Science.gov

Sample records for 2012-07-01 false high-voltage

  1. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables. 75.826 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a)...

  2. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  3. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of...

  4. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  5. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  6. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  7. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  8. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling high-voltage trailing cables. 75.833... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.833 Handling high-voltage trailing cables. (a) Cable handling. (1)...

  9. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on high-voltage lines; deenergizing and... Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface and... permitted, in the case of energized surface high-voltage lines, if such repairs are made by a...

  10. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  11. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of high-voltage transmission... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807 Installation of high-voltage transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  12. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage longwall cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the...

  13. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable... be kept of such examinations. High-voltage cables, other than trailing cables, shall not be moved...

  14. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall...

  15. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  16. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  17. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  18. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  19. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  20. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Repair of energized surface high voltage lines... Certified Persons § 75.154 Repair of energized surface high voltage lines; qualified person. An individual... high voltage lines only if he has had at least 2 years experience in electrical maintenance, and...

  1. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of high-voltage transmission... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground...

  2. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  3. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Repair of energized surface high-voltage lines... high-voltage lines; qualified person. An individual is a qualified person within the meaning of § 77.704 of this part for the purpose of repairing energized surface high-voltage lines only if he has...

  4. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  5. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on high-voltage lines; deenergizing and... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and grounding. High-voltage lines shall be deenergized and grounded before work is performed on them, except...

  6. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  7. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of §...

  8. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all...

  9. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with...

  10. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Booms and masts; minimum distance from...

  11. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on energized high-voltage surface lines... OF UNDERGROUND COAL MINES Grounding § 77.704-3 Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized...

  12. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement or operation of equipment near...

  13. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH...

  14. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Work on high-voltage lines. 77.704-1 Section 77... MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded as... provided in § 77.103) that such high-voltage line has been deenergized and grounded. Such qualified...

  15. 38 CFR 21.7658 - False, late, or missing reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false False, late, or missing... Reserve Pursuit of Course and Required Reports § 21.7658 False, late, or missing reports. (a) Reservist... provisions of §§ 21.4006 and 21.4007 of this part to a reservist or any other person who submits false...

  16. 38 CFR 21.7158 - False, late, or missing reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false False, late, or missing... (Montgomery GI Bill-Active Duty) Pursuit of Courses § 21.7158 False, late, or missing reports. (a) Veteran... provisions of §§ 21.4006 and 21.4007 of this part to a veteran or servicemember or any other person...

  17. 38 CFR 21.9740 - False, late, or missing reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false False, late, or missing reports. 21.9740 Section 21.9740 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Pursuit of Courses § 21.9740...

  18. 29 CFR 1602.33 - Penalty for making of willfully false statements on report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Government Information Report § 1602.33 Penalty for making of willfully false statements on report. The making of willfully false statements on report EEO-4, is a violation of the United States Code, title 18... 29 Labor 4 2012-07-01 2012-07-01 false Penalty for making of willfully false statements on...

  19. 29 CFR 1602.51 - Penalty for making of willfully false statements on report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Penalty for making of willfully false statements on report. 1602.51 Section 1602.51 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY... Information Report EEO-6 § 1602.51 Penalty for making of willfully false statements on report. The making...

  20. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  1. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables. 75.826 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a)...

  2. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables. 75.826 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a)...

  3. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables. 75.826 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a)...

  4. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of...

  5. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  6. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  7. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  8. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  9. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  10. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of...

  11. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage longwalls; scope. 75.813 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813 High-voltage longwalls; scope. Sections 75.814 through 75.822 of...

  12. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  13. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  14. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  15. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  16. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  17. High Voltage Connector

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-03-06

    The originally designed high voltage connectors were to be made of brass. However, if treated like a Bellevile spring with the initially given dimensions, the stresses of the connector when crimped were calculated to be much higher than the yield stress of brass. Since the flange and outer diameters of the connector are to remain small, it was necessary to alter the other dimensions and choice of material in order to bring down the stresses applied to the connector.

  18. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  19. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  20. 30 CFR 75.813 - High-voltage longwalls; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwalls; scope. 75.813 Section 75.813 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.813...

  1. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage cables. 75.804 Section 75.804 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables....

  2. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables. 75.826 Section 75.826 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.826...

  3. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  4. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  5. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  6. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  7. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  8. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  9. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  10. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  11. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground...

  12. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  13. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines; deenergizing and... Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface and... permitted, in the case of energized surface high-voltage lines, if such repairs are made by a...

  14. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  15. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of high-voltage transmission... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807 Installation of high-voltage transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  16. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage longwall cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the...

  17. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall...

  18. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits; neutral... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.802 Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage...

  19. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  20. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  1. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  2. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  3. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines; deenergizing and... Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface and... permitted, in the case of energized surface high-voltage lines, if such repairs are made by a...

  4. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of high-voltage transmission... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807 Installation of high-voltage transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  5. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall...

  6. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground high-voltage longwall cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the...

  7. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Handling high-voltage trailing cables. 75.833... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.833 Handling high-voltage trailing cables. (a) Cable handling. (1)...

  8. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; splices. 75.810... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as...

  9. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable... be kept of such examinations. High-voltage cables, other than trailing cables, shall not be moved...

  10. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on high-voltage lines; deenergizing and... Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface and... permitted, in the case of energized surface high-voltage lines, if such repairs are made by a...

  11. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable... be kept of such examinations. High-voltage cables, other than trailing cables, shall not be moved...

  12. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of high-voltage transmission... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807 Installation of high-voltage transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  13. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  14. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  15. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage powerlines; clearances above... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  16. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; minimum design... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall...

  17. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage circuits; circuit breakers. 75.800... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground...

  18. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage longwall cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the...

  19. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Handling high-voltage trailing cables. 75.833... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.833 Handling high-voltage trailing cables. (a) Cable handling. (1)...

  20. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  1. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  2. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  3. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  4. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage equipment; grounding. 77.810 Section 77.810 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution...

  5. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  6. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  7. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  8. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  9. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  10. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  11. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  12. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  13. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  14. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  15. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  16. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  17. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  18. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  19. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of §...

  20. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repair of energized surface high-voltage lines... high-voltage lines; qualified person. An individual is a qualified person within the meaning of § 77.704 of this part for the purpose of repairing energized surface high-voltage lines only if he has...

  1. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines. 75.705-2 Section 75.705-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be...

  2. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending...-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except as provided in paragraph (b) of this section, high-voltage circuits extending underground and...

  3. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repair of energized surface high voltage lines... Certified Persons § 75.154 Repair of energized surface high voltage lines; qualified person. An individual... high voltage lines only if he has had at least 2 years experience in electrical maintenance, and...

  4. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines; deenergizing and... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and grounding. High-voltage lines shall be deenergized and grounded before work is performed on them, except...

  5. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  6. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  7. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of high-voltage transmission... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground...

  8. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  9. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  10. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  11. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  12. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  13. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  14. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  15. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  16. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  17. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  18. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  19. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  20. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  1. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage longwall cables. 75.822 Section 75.822 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls §...

  2. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of §...

  3. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Repair of energized surface high voltage lines... Certified Persons § 75.154 Repair of energized surface high voltage lines; qualified person. An individual... high voltage lines only if he has had at least 2 years experience in electrical maintenance, and...

  4. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of high-voltage transmission... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground...

  5. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  6. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent....

  7. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines; deenergizing and... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and grounding. High-voltage lines shall be deenergized and grounded before work is performed on them, except...

  8. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  9. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Repair of energized surface high voltage lines... Certified Persons § 75.154 Repair of energized surface high voltage lines; qualified person. An individual... high voltage lines only if he has had at least 2 years experience in electrical maintenance, and...

  10. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage underground equipment; grounding. 75.811 Section 75.811 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage...

  11. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  12. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false High voltage markings: doors, cover plates, or... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All doors, cover plates, or barriers providing direct access to high voltage equipment shall be marked...

  13. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tying into energized high-voltage surface....705-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line is performed from the ground, any...

  14. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  15. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false High voltage markings: doors, cover plates, or... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All doors, cover plates, or barriers providing direct access to high voltage equipment shall be marked...

  16. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false High voltage markings: doors, cover plates, or... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All doors, cover plates, or barriers providing direct access to high voltage equipment shall be marked...

  17. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of high-voltage transmission... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground...

  18. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on high-voltage lines; deenergizing and... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and grounding. High-voltage lines shall be deenergized and grounded before work is performed on them, except...

  19. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables; splices. 75.810 Section 75.810 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.810 High-voltage trailing...

  20. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  1. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of §...

  2. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Repair of energized surface high-voltage lines... high-voltage lines; qualified person. An individual is a qualified person within the meaning of § 77.704 of this part for the purpose of repairing energized surface high-voltage lines only if he has...

  3. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Handling high-voltage trailing cables. 75.833 Section 75.833 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.833...

  4. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Repair of energized surface high-voltage lines... high-voltage lines; qualified person. An individual is a qualified person within the meaning of § 77.704 of this part for the purpose of repairing energized surface high-voltage lines only if he has...

  5. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tying into energized high-voltage surface... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-10 Tying into energized high-voltage surface circuits. If the work of forming an additional circuit by tying into an energized high-voltage surface line...

