aura Microwave Limb Sounder (MLS) measurements of lower stratospheric water vapor over North America and concluded that anomalously wet (>8 ppm) air parcels were present only 2.5% of the time during July and August. However, given the 3-km vertical resolution of MLS water vapor retrievals in the lowermost stratosphere, thin wet layers deposited by overshooting convection may be present but not readily detectable by MLS. Since 1980 the balloon-borne NOAA frost point hygrometer (FPH) has produced nearly 400 high quality water vapor profiles over Boulder, Colorado, at 5-m vertical resolution from the surface to the middle stratosphere. The 34-year record of high-resolution FPH profiles obtained over Boulder during summer months is evaluated for evidence of convectively injected water vapor in the lowermost stratosphere. A number of approaches are used to assess the contributions of deep convection to the Boulder stratospheric water vapor record. The results are compared to those based on MLS profiles over Boulder and the differences are discussed. Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres (2012), UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor, Science, 337(6096), 835-839, doi:10.1126/science.1222978. Schwartz, M. J., W. G. Read, M. L. Santee, N. J. Livesey, L. Froidevaux, A. Lambert, and G. L. Manney (2013), Convectively injected water vapor in the North American summer lowermost stratosphere, Geophys. Res. Lett., 40, 2316-2321, doi:10

  16. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility.

    PubMed

    Khodadad, Christina L; Wong, Gregory M; James, Leandro M; Thakrar, Prital J; Lane, Michael A; Catechis, John A; Smith, David J

    2017-03-21

    Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 10(7) spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m(2)), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily

  17. CNES super pressure balloons upgrade for Strateole-2 campaign

    NASA Astrophysics Data System (ADS)

    Venel, Stephanie; Cocquerez, Philippe; Hertzog, Albert

    2016-07-01

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payload. The SPB housekeeping gondola used from 2005 to 2011 now needs to be upgraded in order to increase the flights' safety and to improve its performance with up to date equipment's. The control center will also be redesigned. These modifications take into account the experience acquired during the last SPB campaigns, mainly during CONCORDIASI, with 19 flights over Antarctica from September 2010 to January 2011. After a successful preliminary design review, the project is now conducting the detailed conception phase. This new system is developed for STRATEOLE-2, a project dedicated to the coupling processes between the troposphere and the stratosphere in the deep tropics, using several types of instruments, both for in situ and remote measurements in the atmosphere. STRATEOLE -2 includes two measurement campaigns, three years spaced to study the quasi biennial oscillation. Since the scientific payloads are fully self-standing, some technical solutions will be common with the CNES housekeeping gondola, such as the renewable power system. This paper will describe the STRATEOLE-2 project and the developments in progress for the SPB system upgrade.

  18. Balloon Borne Arc-Second Pointer Feasibility Study

    NASA Technical Reports Server (NTRS)

    Ward, Philip R.; DeWeese, Keith D.

    2003-01-01

    For many years scientists have been utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The foundation for a high fidelity controller simulation is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static fiction are provided. A unique bearing hub design is introduced that eliminates static fiction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.

  19. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  20. Taking the Hot Air Out of Balloons.

    ERIC Educational Resources Information Center

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  1. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  2. Yellow Balloon in a Briar Patch.

    ERIC Educational Resources Information Center

    Cooper, Frank; Fitzmaurice, Robert W.

    1978-01-01

    As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)

  3. Driftsonde on Long-Duration Balloons: Development, Deployment and Scientific Highlights

    NASA Astrophysics Data System (ADS)

    Wang, Junhong June; Hock, Terry; Cohn, Steve

    The NCAR Driftsonde system was developed to provide cost-effective, in-situ upper air observations over oceans and remote areas from days to months. The Driftsonde system consists of a stratospheric balloon attached to a gondola that contains up to 56 Miniature In-situ Sounding Technology (MIST) dropsondes. The balloon is lifted up from the ground to the stratosphere and drifts with the wind. Dropsonde can be dropped either at a pre-scheduled time or by command from the ground. It descends through the atmosphere on a parachute to make high-quality measurements of pressure, temperature, relative humidity, and wind speed and direction in a half or quarter second resolution from the stratosphere to the surface. The Driftsonde system has been used in three large field projects, AMMA (African Monsoon Multidisciplinary Analysis) in 2006, T-PARC (THORPEX-Pacific Asian Regional Campaign) in 2008, and Concordiasi in 2010. The driftsonde’s promising science applications are evident from the data collected from these projects and will be highlighted in this presentation.

  4. Are Biological Entities Isolated from the Lower Stratosphere (22-27 km) Outgoing from Earth or Incoming from Space?

    NASA Astrophysics Data System (ADS)

    Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra

    Biological entities were isolated, at a height of between 22-27 km in the stratosphere. Sampling of this region was carried out in the UK in July 2013 using a relatively simple low-cost balloon-borne sampler carrying aseptically clean scanning electron microscope stubs onto which aerosols were directly captured. The entities varied from a presumptive colony of ultra small bacteria to two unusual individual organisms and part of a diatom frustule. Biological entities of this nature have not previously been reported occurring in the stratosphere; their likely origin is discussed and we provide arguments to support our view that such biological entities may have arrived from space.

  5. History and perspectives of scientific ballooning

    NASA Astrophysics Data System (ADS)

    Lefevre, Frank

    2001-08-01

    Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.

  6. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  7. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  8. Quantifying the impact of moderate volcanic eruptions on the stratosphere

    NASA Astrophysics Data System (ADS)

    Lurton, Thibaut; Jégou, Fabrice; Berthet, Gwenaël; Renard, Jean-Baptiste; Vignelles, Damien; Bègue, Nelson; Portafaix, Thierry; Bencherif, Hassan; Couté, Benoît; Duverger, Vincent; Payen, Guillaume; Metzger, Jean-Marc; Posny, Françoise

    2016-04-01

    We have investigated the impact of two recent moderate volcanic eruptions upon the sulphur dioxide and sulphate loading in the stratosphere, with the use of the CESM numerical global model. Through the use of the WACCM/CARMA module in CESM, which provides with a comprehensive modelling of the sulphur cycle, and at a ˜2° spatial resolution, we have investigated the impacts of the eruptions of the Kelud (13 February 2014, 7° S, 112° E) and Calbuco (22 April 2015, 41° S, 72° W) volcanoes on the lower stratosphere. The input SO2 quantities and altitudes of injection were estimated from satellite observations, and correspond in both cases to several hundreds of kT of SO2 injected directly at upper troposphere/lower stratosphere heights, over a few kilometres of altitude span. Our results have been compared with satellite measurements, from IASI for SO2, and the CALIOP space-borne lidar for aerosols. We also provide cross-comparisons with in-situ measurements performed above La Réunion Island (21° S, 55° E), first comparing our simulation results to the data obtained through the launch of a balloon-borne light optical aerosol counter (LOAC), and also by cross-comparison with in-situ lidar measurements. To investigate the role of dynamical barriers around those volcanic events, our simulations have been run using two different sets of meteorological forcing data (namely MERRA vs. ERA-Interim), which can differ in that respect, especially regarding the vertical advection at tropical latitudes. Our overall aim is to assess the impact of such moderate eruptions over the lower stratosphere, on the one hand chemically, and on the other hand in terms of radiative effects.

  9. Comparison between S. T. radar and in situ balloon measurements

    NASA Technical Reports Server (NTRS)

    Dalaudier, F.; Barat, J.; Bertin, F.; Brun, E.; Crochet, M.; Cuq, F.

    1986-01-01

    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity.

  10. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  11. Ascending performance analysis for high altitude zero pressure balloon

    NASA Astrophysics Data System (ADS)

    Saleh, Sherif; He, Weiliang

    2017-04-01

    This paper describes a comprehensive simulation for high altitude zero pressure balloon trajectories. A mathematical model was established to simulate the ascending process which considers the atmospheric conditions and thermodynamic variations. Influences of launch parameters on ascending performance were analyzed. The necessary quantity of initial lift gas was estimated and optimized, so that ensures no ballast consuming during the ascending process. The climbing rate was a governing parameter to evaluate the ascending performance. Based on the simulation, results revealed the apparent different effect on climbing rate at troposphere and stratosphere layers. Change in launch time and site mainly affect the climbing rate at the stratosphere and have no significant effect at the troposphere and tropopause altitudes. Meanwhile, change in launch date has a negligible effect on both layers. Due to the earth's declination angle, the influence of the same launch latitude and the same launch longitude is not identical within a year. Also, results showed that the optimum lift gas quantity improved the climbing rate stability to obtain an accurate simulation.

  12. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  13. Long-Term Variability of Stratospheric Temperature Above Central Antarctica

    NASA Astrophysics Data System (ADS)

    Shirochkov, A.; Makarova, L.

