Science.gov

Sample records for 2010-10-01 false welding

  1. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  2. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  3. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material...

  4. 49 CFR 195.214 - Welding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler...

  5. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved...

  6. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall...

  7. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  8. 49 CFR 179.11 - Welding certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.11 Welding certification. (a) Welding procedures, welders and fabricators...

  9. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall...

  10. 49 CFR 179.400-11 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR...

  11. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  12. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b)...

  13. 46 CFR 154.665 - Welding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design...

  14. 49 CFR 213.341 - Initial inspection of new rail and welds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... initial inspection of new rail and plant welds, or of new plant welds made in used rail; and (d... 49 Transportation 4 2010-10-01 2010-10-01 false Initial inspection of new rail and welds. 213.341... Higher § 213.341 Initial inspection of new rail and welds. The track owner shall provide for the...

  15. 46 CFR 2.75-70 - Welding procedure and performance qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type...

  16. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  17. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welded joints. 56.30-5 Section 56.30-5 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-5 Welded joints. (a) General. Welded joints may be used..., then: (1) The backing rings shall be removed and the inside of the joint ground smooth, or (2)...

  18. 49 CFR 192.153 - Components fabricated by welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Components fabricated by welding. 192.153 Section....153 Components fabricated by welding. (a) Except for branch connections and assemblies of standard... welding, whose strength cannot be determined, must be established in accordance with paragraph UG-101...

  19. 46 CFR 109.573 - Riveting, welding, and burning operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Riveting, welding, and burning operations. 109.573... DRILLING UNITS OPERATIONS Miscellaneous § 109.573 Riveting, welding, and burning operations. Except as..., welding, or burning— (1) In a fuel tank; (2) On the boundary of a fuel tank; (3) On pipelines,...

  20. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal welding. Where leaks occur in riveted joints or connections, they shall be carefully investigated...

  1. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests...

  2. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of welds. 192.715 Section 192.715 Transportation Other Regulations Relating to Transportation (Continued... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable...

  3. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  4. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which...

  5. 49 CFR 192.155 - Welded branch connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welded branch connections. 192.155 Section 192.155... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS... connections. Each welded branch connection made to pipe in the form of a single connection, or in a header...

  6. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  7. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  8. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  9. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48)....

  10. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping joints: Welded and screwed couplings. 154.524... Equipment Cargo and Process Piping Systems § 154.524 Piping joints: Welded and screwed couplings. Pipe... warmer. (d) Screwed couplings are allowed for instrumentation and control piping that meets §...

  11. 42 CFR 21.23 - False statements as disqualification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false False statements as disqualification. 21.23 Section 21.23 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES PERSONNEL COMMISSIONED OFFICERS Appointment § 21.23 False statements as disqualification. Willfully false...

  12. 45 CFR 3.4 - False reports and reports of injury or damage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false False reports and reports of injury or damage. 3.4 Section 3.4 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CONDUCT OF PERSONS AND TRAFFIC ON THE NATIONAL INSTITUTES OF HEALTH FEDERAL ENCLAVE General § 3.4 False reports...

  13. 47 CFR 11.45 - Prohibition of false or deceptive EAS transmissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prohibition of false or deceptive EAS transmissions. 11.45 Section 11.45 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) Organization § 11.45 Prohibition of false or deceptive EAS transmissions. No person...

  14. 47 CFR 0.560 - Penalty for false representation of identity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Penalty for false representation of identity. 0.560 Section 0.560 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Privacy Act Regulations § 0.560 Penalty for false representation of identity. Any individual who...

  15. 43 CFR 20.510 - Fraud or false statements in a Government matter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Fraud or false statements in a Government matter. 20.510 Section 20.510 Public Lands: Interior Office of the Secretary of the Interior EMPLOYEE RESPONSIBILITIES AND CONDUCT Other Employee Conduct Provisions § 20.510 Fraud or false statements in a...

  16. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  17. 49 CFR 1570.13 - False statements regarding security background checks by public transportation agency or railroad...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false False statements regarding security background... Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY MARITIME AND LAND TRANSPORTATION SECURITY GENERAL RULES § 1570.13 False...

  18. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  19. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  20. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  1. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  2. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  3. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  4. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance...

  5. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  6. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  7. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  8. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding...

  9. 46 CFR 56.70-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false General. 56.70-1 Section 56.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Fabrication... as stud welding, casting repair welding and all processes of fabrication welding. Where the...

  10. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see §...

  11. 49 CFR 195.214 - Welding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler...

  12. 49 CFR 195.214 - Welding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler...

  13. 49 CFR 195.214 - Welding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler...

  14. 49 CFR 195.214 - Welding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding procedures. 195.214 Section 195.214... PIPELINE Construction § 195.214 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures qualified under Section 5 of API 1104 or Section IX of the ASME Boiler...

  15. 29 CFR 1910.255 - Resistance welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch....

  16. 29 CFR 1910.255 - Resistance welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Resistance welding. 1910.255 Section 1910.255 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.255 Resistance welding. (a.... Ignitron tubes used in resistance welding equipment shall be equipped with a thermal protection switch....

  17. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must...

  18. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  19. 46 CFR 57.05-5 - Low temperature application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature application. 57.05-5 Section 57.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING... accordance with § 57.03-1(b). Manual welding shall be qualified in the position prescribed by the procedure....

  20. 46 CFR 57.02-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Incorporation by reference. 57.02-1 Section 57.02-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING... IX, Welding and Brazing Qualifications, July 1989 with 1989 addenda. 57.01-1; 57.02-2; 57.02-3;...

  1. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  2. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my welding plan? 250.110... must I include in my welding plan? You must include all of the following in the Welding Plan that you... qualified personnel weld; (c) Practices and procedures for safe welding that address: (1) Welding...

  3. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  4. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  5. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  6. 30 CFR 77.408 - Welding operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and...

  7. 30 CFR 77.408 - Welding operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and...

  8. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  9. 49 CFR 179.11 - Welding certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall be approved. (b)...

  10. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  11. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.200-10 Section 179.200-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints shall be fusion... § 171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b)...

  12. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  13. 46 CFR 154.665 - Welding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design...

  14. 46 CFR 154.665 - Welding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design...

  15. 30 CFR 77.408 - Welding operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and...

  16. 46 CFR 154.665 - Welding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design...

  17. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  18. 49 CFR 179.11 - Welding certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall be approved. (b)...

  19. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.220-10 Section 179.220-10...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints must be fusion... subchapter). Welding procedures, welders, and fabricators shall be approved. (b) Radioscopy of the...

  20. 49 CFR 179.11 - Welding certification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 179.11 Welding certification. (a) Welding procedures, welders and fabricators shall be approved. (b)...

  1. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  2. 30 CFR 77.408 - Welding operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and...

  3. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  4. 46 CFR 154.665 - Welding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Welding procedures. 154.665 Section 154.665 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Construction § 154.665 Welding procedures. Welding procedure tests for cargo tanks for a design...

  5. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  6. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  7. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  8. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  9. 30 CFR 77.408 - Welding operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 77.408 Section 77.408 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... for Mechanical Equipment § 77.408 Welding operations. Welding operations shall be shielded and...

  10. Width Criterion For Weld-Seam-Tracking Data

    NASA Technical Reports Server (NTRS)

    Lincir, Mark R.

    1993-01-01

    Image-processing algorithm in "through-torch-vision" (T3V) system developed to guide gas/tungsten arc welding robot along weld seam modified, according to proposal, reducing incidence of inaccurate tracking of weld seam. Developmental system intended to provide closed-loop control of motion of welding robot along weld seam on basis of lines in T3V image identified by use of image-processing algorithm and assumed to coincide with edges of weld seam. Use of width criterion prevents tracking of many false pairs of lines, with consequent decrease in incidence of inaccurate tracking and increase in confidence in weld-tracking capability of robotic welding system.

