Science.gov

Sample records for 206pb 204pb ratios

  1. {sup 206}Pb/{sup 207}Pb ratios in tree rings as monitors of environmental change

    SciTech Connect

    Watmough, S.A.; Hughes, R.J.; Hutchinson, T.C.

    1999-03-01

    Lead concentrations and {sup 206}Pb/{sup 207}Pb ratios were measured in annual tree rings of sycamore (Acer pseudoplatanus L.) growing at two woodland sites in northwest England. One site, at Prescot, was adjacent to a metal refinery in the center of a large urban conurbation while the site at Croxteth was part of an urban woodland at least 2 km from the nearest major road. Lead concentrations and {sup 206}Pb/{sup 207}Pb ratios in surface soil were higher at Prescot than at Croxteth. At both sites, Pb concentrations decreased considerably in tree rings formed after 1970. At Croxteth, {sup 206}Pb/{sup 207}Pb ratios in tree rings formed between 1965 and 1987 were relatively constant, around 1.16, but increased sharply in wood formed after 1987 to over 1.17 in wood formed in 1993. This increase in the {sup 206}Pb/{sup 207}Pb ratio reflects the recent reduction in Pb derived from vehicle emissions that has a/ characteristically low {sup 206}Pb/{sup 207}Pb ratio. There was no corresponding increase in the {sup 206}Pb/{sup 207}Pb ratio in tree rings at Prescot, although Pb concentrations in tree rings formed after 1986 remained unchanged. In addition, {sup 206}Pb/{sup 207}Pb ratios at Prescot were generally higher than at Croxteth, and there was considerable annual variation, which is probably due to the multiple sources of Pb at this small woodland site. {sup 206}Pb/{sup 207}Pb ratios in sycamore tree rings may be used to document historical changes in the sources of bioavailable Pb, which differ between sites, although the majority of Pb in tree rings at these two woodland sites appears to have been derived from industrial and urban sources rather than from motor vehicle emissions.

  2. Tracking atmospheric sulphur pollution from the study of Racomitrium lanuginosum mosses in Iceland: A multi-isotope approach (δ34S, 206Pb/204Pb, δ13C and δ15N)

    NASA Astrophysics Data System (ADS)

    Proust, E.; Widory, D.; Gautason, B.; Rogers, K.; Morrison, J.

    2010-12-01

    Among terrestrial plants, the applicability of mosses as monitoring organisms of atmospheric pollutants is a world-wide accepted technique due to their special biological and morphologic characteristics as nonvascular plants. They are commonly regarded as the best bioindicators of air quality because they can accumulate sulphur (S) and other elements to a far greater level than is necessary for their physiological needs. This study aims at using different isotope systematics δ34S, 206Pb/204Pb, δ13C and δ15N) to help understand the origin of S in the atmophsere of Reykjavik and its vicinity, and especially the potential contribution of surrounding geothermal plants. The selected Icelandic woolly fringe moss (Racomitrium lanuginosum (Hedw.) Brid.) is extremely common in lava fields and gravely and stony areas. Samples were taken in four distinct sampling sites around the city of Reykjavik: Bláfjöll area (south-eastern suburb of the city), and close to three power plants: Hellisheioarvirkjun (northern suburb of the city), Svartsengi (south-western suburb of the city) and Nesjavellir (north-eastern suburb of the city). Results show that, whatever the sampling context is, S is controlled by a binary mixing, between i) a high δ34S (around 16‰) end-member, characteristic of mosses from Hellisheioarvirkjun, and ii) a low δ34S (around -2‰) end-member, characteristic of mosses from Nesjavellir. The multi-isotope approach, confirms this binary relation and helps to constrain the different end-members involved.

  3. Characterizing Pb mobilization from upland soils to streams using (206)Pb/(207)Pb isotopic ratios.

    PubMed

    Dawson, Julian J C; Tetzlaff, Doerthe; Carey, Anne-Marie; Raab, Andrea; Soulsby, Chris; Killham, Kenneth; Meharg, Andrew A

    2010-01-01

    Anthropogenically deposited lead (Pb) binds efficiently to soil organic matter, which can be mobilized through hydrologically mediated mechanisms, with implications for ecological and potable quality of receiving waters. Lead isotopic ((206)Pb/(207)Pb) ratios change down peat profiles as a consequence of long-term temporal variation in depositional sources, each with distinctive isotopic signatures. This study characterizes differential Pb transport mechanisms from deposition to streams at two small catchments with contrasting soil types in upland Wales, U.K., by determining Pb concentrations and (206)Pb/(207)Pb ratios from soil core profiles, interstitial pore waters, and stream water. Hydrological characteristics of soils are instrumental in determining the location in soil profiles of exported Pb and hence concentration and (206)Pb/(207)Pb ratios in surface waters. The highest Pb concentrations from near-surface soils are mobilized, concomitant with high dissolved organic carbon (DOC) exports, from hydrologically responsive peat soils with preferential shallow subsurface flows, leading to increased Pb concentrations in stream water and isotopic signatures more closely resembling recently deposited Pb. In more minerogenic soils, percolation of water allows Pb, bound to DOC, to be retained in mineral horizons and combined with other groundwater sources, resulting in Pb being transported from throughout the profile with a more geogenic isotopic signature. This study shows that (206)Pb/(207)Pb ratios can enhance our understanding of the provenances and transport mechanisms of Pb and potentially organic matter within upland soils. PMID:19954181

  4. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    SciTech Connect

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  5. Lead isotope ratios in bone ash of blesbok (Damaliscus pygargus phillipsi): a means of screening for the accumulation of contaminants from uraniferous rocks.

    PubMed

    Nöthling, Johan O; Du Toit, Johannes S; Myburgh, Jan G

    2014-09-19

    This study was done to determine whether blesbok (Damaliscus pygargus phillipsi) from the Krugersdorp Game Reserve (KGR) in Gauteng Province, South Africa have higher concentrations of (238)U and higher (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios in their bone ash than blesbok from a nearby control reserve that is not exposed to mine water and has no outcrops of uraniferous rocks. Eight blesbok females from the KGR and seven from the control site, all killed with a brain shot, were used. A Thermo X-series 2 quadrupole ICPMS was used to measure the concentrations of (238)U and lead and a Nu Instruments NuPlasma HR MC-ICP-MS to measure the lead isotope ratios in the tibial ash from each animal. KGR blesbok had higher mean concentrations of (238)U (P = 0.02) and ratios of (206)Pb/(204)Pb and (207)Pb/(204)Pb (P < 0.00001) than the control blesbok. The probability of rejecting the false null hypothesis of no difference in the (206)Pb/(204)Pb or (207)Pb/(204)Pb ratios between KGR and control reserve animals (the power of the test) was 0.999. The blesbok from the KGR accumulated contaminants from an uraniferous environment. The (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios in tibial ash proved effective in confirming accumulation of contaminants from uraniferous rocks. PMID:24967558

  6. Precision measurement of lead isotopes ratios: preliminary analyses from the U.S. mine, Bingham Canyon, Utah

    USGS Publications Warehouse

    Stacey, J.S.; Moore, W.J.; Rubright, R.D.

    1967-01-01

    A gas-source mass spectrometer has been constructed for the precise measurement of lead isotope ratios. Sixteen analyses on 4 different preparations of the same galena made over a period of 2 months gave 95% confidence limits (per analysis) of 206Pb/204Pb = 0.080%, 207Pb/206Pb = 0.042% and208Pb/206Pb = 0.046%. Eight samples from the U.S. mine in the Bingham district have a linear relationship over the 1% range of their 206Pb/204Pb ratios. The simplest model fitting these data suggests that the lead was separated from a primary system (??=8.98) 1630??150 m.y. ago and subsequently mixed with a radiogenic lead of similar age; biotite K-Ar dates for altered intrusive rocks associated with the ores provide an apparent age of mineralization and suggest that isotopic evolution of the lead was terminated about 36 m.y. ago. ?? 1967.

  7. /sup 204/Pb(n,n'. gamma. )/sup 204/Pb reaction

    SciTech Connect

    Dawson, W.K.; Green, P.W.; Hooper, H.R.; Neilson, G.C.; Sheppard, D.M.; Siefken, H.E.; Smith, D.L.; Davidson, J.M.

    1980-08-01

    The excited states of /sup 204/Pb were studied using the /sup 204/Pb(n,n'..gamma..) reaction. Gamma-ray excitation functions and angular distributions were recorded using a small-sample technique. Previously unreported /sup 204/Pb levels were observed at 1605 +- 1, 1682 +- 1, 1762 +- 1, 1873 +- 1, and 2276 +- 3 keV excitation. The spins of the levels at 1682, 1762, 1873, and 2276 keV are J=1, 2, or 3/sup -/. The spin and parity of the 1605 keV level is limited to J/sup ..pi../=3/sup +/ or 4/sup +/. Multipole mixing ratios were measured for several transitions where the initial and final state spins and parities were firmly established from previous work.

  8. Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery ground stock marker.

    PubMed

    Spencer, K; Shafer, D J; Gauldie, R W; DeCarlo, E H

    2000-11-01

    Variations measured in the lead (Pb) stable isotope ratios in otoliths of juvenile tropical reef fish Scarus perspiculatus, Abudefduf abdominalis and Dascyllus albisella reflect mixing of anthropogenic lead from the Kaneohe Bay watershed and 'background' lead characteristic of the adjacent ocean. The otoliths and water samples collected in a transect across the bay demonstrated nearly identical Pb isotopic trends. The Pb isotopic composition of the watershed has a low 206Pb/204Pb signature primarily reflecting past combustion of tetra-ethyl Pb additive in fuels. Ocean water not contaminated by this watershed signature has a different, high 206Pb/204Pb isotopic composition, similar to previously measured Asian anthropogenic aerosols and natural eolian dusts, where the anthropogenic signal dominates. Where a history of past anthropogenic Pb contamination exists, it may be possible to use the ratios of Pb stable isotopes in fish otoliths to reconstruct the nursery grounds of fish. PMID:11118937

  9. Pb isotopic ratios in airborne PM 10 of an iron/metal industrial complex area and nearby residential areas: Implications for ambient sources of Pb pollution

    NASA Astrophysics Data System (ADS)

    Lee, Heon-Chul; Kim, Mo-Keun; Jo, Wan-Kuen

    2011-03-01

    This study examined four stable isotopic compositions of Pb in the PM10 (204Pb, 206Pb, 207Pb and 208Pb) along with the ambient Pb concentrations in two residences relative to their proximity to an iron and metal industrial complex (IMIC) as well as an industrial site located within the boundary of the IMIC. In addition, eight potential emission sources were investigated for stable isotopic compositions of Pb. The wintertime Pb isotopic ratios for 208Pb/206Pb for ambient samples of an industrial sampling site (ISS) were closer to those of the residential ambient air concentrations measured at closer proximity to the IMIC (RA1) compared to another residential area located further away (RA2). This finding suggests that the ambient Pb sources were more similar between RA1 and the ISS than between RA2 and the ISS. In contrast, the summertime Pb isotopic ratios for the ambient samples of the ISS were not similar to those for RA1, which in turn were similar to those for RA2. During the summer, it is suggested that motor vehicle emissions appear to be a potential source of Pb in the two residential areas. For the ISS, neither 207Pb/206Pb nor 208Pb/206Pb ratios showed a clear seasonal pattern. However for the ambient samples of the two residential areas, both the 207Pb/206Pb and 208Pb/206Pb ratios exhibited a seasonal pattern, with relatively higher mean 207Pb/206Pb and 208Pb/206Pb ratios during the summer season. It was further confirmed that the ambient Pb concentrations were significantly higher at the ISS than those for RA1, which in turn were significantly higher than those for RA2. At all three sampling sites, high enrichment factor values (≥ 475) were found for Pb.

  10. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206

    USGS Publications Warehouse

    Tatsumoto, M.; Knight, R.J.; Allegre, C.J.

    1973-01-01

    Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: 206Pb/204Pb = 9.307, 207Pb/204Pb = 10.294, and 208Pb/204Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the 206Pb/204Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage 207Pb/206Pb isochron based on the newly determined primordial lead value and the newly reported 235U and 238U decay constants, are 4.528 ?? 10 9 years for Sioux County and Nuevo Laredo and 4.555 ?? 10 9 years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 ?? 109 years and 4.620 ?? 109 years, respectively, and are therefore 40 to 70 ?? 106 years older than the 4.55 ?? 109 years age Patterson reported. The age difference of 27 ?? 106 years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial 87Sr/86Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by 129I-129Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 ?? 109 years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites (C2 and C3) appear to contain younger lead components.

  11. Post-Wisconsinan Chemical Weathering Rates and Trajectories From a 13,400-Year Sediment Core Record of Lead Isotopic Ratios in Maine

    NASA Astrophysics Data System (ADS)

    Perry, R. H.; Norton, S. A.; Koons, P. O.; Handley, M.

    2008-12-01

    Lead isotopic ratios recorded in a 5.3-m 13.4-ka 14C-dated lake sediment core from Sargent Mountain Pond, Maine (USA) are interpreted as an archive of post-glacial chemical weathering. Early weathering yielded highly radiogenic sediment from the preferential release of U and Th decay products (206Pb, 207Pb, and 208Pb) from accessory mineral phases in the catchment's predominantly-granitic till and bedrock relative to non-radiogenic 204Pb from the more abundant primary minerals. Values for 207Pb/206Pb in the sediment increased rapidly from 0.799 to 0.814 in the catchment's first 4,000 years of post-Wisconsinan weathering, and thereafter increased only slightly to just prior to the 19th century. Values for 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb decline over the same time-scale, as a result of decreasing radiogenic Pb being released from catchment weathering. Our results are consistent with: (1) the published interpretation of Pb isotopic variation in ferromanganese ocean crusts as a reflection of continental-scale glacial-interglacial chemical weathering cycles, (2) bench-scale whole-rock weathering experiments, and (3) soil chronosequence Pb isotope dissolution experiments and bridge the gap between short-term, mineral-scale experiments and long-term, ocean sediment records. We establish a time-scale for depletion of accessory minerals, and loss of their Pb isotopic signature at one catchment, and document the concurrent shift to slower primary mineral-controlled chemical weathering after deglaciation.

  12. 206Pb- 230Th- 234U- 238U and 207Pb- 235U geochronology of Quaternary opal, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.

    2000-09-01

    U-Th-Pb isotopic systems have been studied in submillimeter-thick outermost layers of Quaternary opal occurring in calcite-silica fracture and cavity coatings within Tertiary tuffs at Yucca Mountain, Nevada, USA. These coatings preserve a record of paleohydrologic conditions at this site, which is being evaluated as a potential high-level nuclear waste repository. The opal precipitated from groundwater is variably enriched in 234U (measured 234U/ 238U activity ratio 1.124-6.179) and has high U (30-313 ppm), low Th (0.008-3.7 ppm), and low common Pb concentrations (measured 206Pb/ 204Pb up to 11,370). It has been demonstrated that the laboratory acid treatment used in this study to clean sample surfaces and to remove adherent calcite, did not disturb U-Th-Pb isotopic systems in opal. The opal ages calculated from 206Pb∗/ 238U and 207Pb∗/ 235U ratios display strong reverse discordance because of excess radiogenic 206Pb∗ derived from the elevated initial 234U. The data are best interpreted using projections of a new four-dimensional concordia diagram defined by 206Pb∗/ 238U, 207Pb∗/ 235U, 234U/ 238U activity, and 230Th/ 238U activity. Ages and initial 234U/ 238U activity ratios have been calculated using different projections of this diagram and tested for concordance. The data are discordant, that is observed 207Pb∗/ 235U ages of 170 ± 32 (2σ) to 1772 ± 40 ka are systematically older than 230Th/U ages of 34.1 ± 0.6 to 452 ± 32 ka. The age discordance is not a result of migration of uranium and its decay products under the open system conditions, but a consequence of noninstantaneous growth of opal. Combined U-Pb and 230Th/U ages support the model of slow mineral deposition at the rates of millimeters per million years resulting in layering on a scale too fine for mechanical sampling. In this case, U-Pb ages provide more accurate estimates of the average age for mixed multiage samples than 230Th/U ages, because ages based on shorter-lived isotopes are

  13. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.

    2000-01-01

    U–Th–Pb isotopic systems have been studied in submillimeter-thick outermost layers of Quaternary opal occurring in calcite–silica fracture and cavity coatings within Tertiary tuffs at Yucca Mountain, Nevada, USA. These coatings preserve a record of paleohydrologic conditions at this site, which is being evaluated as a potential high-level nuclear waste repository. The opal precipitated from groundwater is variably enriched in 234U (measured 234U/238U activity ratio 1.124–6.179) and has high U (30–313 ppm), low Th (0.008–3.7 ppm), and low common Pb concentrations (measured 206Pb/204Pb up to 11,370). It has been demonstrated that the laboratory acid treatment used in this study to clean sample surfaces and to remove adherent calcite, did not disturb U–Th–Pb isotopic systems in opal. The opal ages calculated from 206Pb∗/238U and 207Pb∗/235U ratios display strong reverse discordance because of excess radiogenic 206Pb∗ derived from the elevated initial 234U. The data are best interpreted using projections of a new four-dimensional concordia diagram defined by 206Pb∗/238U, 207Pb∗/235U, 234U/238Uactivity, and 230Th/238Uactivity. Ages and initial 234U/238U activity ratios have been calculated using different projections of this diagram and tested for concordance. The data are discordant, that is observed 207Pb∗/235U ages of 170 ± 32 (2σ) to 1772 ± 40 ka are systematically older than 230Th/U ages of 34.1 ± 0.6 to 452 ± 32 ka. The age discordance is not a result of migration of uranium and its decay products under the open system conditions, but a consequence of noninstantaneous growth of opal. Combined U–Pb and 230Th/U ages support the model of slow mineral deposition at the rates of millimeters per million years resulting in layering on a scale too fine for mechanical sampling. In this case, U–Pb ages provide more accurate estimates of the average age for mixed multiage samples than 230Th/U ages, because ages based on shorter

  14. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Staudigel, H.; Zindler, A.; Hart, S.R.; Leslie, T.; Chen, C.-Y.; Clague, D.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291-0.51305), and include the nearly constant tholeiite value ( ??? 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] "Loa" trend towards higher 206Pb 204Pb ratios, resulting in a substantial overlap with the "Kea" trend. 206Pb 204Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes [38]. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. ?? 1984.

  15. Multinucleon transfer study in 206Pb(18O,x ) at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Sonika, Roy, B. J.; Parmar, A.; Pal, U. K.; Kumawat, H.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Pal, A.; Santra, S.; Mohanty, A. K.; Sekizawa, K.

    2015-08-01

    Single- and multi-nucleon transfer reactions, namely, 206Pb(18O,20O), 206Pb(18O,19O), 206Pb(18O,17O), 206Pb(18O,16O), 206Pb(18O,18N), 206Pb(18O,17N), 206Pb(18O,16N), 206Pb(18O,15N), 206Pb(18O,14N), 206Pb(18O,16C), 206Pb(18O,15C), 206Pb(18O,14C), 206Pb(18O,13C), 206Pb(18O,12C), 206Pb(18O,12B), 206Pb(18O,11B), 206Pb(18O,10B), 206Pb(18O,10Be), and 206Pb(18O,9Be), have been studied at an incident 18O energy of 139 MeV. The total kinetic energy loss (TKEL) spectrum and angular distribution of reaction products have been measured. The Q value and angle integrated cross sections are deduced. Angular distributions for the elastically scattered 18O particles are also measured. Fully microscopic time-dependent Hartree-Fock (TDHF) calculations, based on the independent single-nucleon transfer mode, have been carried out and are compared with experimental data of multinucleon transfer reactions. The TDHF calculations provide reasonable agreement with the experimental data for cases where one- and two-nucleon transfer is involved; the discrepancy is large for multinucleon transfer reactions. The effect of particle evaporation on the production cross sections has been studied. Inclusion of particle evaporation effects, though improving the results, could not reproduce the measured cross sections. Possible origins of these discrepancies are discussed.

  16. Fast and precise method for Pb isotope ratio determination in complex matrices using GC-MC-ICPMS: application to crude oil, kerogen, and asphaltene samples.

    PubMed

    Sanabria-Ortega, Georgia; Pécheyran, Christophe; Bérail, Sylvain; Donard, Olivier F X

    2012-09-18

    A new method to determine Pb isotope ratio without ion-exchange-matrix separation is proposed. After acid digestion, Pb was ethylated to Et(4)Pb, separated from the digested solution (black shale, asphaltene, crude oil and kerogen) by extraction in isooctane, and then injected into a gas chromatograph coupled to a multicollector inductively coupled plasma mass spectrometer. Seven isotopes ((202)Hg, (203)Tl, (204)Pb, (205)Tl, (206)Pb, (207)Pb, (208)Pb) were monitored simultaneously with peak duration of 23 s. GC elution was operated under wet plasma conditions where a thallium standard solution was introduced to the mass spectrometer for mass bias correction. The total time of the procedure (sample preparation and analysis, after acid digestion) was reduced by a factor of 15 compared to conventional-continuous sample introduction. Data treatment was carried out using the linear regression slope method. Mass bias was corrected using the double correction method (first thallium normalization followed by classical bracketing). For the (208/206)Pb and (207/206)Pb ratios, precision (2RSD(EXT), n = 21) was 49 and 69 ppm, and the bias between experimental results and reference values was better than 0.0033 and 0.0007 ‰, when injecting 1.2 ng of ethylated Pb SRM NIST 981 solution. Results obtained by this method were validated by comparison with those obtained via conventional-continuous sample introduction. The applicability of this approach was demonstrated with the analysis of black shale, asphaltene, crude oil and kerogen samples. PMID:22845833

  17. Measurement of internal pairs from {sup 206}Pb

    SciTech Connect

    Ahmad, I.; Back, B.B.; Betts, R.R.

    1995-08-01

    The failure to observe sharp sum-energy lines in measurements of {sup 238}U + {sup 181}Ta and {sup 238}U + {sup 232}Th raises the issue of the correct functioning of APEX under in-beam conditions. Extensive measurements with electron and pair emitting sources were used to demonstrate the resolution and acceptance of APEX, but the possibility remains that some unforeseen background or other effects might compromise the ability to see peaks in-beam. In order to test the functioning of APEX under the most stringent conditions, we also performed a measurement of internal pairs produced in the decay of the 2.648-MeV 3{sup -} state in {sup 206}Pb to the 2{sup +} state at 0.803 MeV. The 3{sup -} state was excited in the {sup 206}Pb + {sup 206}Pb reaction at 5.9 MeV/u with a cross section of roughly 40 mb, resulting in an expected pair cross section of approximately 16 {mu}b. It should be emphasized that this measurement represents a much stricter test of the functioning of the apparatus than the observation of sum-energy lines would represent, as the internal pair measurement requires a Doppler shift correction before the transition can be seen. These data were analyzed and clearly show the expected peak. A Doppler-corrected sum-energy spectrum showing the expected IPC line at 823 keV. At present we are evaluating the acceptance of APEX for events of this type but it is clear that the observed yield is close to expectations.

  18. Neutron capture studies of 206Pb at a cold neutron beam

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  19. A Single Grain U-Pb and Pb-Pb Dating and D/H Ratios of the Phosphate Mineral in ALH84001

    NASA Astrophysics Data System (ADS)

    Koike, M.; Ota, Y.; Takahata, N.; Sano, Y.; Sugiura, N.

    2012-12-01

    There are many studies that determine U-Pb and Pb-Pb ages of phosphates in Martian meteorites. Phosphate minerals such as an apatite (Ca5(PO4)3[OH, F, Cl]) and a whitlockite (Ca9 [Mg, Fe2+] (PO4)6 PO3OH) contain water in the form of OH, which provides us hydrogen isotopic information. The goal of this study is to obtain a crystallization age and hydrogen isotopic distributions of each grain and to relate them to the surface evolution of Mars. ALH84001 is known to be about 4 billion years old [1]. Its carbonates and maskelynite showed high D/H ratios with large deviations, which indicates large fractionation at early Mars surface [2]. Due to small grain sizes and limited spatial resolutions of measurements, previous studies used several grains for one age or one series of isotopic distributions. Here we determined single grain ages and D/H ratios using NanoSIMS with a high spatial resolution. A thin section of ALH84001 was polished and carbon-coated. The section was then observed by SEM-EDS to locate phosphate minerals. A large phosphate grain (>100μm) was found and analyzed by NanoSIMS. A ~10nA O- primary ion beam (with spot diameter of ~20μm) was used for U-Pb and Pb-Pb measurements and a ~1nA (spot diameter of <10μm) was for D/H ratio measurements. An apatite from a Prairie Lake circular complex, PRAP, with a known age (1156 Ma; [3]) was used as a standard for U-Pb. The D/H ratio and the water content of an apatite from Morocco were measured by conventional methods to use as a D/H standard. 238U-206Pb isochron, 207Pb-206Pb isochron, and total U-Pb isochron age, a regression line in 3-D space (238U/206Pb-207Pb/206Pb-204Pb/206Pb) showed a consistent age ~4 Ga. The ages obtained in this study were also consistent with previous U-Pb dating within experimental errors. D/H ratios in the same grain showed high values and a considerable deviation, which seems to be due to mixing of terrestrial water. References: [1] Terada K. et al. 2003 Meteoritics & Planet. Sci. 38

  20. Solution of controversy over 1583-keV levels in sup 204 Pb

    SciTech Connect

    Trzaska, W.H.; Julin, R.; Kantele, J.; Kumpulainen, J. )

    1989-09-01

    Data from {sup 204}Pb({ital p},{ital p}{prime}){sup 204}Pb conversion-electron and gamma-ray experiments, together with previous results, prove the existence of two levels (0{sup +} and 2{sup +}) at 1583-keV excitation energy in {sup 204}Pb. Modified values (limits) of the {rho}{sub 21}{sup 2} and {ital X}{sub 211} are 0.0013{lt}{rho}{sub 21}{sup 2}{lt}0.015 and {ital X}{sub 211}{gt}0.073. New experimental evidence indicates that all the three observed excited {ital O}{sup +} states in {sup 204}Pb can be explained as belonging to the four-neutron-hole valence space and, therefore, there is no clear candidate for the proton 2p-2h intruder state in this nucleus.

  1. Origin of the 'Gabbro' Signature in Ocean Island Basalts: Constraints from Osmium Isotopic Ratios of Galapagos Basalts

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Dale, C. W.; Geist, D.; Harpp, K. S.

    2014-12-01

    The Re-Os isotope system has become increasingly used as a tracer of lithological heterogeneity in the convecting mantle, with radiogenic 187Os/188Os in high-Os oceanic basalts and picrites widely interpreted as evidence of a melt contribution from ancient recycled oceanic crust. When combined with 206Pb/204Pb and O isotopes, 187Os/188Os ratios have been used to identify distinct lithological units (i.e. sediments, gabbros and basalts). We report new 187Os/188Os for basalts with high Os (>40 ppt) and MgO from Galápagos, which range from near primitive mantle values (0.130) to highly radiogenic (0.155). While co-variations in 187Os/188Os and 206Pb/204Pb for some Galápagos basalts (Floreana-type) are HIMU like, and consistent with melting of ancient recycled oceanic crust, others have variable 187Os/188Os ratios and primitive to depleted mantle like 206Pb/204Pb. Similar variations in Os and Pb isotopic space have been interpreted in other OIB suites as melts from recycled ancient oceanic gabbros, entrained by upwelling mantle plumes. Nevertheless, a marked east-west spatial variation in 187Os/188Os of Galápagos basalts does not correlate with postulated lithological variations in the Galápagos plume (Vidito et al., 2013). We show that basalts in eastern Galápagos with elevated 187Os/188Os and positive Sr anomalies occur in the vicinity of over-thickened 10 Ma gabbroic crust, that formed when the Galápagos plume was on-axis. We propose the elevated 187Os/188Os of Galápagos basalts are due to in-situ assimilation of young gabbroic lower crust, with high Re/Os, rather than melting of ancient recycled material in the Galápagos plume. In western Galápagos recent plume accreted crust is thick but more mafic, the melt flux higher and assimilation more sporadic. The contamination thresholds of Os and MgO in Galápagos basalts occur at higher contents than for many global OIBs (Azores, Iceland, Hawaii) and may reflect both a relatively low melt flux into the crust

  2. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, (207/206)Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.

    PubMed

    Vane, C H; Chenery, S R; Harrison, I; Kim, A W; Moss-Hayes, V; Jones, D G

    2011-03-13

    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and (207/206)Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg(-1), total PAHs from 19 to 16,163 μg kg(-1) and total PCBs between less than 4.3 to 1217 μg kg(-1). Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965-1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg(-1), while (207/206)Pb isotope ratios spanned 0.838-0.876, indicative of various proportions of 'background', British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores. PMID:21282161

  3. Deep Sub-Barrier Fusion Enhancement in the {sup 6}He+{sup 206}Pb Reaction

    SciTech Connect

    Penionzhkevich, Yu.E.; Zagrebaev, V.I.; Lukyanov, S.M.; Kalpakchieva, R.

    2006-04-28

    The fusion of {sup 6}He with {sup 206}Pb has been studied at energies close to and below the Coulomb barrier. The experiment was carried out at the Dubna Radioactive Ion Beams complex of FLNR, JINR. The {sup 6}He beam intensity was about 5x10{sup 6} pps, the maximum energy being 60.3{+-}0.4 MeV. The yield of the {sup 210}Po isotope, produced in the 2n-evaporation channel, demonstrates an extremely large enhancement of the sub-barrier fusion cross section as compared with the {sup 4}He+{sup 208}Pb reaction. This enhancement is most likely due to the mechanism of 'sequential fusion' with an intermediate neutron transfer from {sup 6}He to the Pb nucleus with positive Q values.

  4. The effects of succimer on the absorption of lead in adults determined by using the stable isotope [sup 204]Pb

    SciTech Connect

    Smith, D.R. Univ. of California, Santa Cruz, CA ); Markowitz, M.E.; Rosen, J.F. ); Crick, J.; Flegal, A.R. )

    1994-10-01

    The chelating agent succimer (meso-2,3-dimercaptosuccine acid) is orally effective at inducing a urinary lead diuresis and a decrease in blood lead levels in lead poisoned children and adults. However, there are concerns that succimer may increase the absorption of lead from the gastrointestinal (GI) tract during treatment, particularly in cases of continuing lead exposure, which would compromise its effectiveness in reducing whole body lead stores. This preliminary study investigated the effects of succimer on the absorption of lead in adults using a stable lead isotopic tracer ([sup 204]Pb). Twelve male subjects were divided into control (no succimer), 10, and 30 mg succimer/kg body wt treatment groups of 4 individuals each. All subjects ingested a single tracer dose (200 [mu]g) of [sup 204]Pb, followed by a single oral dose of placebo (control) or succimer. Whole blood was collected at intervals of 0, 2, 4, and [approx] 26 hr following ingestion of the [sup 204]Pb tracer, and composite urine and feces samples were collected over the duration of the study ([approx] 26 hr). Mean intestinal excretion of [sup 204]Pb was reduced in the succimer-treated groups compared to the control (placebo), whereas urinary diuresis of [sup 204]Pb was higher in the succimer groups. The amount of lead [sup 204]Pb tracer accounted for at the end of the study was lower in the succimer-treated groups. These results suggest that GI lead absorption was enhanced by succimer and that succimer mediated the redistribution of lead from the circulation to other tissues. However, none of the differences between treatment groups were statistically significant (P < 0.05, t test) because of the relatively large within-group variability. This study demonstrates the utility of microgram doses of a stable lead isotopic tracer to assess the efficacy of clinical chelating agents in humans. 39 refs., 1 fig., 2 tabs.

  5. U-Pb and 207Pb- 206Pb ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body

    NASA Astrophysics Data System (ADS)

    Misawa, Keiji; Yamaguchi, Akira; Kaiden, Hiroshi

    2005-12-01

    We have undertaken petrologic and SHRIMP U-Th-Pb isotopic studies on zircons from basaltic eucrites (Yamato [Y]-75011, Y-792510, Asuka [A]-881388, A-881467 and Padvarninkai) with different thermal and shock histories. Eucritic zircons are associated with ilmenite in most cases and have subhedral shapes in unmetamorphosed and metamorphosed eucrites. Some zircons in highly metamorphosed eucrites with granulitic texture occur alone in pyroxene, and typically have rounded to subrounded shapes due to recrystallization. Superchondritic Zr/Hf ratios of eucritic zircons indicate that they crystallized from incompatible element-rich melts after crystallization of ilmenite. Concentrations of uranium and thorium in zircons in the unmetamorphosed eucrite Y-75011 are higher than those in metamorphosed eucrites. The U-Pb systems of eucritic zircons are almost concordant but some zircon grains show reverse discordance. Radiogenic lead-loss up to 48% from zircons is observed in the shock-melted eucrite Padvarninkai. The 207Pb- 206Pb ages of zircon in Y-75011 (4550 ± 9 Ma, n = 5) are nearly identical, within analytical uncertainty, to the ages of zircons from the metamorphosed eucrite Y-792510 (4545 ± 15 Ma, n = 13), the highly metamorphosed eucrites A-881388 (4555 ± 54 Ma, n = 5) and A-881467 (4558 ± 13 Ma, n = 8), and the shock-melted eucrite Padvarninkai (4555 ± 13 Ma, n = 18). The averaged 207Pb- 206Pb age of zircon from five eucrites analyzed in this study is 4554 ± 7 Ma (95% confidence limits, n = 49), indistinguishable from the averaged U-Pb age (4552 ± 9 Ma) of the same samples. Because of the high closure temperature of lead in zircon ( T closure = ˜1050°C with a cooling rate of 0.2°C/yr), the 207Pb- 206Pb ages of eucritic zircon do not represent metamorphic ages but crystallization ages of extrusive lavas. This fact strongly suggests that volcanism of the eucrite parent body occurred at a very early stage of the Solar System history, 7-20 Ma after CAI formation

  6. Short-range correlations and the 3 s1 /2 wave function in 206Pb

    NASA Astrophysics Data System (ADS)

    Anders, M. R.; Shlomo, S.; Talmi, I.

    2015-09-01

    The charge-density difference between 206Pb and 205Tl , measured by elastic electron scattering, offers a unique opportunity to look for effects of short-range correlations on a shell-model wave function of a single proton. The measured difference is very similar to the charge density due to a proton in a 3 s1 /2 orbit. If there is a potential whose 3 s1 /2 wave function yields the measured difference between the charge distributions, no effect of short-range correlations is evident. To check this point, we look for a potential whose 3 s1 /2 wave function yields the measured data. We developed a novel method to obtain the potential directly from the density and its first and second derivatives. Fits to parametrized potentials were also carried out. The 3 s1 /2 wave functions of the potentials determined here reproduce fairly well the experimental data within the quoted errors. To detect possible effects of two-body correlations on the 3 s1 /2 shell-model wave function, more accurate measurements are required.

  7. High-Resolution Neutron Total and Capture Cross-Section Measurements on 206Pb

    SciTech Connect

    Borella, A.; Brusegan, A.; Siegler, P.; Schillebeeckx, P.; Moxon, M.C.; Aerts, G.; Gunsing, F.

    2005-05-24

    High-resolution neutron total and capture cross-section measurements have been performed on a 99.82% enriched 206Pb metallic sample. The transmission and capture measurements were carried out at the 25- and 60-m stations, respectively, of the Time-Of-Flight facility GELINA of the IRMM in Geel (B). The small amount of material allowed us to detect 13 resonances below 80 keV in the transmission measurements and 70 were seen in the capture measurements below 150 keV. The resonance parameters for the resonances seen in transmission agree within the uncertainties of the parameters determined by Horen et al. at ORELA. The capture yield was measured up to 600 keV and the capture areas for resonances up to 150 keV were compared with published data. This comparison reveals systematic differences, which are due to the detection geometry, the different neutron sensitivity in the detection systems, the applied weighting function, and normalisation.

  8. 207Pb(n,2n{gamma})206Pb Cross-Section Measurements by In-Beam Gamma-Ray Spectroscopy

    SciTech Connect

    Baumann, P.; Kerveno, M.; Rudolf, G.; Borcea, C.; Jericha, E.; Jokic, S.; Lukic, S.; Mihailescu, L. C.; Plompen, A. J. M.; Pavlik, A.

    2006-03-13

    207Pb(n,2n{gamma})206Pb cross section were measured for incident neutron energies between 6 and 20 MeV with the white neutron beam produced at GELINA. The {gamma}-ray production cross section for the main transition (803 keV, 2+{yields} 0+) in 206Pb is compared to results obtained at Los Alamos and to the TALYS and EMPIRE-II code predictions.

  9. Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay

    2014-01-01

    Isotope amount ratios are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement results. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. While the requirements for isotope ratio accuracy and precision in the case of IDMS are generally quite modest, 'absolute' Pb isotope ratio measurements for geochemical applications as well as forensic provenance studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a key comparison was urgently needed and therefore initiated at the IAWG meeting in Paris in April 2011. The analytical task within such a comparison was decided to be the measurement of Pb isotope amount ratios in water and bronze. Measuring Pb isotope amount ratios in an aqueous Pb solution tested the ability of analysts to correct for any instrumental effects on the measured ratios, while the measurement of Pb isotope amount ratios in a metal matrix sample provided a real world test of the whole chemical and instrumental procedure. A suitable bronze material with a Pb mass fraction between 10 and 100 mg•kg-1 and a high purity solution of Pb with a mass fraction of approximately 100 mg•kg-1 was available at the pilot laboratory (BAM), both offering a natural-like Pb isotopic composition. The mandatory measurands, the isotope amount ratios n(206Pb)/n(204Pb), n(207Pb)/n(204Pb) and n(208Pb)/n(204Pb

  10. Uranium, thorium, and lead systematics in Granite Mountains, Wyoming

    USGS Publications Warehouse

    Rosholt, J.N.; Bartel, A.J.

    1969-01-01

    Uranium, thorium and lead concentrations and isotopic compositions were determined on total rocks and a feldspar sample from widely separated parts of the Granite Mountains in central Wyoming. Linear relations defined by 206Pb/204Pb - 207Pb/204Pb and 208Pb/204Pb - 232Th/204Pb for the total rock samples define 2.8 billion-year isochrons. In contrast, 238U/206Pb ages are anomalously old by a factor of at least four. The low 238U/204Pb values, coupled with the radiogenic 206Pb/204Pb and radiogenic 207Pb/204Pb ratios, indicate that contents of uranium in near-surface rocks would have had to have been considerably greater than those presently observed to have generated the radiogenic lead. It is possible that more than 1011 kg of uranium has been removed from the Granite Mountains, and the most feasible interpretation is that most of this uranium was leached from near-surface rocks at some time during the Cenozoic, thus providing a major source for the uranium deposits in the central Wyoming basins. ?? 1969.

  11. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    PubMed

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic. PMID:18597820

  12. Lead isotopic composition of insoluble particles from widespread mountain glaciers in western China: Natural vs. anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Yu, Guangming; Xu, Jianzhong; Kang, Shichang; Zhang, Qianggong; Huang, Jie; Ren, Qian; Ren, Jiawen; Qin, Dahe

    2013-08-01

    Stable lead (Pb) isotopic fingerprints provide opportunities to trace natural and anthropogenic Pb sources in the environment. In order to evaluate Pb deposition from different sources over mountainous areas of western China, Pb isotopic compositions were characterized from modern aeolian dust in 15 snowpit samples collected from 13 typical mountain glaciers between 2008 and 2010. Most of the snowpits sampled cover more than a whole year of accumulation and overlap with each other on deposition date. Pb isotopic variability among all the samples is small, varying in the range of 18.1399-18.9199 for 206Pb/204Pb, 15.5979-15.8743 for 207Pb/204Pb, 38.2272-39.9453 for 208Pb/204Pb, 1.1605-1.2009 for 206Pb/207Pb and 2.4433-2.5182 for 208Pb/207Pb. Three isotopic plots of the different Pb isotope ratios (207Pb/204Pb vs. 206Pb/204Pb, 208Pb/204Pb vs. 206Pb/204Pb, and 208Pb/207Pb vs. 206Pb/207Pb) in all the samples show identical geographic trends, with more radiogenic in the south and less in the north. This trend is consistent with the distribution of natural dust sources and supports the interpretation of a regional/local source for insoluble particles (IP) to snow/glaciers in this region. Comparison with the Pb isotope results from potential dust sources, however, it shows that the Pb isotopic compositions of IP samples in snow samples are relatively less radiogenic. Parts of these less-radiogenic Pb isotopes are comparable with the ice core results during recent decades, which are shown to be influenced by anthropogenic sources. At sites located along the periphery of western China, the Pb isotopic compositions are much closer to anthropogenic results. Natural and anthropogenic Pb sources are roughly assessed using a simple binary model. The sites with a high anthropogenic fraction are at lower elevations and are relatively close to population centers.

  13. Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of Sphagnum moss from four ombrotrophic bogs in southern Germany: Geochemical significance and environmental implications

    NASA Astrophysics Data System (ADS)

    Shotyk, William; Kempter, Heike; Krachler, Michael; Zaccone, Claudio

    2015-08-01

    behaviour of 210Pb and total Pb in the mosses may reflect differences in the particle size distribution of the corresponding aerosols, their physical and chemical properties, the extent of their interaction with plant surfaces, or some combination of these factors. The 206Pb/207Pb ratios from NBF (HO = 1.159 ± 0.002, n = 19; WI = 1.157 ± 0.003, n = 48) and OB (GS = 1.157 ± 0.003, n = 28; KL = 1.159 ± 0.003, n = 15) are uniform and indicate that both regions are impacted by Pb from predominately anthropogenic sources. Although Sphagnum moss represents an established receptor in monitoring atmospheric Pb deposition, the physical characteristics (size, morphology, composition) of the three predominant kinds of Pb-bearing aerosols considered here, namely 210Pb (adsorbed onto aerosol surfaces, following decay of 222Rn), anthropogenic Pb (sub-micron aerosols from high temperature combustion processes) and lithogenic Pb soil-derived mineral dusts (tens of microns, from chemical weathering of crustal rocks), are fundamentally different and these have consequences for the retention efficiency of the three kinds of particles.

  14. Feather lead concentrations and207Pb/206Pb ratios reveal lead exposure history of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    Finkelstein, M.E.; George, D.; Scherbinski, S.; Gwiazda, R.; Johnson, M.; Burnett, J.; Brandt, J.; Lawrey, S.; Pessier, Allan P.; Clark, M.; Wynne, J.; Grantham, And J.; Smith, D.R.

    2010-01-01

    Lead poisoning is a primary factor impeding the survival and recovery of the critically endangered California Condor (Gymnogyps californianus). However, the frequency and magnitude of lead exposure in condors is not well-known in part because most blood lead monitoring occurs biannually, and biannual blood samples capture only ???10% of a bird's annual exposure history. We investigated the use of growing feathers from free-flying condors in California to establish a bird's lead exposure history. We show that lead concentration and stable lead isotopic composition analyses of sequential feather sections and concurrently collected blood samples provided a comprehensive history of lead exposure over the 2-4 month period of feather growth. Feather analyses identified exposure events not evident from blood monitoring efforts, and by fitting an empirically derived timeline to actively growing feathers, we were able to estimate the time frame for specific lead exposure events. Our results demonstrate the utility of using sequentially sampled feathers to reconstruct lead exposure history. Since exposure risk in individuals is one determinant ?? 2010 American Chemical Society.

  15. Common Pb isotopic compositions of the Lima, Arequipa and Toquepala segments in the Coastal batholith, Peru: Implications for magmagenesis

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.

    1986-05-01

    Common-Pb isotopic compositions for 65 feldspar samples from the 188-37-Ma old gabbroic to monzogranitic plutons of the Peruvian Coastal batholith show changes along strike that can be related to variable contamination of mantle-derived magmas by the local Precambrian basement. Results have the following isotopic ranges: 206Pb/204Pb = 17.580-20.803 ; 207Pb/204Pb = 15.555-15.709 ; and 208Pb/204Pb = 38.104-41.177 . With averages of 206Pb /204Pb = 18.630 , 207Pb /204Pb = 15.610 and 208Pb /204Pb = 38.500 , the gabbroic, dioritic and tonalitic plutons north and east of Lima (the Lima segment) have ratios similar to the isotopically homogeneous reservoir identified by Tilton (1979), Tilton and Barreiro (1980), and Barreiro and Stern (1982) for rocks in central and southern Chile. The homogeneous reservoir has been suggested to be "enriched" subcontinental mantle. More siliceous rocks (granodiorites and monzogranites) in the Lima segment have considerably higher ratios ( 206Pb /204Pb = 18.680-20.803 , 207Pb /204Pb = 15.610-15.709 and 208Pb /204Pb = 38.500-41.177 ). Nine of ten monzogranites from the ring dike complexes in the Lima segment define a linear array with a slope of 0.1143 (correlation coefficient = 0.9398) and a Pb isochron age of 1.9 Ga. This isochron age has no simple chronological meaning, although it may represent a component of sedimentary debris, derived from 1.9 Ga crustal materials. Feldspars from plutons in the Arequipa and Toquepala segments south of Lima tend to have low Pb-isotopic ratios ( 206Pb /204Pb = 17.580-18.603 , 207Pb /204Pb = 15.555-15.633 and 208Pb /204Pb = 38.104-38.749 ). The ratios plot between the isotopic signatures of local Precambrian granulites and gneisses and the Chile-type "enriched" subcontinental magmatic reservoir, indicating that these end members were the principal magma sources. The oldest plutonic rocks in the segments (early- to mid-Jurassic) are closest to the Pb-isotopic ratios of the Precambrian basement

  16. 207Pb-206Pb zircon ages of eastern and western Dharwar craton, southern India : Evidence for contemporaneous Archaean crust

    NASA Astrophysics Data System (ADS)

    Maibam, B.; Goswami, J. N.; Srinivasan, R.

    2009-04-01

    Dharwar craton is one of the major Archaean crustal blocks in the Indian subcontinent. The craton is comprised of two blocks, western and eastern. The western domain is underlain by orthogneisses and granodiorites (ca. 2.9-3.3 Ga) collectively termed as Peninsular Gneiss [e.g., 1] interspersed with older tracts of metasedimentary and metamorphosed igneous suites (Sargur Group and Dharwar Group; [2]). The eastern part of the craton is dominated by Late Archaean (2.50-2.75 Ga) granitoids and their gneissic equivalents. They are interspersed with schist belts (also of Sargur Group and Dharwar Group), which are lithologically similar to the Dharwar Supergroup in the western block, but are in different metamorphic dress. Here we report 207Pb-206Pb age of zircons separated from the metasedimentary and gneissic samples from the two blocks to constrain the evolution of the Dharwar craton during the early Archaean. Detrital zircons of the metasedimentary rocks from both the blocks show a wide range of overlapping ages between ~2.9 to >3.5 Ga. Zircon ages of the orthogneisses from the two blocks showed that most of the analysed grains of the eastern Dharwar block are found to be of the age as old as the western Dharwar gneisses. Imprints of younger events could be discerned from the presence of overgrowths in zircons from the studied samples throughout the craton. Our data suggest that crust forming cycles in the two blocks of the Dharwar craton occurred contemporaneously during the Archaean. References [1] Beckinsale, R.D., Drury, S.A., Holt, R.W. (1980) Nature 283, 469-470. [2] Swami Nath J., Ramakrishnan M., Viswanatha M.N. (1976) Rec. Geol. Surv. Ind., 107, 149-175.

  17. Lead-isotopic compositions of diverse igneous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States.

    USGS Publications Warehouse

    Stacey, J.S.; Hedlund, D.C.