    Long-term variations of atmospheric temperature at different isobaric surfaces above central Antarctica and their possible coupling with correspondent changes in the near-Earth space were studied. Data of atmospheric balloon sounding at two Antarctic intercontinental stations Vostok and Amundsen-Scott (South Pole) taken for the last 40 years were used in this study. A central part of the Antarctica continent with its minimum of man-made pollution, uniformity of severe thermal and circulation regimes is an ideal place for study of the real climatic changes. It was found that stratospheric temperature at both stations averaged seasonally or annually does not demonstrate any meaningful correlation with correspondent sunspot number variations. On the other hand there is a notable correlation (r > 0,6) between stratospheric temperature at both stations and annually averaged values of the solar wind dynamic pressure. The latter parameter whose long-term time series were originally calculated by the authors is proportional to energy transferred to the Earth system " ma g n e t o s p here -ionosphere -atmosphere " from the outer space. A concept of the global electric circuit with a Electro-Motive Force generator located at the dayside magnetopause and driven by the solar wind energy is one of the possible realistic physical mechanisms capable to explain interaction between solar wind and middle atmosphere. Electrically conducting layers of ionosphere, ionic region in stratosphere and the Earth surface are the passive elements of this scheme. Mutual coupling between stratosphere thermal regimes at two stations (Vostok and South Pole) demonstrates obvious seasonal dependence: there is a good correlation between them in summer while it disappears in winter and equinoxes. It was found also that stratospheric temperature above South Pole Station varies in the same manner as correspondent parameter above North Pole as reported previously by Labitzke and Naujokat (2000). At both

  14. Laser welding of balloon catheters

    NASA Astrophysics Data System (ADS)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  15. Simulating clefts in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  16. The millennium water vapour drop in the stratosphere in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Joeckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2015-04-01

    This study investigates the millennium water vapour drop, the abrupt and severe water vapour decline in the stratosphere beginning in year 2000, by means of various simulations using the Chemistry-Climate Model (CCM) EMAC. Since the beginning 1980s, balloon borne stratospheric water vapour measurements and corresponding satellite measurements starting in the early 1990s indicated a long-term steady increase of water vapour concentrations. However, the multi-year data sets also show significant fluctuations on different time scales. In the year 2000, an extraordinary sudden drop of stratospheric water vapour concentration has been observed followed by persistent low values for several years. Solomon et al. (2010) showed that this drop slowed down the rate of increase in global surface temperature over the following decade by about 25%. So far, the stratospheric water vapour variations observed by satellite from 1992 to 2012 are not reproduced by CCM simulations forced by observed changes in sea surface temperatures, greenhouse gases and ozone-depleting substances (Gettelman et al., 2010, Randel and Jensen, 2013). However, the CCM EMAC is able to reproduce the signature and pattern of the water vapour disturbances in agreement with those derived from observations. In this paper we present results of a hierarchy of simulations with the CCM EMAC, demonstrating that it is possible to retrace the observed water vapour fluctuations in the stratosphere (incl. the millennium drop), if suitable inner and outer boundary conditions are applied.

  17. Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences

    SciTech Connect

    McCormack, J.P.; Hood, H.L.

    1994-07-15

    A one-dimensional radiative transfer model with fixed dynamical heating is used to calculate the approximate latitude and seasonal dependences of lower stratospheric temperature changes associated with observed ozone trends. The spatial and temporal distribution of ozone profile trends in the lower stratosphere is estimated from a combination of Nimbus 7 Solar Backscattered Ultraviolet (SBUV) global measurements of the ozone column below 32 mbar for the period 1979-1990 and balloon ozonesonde profile trends at northern middle latitudes. The calculated temperature trends near 100 mbar compare favorably with those recently derived by Randel and Cobb using data from Channel 4 of the Microwave Sounding Unit (MSU) on the NOAA operational satellites, although a number of quantitative differences are found. An independent analysis reported here of 100 mbar temperatures derived from northern hemisphere radiosonde data at the Free University of Berlin supports the validity of the satellite-derived lower stratospheric temperature trends. These results are therefore generally consistent with the hypothesis that observed lower stratospheric cooling trends are predominantly determined by reductions in radiative heating associated with stratospheric ozone depletion. 16 refs., 4 figs., 1 tab.

  18. Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers

    NASA Astrophysics Data System (ADS)

    Pommereau, J.

    2008-12-01

    Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.

  19. Stability of the pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  20. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Salawitch, Ross J.; Xue, Jim Changqin; Ciarpallini, Paola

    1995-01-01

    This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.

  1. Recent volcanism and the stratosphere.

    PubMed

    Cronin, J F

    1971-05-21

    In the quiet years after the 1956 eruption of the Bezymianny volcano in central Kamchatka, it is doubtful that any volcano vented into the stratosphere until the 1963 eruptions of Agung (Bali), Trident (Alaska), and Surtsey (Iceland). From 1963 to the Hekla (Iceland) event in May 1970, two latitudinal belts of volcanoes have ejected ash and gases into the stratosphere. One belt is equatorial and the other is just below the Arctic Circle. The latter, where the tropopause is considerably lower, may have been the principal source of replenishment of volcanic dust and gases to the stratosphere. Submarine and phreatic volcanic eruptions may have been the sources of reported increase of water vapor in the stratosphere.

  2. Thermal modeling of stratospheric airships

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Fang, Xiande; Wang, Zhenguo; Hou, Zhongxi; Ma, Zhenyu; Zhang, Helei; Dai, Qiumin; Xu, Yu

    2015-05-01

    The interest in stratospheric airships has increased and great progress has been achieved since the late 1990s due to the advancement of modern techniques and the wide range of application demands in military, commercial, and scientific fields. Thermal issues are challenging for stratospheric airships, while there is no systematic review on this aspect found yet. This paper presents a comprehensive literature review on thermal issues of stratospheric airships. The main challenges of thermal issues on stratospheric airships are analyzed. The research activities and results on the main thermal issues are surveyed, including solar radiation models, environmental longwave radiation models, external convective heat transfer, and internal convective heat transfer. Based on the systematic review, guides for thermal model selections are provided, and topics worthy of attention for future research are suggested.

  3. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  4. Scientific ballooning: Past, present and future

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    2013-02-01

    Balloons have been used for scientific research since they were invented in France more than 200 years ago. Cosmic rays were discovered 100 years ago with an experiment flown on a manned balloon. A major change in balloon design occurred in 1950 with the introduction of the socalled natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for the past half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing a super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. Ultra-long-duration balloon (ULDB) flights enabled by constant-volume balloons should result in an even greater sea change in scientific ballooning than the inauguration of long-duration balloon (LDB) flights in Antarctica during the 1990-91 austral summer.

  5. Stratospheric dynamics and transport studies

    NASA Technical Reports Server (NTRS)

    Grose, William L.; Turner, R. E.; Blackshear, W. T.; Eckman, R. S.

    1990-01-01

    A three dimensional General Circulation Model/Transport Model is used to simulate stratospheric circulation and constituent distributions. Model simulations are analyzed to interpret radiative, chemical, and dynamical processes and their mutual interactions. Concurrent complementary studies are conducted using both global satellite data and other appropriate data. Comparisons of model simulations and data analysis studies are used to aid in understanding stratospheric dynamics and transport processes and to assess the validity of current theory and models.

  6. Modelling of local modification of chemical composition generated by artificial beam injection in stratosphere

    NASA Astrophysics Data System (ADS)

    Oraevsky, V.; Ruzhin, Y.; Borisov, N.; Nesterov, I.

    The physical/chemical processes that are occurring in the middle atmosphere, are very complex and knowledge of them are obviously poor. At the same time the understanding of these processes is necessary, in particular, for an explanation of ozone dynamics and influencing on it of the different factors, for example, impurities of anthropogenous nature. In the present activity the capability of creation of noticeable local disturbances of concentration of ozone and other minor neutral components in stratosphere si theoretically modeled for artificial injection of high energy electron beams from a high-altitude balloon. With the help of numerical simulations (31 reactions) the quantitative assessments of expected effect for different altitudes (range of 35-45 km) and different values of eddy diffusion factor are obtained and presented. It is shown the considered means has a number of advantages in comparison with method of artificial action on stratosphere ozone by VHF generation of ionized area in atmosphere. At first, it is much more friend and precisely to conduct diagnostic of effect, which one arises due to "in -situ" onboard measurements from a balloon. Secondly, it is possible to inject any impurities (freons) to study directly in stratosphere their affect on ozone. The method, tendered here, requires considerably smaller material costs and can be realized already now. Based on presented modeling results it is important to note that in our method an integral disturbance in stratosphere (full quantity of created molecules of ozone, nitric oxides etc.) is rather insignificant, as the effect is localized near to injected electron beam. Therefore there is no hazard of deposition of unchecked injury to environment. At the same time realization of tendered experiment will allow essentially to deepen our representations about composite physical/chemical processes occurring in middle atmosphere (stratosphere).