  11. False assumptions.

    PubMed

    Swaminathan, M

    1997-01-01

    Indian women do not have to be told the benefits of breast feeding or "rescued from the clutches of wicked multinational companies" by international agencies. There is no proof that breast feeding has declined in India; in fact, a 1987 survey revealed that 98% of Indian women breast feed. Efforts to promote breast feeding among the middle classes rely on such initiatives as the "baby friendly" hospital where breast feeding is promoted immediately after birth. This ignores the 76% of Indian women who give birth at home. Blaming this unproved decline in breast feeding on multinational companies distracts attention from more far-reaching and intractable effects of social change. While the Infant Milk Substitutes Act is helpful, it also deflects attention from more pressing issues. Another false assumption is that Indian women are abandoning breast feeding to comply with the demands of employment, but research indicates that most women give up employment for breast feeding, despite the economic cost to their families. Women also seek work in the informal sector to secure the flexibility to meet their child care responsibilities. Instead of being concerned about "teaching" women what they already know about the benefits of breast feeding, efforts should be made to remove the constraints women face as a result of their multiple roles and to empower them with the support of families, governmental policies and legislation, employers, health professionals, and the media.

  12. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and... for arc welding and cutting, and are of a capacity capable of safely handling the maximum...

  13. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated....

  14. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  15. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  16. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  17. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4BW welded steel cylinders with... steel cylinders with electric-arc welded longitudinal seam. (a) Type, size and service pressure. A DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a...

  18. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  19. 49 CFR 230.97 - Crank pins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Crank pins. 230.97 Section 230.97 Transportation... § 230.97 Crank pins. (a) General provisions. Crank pins shall be securely applied. Securing the fit of a loose crank pin by shimming, prick punching, or welding is not permitted. (b) Maintenance. Crank...

  20. 49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Qualification of Welders for Low Stress Level Pipe.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test... work, each about 8 inches (203 millimeters) long with the weld located approximately in the center,...

  1. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  2. 46 CFR 50.30-20 - Class III pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class III pressure vessels. 50.30-20 Section 50.30-20... Fabrication Inspection § 50.30-20 Class III pressure vessels. (a) Class III pressure vessels shall be subject... specifically exempted by other regulations in this subchapter. (b) For Class III welded pressure vessels,...

  3. 46 CFR 52.01-105 - Piping, valves and fittings (modifies PG-58 and PG-59).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping, valves and fittings (modifies PG-58 and PG-59... ENGINEERING POWER BOILERS General Requirements § 52.01-105 Piping, valves and fittings (modifies PG-58 and PG...-10 of this subchapter; (4) Have butt welding flanges and fittings when full radiography is...

  4. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality...

  5. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5... APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished by a suitable heating method that will provide the desired heating and cooling rates, the...

  6. 46 CFR 154.425 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false General. 154.425 Section 154.425 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF... membrane tank, secondary barrier, including welds, the supporting insulation, and pressure...

  7. 46 CFR 154.655 - Stress relief for independent tanks type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Stress relief for independent tanks type C. 154.655... Equipment Construction § 154.655 Stress relief for independent tanks type C. For a design temperature colder... stress relieved by post-weld heat treatment under § 54.25-7 of this chapter or by mechanical...

  8. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  9. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  10. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  11. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld...

  12. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat...

  13. 46 CFR 56.85-15 - Postheat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Postheat treatment. 56.85-15 Section 56.85-15 Shipping... APPURTENANCES Heat Treatment of Welds § 56.85-15 Postheat treatment. (a) Where pressure retaining components... preheat and postheat treatment requirements of Table 56.85-10 apply to the thicker of the components...

  14. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  15. 49 CFR 179.200-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with other approved materials: Specifications Minimum tensile strength (p.s.i.) welded condition 1... 49 Transportation 2 2010-10-01 2010-10-01 false Materials. 179.200-7 Section 179.200-7 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS...

  16. 49 CFR 230.113 - Wheels and tire defects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires.... Except as provided in § 230.114, welding on wheels and tires is prohibited. A wheel that has been...

  17. 46 CFR 57.06-1 - Production test plate requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Production test plate requirements. 57.06-1 Section 57.06-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Production Tests § 57.06-1 Production test plate requirements. (a) Production test plates shall...

  18. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces...

  19. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range §...

  20. 46 CFR 57.05-4 - Welder qualification by procedure tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welder qualification by procedure tests. 57.05-4 Section 57.05-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Performance Qualifications § 57.05-4 Welder qualification by procedure...

  1. 46 CFR 57.05-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false General. 57.05-1 Section 57.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Performance Qualifications § 57.05-1 General. (a) This subpart supplements the various paragraphs in section IX of the...

  2. 46 CFR 57.06-5 - Production toughness testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Production toughness testing. 57.06-5 Section 57.06-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Production Tests § 57.06-5 Production toughness testing. (a) In addition to the test specimens required...

  3. 46 CFR 57.02-3 - Performance qualifications issued by other agencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Performance qualifications issued by other agencies. 57.02-3 Section 57.02-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING General Requirements § 57.02-3 Performance qualifications issued by...

  4. 46 CFR 57.05-2 - Transfer of performance qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Transfer of performance qualifications. 57.05-2 Section 57.05-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Performance Qualifications § 57.05-2 Transfer of performance qualifications. (a)...

  5. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Circumferential joints in pipes, tubes and headers... Circumferential joints in pipes, tubes and headers (modifies PW-41). (a) Circumferential welded joints of pipes, tubes and headers shall be as required by PW-41 of section I of the ASME Boiler and Pressure Vessel...

  6. 46 CFR 57.05-3 - Limited space qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Limited space qualifications. 57.05-3 Section 57.05-3... Performance Qualifications § 57.05-3 Limited space qualifications. When a welder is to be qualified for welding or torch brazing of piping on board ship in a limited or restricted space, the space...

  7. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  8. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  9. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  10. WELDING TORCH

    DOEpatents

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  11. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  12. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  13. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  14. Welding Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this welding program is to provide students with skills and techniques to become employed as advanced apprentice welders. The welding program manual includes the following sections: (1) course description; (2) general objectives; (3) competencies; (4) curriculum outline for 13 areas; (5) 13 references; and (6) student progress…

  15. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  16. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  17. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    DTIC Science & Technology

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  18. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests...

  19. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests...

  20. 49 CFR 192.153 - Components fabricated by welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Components fabricated by welding. 192.153 Section....153 Components fabricated by welding. (a) Except for branch connections and assemblies of standard... welding, whose strength cannot be determined, must be established in accordance with paragraph UG-101...

  1. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests...

  2. 46 CFR 154.180 - Contiguous hull structure: Welding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous hull structure: Welding procedure. 154.180 Section 154.180 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests...

  3. 49 CFR 192.153 - Components fabricated by welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Components fabricated by welding. 192.153 Section....153 Components fabricated by welding. (a) Except for branch connections and assemblies of standard... welding, whose strength cannot be determined, must be established in accordance with paragraph UG-101...

  4. 49 CFR 192.153 - Components fabricated by welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Components fabricated by welding. 192.153 Section....153 Components fabricated by welding. (a) Except for branch connections and assemblies of standard... welding, whose strength cannot be determined, must be established in accordance with paragraph UG-101...

  5. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal... determine the cause. Such leaks may be made tight by seal welding the edge, if, in the opinion of...

  6. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal... determine the cause. Such leaks may be made tight by seal welding the edge, if, in the opinion of...

  7. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal... determine the cause. Such leaks may be made tight by seal welding the edge, if, in the opinion of...

  8. 46 CFR 59.10-30 - Seal welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Seal welding. 59.10-30 Section 59.10-30 Shipping COAST... VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-30 Seal... determine the cause. Such leaks may be made tight by seal welding the edge, if, in the opinion of...

  9. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Welded joints. 56.30-5 Section 56.30-5 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-5 Welded joints. (a) General. Welded joints may be used..., then: (1) The backing rings shall be removed and the inside of the joint ground smooth, or (2)...

  10. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Welded joints. 56.30-5 Section 56.30-5 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-5 Welded joints. (a) General. Welded joints may be used..., then: (1) The backing rings shall be removed and the inside of the joint ground smooth, or (2)...

  11. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Welded joints. 56.30-5 Section 56.30-5 Shipping COAST... Selection and Limitations of Piping Joints § 56.30-5 Welded joints. (a) General. Welded joints may be used..., then: (1) The backing rings shall be removed and the inside of the joint ground smooth, or (2)...

  12. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous...

  13. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly...

  14. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly...

  15. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly...

  16. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly...

  17. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly...

  18. 49 CFR 192.153 - Components fabricated by welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Components fabricated by welding. 192.153 Section....153 Components fabricated by welding. (a) Except for branch connections and assemblies of standard pipe and fittings joined by circumferential welds, the design pressure of each component fabricated...