  6. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  7. 30 CFR 75.823 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meeting the requirements of § 75.153. Other standards in 30 CFR apply to these circuits and equipment... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Scope. 75.823 Section 75.823 Mineral Resources... STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.823...

  8. 30 CFR 75.820 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical work; troubleshooting and testing. 75.820 Section 75.820 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls §...

  9. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical work; troubleshooting and testing. 75.831 Section 75.831 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls §...

  10. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  11. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a...

  12. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  13. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  14. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on high-voltage lines. 77.704-1 Section 77... MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded as... provided in § 77.103) that such high-voltage line has been deenergized and grounded. Such qualified...

  15. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  16. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  17. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  18. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  19. High voltage load resistor array

    DOEpatents

    Lehmann, Monty Ray

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  20. High voltage feed through bushing

    DOEpatents

    Brucker, J.P.

    1993-04-06

    A feed through bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  1. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  2. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  3. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all...

  4. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fail safe ground check circuits on high-voltage... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.803 Fail safe ground check circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all...

  5. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  6. High Voltage Lines: Hazard at a Distance.

    ERIC Educational Resources Information Center

    Marino, Andrew A.; Becker, Robert O.

    1978-01-01

    It appears that a variety of biological organisms, including man, are sensitive to both long and short-term exposure to the extra low frequency electric and magnetic fields produced by high voltage lines. (BB)

  7. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  8. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  9. High voltage spacecraft electrical systems design

    NASA Technical Reports Server (NTRS)

    Stone, R. E.

    1993-01-01

    Factors which must be considered when designing the best and the most cost-effective high-voltage electrical system for a spacecraft are discussed with particular attention given to the EMC considerations, high-voltage power bus, and harnesses. It is emphasized that the use of serial data buses and lines greatly simplify the harness design and weight. Careful attention to the grounding concept and the EMC requirements is necessary for insuring a 'quiet' spacecraft.

  10. 30 CFR 75.800-3 - Testing, examination and maintenance of circuit breakers; procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall include visual observation of all components of the circuit breaker and its auxiliary devices, and... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Testing, examination and maintenance of circuit... High-Voltage Distribution § 75.800-3 Testing, examination and maintenance of circuit...

  11. 30 CFR 75.800-1 - Circuit breakers; location.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Circuit breakers; location. 75.800-1 Section 75.800-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... § 75.800-1 Circuit breakers; location. Circuit breakers protecting high-voltage circuits entering...

  12. 30 CFR 75.832 - Frequency of examinations; recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Frequency of examinations; recordkeeping. 75.832 Section 75.832 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... Distribution High-Voltage Longwalls § 75.832 Frequency of examinations; recordkeeping. (a) Continuous...

  13. 30 CFR 75.812-1 - Qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Qualified person. 75.812-1 Section 75.812-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.812-1...

  14. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cable pulling. 75.828 Section 75.828 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution...

  15. 30 CFR 75.806 - Connection of single-phase loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Connection of single-phase loads. 75.806 Section 75.806 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  16. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  17. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with...

  18. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with...

  19. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with...

  20. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage continuous mining machines. 18.54... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with...

  1. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH...

  2. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized high-voltage lines. 77.704-2 Section 77.704-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized...

  3. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Booms and masts; minimum distance from...

  4. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on energized high-voltage surface lines... OF UNDERGROUND COAL MINES Grounding § 77.704-3 Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized...

  5. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement or operation of equipment near...

  6. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement of high-voltage power centers and portable transformers; permit. 75.812 Section 75.812 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution §...

  7. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on energized high-voltage surface lines... OF UNDERGROUND COAL MINES Grounding § 77.704-3 Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized...

  8. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH...

  9. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH...

  10. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution §...

  11. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Work on energized high-voltage surface lines... OF UNDERGROUND COAL MINES Grounding § 77.704-3 Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized...

  12. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines; deenergizing and grounding. 75.705 Section 75.705 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705 Work on high-voltage lines; deenergizing...

  13. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Booms and masts; minimum distance from...

  14. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement or operation of equipment near...

  15. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Booms and masts; minimum distance from...

  16. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement or operation of equipment near...

  17. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of high-voltage transmission cables. 75.807 Section 75.807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.807 Installation...

  18. High-voltage electrocution causing bulbar dysfunction.

    PubMed

    Parvathy, G; Shaji, C V; Kabeer, K A; Prasanth, S R

    2016-01-01

    Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. High-voltage electrical injuries are uncommonly reported and may predispose to both immediate and delayed neurologic complications. We report the case of a 68-year-old man who experienced a high-voltage electrocution injury, subsequently developed bulbar dysfunction and spontaneously recovered. We describe the development of bulbar palsy following a significant electrical injury, which showed no evidence of this on magnetic resonance imaging. High-voltage electrocution injuries are a serious problem with potential for both immediate and delayed neurologic sequelae. The existing literature has no reports on bulbar dysfunction following electrocution, apart from motor neuron disease.

  19. High voltage battery cell scanner development

    NASA Technical Reports Server (NTRS)

    Lepisto, J. W.; Decker, D. K.; Graves, J.

    1983-01-01

    Battery cell voltage scanners have been previously used in low voltage spacecraft applications. In connection with future missions involving an employment of high-power high voltage power subsystems and/or autonomous power subsystem management for unattended operation, it will be necessary to utilize battery cell voltage scanners to provide battery cell voltage information for early detection of impending battery cell degradation/failures. In preparation for such missions, a novel battery cell voltage scanner design has been developed. The novel design makes use of low voltage circuit modules which can be applied to high voltage batteries in a building block fashion. A description is presented of the design concept and test results of the high voltage battery cell scanner, and its operation with an autonomously managed power subsystem is discussed.

  20. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  1. An Inexpensive Source of High Voltage

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  2. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  3. Gating systems for high voltage thyristor valves

    SciTech Connect

    Lips, H.P.; Pauli, M. )

    1988-07-01

    The requirements on gating systems for thyristor valves used in High Voltage Direct Current and Static Var Compensator systems are listed. Different techniques used to meet these requirements are discussed with a view on the specific service condition of the particular application and illustrated by service performance.

  4. High-voltage-compatible, fully depleted CCDs

    SciTech Connect

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  5. An Inexpensive Source of High Voltage

    NASA Astrophysics Data System (ADS)

    Saraiva, Carlos

    2012-04-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes.1-4 In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you can use a car ignition coil as a high voltage source. Such a coil can be obtained from an old car found in a car salvage yard and used to power cathode ray tubes and discharge tubes to observe the spectra. It can also be used as a source of ignition to simulate explosive combustion that occurs in car engines, rockets, etc. You can also buy these coils in shops that sell car accessories and they are cheaper than induction coils. In Fig. 1 you can see a coil that I used.

  6. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  7. High Voltage Design Guidelines: A Timely Update

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kirkici, H.; Ensworth, Clint (Technical Monitor)

    2001-01-01

    The evolving state of high voltage systems and their increasing use in the space program have called for a revision of the High Voltage Design Guidelines, Marshall Space Flight Center technical document MSFC-STD-531, originally issued September 1978 (previously 50 M05189b, October 1972). These guidelines deal in depth with issues relating to the specification of materials, particularly electrical insulation, as well as design practices and test methods. Emphasis is on corona and Paschen breakdown as well as plasma effects for Low Earth Orbiting systems. We will briefly review the history of these guidelines as well as their immediate predecessors and discuss their range of applicability. In addition, this document has served as the basis for several derived works that became focused, program-specific HV guidelines. We will briefly review two examples, guidelines prepared for the X-33 program and for the Space Shuttle Electric Auxiliary Power Unit (EAPU) upgrade.

  8. High voltage system: Plasma interaction summary

    NASA Astrophysics Data System (ADS)

    Stevens, N. John

    1986-10-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  9. Incrementally Variable High-Voltage Supply

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Chin, J.; Anderson, H. R.; Loveless, R. L.

    1985-01-01

    Programable power supply provides regulated output ranging from 2.5 to 2,500 volts. Exponential digital-to-analog converter provides low-voltage analog signal to power converter and to negative and positive high-voltage regulators. In response, converter furnishes voltage of approximate magnitude represented by analog signal, and regulators adjust voltage to precise magnitude. Entire voltage range covered in 169 steps. Total power consumption expected to be less than 2 watts.

  10. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  11. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  12. High voltage testing for the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; et al

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  13. High voltage testing for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  14. Potted High Voltage Modules For Space Application

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2011-10-01

    The European Space Mission GOCE, the Mercury mis- sion BepiColombo and the new High Efficiency Multistage Plasma (HEMP) thruster for the SGEO telecom mission have triggered the development of high voltage power supplies at Astrium Satellites covering different classes of output power (20W up to 1.4kW) and voltages (1kV up to 10kV). These supplies are equipped with encapsulated high voltage modules which have been designed as core functional blocks. The potting material - based on epoxy resin - was developed by Astrium Satellites. It is space-qualified for more than 30 years. Many types of high voltage modules have been manufactured since then, starting from transformer modules for the ERS mission to the modules used for electric propulsion. Technical trends, improvements and future goals of this technology are presented and discussed. New and re- fined processes are presented like the encapsulation of high-power toroidal transformers and the void-free electrical shielding by means of thin copper sheets which are laminated onto the surface of the potting material.