  7. Stratospheric Profiling of HDO from Far InfraRed Limb Measurements by TELIS

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Trautmann, Thomas; Birk, Manfred; Wagner, Georg

    2016-08-01

    Water vapour is the dominant greenhouse gas in the troposphere and has been increasing in the stratosphere as well. It is generally believed that stratospheric water vapor affects ozone chemistry in the stratosphere. HDO, one of the rare isotopologues, has been recently monitored by several operational satellite instruments by detecting thermal emission in the infrared and microwave range.The balloon-borne TELIS (TErahertz and submillimeter LImb Sounder) instrument has been cooperatively developed by a consortium of European institutes, i.e. DLR (German Aerospace Center), SRON (Netherlands Institute for Space Research), and RAL (Rutherford Appleton Laboratory). Together with MIPAS-B and mini-DOAS operated by KIT (Karlsruhe Institute of Technology) and Heidelberg University, respectively, TELIS was installed on a stratospheric balloon gondola and has participated in four scientific campaigns since 2009. The high spectral resolution spectrometer TELIS allows the vertical information of the rare isotopologues between about 10 and 40 km by resolving power of individual lines. The concentration profile of HDO in the upper troposphere and lower stratosphere can be observed by both the 1.8 THz (far infrared) channel and the 480-650 GHz (submillimeter) channel. For the far infrared frequency channel, the HDO product is retrieved from the 1818.50 GHz transition. We make use of the retrieval code PILS (Profile Inversion for Limb Sounding) to carry out the inversion and to assess the accuracy of the retrieval product.In this work, we present the HDO retrievals from the 2009-2011 winter polar campaigns. The outcome of this comparison helps us to better understand the measurement capabilities of the TELIS instrument and to make contribution to cross-validation of these spaceborne sensors.

  8. Determination of radiocarbon in stratospheric CO2, obtained through AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-04-01

    The concentration of Greenhouse Gases (GHG), with carbon dioxide as the most prominent example, has been and still is increasing, predominantly due to emissions from fossil fuel combustion. CO2 is also the most important component of the global carbon cycle. Among other tracers, radiocarbon (Carbon-14) is a unique and an important atmospheric tracer used in the understanding of the global carbon cycle. Radiocarbon is a naturally occurring isotope (radioactive, t 1/2 = 5730 ± 40 years) of carbon produced through the interaction of thermalized neutrons and nitrogen in the upper atmosphere. Generally, for performing atmospheric radiocarbon measurements in the higher atmosphere, large samples (few liters of air) were collected using aircrafts and balloons. However, collecting stratospheric samples on a regular basis for radiocarbon analysis is extremely expensive. Here we describe the determination of radiocarbon concentrations in stratospheric CO2, collected using AirCore sampling. AirCore is an innovative sampling technique for obtaining vertical atmospheric profiles and, in Europe, is done on a regular basis at Sodankylä, Finland for CO2, CH4 and CO. The stratospheric parts of two such AirCore profiles were used in this study as a proof-of-principle. CO2 from the stratospheric air samples were extracted and converted to elemental carbon, which were then measured at the Accelerator Mass Spectrometric (AMS) facility of the Centre for Isotope Research (CIO) at the University of Groningen. The stratospheric part of the AirCore profile was divided into six sections, each contained approximately 10 μg C. A detailed description of the extraction, graphitization, AMS analysis and the derivation of the stratospheric radiocarbon profile will be the main focus. Through our results, we will show that AirCore is a viable sampling method for performing high-precision radiocarbon measurements of stratospheric CO2 with reasonably good spatial resolution on a regular basis

  9. Attitude determination from a balloon-borne radiometer using two-sided limb scanning

    NASA Astrophysics Data System (ADS)

    Drummond, J. R.; Turner, D.; Ashton, A.

    1986-03-01

    The determination of the horizontal attitude of a balloon-borne, infrared, limb-scanning radiometer is discussed. In particular, the relationship between scan-angle, as measured by the instrument, and the tangent height of the ray path through the atmosphere is considered. The instrument is unusual in that it scans in two opposite directions. This property is used to derive the scan angle from the same radiance profiles, which are used to determine the constituent profiles, subject only to the assumptions that the attitude is steady, the stratosphere is locally horizontally homogeneous, and the instrumental optical alignment is correct. The results of this determination for the first flight of the Toronto Balloon Radiometer are compared to previous methods of determining the instrumental scan angle and are found to agree to the accuracy with which the comparisons are made. Techniques by which the accuracy and resolution of the two-sided attitude determination could be improved are discussed.

  10. The NASA rocky mountain space grant high altitude research balloon project

    NASA Astrophysics Data System (ADS)

    Moore, R. G.; Espy, P.

    1994-02-01

    A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System receiver, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command the transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.

  11. The NASA rocky moutain space grant high altitude research balloon project

    NASA Astrophysics Data System (ADS)

    Moore, R. G.; Espy, P.

    1994-02-01

    A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System reciever, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.

  12. Intercomparison of remote measurements of stratospheric NO and NO2

    NASA Technical Reports Server (NTRS)

    Roscoe, H. K.; Kerridge, B. J.; Pollitt, S.; Louisnard, N.; Flaud, J. M.

    1990-01-01

    During the 1982 and 1983 Balloon Intercomparison Campaigns, the vertical profile of stratospheric NO2 was measured remotely by nine instruments and that of NO by two. Total overhead columns were measured by two more instruments. Between 30 and 35 km, where measurements overlapped, agreement between NO profiles was within + or - 30 percent, which is better than the accuracies claimed by the experimenters. Between 35 and 40 km, there was similarly good agreement between NO2 profiles, but below 30 km, differences of greater than a factor of 3 were found. In the second campaign, NO2 values from most instruments agreed within their quoted errors, except that the Oxford radiometer gave much lower values; the first campaign and the column measurements show a more uniform spread of results.

  13. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2008-02-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  14. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2007-05-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  15. Age of stratospheric air in the ERA-Interim

    NASA Astrophysics Data System (ADS)

    Diallo, M.; Legras, B.; Chedin, A.

    2012-07-01

    The age of stratospheric air is calculated over 22 yr of the ERA-Interim reanalysis using an off-line Lagrangian transport model and heating rates. At low and mid-latitudes, the mean age of air is in good agreement with observed ages from aircraft flights, high altitude balloons and satellite observations of CO2 and SF6. The mid-latitude age spectrum in the lower stratosphere exhibits a long tail with a peak at 0.5 yr, which is maximum at the end of the winter, and a secondary flat maximum between 4 and 5 yr due to the combination of fast and slow branches of the Brewer-Dobson circulation and the reinforced barrier effect of the jet. At higher altitudes, the age spectrum exhibits the footprint of the annual modulation of the deep Brewer-Dobson circulation. The variability of the mean age is analysed through a decomposition in terms of annual cycle, QBO, ENSO and trend. The annual modulation is the dominating signal in the lower stratosphere and in the tropical pipe with amplitude up to one year. The phase of the oscillation is opposite in both hemisphere beyond 20° and is also reversed below and above 25 km with maximun arising in mid-March in the Northern Hemisphere and in mid-September in the Southern Hemisphere. The tropical pipe signal is in phase with the lower southern stratosphere and the mid northern stratosphere. The maximum amplitude of the QBO modulation is of about 0.5 yr and is mostly concentrated within the tropics between 25 and 35 km. It lags the QBO wind at 30 hPa by about 8 months. The ENSO signal is small and limited to the lower northen stratosphere. The trend is significant and negative, of the order of -0.3 to -0.5 yr dec-1, within the lower stratosphere in the Southern Hemisphere and under 40° N in the Northern Hemisphere below 25 km. It is positive (of the order of 0.3 yr dec-1) in the mid stratosphere but there is no region of consistent significance. This suggests that the shallow and deep Brewer-Dobson circulations may evolve in

  16. Investigation of convective transport in the tropical stratosphere using a lightweight uv-visible spectrometer sonde

    NASA Astrophysics Data System (ADS)

    Vicomte, M.; Pommereau, J.-P.

    2012-04-01

    The occurrence of deep convective overshooting reaching altitudes up to 20 km is known for long above the tropical continents. They were shown recently shown to carry tropospheric chemical species, ice crystals, and possibly lightning NOx, in the lower stratosphere. For better investigating such process, a light UV-Visible spectrometer SAOZ balloon sonde, called mini-SAOZ, was developed on more advanced technology than the older instrument. The payload, weighting 9 kg, includes two spectrometers: a visible-near IR system for the measurement of O3, NO2, H2O, O4 and O2 and aerosol attenuation, and a UV system for BrO, OClO and CH2O). The mini-SAOZ sonde has been tested and qualified in flight with the help of CNES In Kiruna in Northern Sweden in 2010 and 2011. The plan is to fly several times this sonde on small balloons of 1500 m3 in South East Brazil in February-March 2012, next or immediately above convective systems during a TRO-pico campaign dedicated to the study of stratospheric hydration by geyser like injection of ice crystals and more generally fast convective lofting of tropospheric air in the stratosphere across the tropopause. After a short description of the instrument, the presentation will show the first results of those flights.

  17. Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Harper, David Brent; Elsayed-Ali, Hani

    1998-01-01

    The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.

  18. Development of scientific ballooning in Japan

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun

    On the occasion of the 50th Anniversary Celebration of COSPAR of this year of 2008, it is worthwhile to summarize the results of the Scientific ballooning in early days in connection with the recent developments in various countries. Nishina Laboratories, Riken, had started the observations of cosmic rays with rubber balloons as early as 1942. However it was interrupted soon by the war II. After the war, new research group started in collaboration with several universities with nuclear emulsions put on the rubber balloons in 1950, and then soon after the group manufactured by themselves and launched the first plastic balloon in 1953. Based on additional technologies during a few years developed by these group, the Institute of Nuclear Study, INS, the University of Tokyo, organized the large campaign of 14 emulsion chambers and a pellicle stack with 8 plastic balloons in 1956. It is to be noted that the project was one of the largest in the world standard in those days. By the experience of this campaign, the importance of the balloon technologies was more recognized, and INS organized the group to study the balloon technologies, and had established some developments. The systematic study of scientific ballooning has started, when the scientific ballooning laboratory was founded in 1965, in the new Institute of ISAS, the University of Tokyo. The permanent balloon base of "Sanriku Balloon Center" was founded in 1971. This group has expended all efforts for the scientific ballooning, launching 10-20 balloons in each year with new inventions such as the studies of; Technologies to manufacture the reliable plastic balloons, New Balloon materials, New instrumentations for scientific ballooning, Systems of long duration flights including Antarctica flights, International collaboratiom, etc. Up to now almost 600 plastic balloons were launched during past 50 years. Then the scientific balloonings have played important and indispensable roles for the development of space

  19. A method for balloon trajectory control

    NASA Astrophysics Data System (ADS)

    Aaron, K. M.; Heun, M. K.; Nock, K. T.