    1983-01-01

    Basement rocks in this area are 1750 m.y. old and extend northward through Colorado to Utah. Galena data show that the fraction of older sialic lead in these rocks increases toward the the Archaean craton in Wyoming. The crust apparently developed southward from Wyoming in stages at 2400 m.y. ago or before, 2100 m.y. ago and 1750 m.y. ago. The Laramide alkali to calc-alkaline rocks and their associated porphyry Cu and massive replacement deposits have similar 206Pb/204Pb ratios and are the least radiogenic in the region; their 206Pb/204Pb ratios are all 18.0. Pb isotopes in this region offer some criteria for prospecting purposes. The 206Pb/204Pb values for the larger ore deposits related to Laramide activity are all <18.0, particularly for the larger ones. Within the mid- Tertiary group, the same criteria apply - i.e. the largest deposits have the lowest 206Pb/204Pb ratios. -L.C.H.

  18. U-Th-Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Johnson, Clark M.; Beard, Brian L.

    2012-02-01

    The occurrence of ferric oxides in Archean rocks has played an important role in discussions on the amount of free oxygen in the atmosphere of the ancient Earth. Recognizing that post-Archean weathering may also produce oxide minerals, drill cores have been used to obtain samples beneath the depth of Phanerozoic weathering. The first core of the Archean Biosphere Drilling Project (ABDP-1) documented hematite as alteration products in 3.4 Ga basalts from the Marble Bar area of the Pilbara Craton, NW Australia, and this has been used to infer the presence of an O2-bearing atmosphere in the Archean. It is possible, however, that despite recovery of samples from > 100 m depth, oxidation of the basalts occurred much younger than the depositional age. In this study, the age of oxidation of the Apex Basalt from the ABDP-1 drill core at Marble Bar is constrained by U-Th-Pb geochronology. Lead and U concentrations of the basalts from the ABDP-1 drill core vary greatly, between < 1-58 ppm and 0.08-1.04 ppm, respectively, whereas Th contents are more restricted (0.24-0.71 ppm). 206Pb/204Pb ratios are non-radiogenic and vary from 12.44 to 14.69. The linear array in terms of 206Pb/204Pb-207Pb/204Pb variations does not reflect an age but reflects two-component mixing between a non-radiogenic "ore lead" end member and a radiogenic "basalt lead" end member. The samples do not form isochrons on 238U/204Pb-206Pb/204Pb, 235U/204Pb-207Pb/204Pb, or 232Th/204Pb-208Pb/204Pb diagrams, indicating post-formation U and Pb addition. Comparison of measured U/Th ratios with "model" U/Th ratios calculated based on 208Pb/204Pb-206Pb/204Pb variations indicates that U enrichment most likely occurred in the last 200 Ma. The degree of U enrichment in the samples is correlated with Fe(III)/FeTotal ratios, indicating that U addition and oxidation were related, most likely reflecting penetration of oxygenated surface waters in the Phanerozoic along bedding planes and shear zones. These results

  19. Lead isotope study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, Northern Spain

    NASA Astrophysics Data System (ADS)

    Velasco, F.; Pesquera, A.; Herrero, J. M.

    1996-01-01

    A total of forty-three galena samples from syngenetic and epigenetic Pb-Zn mineralizations emplaced in the Lower Cretaceous Basque-Cantabrian basin and Paleozoic basement of the Cinco Villas massif in the western Pyrenees, have been analyzed for Pb-isotopic composition. Galena from sedex mineralizations hosted in Carboniferous clastic rocks in the Cinco Villas massif display an homogeneous lead isotopic signature (206Pb/2044Pb ≈ 18.43, 207Pb/204Pb ≈ 15.66, 208Pb/ 204Pb ≈ 38.69) suggesting a single lead reservoir. These values are slightly more radiogenic than lead from other European Hercynian deposits, possibly reflecting the influence of a more evolved upper crustal source. Underlying Paleozoic sediments are proposed as lead source for the Cinco Villas massif ores. Analyses from twenty-six galena samples from the four strata-bound ore districts hosted in Mesozoic rocks reveal the existence of two populations regarding their lead isotopic composition. Galena from the western Santander districts (e.g., Reocin) is characterized by more radiogenic isotope values (206Pb/204Pb ≈ 18.74, 207Pb/204Pb ≈ 15.67, 208Pb/ 204Pb ≈ 38.73) than those from the central and eastern districts (Troya-Legorreta, Central and Western Vizcaya, 206Pb/204Pb ≈ 18.59, 207Pb/204Pb ≈ 15.66, 208Pb/ 204Pb ≈ 38.73). In all districts, the most likely source for these mineralizations was the thick sequence of Lower Cretaceous clastic sediments. The existence of two separate lead isotopic populations could be the result of regional difference in the composition of the basement rocks and the clastic sediments derived of it or different evolution histories. In both sub-basins, isotopic ratios indicate an increase in crustal influence as the age of the ores decreases.

  20. Regional variations in the lead isotopic composition of galena from southern Korea with implications for the discrimination of lead provenance

    NASA Astrophysics Data System (ADS)

    Jeong, Youn-Joong; Cheong, Chang-sik; Shin, Dongbok; Lee, Kwang-Sik; Jo, Hui Je; Gautam, Mukesh Kumar; Lee, Insung

    2012-11-01

    This study presents a comprehensive database (n = 215) of lead isotopes in galena from the southern Korean peninsula using new and published data. Of the 69 metal mines examined, predominantly skarn- and hydrothermal-type Pb-Zn-Au-Ag-Cu deposits were observed and were associated with Mesozoic magmatic activities. Galena samples from each geotectonic unit showed discrete lead isotopic signatures. The Gyeongsang basin samples were characteristically unradiogenic and had restricted variations in lead isotopic composition (206Pb/204Pb = 18.16-18.59, 207Pb/204Pb = 15.48-15.64, 208Pb/204Pb = 37.87-38.77). Their 208Pb/204Pb range indicated an involvement of source materials less thorogenic than the associated granites. The galena samples from Cambro-Ordovician carbonate rocks of the northeastern Yeongnam massif and eastern Taebaeksan basin had the most radiogenic 206Pb/204Pb (19.28 ± 0.14) and 207Pb/204Pb (15.833 ± 0.027) ratios. Their lead isotopic trend indicated a combined contribution of ore lead from granitic magmas, Precambrian basements, and overlain host rocks. Less radiogenic galena samples from the middle to southwestern parts of the Yeongnam massif and Okcheon belt showed limited lead isotopic variations (206Pb/204Pb = 18.332 ± 0.065, 207Pb/204Pb = 15.693 ± 0.012, 208Pb/204Pb = 38.93 ± 0.07 on average), probably resulted from mixing with a common crustal basement. The differences in lead isotopes between the radiogenic and unradiogenic groups from the Yeongnam massif and Okcheon belt may reflect the spatial dissimilarity of involved crustal rocks. The old crust appears to have significantly contributed ore lead to galenas from the western Gyeonggi massif, but the geochronological meaning of their steep 207Pb/204Pb-206Pb/204Pb trend is not clear. The comprehensive database constructed by the present study suggests that lead province in the southern Korean peninsula may be subdivided into four discrete zones. Linear discriminant analysis showed that more

  1. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  2. Lead and Sulfur isotopic constraints on the origin of Pb-Zn ore deposits and tectonic evolution of the Central Tauride Belt, Turkey

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Ciftci, E.; Basu, A. R.

    2010-12-01

    A number of hydrothermal, epigenetic, carbonate-hosted vein type Pb-Zn and barite-Pb-Zn deposits are found in the Central Tauride Mountains of Turkey. The Central Tauride Belt typically exhibits vein type Pb-Zn mineralizations that are currently productive and have been mined since historical times. These deposits are characterized by sphalerite, galena, pyrite and minor to trace amounts of chalcopyrite, tetrahedrite (fahlore) as primary ore minerals, and cerussite, smithsonite, anglesite, hemimorphite, hydrozincite as secondary ore minerals with calcite, dolomite, quartz and barite as the gangue minerals. In most of these deposits, galena is the only primary sulfide mineral phase due to its relatively greater stability under surface conditions. In this study, we report the lead isotope ratios of galena samples with 206Pb/204Pb ranging from 18.48 to 19.06, 207Pb/204Pb from 15.66 to15.85 and 208Pb/204Pb from 38.60 to 39.43. In general, these values are less radiogenic and differ from the isotopic composition of the Mississippi Valley Type deposits. In 206Pb/204Pb versus 207Pb/204Pb and 206Pb/204Pb versus 208Pb/204Pb plots, the data typically fall in the arc-like domains such as the Sunda Arc with lead isotope ratios falling between a mantle and a crustal component. This is also indicated in a 207Pb/206Pb versus 208Pb/206Pb plot where the data show a strong positive correlation between Enriched Mantle II (EM-II) and Depleted MORB Mantle (DMM) components. Also, single stage lead isotope model ages range from 200 to 258 Ma (Average model age of 229 ± 17 Ma), with majority of samples falling in the late Triassic period indicating the time of mineralization of the deposits. The measured δ34S values of galena samples from the Central Tauride belt range between -6 and +11.4 ‰V-CDT (majority of the samples between 0 and +8 ‰V-CDT) that suggests a deeper source of origin involving leaching of both isotopically lighter and heavier sulfur from mantle-derived magmatic

  3. Pb Isotopic Evolution of Koolau Volcano (Oahu, Hawaii)

    NASA Astrophysics Data System (ADS)

    Fekiacova, Z.; Abouchami, W.

    2003-12-01

    High precision Pb isotopes in Hawaiian shield lavas have revealed the existence of source heterogeneities between volcanoes, as well as within a single volcano during its temporal evolution, e.g. Mauna Kea [1, 2]. The Koolau Scientific Drilling Project (KSDP) was initiated in order to evaluate the long-term evolution of Koolau volcano (Oahu), whose subaerial Makapuu stage lavas define the isotopically enriched endmember of Hawaiian shield lavas. We report Pb triple spike data on KSDP main shield-stage lavas (depth range: 304-632 mbsl) and post-erosional Honolulu volcanics. KSDP lavas show a small range of Pb isotopic compositions (206Pb/204Pb=18.02-18.15; 207Pb/204Pb=15.44-15.46; 208Pb/204Pb=37.82-37.87). Pb isotope ratios increase with depth until ˜450 m and then decrease again to a depth of 616 m. Superimposed on this "bell" trend, 206Pb/204Pb ratios oscillate at depth intervals of ˜10m. The Honolulu volcanics display, at a given 206Pb/204Pb ratio, similar 207Pb/204Pb but lower 208Pb/204Pb ratios than KSDP lavas. In 208Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas define two distinct linear arrays which converge at the radiogenic end. However, in 207Pb/204Pb-206Pb/204Pb space, KSDP and Honolulu lavas form a single array, with Honolulu lying at the radiogenic end of the array. While KSDP lavas have more radiogenic Pb isotopic compositions than Makapuu stage lavas [1], they show close resemblance to Nuuanu 1 and Nuuanu 2 landslide blocks [3]. The distinct Pb isotopic features of subaerial, main-shield and post-erosional lavas reflect compositional source changes during the growth of Koolau volcano. The mixing lines defined by KSDP and Honolulu lavas in 208Pb-206Pb space require the presence of three distinct Pb isotopic components. While the enriched "Koolau" component is predominantly sampled during the subaerial stage, its contribution during the main shield building stage has been waxing and waning. The radiogenic Pb endmember common to Honolulu and KSDP

  4. Lead isotopic evidence for evolutionary changes in magma-crust interaction, Central Andes, southern Peru

    NASA Astrophysics Data System (ADS)

    Barreiro, Barbara A.; Clark, Alan H.

    1984-07-01

    Lead isotopic measurements were made on Andean igneous rocks of Jurassic to Recent age in Moquegua and Tacna Departments, southernmost Peru, to clarify the petrogenesis of the rocks and, in particular, to investigate the effect of crustal thickness on rock composition. This location in the Cordillera Occidental is ideal for such a study because the ca. 2 Ga Precambrian basement rocks (Arequipa massif) have a distinct Pb isotopic signature which is an excellent tracer of crustal interaction, and because geomorphological research has shown that the continental crust was here thickened drastically in the later Tertiary. Seven samples of quartz diorites and granodiorites from the Ilo and Toquepala intrusive complexes, and seven samples of Toquepala Group subaerial volcanics were analyzed for Pb isotopic compositions. The plutonic rocks range in age from Jurassic to Eocene; the volcanic rocks are all Late Cretaceous to Eocene. With one exception, the Pb isotopic ratios are in the ranges 206Pb/ 204Pb= 18.52-18.75, 207Pb/ 204Pb= 15.58-15.65, and 208Pb/ 204Pb= 38.53-38.74. The data reflect very little or no interaction with old continental material of the Arequipa massif type. Lead from four Miocene Huaylillas Formation ash-flow tuffs, two Pliocene Capillune Formation andesites and five Quaternary Barroso Group andesites has lower 206Pb/ 204Pb than that in the pre-Miocene rocks, but relatively high 207Pb/ 204Pb and 208Pb/ 204Pb ( 206Pb/ 204Pb= 18.16-18.30, 207Pb/ 204Pb= 15.55-15.63, 208Pb/ 204Pb= 38.45-38.90). Tilton and Barreiro [9] have shown that contamination by Arequipa massif granulites can explain the isotopic composition of the Barosso Group lavas, and the new data demonstrate that this effect is evident, to varying degrees, in all the analysed Neogene volcanic rocks. The initial incorporation of such basement material into the magma coincided with the Early Miocene uplift of this segment of the Cordillera Occidental [32], and thus with the creation of a thick

  5. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil.

    PubMed

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2016-09-01

    To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources. PMID:27376990

  6. Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; van Bergen, M. J.; Foden, J. D.

    2004-01-01

    Pb isotopes in igneous rocks from the Banda-Sunda arc show extreme along-arc variations, which correspond to major lithologic changes in crustal components entering the subduction system. An increase in 206Pb/204Pb ratios toward the zone of collision with the Australian continent reflects input of subducted upper-crustal material; maximum values coincide with anomalously radiogenic 3He/4He ratios that have been earlier attributed to the involvement of the continental margin. The collision zone is further characterized by 208Pb/204Pb ratios that are higher for a given 207Pb/204Pb value than observed in the noncollisional sectors, and in the central part of the collision zone, the 206Pb/204Pb ratios are lower than the most radiogenic values in the adjacent areas. We propose that these Pb isotope signatures reflect input of subducted lower crust, mobilized as a result of slab-window formation during arc-continent collision. Variations in Pb isotopes in the collision zone are solely determined by variations in the nature and proportions of different subducted components. The Pb isotope arrays in the noncollision area may be dominated by slab components as well and could reflect mixing between subducted oceanic crust and entrained sediments, rather than between subarc mantle and subducted sediments. Our new interpretation of the Indonesian Pb isotope data does not call for involvement of ocean-island basalt (OIB) type mantle or Australian subcontinental lithospheric mantle, as has been suggested previously.

  7. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion?

    NASA Astrophysics Data System (ADS)

    Goss, A. R.; Kay, S. M.

    2006-05-01

    The appearance of adakitic magmas with steep rare earth element (REE) patterns in southern Costa Rica and Panama at ˜4 Ma coincides with the collision of the Cocos Ridge and the inception of slab shallowing along the margin. Distinctly higher 206Pb/204Pb and 208Pb/204Pb ratios in these adakitic lavas than in older Miocene lavas suggest that components enriched in radiogenic Pb also entered the mantle magma source at ˜4 Ma. Published Pb-isotopic data for Central American arc lavas show that a similar radiogenic component is not present in lavas farther north and that maxima in post-Miocene 206Pb/204Pb and 208Pb/204Pb ratios occur in central Costa Rica and western Panama. Cretaceous and early Tertiary ophiolites in the forearc, whose origins have been linked to the Galápagos hot spot, show a similar spatial pattern in Pb isotopic ratios. The incorporation of ophiolitic forearc crust into the mantle wedge by forearc subduction erosion can explain the along-arc spatial and temporal pattern of Pb-isotopic ratios in southern Central American arc lavas. Partial melting of crust removed from the base of the forearc and subjected to high-pressure metamorphism in the subduction channel provides an explanation for the steep adakitic REE patterns in some Costa Rican and Panamanian arc lavas.

  8. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards

    USGS Publications Warehouse

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.

    2004-01-01

    Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.

  9. Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Doe, B.R.; Lipman, P.W.; Hedge, C.E.; Kurasawa, H.

    1969-01-01

    Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5-10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar

  10. Levels and source apportionment of children's lead exposure: could urinary lead be used to identify the levels and sources of children's lead pollution?

    PubMed

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-04-01

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as (207)Pb/(206)Pb, (208)Pb/(206)Pb and (204)Pb/(206)Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. PMID:25617855

  11. Petrogenesis of pegmatites and granites in southwestern Maine

    SciTech Connect

    Tomascak, P.B.; Walker, R.J.; Krogstad, E.J. . Dept. of Geology)

    1993-03-01

    Granitic pegmatites occurring near the town of Topsham in southwestern Maine are mineralogically diverse, featuring abundant dikes and contain rare earth element minerals as well as one pegmatite that contains Li minerals. The pegmatite series crops out near the Brunswick granite, a texturally diverse granitic pluton, and lies 13 km southeast of the Mississippian age Sebago batholith. Areas intruded by pegmatites that possess such different mineral assemblages are globally rare. The origins of these mixed'' pegmatite series have not been comprehensively investigated. There is no known pattern of regional zonation (mineral/chemical) among Topsham series pegmatites, hence simple fractionation processes are probably not responsible for the compositional variations. The authors are attempting to clarify pegmatite petrogenesis using common Pb isotopic ratios of feldspars and Sm-Nd isotopic data from whole rocks and minerals. Pb isotopic ratios from leached feldspars reflect the Pb ratios of the source from which they were derived. The range of Pb isotopic compositions of alkali feldspars from 7 granitic pegmatites is as follows: [sup 206]Pb/[sup 204]Pb = 18.5-19.1; [sup 207]Pb/[sup 204]Pb = 15.53-15.69; [sup 208]Pb/[sup 204]Pb = 38.3-38.6. The Brunswick granite has K-feldspars with [sup 206]Pb/[sup 204]Pb = 18.40-18.47, [sup 207]/[sup 204]Pb = 15.64-15.66 and [sup 208]Pb/[sup 204]Pb = 38.29-38.39. The Pb isotopic compositions of both pegmatites and granites are significantly more radiogenic than existing data for the Sebago granite and argue against the consanguinity of Topsham pegmatites and the Sebago batholith. These data instead support a genetic link between the pegmatites and the Brunswick granite, which ranges from a fine-grained two-mica granite to a garnet-bearing pegmatitic leucogranite.

  12. Lead shot contribution to blood lead of First Nations people: the use of lead isotopes to identify the source of exposure.

    PubMed

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Sutherland, Celine; Weber, Jean-Philippe; Dumas, Pierre; Nieboer, Evert

    2008-11-01

    Although lead isotope ratios have been used to identify lead ammunition (lead shotshell pellets and bullets) as a source of exposure for First Nations people of Canada, the actual source of lead exposure needs to be further clarified. Whole blood samples for First Nations people of Ontario, Canada, were collected from participants prior to the traditional spring harvest of water birds, as well as post-harvest. Blood-lead levels and stable lead isotope ratios prior to, and after the harvest were determined by ICP-MS. Data were analyzed by paired t-tests and Wilcoxon Signed-Ranks tests. All participants consumed water birds harvested with lead shotshell during the period of study. For the group excluding six males who were potentially exposed to other sources of lead (as revealed through a questionnaire), paired t-tests and Wilcoxon Signed-Ranks tests showed consistent results: significant (p<0.05) increases in blood-lead concentrations and blood levels of (206)Pb/(204)Pb and (206)Pb/(207)Pb towards the mean values we previously reported for lead shotshell pellets; and a significant decrease in (208)Pb/(206)Pb values towards the mean for lead shotshell pellets. However, when we categorized the group further into a group that did not use firearms and did not eat any other traditional foods harvested with lead ammunition other than waterfowl, our predictions for (206)Pb/(204)Pb, (206)Pb/(207)Pb and (208)Pb/(206)Pb hold true, but there was not a significant increase in blood-lead level after the hunt. It appears that the activity of hunting (i.e., use of a shotgun) was also an important route of lead exposure. The banning of lead shotshell for all game hunting would eliminate a source of environmental lead for all people who use firearms and/or eat wild game. PMID:18678397

  13. In-situ Pb Isotope Ratio Measurements in Glasses and Melt Inclusions by LA-SF-ICPMS

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Stoll, B.; Herwig, K.; Amini, M.; Abouchami, W.

    2004-12-01

    We have developed a technique to determine Pb isotopes in glass fragments and melt inclusions by laser ablation (LA) - sector field (SF) - ICPMS. The measurements were done with a New Wave UP-213 laser system and an ELEMENT2 ICP mass spectrometer using the electrical scan mode. The geological MPI-DING reference glasses (Jochum et al., 2000), for which TIMS and MC-ICPMS Pb triple spike (TS) data are now available, were used to test our technique. Our LA-SF-ICPMS data for 208Pb/206Pb and 207Pb/206Pb agree with the high-precision Pb data within 0.2 %. Polished 150 μ m thick sections were used for the analysis of melt inclusions from samples of the Hawaii Scientific Drilling Project (HSDP). Inclusions were ablated for 10 - 30 s in single spots (40 - 80 μ m diameter). Each analysis consisted of 100 to 300 measurements of 206Pb, 207Pb and 208Pb. Typical in-run precision (1 RSE) ranged from 0.2 - 0.4 %. These values are similar to those obtained by SIMS (Saal et al., 1998). The 208Pb/206Pb (1.91 - 2.13) and 207Pb/206Pb (0.778 - 0.877) in the melt inclusions show large and systematic variations. The range of variability in Pb isotope ratios is similar to that reported in melt inclusions from Mangaia and Tahaa basalts (Saal et al., 1998). The Pb isotope arrays (in 208Pb/206Pb vs 207Pb/206Pb) can be explained by mixing of at least two end members. Groundmass values are uniform and similar to the whole rock data and plot within the melt inclusion fields. LA-SF-ICPMS has also been applied for determining Pb isotope ratios and trace element concentrations in carefully handpicked 200 - 500 μ m large glass fragments from 19 samples of the submarine section of HSDP-2. Precision of the Pb isotope data was about 0.2 - 0.3 %. Most LA-SF-ICPMS data agree with high-precision TIMS data using aliquots of about 50 mg. Both data sets confirm the temporal Pb isotope variations found in the HSDP-2 core based on the whole-rock TS Pb isotope data (Eisele et al., 2003).

  14. Quaternary geochronology using the U-Th-Pb method

    SciTech Connect

    Getty, S.R.; DePaolo, D.J.

    1995-08-01

    We describe a method of uranium-thorium-lead (U-Th-Pb) isotopic age dating for Quaternary rocks. The approach uses an instrumental mass discrimination correction for lead isotope ratios, which allows small enrichments of radiogenic {sup 206}Pb and {sup 208}Pb to be detected at the level of 0.001%. Igneous rocks hosting minerals with a range in {sup 238}U/{sup 204}Pb values of 100 can be dated with uncertainties of approximately {+-}15-20 kyr. A Quarternary rhyolite dated at 1.19 Ma by K-Ar yields a {sup 238}U-{sup 206}Pb age of 1.03{+-}0.10 Ma. A Holocene dacite (9.5 ka) has uniform {sup 206}Pb/{sup 207}Pb to within {+-}0.0015% in groundmass phases, but 1 mm plagioclase phenocrysts have lower {sup 206}Pb/{sup 207}Pb by 0.105{+-}0.002% indicating contamination of the magma after plagioclase crystallization. High precision {sup 206}Pb/{sup 207}Pb ratios may be a useful new tool for petrogenetic studies.

  15. Characteristics and genesis of mineral deposits in East Ujimqin Banner, western segment of the Great Xing'an Mountains, NE China

    NASA Astrophysics Data System (ADS)

    Zhang, Wanyi; Nie, Fengjun; Liu, Shuwen; Zuo, Liyan; Yao, Xiaofeng; Jia, Delong; Liu, Jiangtao

    2015-01-01

    The East Ujimqin Banner, located in the western segment of the Great Xing'an Mountains, NE China, has undergone a long and multi-stage tectonic evolution, which has resulted in significant Fe-Ag-Pb-Zn-Au-Cu-Mo deposits. There are two main types of mineralization: vein and skarn types. The Jilinbaolige and Aerhada vein deposits, and the Chagan Obo and Chaobuleng skarn-type deposits are four typical deposits in this area. The vein deposits mainly occur as veins with hydrothermal alteration in fractures within pre-mineralization clastic rocks and felsic volcanic rocks. The skarn-type deposits always show a temporal and spatial relationship with Mesozoic granite intruded into Paleozoic limestone. The sulfur isotope data from the sulfides in these four deposits have a very narrow range (+1‰ to +8‰), suggesting that most were derived from magma. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 17.949 to 18.529, 15.370 to 15.691 and 37.653 to 38.460 respectively, indicating that the metals derive mainly from the mantle source. In the diagrams 207Pb/204Pb vs. 206Pb/204Pb and 208Pb/204Pb vs. 206Pb/204Pb, the points of lead isotope of the sulfide ores are very near or coincide to the K-feldspar, indicating that the ore-forming materials sources have the genetic relationship. It seems that there are four key factors controlling the mineralization styles in this district: the tectonic setting, magmatic activity, wall rocks, and structures. The superposition of multi-stage tectonism from a Mesozoic extensional setting on a Paleozoic subduction setting provided a remobilization and enrichment mechanism for the ore-forming elements. The magmatic activities were sources of metals and fluids, and drove them to the mineralization sites. The wall rocks are key factors for mineralization styles. When metal-bearing fluid flows into clastic rocks and felsic volcanic rocks, the mineralization is mainly vein type, and mineralization in limestone is mainly skarn type. NE

  16. Strong Relationship between Hf-Nd-Pb Isotopes in Atlantic Sediments and the Lesser Antilles arc Composition

    NASA Astrophysics Data System (ADS)

    Carpentier, M.; Chauvel, C.; Mattielli, N.

    2006-12-01

    Geochemical variability of lavas from the Lesser Antilles arc is well established and is characterized by a chemical zoning from north to south along the arc. Lavas from the northern part of the arc have usually less radiogenic and less variable Sr and Pb isotopic compositions than those from the south. Possible explanations include a larger contribution from sediments in the source of the southern islands, and/or a north-south change in the chemical composition of the sediments that are subducted beneath the Lesser Antilles arc We conducted a geochemical study (Nd, Hf and Pb isotopic compositions) of Atlantic sediments coming from two different sites drilled during DSDP Leg 78 (site 543, 15.7N) and DSDP Leg 14 (site 144, 9.5N). At site 543, the sedimentary pile has epsilon Nd values between -14.6 and -11 and epsilon Hf between -10.6 and -1. 206Pb/204Pb ratios vary between 19.1 and 19.5. The sediment pile has an overall strong continental signature suggesting that their source is primarily detrital. This is in agreement with the interpretation of White et al. (1985) who suggested that the dominant source was the Archean Guiana Highland drained by the Orinoco River. Further south, at site 144, the succession consists of chalk ooze, marl and clays, and organic-rich black shales. Samples have epsilon Nd between -18.4 and -10 and epsilon Hf between -20.4 and -5.4 and the Pb isotopic compositions are extremely variable. Chalk ooze, marl and clay have 206Pb/204Pb ratios between 18.8 and 20.0, while the black shales have extremely radiogenic compositions with 206Pb/204Pb between 21.6 and 27.7. These compositions reflect the radioactive decay of authigenic uranium concentrated in organic- rich layers characterized by elevated 238U/204Pb ratios (100 up to 600). The isotopic compositions of sediments from both sites are largely influenced by continental input with Nd and Hf isotopes plotting in the continental domain of the "terrestrial array", but the southern site has more

  17. The Solar System primordial lead

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Zanda, Brigitte; Ebel, Denton S.; Albarède, Francis

    2010-11-01

    Knowledge of the primordial isotope composition of Pb in the Solar System is critical to the understanding of the early evolution of Earth and other planetary bodies. Here we present new Pb isotopic data on troilite (FeS) nodules from a number of different iron meteorites: Canyon Diablo, Mundrabilla, Nantan, Seeläsgen, Toluca (IAB-IIICD), Cape York (IIIA), Mt Edith (IIIB), and Seymchan (pallasite). Lead abundances and isotopic compositions typically vary from one troilite inclusion to another, even within the same meteorite. The most primitive Pb was found in three leach fractions of two exceptionally Pb-rich Nantan troilite nodules. Its 204Pb/ 206Pb is identical to that of Canyon Diablo troilite as measured by Tatsumoto et al. [M. Tatsumoto, R.J. Knight, C.J. Allègre, Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206, Science 180(1973) 1279-1283]. However, our measurements of 207Pb/ 206Pb and 208Pb/ 206Pb are significantly higher than theirs, as well as other older literature data obtained by TIMS, while consistent with the recent data of Connelly et al. [J.N. Connelly, M. Bizzarro, K. Thrane, J.A. Baker, The Pb-Pb age of Angrite SAH99555 revisited, Geochim. Cosmochim. Acta 72(2008) 4813-4824], a result we ascribe to instrumental mass fractionation having biased the older data. Our current best estimate of the Solar System primordial Pb is that of Nantan troilite, which has the following isotopic composition: 204Pb/ 206Pb = 0.107459(16), 207Pb/ 206Pb = 1.10759(10), and 208Pb/ 206Pb = 3.17347(28). This is slightly less radiogenic than the intercept of the bundle of isotopic arrays formed in 207Pb/ 206Pb- 204Pb/ 206Pb space by our measurements of Canyon Diablo, Nantan, Seeläsgen, Cape York, and Mundrabilla, as well as literature data, which, in spite of rather large uncertainties, suggests a common primordial Pb component for all of these meteorites. The radiogenic Pb present in most of these irons is dominantly

  18. Role of the Kerguelen Plume in generating the eastern Indian Ocean seafloor

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Frey, Frederick A.

    1996-06-01

    Mid-ocean ridge basalts (MORB) in the Indian Ocean have Sr-Nd-Pb isotopic characteristics that distinguish them from seafloor basalts in the Atlantic and Pacific Oceans. These differences have important implications for mantle dynamics. We discuss the isotopic variation with eruption age of seafloor basalts recovered by deep sea drilling at 10 sites in the eastern Indian Ocean ranging in age from Eocene to Late Jurassic. Except for alkalic basalts recovered from near Christmas Island in the northeast Indian Ocean, the basement lavas are tholeiitic basalts that are characterized by a wide range in incompatible element abundance ratios, such as La/Yb and Zr/Nb. Most of the tholeiitic basalts from seven sites are geochemically similar to recent Indian Ocean MORB, but the alkalic basalts and tholeiitic lavas from two other sites have isotopic and incompatible element abundance ratios similar to lavas associated with the Kerguelen Plume. Two of these three sites, however, are not close to the track of this plume. The Dupal isotopic signature (relatively high 87Sr/86Sr and high 208Pb/204Pb at a given 206Pb/204Pb) is characteristic of lavas that have been attributed to the Kerguelen Plume, i.e., the Kerguelen Archipelago, Ninetyeast Ridge, and Kerguelen Plateau. Among eastern Indian Ocean seafloor basalts, a Dupal component is apparent in basement lavas from six of the seven drill sites in the eastern Indian Ocean that range in inferred age from ˜57 to 125 Ma. The oldest (˜155 Ma) seafloor lavas recovered from the Indian Ocean, derived from a spreading center in the Argo Abyssal Plain near northwest Australia, have high 143Nd/144Nd and low 87/86Sr similar to the most depleted recent Indian MORB. Because the oldest volcanism on the Kerguelen Plateau (˜118 Ma) is the first evidence of the activity of the Kerguelen Plume, this plume is inferred to be the source of Dupal isotopic characteristics in Indian Ocean MORBs. Some recent Indian Ocean MORB are also distinctive

  19. The geochemical and Sr-Nd-Pb-He isotopic characterization of the mantle source of Rungwe Volcanic Province: comparison with the Afar mantle domain

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.

    2012-12-01

    The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic

  20. Changes in the lead isotopic composition of blood, diet and air in Australia over a decade: Globalization and implications for future isotopic studies

    SciTech Connect

    Gulson, Brian . E-mail: bgulson@gse.mq.edu.au; Mizon, Karen; Korsch, Michael; Taylor, Alan

    2006-01-15

    Source apportionment in biological or environmental samples using the lead isotope method, where there are diverse sources of lead, relies on a significant difference between the isotopic composition in the target media and the sources. Because of the unique isotopic composition of Australian lead, source apportionment has been relatively successful in the past. Over the period of a decade, the {sup 206}Pb/{sup 204}Pb ratio for Australian (mainly female) adults has shown an increase from a geometric mean of 16.8-17.3. Associated with this increase, there has been a decrease in mean blood lead concentration from 4.7 to 2.3 {mu}g/dL, or about 5% per year, similar to that observed in other countries. Lead in air, which up until 2000 was derived largely from the continued use of leaded gasoline, showed an overall increase in the {sup 206}Pb/{sup 204}Pb ratio during 1993-2000 from 16.5 to 17.2. Since 1998 the levels of lead in air were less than 0.2 {mu}g/m{sup 3} and would contribute negligibly to blood lead. Over the 10-year period, the {sup 206}Pb/{sup 204}Pb ratio in diet, based mainly on quarterly 6-day duplicate diets, increased from 16.9 to 18.3. The lead concentration in diet showed a small decrease from 8.7 to 6.4 {mu}g Pb/kg although the daily intake increased markedly from 7.4 to 13.9 {mu}g Pb/day during the latter part of the decade probably reflecting differences in demographics. The changes in blood lead from sources such as lead in bone or soil or dust is not dominant because of the low {sup 206}Pb/{sup 204}Pb ratios in these media. Unless there are other sources not identified and analysed for these adults, it would appear that in spite of our earlier conclusions to the contrary, diet does make an overall contribution to blood lead, and this is certainly the case for specific individuals. Certain population groups from south Asia, south-east Asia, the Middle East and Europe (e.g. UK) are unsuitable for some studies as their isotopic ratios in blood are

  1. Uranium-lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201

    SciTech Connect

    Gaffney, A M; Borg, L E; Connelly, J N

    2006-12-22

    Uranium-lead ratios (commonly represented as {sup 238}U/{sup 204}Pb = {mu}) calculated for the sources of martian basalts preserve a record of petrogenetic processes that operated during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of {mu} values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range ({sup 206}Pb/{sup 204}Pb = 11.16-11.61). In contrast, the Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in {sup 206}Pb/{sup 204}Pb-{sup 207}Pb/{sup 204}Pb-{sup 208}Pb/{sup 204}Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial contamination. Despite the contamination, we are able to use the U-Pb data to determine the initial {sup 206}Pb/{sup 204}Pb of QUE 94201 (11.086 {+-} 0.008) and calculate the {mu} value of the QUE 94201 mantle source to be 1.823 {+-} 0.008. This is the lowest {mu} value calculated for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that {mu} values in martian source reservoirs vary by at least 100%. The range of source {mu} values further indicates that the {mu} value of bulk silicate Mars is approximately three. The amount of variation in the {mu} values of the mantle sources ({mu} {approx} 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small

  2. Pb-concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States

    USGS Publications Warehouse

    Reimann, Clemens; Smith, David B.; Woodruff, Laurel G.; Flem, Belinda

    2011-01-01

    Analytical results for Pb-concentrations and isotopic ratios from ca. 150 samples of soil A horizon and ca. 145 samples of soil C horizon collected along a 4000-km east–west transect across the USA are presented. Lead concentrations along the transect show: (1) generally higher values in the soil A-horizon than the C-horizon (median 21 vs. 16.5 mg/kg), (2) an increase in the median value of the soil A-horizon for central to eastern USA (Missouri to Maryland) when compared to the western USA (California to Kansas) (median 26 vs. 20 mg/kg) and (3) a higher A/C ratio for the central to eastern USA (1.35 vs. 1.14). Lead isotopes show a distinct trend across the USA, with the highest 206Pb/207Pb ratios occurring in the centre (Missouri, median A-horizon: 1.245; C-horizon: 1.251) and the lowest at both coasts (e.g., California, median A-horizon: 1.195; C-horizon: 1.216). The soil C-horizon samples show generally higher 206Pb/207Pb ratios than the A-horizon (median C-horizon: 1.224; A-horizon: 1.219). The 206Pb/207Pb-isotope ratios in the soil A horizon show a correlation with the total feldspar content for the same 2500-km portion of the transect from east-central Colorado to the Atlantic coast that shows steadily increasing precipitation. No such correlation exists in the soil C horizon. The data demonstrate the importance of climate and weathering on both Pb-concentration and 206Pb/207Pb-isotope ratios in soil samples and natural shifts thereof in the soil profile during soil-forming processes.

  3. High-precision Pb Isotopes Reveal Two Small Magma Bodies Beneath the Summit of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Heaton, D. E.; Marske, J. P.; Garcia, M. O.

    2013-12-01

    The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano's magmatic plumbing system, but its geometry is poorly known. High-precision Pb isotopic analyses of Kilauea summit lavas (1959-1982) define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a temporal decrease due to changes in the composition of the parental magma delivered to the volcano. Analyses of multiple lavas from some individual eruptions reveal small but significant differences in 206Pb/204Pb. The extra-caldera lavas from Aug. 1971 and Jul. 1974 display lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate, partially isolated magma bodies. Numerous studies (Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the locus of Kilauea's summit reservoir ~2 km southeast of Halemaumau (HMM) at a depth of ~2-7 km, but more recent investigations have discovered a second magma body located <1 km below the east rim of HMM (Battaglia et al., 2003; Johnson et al., 2010). The association between the vent locations of the extra-caldera lavas near the southeast rim of the caldera and their higher MgO contents suggests that these lavas tapped the deeper magma body. In contrast, the lower MgO intra-caldera lavas were likely derived from the shallow magma body beneath HMM. Residence time modeling based on the Pb isotope ratios of the lavas suggests that the magma volume

  4. Multiple Sources of K-rich Melts in Central Italy: Evidence From Trace-element and Pb- isotopic Signatures of Melt Inclusions in a Single Lava Flow From Latera Volcano

    NASA Astrophysics Data System (ADS)

    Nikogosian, I. K.; van Bergen, M. J.; de Hoog, C.; Whitehouse, M. J.

    2007-12-01

    Latera stratovolcano is part of Vulsini, the northernmost volcanic complex of the Roman Province, Central Italy. Lava compositions range between strongly silica-undersaturated leucite-bearing High-K (HKS) and near silica- saturated Low-K (KS) products. We analyzed homogenized melt inclusions trapped in primitive olivines (Fo=91- 87) from a single KS lava for major and trace-element compositions and Pb-isotope ratios. A wide range in CaO contents of high-Mg# olivine and clinopyroxene phenocrysts points to crystallization from a diversity of primary melts, as observed elsewhere in Roman Province HKS (>0.3 wt.%) and KS (<0.3 wt.%). Some olivines have low CaO contents (<0.15 wt.%), similar to those of Tuscan lamproites (LMP). Based on the combination of major and trace element contents of MI and mineral chemistry, the lava appears to host a collection of different alkali-rich melts: KS-type compositionally similar to the host rock, HKS-type close to lavas of the surrounding Roman Province, a high-SiO2, low-CaO, low-Na2O melt type close to the lamproite compositions, and high-Na2O, low-CaO melt which have no equivalent in nearby erupted lavas. Melt inclusions were further analyzed for Pb isotope ratios, using the Nordsim Cameca-1270 ion microprobe (Swedish Museum of Natural History, Stockholm). A clear relation was found between Pb concentrations of MI and analytical uncertainty in Pb-isotope ratios, with a strong increase in error below 10 ppm. For MI with >10 ppm, 2-sigma errors were <0.003 for 207Pb/206Pb, <0.007 for 208Pb/206Pb, <0.25 for 206Pb/204Pb, <0.2 for 207Pb/204Pb and <0.5 for 208Pb/204Pb. The 25 MI of Latera analyzed contain up to 130 ppm Pb with 75% higher than 10 ppm. The MI show an extreme Pb-isotopic diversity (e.g., 207Pb/206Pb=0.815-0.86, 208Pb/206Pb=2.03-2.11, 206Pb/204Pb=18-19.2, 207Pb/204Pb=14.6-16, 208Pb/204Pb=36.5-40.5), with each group being characterized by its own signature. The Pb-isotope composition of the host lava appears to be a mixture

  5. Character of the pre-Mesozoic basement along the edge of the western US craton: Pb isotopic evidence from Mesozoic plutonism

    SciTech Connect

    Wooden, J.L.; Kistler, R.W.; Robinson, A.; Tosdal, R.M. ); Wright, J.E. . Dept. of Geology and Geophysics)

    1993-04-01

    The pre-Mesozoic cratonic crust of the western US was a composite of provinces composed mostly of Archean and Early Proterozoic rocks that had been truncated by Late Proterozoic rifting and had some new Paleozoic crust added along the western edge. Mesozoic and younger geologic events greatly obscured this pre-Mesozoic basement along the craton edge. However, the Pb isotopic signatures of Mesozoic plutons provide significant clues to the character of the crust in which they formed or were emplaced because of a strong contrast in Pb concentration between low-Pb, mantle-derived melts and Pb-rich crust. Thus, magmas whether derived from the crust or the mantle with subsequent crustal interaction, will likely have Pb isotopic compositions that reflect those of the crust. In the western US the Pb isotopic compositions of Mesozoic plutonic rocks have strong regional characteristics. Within the Early Proterozoic Mojave crustal province, Mesozoic plutonic rocks have a large range of 206Pb/204Pb ratios that plot above the crustal average, relatively high 207Pb/204Pb ratios that suggest an Archean contribution, and Pb and Sr isotopic compositions that are not correlated and that do not distinguish age groups. At the southern and western edge of this province where some 1.1 Ga rocks are exposed, 208Pb/204Pb ratios lie along the average crust model curve. These data suggest that any individual pluton provides a composite Pb isotopic composition for a discrete vertical section of the crust. Pb isotopic compositions of plutons in the Sierra Nevada and Great Basin are very different from those described above with 206Pb/204Pb ratios starting at 18.6, well-correlated Pb isotopic trends starting below the crustal model but extending to values that require input from the very radiogenic Wyoming province Archean crust, and good correlations between Pb and (1) Sr isotopic compositions and (2) W-E geographic position.

  6. Lead isotopes in continental arc magmas and origin of porphyry Cu deposits in Arizona

    SciTech Connect

    Sawyer, D.A.; Zartman, R.E.

    1985-01-01

    Isotopic composition of Pb in feldspars and sulfides associated with the porphyry Cu-Mo deposit at Silver Bell, Arizona support the importance of crustal interaction in the origin of some porphyry copper ore deposits. Detailed sampling of late Cretaceous volcanic (8) and plutonic (10) units show an impressive range of Pb isotope composition from a single volcanic center (206Pb/204Pb=17.96-18.50; 207Pb/204Pb=15.54-15.59; 208Pb/204Pb=38.35-38.41). Ores (10 samples) include galena, chalcopyrite, pyrite, and supergene chalcocite range from: 206Pb/204Pb = 18.42 -18.74; 207Pb/204Pb=15.59-15.60; and 208Pb/204Pb=38.35-38.41. Ores most closely related to the major open-pit copper mines have a restricted range of composition (206Pb/204Pb=18.42-18.47). These ore Pbs are associated with the more radiogenic members of the igneous suite. Close correspondence of Pb in ores with that in related igneous rocks indicates a magmatic derivation of Pb disseminated in stockwork chalcopyrite ore and galena in copper skarn. Plots of 206Pb/204Pb against 207Pb/204Pb show a linear array of data just below crustal Pb evolution curves. This suggests derivation from a common source, and calculated 207Pb/206Pb ages for the line yield mid-Proterozoic ages from 1750-1450 Ma, in good agreement with isotopic ages of known Precambrian basement in the region. Most rocks show no evidence of interaction with LIL-element depleted granulitic lower crust, and have higher 207Pb/204Pb than available data from basalts characterizing the subcontinental mantle beneath southern Arizona.

  7. The Rurutu Hotspot: Isotopic and Trace Element Evidence of HIMU Hotspot Volcanism in the Tuvalu Islands

    NASA Astrophysics Data System (ADS)

    Finlayson, V.; Konter, J. G.; Konrad, K.; Koppers, A. A. P.; Jackson, M. G.

    2014-12-01

    Current Pacific absolute plate motion (APM) models include 2 major, long-lived hotspot tracks: the ~85 Ma Hawaiian-Emperor and the ~76 Ma Louisville tracks. Prior to ~50 Ma, these two hotspot tracks show significant inter-hotspot drift, mainly due to large southern motion of the Hawaiian hotspot [1,2]. A third track would allow for a more robust evaluation of the relationship between APM models and inter-hotspot drift. We present trace element and Pb isotope evidence for a potential third long-lived Pacific hotspot trail—the Rurutu hotspot—anchored in the Cook-Austral Islands. Based on high 206Pb/204Pb ratios, 70-55 Ma volcanism in the Gilbert Ridge has been linked to the Rurutu hotspot [3]. The Gilbert Ridge may continue south into the Tuvalu Islands, where APM models predict that the Rurutu hotspot track captures the change in Pacific plate motion around 50 Ma at the intersection of Tuvalu and Samoa. Sampling of the deep submarine flanks of atolls and seamounts in Tuvalu and westernmost Samoa took place during the 2013 RR1310 (R/V Roger Revelle) expedition. We present new Pb isotope and HFSE trace element data on 28 samples that support a Rurutu origin for Tuvalu volcanism and confirm HIMU signatures previously observed in 5 Tuvalu samples (206Pb/204Pb >20.1, several >21.0; 87Sr/86Sr < 0.705). Statistical tests indicate that Tuvalu HFSE element ratios show similarities with Cook-Austral HIMU and differences with Samoa EMII volcanism. Low Hf/Nb ratios are often a predictor of HIMU samples (206Pb/204Pb > 20.8). Moderately HIMU compositions (206Pb/204Pb = 20.0) correspond to slightly higher Hf/Nb. In an effort to test if compositional agreement with the Cook-Australs is reflected in an age progression, 40Ar/39Ar ages will be presented by Konrad et al. (this volume). [1] Tarduno et al., (2003) DOI:10.1126/science.1086442 [2] Koppers et al., (2012) DOI: 10.1038/ngeo1638 [3] Konter et al., (2008) DOI: 10.1016/j.epsl.2008.08.023

  8. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  9. Temporal evolution of lead isotope ratios in sediments of the Central Portuguese Margin: a fingerprint of human activities.