  15. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on energized high-voltage surface lines; reporting. 75.705-3 Section 75.705-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-3 Work on energized high-voltage...

  16. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  17. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  18. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  19. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna...

  20. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna...

  1. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna...

  2. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna...

  3. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  4. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  5. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  6. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008...

  7. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution...

  8. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna...

  9. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems. On and after September 30, 1970, high-voltage, resistance grounded systems shall include a fail... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 75.803 Section 75.803 Mineral Resources MINE SAFETY AND HEALTH...

  10. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  11. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  12. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Astrophysics Data System (ADS)

    Castell, Karen D.; Ruitberg, Arthur P.

    1994-11-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  13. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  14. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  15. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  16. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  17. Background information on high voltage fields.

    PubMed

    Janes, D E

    1977-10-01

    The increased demand for power has led to higher voltages for overhead transmission lines. Environmentalists, governmental agencies, and some members of the scientific community have questioned if past biological effects research and experience with lower voltage lines provide adequate bases for predicting the possible health and environmental effects of the higher voltage lines. Only a small amount of work has been done to explore the possible effects, especially long term effects, of the exposure of biological systems to electric fields from transmission lines. Research in Western Europe and the United States has not identified any prompt or acute effects other than spark and electric discharge and no permanent effects. Contrasted with this are the studies of workers in Soviet and Spanish high voltage switchyards that report effects, such as excitability, headaches, drowsiness, fatique, and nausea, that are not found in Soviet line maintenance workers. The results of current and planned research, supported by both U.S. Government agencies and the private sector, should resolve a number of the present uncertanties and provide answers for the many questions concerning potential effects.

  18. Background information on high voltage fields.

    PubMed Central

    Janes, D E

    1977-01-01

    The increased demand for power has led to higher voltages for overhead transmission lines. Environmentalists, governmental agencies, and some members of the scientific community have questioned if past biological effects research and experience with lower voltage lines provide adequate bases for predicting the possible health and environmental effects of the higher voltage lines. Only a small amount of work has been done to explore the possible effects, especially long term effects, of the exposure of biological systems to electric fields from transmission lines. Research in Western Europe and the United States has not identified any prompt or acute effects other than spark and electric discharge and no permanent effects. Contrasted with this are the studies of workers in Soviet and Spanish high voltage switchyards that report effects, such as excitability, headaches, drowsiness, fatique, and nausea, that are not found in Soviet line maintenance workers. The results of current and planned research, supported by both U.S. Government agencies and the private sector, should resolve a number of the present uncertanties and provide answers for the many questions concerning potential effects. PMID:598346

  19. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  20. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  1. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  2. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  4. 14. SECOND FLOOR, LOOKING SOUTHSOUTHEAST AT CABINETS CONTAINING HIGH VOLTAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. SECOND FLOOR, LOOKING SOUTH-SOUTHEAST AT CABINETS CONTAINING HIGH VOLTAGE EQUIPMENT - Portland General Electric Company, Stephens Substation, 1841 Southeast Water Street, Portland, Multnomah County, OR

  5. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Repairs to energized surface high-voltage lines. 75.705-2 Section 75.705-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-2 Repairs to energized surface...

  6. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Repairs to energized high-voltage lines. 77.704-2 Section 77.704-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-2...

  7. 30 CFR 75.705-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tying into energized high-voltage surface circuits. 75.705-10 Section 75.705-10 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-10 Tying into energized...

  8. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables; minimum design requirements. 77.804 Section 77.804 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  9. 30 CFR 77.704-10 - Tying into energized high-voltage surface circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tying into energized high-voltage surface circuits. 77.704-10 Section 77.704-10 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding...

  10. 30 CFR 77.104 - Repair of energized surface high-voltage lines; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Repair of energized surface high-voltage lines; qualified person. 77.104 Section 77.104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL...

  11. 30 CFR 77.704-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on energized high-voltage surface lines; reporting. 77.704-3 Section 77.704-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding...

  12. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of high-voltage transmission cables. 77.807 Section 77.807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface...

  13. 30 CFR 75.154 - Repair of energized surface high voltage lines; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Repair of energized surface high voltage lines; qualified person. 75.154 Section 75.154 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Qualified and Certified Persons § 75.154 Repair...

  14. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines; deenergizing and grounding. 77.704 Section 77.704 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding §...

  15. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage powerlines; clearances above ground. 77.807-1 Section 77.807-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface...

  16. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Booms and masts; minimum distance from high-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  17. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement of equipment; minimum distance from high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL...

  18. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement or operation of equipment near high-voltage power lines. 56.12071 Section 56.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  19. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  20. A Comparison of High-Voltage Switches

    SciTech Connect

    Chu, K.W.; Scott, G.L.

    1999-02-01

    This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health of the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this report

  1. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 77.810 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding....

  2. Solid electrolyte: The key for high-voltage lithium batteries

    DOE PAGES

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; Liang, Chengdu; Dudney, Nancy J.

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  3. System for instrumenting and manipulating apparatuses in high voltage

    DOEpatents

    Jordan, Kevin

    2016-06-07

    A system for energizing, operating and manipulating apparatuses in high voltage systems. The system uses a dielectric gas such as SF.sub.6 as a driving power supply for a pneumatic motor which ultimately charges a battery or other energy storage device. The stored energy can then be used for instrumentation equipment, or to power any electrical equipment, in the high voltage deck. The accompanying method provides for the use of the SF6 system for operating an electrical device in a high-voltage environment.

  4. Surface interactions and high-voltage current collection

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1985-01-01

    Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.

  5. High voltage bushing having weathershed and surrounding stress relief collar

    DOEpatents

    Cookson, Alan H.

    1981-01-01

    A high voltage electric bushing comprises a hollow elongated dielectric weathershed which encloses a high voltage conductor. A collar formed of high voltage dielectric material is positioned over the weathershed and is bonded thereto by an interface material which precludes moisture-like contaminants from entering between the bonded portions. The collar is substantially thicker than the adjacent weathershed which it surrounds, providing relief of the electric stresses which would otherwise appear on the outer surface of the weathershed. The collar may include a conductive ring or capacitive foil to further relieve electric stresses experienced by the bushing.

  6. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G.J.

    1981-08-01

    High voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The general types designed for high voltage pulse generation and energy transfer applications are described. Special emphasis is given to pulse charging systems which operate up to the multi-megavolt range. (WHK)

  7. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  8. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  9. 20. SOUTH ELEVATION, SHOWING ORIGINAL HIGH VOLTAGE GETAWAYS. SCE negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SOUTH ELEVATION, SHOWING ORIGINAL HIGH VOLTAGE GETAWAYS. SCE negative no. 10340, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  10. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  11. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  12. High Voltage in Noble Liquids for High Energy Physics

    SciTech Connect

    Rebel, B.; Bernard, E.; Faham, C. H.; Ito, T. M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S. P.; Resnati, F.; Rowson, P. C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H.

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  13. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  14. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  15. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  16. Digitally gain controlled linear high voltage amplifier for laboratory applications.

    PubMed

    Koçum, C

    2011-08-01

    The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.

  17. Partial discharge in a high voltage experimental test assembly

    SciTech Connect

    Koss, R.J.; Brainard, J.P.

    1998-07-01

    This study was initiated when a new type of breakdown occurred in a high voltage experimental test assembly. An anomalous current pulse was observed, which indicated partial discharges, some leading to total breakdowns. High voltage insulator defects are shown along with their effect on the electrostatic fields in the breakdown region. OPERA electromagnetic field modeling software is used to calculate the fields and present a cause for the discharge. Several design modifications are investigated and one of the simplest resulted in a 25% decrease in the field at the discharge surface.

  18. Applying AVIP to high voltage power supply designs

    NASA Astrophysics Data System (ADS)

    Dunbar, William; Rugama, Jose A.

    Several avionic integrity program (AVIP) requirements are described and applied to high-voltage power supply (HVPS) designs. The requirements are: environment, materials characterization, design criteria, durability, manufacturing/process controls, and testing. Related integrity design topics dealing with HVPS failures, insulating material properties, packaging, and fatigue life predictions are also discussed.

  19. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  20. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  1. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Determining the mode of high voltage breakdowns in vacuum devices

    NASA Astrophysics Data System (ADS)

    Miller, H. C.; Furno, E. J.; Sturtz, J. P.

    1980-07-01

    Techniques for examining high voltage breakdowns (HVBs) in vacuum devices are discussed. Photography in conjunction with other diagnostic techniques is used to establish the validity of these techniques. The techniques examined are to measure the voltage applied to the device (or the current through the device) and also to look for X-rays generated by the device during an HVB.

  3. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  4. Neutron-induced single event burnout in high voltage electronics

    SciTech Connect

    Normand, E.; Wert, J.L.; Oberg, D.L.; Majewski, P.P.; Voss, P.; Wender, S.A.

    1997-12-01

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  5. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  6. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  7. [Fatal electric arc accidents due to high voltage].

    PubMed

    Strauch, Hansjürg; Wirth, Ingo

    2004-01-01

    The frequency of electric arc accidents has been successfully reduced owing to preventive measures taken by the professional association. However, the risk of accidents has continued to exist in private setting. Three fatal electric arc accidents caused by high voltage are reported with reference to the autopsy findings.