    A balloon trajectory control system is discussed that is under development for use on NASA's Ultra Long Duration Balloon Project. The trajectory control system exploits the natural wind field variation with altitude to generate passive lateral control forces on a balloon using a tether-deployed aerodynamic surface below the balloon. A lifting device, such as a wing on end, is suspended on a tether well beneath the balloon to take advantage of this variation in wind velocity with altitude. The wing generates a horizontal lift force that can be directed over a wide range of angles. This force, transmitted to the balloon by a tether, alters the balloon's path providing a bias velocity of a few meters per second to the balloon drift rate. The trajectory control system enables the balloon to avoid hazards, reach targets, steer around avoidance countries and select convenient landing zones. No longer will balloons be totally at the mercy of the winds. Tests in April 1999 of a dynamically-scaled model of the trajectory control system were carried out by Global Aerospace Corporation in ground level winds up to 15 m/s. The size of the scale model was designed to simulate the behavior of the full scale trajectory control system operating at 20 km altitude. The model confirmed many aspects of trajectory control system performance and the results will be incorporated into future development.

  20. Scientific ballooning in India: recent developments

    NASA Astrophysics Data System (ADS)

    Joshi, M. N.; Damle, S. V.

    The National Scientific Balloon Facility (NBF) of the Tata Institute of Fundamental Research (TIFR) has been conducting regular balloon flights for various experiments in the areas of Space Astronomy and Atmospheric Sciences. A continuous improvement in all aspects of Scientific Ballooning through a sustained R and D programme ensures uptodate services and a better handle on the design specifications for the balloon. Recent developments in balloon grade films, continuous improvements in design specifications, balloon manufacturing methods, flight operational procedures and improved balloon flight capabilities have resulted in a greatly improved flight performance in the last five years. A launch capability upgradation programme in terms of new launch spool and new launch vehicle has been initiated to be able to safely launch balloons with gross lifts upto 3500 kg, balloon volumes upto 450,000 m^3 and payloads upto 1400 kg. A series of steps have been initiated to improve long duration flight capabilities. In this paper, we present details on some of these aspects of Scientific Ballooning in India.

  1. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  2. Stratospheric processes: Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Cox, R. Anthony; Turco, Richard; Brasseur, Guy P.; Matthews, W. Andrew; Zhou, Xiuji; Douglass, Anne; Zander, Rudi J.; Prendez, Margarita; Rodriguez, Jose M.

    1991-01-01

    Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.

  3. Balloon tracer for atmospheric pollutants

    SciTech Connect

    Lichfield, E.W.; Ivey, M.D.; Zak, B.D.; Church, H.W.

    1985-01-01

    An operational prototype of the Balloon Tracer was developed and described. This prototype was designed to be capable of meeting all of the desired specifications for the Balloon Tracer. Its buoyancy adjustment subsystem is shown. Three Gilian instrument pumps operating in parallel provide a flow of about 12 litres per minute, depending upon backpressure. The miniature Klippard mechanical valves are actuated by a servo mechanism which only requires power when the state of the valves is being changed. The balloon itself for the operational prototype is just under 3 meters in diameter. A block diagram of the operational prototype payload measures ambient pressure, temperature, and humidity obtained from AIR which outputs its data in ASCII format. The vertical anemometer, which has a measured starting speed of under 2 cm/s, makes use of a Gill styrofoam propeller and a Spaulding Instruments rotation sendor. The command decoder is built around a chip developed originally for remote control television tuners. The command receiver operating on 13.8035 MHz was developed and built by Hock Engineering. The Argos transmitter is a Telonics platform transmitter terminal. The heart of the control system is an Intel 8052AH BASIC microcomputer with both random access and read only memory.

  4. Viscoelastic behaviour of pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  5. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere

    NASA Astrophysics Data System (ADS)

    Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai

    2015-08-01

    This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves

  6. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  7. Biodegradable inflatable balloons for tissue separation.

    PubMed

    Basu, Arijit; Haim-Zada, Moran; Domb, Abraham J

    2016-10-01

    Confining radiation to a specific region (during radiation therapy) minimizes damage to surrounding tissues. Biodegradable inflatable balloons (bio-balloons) were developed. The device protects the normal tissues by increasing the gap between radiation source and critical structures. The radiation fades away while passing through the inflated balloon preventing the surrounding tissues from harmful radiation. These bio-balloons have also found clinical use to treat massive rotator cuff tear. This review summarizes the chemistry, engineering, and clinical development of these biomedical devices. These balloons are made of biodegradable polymers folded into the edge of a trocar and inserted between the tissues to be separated, and inflated by normal saline in the site of the application. The inserted balloon protects the tissues from radiation or mechanical stress. They remain inflated on site for two months and are finally eliminated within 12 months.

  8. Condensed Acids In Antartic Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  9. Measurements of stratospheric ozone by rocket ozonesondes in Japan

    NASA Technical Reports Server (NTRS)

    Watanabe, Takashi; Ogawa, Toshihiro

    1994-01-01

    A small optical ozone instrument has been developed for a rocket-borne dropsonde to measure the altitude profile of stratospheric ozone. It consists of a four-color filter photometer that measures the attenuation of sunlight as a function of altitude at four wavelengths in the middle ultraviolet. The ozone dropsonde is launched aboard a meteorological rocket MT-135, providing the altitude profiles of ozone as well as atmospheric temperature and wind. The rocket launchings have been carried out five times since August 1990 at Uchinoura (31 deg N, 131 deg E), Japan to measure ozone concentration from 52 to 20 km altitudes during the slow fall of the dropsonde. The ozone profiles measured in summer (August 27, 1990; Sep. 11 and 12, 1991) were very stable above an altitude of 28km. where as those measured in winter (Feb. 9, and 11, 1991) showed considerable day-to-day variations at the stratospheric altitudes. Ozone, temperature and wind profiles measured simultaneously by both rocket and balloon ozonsondes are compared with CIRA 1986 model atmosphere.

  10. Balloon-assisted coil placement in wide-neck bifurcation aneurysms by use of a new, compliant balloon microcatheter.

    PubMed

    Baldi, Sebastian; Mounayer, Charbel; Piotin, Michel; Spelle, Laurent; Moret, Jacques

    2003-01-01

    Two types of balloon are usually employed to perform balloon-assisted coil placement in cerebral aneurysms: oval, guide-dependent balloons for sidewall aneurysms and round balloons for bifurcation aneurysms. We report on the use of a new, more compliant, guide-dependent oval balloon microcatheter to seal wide-neck bifurcation aneurysms with coils during endovascular occlusion.

  11. Mean Ages of Stratospheric Air Derived From in Situ Observations of CO2, CH4, and N2O

    NASA Technical Reports Server (NTRS)

    Andrews, A. E.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Jost, H.; Podolske, J. R.; Webster, C. R.; Herman, R. L.; Scott, D. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N2O obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are less than 0.5 year throughout the stratosphere and less than 0.3 year for air older than 2 years (N2O less than 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is approximately 2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (approx. 25-32 km) is relatively constant with respect to altitude at 5 plus or minus 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within 11 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N2O. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.

  12. Design considerations for a Martian Balloon Rover

    NASA Technical Reports Server (NTRS)

    Redd, F.; Levesque, R. J.; Williams, G. E.

    1987-01-01

    The present NASA-sponsored design feasibility study for a balloon-borne sensor platform that is to be used over environmentally dissimilar sites on Mars gives attention to specific environmental and configurational parameters of a baseline balloon design, with a view to day/night altitude variations in response to temperature extremes. It is concluded that a Martian Balloon Rover can be developed using current technology; projected reductions in high-strength fabric density and radiation-resistant coatings will further enhance mission effectiveness, permitting either balloon size reductions or payload capacity increases.

  13. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  14. NASA Langley Research Center tethered balloon systems

    NASA Technical Reports Server (NTRS)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  15. [Development of all-silicone detachable balloons].

    PubMed

    Machida, T; Aoki, S; Sasaki, Y; Sasaki, Y; Iio, M; Matsuno, A; Yoshida, S; Basugi, N

    1990-11-25

    Treatment of cerebral vascular lesions such as carotid cavernous sinus fistulas and giant aneurysms is now being performed with intravascular detachable balloon embolization techniques. We have developed several types of all-silicone detachable balloons. Our balloons have self-sealing valves (with or without collars) and detach with simple traction. The self-sealing valve is smaller than 0.6 mm and the balloon can easily be placed through a 7-F catheter. We started clinical trials and a representative case was reported.