    PubMed

    Mil-Homens, Mário; Caetano, Miguel; Costa, Ana M; Lebreiro, Susana; Richter, Thomas; de Stigter, Henko; Trancoso, Maria A; Brito, Pedro

    2013-09-15

    Stable Pb isotope ratios ((206)Pb/(207)Pb, (208)Pb/(206)Pb), (210)Pb, Pb, Al, Ca, Fe, Mn and Si concentrations were measured in 7 sediment cores from the west coast of the Iberian Peninsula to assess the Pb contamination throughout the last 200 years. Independently of their locations, all cores are characterized by increasing Pb/Al rends not related to grain-size changes. Conversely, decreasing trends of (206)Pb/(207)Pb were found towards the present. This tendency suggest a change in Pb sources reflecting an increased proportion derived from anthropogenic activities. The highest anthropogenic Pb inventories for sediments younger than 1950s were found in the two shallowest cores of Cascais and Lisboa submarine canyons, reflecting the proximity of the Tagus estuary. Lead isotope signatures also help demonstrate that sediments contaminated with Pb are not constrained to estuarine-coastal areas and upper parts of submarine canyons, but are also to transferred to a lesser extent to deeper parts of the Portuguese Margin. PMID:23871578

  10. Evaporation residue cross-section in the decay of 254No* formed in 206Pb + 48Ca and its isotopic dependence using other Pb targets within the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Niyti; Gupta, Raj K.; Hess, Peter Otto

    2015-06-01

    The dynamical cluster-decay model (DCM), with deformation and orientation effects included, is used to calculate the fusion evaporation residue cross-sections σxn for x = 1, 2, 3 and 4 neutrons emission in a fusion reaction 206Pb + 48Ca → 254No* at various 48Ca-beam energies Elab = 212.7- 242.5 MeV (equivalently, E* = 19.8- 43.9 MeV). Considering the higher multipole deformations up to hexadecapole deformation β4i and the sticking moment-of-inertia IS, the DCM with pocket formula for nuclear proximity potential is shown to give a good description of the measured individual light-particle (here neutrons) decay channels for configurations of "hot, compact" orientations θci, within one parameter fitting of the neck-length ΔR. A check on some of the variables involved in DCM shows that (i) spherical configurations give nearly the same result as above for deformed and oriented ones; (ii) the non-sticking moment-of-inertia INS gives unphysical results; and (iii) configurations of "cold, elongated" orientations do not fit the data at all. Furthermore, for the four different isotopes of 204,206,207,208Pb-based reactions, the dependence of, say, the 2n-emission yield σ2n on the isotopic composition of the compound nucleus is also studied within the DCM for "hot" fusion process. Of all the four Pb-isotopes and three excitation energies E* considered, at each E*, the ΔR is largest for compound system 256No*, followed by 255No*, 254No* and smallest for 252No*, which means to suggest that the neutrons emission occur earliest for 256No*, then for 255No*, 254No* and finally by 252No*, in complete agreement with experimental data according to which compound system 256No* has the highest cross-section and 252No* the lowest with 255No* and 254No* lying in between. This result is related to the double magicity of both the target (208Pb) and projectile (48Ca) nuclei, as well as to the experimentally known result of projectile with a larger number of neutrons (here the target

  11. Isotope and trace element characteristics of Waianae Volcano, Oahu, Hawaii: evidence for crustal melting in Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    van der Zander, I.; Sinton, J. M.; Mahaoney, J. J.

    2006-12-01

    Well-exposed sections within the 3-4 Ma Waianae Volcano of Oahu, Hawaii, encompass much of the Hawaiian volcano "life" cycle, ranging from early or main shield stage (Lualualei) through late shield (Kamaileunu) to postshield (Palehua and Kolekole) stage. New data on 25 samples indicate a relatively restricted range in Sr, Nd and Pb isotopic ratios. 87Sr/86Sr ranges from 0.70352 to 0.70379, \\UpsilonNd from +4.5 to +6.7 and 206Pb/204Pb 17.793 to 18.295. The largest range within the sample suite occurs in the shield stage lavas (Lualualei and Kamaileunu), suggesting less time for homogenization of magma in a magma chamber(s) during this period. The late shield stage contains silicic lavas and dikes (basaltic icelandites, icelandites and rhyodacites). In 206Pb/204Pb versus 207Pb/204Pb or ^{208}Pb/204Pb diagrams, most shield and postshield lavas fall on a single array, which may be a binary (or pseudo-binary) mixing array. However, data for the silicic lavas lie well off the array at low 206Pb/204Pb (~17.8). Incompatible-element patterns for these samples are distinct in having peaks at Pb. Greater scatter in Sr-Pb and Nd-Pb isotope diagrams compared to Pb-Pb isotope diagrams suggests that the variations in Sr-Pb and Nd-Pb isotope diagrams are related to fractionation of Sr, Nd and Pb by different degrees of melting of different components. Geochemical modeling of the isotopic and trace element data suggests that the silicic lavas (which are petrographically, chemically and mineralogically calc-alkalic) likely represent hydrous melts of amphibolite in the lower Hawaiian crust. We propose that the occurrence of these lavas in the late shield stage results from deep crustal melting as a consequence of compression and crustal thickening after the accumulation and alteration of a thick pile of lavas earlier in the shield stage. The Koolau Volcano's late shield (Makapuu stage) exhibits similar Pb isotope ratios, perhaps indicating that the "exotic" Koolau component might

  12. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Wang, Ying; Li, Shu-Guang

    2014-10-01

    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  13. Australia and Indonesia in collision: geochemical sources of magmatism

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; Foden, J. D.; van Bergen, M. J.; Zulkarnain, I.

    2005-01-01

    The islands of Alor, Lirang, Wetar and Romang are located in the extinct section of the Sunda-Banda arc, where the collision with the Australian continent has brought subduction to a halt. Intrusive and extrusive igneous samples show a wide range of Sr, Nd and Pb isotopic characteristics. Samples from the northeast coast of Alor extend the trend of increasing 206Pb/ 204Pb ratios along the arc in an easterly direction, with values as high as 19.6. Samples from Alor's south coast, Lirang, Wetar and Romang have appreciably lower 206Pb/ 204Pb ratios (≤19.1), and 143Nd/ 144Nd ratios down to 0.5119. The Pb isotope data are interpreted as reflecting mixing between two internally variable end members within the subducting Australian continent, either the upper and lower crust, or two upper crustal end members of different ages. These melts may come up virtually unmodified, giving rise to the felsic, low 143Nd/ 144Nd samples, or may interact with the mantle, of which the partial melts and the fractionation products thereof give rise to basalts to rhyodacites with more intermediate Nd isotopic characteristics. Mixing modelling of the latter samples' isotopic ratios constrains the amount of crustal material that has been added to the mantle wedge to reach up to 9%. The isotopic and trace element heterogeneity in the samples studied is likely to reflect inhomogeneity of the crustal sources contributing to magmatism.

  14. Dust Deposition and Migration of the ITCZ through the Last Glacial Cycle in the Central Equatorial Pacific (Line Islands).

    NASA Astrophysics Data System (ADS)

    Reimi Sipala, M. A.; Marcantonio, F.

    2014-12-01

    Atmospheric dust can be used to record climate change in addition to itself playing a role in several key climate processes, such as affecting Earth's albedo, fomenting rain coalescence, encouraging biological productivity, and enhancing carbon export though particle sinks. Using deep sea sediments, it is possible to quantify and locate the sources and sinks of atmospheric dust. A key area of research is the shift in the inter-tropical converge zone (ITCZ), a thermally influenced area that shifts according to the northern and southern hemisphere temperature gradient. This ongoing project focuses on the changes of the ITCZ over the Central Equatorial Pacific (CEP) over the past ~25000 years. The research focuses on two cores taken from the Line Islands Ridge at 0° 29' N (ML1208-18GC), and 4° 41' N (ML1208-31BB). The main aim is to quantify the magnitude and provenance of windblown dust deposited in the CEP, and to address questions regarding the nature of the variations of dust through ice-age climate transitions. Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary Pb isotope ratios suggest that, for modern deposition, the northern core's (31BB) detrital sediment fraction is likely sourced from Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06). The equatorial core's (18GC) detrital fraction has a less radiogenic Pb signature, which is consistent with South American dust sourcing (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62). This is indicative of a strong modern ITCZ that acts as an effective barrier for inter-hemispheric dust transport. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a

  15. Inter-Tropical Convergence Zone Shifts During the Last Glacial Cycle Near the Line Islands Ridge.

    NASA Astrophysics Data System (ADS)

    Reimi Sipala, M. A.; Marcantonio, F.

    2015-12-01

    This research focuses on the shift in the inter-tropical convergence zone (ITCZ) during the last glacial cycle. Deep sea sediments from the Central Equatorial Pacific (CEP) are used to quantify and isolate the sources and sinks of atmospheric dust. Dust records and influences climate affecting a wide range of process from Earth's Albedo to carbon export. Our aim is to determine the provenance of windblown dust deposited in the CEP near the Line Islands Ridge using radiogenic Nd and Pb isotopes, and to infer the location of the ITCZ and the changes of atmospheric transport through ice-age climate transitions. We focus on three cores from the CEP, along a meridional transect at approximately 160° W --- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary data suggest that the equatorial core (17PC) predominantly receives its dust from South America and South American volcanics South America (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62; ; ɛNd = ~ -5). The middle core, which more closely reflects the modern position of the ITCZ, has varied dust provenance through time, at times consistent with Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06; ɛNd = ~ -7) and Asian Volcanics (ɛNd = ~-1) suggesting a shift in the ITCZ south of 4N before the LGM. Our results for the most northern core are forthcoming. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a weakening of the ITCZ during glacial times. A secondary aim of this work is to determine if the ITCZ migrated further south than core 17PC during Heinrich stage II.

  16. Lead Isotopic Compositions of the Endeavour Sulfides, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Labonte, F.; Hannington, M. D.; Cousens, B. L.; Blenkinsop, J.; Gill, J. B.; Kelley, D. S.; Lilley, M. D.; Delaney, J. R.

    2006-12-01

    32 sulfide samples from the main structures of the Endeavour vent field, Juan de Fuca Ridge, were analyzed for their Pb isotope composition. The samples were collected from 6 main vent fields between 1985 and 2005 and encompass a strike length of more than 15 km along the ridge crest. The sulfides are typical of black smoker deposits on sediment-starved mid-ocean ridges. Pb isotope compositions of the massive sulfides within the six hydrothermal fields vary within narrow ranges, with 206Pb/204Pb = 18.58 18.75, 207Pb/204Pb = 15.45 15.53 and 208Pb/204Pb = 37.84 38.10. A geographic trend is observed, with the lower Pb ratios restricted mostly to the northern part of the segment (Salty Dawg, Sasquatch and High Rise fields), and the higher Pb ratios restricted mostly to the southern part of the segment (Main Endeavour, Clam Bed and Mothra fields). Variations within individual fields are much smaller than those between fields, and variation within individual sulfide structures is within the uncertainty of the measurements. Therefore, it is unlikely that the ranges of Pb isotope compositions along the length of the segment reflect remobilization, replacement, and recrystallization of sulfides, as suggested for the observed Pb isotope variability in some large seafloor sulfide deposits. Instead, the differences in isotopic compositions from north to south are interpreted to reflect differences in the source rocks exposed to hydrothermal circulation of fluids below the seafloor. Possible sources of the somewhat more radiogenic Pb may be small amounts of buried sediment, either from turbidites or from hemipelagic sediment. This possibility is supported by high concentrations of CH4 and NHC4 found in the high-temperature vent fluids at the Main Endeavour Field, which are interpreted to reflect subseafloor interaction between hydrothermal fluids and organic material in buried sediments. However, the majority of the samples fall below and are approximately parallel to the

  17. Clinopyroxene-host disequilibrium (Sr-Nd-Pb isotope systematics) in ultra-potassic magmas from East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, Natalya; Belyatsky, Boris; Senin, Valeriy

    2014-05-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene and phlogopite phenocrysts from Toro-Ankole and Virunga volcanic fields of the East African Rift. The whole rock Sr - Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463 - 0.70536; 143Nd/144Nd: 0.51249 - 0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00 - 19.57; 207Pb/204Pb: 15.69 - 15.74; 208Pb/204Pb: 39.30 - 40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473 - 0.70503; 143Nd/144Nd: 0.51250 - 0.51254; 206Pb/204Pb: 18.04 - 18.17; 207Pb/204Pb: 15.58 - 15.60; 208Pb/204Pb: 38.09 - 38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes demonstrating a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger (Quaternary) ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of the melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary

  18. Sr-Nd-Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, N. S.; Belyatsky, B. V.; Senin, V. G.; Ivanov, A. V.

    2014-12-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene phenocrysts from Bunyaruguru (Toro-Ankole) and Virunga volcanic fields of the East African Rift. The whole rock Sr-Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463-0.70536; 143Nd/144Nd: 0.51249-0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00-19.57; 207Pb/204Pb: 15.69-15.74; 208Pb/204Pb: 39.30-40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473-0.70503; 143Nd/144Nd: 0.51250-0.51254; 206Pb/204Pb: 18.04-18.17; 207Pb/204Pb: 15.58-15.60; 208Pb/204Pb: 38.09-38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes exhibiting a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary magmas formed as the result of melting of a

  19. Metals and isotopes in Juan de Fuca Ridge hydrothermal fluids and their associated solid materials

    SciTech Connect

    Hinkley, T.K.; Tatsumoto, M.

    1987-10-10

    The /sup 87/Sr//sup 86/Sr ratio of the hydrothermal solution (HTS) (0.7034) is larger than that of basalt (0.7025) at the southern vent field of the Juan de Fuca Ridge (SJFR). Both the Sr isotopic ratio for HTS and the water/rock interaction ratio lie between those at two sites farther south on the East Pacific Rise, 13 /sup 0/N and 21 /sup 0/N. These parameters may be closely related to subsurface temperatures and rates of magma ascent and to extent of faulting and surface areas of the frameworks of the hydrothermal systems. For these three Pacific Ocean sites there is no steady geographical progression of these measured parameters, nor of reported spreading rate, with increasing latitude northward. Pb and Nd isotopic measurements are uniform for all samples from the SJFR, ranging only from 18.43 to 18.58 for /sup 206/Pb//sup 204/Pb (fluids and associated solids) and centering near 0.5131 for /sup 143/Nd//sup 144/Nd (only fluids measured). Values for basalts and sulfides from the site have similar values. Relatively high /sup 206/Pb//sup 204/Pb values at the SJFR suggest the potential for the existence of an anomalous radiogenic heat source in the underlying mantle material.

  20. Geochemistry, Sr-Nd-Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: Implications for mantle wedge heterogeneity in a palaeo-subduction zone

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mehraj; Prelević, Dejan; Badrzadeh, Zahra; Braschi, Eleonora; van den Bogaard, Paul; Conticelli, Sandro

    2015-02-01

    Lamprophyres of different age showing distinctive mineralogy, geochemistry and isotopic ratios are exposed in northwestern Iran. They can be divided into Late Cretaceous sannaite, Late Oligocene-Early Miocene camptonite (amphibole-bearing) and Late Miocene minette (mica-bearing) and spessartite (amphibole-bearing) lamprophyres. Sannaites have high-Ti amphibole along with high-Ti and Al clinopyroxene, and they are characterised by homogeneous enrichment in incompatible trace elements with troughs at Pb. Spessartites have hornblende and low-Al and Ti clinopyroxene, and they are characterised by enriched incompatible trace element pattern with depletions of Nb, Ta, Pb, and Ti with respect to large ion lithophile elements. Minettes have high-Ti and Al brown mica and low-Al and Ti clinopyroxene, and similar to spessartite, are characterised by fractionation of high field strength elements with respect to large ion lithophile elements, with troughs at Nb, Ta, and Ti and a peak at Pb. Minettes show high initial 87Sr/86Sr values up to 0.70760 and low initial 143Nd/144Nd down to 0.512463 with a negative correlation, consistent with the trace element distribution related with an enriched mantle source modified after sediment recycling during subduction and continental collision. Cretaceous sannaites and Early Miocene spessartites show low initial 87Sr/86Sr approaching 0.70447 and high 143Nd/144Nd values up to 0.512667, which are consistent with a depleted within-plate mantle source. Minette and spessartite lamprophyres show high initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values, whereas sannaites have lower, but variable, initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values with respect to those of calc-alkaline lamprophyres. Minettes originated by partial melting of a metasomatised lithospheric mantle following siliciclastic sediment recycling by subduction. In contrast, sannaites were generated from the partial melting of a similar lithospheric mantle that was

  1. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Xia, Rui; Wang, Changming; Qing, Min; Li, Wenliang; Carranza, Emmanuel John M.; Guo, Xiaodong; Ge, Liangsheng; Zeng, Guanzhong

    2015-10-01

    The East Kunlun Orogen in the Northern Qinghai-Tibet Plateau is an ideal region to investigate the geodynamic processes of magmatism related to the closure of the Paleo-Tethys Ocean. Here, we report petrology, zircon U-Pb geochronology, whole-rock geochemistry and multiple isotope data from granodiorites and the associated dioritic enclaves in a dominant Nan'getan granitoid in the East Kunlun Orogen. Zircon U-Pb ages indicate that the host granodiorites and dioritic enclaves were synchronously emplaced at ~ 243 Ma. The granodiorites are medium- to high-K calc-alkaline, metaluminous (A/CNK = 0.93-0.98), with high Al2O3 content (15.28%-16.10%), Mg# (47-49), very low Sr/Y ratios (127-217), high abundances of incompatible elements (Y = 3.87-8.36 ppm, Nb = 3.04-5.71 ppm, Th = 3.04-5.71 ppm), low (87Sr/86Sr)i (0.7050-0.7079), negative whole-rock εNd(t) (- 8.2 to - 5.8), (206Pb/204Pb) 243Ma of 18.520 to 18.772, (207Pb/204Pb) 243Ma of 15.611 to 15.650, (208Pb/204Pb) 243Ma of 38.227 to 38.528, δ18OSMOW = 6.8‰-9.1‰, εHf(t) of - 1.2 to + 2.4. The dioritic enclaves (SiO2 = 51.08%-56.29%) have Mg# values of 48-51, with negative Eu anomalies (δEu = 0.59-0.79), low (87Sr/86Sr)i (0.7058-0.7080), negative whole-rock εNd(t) (- 8.2 to - 5.8), (206Pb/204Pb) 243Ma of 18.376 to 18.809, (207Pb/204Pb)243Ma of 15.606 to 15.661, (208Pb/204Pb)243Ma of 38.244 to 38.540, δ18OSMOW = 5.6‰-10.0‰, εHf(t) of - 3.5 to + 1.7. These isotopic features of arc-type rocks from the East Kunlun suggest that the parental magmas of the Nan'getan granodiorites and the dioritic enclaves originated from an enriched lithospheric mantle. The Nan'getan granitoids might have recorded the northward subduction of the Paleo-Tethys ocean lithosphere following the initial collision of the Bayan Har-Songpan Ganzi-East Kunlun terrane and the closure of the Paleo-Tethys Ocean at ~ 243 Ma.

  2. Spatial Distribution of Lead Isotope Ratios and Inorganic Element Concentrations in Epiphytic Lichens from the Athabasca Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Graney, J. R.; Landis, M. S.; Puckett, K.; Edgerton, E.; Krupa, S.; Percy, K.

    2013-12-01

    Coupled studies of inorganic element concentrations and lead (Pb) isotope ratios have been conducted on Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) in Alberta, Canada in 2002, 2008, and 2011. To investigate the spatial extent of air emissions, the lichens were collected from sites as far as 160 km from the mining and processing operations. 30 milligram sub-samples of the lichens were microwave digested, and the extracts were analyzed using DRC-ICPMS to determine elemental concentrations, and sector field ICPMS to measure Pb isotope ratios. Concentrations of elements in the lichens were found to reflect proximity to mining and oil processing sites as well as topography, ecosystem differences, and the metabolic biogeochemistry of the lichens. An exponential decrease in concentration of metals associated with fugitive dust (aluminum and others) versus distance from the mining sites, suggests elevated coarse particle emissions associated with mining operations. Near source concentrations of metals with an oil signature (vanadium and others) are less enhanced and more homogeneous than the metals in the fugitive dust, reflecting emission and deposition of smaller diameter particles at greater distances from oil processing sources. The mining and oil processing signatures are superimposed over elemental concentrations that reflect the nutrient needs of the lichens. These findings are being confirmed through ongoing studies using dichot samplers to collect coarse and fine particulate aerosol samples. The lichen samples collected beyond 50 km from the mining and processing sites cluster into a Pb isotope grouping with a 207Pb / 206Pb ratio of 0.8650 and a 208Pb / 206Pb ratio near 2.095. This grouping likely reflects the regional background Pb isotope ratio signature. 207Pb / 206Pb and 208Pb / 206Pb ratios decrease as one nears the mining and processing operations. This indicates that other Pb source(s), (e.g. Pb in the bitumen from the oil

  3. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern

  4. Lead isotope and trace element composition of urban soils in Mongolia

    NASA Astrophysics Data System (ADS)

    Tserenpil, Sh.; Sapkota, A.; Liu, C.-Q.; Peng, J.-H.; Liu, B.; Segebade, P. Chr.

    2016-08-01

    Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country's entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg-1) was twice the values found (average 18.6 mg kg-1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163-1.185 for the urban whereas values for rural soils (1.186-1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.

  5. Spatial and temporal evolution of lead isotope ratios in the North Atlantic Ocean between 1981 and 1989

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Boyle, Edward A.; Wu, Jingfeng; Chavagnac, ValéRie; Michel, Anna; Reuer, Matthew K.

    2003-10-01

    Lead concentrations and isotope ratios were measured in North Atlantic surface water samples collected in 1981 (29°-79°N, 6°E-49°W) and in 1989 (23°-39°N, 29°-68°W). In the early 1980s, 206Pb/207Pb ratios in the North African Basin averaged 1.193 ± 0.005 (1 σ). Similar radiogenic ratios within the level of analytical precision (average 0.29%) were found in the Labrador and Iceland Basins (1.198 ± 0.006) and in the Norwegian Sea (1.196 ± 0.008). These radiogenic mixed layer signatures along with atmospheric global lead emission patterns suggest that most North Atlantic lead in the early 1980s was derived from North American leaded gasoline. Samples in the East Iberian Basin near Portugal and France showed lower 206Pb/207Pb ratios, between 1.167 and 1.182, indicating a significant influence of less radiogenic atmospheric lead transported from Europe and possibly the influence of the Rio Tinto acid mine drainage very close to shore in the Gulf of Cadiz. [Pb] across the entire North Atlantic Basin ranged between 54 and 145 pmol/kg, with the lowest values (54-74 pmol/kg) found at high latitudes (>65°N). In the late 1980s, surface waters in the western subtropical North Atlantic (North American Basin/Sargasso Sea, >47°W) and in the eastern subtropical North Atlantic (North African Basin/Central Iberian Basin, <45°W) showed very similar 206Pb/207Pb signatures with little zonal variation, ranging from 1.177 to 1.192. Lead concentrations ranged between 47 and 137 pmol/kg, increasing slightly from west to east. South of 25°N in the equatorial North Atlantic, crossing the subtropical/tropical surface water boundary, the 206Pb/207Pb seawater signatures were significantly less radiogenic (1.170-1.175) and concentrations were lower (≤51 pmol/kg). This difference suggests a relative increase in the atmospheric lead supply from the western Mediterranean/North African continent via Trade Easterlies and illustrates the effective barrier between the subtropical

  6. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Ning-jing, Hu; Peng, Huang; Hui, Zhang; Ai-mei, Zhu; Ji-hua, Liu; Jun, Zhang; Lian-hua, He

    2015-10-01

    To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8±7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997±0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477±0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  7. Enriched Nd-Sr-Pb isotopic signatures in the Dovyren layered intrusion ( eastern Siberia, Russia): Evidence for source contamination by ancient upper-crustal material

    USGS Publications Warehouse

    Amelin, Yu. V.; Neymark, L.A.; Ritsk, E. Yu; Nemchin, A.A.

    1996-01-01

    Major- and trace-element concentrations and Nd-, Sr- and Pb-isotopic ratios are reported for the Dovyren layered mafic-ultramafic intrusion in the northern Baikal region, eastern Siberia. Sm-Nd internal isochrons for an olivine gabbro from the layered series and a gabbronorite from a sill at the bottom of the Dovyren intrusion yield ages of 673 ?? 22 and 707 ?? 40 Ma, respectively. Initial isotopic ratios: 87Sr/86Sr (673) from 0.7101 to 0.7135, ??Nd(673 Ma) from - 16.3 to - 14.1, 206Pb/204Pb from 16.80 to 17.14, 207Pb/204Pb from 15.477 to 15.501 and 208Pb/204Pb from 37.17 to 37.59, are similar to those of late Archean-early Proterozoic upper continental crust, but do not appear to be a result of wallrock assimilation in the magma chamber. These isotopic features, as well as high K, Rb and LREE and low Ti concentrations in the calculated composition of the Dovyren parental magma, may be explained by subduction of sediments derived from upper continental crust into depleted mantle and subsequent melting of the metasomatized peridotite.

  8. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    The origin and tectonic setting of Early Cretaceous adakitic rocks from the Luxi terrane in the eastern North China Block (NCB) remain debated. To resolve this issue, we determined whole-rock geochemistry, zircon U-Pb ages, and in situ Hf-O isotopes of the Mengyin and Liujing adakitic porphyries from the Luxi terrane. Zircon U-Pb dating results reveal that both the Mengyin and Liujing plutons were emplaced during the Early Cretaceous, with weighted mean 206Pb/238U ages of 130 ± 1 Ma (2σ) and 131 ± 2 Ma (2σ), respectively. In addition, abundant Neoarchean-Paleoproterozoic inherited zircon cores are identified in the Mengyin adakitic porphyry with 207Pb/206Pb ages ranging from 2.53 to 2.42 Ga. Rocks of both plutons are silicic (SiO2 = 65.4-70.2 wt.%), metaluminous, and alkaline in composition, comprising mainly quartz syenite porphyries. Samples from both plutons are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba), and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, and Ti), and heavy rare earth elements (HREEs), and have either positive or no Eu anomalies. In addition, both adakitic porphyries have high Mg# values (51-64), high Sr and La contents, low Y and Yb contents, and high Sr/Y (Mengyin = 149-264; Liujing = 58-110) and (La/Yb)N (Mengyin = 32.4-45.3; Liujing = 43.8-53.1) ratios, similar to adakitic rocks worldwide. The Mengyin adakitic porphyry has higher whole-rock εNd(t) values (-5.8 to - 4.1), more radiogenic Pb [(206Pb/204Pb)i = 18.35-18.39, (207Pb/204Pb)i = 15.55-15.56, (208Pb/204Pb)i = 38.20-38.23], higher zircon rim εHf(t) values (+ 3.3 to + 8.8) and δ18O values (+ 6.5‰ to + 7.9‰), and lower (87Sr/86Sr)i ratios (0.7049-0.7050) than the Liujing adakitic porphyry [εNd(t) = - 12.4 to - 12.2, (206Pb/204Pb)i = 17.63-17.72, (207Pb/204Pb)i = 15.56-15.58, (208Pb/204Pb)i = 37.76-37.94, εHf(t) = - 14.8 to - 11.2, δ18O = + 5.9‰ to + 7.1‰, (87Sr/86Sr)i = 0.7090-0.7091]. The

  9. Some Pb and Sr isotopic measurements on eclogites from the Roberts Victor mine, South Africa

    USGS Publications Warehouse

    Manton, W.I.; Tatsumoto, M.

    1971-01-01

    Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm; 206Pb/204Pb ratios range from 14.8 to 18.5, 207Pb/204Pb from 14.9 to 15.7, 208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100-1200?? and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of 206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood. ?? 1971.

  10. Southern Cordilleran Basaltic Andesite suite, southern Chihuahua, Mexico: A link between Tertiary continental arc and flood basalt magmatism in the North America

    SciTech Connect

    Cameron, K. L.; Nimz, G. J.; Kuentz, D.; Niemeyer, S.; Gunn, S.

    1989-06-10

    Mid-Cenozoic orogenic andesites and ignimbrites of western Mexico, southwestern New Mexico, and Arizona are commonly capped by basaltic andesites, most from 29--20 Ma. We refer to these mafic lavas as the Southern Cordilleran Basaltic Andesite (SCORBA) suite, and they may constitute the most extensive Cenozoic basaltic suite in North America. The SCORBA suite has trace element and isotopic characteristics of orogenic (arc) rocks (i.g., Ba/Nb/gt/40), and silica content (53--56% SiO/sub 2/) like the Grande Ronde Basalt, which represents about 80% of the volume of the Columbia River Group. Geochemical and isotopic data are presented on SCORBA lavas and rare mafic lavas (PRE-SCORBA) interlayered with older ignimbrites from a 700-km-long NE-SW transect of southern Chihuahua, Mexico. SCORBA and PRE-SCORBA lavas with relatively low K/P (/lt/7) and differing Ba/Nd (50 versus 18) have similar isotopic compositions, arguing against their isotopic signatures being controlled by crustal assimilation. Along the entire length of the transect, the basaltic rocks have /var epsilon//sub Nd/ and /sup 87/Sr//sup 86/Sr near bulk Earth and /sup 206/Pb//sup 204/Pb and /sup 207/Pb//sup 204/Pb ratios that lie along a 1.7 Ga pseudoisochron. The Pb isotopic variation is geographically controlled, becoming more radiogenic from east to west, reflecting mixing in mantle source regions. The eastern mantle source has low/sup 206/Pb//sup 204/Pb and is a mixture of an enriched, enriched-mantle-like (EMI) component with one or more depleted components, which could include an intraplate component with relatively high Nb/Y (/gt/0.8).

  11. Lead isotope profiling in dairy calves.

    PubMed

    Buchweitz, John; McClure-Brinton, Kimberly; Zyskowski, Justin; Stensen, Lauren; Lehner, Andreas

    2015-03-01

    Lead (Pb) is a common cause of heavy metal poisonings in cattle. Sources of Pb on farms include crankcase oil, machinery grease, batteries, plumbing, and paint chips. Consequently, consumption of Pb from these sources may negatively impact animal health and Pb may be inadvertently introduced into the food supply. Therefore, the scope of poisoning incidents must be clearly assessed and sources of intoxication identified and strategies to mitigate exposure evaluated and implemented to prevent future exposures. Stable isotope analysis by inductively-coupled plasma mass spectrometry (ICP-MS) has proven itself of value in forensic investigations. We report on the extension of Pb stable isotope analysis to bovine tissues and profile comparisons with paint chips and soils collected from an affected dairy farm to elucidate the primary source. Pb occurs naturally as four stable isotopes: (204)Pb, (206)Pb, (207)Pb, and (208)Pb. Herein a case is reported to illustrate the use of (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios to link environmental sources of exposure with tissues from a poisoned animal. Chemical Pb profiling provides a valuable tool for field investigative approaches to Pb poisoning in production agriculture and is applicable to subclinical exposures. PMID:25545316

  12. Tooth analyses of sources and intensity of lead exposure in children.

    PubMed Central

    Gulson, B L

    1996-01-01

    The sources and intensity of lead exposure in utero and in early childhood were determined using stable lead isotopic ratios and lead concentrations of incisal and cervical sections of deciduous teeth from 30 exposed and nonexposed children from the Broken Hill lead mining community in Australia. Incisal sections, consisting mostly of enamel, generally have low amounts of lead and isotopic compositions consistent with those expected in the mother during pregnancy. Cervical sections, consisting mostly of dentine with secondary dentine removed by resorption and reaming, generally have higher amounts of lead than the enamel and isotopic compositions consistent with the source of postnatal exposure. There are statistically significant differences in lead concentrations between incisal and cervical sections, representing within-tooth variation, for children with low and high lead exposure (p = 0.0007, 2 x 10(-6), respectively) and for those who have ingested leaded paint (p = 0.009). Statistically significant differences between incisal and cervical sections in these three exposure groups are also exhibited by the three sets of lead isotope ratios (e.g., p = 0.001 for 206Pb/204Pb ratio in the low exposure group). There are statistically significant differences between the low and high lead exposure groups for lead concentrations and isotopic ratios in incisal (p = 0.005 for lead concentration and 6 x 10(-6) for 206Pb/204Pb ratio) and cervical sections (p = 5 x 10(-5) for lead concentration and 6 x 10(-6) for 206Pb/204Pb ratio). The dentine results reflect an increased exposure to lead from the lead-zinc-silver mineral deposit (orebody lead) during early childhood, probably associated with hand-to-mouth activity. Leaded paint was identified as the source of elevated tooth lead in at least two cases. Increased exposure to lead from orebody and paint sources in utero was implicated in two cases, but there was no indication of previous exposure from the mothers' current

  13. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    USGS Publications Warehouse

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  14. A Pb Isotope Window Into the Geodynamics of the Archean Mantle

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.

    2004-05-01

    The U-Pb isotope system provides us with a powerful tool for attacking problems of the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because the mobility of U makes initial Pb isotope ratios from old silicate rocks difficult if not impossible to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide us with snapshots into initial Pb ratios in these rocks because their Pb isotopic composition is time invariant (U/Pb=0) and is also buffered against disturbances by their high Pb concentrations. Initial Pb isotopic compositions determined from galenas of VMS deposits from the 2.7 Ga Abitibi greenstone belt define a highly linear Pb/Pb isotope array (207Pb/204Pb vs. 206Pb/204Pb), nearly coincident with the 2.7 Ga geochron, whose slope corresponds to an age of ~4.4 Ga. The Abitibi array has a large range of 207Pb/204Pb, remarkably the same magnitude as modern MORB, but 206Pb/204Pb variations only one-tenth as large as MORB. The U/Pb variations that produced these Pb isotopic relationships could only have been created early in the Earth's history when more radiogenic 207Pb was produced than 206Pb. The Pb isotopic variations also require that evolution of Pb took place in a system that was nearly closed between 4.4 and 2.7 Ga. The Abitibi crust that hosts these VMS deposits is widely characterized by depleted Nd and Hf isotopic compositions, consistent with a the Abitibi being a dominantly juvenile addition from depleted mantle at 2.7 Ga with little evidence of contributions from older crust. In contrast, the Pb isotopic composition of 2.7 Ga VMS galenas from Archean cratons where older crust is known to occur (e.g., Slave) have Pb isotopic compositions displaced toward higher 206Pb/204Pb, clearly indicating the contribution of pre-2.7 Ga crust in their genesis. The simple observation is that there is Pb isotopic evidence for older crust where it is known to exist today and this

  15. Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother.

    PubMed Central

    Gulson, B L; Jameson, C W; Mahaffey, K R; Mizon, K J; Patison, N; Law, A J; Korsch, M J; Salter, M A

    1998-01-01

    We have obtained stable lead isotope and lead concentration data from a longitudinal study of mobilization of lead from the maternal skeleton during pregnancy and lactation and in which the newly born infants were monitored for 6 months postpartum to evaluate the effects of the local environment on lead body burden of the infant. Samples of maternal and infant blood, urine, and diet and especially breast milk were measured for 21 mothers and 24 infants. Blood lead concentrations were less than 5 microg/dl in all except one subject. The mean lead concentration in breast milk +/- standard deviation was 0.73 +/- 0.70 microg/kg. In seven subjects for whom serial breast milk sampling was possible, the lead concentration varied by factors of from 2 to 4, and for three subjects there was an increase at or after 90 days postpartum. For the first 60-90 days postpartum, the contribution from breast milk to blood lead in the infants varied from 36 to 80%. Multiple linear regression analyses indicated statistically significant relationships for some of the variables of isotope ratios and lead concentrations between breast milk, blood, urine, and diet for infants and mothers. For example, the analyses revealed that both a mother's breast milk 207Pb/206Pb and 206Pb/204Pb ratios and lead concentration provide information to predict her infant's blood 207Pb/206Pb and 206Pb/204Pb ratios. The major sources of lead in breast milk are from the maternal bone and diet. An evaluation of breast milk lead concentrations published over the last 15 years indicates that studies in which the ratio of lead concentrations in breast milk to lead concentrations in whole maternal blood (Multiple>100) were greater than 15 should be viewed with caution because of potential contamination during sampling and/or laboratory analyses. Selected studies also appear to show a linear relationship between breast milk and maternal whole blood, with the percentage of lead in breast milk compared with whole blood

  16. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  17. Lead isotope constraints on the origin of andesite and dacite magmas at Tungurahua volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Nauret, Francois; Ancellin, Marie-Anne; Vlastelic, Ivan; Tournigand, Pierre-Yves; Samaniego, Pablo; Le Pennec, Jean Luc; Gannoun, Mouhcine; Hidalgo, Silvana; Schiano, Pierre

    2016-04-01

    Understanding the occurrence of large explosive eruptions involving silica-rich magmas at mostly andesitic volcanoes is crucial for volcanic hazard assessment Here we focus on the well-known active Tungurahua volcano (Ecuador), specifically its eruptive sequence for the last 3000 years BP, which are characterized by VEI 3 explosive events involving mostly homogeneous andesitic compositions (56-59 wt.% SiO2). However, some large eruptions (VEI ≥ 4) involving andesitic and dacitic magmas (up to 66 wt.% SiO2) also occur at 3000 BP, 1250 BP and 1886 AD. An additional outburst of siliceous magmas occurred during the last eruptive eruption of this volcano in 2006 [1]. Volcanic products at Tungurahua are described as been generated by a binary mixing between a silica-rich and a silica-poor end-member, but the origin of these components was not discussed [2]. Major, trace elements and Sr-Nd-Pb isotopes were used to investigate the genesis of the andesites and dacites. Andesites are heterogeneous in terms of Pb isotopes (206Pb/204Pb: 18.189-19.154, 207Pb/204Pb:15.658-15.696, 208Pb/204Pb: 38.752-38.918, 207Pb/206Pb: 0.8240-0.8275) but homogeneous in terms of major-trace element. Dacite are characterized by homogenous and low 207Pb/206Pb (0.8235±0.0001), very low Nb/U (1.97 to 4.49) and Ce/Pb (2.52-2.99) and high Th/La ratios (0.24 to 0.49). Triangular distribution of data in major element or trace element ratio vs. Pb isotopes plots suggests that at least three components control geochemical variability at Tungurahua. We interpret andesite compositions as reflecting mainly a deep mixture of two mantle components, with small addition of crustal material. We suggest that dacite results from a mixing between various andesite compositions and a larger amount of a contaminant derived from the volcanic basement of the Tungurahua made of late Cretaceous to Palaeogene oceanic plateau basalts and volcano-sedimentary rocks volcanic. Since andesite and dacite occur during the same

  18. Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf-Pb-Os isotopes

    NASA Astrophysics Data System (ADS)

    Aldanmaz, Ercan; Pickard, Megan; Meisel, Thomas; Altunkaynak, Şafak; Sayıt, Kaan; Şen, Pınar; Hanan, Barry B.; Furman, Tanya

    2015-08-01

    Hf-Pb-Os isotope compositions and highly siderophile element (HSE) abundance variations are used to evaluate the mantle source characteristics and possible effects of differentiation processes in lavas from western Turkey, where the eruption of Late Miocene to Quaternary OIB-type intraplate mafic alkaline lavas followed pre-Middle Miocene convergent margin-type volcanism. Concentrations of Os, Ir, and Ru (IPGE) in the OIB-type intraplate lavas decrease with fractionation for primitive melts (MgO > 10 wt%), suggesting that these elements reside predominantly in olivine and associated HSE retaining trace phases and behave compatibly during olivine-dominated fractionation. Fractional crystallization trends indicate distinctly lower bulk partition coefficients for IPGE in more evolved lavas, possibly reflecting a change in the fractionating assemblages. Pd and Re in the primitive melts display negative correlations with MgO, demonstrating moderately incompatible behavior of these elements during fractionation, while the significantly scattered variation in Pt against MgO may indicate the effects of micronuggets of a Pt-rich alloy. Os-rich alkaline primary lavas (>50 ppt Os) exhibit a limited range of 187Os/188Os (0.1361-0.1404), with some xenolith-bearing lavas displaying depletions in 187Os/188Os (0.1131-0.1232), suggesting slight compositional modification of primitive melts through contamination with highly depleted, Os-rich mantle lithosphere. More radiogenic Os isotope ratios (187Os/188Os > 0.1954) in the evolved lavas reflect contamination of the magmas by high187Os/188Os crustal material during shallow differentiation. The OIB-type lavas show limited variations in Hf and Pb isotopes with 176Hf/177Hf = 0.282941-0.283051, 206Pb/204Pb = 18.683-19.091, 207Pb/204Pb = 15.579-15.646, 208Pb/204Pb = 38.550-38.993; 176Hf/177Hf ratios correlate negatively with 208Pb*/206Pb*, suggesting the effects of similar mantle processes on the evolution of time-integrated Th/U and Lu

  19. The origin of the Line Islands: plate or plume controlled volcanism?

    NASA Astrophysics Data System (ADS)

    Storm, L. P.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    foundation of the central and southern provinces is shallower than the regional seafloor, suggesting that the thickness of the lithosphere in these two provinces may have an influence on the chemical compositions of seamounts. A suite of samples, previously analyzed for 40Ar/39Ar age data, was processed for lead (Pb), neodymium (Nd), hafnium (Hf) and strontium (Sr) isotope measurements to investigate whether the Line Islands are caused by 4-5 concurrent plumes or a lithospherically controlled source. Pb isotope compositions define two distinct groups: (1) low 206Pb/204Pb and 207Pb/204Pb ratios, and (2) high 206Pb/204Pb and 207Pb/204Pb ratios. When Pb isotope compositions are considered in relation to their dredge locations, the two identified groups do not define age-progressive volcanic chains expected for a plume origin. Instead, high 206Pb/204Pb and 207Pb/204Pb samples are strictly limited between the Molokai and Clarion fracture zones, suggesting that ocean crust segmentation related to mid-ocean ridge spreading and adjustments in the Pacific-Phoenix-Farallon triple junction partly controlled the melt compositions. These results, therefore, suggest that this major volcanic chain was likely not plume-derived.

  20. On the recent enrichment of subcontinental lithosphere: A detailed UPb study of spinel lherzolite xenoliths, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carignan, Jean; Ludden, John; Francis, Don

    1996-11-01

    Lead strontium, and osmium isotopic data have been obtained for whole rocks and mineral separates (olivine, orthopyroxene, clinopyroxene, and spinel) for spinel lherzolite xenoliths hosted by lavas of the Quaternary Alligator Lake volcanic centre, southern Yukon. Whole-rock xenolith samples display a large variation of lead concentrations, from 16 ppb for a harzburgite to up to 400 ppb for a lherzolite. However, their lead isotope ratios are relatively homogeneous with 206Pb /204Pb of 19.07 ± 0.08, 207Pb /204Pb of 15.65 ± 0.07, and 208Pb /204Pb of 38.67 ± 0.17 ( n = 7). However, the 238U /204Pb ratios display a large variation, from 12.2 to 46.5, and do not correlate with indices of fertility such as calcium or aluminum content. Mineral separates yield even larger variations in lead isotopic composition and lead and uranium concentrations. Some olivine fractions have both the lowest radiogenic compositions ( 206Pb /204Pb = 18.75 ) and the lowest 238U /204Pb ratios (˜3.1). Clinopyroxenes (cpx) display the highest lead and uranium concentrations (up to 1277 ppb and 195 ppb, respectivelly) and generally similar or more radiogenic lead isotopic composition and higher 238U /204Pb ratios than their whole-rock compositions. Orthopyroxene and spinel fractions yield intermediate compositions between olivine and cpx. Although whole rocks and cpx for individual samples yield almost identical 87Sr /86Sr , the xenoliths ( n = 5) display a large variation of strontium isotopic compositions ( 87Sr /86Sr from 0.07033 to 0.7050), lead and strontium isotope ratios of cpx and the distribution of the data in a UPb isochron diagram suggest that the subcontinental lithosphere under the Yukon was affected by a recent (< ˜30 Ma) enrichment in uranium, lead, and strontium. The metasomatic fluid/magma might have had an isotopic composition close to that of some sediments in the northern Pacific Ocean. When compared to K d values reported in the literature, olivine is enriched in

  1. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  2. Childhood lead exposure in an industrial town in China: coupling stable isotope ratios with bioaccessible lead.

    PubMed

    Li, Hong-Bo; Chen, Kai; Juhasz, Albert L; Huang, Lei; Ma, Lena Q

    2015-04-21

    Fingerprinting based on stable isotopes of lead (Pb) in blood and environmental media helps to identify Pb exposure pathways in children. However, previous studies used stable isotopes of total Pb in media. In this study, a wire rope production town in China (Zhuhang) was selected for investigating the effectiveness of using isotope ratios in bioaccessible Pb to identify childhood Pb exposure pathways. Blood Pb levels of 115 children in Zhuhang were 1.7-20.4 μg dL(-1), averaging 6.1 ± 3.2 μg dL(-1) (mean ± standard deviation), and were ∼1.6 times the national average in China (3.9 ± 1.8 μg dL(-1)). Among different environmental media (housedust, soil, PM10, vegetables, rice, and drinking water), housedust (695 ± 495 mg kg(-1)) and vegetables [0.36 ± 0.40 mg (kg of fresh weight)(-1)] contained elevated Pb concentrations. The isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) of total Pb were the highest in housedust (0.8587 ± 0.0039 and 2.1049 ± 0.0087) but lower than blood Pb ratios (0.8634 ± 0.0027 and 2.1244 ± 0.0061). When using bioaccessible Pb in housedust (0.8639 ± 0.0018 and 2.1171 ± 0.0036), the isotope ratios overlapped with blood Pb ratios, suggesting that incidental ingestion of housedust was the predominant contributor to children's blood Pb. Coupling the stable isotope technique with bioaccessible Pb is more reliable for identifying Pb exposure pathways than total Pb determinations. PMID:25803404

  3. Sr, Nd, and Pb isotopic character of Tertiary basalts from southwest Poland

    NASA Astrophysics Data System (ADS)

    Blusztajn, Jerzy; Hart, Stanley R.

    1989-10-01

    Tertiary basaltic volcanics from southwest Poland which form the eastern part of the Central European Volcanic Province (CEVP) have been studied for Sr, Nd, and Pb isotopic compositions. 87Sr/86Sr ratios range from 0.70317 to 0.70369, 143Nd/144Nd ratios range from 0.51285 to 0.51302 and Pb isotopic compositions range from 19.42 to 19.94 for 206Pb/204Pb. These data indicate the influence of three end-member mantle components DMM, HIMU and EM. An analysis of all isotopic results from the CEVP leads to the conclusion that basalts from SW Poland have the most depleted character. We propose a model whereby the depleted source mantle for the CEVP interacted with enriched components (EM). The western part of the CEVP was enriched on a larger scale than the eastern part, probably due to the influence of the Rhine Graben rift.

  4. Enriched components in the Hawaiian plume: Evidence from Kahoolawe Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Frey, Frederick A.; Blichert-Toft, Janne; Fodor, R. V.; Bauer, Glenn R.; Xu, Guangping

    2005-11-01

    The geochemical differences between individual Hawaiian shields provide clues to the magma source components in the Hawaiian plume. Lavas from Koolau (Makapuu-stage) and Kahoolawe volcanoes define the enriched, i.e., relatively high 87Sr/86Sr and low 143Nd/144Nd, extreme for Hawaiian shield lavas. There are, however, important geochemical differences between these shields; Kahoolawe lavas lack the relatively high SiO2, low CaO, and high Sr/Nb and La/Nb that are characteristic of Makapuu-stage Koolau lavas, and they are offset from other Hawaiian shield lavas to high 87Sr/86Sr at a given 143Nd/144Nd. Consequently, a varying role for recycled plagioclase-rich gabbro is inferred, in particular, lower amounts of the low 87Sr/86Sr component in Kahoolawe lavas. Also, lavas from Loa-trend volcanoes, such as Kahoolawe, define trends ranging toward high 208Pb*/206Pb* and 87Sr/86Sr and low 143Nd/144Nd and 176Hf/177Hf. Such trends are consistent with variable amounts of recycled sediment sampled by Loa-trend volcanoes, with the largest proportion in Makapuu-stage Koolau lavas. Therefore the enriched component in the Hawaiian plume, the Koolau component, is recycled oceanic crust, which is heterogeneous because of varying proportions of sediment, basalt, and gabbro. Hawaiian shield-stage lavas range widely in 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and 206Pb/204Pb, but they have similar ratios of Sr/Nd, Nd/Hf, and Hf/Pb, each varying by a factor of <3 among the Hawaiian shields. This observation has important consequences. Namely, the similar Hf/Pb ratios are inconsistent with a two-component (i.e., Kea and Koolau) mixing model for explaining the hyperbolic trend of 176Hf/177Hf versus 206Pb/204Pb defined by shield lavas. Such a model requires end-members with very different Hf/Pb (a factor of 15 to 40), but this is not observed; therefore a third component must be involved. On the basis of trends of 208Pb*/206Pb* versus 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf, we infer that Loa

  5. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  6. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic

  7. Nd, Sr, Pb, Ar, and O isotopic systematics of Sturgeon Lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition

    NASA Astrophysics Data System (ADS)

    Hegner, E.; Roddick, J. C.; Fortier, S. M.; Hulbert, L.