  8. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  9. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS Pt....

  10. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 77.803 Section 77.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  11. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., resistance grounded systems shall include a fail safe ground check circuit or other no less effective device... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 77.803 Section 77.803 Mineral Resources MINE SAFETY AND HEALTH...

  12. High voltage switches having one or more floating conductor layers

    SciTech Connect

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  13. High voltage stability performance of a gamma ray detection device

    SciTech Connect

    Abdullah, Nor Arymaswati; Lombigit, Lojius; Rahman, Nur Aira Abd

    2014-02-12

    An industrial grade digital radiation survey meter device is currently being developed at Malaysian Nuclear Agency. This device used a cylindrical type Geiger Mueller (GM) which acts as a detector. GM detector operates at relatively high direct current voltages depend on the type of GM tube. This thin/thick walled cylindrical type of GM tube operates at 450-650 volts range. Proper value and stability performance of high voltage are important parameters to ensure that this device give a reliable radiation dose measurement. This paper will present an assessment of the stability and performance of the high voltage supply for radiation detector. The assessment is performed using System Identification tools box in MATLAB and mathematical statistics.

  14. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  15. High voltage stability performance of a gamma ray detection device

    NASA Astrophysics Data System (ADS)

    Abdullah, Nor Arymaswati; Lombigit, Lojius; Rahman, Nur Aira Abd

    2014-02-01

    An industrial grade digital radiation survey meter device is currently being developed at Malaysian Nuclear Agency. This device used a cylindrical type Geiger Mueller (GM) which acts as a detector. GM detector operates at relatively high direct current voltages depend on the type of GM tube. This thin/thick walled cylindrical type of GM tube operates at 450-650 volts range. Proper value and stability performance of high voltage are important parameters to ensure that this device give a reliable radiation dose measurement. This paper will present an assessment of the stability and performance of the high voltage supply for radiation detector. The assessment is performed using System Identification tools box in MATLAB and mathematical statistics.

  16. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  17. High-voltage compatible, full-depleted CCD

    DOEpatents

    Holland, Stephen Edward

    2007-09-18

    A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.

  18. Properties of UN Sintered by High Voltage Electric Discharge Consolidation

    NASA Astrophysics Data System (ADS)

    Yurlova, M.; Tarasov, B.; Shornikov, D.; Grigoryev, E.; Olevsky, E.

    In the present work, the opportunity of the consolidation of uranium nitride tablets by high voltage electric discharge consolidation (HVEDC) is considered. It is shown that the consolidation by HVEDC allows the prevention of the expansion of uranium nitride powders and renders pellets with relative density of up to 97%. The thermal stability of the obtained samples has been investigated. The analysis of the microstructure of the processed samples indicates the retention of the initial powder structure

  19. A high voltage power converter for space astronomy applications

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Lampton, Michael L.

    1988-01-01

    A dc-dc low-power, high-voltage converter for use in space is described which furnishes a commandable, low-noise dc output in the range of 0 to -7500 V. The converter is suitable for biasing of detectors commonly employed in space astronomy, microchannel plates, photomultipliers, and gas discharge detectors. The converter's reliability has been demonstrated by accelerated life testing under thermal vacuum. The electrical and mechanical design, packaging, layout and fabrication techniques, and tests employed are described.

  20. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  1. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  2. Hazard classification assessment for the High Voltage Initiator

    SciTech Connect

    Cogan, J.D.

    1994-04-19

    An investigation was conducted to determine whether the High Voltage Initiator (Sandia p number 395710; Navy NAVSEA No. 6237177) could be assigned a Department of Transportation (DOT) hazard classification of ``IGNITERS, 1.4G, UN0325`` under Code of Federal Regulations, 49 CFR 173.101, when packaged per Mound drawing NXB911442. A hazard classification test was performed, and the test data led to a recommended hazard classification of ``IGNITERS, 1.4G, UN0325,`` based on guidance outlined in DOE Order 1540.2 and 49 CFR 173.56.

  3. Concrete coatings: High-voltage spark testing and pinhole elimination

    SciTech Connect

    1999-10-01

    Polyurethane (PU) coatings are a popular means of protecting concrete surfaces. However, the interaction of the coating with the concrete can cause holiday detection to be difficult. Recently, the high-voltage spark method was used to test a PU coating on a concrete tank. Holidays were found and marked and the coating was repaired and retested. However, leaks appeared when the vessel was filled with water for hydrotesting, and a trough was drained to pinpoint the source of the leaks. The paper attempts to answer why the first tests not detect these pinholes.

  4. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  5. Self-monitoring high voltage transmission line suspension insulator

    DOEpatents

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  6. High-voltage variable resistor for ion energy spectroscopy

    SciTech Connect

    Gay, T.J.; Irby, V.D.; Yallaly, S.P. )

    1993-06-01

    A high-voltage variable resistor was designed, built, and implemented to modify an ion-energy spectrometer for the study of ion--atom collisions in which the projectiles change charge. The resistor is remotely switchable from 0 to 2050 M[Omega] and has a voltage rating of 200 kV. The design criteria and the electrical and mechanical details of the apparatus are discussed. The design and construction of an ancillary device, comprising two precision resistive-divider voltmeters, are also discussed.

  7. Preliminary chaotic model of snapover on high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  8. High-voltage R-F feedthrough bushing

    DOEpatents

    Grotz, G.F.

    1982-09-03

    Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  9. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  10. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  11. An accurate continuous calibration system for high voltage current transformer

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  12. A compact, all solid-state LC high voltage generator

    NASA Astrophysics Data System (ADS)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  13. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  14. Electronic Current Transducer (ECT) for high voltage dc lines

    NASA Astrophysics Data System (ADS)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  15. High-voltage discharge in supersonic jet of plumbum vapor

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Antonov, N. N.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Usmanov, R. A.; Yartsev, I. M.

    2015-11-01

    During study of vacuum discharge in plumbum evaporating from molybdenum crucible in identical geometry of discharge gap and the same crucible temperature existence of two different discharge forms were observed. These two forms are vacuum arc with current above 10 A and voltage about 15 V and high-voltage discharge with current about 10 mA and voltage of 340 V. Plumbum was placed in heat-isolated crucible (cathode). Electron-beam heater was situated under the crucible. At the temperature of 1.25 kK that corresponds to plumbum saturated vapor pressure about 0.1 kPa voltage from power source (380 V, 200 A) was applied to anode and high-voltage discharge initiated with characteristics mentioned above. After a few seconds this discharge could turn into arc or could exist hundreds of seconds until total plumbum evaporation. Glow of discharge could take the form of a cone, harness or plasma bunch that hanged at the appreciable distance from the electrodes. The estimations of plasma parameters are presented.

  16. A compact, all solid-state LC high voltage generator.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  17. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  18. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized high-voltage... performed only with the use of live line tools; and, (4) Weather conditions will not interfere with...

  19. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized high-voltage... performed only with the use of live line tools; and, (4) Weather conditions will not interfere with...

  20. 30 CFR 77.704-2 - Repairs to energized high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... UNDERGROUND COAL MINES Grounding § 77.704-2 Repairs to energized high-voltage lines. An energized high-voltage... performed only with the use of live line tools; and, (4) Weather conditions will not interfere with...

  1. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  2. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of...

  3. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of...

  4. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of...

  5. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of...

  6. High-voltage electrical survey advances using UV/IR

    NASA Astrophysics Data System (ADS)

    Ninedorf, Daniel A.; Stolper, Roel; Hart, Jaco

    2008-03-01

    Technology miniaturization has made new advancements in high voltage electrical surveying possible. A solar-blind ultraviolet image overlaid onto infrared, combined with a solar-blind ultraviolet image and then overlaid onto color visible in the same camera with a weight of 6 pounds provides the comparison images and portability to allow an operator to do on-the-spot analysis and repair priority assignment. The UV-VIS image provides the quickest location and identification. The UV-IR image allows analysis to determine if there is damage and the severity. This can be accomplished in just seconds thru menu selection: before it required two separate cameras. This presentation will provide examples of different images and analysis, with operating time from hand-held, laboratory, vehicle and aerial camera mounts.

  7. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  8. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  9. Allende meteorite: a high-voltage electron petrographic study.

    PubMed

    Green, H W; Radcliffe, S V; Heuer, A H

    1971-05-28

    Electron-transparent sections of the Allende meteorite, a carbonaceous chondrite, have been prepared by ion-thinning and examined by high-voltage (800-kilovolt) transmission electron microscopy. The matrix crystals, mainly olivine, range in size from approximately 5 to approximately 0.01 micrometers; carbon is present as intergranular films of poorly crystalline graphite. The chondrules exhibit extensive radiation damage, a feature lacking in the matrix. In addition, both chondrules and matrix are undeformed and contain negative crystals; submicroscopic exsolution lamellae are present in pyroxenes. Comparison of the substructure in the Allende meteorite with that in the Parnallee meteorite and in lunar and selected terrestrial rocks leads to the conclusion that chondrule irradiation preceded cold accretion during formation of the solar system and that the meteorite has since been undisturbed.

  10. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  11. Electric and magnetic field measurements in a high voltage center.