  16. Innovative Balloon Buoyancy Techniques for Atmospheric Exploration

    NASA Technical Reports Server (NTRS)

    Jones, J.

    2000-01-01

    Until quite recently, the only practical means to control balloon buoyancy, and thus altitude, required consuming large amounts of fuel or the limited venting of helium balloons and/or dropping of ballast. With recent discoveries at JPL, novel long-life, balloon buoyancy techniques have been discovered that for the first time allow balloons to float in the primarily hydrogen atmospheres of Jupiter, Saturn, Uranus, and Neptune (using ambient fill-gas), and by using renewable energy sources, allow multiple controlled landings on Venus (using atmospheric temperature differences), Mars (solar heat), Titan (RTG heat), and Earth (planet radiant heat).

  17. Stratospheric control of planetary waves

    NASA Astrophysics Data System (ADS)

    Hitchcock, Peter; Haynes, Peter H.

    2016-11-01

    The effects of imposing at various altitudes in the stratosphere zonally symmetric circulation anomalies associated with a stratospheric sudden warming are investigated in a mechanistic circulation model. A shift of the tropospheric jet is found even when the anomalies are imposed only above 2 hPa. Their influence is communicated downward through the planetary wave field via three distinct mechanisms. First, a significant fraction of the amplification of the upward fluxes of wave activity prior to the central date of the warming is due to the coupled evolution of the stratospheric zonal mean state and the wave field throughout the column. Second, a downward propagating region of localized wave, mean-flow interaction is active around the central date but does not penetrate the tropopause. Third, there is deep, vertically synchronous suppression of upward fluxes following the central date. The magnitude of this suppression correlates with that of the tropospheric jet shift.

  18. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  19. Chemistry and Pollution of the Stratosphere.

    ERIC Educational Resources Information Center

    Donovan, R. J.

    1978-01-01

    Presents an outline of the chemistry involved and the steps which are being taken to gain a better understanding of the stratosphere. Chemical composition of natural stratosphere and depletion of ozone in the stratosphere by man-made pollutants are covered. (HM)

  20. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  1. Statistical Perspectives on Stratospheric Transport

    NASA Technical Reports Server (NTRS)

    Sparling, L. C.

    1999-01-01

    Long-lived tropospheric source gases, such as nitrous oxide, enter the stratosphere through the tropical tropopause, are transported throughout the stratosphere by the Brewer-Dobson circulation, and are photochemically destroyed in the upper stratosphere. These chemical constituents, or "tracers" can be used to track mixing and transport by the stratospheric winds. Much of our understanding about the stratospheric circulation is based on large scale gradients and other spatial features in tracer fields constructed from satellite measurements. The point of view presented in this paper is different, but complementary, in that transport is described in terms of tracer probability distribution functions (PDFs). The PDF is computed from the measurements, and is proportional to the area occupied by tracer values in a given range. The flavor of this paper is tutorial, and the ideas are illustrated with several examples of transport-related phenomena, annotated with remarks that summarize the main point or suggest new directions. One example shows how the multimodal shape of the PDF gives information about the different branches of the circulation. Another example shows how the statistics of fluctuations from the most probable tracer value give insight into mixing between different regions of the atmosphere. Also included is an analysis of the time-dependence of the PDF during the onset and decline of the winter circulation, and a study of how "bursts" in the circulation are reflected in transient periods of rapid evolution of the PDF. The dependence of the statistics on location and time are also shown to be important for practical problems related to statistical robustness and satellite sampling. The examples illustrate how physically-based statistical analysis can shed some light on aspects of stratospheric transport that may not be obvious or quantifiable with other types of analyses. An important motivation for the work presented here is the need for synthesis of the

  2. Low-cost balloon missions to Mars and Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Cutts, J.; Hall, J.

    2003-01-01

    The first successful flight demonstration of aerial deployment of Mars balloon prototypes in June 2002 and, earlier, of Venus balloon prototype deemed to be a turning point in the risk assessment of balloon missions.

  3. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  4. Stratospheric H2O and HNO3 profiles derived from solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.

    1985-04-01

    Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.

  5. The High Altitude Sampling Program: Radioactivity in the stratosphere: Final report

    SciTech Connect

    Leifer, R; Juzdan, Z R

    1986-12-01

    Radioactivity data are presented from Project Airstream (aircraft) for the year 1983 and for Project Ashcan (balloon) for the years 1982 and 1984. Due to budgetary constraints both Projects Airstream and Ashcan have been terminated. This will be the final report containing radioactivity data collected during projects airstream and ashcan. Included are gross gamma, gamma spectral and radiochemical analyses of filter samples. Quality control samples submitted along with the air filter samples were analyzed and the results are presented. Low activity on many of the filters precludes the estimation of the stratospheric inventories of /sup 239,240/Pu and /sup 90/Sr. Based on data with count errors <20%, the mean Northern Hemisphere stratospheric /sup 90/Sr and /sup 239,240/Pu concentration for November 1983 was 0.2 +- 0.1 and 0.009 +- 0.006 Bq/1000 scm, respectively.

  6. Measurement of the stratospheric hydrogen peroxide concentration profile using far infrared thermal emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.; Jucks, K. W.

    1991-01-01

    The first unequivocal measurement of hydrogen peroxide in the stratosphere have been made, a concentration profile obtained from a balloon platform using Fourier transform thermal emission spectroscopy in the far infrared. Measurements were made using the 112/cm R-Q5 branch of the rotational-torsional spectrum, with some confirmation from the 94/cm R-Q4 branch. The volume mixing ratio of H2O2 is 1.6 x 10 to the -10th at 38.4 km, decreasing to 0.6 x 10 to the -10th at 23.8 km, with uncertainties of about 16 percent. These measurements are compared to a recent stratospheric model calculation.

  7. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; Santee, M. L.; Sen, B.; Stachnik, R. A.; Waters, J. W.

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  8. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    NASA Technical Reports Server (NTRS)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  9. Biological entities isolated from the stratosphere (22-27km): case for their space origin

    NASA Astrophysics Data System (ADS)

    Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra

    2013-09-01

    Biological entities were isolated at a height of between 22-27 km in the stratosphere. Sampling of this region was carried out in the UK in July 2013 using a relatively simple low-cost balloon-borne sampler carrying aseptically clean scanning electron microscope stubs onto which aerosols were directly captured. The entities varied from a presumptive colony of ultra-small bacteria to two unusual individual organisms - part of a diatom frustule and a 200 micron-sized particle mass interlaced with biological filaments. Biological entities of this nature have not previously been reported occurring in the stratosphere; their likely origin is discussed and we provide arguments to support our view that such biological entities may have arrived from space. The new data gives strong confirmation of the Hoyle-Wickramasinghe theory of cometary panspermia.

  10. An implementation of Software Defined Radios for federated aerospace networks: Informing satellite implementations using an inter-balloon communications experiment

    NASA Astrophysics Data System (ADS)

    Akhtyamov, Rustam; Cruz, Ignasi Lluch i.; Matevosyan, Hripsime; Knoll, Dominik; Pica, Udrivolf; Lisi, Marco; Golkar, Alessandro

    2016-06-01

    Novel space mission concepts such as Federated Satellite Systems promise to enhance sustainability, robustness, and reliability of current missions by means of in-orbit sharing of space assets. This new paradigm requires the utilization of several technologies in order to confer flexibility and re-configurability to communications systems among heterogeneous spacecrafts. This paper illustrates the results of the experimental demonstration of the value proposition of federated satellites through two stratospheric balloons interoperating with a tracking ground station through Commercial Off-The-Shelf Software Defined Radios (SDRs). The paper reports telemetry analysis and characterizes the communications network that was realized in-flight. Furthermore, it provides details on an in-flight anomaly experienced by one of the balloons, which was recovered through the use of the federated technology that has been developed. The anomaly experienced led to the early loss of the directional link from the ground station to the affected stratospheric balloon node after 15 min in flight. Nevertheless, thanks to the federated approach among the systems, the ground station was still able to retrieve the balloon's data in real time through the network system, for which the other balloon operated as a federated relay for 45 min in flight, uninterrupted. In other words, the federated approach to the system allowed triplicating the useful lifetime of the defective system, which would have not been possible to realize otherwise. Such anomaly coincidentally demonstrated the value of the federated approach to space systems design. The paper paves the way for future tests on space assets.

  11. Measurements of nitric oxide in the stratosphere at 44 N in autumn

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Matthews, W. A.; Aimedieu, P.; Robbins, D. E.

    1989-01-01

    Precision of the chemiluminescent instrument for balloon-borne NO measurement was improved by precise determinations of the flow rates of the sample air and the calibration NO in N2 gas. Based on the new calibration of these values, NO mixing ratio in the stratosphere was reanalyzed. The revision of the NO data does not at all alter the form of the diurnal variation. The average of the four NO profiles between 15 and 32 km obtained at 44 N in autumn is given.

  12. Observations of the stratospheric conductivity and its variation at three latitudes

    NASA Astrophysics Data System (ADS)

    Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Oro, D.; Seubert, C. O.