    1995-06-01

    Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 σ, MSWD=1.2; 87Sr/86Sr( t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of ˜410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of δ 18O as high as +20‰ (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive low-temperature alteration. The δ 13C of matrix carbonate is -11.3‰ (PDB), slightly lighter than typical values from the literature. The δ 18O values of about +5‰ (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2‰ heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample ( ɛ Nd=+0.8; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial ɛ Nd values of +1.7 and +0.5 (87Sr/86Sr( t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high ɛ Nd(98. Ma) of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.

  8. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  9. A lead isotope study of mineralization in the Saudi Arabian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Doe, B.R.; Roberts, R.J.; Delevaux, M.H.; Gramlich, J.W.

    1980-01-01

    New lead isotope data are presented for some late Precambrian and early Paleozoic vein and massive sulfide deposits in the Arabian Shield. Using the Stacey Kramers (1975) model for lead isotope evolution, isochron model ages range between 720 m.y. and 420 m.y. Most of the massive sulfide deposits in the region formed before 680 m.y. ago, during evolution of the shield. Vein type mineralization of higher lead content occurred during the Pan African event about 550 m.y. ago and continued through the Najd period of extensive faulting in the shield that ended about 530 m.y. ago. Late post-tectonic metamorphism may have been responsible for vein deposits that have model ages less than 500 m.y. Alternatively some of these younger model ages may be too low due to the mineralizing fluids acquiring radiogenic lead from appreciably older local crustal rocks at the time of ore formation. The low207Pb/204Pb ratios found for the deposits in the main part of the shield and for those in north-eastern Egypt, indicate that the Arabian craton was formed in an oceanic crustal environment during the late Precambrian. Involvement of older, upper-crustal material in the formation of the ore deposits in this part of the shield is precluded by their low207Pb/204Pb and208Pb/204Pb characteristics. In the eastern part of the shield, east of longitude 44??20???E towards the Al Amar-Idsas fault region, lead data are quite different. They exhibit a linear207Pb/204Pb-206Pb/204Pb relationship together with distinctly higher208Pb/204Pb characteristics. These data imply the existence of lower crustal rocks of early Proterozoic age that apparently have underthrust the shield rocks from the east. If most of the samples we have analyzed from this easterly region were mineralized 530 m.y. ago, then the age of the older continental rocks is 2,100??300 m.y. (2??). The presence of upper crustal rocks, possibly also of early Proterozoic age, is indicated by galena data from Hailan in South Yemen and also

  10. Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, 207Pb/ 206Pb, and δ 18O systematics of Jack Hills zircons

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Harrison, T. Mark; McCulloch, Malcolm T.; Young, Edward D.

    2011-09-01

    Several lines of isotopic evidence - the most direct of which is from Hadean Jack Hills zircons - suggest a very early history of crust formation on Earth that began by about 4.5 Ga. To constrain both the fate of the reservoir for this crust and the nature of crustal evolution in the sediment source region of the Jack Hills, Western Australia, during the early Archean, we report here initial 176Hf/ 177Hf ratios and δ 18O systematics for <4 Ga Jack Hills zircons. In contrast to the significant number of Hadean zircons which contain highly unradiogenic 176Hf/ 177Hf requiring a near-zero Lu/Hf reservoir to have separated from the Earth's mantle by 4.5 Ga, Jack Hills zircons younger than ca. 3.6 Ga are more radiogenic than -13ɛ (CHUR) at 3.4 Ga in contrast to projected values at 3.4 Ga of -20ɛ for the unradiogenic Hadean reservoir indicating that some later juvenile addition to the crust is required to explain the more radiogenic younger zircons. The shift in the Lu-Hf systematics together with a narrow range of mostly mantle-like δ 18O values among the <3.6 Ga zircons (in contrast to the spread towards sedimentary δ 18O among Hadean samples) suggests a period of transition between 3.6 and 4 Ga in which the magmatic setting of zircon formation changed and the highly unradiogenic low Lu/Hf Hadean crust ceased to be available for intracrustal reworking. Constraining the nature of this transition provides important insights into the processes of crustal reworking and recycling of the Earth's Hadean crust as well as early Archean crustal evolution.

  11. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai

    NASA Astrophysics Data System (ADS)

    Hanano, Diane; Weis, Dominique; Scoates, James S.; Aciego, Sarah; Depaolo, Donald J.

    2010-01-01

    Sr-Nd-Pb-Hf isotopic compositions of postshield lavas from two pairs of Hawaiian volcanoes, Mauna Kea and Kohala (Kea trend) and Hualalai and Mahukona (Loa trend), allow for identification of small-scale (tens of kilometers) heterogeneities in the Hawaiian mantle plume and provide constraints on their distribution. The postshield lavas range from transitional/alkalic basalt to trachyte and are enriched in incompatible trace elements (e.g., LaN/YbN = 6.0-16.2). These lavas are characterized by a limited range of Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.70343-0.70365, 143Nd/144Nd = 0.51292-0.51301, and 176Hf/177Hf = 0.28311-0.28314) and have distinct Pb isotopic compositions (206Pb/204Pb = 17.89-18.44, 207Pb/204Pb = 15.44-15.49, and 208Pb/204Pb = 37.68-38.01) that correspond to their respective Kea or Loa side of the Pb-Pb isotopic boundary. Mauna Kea lavas show a systematic shift to less radiogenic Pb isotopic compositions from the shield to postshield stage and they trend to low 87Sr/86Sr toward, but not as extreme as, compositions characteristic of rejuvenated stage lavas. Hualalai postshield lavas lie distinctly above the Hf-Nd Hawaiian array and have much lower Pb isotopic ratios than shield lavas, including some of the least radiogenic values (e.g., 206Pb/204Pb = 17.89-18.01) of recent Hawaiian volcanoes. In contrast, comparison of Kohala with the adjacent Mahukona volcano shows that these older postshield lavas become more radiogenic in Pb during the late stages of volcanism. The isotope systematics of the postshield lavas cannot be explained by mixing between Hawaiian plume end-members (e.g., Kea, Koolau, and Loihi) or by assimilation of Pacific lithosphere and are consistent with the presence of ancient recycled lower oceanic crust (±sediments) in their source. More than one depleted component is sampled by the postshield lavas and these components are long-lived features of the Hawaiian plume that are present in both the Kea and Loa source regions

  12. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1)

    NASA Astrophysics Data System (ADS)

    Garapić, G.; Jackson, M. G.; Hauri, E. H.; Hart, S. R.; Farley, K. A.; Blusztajn, J. S.; Woodhead, J. D.

    2015-07-01

    We present new He-Sr-Nd-Pb-Os isotopic compositions and major and trace-element concentrations for ten subaerially-erupted lavas and one seamount lava associated with the Pitcairn hotspot. The most geochemically-enriched lavas at the Pitcairn hotspot have signatures that are consistent with recycled sediments derived from upper continental crust. Pitcairn lavas have elevated Ti, which also supports the presence of a mafic protolith in the Pitcairn mantle. A subset of Pitcairn seamount samples, including the seamount sample presented here, are tholeiitic. Tholeiitic lavas are uncommon at ocean hotspots located far from mid-ocean ridges. Like tholeiites that erupted in Hawaii, the presence of tholeiites in the Pitcairn magmatic suite can be explained by melting a silica-saturated recycled mafic component in the Pitcairn mantle source. We also present the highest 3He/4He ratio (12.6 Ra, ratio to atmosphere) from the Pitcairn hotspot. This sample anchors the high 206Pb/204Pb portion of the Pitcairn array and provides evidence for a plume component in the Pitcairn mantle. In contrast, Pitcairn lavas that have the lowest 206Pb/204Pb are the most geochemically enriched, and have the highest 87Sr/86Sr and lowest 143Nd/144Nd in the Pitcairn suite; these EM-1 end-member lavas have MORB-like 3He/4He (~ 8 Ra, ratio to atmosphere). Recycled oceanic crust and sediment suggested to be in the Pitcairn EM-1 mantle are expected to have low 3He/4He (< 0.1 Ra). Therefore, the higher, MORB-like 3He/4He in Pitcairn EM-1 lavas is paradoxical, but might be explained by diffusive exchange of helium, but not the heavy radiogenic isotopes, with the ambient mantle over billion-year timescales.

  13. Age and Geochemical Data From the Madeira-Tore Rise and Surrounding Seamounts: New Insights Into East Atlantic Volcanism

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hoernle, K. A.; Kluegel, A.; van den Bogaard, P.

    2003-12-01

    Located off the NW African continental margin is a >3000 km long belt of volcanic archipelagoes (e.g. Canary, Madeira Islands) and large seamounts including the 900 km long Madeira-Tore Rise (MTR). The cause of the East Atlantic volcanism, and in particular the origin and age of the MTR, which is composed of a widespread plateau with several seamount groups, is controversial. Proposed models include an origin of the MTR at the Mid Atlantic Ridge, formation over a hotspot, or as a product of diffuse small-scale mantle convection. All recently dredged volcanic samples (RV Meteor cruise M51/1) from the MTR and nearby off-rise seamounts exhibit enriched Ocean Island Basalt-like incompatible trace element signatures similar to HIMU (high time integrated 238U/204Pb) ocean islands. Their isotope compositions are similar to those from Madeira with 87Sr/86Sr and 143Nd/144Nd overlapping Atlantic N-MORB to a large extent, but Pb isotope ratios plotting well below the Northern Hemisphere Reference Line and extending to 206Pb/204Pb values of 19.90. Our preliminary data confirm the existence of at least two distinct isotopic domains in the eastern North Atlantic: 1) a Madeira-like domain (as characterized above) stretching from Madeira Island along the MTR to the NE as far as the Azores Gibraltar fracture zone, and 2) a Canary-like domain with Sr, Nd, Pb isotope ratios intermediate between N-MORB and HIMU (206Pb/204Pb = 19.0-20.2; 207Pb/204Pb = 15.54-15.66) but with lower 143Nd/144Nd ratios (<0.5130) than the Madeira domain. We interpret the distinct compositions of these domains to reflect spatial zonation in the deeper sources of the mantle upwellings. The domains include zones influenced by Enriched Mantle (EM) I and II, which appear to be orientated along the extension of the Oceanographer (at ˜ 34° N) and the Azores-Gibraltar fracture zones (at ˜ 37° N), respectively. The first zone includes a hitherto unknown seamount that exhibits the most extreme EM I composition yet

  14. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution

    USGS Publications Warehouse

    Tatsumoto, M.

    1978-01-01

    New data are given in this report for (1) Pb isotopic compositions and U, Th, and Pb concentrations of basalts from the island of Hawaii; (2) redetermined Pb isotopic compositions of some abyssal tholeiites; and (3) U, Th, and Pb concentrations of altered and fresh abyssal basalts, and basalt genesis and mantle evolution are discussed. The Th U ratios of abyssal and Japanese tholeiites are distinctly lower than those of tholeiites and alkali basalts from other areas. It is thought that these low values reflect a part of the mantle depleted in large ionic lithophile elements. Thus a mantle evolution model is presented, in which Th U ratios of the depleted zone in the mantle have decreased to ???2, and U Pb ratios have increased, showing an apparent ???1.5-b.y. isochron trend in the 207Pb/204Pb vs. 206Pb/204Pb plot. The Pb isotopic compositions of basalts from the island of Hawaii are distinct for each of the five volcanoes, and within each volcano, Pb's of tholeiites and alkali basalts are similar. An interaction between partially melted material (hot plume?) of the asthenosphere and the lithosphere is suggested to explain the trend in the Pb isotopic compositions of Hawaiian basalts. ?? 1978.

  15. Srsbnd Ndsbnd Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust

    NASA Astrophysics Data System (ADS)

    He, Yongsheng; Li, Shuguang; Hoefs, Jochen; Kleinhanns, Ilka C.

    2013-01-01

    In order to characterize the recycled lower continental crust (LCC) in the Dabie orogen, 17 Early Cretaceous low-Mg adakitic (LMA) and 9 normal (non-adakitic) granitoids have been investigated for Srsbnd Ndsbnd Pb isotopes. Combined with literature data, LMA have low ƐNd(t) (- 27.8 to - 14.7) and 206Pb/204Pb(i) (15.69-17.16) and low to moderately high 87Sr/86Sr(i) (0.7066 to 0.7087) ratios. Normal granitoids yield isotope ratios similar to adakitic rocks, except a few with 87Sr/86Sr (i) up to 0.7105. Dabie LMA define a linear trend parallel to the North Hemisphere Reference Line (NHRL) in a 208Pb/204Pb(i)- 206Pb/204Pb(i) diagram. For a given 206Pb/204Pb(i), the 208Pb/204Pb(i) or ∆8/4 (152-217) of Dabie LMA are close to the majority of UHP gneisses and the Neoproterozoic mafic rocks from the northern margin of the South China Block (SCB), but significantly higher than adakitic rocks from the North China Block (∆8/4 < 150). Considering the commonly present Neoproterozoic inherited zircons, we suggest that the LMA in the Dabie orogen are derived from a thickened LCC that could be dominantly composed of ancient SCB lower crust. The Srsbnd Ndsbnd Pb isotopic composition of LMA are similar to those of Post-Collisional Mafic Igneous rocks (PCMI) from the Dabie orogen, but different to exhumed UHP rocks. The Srsbnd Ndsbnd Pb isotopic system of the mantle source of the PCMI could be enriched in components dominantly from delaminated LCC of the Dabie orogen instead of deeply subducted continental crust, which is in contrast to O- and C-isotope data by [Zhao, Z.F., Zheng, Y.F., Wei, C.S., Wu, Y.B., Chen, F.K., and Jahn, B.M., 2005. Zircon Usbnd Pb age, element and Csbnd O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83(1-2), 1-28; Dai, L.Q., Zhao, Z.F., Zheng, Y.F., Li, Q.L., Yang, Y.H., and Dai, M.N., 2011. Zircon Hfsbnd O isotope evidence for crust-mantle interaction during continental deep

  16. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung

    2016-03-01

    Lead isotopic compositions were determined in leachates that were generated using sequential extractions of dry deposition samples of Asian dust (AD) and non-Asian dust (NAD) and Chinese desert soils, and used to apportion Pb sources. Results showed significant differences in (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in non-residual fractions between the dry deposition samples and the Chinese desert soils while (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in residual fraction of the dry deposition of AD and NAD were similar to the mean (206)Pb/(207)Pb and (206)Pb/(204)Pb in residual fraction of the Alashan Plateau soil. These results indicate that the geogenic materials of the dry deposition of AD and NAD were largely influenced by the Alashan Plateau soil, while the secondary sources of the dry deposition were different from those of the Chinese desert soils. In particular, the lead isotopic compositions in non-residual fractions of the dry deposition were homogenous, which implies that the non-residual four fractions (F1 to F4) shared the primary anthropogenic origin. (206)Pb/(207)Pb values and the predominant wind directions in the study area suggested that airborne particulates of heavily industrialized Chinese cities were one of the main Pb sources. Source apportionment calculations showed that the average proportion of anthropogenic Pb in the dry deposition of AD and NAD was 87% and 95% respectively in total Pb extraction, 92% and 97% in non-residual fractions, 15% and 49% in residual fraction. Approximately 81% and 80% of the anthropogenic Pb was contributed by coal combustion in China in the dry deposition of AD and NAD respectively while the remainder was derived from industrial Pb contamination. The research result proposes that sequential extractions with Pb isotope analysis are a useful tool for the discrimination of anthropogenic and geogenic origins in highly contaminated AD and NAD. PMID:26708760

  17. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  18. A proposed new approach and unified solution to old Pb paradoxes

    NASA Astrophysics Data System (ADS)

    Castillo, Paterno R.

    2016-05-01

    One of the most remarkable features of many and, perhaps, all oceanic basalts is that their Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) are too radiogenic to be coming from the undifferentiated mantle or bulk silicate Earth. This has created three major concerns in the behavior of U, Th and Pb in the Earth's mantle that have been termed the Pb paradoxes. These are the unexpectedly long time-integrated high U/Pb (1st paradox), long time-integrated low Th/U (2nd paradox) and constant Ce/Pb and Nb/U (3rd paradox) in the mantle sources of oceanic basalts. The origins of such unexpected ratios have been the object of intense studies that produced several highly significant, but generally individualized results during the last four decades. Detailed analysis of available data shows that the paradoxes are closely interrelated as they all pertain to the mantle and have many common characteristic features. Thus, the Pb paradoxes constitute a system of equations that must be solved all together as each solution must satisfy every equation in the system. For example, compositional data for the voluminous mid-ocean ridge basalts (MORB) show that the 1st and 2nd paradoxes exhibit a long time-integrated enrichment of U and the Th/U and Nb/Th ratios are also constant. A single solution to simultaneously explain the paradoxes in MORB is possible if recycled materials with variable enrichments in incompatible trace elements, particularly U and its daughter Pb* plus Nb, Ce, and Th are added to or mixed with the depleted upper mantle. Significantly, a similar binary mixing solution has been proposed for the Pb paradoxes in ocean island basalts.

  19. Petrogenesis of Late Cenozoic volcanic rocks from the Raton-Clayton volcanic field, northeastern New Mexico and southeastern Colorado

    SciTech Connect

    Zhu, J.; Stormer, J.C.; Wright, J.E. . Dept. of Geology and Geophysics); Middlefeldt, D.D. )

    1993-04-01

    The Raton-Clayton volcanic field, located in the eastern flank of the Rio Grande rift on the Great Plains, is at the northeastern end of the Jemez lineament. A broad variety of late Cenozoic volcanic rocks ranging from rhyodacites through basalts to basanites and nephelinites, with well established ages, provides a good probe of magma sources at different depths down to the mantle. New Sr, Nd and Pb isotopic data on late Cenozoic volcanic rocks from the Raton-Clayton volcanic field yield significant variations. [sup 87]Sr/[sup 86]Sr ratios vary from 0.70397--0.70499, [var epsilon][sub Nd] values range from [minus]3.7--2.4, [sup 206]Pb/[sup 204]Pb ratios are in the range of 17.43--18.48, [sup 207]Pb/[sup 204]Pb from 15.45--15.54 and [sup 208]Pb/[sup 204]Pb from 37.27--38.05. The mafic feldspathoidal rocks, believed to be derived from the enriched mantle reservoir with little crustal contamination, show relatively homogeneous [sup 87]Sr/[sup 86]Sr (ca. 0.7041) and [var epsilon][sub Nd] (ca. 2). A positive trend of Pb isotopic ratios, however, suggests possible mantle heterogeneity in Pb isotopic composition beneath the continent. Isotopic data from basaltic lavas display well defined variation trends, bringing to light the role of crustal components in the magmatic process. A strong signature of upper crustal involvement is indicated in the formation of tholeiitic basalts with dicktytaxitic texture, while isotope data from alkali olivine basalts and Capulin trachybasalts suggest lower crust contaminations of these rocks. An apparent isotopic variation trend of the dicktytaxitic basalts is well correlated with geographic location from south to north. Significant discrepancies in isotopic compositions of more silicic rocks compared with those of similar rocks from the Taos Plateau volcanic field to the west, may indicate either large differences in lower crustal composition or different mechanisms in generating these magmas.

  20. Mesozoic igneous intrusions in New England and Quebec: Implications from lead (Pb) isotopes on petrogenesis and mantle sources (Ascutney Mountain, Vermont; Mont Saint Hilaire, Quebec; Pliny Complex, New Hampshire)

    SciTech Connect

    Schucker, D.E.

    1992-01-01

    Lead isotopes are used to study Mesozoic intrusions from New England and Quebec, specifically the igneous complexes of Ascutney Mountain (Vermont), Mont Saint Hilaire (Quebec), and Pliny (New Hampshire). The main objectives are to address the: (1) petrogenesis of specific complexes using Pb isotopes along with previous results; and (2) sources of parental magmas in the context of a possible plume source for the Cretaceous intrusions and New England Seamounts. Analytical procedures for Pb and U are also described in detail. For each of the three complexes, significant variation in apparent initial [sup 208]Pb/[sup 204]Pb, [sup 207]Pb/[sup 204]Pb, and [sup 206]Pb/[sup 204]Pb ratios are observed. These variations reflect crustal contamination and local country rocks are isotopically suitable contaminants. Contamination lowers the Pb isotopic ratios of the modified magmas. The Pb ratios of the parental magmas are constrained by defining trends resulting from crustal contamination. At the Ascutney complex, granites appear to be uniform at the time of formation based on feldspar results. Granite whole rocks exhibit open system U-Pb behavior which is attributed to significant recent U loss (of up to 38%). Both local schists and gneisses are important contaminants with generally <25% contamination. Significant isotopic variations are apparent at Mont Saint Hilaire where rock-feldspar variations are apparently not in isotopic equilibrium. Feldspars reflect magmatic values and indicate crustal contamination of a parental magma for the Hilaire complex. A limited data set for the Pliny complex suggests a parental magma. The Pb results support a common mantle source for the Cretaceous continental intrusions (Ascutney and Mont Saint Hilaire) and the New England Seamounts. They imply magma from a sublithospheric mantle-plume, and that magmas ascended with little or no lithospheric interaction. The magma source for the Jurassic Pliny complex appears to be different.

  1. Alpha / Mendeleev Ridge and Chukchi Borderland 40Ar/39Ar Geochronology and Geochemistry: Character of the First Submarine Intraplate Lavas Recovered from the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Mayer, Larry A.; Aviado, Kimberly; Bryce, Julie; Andronikov, Alex; Brumley, Kelley; Blichert-Toft, Janne; Petrov, Oleg; Shokalsky, Sergey

    2015-04-01

    At least three episodes of magmatic activity have been recognized on the basis of 40Ar/39Ar age determinations in the submarine basaltic samples dredged, drilled or grabbed with a manipulation arm from Alpha / Mendeleev Ridge and Chukchi Borderland of the Arctic Ocean by US Coast Guard Icebreaker Healy, in August-September 2008, and Russian research vessel Captain Dranitsin in August-October 2012: ca. 112 Ma, ca. 100 Ma and ca. 85-73 Ma. Major-oxide and trace-element concentrations, and Pb, Sr, Nd, and Hf isotopic ratios of the recovered lavas provide important constraints on the composition and sources for the original melts. Lavas erupted at ca. 112 Ma (Group 1) have alkali basalt major-oxide compositions. Their low degree of rare-earth-element (REE) fractionation (CeN/YbN = 1.7-2.5), combined with high overall HREE (22-24 times chondrite) and Mg# ~54, suggest derivation from a garnet-free source followed by only minimal crystal fractionation for this group. Pb-Sr-Nd-Hf isotopic systematics of the lavas (206Pb/204Pb = 18.73-18.79; 207Pb/204Pb = 15.54-15.56; 208Pb/204Pb = 38.28-38.35; 143Nd/144Nd = 0.512594-0.512610; 87Sr/86Sr = 0.709458-0.709601; 176Hf/177Hf = 0.283224), together with ratios of highly incompatible trace elements (Th/Ce = 0.09-0.11; Ce/Nb = 2.58-3.09; Th/Nb = 0.24-0.33), point toward a lithospheric source for the magmas. Eruptions at ca. 100 Ma and 85-73 Ma produced two types of lavas: low-Ti tholeiitic basalts - LT, and high-Ti alkali basalts - HT, both assigned to Group 2. This distribution of low- and high-Ti lavas is common in continental flood basalt (CFB) provinces elsewhere, and has been attributed to plume activity in some studies. The trace-element abundance patterns for these Group 2 Arctic lavas are also very similar to those of CFBs elsewhere. Their low degrees of REE fractionation (CeN/YbN = 2.0-3.3) accompanied by progressively decreasing Mg#s (from 53 to 33) suggest a garnet-free source, with the derivative magmas experiencing

  2. Unradiogenic Pb Anomalies in Historical Lavas of Piton de la Fournaise (Reunion Island)

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.

    2008-12-01

    A detailed investigation (218 samples) of Pb isotope variations in the most recent (1975-2007), well- documented and densely sampled eruptions of Piton de la Fournaise has been undertaken (Vlastelic et al, in press). Lead isotopes exhibit smooth temporal fluctuations (18.87<206Pb/204Pb<18.94) on which superimpose rare (5), but pronounced unradiogenic spikes (206Pb/204Pb down to 17.63). In 208Pb/204Pb vs. 206Pb/204Pb space, normal and anomalous samples plot along a single linear array. In 207Pb/204Pb vs. 206Pb/204Pb space, normal samples define an array whose slope (0.16) is commonly observed in ocean island basalts, whereas anomalous samples define less steep arrays (slopes down to 0.04). It follows that some of the anomalous samples have unusually high 207Pb/204Pb for their 206Pb/204Pb. These latter are enriched in Pb by a factor three. The lack of reproducibility of isotopic analyses suggests that samples are heterogeneous at a sub-millimeter scale. The origin of the unradiogenic anomalies is enigmatic. Leaching experiments rule out anthropogenic contamination. Interaction of plume melts with a contaminant genetically unrelated to the Reunion plume is possible although not supported by trace-element and Sr-Nd isotope signatures indistinguishable from normal lavas. On the other hand, interaction with or entrainment of Pb-rich, most likely unradiogenic sulfides could affect specifically Pb isotope compositions. Inspection of the well-know eruptions history reveals that the isotopic anomalies coincide with transitions from basalts to oceanites (lavas rich in cumulative olivine). Olivine and sulfides, which are both denser than silicate melts, could be entrained with magma pulses, which give rise to high-flux oceanite eruptions. Some sulfides may originate from the oceanic crust. Others may originate from sulfide solidus depth (c.a. 160 km) where sulfides melts are expected to pond (Hart and Gaetani, 2006). These deep sulfides melts could be remnants of past melting

  3. Pb isotopes in the Sunda-Banda arc (Indonesia) as tracers of input from slab, sediment and continental crust

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; van Bergen, M. J.; Foden, J. D.

    2003-04-01

    uniform and intermediately high 206Pb/204Pb ratios compared to neighbouring islands. Some of the Wetar samples are cordierite bearing, and represent crustal melts. It is therefore likely that this section of the arc is affected by the presence of underthrust continental crust.

  4. Pb-Sr-Nd isotope study of the 100- to 2700-Ma old alkalic rock-carbonatite complexes in the Canadian shield: inferences on the geochemical and structural evolution of the mantle

    SciTech Connect

    Kwon, S.T.

    1986-01-01

    The isotopic signatures of young continental alkalic complexes (CAC) display a remarkable similarity to those of oceanic island basalts (OIB). A study of Sr isotopic evolution showed that the mantle, presumably similar to the source of OIB, beneath the shield appears to have been depleted in large ion lithophile elements (LILE) and to have remained as a closed system since ca. 3000 Ma ago. The present investigations apply Pb and Nd as well as Sr isotopic systems for those complexes to study the secular geochemical evolution of the mantle over the past 2700 million years, and address the question of the processes responsible for the geochemical heterogeneity of the mantle. The data suggest: (1) Like Sr, Pb and Nd isotopic data indicate LILE depleted sources for the southern Canadian shield CAC over at least the past 1900 Ma. (2) Sr, Nd and Pb are compatible with an age of ca. 3000 Ma for the depleted source. (3) In contrast to Sr, and probably Nd, the Pb isotopic data cannot be explained by a closed system model for the depleted mantle source. (4) Coherent fractionation patterns are observed in the mantle sources of CAC since at least 1900 Ma ago: higher U/Pb and Sm/Nd, and lower Th/U and Rb/Sr ratios versus lower U/Pb and Sm/Nd, and higher Th/U and Rb/Sr ratios, indicating OlB-like sources for CAC. (5) The inverse correlation between /sup 206/Pb//sup 204/Pb and /sup 87/Sr//sup 86/Sr initial ratios permit calculation of apparent mean earth Pb isotope ratios with time, which yield 8.35 for the present day /sup 238/U//sup 204/Pb ratio, and 17.82 for /sup 206/Pb//sup 204/Pb. (6) A model for the geochemical and structural evolution of the mantle is based on the diverging isotopic evolution of the midocean ridge basalts (MORB) and OlB sources.

  5. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    NASA Astrophysics Data System (ADS)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  6. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust-mantle interaction and post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Guang; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Yang, Yue-Heng; Liu, Yongsheng

    2012-05-01

    The Tongshi intrusive complex, located within the western Shandong Province (Luxi Block) in the eastern North China Craton, comprises high-K calc-alkaline series (fine-grained quartz monzonite and porphyritic quartz monzonite) and shoshonitic series (coarse- to fine-grained porphyritic syenites). Here we report comprehensive data on petrology, geochemistry, Sr-Nd-Pb isotopes and zircon U-Pb and Hf isotopic compositions from the intrusive complex. LA-ICPMS zircon U-Pb ages show that this complex was emplaced at 180.1-184.7 Ma. The fine-grained quartz monzonite and porphyritic quartz monzonite have similar major and trace elements features, implying a similar petrogenetic history. Coupled with the widespread Neoarchean inherited zircons in these rocks, the high SiO2 and Na2O as well as the low MgO contents and low Pb isotopic ratios ((206Pb/204Pb)i = 15.850-16.881, (207Pb/204Pb)i = 14.932-15.261, (208Pb/204Pb)i = 35.564-36.562) of the quartz monzonites suggest an origin from ancient tonalite-trondhjemite-granodiorite (TTG) crust. However, their higher Nd and Hf isotopic ratios (ɛNd (t) = - 11.7 to - 7.0, ɛHf (t) = - 25.0 to - 10.3) as compared to the basement rocks indicate input of enriched lithospheric mantle-derived materials. The coarse- to fine-grained porphyritic syenites were derived from similar sources as inferred from their comparable major and trace elements contents as well as the Nd, Hf and Pb isotopic compositions. The Neoarchean inherited zircons and depletion of Nb, Ta, P and Ti in these rocks indicate the involvement of ancient crust. However, the high Nd and Hf isotopic ratios (ɛNd (t) = - 0.8 to 1.5, ɛHf (t) = - 4.4 to 4.8) coupled with high Pb isotopic compositions ((206Pb/204Pb)i = 18.082-19.560, (207Pb/204Pb)i = 15.510-15.730, (208Pb/204Pb)i = 37.748-39.498) suggest that the porphyritic syenites were mainly derived from an asthenospheric mantle. Based on the geochemical and isotopic features, a magmatic process similar to MASH (melting

  7. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  8. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge

    SciTech Connect

    Hegner, E.; Tatsumoto, M.

    1987-10-10

    Pb, Sr, Nd isotopes of seven basalt glasses collected by the submersible Alvin from the southern Juan de Fuca Ridge (SJFR) are almost identical (/sup 206/Pb//sup 204/Pbapprox.18.45, /sup 207/Pb//sup 204/Pbapprox.15.47, /sup 208/Pb//sup 204/Pbapprox.37.81, /sup 87/Sr//sup 86/Srapprox.0.70249, /sup 143/Nd//sup 144/Ndapprox.0.51315). Whereas all basalts appear cogenetic, four of the samples have uniform abundances of U, Th, Rb, Nd, Sm, Pb, and Sr, indicating that they are also comagmatic. Two basalt glasses dredged previously at the SJFR have similar isotopic compositions but higher concentrations of U, Th, and Pb. The /sup 206/Pb//sup 204/Pb ratios are intermediate between generally less radiogenic ridge basalts from south of the Juan de Fuca Ridge (JFR) and often more radiogenic basalts from the northern JFR and NE Pacific seamounts. Sr and Nd isotopic compositions closely resemble data of other ridge basalts from the northernmost East Pacific Rise and are intermediate between isotopically more diverse seamount basalts produced nearby.

  9. A study of REE and Pb, Sr and Nd isotopes in garnet-lherzolite xenoliths from Mingxi, Fujian Province

    USGS Publications Warehouse

    Wankang, H.; Junwen, W.; Basu, A.R.; Tatsumoto, M.

    1993-01-01

    The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with ??Nd=+ 8.2- +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67-82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237-0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array. ?? 1993 Institute of Geochemistry, Chinese Academy of Sciences.

  10. Genesis of basalt-hosted massive sulphide deposits from the Trondheim and Sulitjelma districts, Norway: ore lead isotopic considerations

    NASA Astrophysics Data System (ADS)

    Fox, J. S.; Farquhar, R.; Rui, I.; Cook, N.

    1988-10-01

    Lead isotopic ratios of bulk sulphides from eleven stratigraphically equivalent deposits from the Köli Nappe sequence in the Trondheim district, and eleven from the Köli sequence at Sulitjelma Norway, have been determined. When plotted on 207Pb/204Pb-206Pb/204Pb diagrams, the data define a linear trend extending from the mantle to the upper crustal model growth curves of Doe and Zartman (1979). Moreover, the data from both districts lie on the same trend. This isotopic trend is interpreted as resulting from the mixing of lead from a mantle source (probably the host basalts) with that of an upper-crustal end member (either sialic basement or the terrigenous sediments surrounding the host basalts). It is also concluded that the deposits in both camps formed more or less contemporaneously. The isotopic mixing line is comparable with that obtained from Besshi ore pyrites in Japan, for which an aulacogenic depositional environment, similar to that found today in the Gulf of California, has been proposed (Fox 1984). It is concluded that a similar depositional environment was responsible for the Trondheim and Sulitjelma ores, although an ensialic back-arc basin, or other possible environments, cannot be entirely ruled out.

  11. Mesozoic vein-type Pb-Zn mineralization in the Pyrenees: Lead isotopic and fluid inclusion evidence from the Les Argentières and Lacore deposits

    NASA Astrophysics Data System (ADS)

    Munoz, Marguerite; Baron, Sandrine; Boucher, Adrien; Béziat, Didier; Salvi, Stefano

    2016-03-01

    The Axial Zone of the Pyrenees contains numerous sedimentary-exhalative Pb-Zn deposits formed during the Early Palaeozoic, which have been the subject of several studies. In addition to these, base-metal vein-type mineralizations are also exposed within the Axial Zone metasediments. These deposits, however, have not been investigated in depth and the timing and geodynamic context of their formation has not been specifically addressed. The vein-type Pb-Zn deposits of Les Argentières and Lacore are located in Devonian terranes of the eastern Pyrenees, south of the Mesozoic Aulus basin. They are interpreted as having been emplaced under an extensional setting. They are characterized by silver-rich tetrahedrite that occurs with Pb-Zn sulphides deposited by low-temperature NaCl-CaCl2 brines. Lead isotopic 208Pb/204Pb and 206Pb/204Pb ratios acquired on galena show more radiogenic values compared to those from the Palaeozoic sedimentary-exhalative mineralization, thus indicating younger ages. According to the model ages, the formation of the two deposits may be narrowed down to middle Late Triassic and Late Jurassic periods, respectively, which allows us to argue in favour of the role of pre-Alpine rifting phases in hydrothermal fluids circulation and mineralization deposition in a vein system bounding the Mesozoic Aulus basin.

  12. Lead isotopic studies of the Samail ophiolite, Oman

    SciTech Connect

    Chen, J.H.; Pallister, J.S.

    1981-04-10

    The isotopic composition of Pb and the concentrations of U, Th, and Pb have been determined for samples from various lithologic units and massive sulfides of the Samail ophiolite. The observed /sup 206/Pb//sup 204/Pb ratios range from 17.90 to 19.06, /sup 207/Pb//sup 204/Pb ratios from 15.43 to 15.63, and /sup 208/Pb//sup 204/Pb from 37.66 to 38.78. In Pb isotopic evolution diagrams, the initial Pb isotopic compositions of most of the samples from the Samail ophiolite plot within the field of oceanic basalt, clearly distinct from island arc data, and define some of the least radiogenic Pb observed from oceanic rocks. Lead data from the Samail are compatible with a model involving magma generation from an oceanic mantle source and formation of the ophiolite at an oceanic spreading center. U--Th--Pb isotopic systematics demonstrate that vertical heterogeneity in the oceanic crust can be created through differential concentration of U, Th, and Pb during crystal fractionation and alteration at, or near, the spreading ridge. Calcite form amygdules in the ophiolite basalt has similar Pb isotopic composition to the igneous rocks, suggesting precipitation of the calcite from seawater which contained Pb derived mostly from the oceanic crust. Lead isotopic data on Fe--Cu sulfides are also similar to the results from the igneous suite suggesting that the source of the sulfides is predominently from the oceanic crust. Lead data from serpentinized peridotite and a galena sample from below the ophiolite suggest that part of the serpentinization process and the formation of galena could involve addition of radiogenic Pb from either a continental source or from oceanic sediments.

  13. Stable lead isotopes reveal a natural source of high lead concentrations to gasoline-contaminated groundwater

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Bullen, T.D.

    2003-01-01

    Concentrations of total lead as high as 1,600 ??g/L were detected in gasoline-contaminated and uncontaminated groundwater at three gasoline-release sites in South Carolina. Total lead concentrations were highest in turbid groundwater samples from gasoline-contaminated and uncontaminated wells, whereas lower turbidity groundwater samples (collected using low-flow methods) had lower total lead concentrations. Dissolved lead concentrations in all wells sampled, however, were less than 15 ??g total lead/L, the current United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). Because many total lead concentrations exceeded the MCL, the source of lead to the groundwater system at two of the three sites was investigated using a stable lead isotope ratio approach. Plots of the stable isotope ratios of lead (Pb) in groundwater as 207Pb/206Pb versus 208Pb/206Pb, and 208Pb/204Pb versus 206Pb/204Pb were similar to ratios characteristic of lead-based minerals in local rocks of the southeastern US, and were not similar to the stable lead isotopes ratios characteristic of distant lead ore deposits such as Broken Hill, Australia, used to produce tetraethyl lead in gasoline products prior to its phase-out and ban in the United States. Moreover, the isotopic composition of dissolved lead was equivalent to the isotopic composition of total lead in turbid samples collected from the same well, suggesting that the majority of the lead detected in the groundwater samples was associated with sediment particulates of indigenous aquifer material, rather than lead associated with spilled leaded gasoline. The results of this investigation indicate that (1) lead detected at some gasoline-release sites may be derived from the local aquifer material, rather than the gasoline release, and consequently may affect site-specific remediation goals; (2) non-low flow groundwater sampling methods, such as a disposable bailer, may result in turbid groundwater samples and

  14. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes

    USGS Publications Warehouse

    Nakamura, Y.; Tatsumoto, M.

    1988-01-01

    Sr, Nd, and Pb isotopic compositions were measured in alkaline volcanic rocks (alkali basalt, ankaramite, nephelinite, phonolite, and trachyte) from the South Cook Islands (Aitutaki, Mauke, Rarotonga, Atiu, and Mangaia) and the Austral Islands (Rimatara and Rurutu). The results show that the Cook-Austral rocks have an extremely wide range in isotopic compositions of Pb: 206Pb 204Pb from 18.25 to 21.76, 207pb 204pb from 15.48 to 15.83, and sol208pb 204Pb from 38.37 to 40.62, whereas isotopic compositions of Sr and Nd are less variable. Isotopically, Mangaia, Rimatara, and Rurutu form one group (Mangaia group), which shows extremely radiogenic Pb isotopic compositions but near-MORB (mid-oceanic ridge basalts) values for Sr and Nd isotopic ratios. In contrast, samples from Aitutaki, Rarotonga, Mauke, and Atiu (Aitutaki group) have high 207Pb 204Pb and 208Pb 204Pb and moderately high 87Sr 86Sr (Dupal anomaly). The Aitutaki group could have been derived from heterogeneous mantle plumes, which rose from the enriched deep mantle (the almost primitive lower mantle or recycled continental and oceanic slabs). On the other hand, the Mangaia component could have been derived from the depleted upper mantle which may have been metasomatized with a CO2-rich fluid, as indicated by the near-MORB values of Sr and Nd isotopes. Although Pb isotopic data of the two groups cannot be distinguished from each other statistically, the end components of the Pb-Pb system do not match with those of the Nd-Sr system. Thus, the data must be explained by a multi-, at least three, component mixing model: the mantle plumes (Dupal component and a recycled oceanic slab), metasomatized upper mantle, and lithosphere. The K-Ar ages and isotopic characteristics of the Cook-Austral rocks indicate that if one mantle plume rises from the deep mantle in this region, it has separated into at least two segments on the way to the surface. ?? 1988.

  15. The geochemical components that distinguish Loa- and Kea-trend Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Frey, Frederick A.; Huang, Shichun; Xu, Guangping; Jochum, Klaus P.

    2016-07-01

    Recent (<5 Ma) Hawaiian volcanoes define two sub-parallel spatial trends, Loa and Kea. Despite the short distance (∼30 km) between adjacent volcanoes on these trends, most of the Loa-trend shield lavas are geochemically distinct from most of the Kea-trend shield lavas. These geochemical differences arise from small amounts of the LOA component in the source of Loa-trend shield lavas. This component is most prominent in the uppermost shield lavas of Koolau, Lanai and Kahoolawe volcanoes. Correlations between abundance ratios of incompatible elements and isotopic ratios of Sr, Nd, Hf and Pb in Hawaiian shield lavas indicate that the LOA component consists of three geochemically distinct materials formed by diverse processes. A gabbroic adcumulate (i.e. no trapped melt) with abundant cumulus plagioclase is responsible for the high Sr/Nd, La/Th and La/Nb in Loa-trend shield lavas relative to Kea-trend shield lavas. Also it has relatively low 206Pb/204Pb and high 208Pb/204Pb at a given 206Pb/204Pb, consistent with the low U/Pb and Th/Pb that are characteristic of plagioclase; these distinctive Pb isotope ratios require a long-time interval, ∼3 Ga, to develop. This material is most abundant in the uppermost shield lavas of Koolau volcano. Possible origins of adcumulate gabbros with abundant cumulus plagioclase are the lower oceanic and continental crust. A second material in the LOA component is distinctive because it is offset from the linear trend of 176Hf/177Hf versus 143Nd/144Nd, known as the terrestrial array, to high 176Hf/177Hf at low 143Nd/144Nd. This offset requires an ancient material with high Lu/Hf. It is equally abundant in the shield lavas at Koolau, Lanai and Kahoolawe volcanoes. Possible origins of this material are ancient pelagic sediment or ancient depleted lithosphere. A third material in the LOA component is characterized by relatively high 87Sr/86Sr, but the Rb/Sr of this material is too low to explain the high 87Sr/86Sr in 4.5 Ga. A relatively

  16. The U, Th and Pb elemental and isotope compositions of mantle clinopyroxenes and their grain boundary contamination derived from leaching and digestion experiments

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine; Pearson, D. Graham; Downes, Hilary; Baker, Joel A.

    2009-01-01

    Minerals from peridotites are known to be affected by trace element contamination on their grain boundaries. In this contribution we investigate the extent and origin of exogenous contamination associated with mantle clinopyroxenes from various localities (Middle Atlas, Beni Bousera [Morocco], Pyrenean Massif, Massif Central [France]) and test the efficacy of different leaching methodologies used to remove this contamination. In doing so we present new U-Th-Pb (double-spike) isotope and trace elemental data of clinopyroxenes and their leachates from spinel-facies sub-continental lithospheric mantle (SCLM, n = 18). Sequential leaching and dissolution of one clinopyroxene separate shows that multiple and short leaching attacks with dilute HCl at moderate temperatures (e.g., 120 °C) interspersed with rigorous ultra-pure water washes do not induce elemental fractionation and are sufficient to remove grain-boundary contamination. Short attacks with very dilute mixtures of HF and HCl induced strong parent/daughter elemental fractionation and significant elemental loss prior to the clinopyroxene digestion with HF/HNO 3. Such leaching is not suitable for studies investigating parent/daughter elemental or isotope ratios of mantle clinopyroxenes. Fluoride co-precipitates that formed in the presence of moderately dilute HF, used during leaching and typical HF/HNO 3 digestions, are an important sink for all trace elements studied here and lock up at least 60% of the trace elements considered. A suite of clinopyroxene-leachate pairs from Moroccan peridotites confirm extreme grain-boundary contamination and show that up to 65% of U, 82% of Th and 91% of Pb, respectively, are of exogenous origin. Pb isotopes of all leachates considered and nearly all reconstructed unleached clinopyroxenes have highly positive Δ7/4 and 207Pb/ 204Pb- 206Pb/ 204Pb systematics reminiscent of enriched mantle (particularly EM II), whereas the corresponding extensively leached clinopyroxenes have very

  17. Trace Metals, Rare Earths, Carbon and Pb Isotopes as Proxies of Environmental Catastrophe at the Permian - Triassic Boundary in Spiti Himalayas, India

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Garzione, C. N.; Ghatak, A.; Bhargava, O. N.; Shukla, U. K.; Ahluwalia, A. D.

    2015-12-01

    Himalayan sediments from Spiti Valley, India preserve geochemical signatures of the Permian - Triassic (P-Tr) mass extinction in the Neo-Tethys Ocean. We integrate new sedimentological and fossil record with high-resolution geochemical-isotopic data from Spiti that reveals an ecological catastrophe of global proportions. Trace elements of U, Th, Nb, Ta, Zr, Hf, the rare earths (REE) and carbon, oxygen and lead isotopes measured across the P-Tr boundary in Spiti are used as proxies for evaluating abrupt changes in this continental shelf environment. δ13Corg excursions of 2.4‰ and 3.1‰ in Atargu and Guling P-Tr sections in Spiti Valley are associated with an abrupt fall of biological productivity while δ13Ccarb and δ18Ocarb record of these sediments shows effects of diagenesis. Here, the P-Tr boundary is compositionally distinct from the underlying Late Permian gray shales, as a partly gypsiferous ferruginous layer that allows additional geochemical-isotopic investigation of sedimentary sources. Conspicuous Ce - Eu anomalies in the light REE-enriched Late Permian shales reflect the source composition of the adjacent Panjal Trap basalts of Kashmir. An abrupt change of this source to continental crust is revealed by Nb - Ta and Zr - Hf anomalies at the P-Tr ferruginous layer and continuing through the overlying Early Triassic carbonate rocks. Pb concentration and isotope ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb identify changes in the sedimentary element flux, distinguishing the Late Permian shales from the distinct siliciclastic continental crustal signature in the Early Triassic carbonates. These geochemical-isotopic constraints on the sedimentary geochemistry of one of the most critical transitions in geological record establish the utility of multi-proxy datasets for paleoenvironmental reconstructions.

  18. Lead and sulfur isotopes of Guarn Halfaya and Bou Grine deposits associated to salt dome cap rocks (Diapirs zone, Northern Tunisia): sources of metals and genetic model

    NASA Astrophysics Data System (ADS)

    Jemmali, N.; Souissi, F.; Carranza, E. J. M.; Vennemann, T. W.

    2012-04-01

    The Pb-Zn ores districts at Guarn Halfaya and Bou Grine are hosted mainly by the dolostones in the contact breccias between Triassic and Upper Cretaceous and by Upper Cretaceous limestones. The mineralization occurs as lenticular, impregnations, substitutions, replacements, stratiform, vein, dissemination, and stockwork. A complex polymetallic sulfide assemblage typifies the main ore stage, dominated by sphalerite and galena, pyrite with minor chalcopyrite, arsenopyrite, and sulfosalt (grey copper). Limestone, barite and celestite dominate the gangue, with lesser calcite. Barite and celestite intergrown with main ore-stage sulfides of Oum Edeboua has δ34S values of 12.7 to 15.0 ‰, consistent with the derivation of sulfate from Triassic evaporites form the study area (12.8<δ34S<14.0 ‰). The δ34S values for sulfides of the both study area range from 2.6 to 9.5 ‰. These positive δ34S values are likely due to abiotic thermally-driven abiotic sulfate reduction (TSR) of Triassic sulfates at depth. However, the presence of bacterial relics suggests involvement of bacterially-mediated sulfate reduction (BSR). The lead isotope composition is homogeneous with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratio ranging between from 18.723 to 18.783, 15.667 to 15.685, and 38.806 to 38.889, respectively, and plot between the upper crust and orogene curves of Zartman and Doe (1981) which imply involvement of a well-mixed multi-source reservoir of Pb at depth. The syn-diagenetic mineralization in the Bahloul Formation and the calculate of model age suggest a Late Cretaceous age, correspond to a NE-SW to ENE-WSS regional extensional tectonic events, which likely favored migration of mineralizing fluids and eventual deposition at Guarn Halfaya and Bou Grine.