    PubMed

    Safigianni, Anastasia S; Spyridopoulos, Anastasios I; Kanas, Vasilis L

    2012-01-01

    This paper investigates the electric and magnetic fields inside a large high voltage center constituted both of 400/150 and 150/20 kV substation areas. Results of previous field measurements and calculations in substations, made by the authors of this paper or other researchers, are presented first. The basic data distinguishing the examined center from previously examined substations follow. The main results of the field measurements in the areas of the above-mentioned center are presented in relevant diagrams. General conclusions arising from the comparison of the measured field values with relevant reference levels in force for safe public and occupational exposure as well as with the results of previous research are finally given. PMID:21917821

  12. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J.

    1978-01-01

    The exposure of high voltage spacecraft systems to the charged particle environment of space can produce interactions that will influence system operation. An experimental investigation of these interactions has been undertaken for insulator and conductor test surfaces biased up to plus or minus 1 kV in a simulated low earth orbit charged particle environment. It has been found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region; this can cause arcing. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  13. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  14. High voltage processing of the SLC polarized electron gun

    SciTech Connect

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described.

  15. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  16. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  17. Disintegration of rocks based on magnetically isolated high voltage discharge

    NASA Astrophysics Data System (ADS)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  18. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  19. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  20. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  1. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  2. Planar LTCC transformers for high voltage flyback converters.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George; Abel, Dave

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  3. LEO high voltage solar array arcing response model, continuation 5

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1989-01-01

    The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.

  4. Solar Array Arcing Failure Mode and High Voltage Array Testing

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.

    2002-10-01

    In 1998, a new failure mode for space solar arrays was discovered. A flowchart for this failure mode is presented. Since the discovery of this arc failure mode, many tactics have been used to defeat it. The arc thresholds and arc mitigation strategies must be determined in vacuum-plasma tank testing on Earth. Results from these tests must then be extrapolated to the space plasma environment. Thus, the test conditions on Earth must be adequate to reproduce the important aspects of the phenomenon in space. At Glenn Research Center, we have been testing solar arrays for their arc thresholds and sustained arcing thresholds. In this paper, we detail the test conditions for a specific set of tests-those aimed at qualifying the Boeing Solar Tile solar arrays to operate in space at very high voltages (300 V or more).

  5. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  6. High Voltage Tests in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Whitis, Thomas; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) project is a dark matter direct detection experiment using liquid xenon. The detector is a time projection chamber (TPC) requiring the establishment of a large electric field inside of the detector in order to drift ionization electrons. Historically, many xenon TPC designs have been unable to reach their design fields due to light production and breakdown. The LZ System Test is scaled so that with a cathode voltage of -50 kV, it will have the fields that will be seen in the LZ detector at -100 kV. It will use a fully instrumented but scaled-down version of the LZ TPC design with a vessel set and gas system designed for quick turnaround, allowing for iterative modifications to the TPC prototype and instrumentation. This talk will present results from the high voltage tests performed during the first runs of the LZ System Test.

  7. Remote renewable energy resources; Long-distance high voltage interconnections

    SciTech Connect

    Hammons, T.J. )

    1992-06-01

    This paper discusses international perspectives on remote energy made possible by high-voltage interconnections. It will discuss large-scale conversion, transfer, and utilization of renewable energy as a strategy to counter environmental problems caused by the combustion of fossil fuels. Potential development of huge renewable hydro resources in Africa, South America, North America, Eastern Siberia, Australia, and South East China, as well as potential development of geothermal and solar energy sources, will also be discussed. These include the proposed 30 GW Inga hydro power complex in Zaire, Central Africa, along the Congo River, where power will be exported to Southern Europe over a distance of 7000 Km, in Columbia with electrical ties through Central America linking South America with the electricity demand in North America, and developments in Siberia linked by cable across the Bering Strait to Alaska, Quebec to New England, Manitoba to midwest United States, Iceland to the United Kingdom, and in the Persian Gulf States.

  8. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  9. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  10. Experimental Study of Arcing on High-Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2003-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism suggests that such modifications can be done in the following directions: 1) To insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); 2) To change a coverglass geometry (overhang); 3) To increase a coverglass thickness; 4) To outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in a large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that stimulates the LEO operational temperature. The experimental setup is described below.

  11. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  12. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  13. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  14. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  15. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  16. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  17. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  18. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  19. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  20. Interaction of high voltage surfaces with the space plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.

  1. Photoconductivity of high-voltage space insulating materials

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.

    1975-01-01

    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  2. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  3. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  4. Advanced Gate Drive for the SNS High Voltage Converter Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; Anderson, D.E.; /Oak Ridge

    2009-05-07

    SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

  5. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations. PMID:21034090

  6. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  7. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  8. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  9. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  10. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  11. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  12. Improved High-Voltage Gas Isolator for Ion Thruster

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2007-01-01

    A report describes an improved high-voltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces. The isolator includes an alumina cylinder containing a spiral channel filled with a porous medium made from alumina microbeads fired together with an alumina slurry. Connections to gas-transport tubes are made at both ends of the alumina cylinder by means of metal caps containing fine-mesh screens to prevent passage of loose alumina particles. The outer surface of the alumina cylinder is convoluted to lengthen the electrical path between the metal caps and to afford shadow shielding to minimize the probability of formation of a continuous deposit that would electrically connect the ends. A flanged cylindrical metal cap that surrounds the alumina cylinder without touching one of the ends provides additional shadow shielding.

  13. Isolated data acquisition system for high voltage applications

    SciTech Connect

    Waitz, A.; Donaldson, A.

    1985-06-01

    This report describes the design and operation of a microcomputer controlled system for acquisition of both analog and binary data within the high voltage stages of a linac modulator. The system is comprised of a microprocessor Controller which communicates with the remote data Acquisition circuits via an optical bus. The bus, which uses a 1 MHz Manchester II format, is configured as a loop, starting at the Controller, daisy-chaining the remote cards and terminating back at the Controller. Upon receiving a linac timing pulse, the Controller sends addressed commands to the individual remote cards and receives data back. It then passes this data to the linac control system through a Multibus connection. Each remote circuit can return 16 binary sense and 7 (12 bit) analog parameters within 270 us. This speed is possible because of a pipelined design where one word is transmitted while another is being converted. A data conversion cycle is initiated when a remote data acquisition card receives the proper command and address from the controller.

  14. High Voltage Breakdown Levels in Various EPC Potting Materials

    NASA Technical Reports Server (NTRS)

    Komm, David S.

    2006-01-01

    This viewgraph presentation reviews exploration activities at JPL into various potting materials. Since high power space-borne microwave transmitters invariably use a vacuum tube as a final power amplifier, and this tube requires high electrode voltages for operation. The associated high voltage insulation typically represents a significant fraction of the mass of the transmitter. Since mass is always a premium resource on board spacecraft, we have been investigating materials with the potential to reduce the mass required for our applications here at JPL. This paper describes electrical breakdown results obtained with various potting materials. Conathane EN-11 (polyurethane) is the traditional HVPS encapsulant at JPL, but due to temperature limitations and durability issues it was deemed inappropriate for the particular application (i.e., CloudSat radar). The choices for the best available materials were epoxies, or silicones. Epoxies are too rigid, and were deemed inadvisable. Two silicones were further investigated (i.e.,ASTM E595- 93e2: GE RTV566(R) and Dow Corning 93-500X(R), another compound was considered (i.e., DC material, Sylgard 184(R)). "Loading" (adding filler materials) the potting compound will frequently alter the final material properties. Powdered alumina and borosilicate glass known as "microballoons" were investigated as possible loading materials. The testing of the materials is described. Each of the two loading materials offers advantages and disadvantages. The advantages and disadvantages are described.

  15. Application of high voltage electric field (HVEF) drying technology in potato chips

    NASA Astrophysics Data System (ADS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-03-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  16. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  17. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  18. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  19. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  20. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  1. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  2. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed. PMID:26932002

  3. False assumptions.

    PubMed

    Swaminathan, M

    1997-01-01

    Indian women do not have to be told the benefits of breast feeding or "rescued from the clutches of wicked multinational companies" by international agencies. There is no proof that breast feeding has declined in India; in fact, a 1987 survey revealed that 98% of Indian women breast feed. Efforts to promote breast feeding among the middle classes rely on such initiatives as the "baby friendly" hospital where breast feeding is promoted immediately after birth. This ignores the 76% of Indian women who give birth at home. Blaming this unproved decline in breast feeding on multinational companies distracts attention from more far-reaching and intractable effects of social change. While the Infant Milk Substitutes Act is helpful, it also deflects attention from more pressing issues. Another false assumption is that Indian women are abandoning breast feeding to comply with the demands of employment, but research indicates that most women give up employment for breast feeding, despite the economic cost to their families. Women also seek work in the informal sector to secure the flexibility to meet their child care responsibilities. Instead of being concerned about "teaching" women what they already know about the benefits of breast feeding, efforts should be made to remove the constraints women face as a result of their multiple roles and to empower them with the support of families, governmental policies and legislation, employers, health professionals, and the media. PMID:12321627

  4. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments-coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  5. Evaluation of Epoxy Nanocomposites for High Voltage Insulation

    NASA Astrophysics Data System (ADS)