  19. 30 CFR 75.1729 - Welding operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations....

  20. 30 CFR 75.1729 - Welding operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations....

  1. 30 CFR 75.1729 - Welding operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations....

  2. 30 CFR 75.1729 - Welding operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations....

  3. 30 CFR 75.1729 - Welding operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding operations. 75.1729 Section 75.1729 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1729 Welding operations....

  4. 30 CFR 250.112 - What standards must my welding equipment meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What standards must my welding equipment meet... Performance Standards § 250.112 What standards must my welding equipment meet? Your welding equipment must meet the following requirements: (a) All engine-driven welding equipment must be equipped with...

  5. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  6. 30 CFR 250.112 - What standards must my welding equipment meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What standards must my welding equipment meet... Performance Standards § 250.112 What standards must my welding equipment meet? Your welding equipment must meet the following requirements: (a) All engine-driven welding equipment must be equipped with...

  7. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  8. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  9. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  10. 30 CFR 250.112 - What standards must my welding equipment meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What standards must my welding equipment meet... Performance Standards § 250.112 What standards must my welding equipment meet? Your welding equipment must meet the following requirements: (a) All engine-driven welding equipment must be equipped with...

  11. 30 CFR 250.111 - Who oversees operations under my welding plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who oversees operations under my welding plan... Performance Standards § 250.111 Who oversees operations under my welding plan? A welding supervisor or a designated person in charge must be thoroughly familiar with your welding plan. This person must ensure...

  12. 30 CFR 250.111 - Who oversees operations under my welding plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Who oversees operations under my welding plan... SHELF General Performance Standards § 250.111 Who oversees operations under my welding plan? A welding supervisor or a designated person in charge must be thoroughly familiar with your welding plan. This...

  13. 46 CFR 2.75-70 - Welding procedure and performance qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type...

  14. 46 CFR 2.75-70 - Welding procedure and performance qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type...

  15. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  16. 30 CFR 250.112 - What standards must my welding equipment meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What standards must my welding equipment meet... SHELF General Performance Standards § 250.112 What standards must my welding equipment meet? Your welding equipment must meet the following requirements: (a) All engine-driven welding equipment must...

  17. 30 CFR 250.111 - Who oversees operations under my welding plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who oversees operations under my welding plan... Performance Standards § 250.111 Who oversees operations under my welding plan? A welding supervisor or a designated person in charge must be thoroughly familiar with your welding plan. This person must ensure...

  18. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  19. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables...

  20. 46 CFR 2.75-70 - Welding procedure and performance qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Welding procedure and performance qualifications. 2.75... for Construction Personnel § 2.75-70 Welding procedure and performance qualifications. (a) Welding... requirements for the welding of pressure piping, boilers, pressure vessels, and nonpressure vessel type...

  1. 30 CFR 250.111 - Who oversees operations under my welding plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who oversees operations under my welding plan... Performance Standards § 250.111 Who oversees operations under my welding plan? A welding supervisor or a designated person in charge must be thoroughly familiar with your welding plan. This person must ensure...

  2. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  3. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating...

  4. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating...

  5. 29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating...

  6. 29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating...

  7. 29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating...

  8. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating...

  9. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or... conducted in fireproof enclosures. Welding, cutting, or soldering with arc or flame in other than...

  10. 30 CFR 250.111 - Who oversees operations under my welding plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who oversees operations under my welding plan... § 250.111 Who oversees operations under my welding plan? A welding supervisor or a designated person in charge must be thoroughly familiar with your welding plan. This person must ensure that each welder...

  11. 29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting, and heating... Welding and Cutting § 1926.353 Ventilation and protection in welding, cutting, and heating. (a) Mechanical... the number of air changes necessary to maintain welding fumes and smoke within safe limits, as...

  12. 30 CFR 250.113 - What procedures must I follow when welding?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What procedures must I follow when welding? 250....113 What procedures must I follow when welding? (a) Before you weld, you must move any equipment containing hydrocarbons or other flammable substances at least 35 feet horizontally from the welding...

  13. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating...

  14. 29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating...

  15. 30 CFR 250.112 - What standards must my welding equipment meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What standards must my welding equipment meet... § 250.112 What standards must my welding equipment meet? Your welding equipment must meet the following requirements: (a) All engine-driven welding equipment must be equipped with spark arrestors and drip pans;...

  16. Welded Kimberlite?

    NASA Astrophysics Data System (ADS)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  17. Welding Curtains

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  18. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  19. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  20. Weld pool oscillation during pulsed GTA welding

    SciTech Connect

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  1. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  2. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  3. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  4. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  5. WELDING APPARATUS

    DOEpatents

    Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

    1963-04-23

    This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

  6. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  7. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  8. Weld-Bead Shaver

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal; Price, Daniel S.

    1990-01-01

    Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.

  9. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  10. Laser weld repair of tantalum sheet

    SciTech Connect

    Oldani, J.J.; Westrich, C.N.

    1992-12-01

    Tantalum sheets which are used in radiographic film cassettes for high explosives studies were repaired using Nd:YAG laser welding. The tantalum sheets can receive various levels of indentations and/or scratches which can leave radiographic indications during use in subsequent studies. Laser welding using a Raytheon 400 watt Nd:YAG laser and a 0.010 inch diameter tantalum filler wire with argon cover gas was used to fill in these false indications. A successful weld repair is required to give no radiographic indications, neither high nor low density readings.

  11. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  12. Television Monitoring System for Welding

    NASA Technical Reports Server (NTRS)

    Vallow, K.; Gordon, S.

    1986-01-01

    Welding process in visually inaccessible spots viewed and recorded. Television system enables monitoring of welding in visually inaccessible locations. System assists welding operations and provide video record, used for weld analysis and welder training.

  13. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  14. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  15. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  16. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  17. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  18. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  19. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  20. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I include in my welding plan? 250.110... Performance Standards § 250.110 What must I include in my welding plan? You must include all of the following in the Welding Plan that you prepare under § 250.109: (a) Standards or requirements for welders;...

  1. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  2. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  3. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  4. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  5. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  6. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  7. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Permanent field repair of welds. 192.715 Section 192.715 Transportation Other Regulations Relating to Transportation (Continued... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable...

  8. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Permanent field repair of welds. 192.715 Section 192.715 Transportation Other Regulations Relating to Transportation (Continued... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable...

  9. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Permanent field repair of welds. 192.715 Section 192.715 Transportation Other Regulations Relating to Transportation (Continued... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable...

  10. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Permanent field repair of welds. 192.715 Section 192.715 Transportation Other Regulations Relating to Transportation (Continued... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable...

  11. 46 CFR 54.05-17 - Weld toughness test acceptance criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Weld toughness test acceptance criteria. 54.05-17... PRESSURE VESSELS Toughness Tests § 54.05-17 Weld toughness test acceptance criteria. (a) For Charpy V-notch impact tests the energy absorbed in both the weld metal and heat affected zone impact tests in...

  12. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  13. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  14. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  15. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  16. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  17. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  18. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  19. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  20. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  1. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  2. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  3. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  4. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  5. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  6. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  7. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  8. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  9. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4AA480 welded steel cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.56 Specification 4AA480 welded steel cylinders. (a) Type, size, and service pressure. A DOT 4AA480 cylinder is a welded steel cylinder having a...

  10. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  11. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  12. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  13. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  14. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  15. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4BA welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.51 Specification 4BA welded or brazed steel...) Cylindrical type cylinders must be of circumferentially welded or brazed construction. (b) Steel. The...

  16. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DS welded stainless steel cylinders...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.47 Specification 4DS welded stainless steel... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a...

  17. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  18. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4D welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.53 Specification 4D welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4D cylinder is a welded steel sphere...

  19. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4B welded or brazed steel cylinders... FOR PACKAGINGS Specifications for Cylinders § 178.50 Specification 4B welded or brazed steel cylinders. (a) Type, size, and service pressure. A DOT 4B is a welded or brazed steel cylinder with...

  20. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  1. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  2. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  3. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  4. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting,...

  5. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  6. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  7. Intelligent Welding Controller

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Kumar, Ramaswamy; Prasad, Tanuji; Andersen, Kristinn; Barnett, Robert J.