    1988-04-01

    Measurements from nine high-altitude balloon flights at altitudes ranging from 10 to 30 km have been obtained in order to study atmospheric conductivity variations on local and global scales. The conductivity profiles are not correlated with solar or cosmic ray activity, but they exhibit variations which appear to be dominated by local effects. Evidence is provided of stratospheric aerosol layers with number densities of the order of 1000/cu cm. It is suggested that global conductivity models employing latitudinal variations based on cosmic ray ionization alone may be improved by including the effects of latitudinal variations of temperature and aerosols.

  13. In-situ measurements of tropospheric and stratospheric ozone over Hyderabad

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    The Study of the ozone concentration and its variability is one of the key indexes for environmental and ecological degradation While the stratospheric ozone absorbs the harmful ultraviolet radiation between 280-320 nm band, the tropospheric ozone is formed in the elevated layers up to 10km above ground level through the photochemical decomposition of the precursor gases like NOx, VOCs and non-methane hydrocarbons (NMHCs) released from the earth surface. Ozone studies are also vital for the understanding of solar terrestrial coupling as well as the ozone chemistry on a given site and its surroundings. Continuous measurements of vertical profile of ozone and various meteorological parameters (i.e. temperature, pressure, humidity, wind speed and direction) over one year period were made over Hyderabad using high altitude plastic balloons, in order to investigate i. variations of ozone in the troposphere and stratosphere, ii. stratospheric warming iii. coupling between upper troposphere and lower stratosphere (UTLS) region. Ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde was used for the measurement of Ozone and meteorological parameters.

  14. Modeling and path-following control of a vector-driven stratospheric satellite

    NASA Astrophysics Data System (ADS)

    Zheng, Zewei; Chen, Tian; Xu, Ming; Zhu, Ming

    2016-05-01

    The stratospheric satellite driven by steady prevailing winds in the stratosphere must be controlled in its longitudinal excursion to keep a latitudinal orbital flight. In a reliable and high-precision control system, an available system model must come first. In this paper, we study the 6 degree-of-freedom (DOF) modeling and path-following problem of a novel stratospheric satellite which consists of a high-altitude helium balloon, a truss and two vector-motor-driven propellers. To keep a latitudinal flight orbit, an algorithm for accurate latitudinal path following is proposed based on the theories of vector field and sliding mode control. Moreover, a forward velocity controller is added to the control algorithm to maintain a constant velocity. Finally, a series of open-loop control simulations are completed to verify the effectiveness of the model in the performance of the stratospheric satellite dynamics, and path-following control simulation results demonstrate the effectiveness of the proposed control algorithm.

  15. Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Brogniez, Colette; Berthet, GwenaëL.; Bourgeois, Quentin; Gaubicher, Bertrand; Chartier, Michel; Balois, Jean-Yves; Verwaerde, Christian; Auriol, FréDéRique; Francois, Philippe; Daugeron, Daniel; Engrand, CéCile

    2008-11-01

    Stratospheric aerosols play a significant role in stratospheric chemistry. In the past, it was assumed that only liquid droplets are present in the stratosphere. Nevertheless, a few lidar measurements have shown that sudden enhancement of aerosol content in the middle stratosphere could be due to meteoritic debris. Aircraft measurements have shown that solid particles can be found in the lower stratosphere; these particles are mainly soot, but also include some interplanetary material. In order to better document the various characteristics of aerosols in the unperturbed stratosphere (i.e., free of volcanic aerosols), we have performed observations using different balloon-borne instruments (Stratospheric and Tropospheric Aerosol Counter (STAC), Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON), and Micro Radiomètre Ballon (MicroRADIBAL)) and also some satellite data (Global ozone monitoring by occultation of stars Envisat (GOMOS-Envisat)). These instruments allow us to obtain the number of particles in different size classes, the wavelength dependence of aerosol extinction, and the radiance of the light scattered by aerosols. Combining all the data together, it appears that significant amounts of particles are ubiquitous in the middle stratosphere, above the canonical sulfate aerosol layer. "Background" interplanetary dusts in low concentration are likely present in the stratosphere. Above 30 km, interplanetary dust and largest grains from meteoroid disintegration dominate. Although the disintegration of meteoroids occurs in the upper stratosphere or in the mesosphere at all latitudes, these solid aerosols can be transported to the polar regions by the general circulation and can descend into the middle and lower stratosphere during winter mesospheric descents. Between about 22 km and 30 km, soot particles contribute to the population of aerosols at all latitudes. These soot, likely originating from biomass burning at

  16. Intragastric Balloons in Clinical Practice.

    PubMed

    Papademetriou, Marianna; Popov, Violeta

    2017-04-01

    Cost-effective therapies to address the growing epidemic of obesity are a leading priority in modern medicine. Intragastric balloons (IGBs) are one such option, with increased effectiveness compared with pharmacotherapy and lifestyle and a lower rate of adverse events than bariatric surgery. IGBs are endoscopically placed or swallowed space-occupying devices in the stomach. Three IGB systems were approved in 2015 to 2016 by the Food and Drug Administration for use in the United States, with more devices nearing approval. This paper reviews the adverse events and efficacy of IGBs, and practice setup, management of common complications, and dietary advice for patients.

  17. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes; Fix, Andreas; Schäfler, Andreas; Wirth, Martin; Calpini, Bertrand; Levrat, Gilbert; Romanens, Gonzague; Apituley, Arnoud; Wilson, Keith M.; Begbie, Robert; Reichardt, Jens; Vömel, Holger; Sprenger, Michael

    2016-07-01

    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study ("Part 1", Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in "Part 1" from the Zugspitze CO observations. The trajectories qualitatively explain

  18. Balloon-related activities of the IMK/FZK: instruments, activities and results

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Oelhaf, Hermann; Kleinert, Anne; Lengel, Anton; Maucher, Guido; Nordmeyer, Hans; Stowasser, Markus; Wetzel, Gerald; Fischer, Herbert

    2001-08-01

    The Institut für Meteorologie und Klimaforschung of the Forschungszentrum Karlsruhe (IMK/FZK) is operating a balloon-borne instrument for atmospheric research since the late eighties. The MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon) instrument, a cryogenic Fourier spectrometer for limb emission measurements has flown 13 times in two different versions from France and Sweden. In this time the instrument has participated in three large international campaigns (EASOE, SESAME, THESEO) and several smaller field-activities (CHORUS, CHELOSBA, POSTA) concerning stratospheric chemistry from which important contributions to the understanding of the Arctic ozone depletion mechanisms have been achieved. Additionally, the instrument participated as core payload in the validation of the Japanese ILAS instrument on-board ADEOS and supported the validation of the American CLAES instrument onboard UARS. MIPAS-B data served also to test the level 2 algorithms for the MIPAS-instrument on-board ENVISAT. Present activities focus on the understanding of the composition and role of polar stratospheric clouds. The second centre of attention in the next years will be the validation of the European satellite sensors GOMOS, MIPAS, and SCIAMACHY with the established MIPAS-B version.

  19. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    NASA Astrophysics Data System (ADS)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  20. A dehydration mechanism for the stratosphere

    NASA Technical Reports Server (NTRS)

    Danielsen, E. F.

    1982-01-01

    Although mean circulations are generally credited with dehydration of the earth's stratosphere, convective instability in the tropics converts mean circulations to small residuals of local convective circulations. The effects of large cumulonimbus which penetrate the stratosphere and form huge anvils in the lower stratosphere are discussed with respect to hydration and dehydration of the stratosphere. Radiative heating at anvil base combined with cooling at anvil top drives a dehydration engine considered essential to explain the dry stratosphere. Seasonal and longitudinal variations in dehydration potentials are examined with maximum potential attributed to Micronesian area during winter and early spring.

  1. Aircraft deployment, and airborne arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Condon, Estelle; Tuck, Adrian; Hipskind, Steve; Toon, Brian; Wegener, Steve

    1990-01-01

    The Airborne Arctic Stratospheric Expedition had two primary objectives: to study the production and loss mechanisms of ozone in the north polar stratosphere and to study the effect on ozone distribution of the Arctic Polar Vortex and of the cold temperatures associated with the formation of Polar Stratospheric Clouds. Two specially instrumented NASA aircraft were flown over the Arctic region. Each aircraft flew to acquire data on the meteorological, chemical and cloud physical phenomena that occur in the polar stratosphere during winter. The chemical processes which occur in the polar stratosphere during winter were also observed and studied. The data acquired are being analyzed.

  2. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.

    PubMed

    Martin, David; Boyle, Fergal

    2013-11-01

    Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi-compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery.

  3. Demonstration of a Balloon Borne Arc-Second Pointer Design

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith D.; Ward, Philip R.

    2006-01-01

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup

  4. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  5. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  6. Power supplies for long duration balloon flights

    NASA Astrophysics Data System (ADS)

    Lichfield, Ernest W.

    Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented. On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  7. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  8. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  9. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a)...

  10. POST: a polar stratospheric telescope

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Bely, Pierre Y.; Bally, John; Crocker, James H.; Dopita, Mike; Tilley, James N.; Allen, Ronald; Bartko, Frank; White, Richard L.; Burg, Richard; Burrows, Christopher J.; Clampin, Mark; Harper, Doyal A.; Illingworth, Garth; McCray, Richard; Meyer, Stephan; Mould, Jeremy; Norman, Colin

    1994-06-01

    The lower stratosphere in the polar regions offers conditions for observation in the near-infrared comparable to those obtained from space. We describe a concept for a 6-meter, diluted aperture, near-infrared telescope carried by a tethered aerostat flying at 12 km altitude, to serve as a testbed for future space astronomical observatories while producing frontier science.