    Iyer, Ganpathy

    Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and increased dielectric strength, tracking and erosion resistance, and surface hydrophobicity. All of the above mentioned benefits can be achieved at a lower filler concentration (< 10%) than conventional microfillers (40-60%). Also, the uniform shapes of nanofillers provide a better electrical stress distribution as compared to irregular shaped microcomposites which can have high internal electric stress, which could be a problem for devices with active electrical parts. Improvement in electrical performance due to addition of nanofillers in an epoxy matrix has been evaluated in this work. Scanning Electron Microscopy (SEM) was done on the epoxy samples to confirm uniform dispersion of nano-sized fillers as good filler dispersion is essential to realize the above stated benefits. Dielectric spectroscopy experiments were conducted over a wide range of frequencies as a function of temperature to understand the role of space charge and interfaces in these materials. The experiment results demonstrate significant reduction in dielectric losses in samples containing nanofillers. High voltage experiments such as corona resistance tests were conducted over 500 hours to monitor degradation in the samples due to corona. These tests revealed improvements in partial discharge endurance of nanocomposite samples. These improvements could not be adequately explained using a macroscopic quantity such as thermal conductivity. Thermo gravimetric analysis (TGA) showed higher weight loss initiation temperatures for nanofilled samples which is in agreement with the corona resistance experimental results. Theoretical models have also been developed in this work to complement the results of

  6. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  7. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  8. Low-profile high-voltage compact gas switch

    SciTech Connect

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-06-30

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  9. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  10. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    PubMed

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  11. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  12. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  13. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  14. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  15. High voltage transformers. (Latest citations from the Inspec database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning materials and performance of insulators used for high voltage transformers. Topics examine use of mica-fibers, gases, mica filled epoxies, and ceramics. Effects of insulation aging are reviewed, and acceptance testing of high voltage power transformers and apparatus is also examined. (Contains a minimum of 104 citations and includes a subject term index and title list.)

  16. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  17. The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation

    NASA Astrophysics Data System (ADS)

    Cho, Sang Ho; Cheong, Sang Sun; Yokota, Mitsuhiro; Kaneko, Katsuhiko

    2016-10-01

    High-voltage pulse technology has been applied to rock excavation, liberation of microfossils, drilling of rocks, oil and water stimulation, cleaning castings, and recycling products like concrete and electrical appliances. In the field of rock mechanics, research interest has focused on the use of high-voltage pulse technology for drilling and cutting rocks over the past several decades. In the use of high-voltage pulse technology for drilling and cutting rocks, it is important to understand the fragmentation mechanism in rocks subjected to high-voltage discharge pulses to improve the effectiveness of drilling and cutting technologies. The process of drilling rocks using high-voltage discharge is employed because it generates electrical breakdown inside the rocks between the anode and cathode. In this study, seven rock types and a cement paste were electrically fractured using high-voltage pulse discharge to investigate their dielectric breakdown properties. The dielectric breakdown strengths of the samples were compared with their physical and mechanical properties. The samples with dielectric fractured were scanned using a high-resolution X-ray computed tomography system to observe the fracture formation associated with mineral constituents. The fracture patterns of the rock samples were analyzed using numerical simulation for high-voltage pulse-induced fragmentation that adopts the surface traction and internal body force conditions.

  18. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  19. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    SciTech Connect

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  20. SEMICONDUCTOR DEVICES: A novel high voltage start up circuit for an integrated switched mode power supply

    NASA Astrophysics Data System (ADS)

    Hao, Hu; Xingbi, Chen

    2010-09-01

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions.

  1. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  2. High-voltage crowbar protection for the large CDF axial drift chamber

    SciTech Connect

    Binkley, M.; Mukherjee, A.; Stuermer, W.; Wagner, R.L.; /Fermilab

    2004-01-01

    The Central Outer Tracker (COT) is a big cylindrical drift chamber that provides charged particle tracking for the Collider Detector at Fermilab experiment. To protect the COT, the large stored energy in the high voltage system needs to be removed quickly when a problem is sensed. For the high voltage switch, a special-order silicon-controlled-rectifier was chosen over more readily available integrated gate bipolar transistors because of layout and reliability questions. The considerations concerning the high voltage switch, the prototype performance, and the experience of more than two years of running are described.

  3. Technique eliminates high voltage arcing at electrode-insulator contact area

    NASA Technical Reports Server (NTRS)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  4. Inexpensive system protects megawatt resistance-heating furnace against high-voltage surges

    NASA Technical Reports Server (NTRS)

    Stearns, E. J.

    1971-01-01

    Coolant gas extinguishes arcing across the break in a heater element. Air-gap shunt which bypasses high voltage impressed across the circuit prevents damage if the resistance elements break and open the inductive circuit.

  5. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGES

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; Shkrob, Ilya A.; Abraham, Daniel P.

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  6. High voltage generator circuit with low power and high efficiency applied in EEPROM

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Shilin, Zhang; Yiqiang, Zhao

    2012-06-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  7. A prototype of a high-voltage platform for the KRION ion source

    NASA Astrophysics Data System (ADS)

    Alexandrov, V. S.; Donets, E. E.; Konnov, G. I.; Kosukhin, V. V.; Sidorova, V. O.; Sidorov, A. I.; Shvetsov, V. S.; Trubnikov, G. V.

    2014-09-01

    A high-voltage platform that has been developed for the KRION ion source is described. The platform design concept is explained. The calculations that have been performed of the influence of the design and materials on the source magnetic field make it possible to define a range of materials suitable for manufacturing the platform. The major components of the high-voltage platform, such as a high-voltage power supplier, and decoupling insulators of the high-voltage power source, and the main and supplementary platforms, are chosen and described. It is determined that, to exclude electric breakdowns and corona discharges, one should use an electrically shielded channel with a cryocooler and power supplies for the KRION-source coupling cables.

  8. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  9. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  10. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  11. Project resumes: biological effects from electric fields associated with high-voltage transmission lines

    SciTech Connect

    1980-01-01

    Abstracts of research projects are presented in the following areas: measurements and special facilities; cellular and subcellular studies; physiology; behavior; environmental effects; modeling, scaling and dosimetry; and high voltage direct current. (ACR)

  12. Modified filter prevents conduction of microwave signals along high-voltage power supply leads

    NASA Technical Reports Server (NTRS)

    Mathison, R. P.

    1964-01-01

    Very lossy powdered iron material, in the lining of a polyester resin, replaces the dielectric material in the short coaxial transmission line of a simple filter. The lossy material absorbs microwave signals along high voltage power supply leads.

  13. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  14. NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions

  15. Concept for a high voltage solar array with integral power conditioning.

    NASA Technical Reports Server (NTRS)

    Wiener, P.; Rasmussen, R.

    1972-01-01

    Description of a general case solution that synthesizes a high voltage solar array system from a switchable building block concept which makes possible system optimization for specific load requirements. A specific optimized solution is demonstrated, with performance estimates relating array area, weight, and power. Significant technology problems peculiar to a high-voltage switchable solar array design are discussed, along with special requirements anticipated during a hardware development effort.

  16. Cermet insert high voltage holdoff for ceramic/metal vacuum devices

    DOEpatents

    Ierna, William F.

    1987-01-01

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  17. Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices

    DOEpatents

    Ierna, W.F.

    1986-03-11

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  18. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  19. Current collection by a spherical high voltage probe: Electron trapping and collective processes

    NASA Technical Reports Server (NTRS)

    Palmadesso, Peter J.

    1990-01-01

    The author summarizes the results of theoretical studies of the interaction of an uninsulated, spherical, high voltage (10's of KV positive) probe with the ionospheric environment. The focus of this effort was the phenomenon of electron trapping and its implications for breakdown processes (collisional regime) and the current-voltage relationship governing current collection (collisionless regime) in space-based pulsed power systems with high voltage components exposed to space, e.g., the SPEAR I experiment.

  20. High voltage transformers. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1997-05-01

    The bibliography contains citations concerning materials and performance of insulators used for high voltage transformers. Topics examine use of mica-fibers, gases, mica filled epoxies, and ceramics. Effects of insulation aging are reviewed, and acceptance testing of high voltage power transformers and apparatus is also examined.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Bilbao de Mendizabal, J.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-01

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  2. Recent progress in research on high-voltage electrolytes for lithium-ion batteries.

    PubMed

    Tan, Shi; Ji, Ya J; Zhang, Zhong R; Yang, Yong

    2014-07-21

    Developing a stable and safe electrolyte that works at voltages as high as 5 V is a formidable challenge in present Li-ion-battery research because such high voltages are beyond the electrochemical stability of the conventional carbonate-based solvents available. In the past few years, extensive efforts have been carried out by the research community toward the exploration of high-voltage electrolytes. In this review, recent progress in the study of several promising high-voltage electrolyte systems, as well as their recipes, electrochemical performance, electrode compatibility, and characterization methods, are summarized and reviewed. These new electrolyte systems include high-voltage film-forming additives and new solvents, such as sulfones, ionic liquids, nitriles, and fluorinated carbonates. It appears to be very difficult to find a good high-voltage (∼5 V) electrolyte with a single-component solvent at the present stage. Using mixed fluorinated-carbonate solvents and additives are two realistic solutions for practical applications in the near term, while sulfones, nitriles, ionic liquids and solid-state electrolyte/polymer electrolytes are promising candidates for the next generation of high-voltage electrolyte systems.

  3. High-voltage nano-oxidation in deionized water and atmospheric environments by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study.