  19. Lead isotopic composition from data of high-precession MC-ICP-MS and sources of matter in the large-scale Sukhoi Log noble metal deposit, Russia

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Chugaev, A. V.; Safonov, Yu. G.; Saroyan, M. R.; Yudovskaya, M. A.; Eremina, A. V.

    2009-12-01

    The lead isotopic composition of 33 sulfide samples from orebodies of the Sukhoi Log deposit was studied by high-precession MC-ICP-MS with a precision of ±0.02% (±2SD from 120 analyses of the SRM 981 standard sample). The deposit is located in the Bodaibo gold mining district in the northern Baikal-Patom Highland. Gold mineralization is hosted in Neoproterosoic black slates. Variations of lead isotope ratios of the Sukhoi Log sulfides are generally typical of Phanerozoic deposits and ore fields. They are significant for 206Pb/204Pb (17.903-18.674), moderate for 208Pb/204Pb (37.822-38.457), and relatively narrow for 207Pb/204Pb (15.555-15.679). In the Pb-Pb isotope diagrams, the data points of pyrite and galena constitute a linear trend. The points corresponding to pyrite from metasomatic ore occupy the left lower part of the trend. Galena from late gold-quartz veins shows more radiogenic Pb, and corresponding data points are located in the upper part of the trend. According to the Stacey-Kramers model, the end points of the trend, which is regarded as a mixing line, have μ2 = 9.6 and μ2 = 13.2 and model Pb-Pb ages 455 and 130 Ma, respectively. The isotope characteristics of ore lead, their relationships in pyrite and galena, and the mixing trend of Pb isotopic compositions are clearly tied to two Paleozoic stages in the formation of the Sukhoi Log deposit (447 ± 6 and 321 ± 14Ma) and testify to the leading role of crustal sources, which are suggested as being the Neoproterozoic black-shale terrigenous-carbonate rocks.

  20. Mt. St. Augustine, Alaska: Geochemical evolution of an eastern Aleutian volcanic center

    SciTech Connect

    Johnson, K.E. . Dept. of Geology); Harmon, R.S. . Kingsley Dunham Centre); Moorbath, S. . Dept. of Earth Sciences); Sigmarsson, O. )

    1993-04-01

    Mt. St. Augustine is a calc-alkaline Quaternary volcano, situated within Cook Inlet, Alaska. The island is composed of low- to medium-K andesite and dacite domes and pyroclastic flows. Major element variations indicate the magmatic evolution is dominantly influenced by fractionation and magma-mixing processes. Incompatible element and isotopic compositions suggest that despite its continental location, crustal assimilation is not significant factor in magmatic evolution. Alkali contents for Augustine are generally lower than elsewhere in the Aleutians (e.g. Augustine Cs/Rb = 0.016--0.024, K/Rb = 372--553; Aleutians Cs/Rb = 0.016--0.17, K/Rb = 231--745). Sr- and Nd-isotope ratios encompass narrow ranges ([sup 87]Sr/[sup 86]Sr = 0.70317--0.70343; [sup 143]Nd/[sup 144]Nd = 0.513011--0.513085), characteristic of uncontaminated mantle-derived melts. U-Th disequilibrium isotopic values also indicate little or no assimilation of evolved continental crust. Pb-isotopic ranges are also relatively restricted ([sup 206]Pb/[sup 204]Pb = 18.62--18.82; [sup 207]Pb/[sup 204]Pb = 15.54--15.57; [sup 208]Pb/[sup 204]Pb = 38.18--38.34) and comparison with north Pacific enriched (OIB) and depleted (MORB) mantle sources suggest the incorporation of only a small percentage of subducted terrigenous sediments. A model for Augustine magma genesis is proposed where parental magmas are generated by 5--20% partial melting of a lherzolite mantle with up to a 5% subducted terrigenous sediment component. The major influence of the thickened continental crust is to prevent the ascent and eruption of basaltic magma. The data exhibit no temporal variations, indicating that the magmatic system which produced the historic eruptions is well established.

  1. The Carlin-type gold deposits of the "golden triangle" of SW China: Pb and S isotopic constraints for the ore genesis

    NASA Astrophysics Data System (ADS)

    Chen, Maohong; Zhang, Zhiqiang; Santosh, M.; Dang, Yuan; Zhang, Wei

    2015-05-01

    The Yunnan-Guizhou-Guangxi "golden triangle" is considered as one of the important regions for Carlin-type (or Carlin-like) gold deposits in China. Gold deposits in this region can be grouped into lode type controlled by faults and layer-like type controlled by host strata. Arsenopyrite is one of the major gold-bearing minerals in these deposits. Here we report the S and Pb isotopic composition of arsenopyrites from the fault-controlled Lannigou and Jinya gold deposits and the stratabound Shuiyindong gold deposits, with a view to trace the sources of sulfur and lead, and to evaluate the genetic aspects of gold mineralization. The average δ34S values of arsenopyrites are 11.7‰ for Lannigou, 6.7‰ for Shuiyindong and -5.3‰ for Jinya, which are slightly lower to that of diagenetic pyrite in the host rocks of each deposit. The δ34S values of arsenopyrites show significant variation among the different deposits (-9.0‰ to +17.1‰), which indicate a sedimentary origin for sulfur, followed by local fluid-rock interaction. The Pb isotopic composition of arsenopyrites from these deposits shows a narrow range (206Pb/204Pb = 18.494-18.813, 207Pb/204Pb = 15.630-15.748, 208Pb/204Pb = 38.559-38.884), indicating that the different deposits have the same source of lead. Based on a comparison with Pb isotopic ratios of diagenetic pyrite, arsenopyrite and Late Cretaceous magmatic rocks from this region reported in previous studies, we infer that the lead was sourced from the sediments rather than from magmatic intrusions. The formation of the Carlin-type gold deposits are therefore correlated with the evolution of the Youjiang basin from rifting to closure, and involved four distinct stages leading to the concentration of the gold ores.

  2. A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: Insights from olivine

    NASA Astrophysics Data System (ADS)

    Gurenko, Andrey A.; Geldmacher, Jörg; Hoernle, Kaj A.; Sobolev, Alexander V.

    2013-06-01

    The Madeira and Canary island/seamount chains represent two adjacent hotspot tracks in the eastern North Atlantic, which were derived from mixed peridotite-pyroxenite mantle sources. They possess systematically different Sr-Nd-Pb, Os and Hf isotope signatures, implying mixing of DMM-, HIMU- and EM-type components from different mantle lithologies. The lithological nature of these postulated mantle endmembers (e.g., if formed by peridotite, pyroxenite and/or eclogite) is still a subject of debate. We studied the chemical composition of olivine phenocrysts (focusing on their Ni, Mn and Ca concentrations) from the lavas covering the entire volcanic history of the Madeira Archipelago (~ 0-5 Ma). We demonstrate that Ni × FeO/MgO and Mn/FeO ratios and Ca-concentrations of olivine correlate with Sr, Nd and Pb isotopic compositions of their host lavas. The amounts of peridotite- and pyroxenite-derived melt fractions in the parental Madeira magmas were inferred from olivine compositions and independently confirmed by modeling of two-component source melting using trace elements. Our calculations demonstrate that the amount of recycled crust (= eclogite) in the Madeira magma source varies but does not exceed ~ 10%. Strong linear relationships between chemical composition of olivine and radiogenic isotopes of the host lavas allow us to determine the isotopic composition of peridotite and pyroxenite endmembers of the Madeira hotspot. The peridotite endmember has a highly depleted isotopic composition 87Sr/86Sr = 0.7022-0.7026, 143Nd/144Nd = 0.5132-0.5135, 206Pb/204Pb = 17.4-18.6, 207Pb/204Pb = 15.4-15.49, and 208Pb/204Pb = 36.8-38.2, whereas the pyroxenite endmember has an enriched composition 87Sr/86Sr = 0.7031-0.7035, 143Nd/144Nd = 0.5127-0.5130, 206Pb/204Pb = 19.9-21.3, 207Pb/204Pb = 15.59-15.69, and 208Pb/204Pb = 39.6-41.2. Our new data confirm the existence of recycled (pyroxenitic) lithology in the Madeira magma source that was previously interpreted to represent

  3. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial

  4. Variations in Pb concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States

    NASA Astrophysics Data System (ADS)

    Smith, David; Woodruff, Laurel; Reimann, Clemens; Flem, Belinda

    2014-05-01

    Soil A-horizon and C-horizon samples were collected along a 4000 km long transect cutting the USA from the west to the east coast. For purposes of site selection, the transect was divided into approximately 40-km segments. For each segment, a 1-km2 target area was selected at random. Soil A- and C-horizon samples were collected at a site within each target area that was most representative of the surrounding landscape. The samples were air-dried at ambient temperature, disaggregated, and sieved through a 2-mm stainless steel screen. The <2-mm material was crushed to <150 µm in a ceramic mill prior to chemical analysis. Lead was analyzed in all the A- and C-horizon samples by inductively coupled plasma-mass spectrometry following a 4-acid digestion. The complete dataset can be found in Smith et al., 2005. Pb-isotope ratio measurements were carried out on 159 soil A-horizon and 137 soil C-horizon samples on an inductively coupled sector field plasma mass spectrometer (SF-ICP-MS; ELEMENT 1, Finnigan MAT) in the laboratory of the Geological Survey of Norway (NGU), following a 7 N HNO3 digestion. Lead concentrations along the transect show (1) generally higher values in the soil A-horizon than the C-horizon (median 21 vs. 16.5 mg/kg), (2) an increase in the median value of the soil A-horizon for the central to eastern U.S. (Missouri to Maryland) when compared to the western U.S. (California to Kansas) (median 26 vs. 20 mg/kg) and (3) a higher A/C ratio for the central to eastern US (1.35 vs. 1.14). Lead isotopes show a distinct trend across the U.S., with the highest 206Pb/207Pb ratios occurring in the centre (Missouri, median A-horizon: 1.245; C-horizon: 1.251) and the lowest at both coasts (e.g. California, median A-horizon: 1.195; C-horizon:1.216). The soil C-horizon samples show generally higher 206Pb/207Pb ratios than the A-horizon (median C-horizon: 1.224; A-horizon: 1.219). The 206Pb/207Pb isotope ratios in the soil A horizon show a correlation with the total

  5. K-Ar ages and Pb, Sr isotopic characteristics of Cenozoic volcanic rocks in Shandong Province, China

    USGS Publications Warehouse

    Daogong, C.; Zicheng, P.; Lanphere, M.A.; Zartman, R.E.

    1985-01-01

    28 samples of Cenozoic volcanic rocks collected from Shandong Province have been dated by K-Ar method. They are mainly Neogene with an age range of 4-19 m. y. The basalts from Linqu and Yishui in west Shandong Province are Miocene and those from Penglai and Qixia in east Shandong Province are Miocene and Pliocene in age. The basalts from Wudi in north Shandong Province are Middle-Early Pleistocene in age. In each area the duration of volcanic eruption was estimated at about 2-3 m. y. Pb and Sr isotopic compositions and U, Th, Pb, Rb, Sr, and major elements in most of the samples were determined. The isotopic compositions are:206Pb/204Pb-16.92-18.48,207Pb/204Pb-15.30-15.59,208Pb/204Pb-37.83-38.54, and (87Sr/86Sr)i-0.70327-0.70632. There are some positive or negative linear correlations between206Pb/204Pb and207Pb/204Pb, Pb isotopes and Pb content, Pb isotopes and Sr isotopes, and Sr isotopes and other elements. The basaltic rocks from east and west Shandong Province have somewhat differences in isotopic composition and element content. The basalts probably are products of multi-stage evolution of the mantle. They have preserved the primary features of the source, although they were influenced, to some extent, by the contamination of crustal materials. ?? 1985 Institute of Geochemistry, Chinese Academy of Sciences.

  6. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  7. Lead isotopic evidence for deep crustal-scale fluid transport during granite petrogenesis

    NASA Astrophysics Data System (ADS)

    McCulloch, M. T.; Woodhead, J. D.

    1993-02-01

    Lead isotopic compositions are reported for K-feldspars from the Bega and Berridale batholiths in the Paleozoic Lachlan Fold Belt (LFB) of southeastern Australia. In marked contrast to the wide range in initial Nd ( ɛNd = +3 to -9.2), the feldspars exhibit an extremely limited variation in Pb isotopic composition with 206Pb /204Pb of 18.14 to 18.18, 207Pb /204Pb of 15.58 to 15.63 and 208Pb /204Pb of 38.04 to 38.21. This variability is less than that observed in modern intra-oceanic island arcs such as the Marianas. Despite the very limited range of Pb isotopic compositions, there are still good correlations with ɛNd values as well as between single-stage Pb-Pb and TNd model ages. The Pb-Pb model ages, however, have a significantly reduced range from ~330 Ma to 440 Ma, compared to the older TNd model ages which range from 810 Ma to 1770 Ma. The correlation, particularly of 207Pb /204Pb ratios with neodymium isotopic compositions, is attributed to limited late-stage mixing between mantle and crustal components. It is argued that this late-stage crust-mantle interaction was a relatively subtle feature, superimposed upon continental crust with an already homogenous Pb isotopic composition, probably via underplating and intrusion into the crust of mafic, mantle-derived magmas. The homogeneous crustal composition is most evident in the extremely limited range of 206Pb /204Pb ratios in the Bega Batholith, implying long-term variations in U/Pb of the granite source rocks of < ±4%, despite their large range in TNd model ages. Considering the differing geochemical properties of U and Pb, this very restricted range in U/Pb ratios is thought to be an artefact of Pb isotopic homogenisation in the continental crust. The Pb isotopic composition in the granite source rocks was homogenised immediately prior to partial melting, probably as a result of mobility of Pb in deep, crustal-scale fluid advection systems. Lead mobility may be a consequence of the extremely high solubility

  8. The Halmahera Island Arc, Molucca Sea collision zone, Indonesia: A geochemical survey

    NASA Astrophysics Data System (ADS)

    Morris, J. D.; Jezek, P. A.; Hart, S. R.; Hill, J. B.

    The Halmahera island arc, northeastern Indonesia, is the east flank of the Molucca Sea collision zone which is the site of an active arc-arc collision. One unique aspect of the arc is the vast thickness of marine sediments outboard of the trench, a result of ˜1000-1500 km of closure in the Molucca Sea basin. The Halmahera arc is underlain by a 45° east dipping Benioff zone, which is present to depths of 230 km. The volcanoes form a single front which lies ˜100 km above the top of the slab. The arc can be separated into three regions, on the basis of tectonic setting and chemistry. Most volcanoes are part of the normal calc-alkaline oceanic arc segment. Lavas here are basalts through dacites, with basaltic andesites and andesites dominant. Suites are medium-K and show little to moderate Fe enrichment. Abundances of Al2O3, the alkali elements, compatible elements, and the high field strength elements are typical of calc-alkaline island arc lavas. 87Sr/86Sr ratios are 0.70357-0.70438 the average value for all volcanic centers is almost the same, but most centers show a large range of real variation around that average. Pb isotopic compositions are 206Pb/204Pb = 18.55-18.62, 207Pb/204 = Pb 15.55-15.63, 208Pb/204Pb = 38.48-38.67. On a Pb-Pb diagram, they form a linear cluster of steep slope, between oceanic sediments and the less radiogenic end of the mantle array. Pb and Sr isotopic compositions for the oceanic segment can be used to test models for the origin of arc lavas. Both isotope systems can be satisfied by a three-component mixing model where normal oceanic island basalt-type magma is mixed with MORB and contaminated by heterogeneous sediments. A two-component model, where OIB-type magmas (which are heterogeneous with respect to both Sr contents and 87Sr/86Sr ratios) are contaminated with sediments, can also explain the data. This generates isotopically heterogeneous suites, and much of this heterogeneity is preserved through the eruption process. A

  9. A lead isotopic study of the Stillwater Complex, Montana: constraints on crustal contamination and source regions

    USGS Publications Warehouse

    Wooden, J.L.; Czamanske, G.K.; Zientek, M.L.

    1991-01-01

    Analyses of the Pb isotopic compositions of plagioclase from 23 samples covering the stratigraphic thickness of the Stillwater Complex indicate a narrow range of apparent initial isotopic compositions (206Pb/ 204Pb=13.95; 207Pb/204Pb=14.95-15.01; 208Pb/204Pb=33.6). The uniformity of our data is in contrast to, but not necessarily contradictory to, other recent investigations which give indications that the complex formed by repeated injection of magmas with at least two distinct compositions that were presumably derived from different source regions. Samples from the Basal series of the complex have consistently higher 207Pb/204Pb ratios, suggesting either minor contamination from adjacent country rocks or a slight distinction between parental magmas. Apparent initial Pb isotopic compositions of the complex are very radiogenic compared to Late Archean model-mantle values, but are nearly identical to initial Pb isotopic compositions found for the the adjacent, slightly older (2.73-2.79 Ga), Late Archean crustal suite in the Beartooth Mountains. Contamination of magmas parental to the Stillwater Complex by the Late Archean crustal suite is rejected for two reasons: (1) Th and U concentrations in Stillwater rocks and plagioclase are very low (about 0.08 and 0.02 ppm respectively), yet Th/U ratios are uniform at about 4, in contrast to the highly variable (2-26) but often high Th/U ratios found for the Late Archean crustal complex; (2) it seems improbable that any contamination process would have adjusted the isotopic compositions of the diverse magmas entering the Stillwater chamber to near-identical values. The preferred hypothesis to explain the Pb isotopic data for the Stillwater Complex and the associated Late Archean crustal suite involves a major Late Archean crust-forming event that resulted in a compositionally complex crust/mantle system with relatively homogeneous and unusual Pb isotopic compositions. The parental magmas of the Stillwater Complex were

  10. Ancient Pb and Ti mobilization revealed by Scanning Ion Imaging

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika A.; Whitehouse, Martin J.; Wilde, Simon A.

    2014-05-01

    Zircons from strongly layered early Archean ortho- and paragneisses in ultra-high temperature (UHT) metamorphic rocks of the Napier Complex, Enderby Land, East Antarctica are characterized by complex U-Th-Pb systematics [1,2,3]. A large number of zircons from three samples, Gage Ridge, Mount Sones and Dallwitz Nunatak, are reversely discordant (U/Pb ages older than 207Pb/206Pb ages) with the oldest date of 3.9 Ga [4] (for the grain from Gage Ridge orthogneiss). To further investigate this process, we utilized a novel high spatial resolution Scanning Ion Imaging technique on the CAMECA IMS 1280 at the Natural History Museum in Stockholm. Areas of 70 μm x 70 μm were selected for imaging in mono- and multicollection modes using a ~2 μm rastered primary beam to map out the distribution of 48Ti, 89Y, 180Hf, 232Th, 238U, 204Pb, 206Pb and 207Pb. The ion maps reveal variable distribution of certain elements within analysed grains that can be compared to their CL response. Yttrium, together with U and Th, exhibits zonation visible on the CL images, Hf shows expected minimal variation. Unusual patchiness is visible in the map for Ti and Pb distribution. The bright patches with enhanced signal do not correspond to any zones or to crystal imperfections (e.g. cracks). The presence of patchy titanium is likely to affect Ti-in-zircon thermometry, and patchy Pb affecting 207Pb/206Pb ages, usually considered as more robust for Archean zircons. Using the WinImage program, we produced 207Pb/206Pb ratio maps that allow calculation of 207Pb/206Pb ages for spots of any size within the frame of the picture and at any time after data collection. This provides a new and unique method for obtaining age information from zircon. These maps show areas of enhanced brightness where the 207Pb/206Pb ratio is higher and demonstrate that within these small areas (μm scale) the apparent 207Pb/206Pb age is older, in some of these patches even > 4 Ga. These data are a result of ancient Pb

  11. Study of the charge radii of the stable lead isotopes

    SciTech Connect

    Borchert, G.L.; Schult, O.W.B.; Speth, J.; Hansen, P.G.; Jonson, B.; Ravn, H.; McGrory, J.B.

    1982-01-01

    Isotope shifts have been measured of the K/sub ..cap alpha..l/ x-ray lines emitted after photo ionization of /sup 204/Pb, /sup 206/Pb, /sup 207/Pb and /sup 208/Pb samples. The results are compared with theoretical values for delta < r/sup 2/> calculated with a microscopic model. The x-ray shift data are also compared with optical data and the nuclear parameters lambda derived from electron scattering results.

  12. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  13. Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington

    USGS Publications Warehouse

    Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.

    1986-01-01

    Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.

  14. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment.

    PubMed

    Townsend, Ashley T; Seen, Andrew J

    2012-05-01

    A 105 cm sediment core from the Derwent River (Tasmania, Australia) was collected in 2004 and was characterised considering both physical (loss on ignition at 550 °C and grain size) and chemical (Fe, Cu, Zn, Cd and Pb concentrations, Pb isotope ratios and (210)Pb dating) properties. The core was analysed to (i) investigate the historical profiles of some important elements associated with the Risdon zinc refinery adjacent to the Derwent River, (ii) determine Pb isotopic signatures of sediment samples, and (iii) assess the veracity of Pb isotope ratios as indicators of contaminant Pb input. Extractable metal concentrations were (all values as mgkg(-1), non-normalised for grain size) Fe: 20,000-35,000, Zn: 42-4500, Pb: 5-1090, Cu: 13-141, and Cd: 1-31; with a close correlation between Cu, Zn, Cd and Pb. Metal enrichment factors (normalised to Al) were Pb: 0.9-144, Zn: 0.8-93, Cd: 0.8-30, Cu: 0.8-8.9 and Fe: 0.9-1.3, confirming anthropogenic contributions of Cu, Zn, Pb and Cd to the sediments. The onset of metal contamination above background levels occurred at a depth between 43 and 49 cm, with maximum concentrations noted near 20 cm for Cu, Zn, Cd and Pb. Lead isotope ratios were determined in sediments using sector field ICP-MS, and were found to be 36.5-38.8, 16.5-18.7 and 1.07-1.20 for (208)Pb/(204)Pb, (206)Pb/(204)Pb and (206)Pb/(207)Pb ratios, respectively. Major Australian ores processed at the refinery over the previous ~90 years include those from Broken Hill, Rosebery, Mt Isa, Elura, Hellyer and Century deposits. Anthropogenic impact by Pb with Broken Hill type isotopic ratio was initially evident in the core at 43-49 cm. The introduction of Rosebery and Elura ores to the refinery was also clearly noted. Pb isotope ratios further highlight that the Derwent River has been exposed to a greater impact by anthropogenic Pb in comparison to other major Tasmanian rivers, namely the Huon and Tamar. PMID:22444061

  15. Strontium, neodymium, and lead isotopic and trace-element signatures of the East indonesian sediments: provenance and implications for banda arc magma genesis

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; van Bergen, M. J.; Klaver, G. J.; White, W. M.

    1995-06-01

    We present new trace-element and Sr-Nd-Pb isotope data for 127 surface sediments and five sediments from DSDP Site 262, distributed along and across the arc-continent collision region of the Banda Arc, East Indonesia. The results are used to evaluate the role of subducted continental material (SCM) in the genesis of the Banda Arc magmas and to assess the extent to which geochemical and isotopic signatures of SCM are controlled by sediment provenance. In the surface sediments lead and neodymium isotope ratios are variable: 206Pb/ 204Pb = 18.65-19.57; 143Nd/ 144Nd = 0.51230-0.51190, with an increase in lead isotope ratios and a decrease in the 143Nd/ 144Nd ratio from northeast to southwest along the Banda Arc. DSDP Site 262 sediments, farthest to the west in the Timor Trough, overlap with the surface sediments and have 206Pb/ 204Pb = 18.89-19.23 and 143Nd/ 144Nd = 0.51200-0.51220. In contrast, the trace-element ratios and REE patterns of the sediments do not show systematic along-arc variations and largely overlap with estimated values for Upper Continental Crust, Post Archean Australian Shale (PAAS), and ODP Site 765 sediments from the Argo Abyssal Plain. From the combined isotopic and trace-element ratios in the terrigenous fraction of the sediments four major provenance areas can be distinguished: North New Guinea + Seram, South New Guinea, Timor, and northern Australia. The lead isotopic variations in the shelf and wedge sediments along the Banda Arc are parallel to similar variations in the volcanics; this is considered to be strong evidence for the incorporation of subducted continental material in the arc magmas. The trace-element characteristics of both the volcanics and the sediments are also consistent with the involvement of sediments in the Banda Arc magma genesis. The hinterland of the sediments is responsible for isotopic signatures created in the Banda Arc mantle through recent subduction. This suggests that some of the mantle heterogeneities that are

  16. U-Th-Pb ion microprobe analysis of monazite from the Paleoproterozoic Karrat rare earth element (REE) deposit, western Greenland

    NASA Astrophysics Data System (ADS)

    Mott, A.; Grove, M.; Bird, D. K.

    2012-12-01

    The Karrat rare earth element (REE) deposit is located at 72°N on the Niaqornakavsak peninsula of Qeqertarssuq Island on the western coast of Greenland. Metasomatic alteration of an amphibolite host rock by carbonatite derived fluids resulted in REE mineralization in the Karrat Isfjord area. REE in the mineralization are primarily found in bastnasite, allanite, and monazite. In-situ analysis of monazite was conducted on samples obtained from three sites of mineralization: (1) the primary deposit at Niaqornakavsak consisting of a single distinct ~30m thick unit; (2) at Umiamako Nuna 7 km to the east of Niaqornakavsak where the majority of REE mineralization occurs within the first 20m of the surface; and (3) a 6m thick REE-rich vein 100m below the surface at Umiamako Nuna. Formation ages for monazite at Niaqornakavsak, Umiamako Nuna (surface), and Umiamako Nuna (vein) have been calculated using 207Pb/206Pb, 206Pb/238U, and 208Pb/232Th isotope ratios. Multiple isotope ratios were examined to determine the ideal method of monazite analysis based on the inherent issues of low U content of monazite, difficulties measuring 204Pb, common Pb corrections, and peak interferences resulting from high concentrations of REE. 208Pb/232Th analysis resulted in the best precision and smallest spread of values. Energy filtering was applied to 208Pb/232Th analyses in an effort to reduce interferences at several peaks. Although all three isotope ratio analyses result in a Paleoproterozoic age similar to the timing of convergence of the North Atlantic craton, Rae craton, and Aasiat domain as well as the emplacement of the Prøven Igneous Complex in Greenland (1.95-1.80Ga), the values range between 1.7-1.9Ga depending on the isotope ratio.

  17. Early Cretaceous low-Mg# adakitic rocks in the southern margin of the central North China Craton: Partial melting of thickened lower continental crust and tectonic implications

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    This paper reports new whole-rock geochemical, Sr-Nd-Pb isotopic, and zircon U-Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia-Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon LA-ICP-MS U-Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~130 Ma) and the late Early Cretaceous (116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054-0.7095), and low eNd(t) (-11.90 to -22.20) and eHf(t) (-16.7 to -32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754-542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the

  18. Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead.

    PubMed

    Gulson, Brian; Mizon, Karen; Korsch, Michael; Taylor, Alan

    2016-04-01

    Lead (Pb) can be released from the maternal skeleton during pregnancy and lactation and transferred to the infant. Most support for this hypothesis comes from blood Pb (PbB) studies involving limited sampling during pregnancy, the maximum usually being five samplings, including at delivery. We provide longitudinal data for PbB concentrations and Pb isotopic ratios for three cohorts of pregnant females (n = 31), two of which are based on monthly sampling and the other on quarterly sampling. We also provide data for samples collected post-partum. The data are compared with changes observed in a matched, by country and age, non-pregnant control cohort (n = 5). The monthly data illustrate the variability between subjects, which is also apparent when the data are compared on a trimester basis. Mixed model analyses showed that, in the third trimester, the mean PbB level was significantly lower for women (n = 10) who took a calcium (Ca) supplement (PbB 1.6 µg/dL) than those whose Ca intake was low (low-Ca cohort; n = 15; PbB 2.5 µg/dL) because low Ca means more mobilisation is required for homoeostasis so that more Pb was mobilised from the skeleton. For women who took the supplement, post-partum PbB levels were significantly higher than those in the other periods (2.7 vs 1.4-1.6 µg/dL). For women in the low-Ca cohort, PbB levels were higher at post-partum than in pre-pregnancy and in the first and second trimesters (3.1 vs 1.8 µg/dL), while the levels in the third trimester were higher than those in the first and second trimesters. Importantly, the increase in PbB during gestation was delayed until the third trimester in the Ca-supplemented cohort compared with the low-Ca cohort. Regression analysis showed that the changes over trimester were very similar for PbB and the (206)Pb/(204)Pb ratio providing convincing evidence for extra mobilisation of Pb from the maternal skeleton during pregnancy and lactation. Isotopic ratios in the cord blood samples were

  19. Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises

    NASA Astrophysics Data System (ADS)

    Tejada, Maria Luisa G.; Geldmacher, Jörg; Hauff, Folkmar; Heaton, Daniel; Koppers, Anthony A. P.; Garbe-Schönberg, Dieter; Hoernle, Kaj; Heydolph, Ken; Sager, William W.

    2016-07-01

    Shatsky Rise in the Northwest Pacific is the best example so far of an oceanic plateau with two potential hotspot tracks emanating from it: the linear Papanin volcanic ridge and the seamounts comprising Ojin Rise. Arguably, these hotspot tracks also project toward the direction of Hess Rise, located ∼1200 km away, leading to speculations that the two plateaus are connected. Dredging was conducted on the massifs and seamounts around Shatsky Rise in an effort to understand the relationship between these plateaus and associated seamounts. Here, we present new 40Ar/39Ar ages and trace element and Nd, Pb, and Hf isotopic data for the recovered dredged rocks and new trace elements and isotopic data for a few drill core samples from Hess Rise. Chemically, the samples can be subdivided into plateau basalt-like tholeiites and trachytic to alkalic ocean-island basalt compositions, indicating at least two types of volcanic activity. Tholeiites from the northern Hess Rise (DSDP Site 464) and the trachytes from Toronto Ridge on Shatsky's TAMU massif have isotopic compositions that overlap with those of the drilled Shatsky Rise plateau basalts, suggesting that both Rises formed from the same mantle source. In contrast, trachytes from the southern Hess Rise (DSDP Site 465A) have more radiogenic Pb isotopic ratios that are shifted toward a high time-integrated U/Pb (HIMU-type mantle) composition. The compositions of the dredged seamount samples show two trends relative to Shatsky Rise data: one toward lower 143Nd/144Nd but similar 206Pb/204Pb ratios, the other toward similar 143Nd/144Nd but more radiogenic 206Pb/204Pb ratios. These trends can be attributed to lower degrees of melting either from lower mantle material during hotspot-related transition to plume tail or from less refractory shallow mantle components tapped during intermittent deformation-related volcanism induced by local tectonic extension between and after the main volcanic-edifice building episodes on Shatsky

  20. Petrology of continental tholeiitic magmas forming a 350-km-long Mesozoic dyke swarm in NE Brazil: Constraints of geochemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Archanjo, Carlos José; de Oliveira, Diógenes Custódio; Vasconcelos, Paulo Marcosde Paula; Muñoz, Patrício Rodrigo Montecinos

    2016-08-01

    The Ceará Mirim dyke swarm (northeastern Brazil) is composed of Cretaceous tholeiites with plagioclase, clinopyroxene (± olivine), Fe-Ti oxides and pigeonite in their groundmass. These tholeiites have been subdivided into three groups: high-Ti olivine tholeiites, evolved high-Ti tholeiites (TiO2 ≥ 1.5 wt.%; Ti/Y > 360), and low-Ti tholeiites (TiO2 ≤ 1.5 wt%; Ti/Y ≤ 360), with all exhibiting distinct degrees of enrichment in incompatible elements relative to Primitive Mantle. Negative Pb anomalies are found in all three groups, while Nb-Ta abundances similar to those of OIB-type magmas are found in the olivine tholeiites, with moderate to high depletions being observed, respectively, in the evolved high-Ti and low-Ti tholeiites. The low-Ti tholeiites exhibit some contamination with crustal (felsic) materials during ascent. The initial isotopic compositions of the olivine tholeiites show uniform and unradiogenic 87Sr/86Sr (~ 0.7035-0.7039) combined with (in part) radiogenic 143Nd/144Nd and 206Pb/204Pb (> 19.1) ratios, which together reveal a likely contribution of FOZO (FOcalZOne) component in their genesis. The other tholeiite groups show variable Sr-Nd ratios with relatively consistent 206Pb/204Pb ratios clustering towards an isotopically enriched mantle (EM1) component. Taken in conjunction with the Nb, this enriched signature reflects the involvement of a subduction-modified lithospheric mantle in the source of the evolved high-Ti and low-Ti tholeiites. Thus, we propose that FOZO and EMI components coexisted (including minor mixing with E-MORB magmas) and contributed in varying extents to the generation of the Ceará-Mirim dyke swarm primary melts, which segregated at 75 to 60 km in depth around the garnet-spinel facies transition zone. The mechanism that promoted melting was most likely non-plume related. We suggest that plate-boundary forces linked to the opening of the Atlantic Ocean promoted passive rifting and that the resulting asthenospheric

  1. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re-Os isotope system

    NASA Astrophysics Data System (ADS)

    Gannoun, A.; Burton, K. W.; Barfod, D. N.; Schiano, P.; Vlastélic, I.; Halliday, A. N.

    2015-05-01

    This study presents major-, trace element and Re-Os isotope and elemental data for young alkaline basalts (< 10 Ma) from oceanic (Annobon, S. Tomé, Principe), continental (Manengouba) and continent-oceanic boundary (COB, Mt. Cameroon) sectors of the Cameroon volcanic line (CVL). The CVL is a chain of Tertiary to recent, transitional to strongly alkaline intraplate volcanoes extending from the south Atlantic island of Annobon to the continental interior of West Africa (Biu Plateau). The basalts from the oceanic sector display a range of initial 187Os/188Os ratios between 0.128 and 0.190 and those from the COB and continental sector range between 0.142 and 0.560. The samples with high 206Pb/204Pb (e.g. ratios > 20) possess 187Os/188Os isotope compositions between 0.14 and 0.18 (e.g., basalts from Mt Cameroon and Sao Tomé) which reflect the chemical characteristics that are more likely to be primary features of CVL, and are close to the value of 0.153 attributed to the HIMU end-member (Tubuai-Mangaia). However, most of the lavas from the continental sector show highly radiogenic initial 187Os/188Os ratios (0.36 to 0.56) that are outside the range previously observed for ocean island basalts, with shifts to radiogenic Os isotope compositions accompanied by less radiogenic 206Pb/204Pb and increasing SiO2 contents. The increase in 187Os/188Os is also associated with the decrease of Os, Ni, MgO and phenocryst abundances. These data can be explained by fractional crystallisation and assimilation of continental crust by the ascending magma. The systematic shift to unradiogenic lead isotope compositions from the COB into the oceanic sector is positively correlated with variations in 187Os/188Os isotope composition (from 0.140 to 0.128). At first sight this covariation might be attributed to the mixing of HIMU material with the ambient upper mantle (DMM). However, there is a clear covariation of the Os isotope and elemental composition, best explained with contamination of

  2. U-Pb Dating, whole rock and Sr-Nd-Pb-O isotope geochemistry of collisional magmatism in the CACC: Çiçekdaǧ igneous complex (ÇIC)

    NASA Astrophysics Data System (ADS)

    Deniz, Kiymet; Kagan Kadioglu, Yusuf; Stuart, Finlay; Ellam, Rob; Boyce, Adrian; Condon, Daniel

    2015-04-01

    these intrusive rocks have experienced fractional crystallisation coupled with crustal assimilation. The calcalkaline and alkaline series show enrichment in LILE and LREE relative to HFSE and HREE. These rocks have moderate 208Pb/204Pb (38.87-39.16) and 207Pb/204Pb (15.62-15.71) and high 206Pb/204Pb (18.76-18.81). Both trace element and Pb isotope data indicate enriched mantle source (EM-II). Mafic alkaline rocks differed with their low 206Pb/204Pb (17.55-17.62). These rocks are derived from subduction modified lithospheric mantle. The geochemistry and Sr-Nd-O isotope data of ophiolitic rocks and late alkaline dykes are very similar. Both of them have flat REE pattern, high 87Sr/86Sr and 143Nd/144Nd, low δ18O values (1.9-4.0), moderate 208Pb/204Pb (38.81-38.97, 38.51-38.91) and 207Pb/204Pb (15.62-15.70, 15.54-15.69) and high 206Pb/204Pb (18.37-18.77, 18.39-18.73). All data indicate heterogeneous mantle source. Trace element ratio diagrams suggest depleted mantle source and subduction enrichment for late alkaline dykes. Dy versus Dy/Yb diagram and calculated partial melting curves suggest 20-25% degree of partial melting of amphibole-phlogopite bearing spinel lherzolitic mantle sources. Ba/Rb versus Rb/Sr diagram indicate the presence of amphibole in the mantle source of ophiolitic rocks and phlogopite for the late alkaline dykes. U-Pb dating of zircon yielded crystallization ages of 73.74±0.027-73.78±0.046 and 73.78±0.071 for calcalkaline series and alkaline series, respectively. Both series are coexistence and may have coevally been confined from same sources.

  3. Late Cretaceous caldera volcanism and porphyry copper mineralization at Silver Bell, Pima County, Arizona: geology, petrology, and geochemistry

    SciTech Connect

    Sawyer, D.A.

    1987-01-01

    Late Cretaceous igneous activity associated with the porphyry copper deposit at Silver Bell was related to caldera volcanism. Caldera volcanism is documented by several lines of evidence: (1) the Confidence Peak Tuff, a phenocryst-rich low-silica rhyolite, ponded to a thickness of greater than 1.5 km.; (2) a belt of Paleozoic sedimentary rocks are enclosed by the tuff as caldera collapse megabreccia; and (3) caldera structure expressed by a 150/sup 0/ arcuate fault, later intruded by plutons and dikes of the QMP (quartz monzodiorite porphyry) suite host to porphyry copper mineralization. Geochemical data show that these rocks are calcalkaline and have close petrotectonic affinities with subduction-related continental arc volcanic provinces. Major element compositions range from high-K andesites to high-K dacites and low-silica rhyolites with the dacites and rhyolites being volumetrically most abundant. Caldera-related rocks have strong LREE/HREE fractionation, except that QMP suite plutons have lower HREE resulting from hornblende fractionation. The chemistry of the common dacites and rhyolites can be derived from andesite by relatively small amounts of plagioclase + pyroxene (or hornblende) + Fe-Ti oxide + apatite fractionation. The composition of the precaldera syenogranite intrusion is anomalous with its high Th, Rb, Ta and flat HREE. Lead isotope ratios for rocks and ores yield a secondary isochron age of 1700 +/- 365 Ma, similar to the age of the oldest Proterozoic crust in southern Arizona. Quartz monzodiorite porphyry plutons have similar Pb isotopic compositions as the porphyry copper ores. Coupled /sup 208/Pb//sup 204/Pb and /sup 206/Pb//sup 204/Pb variation are indicate of variable interaction with a U-depleted source, such as lower crust. Strontium isotopic ratios also support this model.

  4. Geochemical evolution of Monowai volcanic center: New insights into the northern Kermadec arc subduction system, SW Pacific

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Graham, Ian J.; de Ronde, Cornel E. J.; Leybourne, Matthew I.; Woodhead, Jon

    2011-08-01

    We present trace element and Sr-Nd-Pb isotope data on volcanic rocks recovered from the submarine Monowai volcanic center, which marks the midpoint of the ˜2500 km long Tonga-Kermadec arc. The center consists of a large (12 × 9 km) partly hydrothermally active caldera and a 12 km diameter ˜1500 m high volcanically and hydrothermally active stratovolcano. The stratovolcano lavas are tholeiitic basalts, which show variable evidence for plagioclase (±pyroxene) accumulation. The caldera lavas range from basalt to andesite, with the compositional variation being consistent with fractional crystallization as the dominant process. The mafic Monowai magmas were generated by relatively high degrees (12%-20%) of partial melting of a previously depleted MORB-type spinel-peridotitic mantle, metasomatized by slab-derived fluids. Strongly fluid mobile 87Sr/86Sr and 207Pb/204Pb ratios of the Monowai basaltic lavas are similar to those from the Putoto, Raoul, and Macauley volcanic centers 200-400 km to the south, suggesting derivation largely from subducted sediment. In contrast, variably fluid immobile 143Nd/144Nd ratios suggest an isotopically heterogeneous mantle along this segment of the arc. Higher 206Pb/204Pb in Monowai lavas imply some influence from the nearby subducting Louisville seamounts in melt generation. The formation of one of the Earth's largest submarine mafic calderas can best be explained through drainage of a single magma reservoir and subsequent collapse caused by trench-perpendicular extension, probably via southward progressive rifting of the northern Havre Trough.

  5. The Earth's missing lead may not be in the core.

    PubMed

    Lagos, M; Ballhaus, C; Münker, C; Wohlgemuth-Ueberwasser, C; Berndt, J; Kuzmin, Dmitry V

    2008-11-01

    Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile element, some Pb may also have been lost after accretion. The unique (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios of the Earth's mantle suggest that some lead was lost about 50 to 130 Myr after Solar System formation. This has commonly been explained by lead lost via the segregation of a sulphide melt to the Earth's core, which assumes that lead has an affinity towards sulphide. Some models, however, have reconciled the Earth's lead deficit with volatilization. Whichever model is preferred, the broad coincidence of U-Pb model ages with the age of the Moon suggests that lead loss may be related to the Moon-forming impact. Here we report partitioning experiments in metal-sulphide-silicate systems. We show that lead is neither siderophile nor chalcophile enough to explain the high U/Pb ratio of the Earth's mantle as being a result of lead pumping to the core. The Earth may have accreted from initially volatile-depleted material, some lead may have been lost to degassing following the Moon-forming giant impact, or a hidden reservoir exists in the deep mantle with lead isotope compositions complementary to upper-mantle values; it is unlikely though that the missing lead resides in the core. PMID:18987741

  6. Nd, Pb and Sr isotopic data from the Mount Elgon volcano, eastern Uganda-western Kenya: Implications for the origin and evolution of nephelinite lavas

    NASA Astrophysics Data System (ADS)

    Simonetti, A.; Bell, K.

    1995-11-01

    Nd, Pb and Sr isotope ratios for nephelinites from the Tertiary Mount Elgon alkaline volcanic centre, eastern Uganda-western Kenya, are highly variable and indicate open system behaviour. The variation in {143Nd }/{144Nd } (0.51219-0.51286) and {87Sr }/{86Sr } (0.70314-0.70604) ratios span almost the entire range documented for carbonatites from several East African alkaline complexes. The whole rock chemical data, mineralogy, composition of diopside phenocrysts, and variation in isotopic ratios from the Mount Elgon nephelinites are similar to those from the nephelinite lavas from the Tertiary Napak volcano, Uganda (Simonetti and Bell, 1994a). The diopside phenocrysts from Mount Elgon nephelinite lavas reveal large core-to-rim compositional variations (which include normal, oscillatory and reverse zoning), and their Nd, Pb and Sr isotopic ratios are not in isotopic equilibrium with their host lavas. Microprobe data along with textural evidence from the Mount Elgon diopside phenocrysts support a model that involves crystallization in an open magma system that was undergoing continuous chemical and isotopic change. The large variation in Pb isotopic ratios (whole rocks- {206Pb }/{204Pb }: 18.45-21.51; {207Pb }/{204Pb }: 15.61-15.88; {208Pb }/{204Pb }: 38.62-41.02), from the Mount Elgon lavas, best fit a model involving mixing between EM I and HIMU mantle components, and correlations in Pb-Sr and Pb-Nd isotopic plots partly support this interpretation. The isotopic data from Mount Elgon and Napak nephelinites suggest complex evolutionary histories involving magma mixing, and support the presence of a heterogeneous sub-continental source beneath eastern Uganda, similar to that documented for various types of peralkaline nephelinite lavas from the only active carbonatite-nephelinite volcano, Oldoinyo Lengai, Tanzania (Bell and Dawson, 1995) and other East African volcanoes (e.g. Vollmer and Norry, 1983). The chemical data and large variation in isotopic ratios for the

  7. Synchronous Japan Sea opening Miocene fore-arc volcanism in the Abukuma Mountains, NE Japan: An advancing hot asthenosphere flow versus Pacific slab melting

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Hoang, Nguyen

    2009-10-01

    the basaltic rocks, the Ryozen dacite has relatively low SrI (0.70436) and high NdI (0.5128-0.5129). These features show that the dacite has no genetic relationship with the basaltic rocks and can be considered an adakite, traditionally viewed as product of eclogitic slab melting. The 14 Ma Nodegamiyama andesite has SiO 2 in 54 to 55 wt.%, high Mg# (59.0-62.3), high Cr and high Ni contents. The isotopic ratios of this andesite are enriched (SrI; 0.7054-0.7055, NdI; ~ 0.5127, 206Pb/ 204Pb; ~ 18.5). This high-Mg andesite may be generated by melting of subducting sediments and interaction of such melts with overlying mantle peridotites. Although the downgoing Pacific plate was Cretaceous in age and thus too cold to melt under normal conditions, incursion of the hot asthenosphere above the slab during the Japan Sea opening may have caused melting to occur.

  8. B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction mélange (Cima di Gagnone, Swiss Central Alps)

    NASA Astrophysics Data System (ADS)

    Cannaò, E.; Agostini, S.; Scambelluri, M.; Tonarini, S.; Godard, M.

    2015-08-01

    Tectonic mixing of slab- and mantle-derived materials at the interface between converging plates highly enhances fluid-mediated mass transfer from the slab to the overlying mantle. Subduction mélanges can provide information about the interaction among different slices accreted at plate interface domains, with implications on the tectonic and geochemical evolution of the plate-interface itself. At Cima di Gagnone, pelitic schists and gneiss enclose chlorite harzburgite and garnet peridotite lenses, like in subduction mélanges located in-between downgoing slabs and overlying mantle. These peridotites host MORB-type eclogite and metarodingite, and derive from dehydration of serpentinized mantle protoliths. Their enrichment in fluid-mobile B, As, Sb, U, Th is the result of an early-stage oceanic serpentinization, followed by interaction with host metasediments during subduction burial. Here we define the element exchange process in the Gagnone mélange by means of the B, Sr and Pb isotope analysis of its main lithologies (ultramafic, mafic rocks and paragneiss). The 87Sr/86Sr and 206Pb/204Pb ratios of ultramafic rocks (0.7090-0.7124 and 18.292-18.837, respectively) show enrichments in radiogenic Sr and Pb after exchange with the host paraschist (up to 0.7287 87Sr/86Sr; 18.751 206Pb/204Pb). The δ11B values of peridotites (down to -10‰) point to a combined effect of (1) 11B release to deserpentinization fluids (serpentinized protoliths likely had positive δ11B and lower radiogenic Sr, Pb), and of (2) exchange with fluids from the surrounding metasediments. The whole Gagnone rock-suite is finally overprinted by retrograde fluids that essentially bring to an increase in radiogenic Pb (about 19.0 206Pb/204Pb) and to values of 0.710 87Sr/86Sr and of -10‰ δ11B. The recognition of different stages of interaction between mantle rocks and sedimentary/crustal reservoirs allows us to define the geochemical effects related to the early coupling of such rocks along the

  9. What do Kauai's dikes tell us about the Loa and Kea trends?

    NASA Astrophysics Data System (ADS)

    Utami, S.; Weis, D.; Garcia, M. O.