  11. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  12. 21 Layer troposphere-stratosphere climate model

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Lacis, A.; Russell, G.; Hansen, J.

    1984-01-01

    The global climate model is extended through the stratosphere by increasing the vertical resolution and raising the rigid model top to the 0.01 mb (75 km) level. The inclusion of a realistic stratosphere is necessary for the investigation of the climate effects of stratospheric perturbations, such as changes of ozone, aerosols or solar ultraviolet irradiance, as well as for studying the effect on the stratosphere of tropospheric climate changes. The observed temperature and wind patterns throughout the troposphere and stratosphere are simulated. In addition to the excess planetary wave amplitude in the upper stratosphere, other model deficiences include the Northern Hemisphere lower stratospheric temperatures being 5 to 10 C too cold in winter at high latitudes and the temperature at 50 to 60 km altitude near the equator are too cold. Methods of correcting these deficiencies are discussed.

  13. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  14. Intra-aortic balloon pumps.

    PubMed

    1997-05-01

    Intra-aortic balloon pumps (IABPs) are circulatory assist devices used to treat a number of cardiovascular conditions. IABPs provide temporary circulatory support by reducing the resistance to blood flow out of the heart during systole and by providing added pressure to aid in perfusing the heart during diastole. In this Evaluation, we tested three IABPs from three suppliers. We examined the units' technical performance, safety and monitoring, human factors design, transport operation, and supplier support. Rather than test all the triggering (activation) modes available, we focused our testing on the modes most commonly used on each unit. We also provide information on an IABP currently available only in Japan; although we did not test this unit, we do provide a preliminary judgment based on the information provided to us by the supplier. In the Technology Overview also included in the Evaluation, we describe the basic operation and use of an IABP, as well as review the state of the art of this technology. And in the Selection, Purchasing, and Use Guide at the conclusion of the Evaluation, we discuss such topics as balloon costs and sizing, interfacing IABPs with patient monitors, and the use of IABPs in community hospitals.

  15. Ultraviolet Radiation and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R.

    2003-01-01

    Ultraviolet radiation from the sun produces ozone in the stratosphere and it participates in the destruction of ozone. Absorption of solar ultraviolet radiation by ozone is the primary heating mechanism leading to the maximum in temperature at the stratopause. Variations of solar ultraviolet radiation on both the 27-day solar rotation period and the 11-year solar cycle affect ozone by several mechanisms. The temperature and ozone in the upper stratosphere respond to solar uv variations as a coupled system. An increase in uv leads to an increase in the production of ozone through the photolysis of molecular oxygen. An increase in uv leads to an increase in temperature through the heating by ozone photolysis. The increase in temperature leads to a partially-offsetting decrease in ozone through temperature-dependent reaction rate coefficients. The ozone variation modulates the heating by ozone photolysis. The increase in ozone at solar maximum enhances the uv heating. The processes are understood and supported by long-term data sets. Variation in the upper stratospheric temperatures will lead to a change in the behavior of waves propagating upward from the troposphere. Changes in the pattern of wave dissipation will lead to acceleration or deceleration of the mean flow and changes in the residual or transport circulation. This mechanism could lead to the propagation of the solar cycle uv variation from the upper stratosphere downward to the lower stratosphere. This process is not well-understood and has been the subject of an increasing number of model studies. I will review the data analyses for solar cycle and their comparison to model results.

  16. 2002-2004 and the Transformation of CCTE

    ERIC Educational Resources Information Center

    Maxie, Andrea

    2015-01-01

    In 2001, the California Council on the Education of Teachers (CCET), the State of California Association of Teacher Educators (SCATE), and the California Association of Colleges for Teacher Education (CACTE) became a single merged organization--the California Council on Teacher Education (CCTE). As the last president of CACTE, Andrea Maxie was…

  17. Psychological Reactions to Crime in Italy: 2002-2004

    ERIC Educational Resources Information Center

    Amerio, Piero; Roccato, Michele

    2007-01-01

    We performed a secondary analysis of the data collected by the Observatory of the North-West (a mail panel representative of the Italian population over 18), describing the trends in the distribution of fear of crime (FC) and of concern about crime as a social problem (CC) in Italy between the end of 2002 and the beginning of 2004. After analyzing…

  18. Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS

    NASA Astrophysics Data System (ADS)

    Ghysels, Mélanie; Riviere, Emmanuel D.; Khaykin, Sergey; Stoeffler, Clara; Amarouche, Nadir; Pommereau, Jean-Pierre; Held, Gerhard; Durry, Georges

    2016-03-01

    In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, São Paulo state, Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within small-volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for balloon-borne measured stratospheric water mixing ratio constitutes one of the best agreement reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B data sets are mutually consistent.

  19. SPACE DOSIMETRY MEASUREMENTS IN THE STRATOSPHERE USING DIFFERENT ACTIVE AND PASSIVE DOSIMETRY SYSTEMS.

    PubMed

    Zábori, Balázs; Hirn, Attila; Deme, Sándor; Apáthy, István; Csőke, Antal; Pázmándi, Tamás; Szántó, Péter

    2016-12-01

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Müller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra

  20. A Low-Cost Sounding Balloon Experiment

    NASA Astrophysics Data System (ADS)

    Saba, Marcelo M. F.; Mirisola, Luiz G. B.; Iguchi, Marcio

    2005-12-01

    Watching the meteorological balloons customarily launched from our city, we wondered how we could develop an experiment to allow our students to effectively gather data about the low atmosphere and at the same time ke6ep our limited financial budget. When you hear about atmospheric balloons, you usually think about balloons with large envelopes of nylon or mylar with payloads between 1 or 10 kg. They ascend to very high altitudes, have a data radio transmitter, and are not recoverable. This setup would be too expensive for us. In order to keep the cost low, the payload containing the data recorded had to be recovered, and therefore, the balloon must not go tens of kilometers away. We ruled out tethered balloons, which would not have recovery problems but can hardly go beyond 100 m high because of the weight of the tether and of lateral winds. Based on some estimates of ascension speed for small balloons and probable horizontal wind intensities, we decided that in order to easily recover the payload we had to limit its ascension to about 2 km high. At this altitude, the payload would have to be released from the balloon by means of a timer.

  1. Fracture characteristics of balloon films

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1989-01-01

    An attempt was made to determine the failure modes of high altitude scientific balloons through an investigation of the fracture characteristics of the thin polyethylene films. Two films were the subject of the evaluation, Winzen Int.'s Stratafilm SF-85 and Raven Industries' Astro-E. Research began with an investigation of the film's cold brittleness point and it's effect on the ultimate strength and elasticity of the polyethylene film. A series of preliminary investigations were conducted to develop an understanding of the material characteristics. The primary focus of this investigation was on the notch sensitivity of the films. Simple stress strain tests were also conducted to enable analysis employing fracture toughness parameters. Studies were conducted on both film types at 23 C (room temperature), -60 C, -90 C, and -120 C.

  2. The testing of balloon fabrics

    NASA Technical Reports Server (NTRS)

    Edwards, Junius David; Moore, Irwin L

    1920-01-01

    Report describes methods and materials used in waterproofing and fireproofing airplane fabrics using dopes. The determination of the probable life of a balloon fabric in service by experimental means is of great value in choosing the most suitable fabrics for a given purpose and in pointing the way to improvements in compounding and construction. The usefulness of exposure to the weather for this purpose has been amply demonstrated. Various attempts have been made to reproduce by artificial means the conditions promoting deterioration in service, but without marked success. Exposure to the weather remains the most satisfactory method for this purpose, and a consideration of the characteristics of such tests is therefore important. This report presents the results of a typical series of exposure tests made in 1917.

  3. Accurate Determination of the Volume of an Irregular Helium Balloon

    ERIC Educational Resources Information Center

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  4. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  5. Measurement of H2O and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 KM

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.

    1986-01-01

    The highlights of the stratospheric program were reviewed for the past 2.5 years. The major efforts were analysis of the data from the BIC-2 campaign, and the building or new instrumentation to replace that lost at the end of BIC-2. For clarity, the review will be done by topic, rather than chronologically: construction of the initial far-infrared spectrometer, balloon slight program, laboratory measurement, data analysis, and duplicate stabilized platform.

  6. Innovations in Balloon Catheter Technology in Rhinology.

    PubMed

    D'Anza, Brian; Sindwani, Raj; Woodard, Troy D

    2017-03-31

    Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon.

  7. The balloon and the airship technological heritage

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.

  8. A balloon-borne integrating nephelometer

    SciTech Connect

    Brown, G.S.; Apple, M.L. ); Weiss, R.E. )

    1990-09-01

    A balloon-borne integrating nephelometer has been successfully developed and flown by Sandia National Laboratories and Radiance Research. This report details instrument design, calibration and data conversion procedure. Free and tethered balloon transport and telemetry systems are described. Data taken during March 1989 South-Central New Mexico free flight ascents are presented as vertical profiles of atmospheric particle scattering coefficient, temperature and balloon heading. Data taken during December 1989 Albuquerque, New Mexico tethered flights are also presented as vertical profiles. Data analysis shows superior instrument performance. 5 refs., 22 figs.