    1989-01-01

    Control system adapts to changing design requirements and operating conditions. Proposed control system for gas/tungsten arc welding requires only that operator specifies such direct parameters of welds as widths and depths of penetration. In control system for robotic welder, components and functions intimately connected with welding process assigned to controller domain. More general functions assigned to supervisor domain. Initial estimate of indirect parameters of welding process applied to system only at beginning of weld (t=0); after start of welding, outputs from multivariable controller takes place of estimate.

  8. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  9. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  10. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  11. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  12. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  13. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  14. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation and shielding for welding. 56.14213 Section 56.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding....

  15. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation and shielding for welding. 56.14213 Section 56.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding....

  16. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation and shielding for welding. 56.14213 Section 56.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding....

  17. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation and shielding for welding. 56.14213 Section 56.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding....

  18. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  19. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  20. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  1. 49 CFR 195.226 - Welding: Arc burns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  2. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Preparation for welding. 192.235 Section 192.235 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation...

  3. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Preparation for welding. 192.235 Section 192.235 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation...

  4. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Preparation for welding. 192.235 Section 192.235 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation...

  5. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Preparation for welding. 192.235 Section 192.235 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation...

  6. 29 CFR 1915.55 - Gas welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Gas welding and cutting. 1915.55 Section 1915.55 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and...

  7. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  8. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  9. 49 CFR 195.216 - Welding: Miter joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Miter joints. 195.216 Section 195.216 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.216 Welding: Miter joints. A miter joint is not permitted (not...

  10. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  11. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  12. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  13. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  14. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  15. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  16. Low Gravity Improves Welds

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.

    1993-01-01

    Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.

  17. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  18. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  19. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  20. Coil Welding Aid

    NASA Technical Reports Server (NTRS)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  1. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  2. Welding Course Curriculum.

    ERIC Educational Resources Information Center

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  3. Instructional Guidelines. Welding.

    ERIC Educational Resources Information Center

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  4. Penetration in GTA welding

    SciTech Connect

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction through the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.

  5. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  6. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  7. (Welding under extreme conditions)

    SciTech Connect

    Davis, S.A.

    1989-09-29

    The traveler was an invited member of the United States delegation and representative of the Basic Energy Science Welding Science program at the 42nd Annual International Institute of Welding (IIW) Assembly and Conference held in Helsinki, Finland. The conference and the assembly was attended by about 600 delegates representing 40 countries. The theme of the conference was welding under extreme conditions. The conference program contained several topics related to welding in nuclear, arctic petrochemical, underwater, hyperbaric and space environments. At the annual assembly the traveler was a delegate (US) to two working groups of the IIW, namely Commission IX and welding research study group 212. Following the conference the traveler visited the Danish Welding Institute in Copenhagen and the Risoe National Laboratory in Roskilde. Prior to the conference the traveler visited Lappeenranta University of Technology and presented an invited seminar entitled Recent Advances in Welding Science and Technology.''

  8. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  9. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  10. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  11. Virtual Welding — Applying Science to Welding Practices

    NASA Astrophysics Data System (ADS)

    Yang, Zhishang; Cao, Zhenning; Chen, X. L.; Ludewig, Howard W.

    2004-06-01

    Welding practice has traditionally been treated as an art and in most cases experience based trial-and-error experimentation has been the major approach to establish a feasible welding procedure. In recent years, significant progress has been made in understanding welding phenomena based on numerical modeling. Recent modeling efforts include simulation of the weld pool formation, weld microstructure evolution, and welding induced residual stress and distortion. The numerical models based on interdisciplinary applied sciences (e.g. heat transfer and fluid flow, materials science, mechanical engineering, and fracture mechanics) have provided detailed insights into welding process and guidance in design of high performance welded-joints and cost effective welding process. The concept of "Virtual Welding," which is a simulation package based on interdisciplinary applied science and multi-scale numerical models, is proposed in this paper. Examples are provided to demonstrate the applications of "Virtual Welding" in industrial practices for high performance welds and reduced manufacturing cost.

  12. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  13. Welding for life

    SciTech Connect

    Stiebler, T.J.; Nugent, R.M.; Wilson, R.P.

    1994-12-31

    State of the Art Welding Techniques are being utilized to extend the life of major steam turbine components, as well as other traditional types of repairs. The development of a temper bead welding technique has allowed Houston Lighting and Power (HL and P) to perform innovative weld repairs. Nozzle vanes are weld repaired without removing the nozzle blocks from the case; repair life has also been doubled. A new two wire Gas Tungsten ARC Welding (GTAW) machine has produced high deposition rates while maintaining excellent mechanical properties. This results in faster turn-around time and with an improved weld repair. Development of a weld wire specification has also been instrumental in achieving additional component life by increasing the resistance to fatigue, especially in the heat affected zone. All these factors work together to enhance the weld repairs. Tensile strengths of 140,000 PSI with good ductility have been achieved. This paper will discuss their experiences with several repairs and recap the results of some studies and tests performed during the technique development stages. Major repairs include; weld repair of cases, nozzle blocks, nozzle boxes, stationary blade repair, forced draft fan shaft buildup, weld repair of turbine shrouds, blades, tennons and journals.

  14. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  15. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  16. 49 CFR 179.11 - Welding certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding certification. 179.11 Section 179.11 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design...

  17. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.200-10 Section 179.200-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  18. 49 CFR 179.220-10 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.220-10 Section 179.220-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  19. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.200-10 Section 179.200-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  20. 49 CFR 179.200-10 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.200-10 Section 179.200-10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  1. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding. 179.100-9 Section 179.100-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  2. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding. 179.100-9 Section 179.100-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  3. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding. 179.100-9 Section 179.100-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  4. 49 CFR 179.100-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding. 179.100-9 Section 179.100-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  5. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  6. Welding skate with computerized controls

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  7. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  8. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  9. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  10. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  11. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  12. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  13. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  14. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  15. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  17. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  18. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1992-10-20

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  19. False color viewing device

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  20. False color viewing device

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  1. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. WELDED JACKETED URANIUM BODY

    DOEpatents

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  3. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  4. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  5. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  6. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  7. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  8. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  9. Moon - False Color Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color mosaic was constructed from a series of 53 images taken through three spectral filters by Galileo's imaging system as the spacecraft flew over the northern regions of the Moon on December 7, 1992. The part of the Moon visible from Earth is on the left side in this view. The color mosaic shows compositional variations in parts of the Moon's northern hemisphere. Bright pinkish areas are highlands materials, such as those surrounding the oval lava-filled Crisium impact basin toward the bottom of the picture. Blue to orange shades indicate volcanic lava flows. To the left of Crisium, the dark blue Mare Tranquillitatis is richer in titanium than the green and orange maria above it. Thin mineral-rich soils associated with relatively recent impacts are represented by light blue colors; the youngest craters have prominent blue rays extending from them. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995-97, is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory.

  10. North Polar False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image contains dunes, and small areas of 'blue' which may represent fresh (ie. not dust covered) frost or ice.

    Image information: VIS instrument. Latitude 85, Longitude 235.8 East (124.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. False Color Aurora

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Data from NASA's Galileo spacecraft were used to produce this false-color composite of Jupiter's northern aurora on the night side of the planet. The height of the aurora, the thickness of the auroral arc, and the small-scale structure are revealed for the first time. Images in Galileo's red, green, and clear filters are displayed in red, green, and blue respectively. The smallest resolved features are tens of kilometers in size, which is a ten-fold improvement over Hubble Space Telescope images and a hundred-fold improvement over ground-based images.

    The glow is caused by electrically charged particles impinging on the atmosphere from above. The particles travel along Jupiter's magnetic field lines, which are nearly vertical at this latitude. The auroral arc marks the boundary between the 'closed' field lines that are attached to the planet at both ends and the 'open' field lines that extend out into interplanetary space. At the boundary the particles have been accelerated over the greatest distances, and the glow is especially intense.

    The latitude-longitude lines refer to altitudes where the pressure is 1 bar. The image shows that the auroral emissions originate about 500 kilometers (about 310 miles) above this surface. The colored background is light scattered from Jupiter's bright crescent, which is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees west and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by Galileo's Solid State Imaging (SSI) system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http:// galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  12. The effect of welding parameters on penetration in GTA welds

    SciTech Connect

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  13. Welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Hoklo, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.