    2013-12-01

    Kauai, the northernmost of the main Hawaiian Islands, is dominated (>98%) by shield stage volcanism, which is predominantly exposed on its western and northern flanks. Surface exposures of shield stage volcanism (Waimea Canyon Basalts, WCB) on Kauai have been dated from 5.1 to 4.0 Ma [1]. Numerous steeply dipping dikes cut the Napali Member of the WCB along the Waimea Canyon and Napali Coast [2]. We present results of major and trace element, and Pb-Sr-Nd-Hf isotopic characterization of 11 whole-rocks and 13 glasses from WCB dikes. All rocks and glasses are tholeiitic basalts. Major element compositions reflect mostly olivine fractionation and accumulation. Trace element patterns for the samples are typical of ocean island basalts (OIB), with moderate enrichment in high field strength and large ion lithophile elements. C1 chondrite normalized (La/Yb)n vary from 2.76 to 4.75. Dikes plot comparably with shield stage Kauai lavas on the Nb-Zr-Y plot, with Nb/Y = 0.373-0.713 and Zr/Y = 3.93-6.18 [1,3]. Hence dikes plot above and along the lower boundary of the Iceland array [4] with other Hawaiian shield lavas [1,5]. Pb isotopic ratios are intermediate (206Pb/204Pb = 37.99-38.02; 207Pb/204Pb = 15.45-15.47; 208Pb/204Pb = 37.86-38.10) and straddle along the Kea and Loa boundary [6,7] with 208Pb*/206Pb* = 0.9428-0.9492 i.e. non-diagnostic of either trend. Sr, Nd and Hf isotopic compositions are also intermediate, even in binary plots, and fall at the intersection of the Loa and Kea fields. Variations in Zr/Nb and 208Pb*/206Pb* show apparent eastward enrichment from Kauai towards the younger West Kaena Ridge [5]. These observations appear to suggest the presence of the Loa enriched signature until the emergence of Waianae, which has a Kea signature [6]. These results confirm the re-emergence of the Loa component in Hawaiian lavas (previously found in a few south Kauai lavas [1] and in two lavas from the Daikakuji Seamount [8] located just south of the Bend in the Hawaiian

  10. Does a Superswell Exist Between Antarctica and Australia?

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Langmuir, C. H.; Scott, S. R.; Sims, K. W. W.; Lin, J.; Kim, S.; Michael, P. J.; Hahm, D.

    2015-12-01

    The Australian-Antarctic Ridge (AAR) is located between the Australian-Antarctic Discordance (AAD) of the Southeast Indian ridge (SEIR) in the west and Pacific-Antarctic Ridge (PAR) in the east. The AAR has intermediate spreading rate (~70 mm/yr) and consists of a series of 1st order segments bounded by parallel transform faults. KR1, a southernmost segment (63°S) of the AAR, is a 300-km-long super-segment with shallow axial depth (~2000 m). KR1 is bounded by the Macquarie transform fault in the east and the Balleney transform fault in the west, which connects KR1 with KR2 at ~ 200 km north. KR2 is 180 km long with axial depth (~2300 m) deeper than KR1. Both KR1 and KR2 are shallow relative to global mid-ocean ridges. Most of the basaltic rocks from the two segments show enriched geochemical characteristics that differ from both the AAD (Southeast Indian Ridge) and the PAR. La/Sm ratios vary from N-MORB to T-MORB; however, K2O/Nb ratios of all samples are consistently low like OIB. Their Pb isotopes are mostly more radiogenic than the N-MORB samples from PAR (and EPR) and SEIR, with 206Pb/204Pb mostly >18.6. At a given 206Pb/204Pb, their 87Sr/86Sr are higher than the PAR, but lower than the SEIR. The basalts from the two segments are geochemically similar to Cenozoic volcanoes erupted on southeast Australia, Zealandia and northwest Antarctica, suggesting a genetic relationship. According to tectonic reconstruction models, these three continents were originally joined, but separated from each other after ~80 Ma. Notably, the KR1 and KR2 segments are located at the boundary of this continental separation. The ages of Cenozoic volcanoes span from ~ 60 Ma to the recent, and the volcanoes might be related to a plume head that caused the breakup of the continents. Seismic tomography studies show that there is a low velocity zone (LVZ) in the shallow mantle (> 250 km) between Antarctica and Australia where the AAR is located. The AAR would be sampling this LVZ, and this

  11. Investigating Compositional Links Between Arc Magmas And The Subducted Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Straub, S. M.

    2015-12-01

    Arc magmatism is causally related to the recycling of materials from the subducting plate. Numerous studies showed that the recycled material flux is dominated by recycled continental crust (oceanic sediment, eroded crust) and altered oceanic igneous crust (AOC). The crustal component is highly enriched, and thus its signal in arc magmas can readily be distinguished from mantle wedge contributions. In contrast, the impact of the AOC flux is much more difficult to detect, since the AOC isotopically resembles the mantle. Mass balance studies of arc input and output suggest that the recycled flux from the thick (6000 meter on average) AOC may buffer the flux of the recycled continental crust to the point of concealment in arc settings where the latter is volumetrically minor. In particular, highly fluid- mobile elements Sr and Pb in arc magmas are strongly influenced by the AOC, implying that the arc chemistry may allow for inferring the Sr and Pb isotopic composition of the subducted AOC. This hypothesis is being tested by a compilation of published data of high-quality trace element and isotope compositions from global arcs. In agreement with previous studies, our results confirm that the Sr-rich fluids released from the AOC control the arc Sr isotopes, whereby the slightly elevated 87Sr/86Sr (up to 0.705) of many arcs may principally reflect the similarly elevated Sr isotope ratios of the AOC rather than a recycled crustal component. In contrast, the arc Pb isotope ratios are influenced by both the AOC and the recycled crustal component which create the typical binary mixing arrays. These arrays should then point to the Pb isotope composition of the AOC and the recycled crust, respectively. However, as the proportions of these end members may strongly vary in arc magmas, the exact 206Pb/204Pb of the subducted AOC in a given setting is challenging. Remarkably, the Pb isotope systematics from well-constrained western Aleutian (minimal sediment subduction) and central

  12. the Geochemical Structure of the Hawaiian Plume

    NASA Astrophysics Data System (ADS)

    Huang, S.; Frey, F. A.

    2005-12-01

    The spatial arrangement of modern Hawaiian volcanoes forms two offset trends, the Kea and Loa trends. Lavas from these two volcanic trends have important geochemical differences; e.g., Loa and Kea trend lavas form different trends in 87Sr/86Sr and 208Pb*/206Pb* vs 3He/4He plots (e.g., Kurz et al., 1995; Lassiter et al., 1996). Abouchami et al. (2005) noted that, compared with Kea trend lavas, Loa trend lavas have relatively higher 208Pb/204Pb at a given 206Pb/204Pb, i.e., Loa trend lavas have higher 208Pb*/206Pb*. Kea and Loa trend lavas also form different trends in plots of 208Pb*/206Pb* vs Hf, Sr and Nd isotopic ratios. An important observation is that in these isotopic ratio plots, Loihi lavas are located at the intersections of the near-linear Loa and Kea trends; implying that the Loihi component (high 3He/4He) is a common source component for Loa and Kea trend volcanoes. The other ends of the Loa and Kea trends are defined by Koolau and Mauna Kea lavas, and are designated as the Koolau and Kea components. Loa trend lavas sample the Koolau and Loihi components, and the Kea trend lavas sample the Kea and Loihi components. The Loa-Kea geochemical differences have been inferred to reflect source characteristics. Consequently, different models for the structure of the Hawaiian plume have been proposed, for example, a concentrically zoned plume (Lassiter et al., 1996) and a bilaterally asymmetric plume (Abouchami et al., 2005). Based on the temporal variations of geochemical compositions of shield lavas from several Hawaiian shields, such as Mauna Kea, Koolau and Haleakala, as well as melt inclusion study, Kurz et al. (2004) and Ren et al. (2005) proposed that although the plume is grossly zoned, there are Kea- and Loa-type sources present throughout the plume. In this study, we propose that Loa and Kea volcanoes sample a common, geochemically heterogeneous mantle plume source which contains the Koolau, Kea and Loihi components. These geochemical heterogeneities

  13. Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: evidence for late Neoproterozoic continental rifting in the northern Yangtze block

    NASA Astrophysics Data System (ADS)

    Zhu, Xiyan; Chen, Fukun; Liu, Bingxiang; Zhang, He; Zhai, Mingguo

    2015-01-01

    Neoproterozoic volcanic-sedimentary sequences of the southern Qinling belt, central China, were intruded by voluminous mafic dikes. secondary ion mass spectrometry zircon U-Pb dating indicates that these dikes were emplaced at 650.8 ± 5.2 Ma, coeval with mafic rocks occurring at the northern margin of the Yangtze block. The dikes are characterized by enrichment of large ion lithophile elements, high Ti contents (up to 3.73 wt%) and Nb/Ta ratios between 14.5 and 19.6, suggesting a mantle source of oceanic island basalt affinity. Initial 87Sr/86Sr ratios show positive correlation with SiO2 contents and negative correlation with Zr/Nb ratios, implying that these rocks were affected by crustal contamination during the magma ascend and emplacement process. The dikes have initial ɛ Nd values of +0.2 to +3.3, low 206Pb/204Pb ratios of 16.96-17.45, and moderate 87Sr/86Sr ratios of 0.7043-0.7076, likely pointing to the involvement of an enriched mantle source. The mafic dikes and coeval mafic volcanic equivalents in the South Qinling and the northern Yangtze are hypothesized to be related with the prolonged breakup of the supercontinent Rodinia, suggesting that continental rifting lasted until ca. 650 Ma.

  14. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  15. Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochong; Xiao, Xuchang; Wang, Jun; Wang, Yong; Kusky, Timothy M.

    2008-01-01

    Major and trace element, Sr-Nd-Pb isotope and mineral chemical data are presented for post-collisional late Cenozoic shoshonitic volcanic rocks from the western Kunlun Mountains, NW China. They are distributed in two approximately E-W striking sub-belts, with the lavas in the southern sub-belt having been generated earlier than those in the northern sub-belt. The mineralogy of the rocks reflects crystallization from moderate temperature magmas (700-1000 °C) with high oxygen and water fugacities. They are geochemically characterized by relatively low TiO 2, Al 2O 3 and FeO and high alkalies coupled with very high contents of incompatible element concentrations. Remarkably negative Nb, Ta and Ti anomalies are displayed on primitive mantle-normalized incompatible element patterns. In addition, they show a relatively broad range of low ɛNd (-1.8 to -8.7) at more restricted 87Sr/ 86Sr ratios (0.7081-0.7090). Pb isotopes are characterized by a range of 207Pb/ 204Pb (15.48-15.74) and 208Pb/ 204Pb (38.30-39.12) ratios at relatively invariant 206Pb/ 204Pb (18.60-18.83) values, except one sample with a ratio of 18.262, leading to near-vertical arrays. The lavas from the northern sub-belt have relatively high 87Sr/ 86Sr ratios. All lavas have extremely high La/Yb ratios, probably reflecting that the magmas were derived from a metasomatized lithospheric mantle source containing phlogopite-hornblende garnet peridotite affected by subducted sediments and hydrous fluids, rather than from a depleted asthenopheric mantle source or mantle plume source. However, the lavas from the southern sub-belt were derived from a lower degree of melting of more highly metasomatized sub-lithospheric mantle in comparison with those from the northern sub-belt. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in the western Kunlun could be a consequence of continuously conductive heating of upwelling, hot asthenospheric mantle following

  16. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province

    NASA Astrophysics Data System (ADS)

    Zou, Si-Yuan; Li, Zi-Long; Song, Biao; Ernst, Richard E.; Li, Yin-Qi; Ren, Zhong-Yuan; Yang, Shu-Feng; Chen, Han-Lin; Xu, Yi-Gang; Song, Xie-Yan

    2015-01-01

    The Early Permian Tarim large igneous province (Tarim LIP) consists mainly of basaltic lavas, mafic-ultramafic intrusions including dikes and, syenite bodies in the Tarim Basin, NW China. A major unit of the Tarim LIP, the Wajilitag intrusive complex, consists of olivine pyroxenite, clinopyroxenite and gabbro units (from bottom to top), diorite and syenite rocks occurred in the upper part of the complex and alkali mafic dikes intrude the clinopyroxenite phase. Here we report the zircon U-Pb age and Hf isotopes, geochemical characteristics and Sr-Nd-Pb isotopic data of the alkali mafic dikes, and diorite, aegirine-nepheline syenite and syenite porphyry units in the Wajilitag intrusive complex. Zircons from the diorite and alkali mafic rocks yield concordant crystallization ages of 275.2 ± 1.2 Ma and 281.4 ± 1.7 Ma, respectively. The diorite and syenitic rocks in Wajilitag area have a narrow range of SiO2 contents (51.9-57.3 wt.%), and are enriched in total alkalis (Na2O + K2O = 8.3-14.3 wt.%), among which the aegirine-nepheline syenite and syenite porphyry have the geochemical affinity of A-type granites. The alkali mafic rocks and syenitic rocks have high Al2O3 (19.4-21.1 wt.%), Zr, Hf, Ba contents, total rare earth element abundances and LREE/HREE ratios and low Mg# value, K, P and Ti contents. Diorites have lower Al2O3 contents, total REE abundances and LREE/HREE ratios and higher Mg# values than the alkali mafic rocks and syenitic rocks. The diorites and syenitic rocks have low initial 87Sr/86Sr ratios (0.7034-0.7046), and high εNd(t) values (0.1-4.1) and zircon εHf(t) values (- 0.9-4.4). All the diorites and syenitic rocks show the 206Pb/204Pb ratios ranging of 18.0-19.5, 207Pb/204Pb of 15.4-15.6 and 208Pb/204Pb of 38.0-39.9. Sr-Nd isotopic ratios indicate a FOZO-like mantle source for the diorite and syenitic rocks, similar to that of the mafic-ultramafic rocks in the Wajilitag complex. In contrast, zircon Hf isotopes of basalt and syenite elsewhere in the

  17. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr Nd Pb Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Jiang, Yao-Hui; Jiang, Shao-Yong; Ling, Hong-Fei; Dai, Bao-Zhang

    2006-01-01

    SHRIMP zircon U-Pb dating, mineral chemical, element geochemical and Sr-Nd-Pb-Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K 2O contents with high K 2O / Na 2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO 2 and Al 2O 3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063-0.7070) and unradiogenic 143Nd / 144Nd ( ɛNd = - 2.0 to - 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71-18.82) and unusually radiogenic 207Pb / 204Pb (15.65-15.67) and 208Pb / 204Pb (38.87-39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U-Pb dated is characterized by clearly positive initial ɛHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite-carbonate) relations. Detailed geochemical and Sr-Nd-Pb-Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1-5%) partial melting of a metasomatized lithosphere (phlogopite-garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to

  18. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Bagas, Leon; Liang, Qing-Ling

    2015-06-01

    The Mesozoic Shanghang Basin in southeastern China consists of Early Cretaceous mottled coarse-grained clastic and volcanic rocks, and Late Cretaceous clastic rocks. The volcanic rocks are intermediate-mafic to felsic and spatially close to the famous Zijinshan Mineral Field. In order to better understand the timing, petrogenesis and tectonic setting of these volcanic rocks and the relationship between magmatism and metallogeny in the mineral field, U-Pb zircon geochronological, geochemical and Sr-Nd-Pb-Hf isotopic studies were completed on the volcanic rocks. Fifteen LA-MC-ICP-MS U-Pb zircon analyses of the volcanic rocks yield weighted mean ages of between 105 and 99 Ma. Major and trace element geochemistry shows that these rocks are mostly high-K to shoshonitic, enriched in LREE and Th, U, and depleted in Ba, Nb, Sr, P and Ti. The volcanic rocks have 87Sr/86Sri ratios of between 0.70732 and 0.70977, 206Pb/204Pb isotope ratios of 18.57-19.77, 207Pb/204Pb isotope ratios of 15.64-15.71, 208Pb/204Pb isotope ratios of 38.87-40.62, 176Hf/177Hf ratios of 0.282589-0.282823, εNdT values of -7.5 to -4.7, and εHf(t) values of -4.2 to 4. Such characteristics, with similarities to coeval volcanic and intrusive rocks adjacent to the basin, suggest that the parent magma of the Cretaceous volcanic rocks in the basin and their contemporaneous intrusives originated from crustal melts with a juvenile component. Petrogenetically, fractional crystallization with minor wall-rock assimilation is the controlling process in deriving a wide range of more evolved rocks. With reference to the ore-forming events and isotopic features of ore-related intrusions in the Zijinshan Mineral Field, we propose that volcanism in the Shanghang Basin and coeval magmatism in the mineral field are related to the formation of the regional porphyry and epithermal Cu-Au-Mo-Ag deposits in an extension tectonic setting related to the subduction of the Paleo-Pacific Plate.

  19. Lead and barium sources in Cambrian siliciclastics and sediment provenance of a sector of the Taconic Orogen, Quebec: a mixing scenario based on Pb-isotopic evidence

    USGS Publications Warehouse

    Schrijver, K.; Zartman, R.E.; Williams-Jones, A. E.

    1994-01-01

    To test the hypothesis that siliciclastic rocks constituted the major source of Pb and Ba in barite-galena deposits of the Taconic Orogen, we determined Pb-isotope ratios in galena, barren rocks and contained minerals, as well as concentrations of Pb, U, Th and Ba in the latter (detrital feldspars, sandstones, mudstones, rock clasts and carbonate cements and clasts). Ranges in 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb of 28 galena samples are 17.96-18.05, 15.56-15.59 and 37.75-37.93, respectively; ranges for 41 barren rocks and minerals are 16.17-23.31, 15.26-15.86 and 35.98-42.51, respectively. The lowest ratios are in feldspar, and the highest in carbonate and mudstone. Values of the mudstones samples overlap those of galena when corrected for in situ decay of U and Th since galena precipitation (???450 Ma). We thus propose that mudstones constituted a source of lead. Corrected ratios for anomalously Pb-rich mudstones are virtually identical to galena-Pb ratios and may be due to contamination by lead-bearing brines. Assuming that burial diagenesis did not disturb the Pb-isotope values of sandstones, these rocks contributed only a minor fraction of lead to the galena, estimated at ???20% for one deposit. The source of barite-Ba was probably perthite. Low Ba and Pb concentrations of sandstone adjacent to this deposit, compared to high concentrations remote from it, support leaching of barium (and minor lead) from feldspar penecontemporaneous with feldspar dissolution. Geological data indicate that the provenance of the siliciclastic rocks was mainly from Grenville terrane. A comparison of our Pb-isotopic data for Taconic perthite with those of Grenville K-feldspar, as well as ratios of trace elements, support this provenance for both sandstones and mudstones. The presence of carbonate platforms peripheral to the orogen, and the Middle Ordovician-Middle Devonian depositional range of the studied and Mississippi Valley type deposits north (Newfoundland) and south (U

  20. Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Jiang, Shao-Yong; Honarmand, Maryam; Neubauer, Franz

    2016-02-01

    A petrological, geochemical and Sr-Nd-Pb isotopic study was carried out on the Tarom-Olya pluton, Iran, in the central part of the Alpine-Himalayan orogenic belt. The pluton is composed of diorite, monzonite, quartz-monzonite and monzogranite, which form part of the Western Alborz magmatic belt. LA-ICP-MS analyses of zircons yield ages from 35.7 ± 0.8 Ma to 37.7 ± 0.5 Ma, interpreted as the ages of crystallization of magmas. Rocks from the pluton have SiO2 contents ranging from 57.0 to 69.9 wt.%, high K2O + Na2O (5.5 to 10.3 wt.%) and K2O/Na2O ratio of 0.9 to 2.0. Geochemical discrimination criteria show I-type and shoshonitic features for the studied rocks. All investigated rocks are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs), depleted in high-field strength elements (HFSEs), and show weak or insignificant Eu anomalies (Eu/Eu* = 0.57-1.02) in chondrite-normalized trace element patterns. The Tarom-Olya pluton samples also show depletions in Nb, Ta and Ti typical of subduction-related arc magmatic signatures. The samples have relatively low ISr (0.7047-0.7051) and positive εNd(36 Ma) (+ 0.39 to + 2.10) values. The Pb isotopic ratios show a (206Pb/204Pb)i ratio of 18.49-18.67, (207Pb/204Pb)i ratio of 15.58-15.61 and (208Pb/204Pb)i ratio of 38.33-38.77. The εHf(t) values of the Tarom-Olya pluton zircons vary from - 5.9 to + 8.4, with a peak at + 2 to + 4. The depleted mantle Hf model ages for the Tarom-Olya samples are close to 600 Ma. These isotope evidences indicate contribution of juvenile sources in petrogenesis of the Tarom-Olya pluton. Geochemical and isotopic data suggest that the parental magma of the Tarom-Olya pluton was mainly derived from a sub-continental lithospheric mantle source, which was metasomatized by fluids and melts from the subducted Neotethyan slab with a minor crustal contribution. Subsequent hot asthenospheric upwelling and lithospheric extension caused decompression melting in the final stage of

  1. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels

    SciTech Connect

    Gulson, Brian; Anderson, Phil; Taylor, Alan

    2013-10-15

    Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels (<10 µg/dL). Methods: Thermal ionisation and isotope dilution mass spectrometry were used to determine high precision lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb and {sup 206}Pb/{sup 204}Pb) and lead concentrations in blood, dust from floor wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10

  2. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Kuritani, Takeshi; Makishima, Akio; Nakamura, Eizo

    2007-07-01

    We present a Sr, Nd, Hf and Pb isotope investigation of a set of garnet clinopyroxenite xenoliths from Malaita, Solomon Islands in order to constrain crustal recycling in the Pacific mantle. Geological, thermobarometric and petrochemical evidence from previous studies strongly support an origin as a series of high-pressure (> 3 GPa) melting residues of basaltic material incorporated in peridotite, which was derived from Pacific convective mantle related to the Ontong Java Plateau magmatism. The present study reveals isotopic variations in the pyroxenites that are best explained by different extents of chemical reaction with ambient peridotite in the context of a melting of composite source mantle. Isotopic compositions of bimineralic garnet clinopyroxenites affected by ambient peridotite fall within the oceanic basalt array, similar to those of Ontong Java Plateau lavas. In contrast, a quartz-garnet clinopyroxenite, whose major element compositions remain intact, has lower 206Pb/ 204Pb- 143Nd/ 144Nd and higher 87Sr/ 86Sr- 207Pb/ 204Pb ratios than most oceanic basalts. These isotopic signatures show some affinity with proposed recycled sources such as the so-called EM-1 or DUPAL types. Constraints from major and trace element characteristics of the quartz-garnet clinopyroxenite, the large extent of Hf-Nd isotopic decoupling and the good coincidence of Pb isotopes to the Stacey-Kramers curve, all indicate that pollution of southern Pacific mantle occurred by the subduction or delamination of Neoproterozoic granulitic lower crust (0.5-1 Ga). This crustal recycling could have taken place around the suture of Rodinia supercontinent, a part of which resurfaced during mantle upwelling responsible for creating the Cretaceous Ontong Java Plateau.

  3. Constraints on mantle source and interactions from He-Sr isotope variation in Italian Plio-Quaternary volcanism

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Nuccio, P. M.; Stuart, F. M.; di Liberto, V.; Ellam, R. M.

    2008-02-01

    Helium isotope ratios of olivine and pyroxene phenocrysts from Plio-Quaternary volcanic rocks from southern Italy (seven Aeolian Islands, Mt. Vulture, Etna, Ustica, and Pantelleria) range from 2.3 to 7.1 Ra. Importantly, the phenocryst 3He/4He correlate well with whole rock Sr isotopic composition (0.70309-0.70711), reflecting the mixing of two sources. A significant contribution of He from crustal contamination is recorded only occasionally (e.g., pyroxenes from Vulcano). When merged with data from the Roman Comagmatic Province, a remarkably strong near-linear He-Sr isotope correlation is apparent. The general northward decrease in 3He/4He corresponds to an increase in 87Sr/86Sr (and a decrease in 143Nd/144Nd and 206Pb/204Pb) that is due to increasing metasomatic enrichment of the mantle wedge via subduction of the Ionian-Adriatic plate. Calculations based on the ingrowth of 4He in the wedge and on the 4He content of the subducting crust show that mechanisms of enrichment in radiogenic He are effective only if the wedge is strongly depleted in He relative to best estimates of the depleted mantle. This can be accommodated if the process of metasomatism by the subduction fluids depletes the mantle wedge. The 3He/4He of Pantelleria, Etna, Iblei, Ustica, Alicudi, and Filicudi basalts (7.0 ± 0.6 Ra) define the mantle composition least affected by subduction-related metasomatism. Although these volcanoes are from a variety of tectonic regimes (subduction-related, intraplate, rifting), their similarities suggest a common origin of geochemical features. Their characteristics are consistent with a HIMU-type mantle that either is younger than the Cook-Austral island end-member or has a lower 238U/204Pb.

  4. The geology of the carbonate-hosted Blende Ag-Pb-Zn deposit, Wernecke Mountains, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Moroskat, Micheal; Gleeson, Sarah A.; Sharp, R. J.; Simonetti, A.; Gallagher, C. J.

    2015-01-01

    The Ag-Zn-Pb Blende deposit is located in the Wernecke Mountains, Yukon and is hosted by the middle Proterozoic Gillespie Lake Group dolomitic siltstones. The sulphide mineralization is localized within the axial planar cleavage of a kilometre-scale anticline and is dominated by galena- and sphalerite-cemented mosaic, rubble and crackle breccias with minor pyrite, galena, sphalerite and dolomite veins. 206Pb/204Pb values from galena range from 16.355 to 16.600, 207Pb/204Pb from 15.430 to 15.461, and 208Pb/204Pb from 36.016 to 36.283, respectively, and yield model ages between 1,490 and 1,430 Ma. A hydrothermal alteration zone, which is younger than the mineralization, has a poorly constrained U-Pb monazite age of 1,307 ± 180 Ma, which suggests that the Blende deposit is Proterozoic in age. Dolomites associated with the main- and late-stage mineralization have δ13C values that range from -1.8 to 0.9 ‰ and δ18O values of 15.7 to 21.9 ‰. The total range of δ34S values from pyrite, galena and sphalerite is 9.4 to 58.1 ‰, indicating that the sulphur in the deposit was derived from reduction of seawater sulphate in a closed system. Strontium isotopes suggest there were three fluids involved in the Blende mineralizing system: Fluid 1 was derived from seawater and formed carbonate and quartz veins pre-mineralization; it has an 87Sr/86Sr ratio of 0.70948. Fluid 2 has a high 87Sr/86Sr ratio of 0.73866, and fluid 3 has a Sr isotopic ratio of 0.71602. Fluids 1 and 3 have similar isotopic compositions but different total Sr ion signals (a function of concentration). This suggests that fluids 1 and 3 may have ultimately been derived from Proterozoic seawater but have undergone different amounts of water-rock interaction. The isotopic and geochemical data suggest the mineralization formed when a H2S-rich fluid derived from seawater (fluid 3) mixed with a metal-bearing fluid (fluid 2) in the high permeability zones of the axial planar cleavage. The Blende deposit is an

  5. Trindade and Martı´n Vaz Islands, South Atlantic: Isotopic (Sr, Nd, Pb) and trace element constraints on plume related magmatism

    NASA Astrophysics Data System (ADS)

    Siebel, W.; Becchio, R.; Volker, F.; Hansen, M. A. F.; Viramonte, J.; Trumbull, R. B.; Haase, G.; Zimmer, M.

    2000-05-01

    Highly alkaline silica undersaturated lavas erupted at Trindade Island over its 5 Ma geologic history and comprise primitive nephelinites-basanites and more evolved nepheline-bearing phonolitic rocks. Nephelinites-basanites and phonolitic rocks are thought to be genetically related via crystal fractionation, as indicated by the very limited range in Sr, Nd and Pb isotope ratios, systematically increasing contents of incompatible trace elements from primitive to evolved rock types, and similar variation in chemical composition of the major phenocryst phases (clinopyroxene, amphibole, feldspar) in all rock types. Tb/Yb ratios of the primitive lavas are high (2.6-4.1) and silica contents are low (39.8-42.9 wt.% SiO 2), indicating that the melts were generated at deep mantle depths (˜150 km), within the garnet lherzolite stability field. Non-radiogenic 87Sr/ 86Sr (0.70377-0.70421) and radiogenic 143Nd/ 144Nd (0.512752-0.512837) values show that the Trindade and Martı´n Vaz rocks are derived from moderately depleted sources relative to bulk-earth. The lavas have moderate radiogenic 206Pb/ 204Pb ratios of 19.00-19.33, 207Pb/ 204Pb of 15.56-15.60, and 208Pb/ 204Pb of 38.89-39.34; they plot close to the Northern Hemisphere Reference Lines (NHRL). The narrow range of Sr, Nd, and Pb isotopic compositions in the Trindade and Martı´n Vaz lavas suggests either that the source region was homogeneous (similar to the common mantle components FOZO and "C"), or that melts from a heterogeneous three-component mantle source, involving HIMU, enriched mantle EM I, and depleted N-type MORB, were well mixed before eruption. Late Cretaceous to Present volcanism ranging from interior Brazil towards Trindade is thought to record the passage of the South American plate over the Trindade mantle plume (e.g., O'Connor and Duncan, 1990). Comparison with published data from other mafic rocks along the suggested plume track shows that Trindade isotopic compositions match those of transitional

  6. Sm-Nd dating and REE Composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China

    NASA Astrophysics Data System (ADS)

    Guo, Zhijun; Li, Jinwen; Xu, Xinying; Song, Zeyou; Dong, Xuzhou; Tian, Jing; Yang, Yuncheng; She, Hongquan; Xiang, Anping; Kang, Yongjian

    2016-09-01

    Sm-Nd analyses of seven scheelite samples from scheelite-quartz veins in the Honghuaerji scheelite deposit produce a well-defined linear array on an isochron diagram with a mean square weighted deviation (MSWD) of 0.87 corresponding to an age of 178.4 ± 2.9 Ma with εNd(t) = + 1.50. This age is interpreted to represent the age of scheelite mineralization. The scheelite Sm-Nd age is in good agreement with U-Pb ages obtained from a mineralization-related granite (179.4 ~ 178.6 Ma), indicating that there is no apparent age gap between granite crystallization and ore formation. Rare earth element (REE) abundances in the scheelite were determined by in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the scheelite samples contain elevated REE concentrations with total ΣREE + Y contents in the range of 3339 to 6321 ppm. The chondrite-normalized REE distribution patterns of all scheelites are middle REE (MREE)-enriched, with strong negative Eu-anomalies (Eu/Eu* = 0.09 ~ 0.23). The REE characteristics of the Honghuaerji scheelite suggest that REE3 + substituted into the Ca site along with Na and Nb (dominated by Na), whereas Eu is predominantly present as Eu2 + in the scheelite and may have crystallized from relatively reduced fluids. All sulfur isotope data (δ34S) for sulfide separates range from + 2.0 to + 3.8‰, with an average of 3.2‰. Measured 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios vary from 18.243 to 18.451, 15.494 to 15.574, and 37.933 to 38.340, respectively. On the basis of common Sr-Nd-Pb-Hf isotopic characteristics between the scheelite and the host granite and the positive initial Nd isotope ratios (+ 1.46 - + 1.52), low 87Sr/86Sr ratios (0.704983-0.705297) in the scheelites, it is inferred that the hydrothermal fluids responsible for tungsten mineralization at Honghuaerji were of magmatic origin with a mantle-derived signature. Based on the regional geology, tectonic evolution, and geochemical evidence, the

  7. Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran: Geochemical, U-Pb zircon and Sr-Nd-Pb isotopic constraints

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Neubauer, Franz; Honarmand, Maryam; Liu, Xiaoming; Dong, Yunpeng; Jiang, Shao-Yong; von Quadt, Albrecht; Bernroider, Manfred

    2014-01-01

    Large-scale Upper Eocene plutons in the Western Alborz-Azarbaijan orogenic belt mostly show calc-alkaline and I-type geochemical features contrasted by the Tarom complex with its high-potassic to shoshonitic affinity. The pluton was emplaced in the Tarom subzone of the orogenic belt and its laser ICP-MS zircon U-Pb age of 41 Ma is interpreted as the age of magma crystallization. The Tarom complex is composed of quartz monzodiorite, quartz-monzonite and monzogranite, the SiO2 contents range from 57 to 70 wt.%, the K2O + Na2O content is high (5.0-8.9 wt.%) and K2O/Na2O ratio ranges from 0.4 to 1.9. All the investigated rocks are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs), and bear a weak Eu anomaly (Eu/Eu* = 0.46 to 1.38) in chondrite-normalized trace element patterns. The samples display some variety in initial Sr and Nd isotopic compositions, marked with low ISr = 0.704-0.705 and ɛNd (40 Ma) = - 4.2 to + 3.4 (- 5.7 for an enclave) values. The Pb isotopic ratios are (206Pb/204Pb) = 18.52-18.86, (207Pb/204Pb) = 15.57-15.72 and (208Pb/204Pb) = 38.47-39.08. Comparison with experimental studies, together with mantle-like isotopic ratios and comparisons of REE patterns, points to an origin of chemically enriched lithospheric mantle source for the Tarom plutonic complex. Partial melting process involving different partial melting degrees affecting heterogeneously metasomatized mantle is a process that seems likely to have occurred in the studied complex as the major differentiation process. The Tarom monzonitic plutons are considered to be post-orogenic intrusions that were emplaced in an environment of lithospheric extension, causing asthenospheric upwelling. Asthenospheric upwelling induced a thermal anomaly which caused partial melting of metasomatized subcontinental lithospheric mantle in the Tarom area.

  8. A study of radionuclides, metals and stable lead isotope ratios in sediments and soils in the vicinity of natural U-mineralisation areas in the Northern Territory.

    PubMed

    Frostick, A; Bollhöfer, A; Parry, D

    2011-10-01

    Australian guidelines recommend that tailings materials from uranium (U) mining and milling be contained without any detrimental impact on the environment for at least 1000 years. Natural analogue sites are being investigated to determine if they can provide data on the rates of natural erosion processes which occur over these timescales, for input into predictive geomorphic computer models. This paper presents radionuclide, metal and stable lead (Pb) isotope data from sediment cores and surface soils in the vicinity of two mineralised areas in the Alligator Rivers Region. Surface scrapes from the natural Anomaly #2, south of the Ranger mineral lease, exhibit radiogenic (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios, and elevated U and metal concentrations typical for a near surface U anomaly. In contrast, samples taken from the Koongarra mineral lease (KML) show radionuclide activity and metal concentrations similar to natural areas elsewhere in the Alligator Rivers Region and Pb isotope ratios are closer to present day average crustal ratios (PDAC), as the orebodies at KML are covered by surficial sand. A sediment core collected from Anbangbang Billabong, downstream of KML, exhibits small variations in Pb isotope ratios that indicate that approximately 1% of the upper sediments in the sediment core may be derived from material originating from the U anomaly at Koongarra. PMID:20471726

  9. Lead isotopes in North Pacific deep water - Implications for past changes in input sources and circulation patterns

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2003-01-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10 Be/9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/204Pb from low values in the Miocene (??? 18.57) to high values at present day (??? 18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  10. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang

    2015-05-01

    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  11. Origin of the ore-forming fluids and metals of the Bangpu porphyry Mo-Cu deposit of Tibet, China: Constraints from He-Ar, H-O, S and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Tang, Juxing; Cheng, Wenbin; Chen, Wei; Zhang, Zhi; Lin, Xin; Luo, Maocheng; Yang, Chao

    2015-05-01

    The Bangpu porphyry Mo-Cu deposit is a representative Mo-dominated deposit besides the Sharang porphyry Mo deposit in the Gangdese metallogenic belt. The Mo-Cu mineralization has a close relationship with the monzogranite porphyry and diorite porphyrite. We identify three stages during the ore formation: a pre-ore stage, a main-ore stage with Mo-Cu deposited dominantly, and a post-ore stage. In this study, He-Ar, H-O, S and Pb isotopic compositions of the Bangpu deposit were determined. Based on these determinations, integrated isotope geochemistry studies were performed to constrain the possible sources of the ore-forming fluids and metals. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions exhibit a range of 0.12209-0.36370 Ra and 275.6-346.1, respectively. The 4He and 40Ar concentrations vary from 1.51 to 3.57 (10-7 cm3 STP g-1) and 0.49 to 9.31 (10-7 cm3 STP g-1), respectively. He-Ar isotopic compositions suggest dominantly crustal-derived fluid with minor amount of meteoric water in the main ore stage. The δ18Ofluid and δDfluid values vary from -1.3‰ to 3.9‰ and -140.5‰ to -73.7‰, respectively, indicating that magma fluids mixed with meteoric water. The average δ34S value of the sulfides (0.3‰) in the main-ore stage is close to the ore-forming porphyries, indicating a magmatic source. The lead isotopic components of ore sulfides exhibit restricted ranges with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.450-18.728, 15.602-5.672, and 38.715-39.211, respectively and μ values in the range of and 9.46-9.58, indicating ore-forming metals of primarily an upper crust source with a small amount of mantle materials. Compared to the Bangpu deposit, the ore metals derived from mantle are even greater in the Jiama and Qulong deposits, which leads to Cu being the dominant mineralization in the Jiama and Qulong deposit.

  12. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: Isotope (C, O, S, Pb) geochemistry and ore genesis

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad

    2014-02-01

    Lead and zinc mineralization occurs in dolostones of the Middle Devonian Sibzar Formation at Ozbak-Kuh, which is located 150 km north of Tabas city in East Central Iran. The ore is composed of galena, sphalerite and calcite, with subordinate dolomite and bitumen. Wall-rock alterations include carbonate recrystallization and dolomitization. Microscopic studies reveal that the host rock is replaced by galena and sphalerite. The Pb-Zn mineralization is epigenetic and stratabound. The δ13C values of hydrothermal calcite samples fall in the narrow range between -0.3‰ and 0.8‰. The δ18O values in calcite display a wider range, between -14.5‰ and -11.9‰. The δ13C and δ18O values overlap with the oxygen and carbon isotopic compositions of Paleozoic seawater, indicating the possible important participation of Paleozoic seawater in the ore-forming fluid. The δ18O signature corresponds to a spread in temperature of about 70 °C in the ore-bearing fluid. The δ13C values indicate that the organic materials within the host rocks did not contribute significantly in the hydrothermal fluid. The δ34S values of galena and sphalerite samples occupy the ranges of 12.2‰-16.0‰ and 12.1-16.8‰, respectively. These values reveal that the seawater sulfate is the most probable source of sulfur. The reduced sulfur was most likely supplied through thermochemical sulfate reduction. The sulfur isotope ratios of co-precipitated sphalerite-galena pairs suggest that deposition of the sulfide minerals took place under chemical disequilibrium conditions. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the galena samples represent average values of 18.08, 15.66, and 38.50, respectively. These ratios indicate that galena Pb likely originated from an orogenic source in which supracrustal rocks with high 238U/204Pb and 232Th/204Pb ratios are dominant. The average lead isotope model age portrays Cambrian age. This model age is not coeval with the host rocks, which are of middle

  13. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  14. Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25 26°S) and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Wittenbrink, R.; Hahne, K.; Emmermann, R.; Büsch, W.; Gerstenberger, H.; Siebel, W.

    1999-03-01

    Chemical and isotopic data from 12 volcanic centers of the southern Central Volcanic Zone (CVZ) in Chile, whose ages of 20, 16, 11, 8, 5, 2 and <1 Ma bracket the peak of shortening and crustal thickening in the mid-Miocene, show systematic differences with age. The composition of andesites erupted before and after crustal thickening are similar in terms of most major and trace elements, but the post-Miocene andesites show enrichments in Th, U, Cs and Rb, as well as high 87Sr/ 86Sr and 206Pb/ 204Pb ratios coupled with low ɛNd values which indicate greater crustal contamination compared with the older equivalents. Comparison of contamination indicators with age shows that contamination was low from 20 Ma to 8 Ma, increased sharply between 8 and 5 Ma, and remained at a high level into the Quaternary. Constant ratios of fluid-mobile vs immobile elements (Cs/Th or Ba/Zr) in even the most contaminated rocks indicate that fluid interaction was negligible. The contaminated andesites display disequilibrium textures and contain phenocrysts with a mixed population of melt inclusions. We suggest that the main process of crustal contamination was mixing with crustal melts. This is supported by geophysical evidence for a zone of partial melting in the mid and lower crust under the magmatic arc and by the presence of late Miocene to Pliocene crustal-derived felsic ignimbrites in the CVZ.

  15. U-Pb dating of a speleothem of Quaternary age

    NASA Astrophysics Data System (ADS)

    Richards, David A.; Bottrell, Simon H.; Cliff, Robert A.; Ströhle, Klaus; Rowe, Peter J.

    1998-12-01

    We demonstrate that U-Pb dating is a promising method for secondary carbonate materials of Quaternary age and older by obtaining a 206Pb∗/ 238U age for a speleothem with high U (>10 μg g -1) and very low Pb (<10 ng g -1) that is supported by an independent 230Th age. Thermal ionisation mass-spectrometry was used to determine the U and Pb isotopic ratios and concentrations for subsamples of a stalactite from Winnats Head Cave, Peak District, UK. We obtained 206Pb/ 204Pb ratios up to 50, and determined a 206Pb∗/ 238U age of 248 ± 10 ka, which is within error of the 207Pb∗/ 235U age of 333 ± 79 ka and a-spectrometric U-Th age of ˜255 ka. For samples of Tertiary and Quaternary age, the initial state of U-series disequilibrium is an important consideration and, as with most radiometric dating techniques, the mineral must have remained closed to U, Th, Pb, and all intermediate daughters. We show that dense calcite speleothems are ideal in this respect and that no loss of Rn has occurred. Unlike U-series disequilibrium methods, U-Pb dating has no upper limit and, hence, materials of Quaternary age older than 0.6 Ma can be analysed to investigate landscape development, paleoclimate, hominid evolution or hydrogeochemistry in carbonate terrains.

  16. Determination of trace element concentrations and stable lead, uranium and thorium isotope ratios by quadrupole-ICP-MS in NORM and NORM-polluted sample leachates.

    PubMed

    Mas, J L; Villa, M; Hurtado, S; García-Tenorio, R

    2012-02-29

    This work focuses on the monitoring of the potential pollution in scenarios that involve NORM-related industrial activities (environmental or in-door scenarios). The objective was to develop a method to determine extent and origin of the contamination, suitable for monitoring (i.e. simple, fast and economical) and avoiding the use of too many different instruments. It is presented a radiochemical method that allows the determination of trace element concentrations and 206Pb/207Pb/208Pb, 238U/234U and 232Th/230Th isotope ratios using a single sample aliquot and a single instrument (ICP-QMS). Eichrom UTEVA® extraction chromatography minicolumns were used to separate uranium and thorium in sample leachates. Independent ICP-MS determinations of uranium and thorium isotope ratios were carried out afterwards. Previously a small aliquot of the leachate was used for the determination of trace element concentrations and lead isotope ratios. Several radiochemical arrangements were tested to get maximum performances and simplicity of the method. The performances of the method were studied in terms of chemical yields of uranium and thorium and removal of the potentially interfering elements. The established method was applied to samples from a chemical industry and sediments collected in a NORM-polluted scenario. The results obtained from our method allowed us to infer not only the extent, but also the sources of the contamination in the area. PMID:22230754

  17. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence

    USGS Publications Warehouse

    Farmer, G.L.; Ayuso, R.; Plafker, G.

    1993-01-01

    Nd, Sr, and Pb isotopic data were obtained for fourteen fine- to coarse-grained samples of accreted flysch of the Late Cretaceous and early Tertiary Valdez and Orca Groups in southern Alaska to determine the flysch provenance. Argillites and greywackes from the Orca Group, as well as compositionally similar but higher metamorphic grade rocks from the Valdez Group, show a restricted range of correlated ??{lunate}Nd ( -0.6 to -3.8) and 87Sr 86Sr (0.7060-0.7080) at the time of sediment deposition ( ??? 50 Ma). Pb isotopic compositions also vary over a narrow range ( 206Pb 204Pb = 19.138-19.395, 207Pb 204Pb = 15.593-15.703, 208Pb 204Pb = 38.677-39.209), and in the Orca Group the samples generally become more radiogenic with decreasing ??{lunate}Nd and increasing 87Sr 86Sr. All samples have similar trace element compositions characterized by moderate light rare earth element enrichments, and low ratios of high field strength elements to large ion lithophile elements. Based on petrographic, geochemical, and isotopic data the sedimentary rocks are interpreted to have been derived largely from a Phanerozoic continental margin arc complex characterized by igneous rocks with ??{lunate}Nd values between 0 and -5. The latter conclusion is supported by the ??{lunate}Nd values of a tonalite clast and a rhyodacite clast in the Orca Group (??{lunate}Nd = -4.9 and -0.9, respectively). However, trondjemitic clasts in the Orca Group have significantly lower ??{lunate}Nd ( ??? -10) and require a derivation of a portion of the flysch from Precambrian crustal sources. The Nd, Sr, and Pb isotopic compositions of both the Valdez and Orca Groups overlap the values determined for intrusive igneous rocks exposed within the northern portion of the Late Cretaceous to early Tertiary Coast Mountains Plutonic Complex in western British Columbia and equivalent rocks in southeastern Alaska. The isotopic data support previous conclusions based on geologic studies which suggest that the flysch was

  18. Petrology and Geochemistry of the Eocene Volcanic Rocks in the Kahrizak Mountains, Central Iran

    NASA Astrophysics Data System (ADS)

    Yazdani, S.; Castillo, P.; Tutti, F.