  9. Stratospheric emissions effects database development

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.; Hertel, Peter S.; Maggiora, Debra R.; Oncina, Carlos A.

    1994-01-01

    This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burn and emissions of nitrogen oxides (NO(x) as NO2), carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

  10. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  11. Freezing of stratospheric aerosol droplets

    NASA Astrophysics Data System (ADS)

    Luo, Beiping; Peter, Thomas; Crutzen, Paul

    Theoretical calculations are presented for homogeneous and heterogeneous freezing of sulfuric acid droplets under stratospheric conditions, based on classical nucleation theory. In contrast to previous results it is shown that a prominent candidate for freezing, sulfuric acid tetrahydrate (SAT ≡ H2SO4·4H2O), does not freeze homogeneously. The theoretical results limit the homogeneous freezing rate at 200 K to much less than 1 cm-3s-1, a value that may be estimated from bulk phase laboratory experiments. This suggests that the experimental value is likely to be a measure of heterogeneous, not homogeneous nucleation. Thus, under statospheric conditions, freezing of SAT can only occur in the presence of suitable nuclei; however, even for heterogeneous nucleation experimental results impose strong constraints. Since a nitric acid trihydrate (NAT) embryo probably needs a solid body for nucleation, these results put an important constraint on the theory of NAT formation in polar stratospheric clouds.

  12. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  13. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  14. Chlorine compounds and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Walters, S.; Stolarski, R. S.

    1975-01-01

    A report by Cicerone et al. (1974) concerned with the potential size of the atmospheric perturbation produced by man-made chlorofluoromethanes is considered, giving attention to a number of errors made in the first investigation and their correction. However, the corrections do not significantly change the results reported. It had been found that chlorine oxides which arise from chlorofluoromethane usage will within 10 or 15 years provide a sink for stratospheric ozone which will dominate the natural sinks for ozone.

  15. Optical effects of polar stratospheric clouds on the retrieval of TOMS total ozone

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Z.; Herman, J. R.

    1992-01-01

    Small areas of sharply reduced ozone density appear frequently in the maps produced from polar region total ozone mapping spectrometer (TOMS) data. These mini-holes are of the order of 1000 km in extent with a lifetime of a few days. On the basis of measurements from ground-based instruments, balloon-borne ozonesondes, and simultaneous measurements of aerosol and ozone concentrations during aircraft flights in the Arctic and Antarctic regions, the appearance of polar stratospheric clouds (PSCs) are frequently associated with false reductions in ozone derived from the TOMS albedo data. By combining radiative transfer calculations with the observed PSC and ozone data, it is shown that PSCs located near or above the ozone density maximum (with optical thickness greater than 0.1) can explain most of the differences between TOMS ozone data and ground or in situ ozone measurements. Several examples of real and false TOMS mini-hole phenomenon are investigated using data from the 1989 Airborne Arctic Stratospheric Expedition (AASE) and from balloon flights over Norway and Sweden.

  16. Results from the 1995 Stratospheric Ozone Profile Intercomparison at Mauna Loa (MLO3)

    NASA Technical Reports Server (NTRS)

    McPeters, R. D.; Hofmann, D. J.; Clark, M.; Flynn, L.; Froidevaux, L.; Gross, M.; Johnson, B.; Koenig, G.; Liu, X.; McDermid, S.; McGee, T.; Murcray, F.; Newchurch, M. J.; Oltmans, S.; Parrish, A.; Schnell, R.; Singh, U.; Tsou, J. J.; Walsh, T.; Zawodny, J. M.

    1998-01-01

    In August 1995 multiple instruments that measure the stratospheric ozone vertical distribution were intercompared at the Mauna Loa Observatory, Hawaii, under the auspices of the Network for the Detection of Stratospheric Change. The instruments included two UV lidar systems, one from JPL and the other from Goddard Space Flight Center, ECC balloon-sondes, a ground-based microwave instrument, Umkehr measurements, and a new ground-based FTIR instrument. The MLS instrument on the UARS satellite provided correlative profiles of ozone, and there was one close overpass of the SAGE II instrument. The results show that much better consistency among instruments is being achieved than even a few years ago, usually to within the instrument uncertainties. The different measurement techniques in this comparison agree to within +/-10% at almost all altitudes, and in the 20 km to 45 km region most agreed within +/-5%. The results show that the current generation of lidars are capable of accurate measurement of the ozone profile to a maximum altitude of 50 km. SAGE agreed well with both lidar and balloon-sonde down to at least 17 km. The ground-based microwave measurement agreed with other measurements from 22 km to above 50 km. One minor source of disagreement continues to be the pressure-altitude conversion needed to compare a measurement of ozone density versus altitude with a measurement of ozone mixing ratio versus pressure.

  17. Analysis of atmospheric trace constituents from high resolution infrared balloon-borne and ground-based solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Results of ongoing studies of high-resolution solar absorption spectra aimed at the identification and quantification of trace constituents of importance in the chemistry of the stratosphere and upper troposphere are presented. An analysis of balloon-borne and ground-based spectra obtained at 0.0025/cm covering the 700-2200/cm interval is presented. The 0.0025/cm spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of quantifying trace constituents. Results for COF2, F22, SF6, and other species are presented. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra are also discussed.

  18. Two-Dimensional Model Simulations of Interannual Variability in the Tropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Rosenfeld, Joan; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Meteorological data from the United Kingdom Meteorological Office (UKMO) and constituent data from the Upper Atmospheric Research Satellite (UARS) are used to construct yearly zonal mean dynamical fields for the 1990s for use in the GSFC 2-D chemistry and transport model. This allows for interannual dynamical variability to be included in the model constituent simulations. In this study, we focus on the tropical stratosphere. We find that the phase of quasi-biennial oscillation (QBO) signals in equatorial CH4, and profile and total column 03 data is resolved quite well using this empirically- based 2-D model transport framework. However. the QBO amplitudes in the model constituents are systematically underestimated relative to the observations at most levels. This deficiency is probably due in part to the limited vertical resolutions of the 2-D model and the UKMO and UARS input data sets. We find that using different heating rate calculations in the model affects the interannual and QBO amplitudes in the constituent fields, but has little impact on the phase. Sensitivity tests reveal that the QBO in transport dominates the ozone interannual variability in the lower stratosphere. with the effect of the temperature QBO being dominant in the tipper stratosphere via the strong temperature dependence of the ozone loss reaction rates. We also find that the QBO in odd nitrogen radicals, which is caused by the QBO modulated transport of NOy, plays a significant but not dominant role in determining the ozone QBO variability in the middle stratosphere. The model mean age of air is in good overall agreement with that determined from tropical lower,middle stratospheric OMS balloon observations of SF6 and CO2. The interannual variability of tile equatorial mean age in the model increases with altitude and maximizes near 40 km, with a range, of 4-5 years over the 1993-2000 time period.

  19. A sudden stratospheric warming compendium

    NASA Astrophysics Data System (ADS)

    Butler, Amy H.; Sjoberg, Jeremiah P.; Seidel, Dian J.; Rosenlof, Karen H.

    2017-02-01

    Major, sudden midwinter stratospheric warmings (SSWs) are large and rapid temperature increases in the winter polar stratosphere are associated with a complete reversal of the climatological westerly winds (i.e., the polar vortex). These extreme events can have substantial impacts on winter surface climate, including increased frequency of cold air outbreaks over North America and Eurasia and anomalous warming over Greenland and eastern Canada. Here we present a SSW Compendium (SSWC), a new database that documents the evolution of the stratosphere, troposphere, and surface conditions 60 days prior to and after SSWs for the period 1958-2014. The SSWC comprises data from six different reanalysis products: MERRA2 (1980-2014), JRA-55 (1958-2014), ERA-interim (1979-2014), ERA-40 (1958-2002), NOAA20CRv2c (1958-2011), and NCEP-NCAR I (1958-2014). Global gridded daily anomaly fields, full fields, and derived products are provided for each SSW event. The compendium will allow users to examine the structure and evolution of individual SSWs, and the variability among events and among reanalysis products. The SSWC is archived and maintained by NOAA's National Centers for Environmental Information (NCEI, doi:10.7289/V5NS0RWP).

  20. In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-alpha hygrometer

    NASA Technical Reports Server (NTRS)

    Schwab, J. J.; Weinstock, E. M.; Nee, J. B.; Anderson, J. G.

    1990-01-01

    In situ measurements of water vapor in the stratosphere with a new instrument are reported. The instrument has been designed to observe daytime water vapor from a multiinstrument balloon gondola that simultaneously measures free radicals such as OH, HO2, and O3 in the stratosphere up to 40 km. Lyman-alpha photofragment fluorescence is used to measure water molecules in a flowing sample of ambient air. A brief description of the instrument is given, followed by the results of the first four balloon flights. The measured mixing ratio for this flight varies from 3.0-5.5 ppmv over the altitude range of 17-34 km. Adjustments in the cooling protocol for the flights of July 6, 1988, July 28, and August 25, 1989, result in a much higher signal-to-noise ratio. Profiles from these three flights are similar to, but somewhat higher, than the 1987 profile. Implications of measurements are discussed, as are the issues of short- and long-term variability of stratospheric water vapor.