  14. Sorting Titanium Welding Rods

    NASA Technical Reports Server (NTRS)

    Ross, W. D., Jr.; Brown, R. L.

    1985-01-01

    Three types of titanium welding wires identified by their resistance to current flow. Welding-wire tester quickly identifies unknown titaniumalloy wire by touching wire with test probe, and comparing meter response with standard response. Before touching wire, tip of test probe dipped into an electrolyte.

  15. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  16. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  17. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  18. Welding: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Intended for use by all welding instructors in the Metropolitan Nashville Public Schools, this guide provides a sequential listing of course content and scope. A course description provides a brief overview of the content of the courses offered in the welding program. General course objectives are then listed. Outlines of the course content are…

  19. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  20. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  1. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  2. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  3. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  4. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  5. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  6. Rheomorphism of welded tuffs

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Wright, J. V.

    1981-05-01

    Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.

  7. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  8. Adaptive weld control for high-integrity welding applications

    NASA Astrophysics Data System (ADS)

    Powell, Bradley W.

    Adaptive, closed-loop weld control is necessary to maintain high-integrity, zero-defect welds. Conventional weld control techniques using weld parameter feedback control loops are sufficient to maintain set points, but fall short when confronted with unexpected variations in part/tooling temperature and mechanical structure, weldment material, arc skew angle, or calibration in weld parameter feedback measurement. Modern technology allows closed-loop control utilizing input from real-time weld monitoring sensors and inspection devices. Weld puddle parameters, bead profile parameters, and weld seam position are fed back into the weld control loop which adapts for the weld condition variations and drives them back to a desired state, thereby preventing weld defects or perturbations. Parameters such as arc position relative to the weld seam, puddle symmetry, arc length, weld width, and bead shape can be extracted from sensor imagery and used in closed-loop active weld control. All weld bead and puddle measurements are available for real-time display and statistical process control analysis, after which the data is archived to permanent storage or later retrieval and analysis.

  9. Capabilities of infrared weld monitor

    SciTech Connect

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  10. Calibration Fixture For Welding Robot

    NASA Technical Reports Server (NTRS)

    Holly, Krisztina J.

    1990-01-01

    Compact, lightweight device used in any position or orientation. Calibration fixture designed for use on robotic gas/tungsten-arc welding torch equipped with vision-based seam-tracking system. Through optics in hollow torch cylinder, video camera obtains image of weld, viewing along line of sight coaxial with welding electrode. Attaches to welding-torch cylinder in place of gas cup normally attached in use. By use of longer or shorter extension tube, fixture accommodates welding electrode of unusual length.

  11. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  12. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  13. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I include in my welding plan? 250.110... Standards § 250.110 What must I include in my welding plan? You must include all of the following in the welding plan that you prepare under § 250.109: (a) Standards or requirements for welders; (b) How you...

  14. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I include in my welding plan? 250.110... Standards § 250.110 What must I include in my welding plan? You must include all of the following in the welding plan that you prepare under § 250.109: (a) Standards or requirements for welders; (b) How you...

  15. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my welding plan? 250.110... Standards § 250.110 What must I include in my welding plan? You must include all of the following in the welding plan that you prepare under § 250.109: (a) Standards or requirements for welders; (b) How you...

  16. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  17. Solar array welding developement

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  18. Thermal stir welding process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  19. APPARATUS FOR ARC WELDING

    DOEpatents

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  20. Thermal stir welding apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  1. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  2. Specs add confidence in use of wet welding. [Underwater welding

    SciTech Connect

    Not Available

    1984-02-01

    Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

  3. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  4. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48)....

  5. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48)....

  6. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48)....

  7. Customized orbital welding meets the challenge of titanium welding

    SciTech Connect

    1996-12-01

    Titanium has emerged as the material of choice for tubing used in surface condensers around the world in both new and retrofit configurations. A major worldwide supplier of steam surface condensers to the electric utility industry, Senior Engineering is finding an increased use of titanium tubes and tube sheets in condenser specifications. When compared to other alloys, titanium`s light weight is efficient in design, handling, transportation and installation activities. Additionally, it maintains a stable price structure. Senior Engineering implements an orbital welding process using fusion gas tungsten arc welding (GTAW) for its titanium tube-to-tube sheet welding. Orbital welding involves the use of a welding apparatus placed inside a tube or pipe to automatically and precisely weld a 360-deg joint. When welding manually, a welder stops several times during the weld due to the large amount of time and fatigue involved in achieving 360-deg welds, which results in lack of fusion. An automated orbital welding system, however, can accomplish the task as one continuous weld. This reduces process time and decreases lack of fusion. The orbital welding systems, featuring a microprocessor-based controller, an inverter-based power supply, an expandable mandrel and a customized torch shroud, reduced welding labor by 35%. The improved labor efficiency justified the addition of two more of the systems in January 1996.

  8. Weld failure detection

    DOEpatents

    Pennell, William E.; Sutton, Jr., Harry G.

    1981-01-01

    Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

  9. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  10. Neutral polypropylene laser welding

    NASA Astrophysics Data System (ADS)

    Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla

    2016-10-01

    The joining of polymeric materials is a technology used in many industrial applications, from transport to telecommunications and the medical sector. A new technology for the joining of polymers is the laser welding process. In particular, fibre laser welding is a flexible technology which allows high process speed and the realization of good quality joints. Despite its application becoming more widespread in the production of assemblies of high precision, the application of laser technology for the welding of polymers has not been the subject of many studies up to now. This study focused on the welding of neutral polypropylene. The window process parameter was identified, without the use of additives to increase radiation absorption, and a mechanical characterization was conducted in order to evaluate the quality of the joints realized.

  11. Positive consequences of false memories.

    PubMed

    Howe, Mark L; Garner, Sarah R; Patel, Megan

    2013-01-01

    Previous research is replete with examples of the negative consequences of false memories. In the current research, we provide a different perspective on false memories and their development and demonstrate that false memories can have positive consequences. Specifically, we examined the role false memories play in subsequent problem-solving tasks. Children and adults studied and recalled neutral or survival-relevant lists of associated words. They then solved age-normed compound remote associates, some of whose solutions had been primed by false memories created when studying the previous lists. The results showed that regardless of age: (a) survival-related words were not only better recollected but were also more susceptible than neutral words to false memory illusions; and (b) survival-related false memories were better than neutral false memories as primes for problem-solving. These findings are discussed in the context of recent speculation concerning the positive consequences of false memories, and the adaptive nature of reconstructive memory.

  12. False Position, Double False Position and Cramer's Rule

    ERIC Educational Resources Information Center

    Boman, Eugene

    2009-01-01

    We state and prove the methods of False Position (Regula Falsa) and Double False Position (Regula Duorum Falsorum). The history of both is traced from ancient Egypt and China through the work of Fibonacci, ending with a connection between Double False Position and Cramer's Rule.

  13. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  14. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  15. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  16. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  17. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  18. Numerical Study for Gta Weld Shape Variation by Coupling Welding Arc and Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    A numerical modeling of the welding arc and weld pool is studied for moving GTA welding to investigate the effect of the surface active element oxygen and the plasma drag force on the weld shape. Based on the 2D axisymmetric numerical modeling of the argon arc, the heat flux, current density and plasma drag force are obtained under different welding currents. Numerical calculations to the weld pool development are carried out for moving GTA welding on SUS304 stainless steel with different oxygen contents 30 ppm and 220 ppm, respectively. The results show that the plasma drag force is another dominating driving force affecting the liquid pool flow pattern, except for the Marangoni force. The different welding currents will change the temperature distribution and plasma drag force on the pool surface, and affect the strength of Marangoni convection and the weld shape. The weld D/W ratio initially increases, followed by a constant value around 0.5 with the increasing welding current under high oxygen content. The weld D/W ratio under the low oxygen content slightly decreases with the increasing welding current. The predicted weld shape by simulation agrees well with experimental results.

  19. Automatic Welding System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.

  20. Weld radiograph enigmas

    NASA Technical Reports Server (NTRS)

    Jemian, Wartan A.