    2013-12-01

    The Eocene volcanic rocks in the Kahrizak (KH) Mountains in the northern part of Central Iran were mainly formed by magmatism that accompanied block-faulting tectonism in the region. In the KH area, the volcanic rocks are nonconformably overlain by Oligocene-Pliocene sedimentary deposits, suggesting that the Eocene magmatic activity in the region was followed by a sequence of uplift and shallow marine regression. The volcanic rocks consist of pyroclastics (tuff and ignimbrites) and lava flows (basalt, basaltic trachyandesite, trachyandesite, and rhyolite); superposition indicates an earlier explosive volcanic phase that caused the widespread distribution of rhyolitic ignimbrites and tuffs, and this was followed by a quieter phase of lava eruptions. Petrographic evidence such as mineral zoning, sieve texture and rounded crystals of plagioclase and pyroxene phenocrysts indicate non-equilibrium conditions between melt and crystals during magma cooling. These textures suggest magma mixing, although these may also be due to rapid decompression, where heat loss is minor relative to the ascent rate. The geochemistry of KH samples indicates their subalkaline to alkaline affinity. In terms of trace element contents, most samples exhibit the distinct geochemical trait of arc volcanism, i.e., Nb and Ta depletions relative to LILE (e.g., Ba, Rb) enrichment and positive Sr anomaly; however, Zr and Ti depletions are not prominent. The samples have a light-REE enriched but flat heavy-REE pattern and negative Eu anomaly in the rhyolites and trachyandesites. They have a ~narrow to ~moderate range of Pb isotopic ratios (206Pb/204Pb ~18.6-18.9, 207Pb/204Pb ~15.5-15.6, and 208Pb/204Pb ~38.5-38.8), with basaltic rocks somewhat higher than rhyolitic rocks. Available geochemical and isotopic data suggest a complex origin and evolution of the KH magmas. The magmas originated from an intrinsically ~heterogeneous source and, in addition to fractional crystallization, some of the

  19. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  20. Geochronology and geochemistry of Eocene potassic felsic intrusions in the Nangqian basin, eastern Tibet: Tectonic and metallogenic implications

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Bi, Xian-Wu; Hu, Rui-Zhong; Chen, You-wei; Liu, He-qing; Xu, Lei-luo

    2016-03-01

    The Jinshajiang-Ailaoshan copper belt is the most significant porphyry copper belt in eastern Tibet. In the northern segment of this belt within the Nangqian basin, which occurs 100 km east of the Yulong porphyry copper deposit, several felsic intrusions have been recently discovered. The Yulong porphyry copper deposit is one of the largest porphyry copper deposits in China, and it is associated with peraluminous adakitic rocks formed in a post-collisional setting. The Nangqian felsic intrusions vary from syenite porphyry to monzonite porphyry in rock types. No significant Cu-Au mineralization has been found in the Nangqian felsic intrusions despite extensive exploration in recent years. LA-ICP-MS zircon U-Pb dating reveals that the Nangqian syenite porphyry and monzonite porphyry were emplaced at ~ 35.6±0.3 Ma and from 39.5±0.3 to 37.4±0.3 Ma, respectively, similar to the age of the Yulong porphyry copper deposit. The Nangqian felsic intrusions are characterized by metaluminous compositions (A/CNK = 0.82-1.01), and they share some common features with shoshonites such as high K2O contents (4.58-5.58 wt.%), high K2O/Na2O ratios (0.92-1.28), LREE-LILE enrichments and negative Nb-Ta-Ti-P anomalies, as well as with adakites derived from an eclogite-facies source with high Al2O3 (14.98-15.74 wt.%), Sr (954-2190 ppm), Sr/Y (68-132) and La/Yb (53-85), and low Y and Yb contents. The Nangqian felsic intrusions have high initial 87Sr/86Sr (0.7050-0.7055), variable εNd(t) (- 0.31-1.43) and small variations in (206Pb/204Pb)i (18.68-18.74), (207Pb/204Pb)i (15.53-15.62) and (208Pb/204Pb)i (38.51-38.80). Zircon crystals from both syenite and monzonite porphyries are characterized by positive εHf(t) from 5.2 to 8.5. The results suggest that the syenite and monzonite magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and minor feldspar. The parent magmas originated from a lithospheric mantle metasomatized by slab

  1. Geochemical and isotopic perspectives on the origin and evolution of the Siletzia Terrane.

    NASA Astrophysics Data System (ADS)

    Phillips, B. A.; Weis, D.; Mullen, E.; Kerr, A. C.

    2015-12-01

    The Siletzia terrane, located in the Cascadia forearc region of Oregon, Washington and Vancouver Island, consists of a series of accreted basaltic pillow lavas, massive flows and intrusive sheets. It represents a late Paleocene-Eocene oceanic large igneous province (LIP), previously proposed to represent an accreted oceanic plateau, hotspot island chain, backarc basin, island arc, or a sequence of slab window volcanics formed by ridge subduction. A province-wide geochemical reassessment of the terrane, including new high precision Sr-Pb-Nd-Hf isotope data on basaltic samples, has been used to assess the validity of the proposed tectonomagmatic models for Siletzia. The trace element data show REE patterns that are flat to LREE enriched with an absence of any arc signatures. These features are comparable to other oceanic plateaus such as the Ontong Java and the Caribbean and so therefore support a mantle plume origin. Initial isotope ratios range from 206Pb/204Pb = 18.869 - 19.673, 207Pb/204Pb = 15.527 - 15.609, 208Pb/204Pb = 38.551 - 39.220, ɛHf = +9.0 - 14.8, ɛNd = +5.0 - 8.0 and 87Sr/86Sr = 0.70304 - 0.70397. The isotope signatures become more varied southward across the terrane and reveal two trends: i) HIMU-DMM and ii) another extending from DMM towards the Imnaha component, thought to represent the mantle plume source of the Columbia River Basalts and Yellowstone 1,2. The data may support the previously proposed idea that the volcanism of the Siletzia terrane represents initial melting of the mantle plume head of the Yellowstone hotspot 3,4,5. Other evidence indicating a LIP origin includes the relatively rapid eruption/intrusion of an estimated magma volume of 2.6 x 106 km3 6 between ~56-49 Ma 5, which, in conjunction with our new elemental and isotopic data, indicates that the Siletzia terrane most likely represents an accreted oceanic plateau. 1. Wolff et al., (2008) Nature Geoscience 1, 177-180. 2. Jean et al., (2014) EPSL 389, 119-131 3. Duncan (1982

  2. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius

    USGS Publications Warehouse

    Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; de Vivo, B.; Ayuso, R.A.

    2001-01-01

    We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes "fassaitic" clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000-1050??C), b) CO2 ?? H2S-rich fluid inclusions (THOM = 20-31.3??C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720-820??C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870-890??C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt - aqueous chloride-rich liquid - carbonate/sulfate melt?) during heating and cooling below 870??C. There is no evidence for fluid circulation below 700??C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047-19.202), 207Pb/204Pb (15.655-15.670), and 208Pb/204Pb (38.915-39.069) and relatively low 143Nd/144Nd (0.51211-0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (??13CV-PDB = -5.4 to -1.1???; ??18OV-SMOW = 11.7 to 16.4???) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5

  3. Cretaceous seamounts along the continent ocean transition of the Iberian margin: U Pb ages and Pb Sr Hf isotopes

    NASA Astrophysics Data System (ADS)

    Merle, Renaud; Schärer, Urs; Girardeau, Jacques; Cornen, Guy

    2006-10-01

    To elucidate the age and origin of seamounts in the eastern North Atlantic, 54 titanite and 10 zircon fractions were dated by the U-Pb chronometer, and initial Pb, Sr, and Hf isotope ratios were measured in feldspars and zircon, respectively. Rocks analyzed are essentially trachy-andesites and trachytes dredged during the "Tore Madeira" cruise of the Atalante in 2001. The ages reveal different pulses of alkaline magmatism occurring at 104.4 ± 1.4 (2 σ) Ma and 102.8 ± 0.7 Ma on the Sponge Bob seamount, at 96.3 ± 1.0 Ma on Ashton seamount, at 92.3 ± 3.8 Ma on the Gago Coutinho seamount, at 89.3 ± 2.3 Ma and 86.5 ± 3.4 Ma on the Jo Sister volcanic complex, and at 88.3 ± 3.3 Ma, 88.2 ± 3.9, and 80.5 ± 0.9 Ma on the Tore locality. No space-time correlation is observed for alkaline volcanism in the northern section of the Tore-Madeira Rise, which occurred 20-30 m.y. after opening of the eastern North Atlantic. Initial isotope signatures are: 19.139-19.620 for 206Pb/ 204Pb, 15.544-15.828 for 207Pb/ 204Pb, 38.750-39.936 for 208Pb/ 204Pb, 0.70231-0.70340 for 87Sr/ 86Sr, and +6.9 to +12.9 for initial epsilon Hf. These signatures are different from Atlantic MORB, the Madeira Archipelago and the Azores, but they lie in the field of worldwide OIB. The Cretaceous seamounts therefore seem to be generated by melts from a OIB-type source that interact with continental lithospheric mantle lying formerly beneath Iberia and presently within the ocean-continent transition zone. Inheritance in zircon and high 207Pb of initial Pb substantiate the presence of very minor amounts of continental material in the lithospheric mantle. A long-lived thermal anomaly is the most plausible explanation for alkaline magmatism since 104 Ma and it could well be that the same anomaly is still the driving force for tertiary and quaternary alkaline magmatism in the eastern North Atlantic region. This hypothesis is agreement with the plate-tectonic position of the region since Cretaceous time

  4. Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental flood basalt province

    NASA Astrophysics Data System (ADS)

    Heinonen, Jussi S.; Carlson, Richard W.; Riley, Teal R.; Luttinen, Arto V.; Horan, Mary F.

    2014-05-01

    The great majority of continental flood basalts (CFBs) have a marked lithospheric geochemical signature, suggesting derivation from the continental lithosphere, or contamination by it. Here we present new Pb and Os isotopic data and review previously published major element, trace element, mineral chemical, and Sr and Nd isotopic data for geochemically unusual mafic and ultramafic dikes located in the Antarctic segment (Ahlmannryggen, western Dronning Maud Land) of the Karoo CFB province. Some of the dikes show evidence of minor contamination with continental crust, but the least contaminated dikes exhibit depleted mantle - like initial ɛNd (+9) and 187Os/188Os (0.1244-0.1251) at 180 Ma. In contrast, their initial Sr and Pb isotopic compositions (87Sr/86Sr = 0.7035-0.7062, 206Pb/204Pb = 18.2-18.4, 207Pb/204Pb = 15.49-15.52, 208Pb/204Pb = 37.7-37.9 at 180 Ma) are more enriched than expected for depleted mantle, and the major element and mineral chemical evidence indicate contribution from (recycled) pyroxenite sources. Our Sr, Nd, Pb, and Os isotopic and trace element modeling indicate mixed peridotite-pyroxenite sources that contain ˜10-30% of seawater-altered and subduction-modified MORB with a recycling age of less than 1.0 Ga entrained in a depleted Os-rich peridotite matrix. Such a source would explain the unusual combination of elevated initial 87Sr/86Sr and Pb isotopic ratios and relative depletion in LILE, U, Th, Pb and LREE, high initial ɛNd, and low initial 187Os/188Os. Although the sources of the dikes probably did not play a major part in the generation of the Karoo CFBs in general, different kind of recycled source components (e.g., sediment-influenced) would be more difficult to distinguish from lithospheric CFB geochemical signatures. In addition to underlying continental lithosphere, the involvement of recycled sources in causing the apparent lithospheric geochemical affinity of CFBs should thus be carefully assessed in every case.

  5. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau: Implications for the evolution of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Chen, Xuanhua; Gehrels, George; Yin, An; Zhou, Qi; Huang, Penghui

    2015-12-01

    Eastern Qaidam Basin of the northern Qinghai-Tibetan plateau is located in a transitional zone between the Permo-Triassic Paleo-Tethyan orogenic belt in the south and the early Paleozoic Qilian orogenic belt in the north. Here we present geochemical and Sr-Nd-Pb-O isotopic data for the Permo-Triassic plutons in eastern Qaidam Basin. Bulk-rock geochemical data and regional geological studies indicate that these plutons consist mainly of subduction-related high-K calc-alkaline metaluminous, I-type granitoids, which occurred during the northward subduction of the Paleo-Tethyan oceanic lithosphere below the southern continental margin of the Kunlun-Qaidam terrane. The εNd(t) values of these Permo-Triassic granitoids are between -9.4 and -3.0, and εSr(t) values are from -20.33 to +168.20. Nd isotopic compositions indicate that the granitoids can come from a pre-existed materials formerly originated from an enriched mantle (EM II) source. The TDM2 model ages of 1.28-1.78 Ga implies that the arc-induced Triassic granitoids were derived melts of Meso-Proterozoic basement rocks of the Kunlun-Qaidam terrane that is bounded by the early Paleozoic Qilian suture zone to the north and the Triassic Kunlun suture zone in the south. The Permo-Triassic granitoids yield initial ratios of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values from 18.295 to 19.096, 15.617 to 15.692, and 37.960 to 38.531, respectively. The Pb isotope composition of the granitoids is very similar to that of the Mesozoic granitoids from the western segment of the east of the study area. Geochemical analyses of the plutons, integrated with previous LA ICP-MS U-Pb zircon dating, reveal two series of Permo-Triassic arc magmatisms in eastern Qaidam Basin. Both the series of magmatism display reversed trends with the classic Bowen's reaction series. The new geochemical evidence suggest that the arc magmatism in eastern Qaidam Basin was induced by fluid-fluxing melting of an enriched lithospheric mantle and rock

  6. The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton: Crustal contamination of basaltic magma in an intracontinental extensional environment

    NASA Astrophysics Data System (ADS)

    Fu, Lebing; Wei, Junhao; Kusky, Timothy M.; Chen, Huayong; Tan, Jun; Li, Yanjun; Shi, Wenjie; Chen, Chong; Zhao, Shaoqing

    2012-03-01

    Zircon U-Pb ages, major and trace element and Sr, Nd and Pb isotope compositions of the Duimiangou (DMG) quartz monzonite from the Chifeng region on the northern North China Craton (NCC) were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields an emplacement age of 128 ± 1 Ma for this intrusion, with numerous Mesozoic inherited zircons clustering at 219 ± 12 Ma and 161 ± 3 Ma, along with some ancient zircons with ages of 2.5 Ga, 1.77 Ga and 324 Ma. Bulk-rock analyses show that this intrusion is characterized by variable SiO2 (63.4-69.4 wt.%), Al2O3 (14.5-16.3 wt.%), Na2O + K2O (8.01-8.95 wt.%), and Mg# (41.3-48.0). They are enriched in large ion lithophile elements and light rare earth elements without significant Eu anomalies (mostly between 0.89-1.10), and depleted in heavy rare earth elements and high field strength elements, with high Sr/Y (63.7-101.7) and (La/Yb)N (20.5-31.0) ratios. The DMG intrusion formed in an intracontinental extensional setting contemporaneous with the formation of pull-apart basins, metamorphic core complexes and intense magmatism, rather than in a convergent margin. It has homogeneous Sr ((87Sr/86Sr)i = 0.7059-0.7066), Nd (εNd(t) = - 6.2 to - 7.2) and Pb ((206Pb/204Pb)i = 17.289-17.375, (207Pb/204Pb)i = 15.359-15.463, (208Pb/204Pb)i = 37.130-37.472) isotope compositions. Sr-Nd isotope modeling results, plus relatively young Nd model ages (1522-1618 Ma) and the presence of relict zircons, suggest that this intrusion could have originated from crustal contamination of newly formed basaltic melts derived from asthenospheric mantle, accompanied by fractional crystallization of K-feldspar, biotite, apatite, Fe-Ti oxides and minor hornblende and plagioclase. Thus, the DMG adakite-like intrusion may record the magmatic event associated with underplating of asthenospheric magma in an intracontinental extensional

  7. Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting

    USGS Publications Warehouse

    Allen, C.M.; Wooden, J.L.; Chappell, B.W.

    1997-01-01

    The eastern margin of Australia is understood to be the result of continental rifting during the Cretaceous and Tertiary. Consistent with this model, Cretaceous igneous rocks (granites to basalts) in a continental marginal setting near Bowen, Queensland are isotonically retarded, having isotopic ratios similar to those of most island arcs (Sri = 0.7030-0.7039, ??Nd = +6.46 to +3.00 and 206Pb/204Pb = 18.44-18.77, 207Pb/204Pb = 15.552-15.623, and 208Pb/204Pb = 37.90-38.52). These isotopic signatures are much less evolved than the Late Carboniferous-Permian batholith that many Cretaceous plutons intrude. As rocks ranging in age from about 300-100 Ma are well exposed near Bowen, we can track magma evolution through time. The significant change of magma source occurred much earlier than the Cretaceous based on the fact that Triassic granites in the same area are also isotonically primitive. We attribute the changes of magma composition to crustal rifting during the Late Permian and earliest Triassic. The Cretaceous rocks (actually latest Jurassic to Cretaceous, 145-98 Ma) themselves show compositional trends with time. Rocks of appropriate mineralogy for Al-in-hornblende geobarometry yield pressures ranging from 250 to 80 MPa for rocks ranging in age from 145 to 125 Ma, respectively. More significantly, this older group is relatively compositionally restricted, and is Sr-rich, and Y- and Zr-poor compared to 120-98 Ma rocks. This younger groups is bimodal, being comprised principally of basalts and rhyolites (granites). REE patterns for a given rock type, however, do not differ with age tribute these relatively subtle trace element differences to small differences in conditions (T, aH2O) at the site of melting. Cretaceous crustal rifting can explain the range of rock types and the spatial distribution of rocks < 120 Ma in a longitudinal strip between and overlapping with provinces of older Cretaceous intrusions. A subduction-related setting is assigned to the 145-125 Ma

  8. Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America)

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Renzulli, Alberto; Agostini, Samuele; Lucidi, Roberto

    2016-01-01

    Isla El Tigre volcano is located in the Gulf of Fonseca (Honduras) along the Central America volcanic front, where a significant change in the strike of the volcanic chain is observed. The studied samples of this poorly investigated volcano are mainly subalkaline basic to intermediate lavas (basalts and basaltic andesites) and subordinate subalkaline/alkaline transitional basalts, both having the typical mineralogical and geochemical characteristics of arc volcanic rocks. On the basis of petrographic and geochemical features, two groups of rocks have been distinguished. Lavas from the main volcanic edifice are highly porphyritic and hy-qz normative, and have lower MgO contents (< 5 wt.%). They show significant LILE and LREE enrichments and Nb-Ta depletions, and have a strong slab signature as well as incompatible element contents similar to those of the main front of the adjacent volcanoes in El Salvador and Nicaragua (e.g., Ba/La up to 80). In contrast, lavas from the parasitic cones have higher MgO contents (> 5 wt.%), are ol-hy normative and show lower HFSE depletions relative to LILE and LREE, with lower Ba/La, Ba/Nb and Zr/Nb ratios. This suggests that mantle-derived magmas were not produced by the same process throughout the activity of the volcano. The bulk rock geochemistry and 87Sr/86Sr (0.70373-0.70382), 143Nd/144Nd (0.51298-0.51301), 206Pb/204Pb (18.55-18.58), 207Pb/204Pb (15.54-15.56) and 208Pb/204Pb (38.23-38.26) isotopic data of Isla El Tigre compared with the other volcanoes of the Gulf of Fonseca and all available literature data for Central America suggests that this stratovolcano was mainly built by mantle-derived melts driven by slab-derived fluid-flux melting, while magmas erupted through its parasitic cones have a clear signature of decompression melting with minor slab contribution. The coexistence of these two different mantle melting generation processes is likely related to the complex geodynamic setting of the Gulf of Fonseca, where the

  9. The island of Pantelleria: A case for the development of DMM-HIMU isotopic compositions in a long-lived extensional setting

    NASA Astrophysics Data System (ADS)

    Esperança, Sonia; Crisci, Gino M.

    1995-12-01

    The Sr, Nd and Pb isotopic and trace element compositions of basalts and pantellerites from the island of Pantelleria (Strait of Sicily) have been used to constrain the evolution of these magmas and their sources. All Pantelleria products have isotopic compositions that plot in Sr sbnd Pb, Nd sbnd Pb and Sr sbnd Nd space between DMM and HIMU oceanic mantle sources. The Pantelleria basalts have variable Ce/Pb, Nb/U and Th/U, and some have elevated 207Pb/ 204Pb and 208Pb/ 204Pb, which is indicative of the addition of an older component that resembles old enriched lithosphere sampled by potassic magmas in the circum-Tyrrhenian Sea. It is proposed that the relatively homogeneous pantellerites derive their Ce/Pb, Nb/U, and OIB-like Sr, Nd and Pb isotopic compositions from a well-mixed crustal magma chamber supplied by heterogeneous basalts. We propose further that the radiogenic 206Pb/ 204Pb and 143Nd/ 144Nd, coupled with the unradiogenic Sr isotopic composition of some of the Pantelleria basalts, are inherited in a process involving chemical modification of the thinned lithospheric crust-mantle source by addition of basaltic (MORB) materials, a process that may have occurred intermittently at least since the Permo-Triassic. This process is responsible for lowering the Pb concentration and changing the U/Pb and Th/Pb ratios of portions of the lithospheric crust-mantle boundary. It is envisaged that the increase in μ and ω of the modified lithospheric mantle was caused by the addition of phases such as clinopyroxene and amphibole, crystallized in equilibrium with MORB. After chemical exchange with the asthenospheric mantle ceased during the Hercynian orogeny, this young (or rejuvenated) lithosphere evolved a radiogenic Pb isotopic composition. It is proposed that the isotopic differences observed between the volcanic rocks erupted in the Strait of Sicily and those erupted in the southern margin of the Tyrrhenian abyssal plain are primarily the result of mixing between

  10. Geochemical heterogeneities within the Crozet hotspot

    NASA Astrophysics Data System (ADS)

    Breton, Thomas; Nauret, François; Pichat, Sylvain; Moine, Bertrand; Moreira, Manuel; Rose-Koga, Estelle F.; Auclair, Delphine; Bosq, Chantal; Wavrant, Laurène-Marie

    2013-08-01

    The Crozet Plateau is a 54 Ma-old volcanic plateau that supports five islands characterized by recent volcanic manifestations that are the surface expression of a deep-mantle plume. Due to their remote location and difficult access, the Crozet Islands are poorly sampled. Both the petrological descriptions and geochemical data are scarce. Thus, the sources of the Crozet plume are still under debate. Similarly, the interactions between the Southwest Indian Ridge (SWIR) and the Crozet plume remain questioned. Here, we present a new set of isotopes (Pb, Sr, Nd and He), major and trace elements data on basalts from three islands of the Crozet Archipelago: Penguins, East, and Possession Islands. Our main purpose is to characterize the sources of the Crozet plume and to test its influence at regional scale. Two groups of lavas can be distinguished based on the isotopic data: East and Possession lavas, and Penguins lavas. Principal component analyses on our high-precision Pb isotopes data and literature data show that two mantle sources can explain most of the geochemical variability measured in Crozet lavas. A third minor contribution is however needed to fully explain the data. The entire set of isotopic compositions (Pb, Sr, Nd and He) can be explained by a mixing between three mantle sources: (1) a FOZO (Focus Zone) component, with 206Pb/204Pb higher than 19.5 and high 207Pb/204Pb, 208Pb/204Pb 87Sr/86Sr, 143Nd/144Nd and R/Ra (R/Ra=(He3/He4)sample/(He3/He4)atmosphere) ratios, that is mainly sampled Penguins lavas, (2) a component called “East-Possession” that is mostly sampled by the East-Possession lava group and which presents Pb, Sr and Nd isotope signatures similar to those of the Reunion-Mauritius Islands, and (3) a third minor contribution of the local Depleted MORB Mantle (DMM). The new He isotopes data on the Crozet plume allow us to propose that Crozet plume material is present in the segment of the Southwest Indian Ridge located between the Indomed (ITF

  11. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy)

    USGS Publications Warehouse

    Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.

    2001-01-01

    compositions in the interplinian rocks show a tendency to become slightly more radiogenic with age, from the Protohistoric (143Nd/144Nd=0.51240-0.51247) to Ancient Historic (143Nd/144Nd=0.51245-0.51251). Medieval interplinian activity (143Nd/144Nd: 0.51250-0.51241) lacks meaningful internal trends. All the interplinian rocks have virtually homogeneous compositions of 207Pb/204Pb and 208Pb/204Pb in acid-leached residues (207Pb/204Pb ???15.633 to 15.687, 208Pb/204Pb ???38.947 to 39.181). Values of 206Pb/204Pb are very distinctive, however, and discriminate among the three interplinian cycles of activity (Protohistoric: 18.929-18.971, Ancient Historic: 19.018-19.088, Medieval: 18.964-19.053). Compositional trends of major, trace element and isotopic compositions clearly demonstrate strong temporal variations of the magma types feeding the Somma-Vesuvius activity. These different trends are unlikely to be related only to low pressure evolutionary processes, and reveal variations of parental melt composition. Geochemical data suggest a three component mixing scheme for the interplinian activity. These involve HIMU-type and DMM-type mantle and Calabrian-type lower crust. Interaction between these components has taken place in the source; however, additional quantitative constraints must be acquired in order to better discriminate between magma characteristics inherited from the sources and those acquired during shallow level evolution.

  12. The Pb Isotope Pedigree of Western Samoan Volcanics: New Insights From High-Precision Analysis by NEPTUNE ICP/MS

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Workman, R. K.; Coetzee, M.; Blusztajn, J. S.; Ball, L.; Johnson, K. T.

    2002-12-01

    The Samoan hotspot has produced a chain of volcanism stretching from the island of Savai'i in the west to the presently active "leading-edge" volcano, Vailulu'u, in the east. An alignment of seamounts and submarine banks extending west of Savai'i is believed to be the earliest expression of the hotspot (Johnson, 1986). In 2001, we sampled the oldest shield exposures on Savai'i and western Upolu; these, and samples from the western banks Lalla Rookh, Combe and Alexa, have been analyzed for Pb isotopes using a new high precision Pb technique developed on the NEPTUNE ICP/Multi-Collector at W.H.O.I. Pb samples were doped with the NBS 997 thallium standard, with Pb/Tl ratios between 4 and 10; mass discrimination was adjusted to 205Tl/203Tl=2.387075 using an exponential fractionation law. Each run consisted of 35 cycles (16 s each) at an uptake rate of 0.13 μl/min (~12 minutes per run). The abundance sensitivity of the NEPTUNE is 2 ppm downmass and 1 ppm upmass; tailing at mass 204 from Tl is therefore ~30 ppm for 204Pb in a Pb/Tl = 4 solution. This can be adequately accounted for by careful selection of off-peak baseline positions. Beyond this effect, there is no dependence of Pb isotope ratios on Pb/Tl, over the range from 4-10. The correction on 204Pb for 204Hg was also minimal (20-30 ppm) and quite stable. Thirty runs of the NBS 981 standard (200 ppb solution, 12 different days over a period of 5 months) produced results very similar to the best TIMS data, with excellent external reproducibility: 206Pb/204Pb=19.9309(90), 207Pb/204Pb=15.4843(98), 208Pb/204Pb=36.6756(112) (in parenthesis, +/- 2σ in ppm). Similar external reproducibility was achieved for the Samoan basalt samples (duplicate runs on different days on solution splits from a single chemistry: +/- 2σ ppm = 101, 89 and 117, respectively). Over this time period, the variability of Tl mass bias was very small (+/- 130 ppm standard deviation). The only significant pitfall we have encountered is a memory

  13. Geochemical characteristics of West Molokai shield- and postshield- stage lavas: Constraints on Hawaiian plume models

    NASA Astrophysics Data System (ADS)

    Xu, G.; Frey, F.; Clague, D.; Abouchami, W.; Blichert-Toft, J.; Cousens, B.; Weisler, M.

    2006-12-01

    Recent Hawaiian volcanoes define two parallel trends, Kea and Loa. Lavas forming Loa- and Kea- shields have distinct geochemical characteristics which are inferred to reflect a systematic spatial distribution of geochemical heterogeneities in the plume; several different models for the spatial distribution have been proposed (e.g., Abouchami et al., 2005; Blichert-Toft et al., 2003; Bryce et al., 2005; Huang et al., 2005; Lassiter et al., 1996; Ren et al., 2005). These models can be evaluated by their success in predicting geochemical changes associated with the transition from shield to postshield volcanism. This transition is well characterized at Kea trend volcanoes, but not at Loa-trend volcanoes. West Molokai is important to study because it is on the Loa- spatial trend and shield and postshield lavas are exposed also based on a single submarine dredged sample the West Molokai shield is inferred to have a Kea-like Pb isotopic signature (Abouchami et al., 2005; Tanaka et al., 2002). We determined major and trace element abundances for 47 West Molokai samples and isotopic ratios (Sr, Nd, Hf, Pb) for a subset. Major element contents (e.g., CaO/Al2O3), incompatible trace element ratios (e.g., Sr/Nb), and isotopic ratios (e.g., Sr, Nd and Hf ) show that West Molokai shield lavas overlap with the field for Mauna Loa lavas, i.e., they are Loa-like. They define a 206Pb/204Pb-^{208}Pb/204Pb trend that crosses the ^{208}Pb*/206Pb* boundary between Loa and Kea lavas (0.95) proposed by Abouchami et al. (2005). One, Loa-like, sample with the highest 87Sr/86Sr, lowest ^{143}Nd/^{144}Nd and ^{176}Hf/^{177}Hf also has the highest ^{208}Pb*/206Pb* (0.957). None of our samples are like the submarine lava that was used to classify West Molokai as Kea-like. Based on several lines of evidence we infer that the submarine dredged lava erupted on the Koolau shield. However, West Molokai postshield lavas have Sr, Nd, Hf and Pb isotopic ratios that are Kea-like. The only other isotopic

  14. ``Isotope language'' of the Alpine Iceman investigated with AMS and MS

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter; Müller, Wolfgang

    2003-05-01

    This paper reviews the use of stable and radioactive isotopes to elucidate an extraordinary archaeological find, the Alpine Iceman "Ötzi". In 1991 the body of this man was accidentally discovered in an ice-filled depression at a high-altitude mountain pass (Tisenjoch, 3210 m) of the Ötztal Alps. This location at the Austrian-Italian border apparently formed an ancient transition across the Alps from South to North. 14C dating of the body with accelerator mass spectrometry (AMS) revealed that the Iceman had lived some 5200 years ago, within the time period from 3370 to 3100 years BC (Before Christ). A variety of other materials from the discovery site were also dated with 14C AMS suggesting a use of the mountain pass at other time periods, and varying climatic conditions. Ongoing investigations with thermal ionization (TIMS), inductively-coupled plasma (ICP-MS) and gas mass spectrometry include isotope ratios of 18O/ 16O ( δ18O), 87Sr/ 86Sr and 206Pb/ 204Pb, in order to reveal the Iceman's origin and migrational behavior. Analyzed samples include tooth enamel, bones and contents of his intestine, which all represent different ontogenetic (developmental) stages. The isotopic composition of the Iceman is compared to both soils from archaeological sites and local waters. Taken together, the results point towards an origin of the Iceman in the Southeast of the finding site, consistent with archaeological and paleobotanical data.

  15. Contrasting zircon morphology and UPb systematics in peralkaline and metaluminous post-orogenic granite complexes of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Aleinikof, J.N.; Stoeser, D.B.

    1989-01-01

    Uzircon ages are reported for seven metaluminous-to-peralkaline post-orogenic granites from the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of ??? 2-4: 1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well-developed prismatic faces (are pseudo-octahedral) or are anhedral. Some zircons from the peralkaline granites contain inherited radiogenic Pb and have very high common Pb contents (206Pb/204Pb < 150), making the UPb method poorly suited for determining the age of these rocks. Zircons in the metaluminous granites do not contain inheritance and yield well-defined concordia intercepts. The span of ages of the seven complexes (670-470 Ma) indicates that post-orogenic granitic magmatism was not a singular event in the Arabian Shield but rather occurred as multiple intrusive episodes from the Late Proterozoic to the Middle Ordovician. ?? 1989.

  16. Lead isotope heterogeneity in sulfides from different assemblages at the Verninskoe gold deposit (Baikal-Patom Highland, Russia)

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Plotinskaya, O. Yu.; Chernyshev, I. V.; Kotov, A. A.

    2014-07-01

    Using the high-precision technique of MC-ICP mass spectrometry, the isotope composition of lead was studied for the first time in sulfides of different mineral associations at the Verninskoe deposit that belong to large gold deposits of the Lena Province. In 23 monofractions of sulfides (pyrite, arsenopyrite, galena, and sphalerite), the Pb-Pb data showed a pronounced heterogeneity of the isotope composition of ore lead (206Pb/204Pb = 18.21-18.69, 207Pb/204Pb = 15.59-15.67, and 208Pb/204Pb = 37.98-38.63) for the deposit as a whole. This heterogeneity is also seen to a lesser degree within individual samples. In this case, a correlation takes place between the isotope composition of ore Pb and the type of mineral association: the sulfides in earlier associations are characterized by lower contents of the 206Pb, 207Pb, and 208Pb radiogenic isotopes compared to the minerals of later parageneses. The comparison of Pb-Pb isotope characteristics of ore mineralization of the Verninskoe deposit to those of the Sukhoi Log deposit (the greatest in the Lena Province) testifies to the geochemical similarity of the sources of ore Pb involved in the formation of these deposits. The sources as such were terrigenous rocks of the Bodaibo synclinorium formed mainly as a result of the disintegration of Precambrian rocks of the Siberian craton.

  17. The geochemical fingerprint of serpentinite- and crust-dominated plate-interface settings: some tectonic implications

    NASA Astrophysics Data System (ADS)

    Cannaò, Enrico; Scambelluri, Marco; Agostini, Samuele; Tonarini, Sonia

    2014-05-01

    The interface between converging plates is made of kilometre-thick domains where slab and upper plate mantle materials are tectonically slicied within a matrix dominated either by (meta)sedimentary/crustal rocks or by serpentinite. The latter may correspond to supra-subduction mantle altered by uprising slab fluids. Once formed, these plate-interface domains act as hydrated low-viscosity layers where tectonic stress and fluid-mediated mass transfer are strongly focussed. Here we present the geochemical study of two plate-interface environments: (1) serpentinite-rich, represented by the high-pressure serpentinites of the Ligurian Alps (Erro-Tobbio and Voltri Units); (2) sediment-dominated top slab mélange, represented by de-serpentinized garnet peridotite and chlorite harzburgite bodies (hosting eclogite and metarodingite) embedded in paragneiss and micaschist from Cima di Gagnone (Adula Unit, Central Alps). The Ligurian serpentinites derive from oceanic and wedge mantle tectonically coupled and dragged to depth during Alpine subduction: they may represent the hydrated precursors of the Cima di Gagnone peridotites. The B, Pb and Sr isotopic composition of the above sets of rocks helps defining tectonic and mass transfer processes during accretion of slab and suprasubduction mantle rocks in plate-interface domains, and to retrieve the imprint of fluids from these settings, which that ultimately affect arc magmatism. The serpentinized peridotites from Erro-Tobbio (ET) show high B (10-30 ppm), delta11B (10-25 per mil), B/Nb ratio (>380) and limited enrichment in 206Pb/204Pb (18.17-18,51) and 87Sr/86Sr (0.7046- 0.7060). Scambelluri & Tonarini (2012) interpreted the B and Sr isotopic imprint of ET as representative of upper plate mantle altered by slab-fluids. The B contents (up to 30 ppm), delta11B (18-30 per mil), B/Nb ratio (>900) and 206Pb/204Pb (18.09-18.22) of the Voltri serpentinites are similar to ET. Their 87Sr/86Sr (0.7079 to 0.7105) is higher than ET. The

  18. Isotope evolution in the HIMU reservoir beneath St. Helena: Implications for the mantle recycling of U and Th

    NASA Astrophysics Data System (ADS)

    Hanyu, Takeshi; Kawabata, Hiroshi; Tatsumi, Yoshiyuki; Kimura, Jun-Ichi; Hyodo, Hironobu; Sato, Keiko; Miyazaki, Takashi; Chang, Qing; Hirahara, Yuka; Takahashi, Toshiro; Senda, Ryoko; Nakai, Shun'ichi

    2014-10-01

    HIMU (high-μ; 238U/204Pb) is a mantle reservoir that has been thought to form by subduction and subsequent storage of ancient oceanic crust and lithosphere in the mantle. In order to constrain the processes that acted on subducted materials over several billion years, we present precise Pb-Sr-Nd-Hf-He isotopic data together with 40Ar/39Ar and K/Ar ages of HIMU lavas from St. Helena in the Atlantic. Clinopyroxene separates were analyzed together with whole-rock samples to better describe the geochemical characteristics of the HIMU component. Although isotopic variations are small in the St. Helena lavas (20.6-21.0 for 206Pb/204Pb) between 12 and 8 Ma, the younger lavas have more HIMU-like isotopic compositions than the older lavas. The mixing arrays defined by these lavas are remarkably similar to those observed in HIMU lavas from Austral Islands in the Pacific, suggesting that the two HIMU reservoirs located in different mantle domains are characterized by similar isotopic compositions with radiogenic 206Pb/204Pb and 208Pb/204Pb, enriched Nd and Hf isotopes, depleted Sr isotopes, and radiogenic 3He/4He. However, there is a significant difference between the St. Helena and Austral Islands lavas in 207Pb/204Pb. The St. Helena lavas show systematically higher 207Pb/204Pb for a given 206Pb/204Pb. Lead isotope evolution models suggest that both HIMU reservoirs formed around 2 Ga; however, the HIMU reservoir for St. Helena is about 0.3 Ga older than that for Austral Islands. The relation between 206Pb/204Pb and 208Pb/204Pb could reflect the time-integrated κ (232Th/238U) in the components. The HIMU components for St. Helena and Austral Islands have κ values between 3.3 and 3.7, which are intermediate between the present-day fresh mid-ocean ridge basalts (MORB; 2.6-3.2) and the chondritic silicate Earth (∼4). This is consistent with the model that the HIMU precursor is subducted oceanic crust created around 2 Ga from depleted upper mantle, in which κ monotonously

  19. Melt-generation processes associated with the Tristan mantle plume: Constraints on the origin of EM-1

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Thompson, R. N.; Day, J. A.; Humphris, S. E.; Dickin, A. P.

    2005-09-01

    that, at the time of continental break-up, this would have been located above the sites of subsequent EM-1 melt generation. Shallow-mantle recycling of metasomatised lithosphere delaminated from south-west Africa and south-east Brazil may explain the further variations in trace-element and isotopic ratios of 100 and 80 to 30 Ma basalts from the Walvis Ridge, respectively. Recent magmas from Tristan, Inaccessible and Gough contain a melt contribution from an enriched mantle source with high 206Pb / 204Pb, 208Pb / 204Pb and 87Sr / 86Sr ratios and low ɛNd, relative to bulk-Earth. This does not resemble the isotopic composition of mafic-potassic magmas from continents adjacent to the South Atlantic and we therefore propose that it is a deep-recycled mantle component. The high Pb-isotopic ratios of recent Tristan plume magmas are inconsistent with a melt contribution from recycled oceanic crust plus a few percent pelagic sediments. We suggest that the deep mantle component is recycled metasomatised lithospheric mantle. Recycled metasomatised lithospheric mantle, of variable composition, only appears to have been an intrinsic part of the sub-oceanic Tristan mantle plume and the bulk-rock composition of present-day Tristan plume related melts are therefore inappropriate for modelling the contribution of plume-derived melts to the Paraná-Etendeka continental flood-basalts. This relationship may also apply to other large igneous provinces and ocean islands along their associated hot spot tracks.

  20. Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north-northeastern Brazil: Geochemistry, Sr-Nd-Pb-O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Angélica, Rômulo S.; Harris, Chris; Jourdan, Fred; Babinski, Marly

    2013-07-01

    Dykes of diabase and microgabbro intruded into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt, which are tectonic and erosive windows of the Parnaíba Basin in north-northeastern Brazil. Ar-Ar ages were determined, and major, trace element, and Nd-Sr-Pb-O isotopic compositions of these dykes were measured to provide insights into their age, and into the nature of their mantle sources and petrogenetic processes. The data have also been used to compare the chemical and isotopic signatures of the dykes with those of the Central Atlantic Magmatic Province (CAMP). Four chemical groups of mafic dykes have been identified. These comprise two subtypes of high-Ti rocks (i) HTi-1 (TiO2 < 2.3 wt.%; SiO2 > 47 wt.%), (ii) HTi-2 (TiO2 > 2.7 wt.%; SiO2 > 47 wt.%), in addition to (iii) evolved high-Ti (TiO2 > 4 wt.%; SiO2 of ~ 46 wt.%) and (iv) low-Si (TiO2 > 2.2 wt.%; SiO2 < 45 wt.%) rocks. 40Ar/39Ar geochronology of plagioclase returned ages of 201 ± 4 Ma and 193 ± 10 Ma for the HTi-2 subtype, and of 201 ± 2 Ma and 207 ± 9 Ma for the evolved high-Ti group. The HTi-1 and low-Si groups presented highly disturbed age spectra, and did not allow the definition of their emplacement ages. The Argon data indicate an age > 200 Ma for the low-Si group and are dubious with respect to the age of theHTi-1 subtype, if coeval with (i.e., ~ 200 Ma), or older than, the HTi-2 and evolved high-Ti types. All groups present δ18O values of pyroxene that are compatible with uncontaminated mantle-derived magmas. The HTi-1 subtype (average 143Nd/144Nd200 = 0.512644; 87Sr/86Sr200 = 0.7035; 206Pb/204Pb of 17.86) shows the less enriched and less fractionated (more primitive) trace element distribution of all groups. The HTi-2 subtype shows enriched trace element pattern and depleted Nd-Sr signature (143Nd/144Nd200 = 0.512610; 87Sr/86Sr200 = 0.7037) and average 206Pb/204Pb ratios of 17.23. The evolved high-Ti chemical group shows average ratios of 143Nd/144Nd200 = 0.512558, 87Sr

  1. 238U 230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Turner, Simon; Hawkesworth, Chris; Rogers, Nick; Bartlett, Jessica; Worthington, Tim; Hergt, Janet; Pearce, Julian; Smith, Ian

    1997-11-01

    The highly depleted intra-oceanic Tonga-Kermadec island arc forms an endmember of arc systems and a unique location in which to isolate the effects of the slab flux. High precision TIMS uranium, thorium, strontium, neodymium, and lead isotopes, along with complete major and trace element data, have been obtained on an extensive sample set comprising fifty-eight lavas along the arc as well as nineteen samples of the subducting sediments at DSDP site 204 just to the east of the Tonga-Kermadec trench. Ca/Ti and Al/Ti ratios extend from values appropriate to an N-MORB source in the southern Kermadecs to very high ratios in Tonga interpreted to reflect increasing degrees of depletion of the mantle wedge due to backarc basalt extraction. The isotope data emphasize the need for four components in the petrogenesis of the lavas: (1) the mantle wedge; (2) a component with elevated 207Pb/ 204Pb towards which the Kermadec and southern Tongan lavas extend; (3) a component characterised by high 206Pb/ 204Pb, Ta/Nd, and low 143Nd/ 144Nd observed only in the northernmost Tongan islands of Tafahi and Niuatoputapu; (4) a fluid component characterised by strong enrichments of Rb, Ba, U, K, Ph, and Sr, relative to Th, Zr, and the REE and producing large 211U excesses (( 230Th/ 238U) = 0.8-0.5) in the more depleted lavas. The mantle wedge (Component 1) is isotopically similar to the source of the Lau BABB. Component 2 is average pelagic sediment on the downgoing Pacific plate as observed at DSDP sites 595/596 and in the upper sections of the sediment pile at DSDP site 204. Mass balance calculations indicate that less than 0.5% is recycled into the arc lavas; essentially all the subducted sediment is returned to the upper mantle (˜0.03 km' yr -1). Exceptionally low concentrations of Ta and Nb relative to Th and the LREE requires that this sediment component is added as a partial melt which was in equilibrium with residual rutile or ilmenite. Component 3 is identified as volcaniclastics

  2. Geochemistry of Garibaldi Lake andesites and dacites indicates crustal contamination involved in formation of Northern Cascade arc lavas

    NASA Astrophysics Data System (ADS)

    Martindale, M.; Mullen, E.; Weis, D.

    2013-12-01

    The Cascade Arc presents a unique setting for studying the controls on andesite genesis and the implications for growth and evolution of the continental crust. It is the type-locality for a ';hot' subduction zone, where the downgoing slab is young and subduction is relatively slow. The northern segment of the Cascade arc, the Garibaldi Volcanic Belt (GVB), hosts the youngest subducting crust in Cascadia and the termination of the subducting slab. These conditions may affect magma generation processes by reducing the amount of water reaching the area of melt generation [1,2] and imparting an adakitic signature to magmas generated there if the slab edge melts [3]. We provide insights on the origin of andesites and dacites from the Garibaldi Lake area using new high-precision Pb, Sr, Nd, Hf isotope ratios and trace element data. Andesites and dacites from the Garibaldi Lake area (The Black Tusk, Mt. Price, and The Table) are calc-alkaline and show evidence for crustal contamination such as positive correlations between Ba/Nb and SiO2. Silica variation diagrams show no systematic trend for any of the volcanic centres, suggesting the presence of distinct magma batches. Garibaldi Lake andesites and dacites have among the least radiogenic Pb isotope ratios of all Cascade arc lavas, and define a linear array in Pb-isotope space. This most likely reflects mixing between MORB-source mantle (similar to Gorda and Explorer plate sources) and locally subducting sediments [4]. However, relative to GVB basalts and lavas from the rest of the Cascades (High Cascades), the andesites and dacites have higher 207Pb/204Pb (15.55-15.56) for a given 206Pb/204Pb (18.66-18.74). The Garibaldi Lake lavas also have higher 87Sr/86Sr (0.7033-0.7036) and lower ɛNd (5.8-7.9) at a given 206Pb/204Pb than GVB basalts and High Cascades lavas but among the highest ɛNd for a given SiO2 for the whole of the Cascades. ɛHf values (10.5-13.5) are higher at a given SiO2 value for Garibaldi Lake evolved

  3. A trio of laser ablation in concert with two ICP-MSs: Simultaneous, pulse-by-pulse determination of U-Pb discordant ages and a single spot Hf isotope ratio analysis in complex zircons from petrographic thin sections

    NASA Astrophysics Data System (ADS)

    Tollstrup, Darren L.; Xie, Lie-Wen; Wimpenny, Josh B.; Chin, Emily; Lee, Cin-Ty; Yin, Qing-Zhu

    2012-03-01

    We have developed a technique for the simultaneous in situ determination of U-Pb ages and Hf isotope ratios from a single spot in complex,discordantzircons by combining both a single-collector and a multicollector sector field inductively coupled plasma-mass spectrometry (ICP-MS) with a 193 nm excimer laser ablation system. With a suite of zircon standards of various ages, we first show that U-Pb ages can be determined accurately to within 0.3-2.5% (2σ) compared to the nominal value, while the internal errors are better than 0.4-0.7%; hafnium isotope ratios are accurate, relative to solution analyses, within one epsilon unit, and internal errors are typically <0.008%. We then apply the technique to complex, discordant zircons with variable 206Pb/238U and 207Pb/235U ratios, commonly discarded previously as "un-reducible data," to construct a Discordia in U-Pb Concordia plot, using every scan, every laser pulse as individual data points from a single laser ablation spot (typically > 200-250 data points). We show that the upper and lower intercept ages from the Discordia, augmented by high precision Hf isotope data obtained on the same spot, reveal invaluable information that permit unique insight to geological processes not available by other means. We demonstrate that our technique is useful for provenance studies of small, complex detrital zircons in sedimentary and high-grade metamorphic rocks, in relation to crustal growth and evolution.