  4. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  5. A quick response four decade logarithmic high-voltage stepping supply

    NASA Technical Reports Server (NTRS)

    Doong, H.

    1978-01-01

    An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.

  6. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    NASA Astrophysics Data System (ADS)

    Sato, Masayuki

    2008-05-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  7. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  8. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  9. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  10. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  11. High voltage electrical injury: an 11-year single center epidemiological study.

    PubMed

    Lipový, B; Kaloudová, Y; Ríhová, H; Chaloupková, Z; Kempný, T; Suchanek, I; Brychta, P

    2014-06-30

    The aim of our study was to retrospectively evaluate the epidemiological characteristics of patients with high voltage electrical injury from 1999 to 2009. The Clinic of Burns and Reconstructive Surgery, Faculty Hospital Brno is located in a region of 2,505,000 inhabitants. In total 13,911 patients (including both children and adults, and outpatients as well as hospitalized patients) were treated at our burn center during the period of study. Of these patients, 1,030 were hospitalized for burns treatment. For the purposes of this study, we have included only patients with high voltage electrical trauma, of which there were 58, 2 of whom were female. Basic epidemiological indicators were gathered on these patients, including age, gender, place of accident, extent of trauma, mortality and whether the injury was occupational or non-occupational. Electrical burns (caused by both low-voltage and high-voltage electric current) made up 1.10% of all burns treated in our burn center and high voltage electrical injuries represented 0.42% of all burn injuries. The average incidence of high voltage electrical trauma was 0.21 cases/100,000 inhabitants. The average age of the patients was 28.59 years. Nine patients died and the mortality was fixed at 15.52%. The average length of hospitalization was 53.43 days. The average extent of burnt area was 35.01% TBSA. In our study, we were able to define the basic epidemiological parameters in 58 patients with high voltage electrical trauma. We also have to highlight the still disappointingly high number of non-occupational electrical injuries affecting those in the lower age groups, especially children. However, preventive programmes for educating specific risk groups have shown positive results.

  12. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  13. Investigation of problems associated with solid encapsulation of high voltage electronic assemblies; also Reynolds connector study

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1975-01-01

    Electric breakdown prevention in vacuum and encapsulation of high voltage electronic circuits was studied. The lap shear method was used to measure adhesive strengths. The permeation constants of air at ambient room temperature through four different space-grade encapsulants was measured. Order of magnitude was calculated for the time that air bubble pressures drop to the corona region. High voltage connectors with L-type cable attached were tested in a vacuum system at various pressures. The cable system was shown to suppress catastrophic breakdown when filled with and surrounded by gas in the corona region of pressures, but did not prove to be completely noise free.

  14. Unlikely Combination of Experiments with a Novel High-Voltage CIGS Photovoltaic Array (Presentation)

    SciTech Connect

    del Cueto, J. A.; Sekulic, B. R.

    2006-05-01

    The goals of this study are to: (1) parameterize current-voltage (I-V) performance over a wide range of illumination and temperatures: (a) 50-1150 W/m{sup 2} irradiance, 5-65 C; (b) obtain array temperature coefficients; and (c) quantify energy production; (2) investigate high-voltage leakage currents from the CIS modules in a high-voltage array: determine dependence on moisture, temperature, and voltage bias and ascertain corrosion problems if any; and (3) study long-term power and energy production stability.

  15. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  16. A high voltage pulse generator for the mod-anode of the cluster klystron

    SciTech Connect

    Zhao, Yongxiang; Wang, Hai-peng

    1995-10-01

    A high voltage pulse generator using Zarem type was developed. The advantage of the Zarem type circuit is that it does not require a matched load. In our case the purser is dedicated to drive a mod-anode, which is a capacitive load. Therefore the Zarem type circuit is desirable. This report addresses systematically the R & D work, including the basic Principle and the designing consideration, the low voltage and high voltage experiments. A lot of irregular phenomena were observed, including ringing, pulse ``skirt`` and ``deficiency``. Also addressed are the analyses, simulation and solutions.

  17. Dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-08-15

    The dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge is studied by the one-dimensional Particle-in-Cell Monte Carlo collisions model in cylindrical coordinates. The x-ray photons emitted from the anode are found to be inconsequential to the generation of dense plasma in the gap. Rather, the electron impact ionization resulting from acceleration of naturally occurring background electrons in the discharge gap are enough to explain the generation of high-density (∼10{sup 15 }cm{sup −3}) non-equilibrium plasma. The influence of the high-voltage rise time on the plasma parameters is discussed.

  18. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  19. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  20. Microencapsulation of Multiple-Layer Emulsion with High-Voltage Electrostatic Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-soluble materials are widely used in the applications of agriculture, food and pharmaceuticals. The objective of this study was to investigate a new microencapsulation method to produce water-soluble materials. A high-voltage electrostatic field apparatus was used to produce such materials r...

  1. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  2. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... miners by the existing standards. On July 16, 2004, MSHA published a proposal (69 FR 42812) to establish... hearing dates to November 2004 and extending the comment period to December 10, 2004 (69 FR 51787). Based... handling equipment that must be used when handling energized high-voltage trailing cables (71 FR...

  3. A high-impedance attenuator for measurement of high-voltage nanosecond-range pulses.

    PubMed

    Yu, Binxiong; Liu, Jinliang; Zhang, Tianyang; Hong, Zhiqiang

    2013-05-01

    A novel kind of high-impedance cable attenuator for measurement of high-voltage ns-range pulses is investigated in this paper. The input and output ports of the proposed attenuator were both high-impedance ports, and good pulse response characteristics of the proposed attenuator were obtained with pulse response time less than 1 ns. According to the requirement of measurement, two attenuators with lengths at 14 m and 0.7 m were developed with response time of 1 ns and 20 ns, and the attenuation coefficient of 96 and 33.5, respectively. The attenuator with the length of 14 m was used as a secondary-stage attenuator of a capacitive divider to measure the high-voltage pulses at several hundred ns range. The waveform was improved by the proposed attenuator in contrast to the result only measured by the same capacitive divider and a long cable line directly. The 0.7 m attenuator was also used as a secondary-stage attenuator of a standard resistant divider for an accurate measurement of high-voltage pulses at 100 ns range. The proposed cable attenuator can be used to substitute the traditional secondary-stage attenuators for the measurement of high-voltage pulses.

  4. Analysis of high-voltage electrical spinal cord injury using diffusion tensor imaging.

    PubMed

    Ohn, Suk Hoon; Kim, Deog Young; Shin, Ji Cheol; Kim, Seung Min; Yoo, Woo-Kyoung; Lee, Seung-Koo; Park, Chang-Hyun; Jung, Kwang-Ik; Jang, Ki Un; Seo, Cheong Hoon; Koh, Sung Hye; Jung, Bora

    2013-11-01

    The aim of this study was to investigate spinal cord injury (SCI) on the basis of diffusion tensor imaging (DTI) in patients with high-voltage electrical injury. We recruited eight high-voltage electrical injury patients and eight healthy subjects matched for age and sex. DTI and central motor conduction time were acquired in both the patient and control groups. We obtained DTI indices according to the spinal cord levels (from C2 to C7) and cross-section locations (anterior, lateral, and posterior). Fractional anisotrophy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared between the two groups; additionally, they were compared in relation to spinal cord level and cross-section location. In the patient group relative to the control group, the FA value decreased and the MD and RD values increased in all of the regions of interest (ROI) with statistical significance (p < 0.05). In the patient group, particularly in the ROIs of the anterior spinal cord compared with the lateral and posterior spinal cords, the FA value decreased with statistical significance (p < 0.05). The DTI indices did not differ by level. DTI revealed the change of diffusion in the spinal cords of patients with high-voltage electrical injury, and corroborated the pathophysiology, myelinopathy and typical anterior spinal cord location of high-voltage electrical SCI already reported in the literature.

  5. Challenges and approaches for high-voltage spinel lithium-ion batteries.

    PubMed

    Kim, Jung-Hyun; Pieczonka, Nicholas P W; Yang, Li

    2014-07-21

    Lithium-ion (Li-ion) batteries have been developed for electric vehicle (EV) applications, owing to their high energy density. Recent research and development efforts have been devoted to finding the next generation of cathode materials for Li-ion batteries to extend the driving distance of EVs and lower their cost. LiNi(0.5)Mn(1.5)O(4) (LNMO) high-voltage spinel is a promising candidate for a next-generation cathode material based on its high operating voltage (4.75 V vs. Li), potentially low material cost, and excellent rate capability. Over the last decade, much research effort has focused on achieving a fundamental understanding of the structure-property relationship in LNMO materials. Recent studies, however, demonstrated that the most critical barrier for the commercialization of high-voltage spinel Li-ion batteries is electrolyte decomposition and concurrent degradative reactions at electrode/electrolyte interfaces, which results in poor cycle life for LNMO/graphite full cells. Despite scattered reports addressing these processes in high-voltage spinel full cells, they have not been consolidated into a systematic review article. With this perspective, emphasis is placed herein on describing the challenges and the various approaches to mitigate electrolyte decomposition and other degradative reactions in high-voltage spinel cathodes in full cells.

  6. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  7. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    NASA Astrophysics Data System (ADS)

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  8. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page...