    1986-01-01

    Weld radiograph enigmas are features observed on X-ray radiographs of welds. Some of these features resemble indications of weld defects, although their origin is different. Since they are not understood, they are a source of concern. There is a need to identify their causes and especially to measure their effect on weld mechanical properties. A method is proposed whereby the enigmas can be evaluated and rated, in relation to the full spectrum of weld radiograph indications. Thie method involves a signature and a magnitude that can be used as a quantitive parameter. The signature is generated as the diference between the microdensitometer trace across the radiograph and the computed film intensity derived from a thickness scan along the corresponding region of the sample. The magnitude is the measured difference in intensity between the peak and base line values of the signature. The procedure is demonstated by comparing traces across radiographs of a weld sample before and after the introduction of a hole and by a system based on a MacIntosh mouse used for surface profiling.

  1. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30...

  2. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30...

  3. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30...

  4. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Repairs involving welding, burning, and power..., burning, and power-actuated tools and appliances. (a) Except as provided in paragraph (b) of this section, repairs or work involving welding or burning, or the use of power-actuated tools or appliances which...

  5. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Repairs involving welding, burning, and power..., burning, and power-actuated tools and appliances. (a) Except as provided in paragraph (b) of this section, repairs or work involving welding or burning, or the use of power-actuated tools or appliances which...

  6. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Repairs involving welding, burning, and power..., burning, and power-actuated tools and appliances. (a) Except as provided in paragraph (b) of this section, repairs or work involving welding or burning, or the use of power-actuated tools or appliances which...

  7. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Repairs involving welding, burning, and power..., burning, and power-actuated tools and appliances. (a) Except as provided in paragraph (b) of this section, repairs or work involving welding or burning, or the use of power-actuated tools or appliances which...

  8. 46 CFR 154.182 - Contiguous hull structure: Production weld test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous hull structure: Production weld test. 154.182 Section 154.182 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... secondary barrier, each 100m (328 ft.) of full penetration butt welded joints in that portion of...

  9. 29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Oxygen-fuel gas welding and cutting. 1910.253 Section 1910..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.253 Oxygen... and air or oxygen may be explosive and shall be guarded against. No device or attachment...

  10. 29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Oxygen-fuel gas welding and cutting. 1910.253 Section 1910..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.253 Oxygen... and air or oxygen may be explosive and shall be guarded against. No device or attachment...

  11. 29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Oxygen-fuel gas welding and cutting. 1910.253 Section 1910..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.253 Oxygen... and air or oxygen may be explosive and shall be guarded against. No device or attachment...

  12. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping joints: Welded and screwed couplings. 154.524... Equipment Cargo and Process Piping Systems § 154.524 Piping joints: Welded and screwed couplings. Pipe... warmer. (d) Screwed couplings are allowed for instrumentation and control piping that meets §...

  13. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping joints: Welded and screwed couplings. 154.524... Equipment Cargo and Process Piping Systems § 154.524 Piping joints: Welded and screwed couplings. Pipe... warmer. (d) Screwed couplings are allowed for instrumentation and control piping that meets §...

  14. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping joints: Welded and screwed couplings. 154.524... Equipment Cargo and Process Piping Systems § 154.524 Piping joints: Welded and screwed couplings. Pipe... warmer. (d) Screwed couplings are allowed for instrumentation and control piping that meets §...

  15. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping joints: Welded and screwed couplings. 154.524... Equipment Cargo and Process Piping Systems § 154.524 Piping joints: Welded and screwed couplings. Pipe... warmer. (d) Screwed couplings are allowed for instrumentation and control piping that meets §...

  16. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30...

  17. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  18. False memories for aggressive acts.

    PubMed

    Laney, Cara; Takarangi, Melanie K T

    2013-06-01

    Can people develop false memories for committing aggressive acts? How does this process compare to developing false memories for victimhood? In the current research we used a simple false feedback procedure to implant false memories for committing aggressive acts (causing a black eye or spreading malicious gossip) or for victimhood (receiving a black eye). We then compared these false memories to other subjects' true memories for equivalent events. False aggressive memories were all too easy to implant, particularly in the minds of individuals with a proclivity towards aggression. Once implanted, the false memories were indistinguishable from true memories for the same events, on several dimensions, including emotional content. Implications for aggression-related memory more generally as well as false confessions are discussed.

  19. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  20. The Kepler False Positive Table

    NASA Astrophysics Data System (ADS)

    Bryson, Steve; Kepler False Positive Working Group

    2015-01-01

    The Kepler Space Telescope has detected thousands of candidate exoplanets by observing transit signals in a sample of more than 190,000 stars. Many of these transit signals are false positives, defined as a transit-like signal that is not due to a planet orbiting the target star (or a bound companion if the target is a multiple-star system). Astrophysical causes of false positives include background eclipsing binaries, planetary transits not associated with the target star, and non-planetary eclipses of the target star by stellar companions. The fraction of Kepler planet candidates that are false positives ranges from about 10% at high Galactic latitudes to 40% at low Galactic latitudes. Creating a high-reliability planet candidate catalog for statistical studies such as occurrence rate calculations requires removing clearly identified false positives.The Kepler Object of Interest (KOI) catalog at the NExScI NASA Exoplanet Archive flags false positives, and will soon provide a high-level classification of false positives, but lacks detailed description of why a KOI was determined to be a false positive. The Kepler False Positive Working Group (FPWG) examines each false positive in detail to certify that it is correctly identified as a false positive, and determines the primary reason(s) a KOI is classified as a false positive. The work of the FPWG will be published as the Kepler False Positive Table, hosted at the NExScI NASA Exoplanet Archive.The Kepler False Positive Table provides detailed information on the evidence for background binaries, transits caused by stellar companions, and false alarms. In addition to providing insight into the Kepler false positive population, the false positive table gives information about the background binary population and other areas of astrophysical interest. Because a planet around a star not associated with the target star is considered a false positive, the false positive table likely contains further planet candidates

  1. Certification of a weld produced by friction stir welding

    DOEpatents

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  2. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  3. Weld line detection and process control for welding automation

    NASA Astrophysics Data System (ADS)

    Yang, Sang-Min; Cho, Man-Ho; Lee, Ho-Young; Cho, Taik-Dong

    2007-03-01

    Welding has been widely used as a process to join metallic parts. But because of hazardous working conditions, workers tend to avoid this task. Techniques to achieve the automation are the recognition of joint line and process control. A CCD (charge coupled device) camera with a laser stripe was applied to enhance the automatic weld seam tracking in GMAW (gas metal arc welding). The adaptive Hough transformation having an on-line processing ability was used to extract laser stripes and to obtain specific weld points. The three-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain information such as the width and depth of the weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted to control the process of GMAW, such as welding speed, arc voltage and wire feeding speed. The width and depth of the weld joint have been selected as neurons in the input layer of the neural-network algorithm. The input variables, the width and depth of the weld joint, are determined by image information. The voltage, weld speed and wire feed rate are represented as the neurons in the output layer. The results of the neural-network learning applied to the welding are as follows: learning ratio 0.5, momentum ratio 0.7, the number of hidden layers 2 and the number of hidden units 8. They have significant influence on the weld quality.

  4. Welding structures in gas tungsten arc-welded zircaloy-4

    SciTech Connect

    Perez, T.E.; Saggese, M.E.

    1982-02-01

    Microstructures were obtained by welding tubes to end caps in fuel elements. The final joint properties are influenced by different structural elements including microstructure, porosity, and inclusions. The secondary structure found after welding is Widmanstaetten. Welding thermal cycles are inherently inhomogeneous, affecting both plate width and /beta/ primary grain. 4 refs.

  5. Weld pool oscillation during GTA welding of mild steel

    SciTech Connect

    Xiao, Y.H.; Ouden, G. den . Dept. of Materials Science and Engineering)

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized by a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.

  6. High Strength Steel Welding Research

    DTIC Science & Technology

    2007-11-02

    ical A nalysis ............................................................................ 124 4.6.1 Inductively Coupled Plasm a...welding, the heat source is not stationary ................................................................................................ 19 0 Figure 5...primary and secondary phases in weld m etal inclusions ................................................................. 52 Figure 13: HAC in heat

  7. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  8. Resistance-Welding Test Fixture

    NASA Technical Reports Server (NTRS)

    Brennan, Andrew D.

    1990-01-01

    Realistic welding conditions produce reliable specimens. Simple fixture holds resistance-welding test specimens. Specimen holder includes metallic holder and clamps to provide electrical and thermal paths and plastic parts providing thermal and electrical isolation.

  9. Workmanship standards for fusion welding

    NASA Technical Reports Server (NTRS)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  10. Sleep deprivation and false memories.

    PubMed

    Frenda, Steven J; Patihis, Lawrence; Loftus, Elizabeth F; Lewis, Holly C; Fenn, Kimberly M

    2014-09-01

    Many studies have investigated factors that affect susceptibility to false memories. However, few have investigated the role of sleep deprivation in the formation of false memories, despite overwhelming evidence that sleep deprivation impairs cognitive function. We examined the relationship between self-reported sleep duration and false memories and the effect of 24 hr of total sleep deprivation on susceptibility to false memories. We found that under certain conditions, sleep deprivation can increase the risk of developing false memories. Specifically, sleep deprivation increased false memories in a misinformation task when participants were sleep deprived during event encoding, but did not have a significant effect when the deprivation occurred after event encoding. These experiments are the first to investigate the effect of sleep deprivation on susceptibility to false memories, which can have dire consequences.

  11. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  12. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  13. Capillary flow weld-bonding

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J. (Inventor)

    1976-01-01

    The invention of a weld-bonding technique for titanium plates was described. This involves fastening at least two plates of titanium together using spot-welding and applying a bead of adhesive along the edge of the resistance spot-welded joint which upon heating, flows and fills the separation between the joint components.

  14. Improved welding of Rene-41

    NASA Technical Reports Server (NTRS)

    Nunez, S.

    1970-01-01

    Gas-tungsten arc welding with a filler of Rene-41 produces strong welded joints. When Rene-41 is used, resistance to strain-age cracking is greatly increased by post-weld solution annealing in an inert atmosphere. Mechanical properties of Rene-41 and Hastelloy-W are compared.

  15. Welding. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  16. Welding. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  17. Robotic Welding and Inspection System

    SciTech Connect

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  18. Automatic welding comes of age. [Offshore

    SciTech Connect

    Turner, D.L. Jr.

    1981-07-01

    Automatic pipe welding systems today fall into three main categories: gas metal arc welding, gas-tungsten arc welding, and flash-butt welding. The first automatic welding devices used offshore were the CRC and H.C. Price systems. Both use gas metal arc welding with a consumable steel filler wire. The recently developed McDermott flash-butt welding system is described. (DLC)

  19. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  20. Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters

    SciTech Connect

    Mote, M.W.

    1981-12-01

    An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

  1. The science and practice of welding. 8th ed. Vol. 2: The practice of welding

    SciTech Connect

    Davies, A.C.

    1984-01-01

    This book includes sections on underwater welding and cutting, cold pressure welding, the application of mixed gases to various welding processes, and robot welding. The author uses photographs, tables, figures, and illustrations to explain the text and provides examination questions.

  2. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  3. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  4. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  5. Controlling conditions for wet welding

    SciTech Connect

    Hill, M.

    1985-11-01

    Wet welding is finding increased use for repairing and maintaining vessel hulls around the world. Users are developing new methods and procedures to expand the technology. A wet welded joint underwater can be made as strong as one welded in a dry habitat, but at a greatly reduced cost. The design of the joint for wet welding and the procedures that need to be followed are outlined. In designing for wet welding, high tensile strength, ease of access, and over-design should be considered.

  6. Thermal Stir Welds in Titanium

    NASA Astrophysics Data System (ADS)

    Fonda, Richard W.; Knipling, Keith E.; Pilchak, Adam L.

    2016-01-01

    Although conventional friction stir welding (FSW) has proven unsuccessful in joining thick sections of alpha and near-alpha titanium alloys, thermal stir welding, a variant of the FSW process in which an external heat source is used to preheat the workpiece, is demonstrated to be able to reliably join 12.3-mm-thick plates of CP titanium. This paper describes the microstructures and textures that develop in these thermal stir welds. The observed microstructure was used to reconstruct the high-temperature microstructure and texture present during the welding process and therefore reveal the genesis of the welding structures.

  7. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  8. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys. Marshall awarded the torch contract to B & B Precision Machine, which produced a torch for the Shuttle, then automated the system, and eventually delivered a small torch used by companies such as Whirlpool for sheet metal welding of appliance parts and other applications. The dependability of the torch offers cost and time advantages.

  9. Reduced False Memory after Sleep

    ERIC Educational Resources Information Center

    Fenn, Kimberly M.; Gallo, David A.; Margoliash, Daniel; Roediger, Henry L., III; Nusbaum, Howard C.

    2009-01-01

    Several studies have shown that sleep contributes to the successful maintenance of previously encoded information. This research has focused exclusively on memory for studied events, as opposed to false memories. Here we report three experiments showing that sleep reduces false memories in the Deese-Roediger-McDermott (DRM) memory illusion. False…

  10. Study modality and false recall.

    PubMed

    Smith, Rebekah E; Engle, Randall W

    2011-01-01

    False memories occur when individuals mistakenly report an event as having taken place when that event did not in fact occur. The DRM (Deese, 1959; Roediger & McDermott, 1995) paradigm provides an effective technique for creating and investigating false memories. In this paradigm participants study a list of words (e.g., SOUR, CANDY,…) that are highly associated to a non-presented critical item (e.g., SWEET). The study phase is followed by a test of memory for the study list words. Researchers typically find very high levels of false recall of the critical non-presented item. However, the likelihood of falsely remembering the non-presented critical items can be reduced by presenting studied associates visually rather than auditorally (e.g., Smith & Hunt, 1998). This is referred to as the modality effect in false memory. The current study investigated the role of resource availability in the expression of this modality effect in false recall. In Experiment 1 false recall was reduced in the visual study presentation condition relative to the auditory condition for participants with higher working memory capacity, but not for participants with lower working memory capacity. In Experiment 2 the effect of study modality on false recall was eliminated by the addition of a divided attention task at encoding. Both studies support the proposal that resource availability plays a role in the expression of the modality effect in the DRM paradigm (Smith, Lozito, & Bayen, 2005).

  11. Method and apparatus for assessing weld quality

    DOEpatents

    Smartt, Herschel B.; Kenney, Kevin L.; Johnson, John A.; Carlson, Nancy M.; Clark, Denis E.; Taylor, Paul L.; Reutzel, Edward W.

    2001-01-01

    Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

  12. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  13. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  14. Friction Plug Weld Repair Geometric Innovations

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R.; Cantrell, Mark A.; McCool, A. (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines the fundamentals of friction plug welding. A process overview is given for friction push plug welding, including different uses and strengths of push plug welding. Details are given for friction pull plug welding, including welding parameters, details on observed defects, expected benefits, and test results.

  15. Welding Development: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Jeff

    2007-01-01

    This paper presents the basic understanding of the friction stir welding process. It covers process description, pin tool operation and materials, metal flow theory, mechanical properties, and materials welded using the process. It also discusses the thermal stir welding process and the differences between thermal stir and friction stir welding. MSFC weld tools used for development are also presented.

  16. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  17. Tool For Robotic Resistive Roll Welding

    NASA Technical Reports Server (NTRS)

    Gilber, Jeffrey L.

    1991-01-01

    Roll-welding attachment for robot simple, inexpensive device incorporating modified commercial resistance-welding gun. Modified welding gun easily attaches to end effector of robot. Robot applies welding force and moves electrode wheel along prescribed path. Resistance-welding current starts and stops automatically according to force exerted against workpiece. Used to apply brazing foil to workpiece.

  18. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  19. Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume

    SciTech Connect

    Mueller, R.E.; Hopkins, J.A.; Semak, V.V.; McCay, M.H.

    1996-12-31

    Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

  20. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  1. False allegation of child abduction.

    PubMed

    Canning, Kathleen E; Hilts, Mark A; Muirhead, Yvonne E

    2011-05-01

    Cases in which a child has been falsely reported as missing or abducted can be extremely challenging to the law enforcement agencies responsible for their investigation. In the absence of a witnessed abduction or an obvious crime scene, it is difficult to determine whether a child has actually been abducted or has become a victim of a homicide and a false allegation. The purpose of this study was to examine falsely alleged kidnapping cases and identify successful investigative strategies. Sixty-one adjudicated false allegation cases involving 66 victims were analyzed. The mean age of the victim was 5 years. Victims came from generally unstable, high-risk family situations and were killed primarily by biological parents. Victims were killed because they were unwanted or viewed as an obstacle to a desired goal, or they were victims of abuse or maltreatment that ended in fatality.