  9. Electro-optic imagery of high-voltage GaAs photoconductive switches

    SciTech Connect

    Falk, R.A.; Adams, J.C.; Capps, C.D.; Ferrier, S.G.; Krinsky, J.A. )

    1995-01-01

    The authors present electro-optic images of GaAs high-voltage photoconductive switches utilizing the electro-optic effect of the semi-insulating GaAs substrate. Experimental methodology for obtaining the images is described along with a self-calibrating data reduction algorithm. Use of the technique for observing fabrication defects is shown.

  10. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    PubMed

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior. PMID:27040896

  11. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  12. A miniature high voltage plasma interaction flight experiment - Project MINX. [for measuring solar cell array parasitic current drain

    NASA Technical Reports Server (NTRS)

    Riley, T. J.; Triner, J. E.; Sater, B. L.; Cohen, D.; Somberg, H.

    1974-01-01

    A miniature high-voltage array was fabricated, incorporating the multi-junction edge illuminated (MJC) cell technique. The array consists of 32 2x2.2 cm MJCs, series connected, capable of 1600 V open circuit at 1 AMO and 1.2 mA short circuit. A solid state, high-voltage relay is connected across each 4-cell subgroup of the array. It was built to test plasma current drain on space systems using high voltage as might occur when a high-voltage solar array is operated from low to synchronous orbit.

  13. [Self-closing flaps in the treatment of scalp burns due to high-voltage electricity].

    PubMed

    Hafidi, J; El Mazouz, S; El Mejatti, H; Fejjal, N; Gharib, N E; Abbassi, A; Belmahi, A M

    2011-06-30

    Electrical burns caused by high voltage are responsible for extensive tissue damage. This damage continues in the days following the accident because of the heat deriving from the Joule effect and vascular microthrombosis. In such cases of destruction of the periostum and the calvarium we use coverage flaps. From June 1997 to June 2008, 15 patients were treated for loss of scalp substance due to high-voltage electric burns. The loss, in the tonsural region and varying in size from 9 to 11 cm, was reliably covered per primam in the first week following the accident using axial and multiple coverage flaps. We report the experience of the Division of Plastic Surgery, Ibn-Sina, Rabat, Morocco. PMID:22262963

  14. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  15. Dual Ground Plane for high-voltage MOSFET in UTBB FDSOI technology

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Cristoloveanu, Sorin

    2015-10-01

    For the first time, the investigation and fabrication of a high-voltage MOSFET (HVMOS) in Ultra-Thin Body and Buried oxide Fully Depleted technology (UTBB-FDSOI) is reported. Through TCAD simulations, the lateral electric field profile and related breakdown voltage behaviour are studied. Taking benefit of the FDSOI assets, an original HVMOS architecture, featuring a Dual Ground Plane, is proposed to optimize the electric field profile distribution. As a new lever for high voltage, the Dual Ground Plane enables a "RESURF-like" effect, electrostatically improving classical HVMOS figures of merit: the breakdown voltage (BV) and the specific-on resistance (RON.S). Experimental results confirm the potential of the Dual Ground Plane solution for HVMOS device in 28 nm UTBB-FDSOI technology and beyond.

  16. SEMICONDUCTOR DEVICES: Analysis of trigger behavior of high voltage LDMOS under TLP and VFTLP stress

    NASA Astrophysics Data System (ADS)

    Jing, Zhu; Qinsong, Qian; Weifeng, Sun; Siyang, Liu

    2010-01-01

    The physical mechanisms triggering electrostatic discharge (ESD) in high voltage LDMOS power transistors (> 160 V) under transmission line pulsing (TLP) and very fast transmission line pulsing (VFTLP) stress are investigated by TCAD simulations using a set of macroscopic physical models related to previous studies implemented in Sentaurus Device. Under VFTLP stress, it is observed that the triggering voltage of the high voltage LDMOS obviously increases, which is a unique phenomenon compared with the low voltage ESD protection devices like NMOS and SCR. The relationship between the triggering voltage increase and the parasitic capacitances is also analyzed in detail. A compact equivalent circuit schematic is presented according to the investigated phenomena. An improved structure to alleviate this effect is also proposed and confirmed by the experiments.

  17. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  18. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  19. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.

    PubMed

    Li, G; Wu, S C; Zhou, Z B; Bai, Y Z; Hu, M; Luo, J

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10(-8) m/s(2)/Hz(1/2) at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower. PMID:24387459

  20. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    SciTech Connect

    Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J.

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  1. High voltage pulse cable and connector experience in the kicker systems at SLAC

    SciTech Connect

    Harris, K.; Artusy, M.; Donaldson, A.; Mattison, T.

    1991-05-01

    The SLAC 2-mile linear accelerator uses a wide variety of pulse kicker systems that require high voltage cable and connectors to deliver pulses from the drivers to the magnet loads. Many of the drivers in the SLAC kicker systems use cable lengths up to 80 feet and are required to deliver pulses up to 40 kV, with rise and fall time on the order of 20 ns. Significant pulse degradation from the cable and connector assembly cannot be tolerated. Other drivers are required to deliver up to 80 kV, 20 {mu}s pulses over cables 20 feet long. Several combinations of an applicable high voltage cable and matching connector have been used at SLAC to determine the optimum assembly that meets the necessary specifications and is reliable. 14 refs., 3 figs., 1 tab.

  2. An earth-isolated optically coupled wideband high voltage probe powered by ambient light

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul M.

    2012-10-01

    An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ⩽0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.

  3. An earth-isolated optically coupled wideband high voltage probe powered by ambient light

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang; Bellan, Paul

    2012-10-01

    An earth-isolated optically coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast LED that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array powered by ambient laboratory lighting charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level <=0.03 kV, a DC-5 MHz bandwidth and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.

  4. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.

    PubMed

    Li, G; Wu, S C; Zhou, Z B; Bai, Y Z; Hu, M; Luo, J

    2013-12-01

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10(-8) m/s(2)/Hz(1/2) at 0.1 Hz, while the high-voltage coupling noise is one-order of magnitude lower.

  5. Broadband linear high-voltage amplifier for radio frequency ion traps.

    PubMed

    Kuhlicke, Alexander; Palis, Klaus; Benson, Oliver

    2014-11-01

    We developed a linear high-voltage amplifier for small capacitive loads consisting of a high-voltage power supply and a transistor amplifier. With this cost-effective circuit including only standard parts sinusoidal signals with a few volts can be amplified to 1.7 kVpp over a usable frequency range at large-signal response spanning four orders of magnitude from 20 Hz to 100 kHz under a load of 10 pF. For smaller output voltages the maximum frequency shifts up to megahertz. We test different capacitive loads to probe the influence on the performance. The presented amplifier is sustained short-circuit proof on the output side, which is a significant advantage over other amplifier concepts. The amplifier can be used to drive radio frequency ion traps for single charged nano- and microparticles, which will be presented in brief.

  6. Solid-Body Fuse Developed for High- Voltage Space Power Missions

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Baez, Anastacio N.

    2001-01-01

    AEM Incorporated has completed the development, under a NASA Glenn Research Center contract, of a solid-body fuse for high-voltage power systems of satellites and spacecraft systems. High-reliability fuses presently defined by MIL-PRF-23419 do not meet the increased voltage and amperage requirements for the next generation of spacecraft. Solid-body fuses exhibit electrical and mechanical attributes that enable these fuses to perform reliably in the vacuum and high-vibration and -shock environments typically present in spacecraft applications. The construction and screening techniques for solid-body fuses described by MIL-PRF-23419/12 offer an excellent roadmap for the development of high-voltage solid-body fuses.

  7. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  8. Effects of carbon/graphite fiber contamination on high voltage electrical insulation

    NASA Technical Reports Server (NTRS)

    Garrity, T.; Eichler, C.

    1980-01-01

    The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.

  9. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  10. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  11. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  12. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  13. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  14. Development and fabrication of a fast recovery, high voltage power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Duffin, J. J.; Gaugh, C.; Kkaratnicki, H. M.; Troutman, G.

    1981-01-01

    The use of positive bevels for P-I-N mesa structures to achieve high voltages is described. The technique of glass passivation for mesa structures is described. The utilization of high energy radiation to control the lifetime of carriers in silicon is reported as a means to achieve fast recovery times. Characterization data is reported and is in agreement with design concepts developed for power diodes.

  15. A high-voltage scanning transmission electron microscope at Nagoya University.

    PubMed

    Hibino, M; Shimoyama, H; Maruse, S

    1989-07-01

    A high-voltage scanning transmission electron microscope (STEM) H-1250ST of the maximum accelerating voltage of 1.25 MV was constructed at Nagoya University in 1983. The microscope, equipped with a field-emission gun, is designed with high-level STEM performance as well as conventional transmission microscopy mode operation. The aim of developing the microscope, basic design schemes, principal instrumentation, and techniques developed are described.

  16. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  17. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  18. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  19. Software control program for 25 kW breadboard testing. [spacecraft power supplies; high voltage batteries

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.

    1981-01-01

    A data acquisition software program developed to operate in conjunction with the automated control system of the 25 kW PM Electric Power System Breadboard Test facility is described. The proram provides limited interactive control of the breadboard test while acquiring data and monitoring parameters, allowing unattended continuous operation. The breadboard test facility has two positions for operating separate configurations. The main variable in each test setup is the high voltage Ni-Cd battery.

  20. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.