  2. Welding Supplementary Units.

    ERIC Educational Resources Information Center

    Johnson, Don; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular welding classes. Teacher's materials precede the materials for students and include general notes for the instructor, suggestions, eight references, a class progress chart, a questionnaire on the usefulness of…

  3. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  4. Elementary TIG Welding Skills.

    ERIC Educational Resources Information Center

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  5. Welding. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 23 learning guides are self-instructional packets for 23 tasks identified as essential for performance on an entry-level job in welding. Each guide is based on a terminal performance objective (task) and 1-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline of student…

  6. Welding of Stainless Materials

    NASA Technical Reports Server (NTRS)

    Bull, H; Johnson, Lawrence

    1929-01-01

    It would appear that welds in some stainless steels, heat-treated in some practicable way, will probably be found to have all the resistance to corrosion that is required for aircraft. Certainly these structures are not subjected to the severe conditions that are found in chemical plants.

  7. State Skill Standards: Welding

    ERIC Educational Resources Information Center

    Pointer, Mike; Naylor, Randy; Warden, John; Senek, Gene; Shirley, Charles; Lefcourt, Lew; Munson, Justin; Johnson, Art

    2005-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide occupational skill standards. The standards in this document are for welding programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. The writing team determined that any statewide…

  8. Welding. Competencies for Articulation.

    ERIC Educational Resources Information Center

    Southeast Community Coll., Lincoln, NE.

    Materials contained in this guide present competencies describing welding skills necessary for success in initial employment or applicable to advanced educational placement, and may be used by administrators, students, and secondary and postsecondary vocational teachers. The student outcomes section provides guidelines for planning of and…

  9. Welding. Student Learning Guide.

    ERIC Educational Resources Information Center

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  10. Welding nozzle position manipulator

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L. (Inventor); Gutow, David A. (Inventor)

    1994-01-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  11. Welding nozzle position manipulator

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1994-11-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  12. Welding nozzle position manipulator

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-08-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  13. Fusion Welding Research.

    DTIC Science & Technology

    1983-04-30

    of deep surface depresion due to vortex formation is being studied through a mathematical model. I Welding direction (a)e S (b) Figure 27: Schematic...each weldment. Specimens were cleaned in acetone and alcohol to remove grease and * dirt. They were finally cleaned ultrasonically in a detergent

  14. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  15. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  16. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation and shielding for welding. 57.14213 Section 57.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Equipment Safety Practices and Operational Procedures § 57.14213 Ventilation and shielding...

  17. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation and shielding for welding. 57.14213 Section 57.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Equipment Safety Practices and Operational Procedures § 57.14213 Ventilation and shielding...

  18. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation and shielding for welding. 57.14213 Section 57.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Equipment Safety Practices and Operational Procedures § 57.14213 Ventilation and shielding...

  19. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation and shielding for welding. 57.14213 Section 57.14213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Equipment Safety Practices and Operational Procedures § 57.14213 Ventilation and shielding...

  20. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  1. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fusion welded. Head-to-shell joints must be forge welded on class DOT-106A tanks and fusion welded on... AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this subchapter). (b)...

  2. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fusion welded. Head-to-shell joints must be forge welded on class DOT-106A tanks and fusion welded on... AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this subchapter). (b)...

  3. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fusion welded. Head-to-shell joints must be forge welded on class DOT-106A tanks and fusion welded on... AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this subchapter). (b)...

  4. 49 CFR 179.300-9 - Welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fusion welded. Head-to-shell joints must be forge welded on class DOT-106A tanks and fusion welded on... AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this subchapter). (b)...

  5. Fundamental Mechanisms Affecting Friction Welding under Vacuum

    DTIC Science & Technology

    1991-06-01

    and interior, is a large problem for arc welding where inert gases replace oxygen inside and spatter can damage surface and cloud optical devices...welded to the surface holding the patch in place. Inside or outside the station, studs can be friction welded to surfaces to attach insulation material...vacuum, surface contamination, material, weld force and weld speed on the integrity of the weld. The vacuum conditions are limited to 10 torr or less

  6. Bubbling the false vacuum away

    SciTech Connect

    Gleiser, M.; Rogers, B.; Thorarinson, J.

    2008-01-15

    We investigate the role of nonperturbative, bubblelike inhomogeneities on the decay rate of false-vacuum states in two- and three-dimensional scalar field theories. The inhomogeneities are induced by setting up large-amplitude oscillations of the field about the false vacuum, as, for example, after a rapid quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the presence of large-amplitude bubblelike inhomogeneities greatly accelerates the decay rate, changing it from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It is argued that this fast, power-law vacuum decay--known as resonant nucleation--is promoted by the presence of long-lived oscillons among the nonperturbative fluctuations about the false vacuum. A phase diagram is obtained distinguishing three possible mechanisms for vacuum decay: homogeneous nucleation, resonant nucleation, and crossover. Possible applications are briefly discussed.

  7. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  8. Industrial laser welding evaluation study

    NASA Technical Reports Server (NTRS)

    Hella, R.; Locke, E.; Ream, S.

    1974-01-01

    High power laser welding was evaluated for fabricating space vehicle boosters. This evaluation was made for 1/4 in. and 1/2 in. aluminum (2219) and 1/4 in. and 1/2 in. D6AC steel. The Avco HPL 10 kW industrial laser was used to perform the evaluation. The objective has been achieved through the completion of the following technical tasks: (1) parameter study to optimize welding and material parameters; (2) preparation of welded panels for MSFC evaluation; and (3) demonstration of the repeatability of laser welding equipment. In addition, the design concept for a laser welding system capable of welding large space vehicle boosters has been developed.

  9. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  10. Welded Permanent Fittings for Titanium Hydraulic Tubing.

    DTIC Science & Technology

    FITTINGS, *HYDRAULIC EQUIPMENT, RIVETED JOINTS, TITANIUM ALLOYS, PIPES , JET TRANSPORT AIRCRAFT, COLD WORKING, PRESSURE, RUPTURE, ARC WELDING , INERT...GAS WELDING , RADIOGRAPHY, STRESS RELIEVING, SUPERSONIC AIRCRAFT, COMMERCIAL AIRCRAFT.

  11. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  12. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  13. Tunneling decay of false vortices

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han

    2013-10-01

    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum, the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semiclassical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.

  14. Sleep Loss Produces False Memories

    PubMed Central

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., “night”, “dark”, “coal”,…), lacking the strongest common associate or theme word (here: “black”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss. PMID:18946511

  15. The Danger of False Dichotomies.

    ERIC Educational Resources Information Center

    LaBoskey, Vicky Kubler

    1998-01-01

    Responds to an article that examined 10 dichotomies in teacher education (SP 527 128), suggesting that too much time and energy are spent debating false dichotomies and addressing two specific dichotomies (preservice versus inservice and campus versus school site). Recommends that professional educators pool their energy and collaborate (rather…

  16. Evolutionary Psychology and False Confession

    ERIC Educational Resources Information Center

    Bering, Jesse M.; Shackelford, Todd K.

    2005-01-01

    This paper presents comments on Kassin's review, (see record 2005-03019-002) of the psychology of false confessions. The authors note that Kassin's review makes a compelling argument for the need for legal reform in police interrogation practices. Because his work strikes at the heart of the American criminal justice system--its fairness--the…

  17. Sleep deprivation and false confessions

    PubMed Central

    Frenda, Steven J.; Berkowitz, Shari R.; Loftus, Elizabeth F.; Fenn, Kimberly M.

    2016-01-01

    False confession is a major contributor to the problem of wrongful convictions in the United States. Here, we provide direct evidence linking sleep deprivation and false confessions. In a procedure adapted from Kassin and Kiechel [(1996) Psychol Sci 7(3):125–128], participants completed computer tasks across multiple sessions and repeatedly received warnings that pressing the “Escape” key on their keyboard would cause the loss of study data. In their final session, participants either slept all night in laboratory bedrooms or remained awake all night. In the morning, all participants were asked to sign a statement, which summarized their activities in the laboratory and falsely alleged that they pressed the Escape key during an earlier session. After a single request, the odds of signing were 4.5 times higher for the sleep-deprived participants than for the rested participants. These findings have important implications and highlight the need for further research on factors affecting true and false confessions. PMID:26858426

  18. Sleep loss produces false memories.

    PubMed

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal",...), lacking the strongest common associate or theme word (here: "black"). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss.

  19. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values

  20. The NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Bozek, J.

    1984-01-01

    The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.