  4. Early Cretaceous continental delamination in the Yangtze Block: Evidence from high-Mg adakitic intrusions along the Tanlu fault, central Eastern China

    NASA Astrophysics Data System (ADS)

    Jia, Liqiong; Mo, Xuanxue; Santosh, M.; Yang, Zhusen; Yang, Dan; Dong, Guochen; Wang, Liang; Wang, Xinchun; Wu, Xuan

    2016-09-01

    Early Cretaceous high-Mg adakitic rocks from central Eastern China provide important insights into the thinning mechanism of the over-thickened lithosphere in the Yangtze Block (YB) as well as the North China Block (NCB). The Tanlu fault (TLF), located between the North China and Yangtze Blocks, and has been considered as a prominent pathway of magmas and fluids that resulted in lithosphere thinning of the YB during the Mesozoic-Cenozoic. Here we report the petrology, whole-rock geochemistry, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock Sr-Nd-Pb isotopes of four high-Mg adakitic intrusions along the TLF in northeastern Langdai. These adakitic intrusions consist of monzodiorite, quartz monzonite porphyry, and quartz monzodiorite. Zircon LA-MC-ICPMS analyses of five samples yield weighted mean 206Pb/238U ages of 127.58 ± 0.80, 126.90 ± 0.81, 120.71 ± 0.64, 122.75 ± 0.57, and 129.2 ± 1.1 Ma, indicating their emplacement during the Early Cretaceous. The intrusions have intermediate SiO2 (53.18-65.48 wt%) and high potassium (K2O = 3.07-3.95 wt%; Na2O/K2O = 1.02-1.26) and are classified as shoshonitic to high-K calc-alkaline series. They are characterized by high MgO (1.80-7.35 wt%), Mg# (50-65), Sr (591-1183 ppm), Ni (20.3-143.0 ppm), and Cr (51.40-390.0 ppm) contents, high (La/Yb)N (11.60-28.33) and Sr/Y (27.9-113.5) ratios, and low Y (7.79-22.4 ppm) and Yb (0.60-2.01 ppm) contents, comparable with high-Mg adakites. The samples are enriched in light rare earth elements but depleted in heavy rare earth elements and high field strength elements with slightly negative to positive Eu anomalies (δEu = 0.81-1.30), resembling the features of high-Mg adakitic rocks. Their whole-rock εNd(t) = -16.2 to -15.0, initial (87Sr/86Sr)i = 0.7060-0.7074, low radiogenic Pb (206Pb/204Pb(t) = 16.208-16.509, 207Pb/204Pb(t) = 15.331-15.410, and 208Pb/204Pb(t) = 36.551-36.992), and zircon εHf(t) = -36.6 to -16.6 suggest magma derivation from a continental crustal

  5. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  6. High-Precision U-Pb Geochronology of Ice River Perovskite: A Possible Interlaboratory and Intertechnique EARTHTIME Standard

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Heaman, L. M.

    2012-12-01

    to determine the amount of ingrown Pb. First, by measuring the U/Pb ratio in clinopyroxene and assuming a crystallization age the amount of ingrown Pb can be calculated. Second, by assuming that perovskite and clinopyroxene (± other phases) are isochronous, the initial Pb isotopic composition can be calculated using the y-intercept on 206Pb/238U, 207Pb/235U, and 3-D isochron diagrams. To further develop a perovskite mineral standard for use in high-precision dating applications, we have focused on single grains/fragments of perovskite and multi-grain clinopyroxene fractions from a melteigite sample (IR90.3) within the Ice River complex, a zoned alkaline-ultramafic intrusion in southeastern British Columbia. Perovskite from this sample has variable measured 206Pb/204Pb (22-263), making this an ideal sample on which to test the sensitivity of the date on grains with variable amounts of radiogenic Pb to changes in common Pb composition. Using co-existing clinopyroxene for the initial common Pb composition by both direct measurement and by the isochron method allows us to calculate an accurate weighted-mean 206Pb/238U date on perovskite at the < 0.1% level, which overlaps within uncertainty for the two different methods. We recommend the Ice River 90.3 perovskite as a suitable EARTHTIME standard for interlaboratory and intertechnique comparison.

  7. Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls area, south-central Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Bullen, T.D.; Janik, C.J.

    1997-01-01

    Sulfate-water isotope geothermometry for the geothermal system at Twin Falls, Idaho indicates aquifer-temperatures of 90?? to 106 ??C; most sites are between 90?? and 93 ??C. 206Pb/204pb and 280Pb/204Pb of individual thermal waters are principally a function of how much lead has been dissolved from the carbonate and silicate fractions of the Paleozoic limestone collected west of Grand View Peak. Although most thermal waters are recovered from Tertiary rhyolite, very little of the dissolved lead is from the rhyolite. Recharge to this system occurs in northern Nevada and the fluid moves northward in the Paleozoic limestones. The occurrence of thermal fluid in the Idavada Volcanics near and south of Twin Falls, Idaho is the result of upward movement of this fluid from the Paleozoic limestone.

  8. Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls Area, South-Central Idaho

    SciTech Connect

    Mariner, R.H.; Bullen, T.D.; Janik, C.J.; Young, H.W.

    1997-12-31

    Sulfate-water isotope geothermometry for the geothermal system at Twin Falls, Idaho indicates aquifer-temperatures of 90{degrees} to 106{degrees}C; most sites are between 90{degrees} and 93{degrees}C. {sup 206}Pb/{sup 204}Pb and {sup 208}Pb/{sup 204}Pb of individual thermal waters are principally a function of how much lead has been dissolved from the carbonate and silicate fractions of the Paleozoic limestone collected west of Grand View Peak. Although most thermal waters are recovered from Tertiary rhyolite, very little of the dissolved lead is from the rhyolite. Recharge to this system occurs in northern Nevada and the fluid moves northward in the Paleozoic limestones. The occurrence of thermal fluid in the Idavada Volcanics near and south of Twin Falls, Idaho is the result of upward movement of this fluid from the Paleozoic limestone.

  9. Sr-Nd-Pb isotope variability across and along the Ecuadorian volcanic arc

    NASA Astrophysics Data System (ADS)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Mouhcine; Hidalgo, Silvana

    2016-04-01

    Determining the contribution of different potential sources in arc magma genesis is of paramount importance for discriminating the role of deep-seated processes at work in the slab and mantle wedge, as well as the process occurring during the magma ascent through the arc crust. The Ecuadorian volcanic arc (2°S - 1°N) results from the subduction of the oceanic Nazca plate below the continental south-American plate. This volcanic province, developed in front of the subducting Carnegie ridge, is characterized by at least 50-60 volcanic centres of Pleistocene-Holocene age, which are distributed along the Western and Eastern Cordilleras and in the back-arc region. Previous studies on this province focused on two main issues: (1) the role of the deep-seated process occurring at the level of the subducting slab and the mantle wedge ([1], [2]), and (2) the role of crustal process ([3]). In this work, we use existing and new (57 samples from 36 volcanoes of the whole Ecuadorian arc) major-trace element and Sr-Nd-Pb isotope data to resolve precisely magma compositional changes occurring across and along the volcanic arc and to precise the role of the heterogeneous crust underlying this arc segment. In the 207Pb/204Pb vs. 206Pb/204Pb diagram, most of Western Cordillera volcanic centres and Back arc volcanoes display a flat trend characterized by a large variation in 206Pb/204Pb (18.5 - 19.15), with little variation in 207Pb/204Pb (15.54-15.62). Along this trend, back arc volcanoes tend towards unradiogenic compositions with Reventador as end-member whereas western cordilleras volcanoes generally show more radiogenic compositions (Pilavo, Imbabura). In contrast, the Eastern cordillera volcanoes display more radiogenic 207Pb/204Pb (15.60 - 15.70) or 208Pb/204Pb (38.7 - 39) at a given 206Pb/204Pb compared to the Western cordillera with similar variation in 206Pb/204Pb (18.85 - 19.05). Extreme compositions are observed at Tungurahua and Antisana volcanoes. Several volcanoes of

  10. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system. PMID:23591887

  11. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore

  12. Direct dating of hydrothermal W mineralization: U-Pb age for hübnerite (MnWO 4), Sweet Home Mine, Colorado

    NASA Astrophysics Data System (ADS)

    Romer, Rolf L.; Lüders, Volker

    2006-09-01

    We have investigated the potential of hübnerite for U-Pb dating. Hübnerite forms typically at medium to low-temperatures in a wide range of pneumatolytic-hydrothermal mineral deposits, particularly porphyry molybdenum and Sn-specialized granites. Hübnerite from the Sweet Home Mine (Alma, Colorado) formed in a Pb-rich, U-poor environment, but still developed relatively radiogenic Pb isotopic compositions. The low Pb common contents in hübnerite (0.075 to 0.155 ppm) demonstrate that Pb is efficiently excluded from the crystal lattice. In contrast, U may substitute for Mn. The U-Pb data of hübnerite scatter. Most of the scatter originates from samples with 206Pb/ 204Pb values below 50, where Pb blank contributes up to 30% to Pb total. Using the least radiogenic galena Pb, samples with 206Pb/ 204Pb values above 70 have overlapping 206Pb∗/ 238U and 207Pb∗/ 235U values and yield a 206Pb/ 238U age of 25.7 ± 0.3 Ma (2σ). Late stage apatite from the Sweet Home Mine yields a 206Pb/ 204Pb- 238U/ 204Pb isochron corresponding to an age of 24.8 ± 0.5 Ma (2σ). A comparison of the U-Pb hübnerite ages with literature 40Ar/ 39Ar ages on earlier sericite and the U-Pb age on later apatite suggests that (i) hübnerite yields accurate U-Pb ages and (ii) the evolution of the Sweet Home mineralization from greisen-type mineralization to medium-temperature hydrothermal vein mineralization took place in a few hundred thousand years at most. Aqueous low-N 2-bearing and aqueous inclusions in the dated hübnerite have homogenization temperatures between 325 and 356 °C and moderate salinity (up to 6.7 wt% NaCl equiv.). Thus, hübnerite represents one of the rare examples of a mineral that can be dated accurately and carries petrological information.

  13. Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii

    USGS Publications Warehouse

    Holcomb, R.T.; Reiners, P.W.; Nelson, B.K.; Sawyer, N.-L.E.

    1997-01-01

    The island of Kauai has always been interpreted as a single shield volcano, but lavas of previously correlated reversed-to-normal magnetic-polarity transitions on opposite sides of the island differ significantly in isotopic composition. Samples from west Kauai have 87Sr/86Sr 18.25; samples from east Kauai have 87Sr/86Sr > 0.7037, ??Nd ??? 6.14, and 206Pb/204Pb < 18.25. Available data suggest that a younger eastern shield grew on the collapsed flank of an older western one.

  14. The Quaternary adakite distribution of Kyushu Island, Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Takemura, K.

    2011-12-01

    The Quaternary volcanoes are widely distributed in Kyusu Island, Japan. Philippine Sea plate is subducting beneath Kyushu. Clear distribution of deep seismic foci is observed below the Quaternary volcanoes in southern area, but not in northern area. Notsu et al. (1990, JVGR) examined the contribution of subduction to the magma source, and emphasized that no slab derived material is observed in northern area from Sr isotopic compositions. Volcanic activity similar to the within-plate type volcanism has been also emphasized for the magma genesis of this area (e.g. Kita et al, 2001, JVGR). However, we found adakitic rocks, which show high Sr/Y ratios and low Y concentrations (e.g. Defant and Drummond, 1990, Nature) from some Quaternary volcanoes in north Kyushu on the basis of published data (Otha et al, 1990, GANKO; Itoh, 1990, GANKO). Therefore, the magma genesis is still controversial. We studied lateral variations of Sr, Nd and Pb isotopic and trace element compositions for Quaternary volcanics from Kyushu to investigate the magma genesis. From the results, a clear variation of Sr/Y ratio, decreasing from north to south, is observed along the volcanic front. Some of the Sr/Y ratio of the most northern part of Kyusu shows the value >100. The all analyzed Pb isotope compositions show a single liner trend in 208Pb/204Pb v.s. 206Pb/204Pb diagram. The liner trend of Pb isotope ratios can be explained by the binary mixing of the Shikoku Basin basalt and tereginious sediment which might be a constituent of the subducting slab. The similar binary mixing relationships are found in Sr and Nd isotopic systematics. The isotopic characteristics of the Quaternary magma in Kyushu can be explained by the magma generation process of island arc, in spite of the lack of deep seismic foci in northern area. It is considered that high and low Sr/Y ratios suggest the contributions of partial melt in the north and aqueous fluid derived from subducting slab in the south, respectively. If

  15. Geochemical and isotopic composition of Pan-African metabasalts from southwestern Gondwana: Evidence of Cretaceous South Atlantic opening along a Neoproterozoic back-arc

    NASA Astrophysics Data System (ADS)

    Will, Thomas M.; Frimmel, Hartwig E.; Gaucher, Claudio; Bossi, Jorge

    2014-08-01

    A lithogeochemical and Sr-Nd-Pb isotope study of former oceanic crustal rocks from the Cuchilla Dionisio Terrane in the southern Dom Feliciano Belt, Uruguay (La Tuna amphibolites) and metabasites in the Chameis Subterrane of the Marmora Terrane in the Gariep Belt, Namibia/South Africa shows that these rocks are compositionally very similar and probably represent the same unit on opposite sides of the modern South Atlantic. The mafic rocks from both terranes are tholeiitic metabasalts and -andesites and have depleted rare earth element patterns, generally low TiO2 (< 1.5 wt.%), very low Th/Nb ratios and lack negative Nb-Ta anomalies, all features that are typical of ‘normal' mid-ocean ridge basalts (N-MORB) and/or back-arc basin basalts (BABB). In addition, both rock suites have extremely depleted Nd isotope compositions (εNd630 Ma = 6.7-9.4), superchondritic 147Sm/144Nd ratios, and low 206Pb/204Pb and 207Pb/204Pb initial ratios. The 87Sr/86Sr initial ratios of the La Tuna mafic rocks are low, whereas the Chameis metagabbro samples have higher, possibly alteration-related ratios. The geochemical and isotopic signatures are consistent with the formation of both rock suites in the same mature Neoproterozoic back-arc basin (Marmora Basin), supporting conclusions drawn from earlier provenance studies of metasedimentary units from these terranes. Other mafic rocks from the Marmora Terrane are interpreted as ocean island basalts that formed in a within-plate setting. A corollary of the conclusion that the mafic rocks in the Cuchilla Dionisio and Marmora Terranes formed in the same back-arc basin is (1) that the main Pan-African suture between the Río de la Plata Craton and the Kalahari Craton lies to the west of the Dom Feliciano Belt in South America, and (2) that the opening of the modern South Atlantic did not occur along that suture but along the axis of the Neoproterozoic Marmora back-arc basin.

  16. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. PMID:27058126

  17. Multispectroscopic and Isotopic Ratio Analysis To Characterize the Inorganic Binder Used on Pompeian Pink and Purple Lake Pigments.

    PubMed

    Marcaida, Iker; Maguregui, Maite; Morillas, Héctor; García-Florentino, Cristina; Knuutinen, Ulla; Carrero, Jose Antonio; Fdez-Ortiz de Vallejuelo, Silvia; Pitarch Martı́, Africa; Castro, Kepa; Madariaga, Juan Manuel

    2016-06-21

    Because of the fact that pigments are not ubiquitous in the archeological record, the application of noninvasive analytical methods is a necessity. In this work, pink and purple lake pigments recovered from the excavations of the ancient city of Pompeii (Campania, Italy) and preserved in their original bowls at the Naples National Archaeological Museum (Italy) were analyzed to characterize the composition of their inorganic binders (mordants). In situ preliminary analyses using a hand-held energy dispersive X-ray fluorescence spectrometer (HH-ED-XRF) allowed us to determine the use of an aluminosilicate enriched in Cu and Pb. Scanning electron microscopy coupled to energy dispersive X-ray spectrometry (SEM-EDS) and benchtop ED-XRF analyses confirmed these results, while inductively coupled plasma mass spectrometry (ICPMS) allowed one to determine the concentration of major, minor, and trace elements. The use of other techniques such as X-ray diffraction (XRD), and micro-Raman and infrared spectroscopies allowed one to characterize the pigments at the molecular level. The high concentration of Cu detected in the pigments (1228-12937 μg g(-1)) could be related to the addition of Cu salts to obtain the desired final hue. The concentrations of Pb (987-2083 μg g(-1)) was also remarkable. Lead isotopic ratio analysis ((206)Pb/(207)Pb) suggested a possible origin related to the leaching of the ancient lead pipes from Pompeii and the subsequent transfer to the buried pigments or to the inorganic binder. Molecular analysis also showed that the binder is composed of an allophane-like clay. Moreover, it was possible to determine that to obtain the final purple hue of a specific pigment, Pompeian blue pigment was also mixed into the dyed clay. PMID:27189380

  18. Lead in the Getchell-Turquoise ridge Carlin-type gold deposits from the perspective of potential igneous and sedimentary rock sources in Northern Nevada: Implications for fluid and metal sources

    USGS Publications Warehouse

    Tosdal, R.M.; Cline, J.S.; Fanning, C.M.; Wooden, J.L.

    2003-01-01

    Lead isotope compositions of bulk mineral samples (fluorite, orpiment, and realgar) determined using conventional techniques and of ore-stage arsenian pyrite using the Sensitive High Resolution Ion-Microprobe (SHRIMP) in the Getchell and Turquoise Ridge Carlin-type gold deposits (Osgood Mountains) require contribution from two different Pb sources. One Pb source dominates the ore stage. It has a limited Pb isotope range characterized by 208Pb/206Pb values of 2.000 to 2.005 and 207Pb/206Pb values of 0.8031 to 0.8075, as recorded by 10-??m-diameter spot SHRIMP analyses of ore-stage arsenian pyrite. These values approximately correspond to 206Pb/204Pb of 19.3 to 19.6, 207Pb/204Pb of 15.65 to 15.75, and 208Pb/204Pb of 39.2 to 39.5. This Pb source is isotopically similar to that in average Neoproterozoic and Cambrian elastic rocks but not to any potential magmatic sources. Whether those clastic rocks provided Pb to the ore fluid cannot be unequivocally proven because their Pb isotope compositions over the same range as in ore-stage arsenian pyrite are similar to those of Ordovician to Devonian siliciclastic and calcareous rocks. The Pb source in the calcareous rocks most likely is largely detrital minerals, since that detritus was derived from the same sources as the detritus in the Neoproterozoic and Cambrian clastic rocks. The second Pb source is characterized by a large range of 206Pb/204Pb values (18-34) with a limited range of 208Pb/204Pb values (38.1-39.5), indicating low but variable Th/U and high and variable U/Pb values. The second Pb source dominates late and postore-stage minerals but is also found in preore sulfide minerals. These Pb isotope characteristics typify Ordovician to Devonian siliciclastic and calcareous rocks around the Carlin trend in northeast Nevada. Petrologically similar rocks host the Getchell and Turquoise Ridge deposits. Lead from the second source was either contributed from the host sedimentary rock sequences or brought into the

  19. Subduction components in Pleistocene to recent Kurile arc magmas in NE Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen; Itoh, Jun'ichi; Miyagi, Isoji

    2011-03-01

    Samples of Kurile arc lavas erupted between 1.6 Ma and ca. 30,000 years were collected from the Kutcharo, Mashu and Akan caldera area in NE Hokkaido, about 150 km west of the Kurile trench. The samples include rhyolitic pumice, rhyolite, dacite, andesite and, rare, tholeiitic basalt, and show 'medium' potassic calc-alkaline affinity. Except for relatively high concentrations of large ionic lithophile elements (LILE), Th and especially Pb, other trace elements, including the rare earths (REE) and high field strength elements (HFSE), show relatively low abundances when compared with those of normal mid-ocean ridge basalts (N-MORB). Their Sr, Nd isotopic compositions are relatively depleted, with 87Sr/ 86Sr ranging from 0.7033 to 0.7034 and 143Nd/ 144Nd from 0.51295 to 0.51230. Pb isotopic compositions are also relatively unradiogenic, with 206Pb/ 204Pb at about 18.4 and 208Pb/ 204Pb ranging from 38.3 to 38.4, significantly more depleted than other Quaternary lavas in NE Japan. The Kurile lavas show typical subduction-type element distributions, with high ratios of fluid-mobile incompatible elements over fluid-immobile HFSE, Ba/Nb, for example, ranging between ca. 200 and 450. The lack of covariance between (e.g.) Ba/Nb and Ba/Th with 87Sr/ 86Sr, and Nd/Pb with Pb isotopic ratios suggests minimal involvement of sediment-derived metasomatism of the magmatic source. Geochemical character of the latter probably reflects contamination by hydrous fluids derived from altered oceanic crust (AOC). This is indicated by the coupling of relatively depleted, MORB-like Sr and Pb isotopic compositions and high Sr and Pb contents. Thus, given their N-MORB-type isotopic compositions, the LILE, and HFSE-like character, evidenced by high ratios of Ba/Nb, and variable Nd/Pb and Th/Nd, suggests NE Hokkaido arc magma genesis is best explained in terms of a binary mixing model involving: a dominantly N-MORB-like (i.e. depleted) convecting mantle 'wedge', contaminated by hydrous AOC

  20. Petrogenesis of the post-collisional Oligo-Miocene Volcanism in NW Anatolia (Turkey): Balıkesir Volcanites

    NASA Astrophysics Data System (ADS)

    Ünal, Alp; Altunkaynak, Şafak; Benowitz, Jeff A.

    2016-04-01

    In this study, we present whole-rock chemical and Sr-Nd-Pb-O isotopic compositions as well as 40Ar/39Ar ages of Balıkesir volcanites to evaluate the nature, genesis and timing of the post-collisional Oligo-Miocene magmatism in NW Anatolia. Three main volcano-stratigraphic groups distinguished in the Balıkesir volcanites on the basis of field observations and petrographical investigations; 1) andesitic lavas and related pyroclastic units representing the lower part of the volcanic sequence; 2) Trachyandesite- basaltic trachyandesite lavas and 3) dacitic lavas and associated pyroclastic units corresponding to the upper part of the volcanic sequence. Both andesitic and dacitic pyroclastic units are represented with ash fall, ash block flow and flow breccia units. Geochemically, Balıkesir volcanites are ranging in composition from basaltic trachy-andesite to dacite. They are sub-alkaline in character and show enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to the high field strength elements (HFSE). Balıkesir volcanites display depletion in P, Ta, Nb and Ti. All these trace element characteristics and inter-element ratios suggest that magma forming the Balıkesir volcanites show similar patterns to those of subduction-related arc magmas and/or post collisional lavas. They have high initial 87Sr/86Sr ratios (0.707109-0.708620), low 143Nd/144Nd (0.512322- 0.512493). 206Pb/204Pb and 207Pb/204Pb values vary from 18.703 to 18.867 and 15.681 to 15.714, respectively and ɛNd values range between -5.61 and -2.27. 18O isotopic ratios range between 8.3 and 11.8. All these isotopic characteristics and major-trace element compositions of Balıkesir volcanites suggest that the lavas are co-genetic and originated from a hybrid magma derived from enriched mantle (EM II) source. 40Ar/39Ar dating yielded isochron ages of 22.9±0.2 - 21.0±0.2 which is consistent with other volcanic and plutonic associations of western Anatolia (eg

  1. Eolian inputs of lead to the North Pacific

    SciTech Connect

    Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M.

    2000-04-01

    The authors evaluate the importance of natural eolian Pb to the dissolved oceanic Pb budget by measuring the isotopic composition of Pb in 35 Holocene and late Quaternary sediment samples from the North Pacific and in 10 samples of Chinese loess. When the Pacific is divided into sediments provinces based on published {var_epsilon}{sub Nd} and sedimentological data, Pb from the central North Pacific tends to be the most radiogenic and homogeneous due to the dominance of eolian Chinese loess. Lead from the marginal North Pacific and the sparsely sampled regions south of 5{degree}N are less radiogenic and more variable owing to hemipelagic inputs from various volcanic arcs and older continental crust located around the Pacific Rim. {sup 208}Pb/{sup 204}Pb ratios provide the most distinctive provenance information due to the relatively high ratios in Chinese loess. The Chinese loess samples come from 3 localities and span up to 2 Myr of time. Acetic-acid leachate, bulk loess, and loess silicate fractions were analyzed separately. Leachate Pb is considerably less radiogenic than silicate Pb. The isotopic composition of the silicate component closely matches the sediment data from the central North Pacific, confirming the dominance of eolian loess in this region. The authors divided up a suite of published hydrogenous Pb-isotope data from the Pacific Ocean according to their locations within the three independently defined sediment provinces. These data define three distinct fields differentiated primarily by their {sup 206}Pb/{sup 204}Pb ratios, which increase going form the Central to Southern to Marginal provinces. This relationship with sediment province strongly suggests that natural eolian and probably hemipelagic inputs significantly impact the seawater Pb budget. Direct support for the dominance of eolian Chinese loess in the central North Pacific dissolved Pb budget comes from the close match between loess leachate Pb and the Central Province hydrogenous Pb data

  2. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar

  3. Hf-Nd-Pb Isotopes in Lavas and Pyroxenites From Kaula Island Reveal a Depleted Component in the Hawaiian Plume

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.; Salters, V. J.

    2008-05-01

    The presence of depleted material within the otherwise isotopically enriched Hawaiian plume has fundamental implications on the source composition and the scales of heterogeneities and mixing in mantle plumes. A depleted plume component has been recognized in the Pb isotope systematics of Oahu rejuvenated stage lavas (the Honolulu Volcanics, or HV) and in the Hf-Nd isotope compositions of garnet pyroxenite xenoliths from Salt Lake Crater (SLC). Also, peridotite xenoliths from SLC with extreme Hf and Os isotope compositions and up to 2 Ga old Re-depletion ages have been interpreted as fragments of an ancient depleted recycled lithosphere that is part of the plume. Here we present the first combined Hf-Nd-Sr-Pd isotope investigation of phonolite and nephelinite lavas and pyroxenite xenoliths from Kaula Island, Hawaii. The location of Kaula some 300km from Oahu and on a cross-trend relation with the main Hawaiian ridge allows to investigate whether this depleted component has been continuously present in the Hawaiian plume the last ~2-3 Ma, or it is only recognized in Oahu. In terms of major and trace element contents, the Kaula nephelinites and pyroxenites generally overlap the compositions of the HV and SLC pyroxenites on Oahu, respectively. The garnet pyroxenites are interpreted as high pressure cumulates near the base of the lithosphere (70-100km), while the spinel pyroxenites possibly come from shallower depths. In Hf-Nd isotope space both Kaula lavas and pyroxenites (data on cpx separates) plot above the Hawaiian tholeiite trend, with relatively radiogenic Hf isotopes (ɛHf = 13.5-21) for a given Nd (ɛNd=7.3-8.3). These compositions do not intersect the Pacific MORB field. The Pb isotopic compositions of the Kaula lavas and pyroxenites, and new Pb data on the SLC pyroxenites (all data collected by high precision MC-ICPMS using the Tl addition technique) extend to lower 206Pb/204Pb (18.09-17.80) and 208Pb/204Pb (37.42-37.76) than previously reported in Hawaiian

  4. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  5. Origin of the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Evidence from regional Pb and Sr isotope sources

    USGS Publications Warehouse

    Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L.

    2004-01-01

    Pb and Sr isotope data were obtained on the shale-hosted Zn-Pb-Ag Red Dog deposits (Qanaiyaq, Main, Aqqaluk, and Paalaaq), other shale-hosted deposits near Red Dog, and Zn-Pb-Ag sulfide and barite deposits in the western and central Brooks Range. The Red Dog deposits and other shale-hosted Zn-Pb-Ag deposits near Red Dog are hosted in the Mississippian Kuna Formation, which is underlain by a sequence of marine-deltaic clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. Ag-Pb-Zn vein-breccias are found in the Endicott Group. Galena formed during the main mineralization stages in the Red Dog deposits and from the Anarraaq and Wulik deposits have overlapping Pb isotope compositions in the range 206Pb/204Pb = 18.364 to 18.428, 207Pb/204Pb = 15.553 to 15.621, and 208Pb/204Pb = 38.083 to 38.323. Galena and sphalerite formed during the main ore-forming stages in the Red Dog deposits define a narrow field on standard uranogenic and thorogenic Pb isotope diagrams. Lead in sulfides of the Red Dog district is less radiogenic (238U/204Pb: ?? = 9.51-9.77) than is indicated by the average crustal lead evolution model (?? = 9.74), a difference consistent with a long history of evolution at low ratios of ?? before the Carboniferous. The homogeneous regional isotopic reservoir of Pb may indicate large-scale transport and leaching of minerals with various ?? ratios and Th/Pb ratios. Younger and genetically unrelated fluids did not significantly disturb the isotopic compositions of galena and sphalerite after the main mineralization event in the Red Dog district. Some pyrite shows evidence of minor Pb remobilization. The overall lead isotope homogeneity in the shale-hosted massive sulfide deposits is consistent with three types of control: a homogeneous regional source, mixing of lead during leaching of a thick sedimentary section and fluid transport, or mixing at the site of deposition. Isotopic variability of the hydrothermal fluids, as represented by galena

  6. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Wang, Ru-Cheng; Zhao, Kui-Dong; Chen, Hui; Ding, Jun-Ying; Zhao, Chao; Cai, Yi-Tao

    2013-09-01

    The Yinshan Cu-Au-Pb-Zn-Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb-Zn-Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu-Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite-tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187-303 °C and salinities of 4.2-9.5 wt.% NaCl equivalent in the Pb-Zn-Ag mineralization, and homogenization temperatures of 196-362 °C and salinities of 3.5-9.9 wt.% NaCl equivalent in the Cu-Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu-Au ore bodies, share similar homogenization temperatures of 317-448 °C and contrasting salinities of 0.2-4.2 and 30.9-36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = -1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01-18.07; 207Pb/204Pb = 15.55-15.57; and 208Pb/204Pb = 38.03-38.12) are consistent with those of volcanic-subvolcanic rocks (206Pb/204Pb = 18.03-18.10; 207Pb/204Pb = 15.56-15.57; and 208Pb/204Pb = 38.02-38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8

  7. Two methods for: (1) Determination of initial Pb, and (2) Resolving it to multistages

    NASA Astrophysics Data System (ADS)

    Tera, F.

    2013-12-01

    The methods rely on the observation that of a large body of Pb data on a terrain, some fall in subgroups each characterized by a specific K=232Th/238U. On plots of 208Pb/204Pb vs. 206Pb/204Pb and 207Pb/204Pb, each subgroup defines a line, and the lines converge to meet in a single point in each plot. The two points of convergence yield the isotopic composition of the terrain's Initial Pb. Figs. 1, 2 show an application to South Of Isua (SOI) terrain (data of Kamber et al., 2003). The results are: α = 206Pb/204Pb = 11.10, β = 207Pb/204Pb = 12.985, and γ = 208Pb/204Pb = 31.19. Resolving initial Pb entails finding μA and μB in combination with τA and τB, which reproduce (in 2 stages, A & B) the determined α, β and γ. In a 2-stage model with unknown source (our case), τB = t (where t = crystallization age). For SOI, μA ranging from 0.7 to 0.2 is chosen. Also, assuming 4.563 Ga Earth, a series of τA separated one from the next by 10 Ma (e. g., 4.553, 4.543, 4.533 ...etc) is chosen to be associated with each individual μA, in order to reproduce α = 11.10. Equivalently, ';μA = (μA /137.88) is applied to reproduce β = 12.985. The results plotted as τA vs. (μB/'μB /137.88), yield parallel Congruency Profiles, each being a straight line having a single datum (a Congruency Point, CP,) falling at (μB/';μB/137.88) = 1.000 (no Fig). All CPs falling within 1× 0.0001 for SOI, yielded μA = 0.45 and τA = 67.5 Ma after Earth's formation. We also obtained μB = 9.23 (at τB =3.84 Ga). Possibilities: Earth had an ancient crust depleted in U, which may have gone to the core.

  8. Pb and O isotopic constraints on the source of granitic rocks from Cape Breton Island, Nova Scotia, Canada

    USGS Publications Warehouse

    Ayuso, R.A.; Barr, S.M.; Longstaffe, F.J.

    1996-01-01

    Pb isotopic compositions of leached feldspars from twenty-three plutons in Cape Breton Island can be divided into two groups: anorthosite, syenite, and granite in the Blair River Complex, which have the least radiogenic compositions on the Island, and granitic rocks from terranes (Aspy, Bras d'Or, and Mira) to the south. Pb isotopic data for the Blair River Complex (206Pb/204Pb = 17.399-18.107; 207Pb/204Pb = 15.505-15.560; 208Pb/204Pb = 36.689-37.733) are consistent with an old source region ultimately derived from the mantle and contaminated by sialic crust. Oxygen isotopic compositions of syenite in the Blair River Complex (??18O = +8.0 to +8.5 permil) are slightly higher than anorthosite (+7.0 to +8.3 permil); a Silurian granite in the Blair River Complex has ??18O = +7.5 permil. Cambrian to Devonian plutons in the Aspy, Bras d'Or, and Mira terranes are more radiogenic (206Pb/204Pb = 18.192-18.981; 207Pb/204Pb = 15.574-15.712; 208Pb/ 204Pb =37.815-38.936) than the Blair River Complex and were generated from source regions having a predominant crustal Pb signature (high ??). The ??18O values of granites and granodiorites in the Aspy terrane (+7.5 to +9.2 permil; avg = +8.6 permil) and Bras d'Or (+3.7 to +11.3 permil; avg = +9.4 permil) are also consistent with involvement of sialic crust. Many Late Proterozoic granites from the Mira terrane have anomalously low ??18O values (+0.2 to +5.9 permil), perhaps produced from protoliths that had undergone hydrothermal alteration prior to melting. Paleozoic granitic rocks from the Aspy, Bras d'Or, and Mira terranes cannot be uniquely distinguished on the basis of their Pb and O isotopic compositions. The granitic rocks could have been generated during terrane amalgamation from combinations of unradiogenic (Grenville-like) and more radiogenic (Avalon-like) sources.

  9. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust

    NASA Astrophysics Data System (ADS)

    White, R. V.; Tarney, J.; Kerr, A. C.; Saunders, A. D.; Kempton, P. D.; Pringle, M. S.; Klaver, G. T.

    1999-01-01

    The generation of the continental crust may be connected to mantle plume activity. However, the nature of this link, and the processes involved, are not well constrained. An obstacle to understanding relationships between plume-related mafic material and associated silicic rocks is that later tectonic movements are liable to obscure the original relationships, particularly in ancient greenstone belts. Studies of younger analogous regions may help to clarify these relationships. On the island of Aruba in the southern Caribbean, a sequence of partly deformed mafic volcanic rocks intruded by a predominantly tonalitic batholith is exposed. The mafic lavas show geochemical and isotopic affinities with other basaltic, picritic and komatiitic rocks that crop out elsewhere in the Caribbean—these are well documented as belonging to an 88-91 Ma plume-related oceanic plateau, which is allochthonous with respect to the Americas, and is thought to have been formed in the Pacific region. The ˜85 to ˜82 Ma tonalitic rocks share some geochemical characteristics (high Sr and Ba, low Nb and Y) with Archaean tonalite-trondhjemite-granodiorite (TTG) suites. Field relationships suggest that deformation of the plateau sequence, possibly related to collision with a subduction zone, was synchronous with intrusion of the Aruba batholith. New incremental heating 40Ar/ 39Ar dates, combined with existing palaeontological evidence, show that cooling of the batholith occurred shortly after eruption of the plateau basalt sequence. Sr-Nd isotopic data for both rock suites are uniform ( 87Sr/ 86Sr i≈0.7035 , ɛNd i≈+7), whereas Pb isotopes are more variable (Plateau sequence: 206Pb/ 204Pb =18.6-19.1 , 207Pb/ 204Pb =15.54-15.60 , 208Pb/ 204Pb =38.3-38.75 ; Aruba batholith: 206Pb/ 204Pb =18.4-18.9 , 207Pb/ 204Pb =15.51-15.56 , 208Pb/ 204Pb =38.0-38.5 ). This suggests that there has been a minor sedimentary input into the source region of the batholith. However, the limited time interval

  10. Cyclic Geochemical Variation in Prehistoric and Historic Lavas, Sakura-jima, Japan

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Harpp, K. S.; Forbes, J.; Nagle, A.

    2014-12-01

    Sakura-jima volcano, on Kyushu Island, is one of Japan's most active volcanic centers. It has been in an eruptive phase since 1955, primarily in the Vulcanian style. Prior to its current activity, Sakura-jima had 11 prehistoric and 4 historic lava-producing events, after its initiation 12-13,000 years ago (Moriwaki, 1992). We present geochemical analyses of a suite of lavas collected from all the mapped historic eruptions and a representative suite of pre-historic eruptions. Lavas vary from andesite to dacite (60.6-66.7 wt.% SiO2), with typical phenocryst assemblages of 20% plagioclase, 5% pyroxenes, and <5% magnetite. Major and trace element studies of historic eruptions indicate that Sakura-jima lavas have become steadily more mafic since 1475 (Yanagi et al., 1991; Arakawa et al., 1998). Consideration of prehistoric lavas, however, suggests that the variations are cyclic, shifting from more felsic to more mafic compositions at least twice during this period of activity. Previous researchers hypothesized a cumulate plug in the magma chamber that gradually sinks, allowing basaltic magma to ascend into a shallower chamber where it fractionates (Yanagi et al., 1991). Alternatively, Arakawa et al. (1998) propose a model in which magmas from two chambers, one basaltic and one dacitic, are injected into a third, shallower chamber where they mix. To test these models, we performed Sr and Pb isotopic analysis on a subset of prehistoric and historic Sakura-jima lavas. The 87Sr/86Sr, 206Pb/204Pb, and 207Pb/204Pb ratios decrease steadily from the oldest prehistoric lavas to the youngest historic lavas, in direct contrast to the cyclic variations of the major and trace elements. None of the isotopic ratios correlate strongly with major element compositions. Thus it appears that the simple AFC mechanisms to which the major and trace element variations were originally attributed are not the only process responsible for the cyclic behavior. One of the simplest alternative

  11. Investigation of the Influence of the Amlia Fracture Zone on the Islands of Four Mountains Region of the Aleutian Arc, AK

    NASA Astrophysics Data System (ADS)

    Nicolaysen, K. P.; Myers, J. D.; Weis, D.

    2013-12-01

    Regional isotopic and trace element investigations of the magmatic source characteristics of the Aleutian arc have attributed regional patterns to variations in the contribution of eclogite through slab melting, to increased proportions of sediment melts, and to variation in the amount of fluid derived by progressive metamorphism of the downgoing slab. Currently the Amlia Fracture Zone (AFZ) is located between the islands of Atka and Seguam and marks a prominent boundary between subduction of large quantities of trench sediments to the east versus sediment impoverished subduction to the west of the AFZ. This boundary is not stationary through time. Instead oblique subduction of the Pacific plate moves the AFZ westward along the arc front, causing sequential subduction beneath the islands of Chuginadak, Yunaska and Seguam circa 5, 2.5 and 1 million years ago, respectively. Lavas from Atka Island, which has not yet received the sediment and fluid spike from the AFZ, act as reference compositions. Comparison of bulk rock trace element ratios and Sr, Nd, Hf, and Pb isotopic compositions for lavas from these islands relative to Atka show that contributions from melted subducted sediment are important in the genesis of Holocene and Pleistocene lavas erupted in the Islands of Four Mountains region of the arc. Sr and Pb isotopic compositions for Yunaska and Chuginadak lavas are as high or higher than Seguam values and trend in the direction of sediment values. La/Nb ratios similarly indicate sediment melting is important for all these lavas. Comparison of values for Holocene relative to Pleistocene values indicate that once sediments are introduced to the magma source, they persist in affecting magma compositions. Comparison of higher Mg# lavas (molar Mg#>50) shows that a group of the oldest sampled lavas on Chuginadak have much lower 208Pb/204Pb, 206Pb/204Pb, and 87Sr/86Sr and higher 143Nd/144Nd, Zr/Y and Zn/Mn relative to all sampled Holocene and Pleistocene lavas from

  12. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination

    NASA Astrophysics Data System (ADS)

    Gómez-Tuena, Arturo; Lagatta, Alexandra B.; Langmuir, Charles H.; Goldstein, Steven L.; Ortega-GutiéRrez, Fernando; Carrasco-NúñEz, Gerardo

    2003-08-01

    The magmatic record of the easternmost part of the Trans-Mexican Volcanic Belt elucidates how temporal changes in subduction parameters influence convergent margin volcanism. In the Palma Sola massif, three phases of magmatic rocks with distinct chemical characteristics were emplaced in a relatively short time span (˜17 Ma): Miocene calc-alkaline plutons, latest Miocene-Pleistocene alkaline plateau basalts, and Quaternary calc-alkaline cinder cones. Plutons have arc-like trace element patterns (Ba/Nb = 16-101), and their Sr, Nd, and Pb isotopic compositions become more "depleted" with increasing SiO2 contents. Their Pb isotopes are bracketed by the subducted sediments and Pacific mid-ocean ridge basalts (MORB), requiring the participation of an unradiogenic component that mixes with a sediment contribution. High Sr/Y and Gd/Yb ratios in the least radiogenic pluton might indicate a melt coming from the subducted MORB. Trace element patterns of the plateau basalts show moderate or negligible subduction contributions (Ba/Nb = 6-31). Rocks without subduction signatures are similar to ocean island basalts, indicating melting of an enriched mantle wedge. The plateau basalts form an array in 206Pb/204Pb-207Pb/204Pb space that trends toward the composition of the subducted sediment. The sediment component is also indicated by the inverse correlations between Pb isotopes and subduction signals. This component has high Th/Nd coupled with low 143Nd/144Nd, but lower Pb/Nd and Sr/Nd ratios than the bulk sediment. These suggest melting of a sediment that has lost fluid mobile elements prior to melting. The Quaternary cinder cones have moderate subduction signals (Ba/Nb = 16-41), and their isotopic compositions correlate with differentiation indices. Contamination with the local Paleozoic basement can explain the petrogenesis of the youngest rock suite. The geochemical differences among the suites indicate temporal modifications in the chemical characteristics of the slab input

  13. A Mantle Cross-Section Through Western And Central Nevada From Young Basaltic Magmas In The Sierra Nevada And Western Great Basin

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Cousens, B. L.; Henry, C. D.

    2007-12-01

    The geochemistry of basaltic magmas erupted in the Basin and Range province of the western USA has demonstrated that at least two mantle sources exist, one with a subduction signature and another with an "ocean island basalt" (OIB) signature. Here we investigate the distribution of these two sources during the Pleistocene and Holocene in a 250 km-long transect from the eastern Sierra Nevada near Reno, NV, into central Nevada. Samples were collected from young, dated mafic lava flows from the Carson Range (2.5 to 1.4 Ma), Steamboat Hills (2.6 Ma), Virginia City and Chalk Hills (1.5 to 1.44 Ma), east of Carson City (1.36 Ma), Rattlesnake Hill (1.2 to 0.9 Ma), Buffalo Valley (1.1 to 0.95 Ma), Upsal Hogback (0.6 Ma), and Soda Lake (Holocene). With the exception of Carson Range andesites, all of the lavas are alkaline basalts and basaltic trachyandesites with K2O/Na2O > 0.4. Incompatible element abundances, incompatible element ratios, and radiogenic isotope ratios vary widely between locations. Many key incompatible element ratios, such as Ce/Pb, Sr/P, Ba/Nb, and Nb/La, and isotopic ratios vary as a function of age and longitude. Lavas less than 1 Ma in age have low Ba/Nb, Sr/P, 87Sr/86Sr, 206Pb/204Pb, and high Ce/Pb and Nd/La compared to lavas greater than 1Ma in age. These ratios vary more strongly as a function of longitude, from high Ba/Nb, Sr/P, 206Pb/204Pb, 87Sr/86Sr and low Ce/Pb and Nb/La (subduction signature mantle) lavas in the Sierra Nevada margin to lavas with the opposite characteristics (OIB signature mantle) in central Nevada. La/Sm does not vary with either age or longitude. The relationship with longitude indicates that two mantle sources currently exist beneath western Nevada, subduction-modified mantle to the west and OIB-type mantle to the east, and that these two mantle types probably taper in thickness towards one another. The termination of subduction beneath the Reno area at 5-3 Ma, in conjunction with 87Sr/86Sr greater than modern Cascade arc

  14. Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn-Pb deposit, southwest China

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhou, Jia-Xi; Huang, Zhi-Long; Yan, Zai-Fei; Bao, Guang-Ping; Sun, Hai-Rui

    2015-11-01

    The newly discovered Banbanqiao Zn-Pb deposit in the southeastern part of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province is located on the western Yangtze Block, southwest China. Ore bodies of the Banbanqiao deposit are stratiform type, host in dolomitic limestone and dolostone of the Lower Carboniferous Dapu Formation and occur within the NNE-trending Banbanqiao anticline. More than 1.5 million tones (Mt) Zn-Pb ores at grades of 0.26-10.32 wt.% Pb and 0.81-28.8 wt.% Zn have been controlled until now. δ13CPDB and δ18OSMOW values of calcite separates range from -2.8‰ to -0.7‰ (average -1.1‰) and +14.1‰ to +17.0‰ (average +15.5‰), respectively. The δ13CPDB values are similar to those of marine carbonate rocks, but higher than those of mantle and significantly different from those of sedimentary organic matter. However, the δ18OSMOW values are among those of mantle, marine carbonate rocks and sedimentary organic matter. δ34SCDT values of sulfide separates range from +3.2‰ to +9.9‰ (average +6.5‰), unlike mantle-derived sulfur (0 ± 3‰), whilst lower than evaporites (+22‰ to +28‰) within host strata. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of country shale and dolostone whole-rock samples are 18.47, 15.66 and 38.70, and 18.44-18.60, 15.66-15.85 and 38.70-39.14, respectively. Sulfide separates have 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values ranging from 18.03 to 18.73, 15.65 to 15.78 and 38.15 to 39.14, respectively. These Pb isotopic data indicate a clearly crustal source of Pb in the plot of 207Pb/204Pb vs. 206Pb/204Pb. Total REE (ΣREE) contents of country shale and dolostone whole-rock samples are 2.63 ppm and 0.72-86.2 ppm with δEu values are 2.79 and 0.34-0.70, respectively. Pyrite, sphalerite, galena and calcite samples have ΣREE contents of 5.3-36.4 ppm, 0.29-3.39 ppm, 0.52 ppm and 22.0-41.1 ppm, respectively, and δEu values of 0.64-0.86, 0.94-2.86, 0.32 and 0.21-0.45, respectively. These rare earth

  15. A petrologic study of the Teanaway Basalt: Eocene slab window volcanism in central WA

    NASA Astrophysics Data System (ADS)

    Roepke, E.; Tepper, J. H.; Ivener, D.

    2013-12-01

    The Teanaway Basalt (TB) includes subaerial basalt to andesite flows, mafic to felsic tuffs, and rhyolite domes in the Central Cascades of Washington State. These volcanics overlie the extensive ~47 Ma Teanaway Dike Swarm (TDS) that cuts the underlying Swauk Formation. This study focuses on the tectonic setting of eruption and geochemical variations relating to geography and stratigraphy within the TB. The western-most area of the TB, Easton Ridge (ER), is compared with the eastern-most area of the TB, Liberty Ridge (LR) - 40 km to the east of ER. The bimodal TB consists predominantly of basaltic andesite and andesite (45.3-63.1 wt% SiO2) with subordinate rhyolite (75.9-79.4 wt% SiO2). The mafic rocks classify as primarily medium-K tholeiites (0.1-3.0 wt% K2O), but a few samples classify as alkaline. Enrichment in LILE and depletion in HFSE on spidergrams are indicative of an arc setting. However, compared with the modern Cascade Arc, the TB is distinctly higher in Fe2O3T (8.8-17.1 wt%) and TiO2 (1.1-2.7 wt%), and distinctly lower in Al2O3 (11.2-14.6) and K2O, with a similar range of Mg #s (0.15-0.48). Most tectonic discrimination plots characterize the TB as MORB, but some indicate an arc or within-plate setting. Preliminary Pb isotopic data (206Pb/204Pb = 19.13-19.19, 207Pb/204Pb = 15.62-15.64, and 208Pb/204Pb = 38.78-38.90) indicate the TB and TDS are more enriched than Cascade Arc rocks in 206Pb/204Pb and 208Pb/204Pb. Overall, these geochemical data are consistent with a model in which asthenospheric mantle ascending through a slab window interacts with mantle wedge that has previously acquired arc chemical traits. The existence of a slab window in this region during the mid-Eocene is compatible with plate reconstructions and evidence of extension that have been attributed to subduction of the Resurrection-Kula ridge (Haeussler et al., 2003). Harker plots show lavas at LR are generally more enriched than those at ER in Fe2O3T (11.9-17.1 wt% vs 8.8-15.7 wt%) Mn

  16. Radiogenic isotopic constraints from the Project Hotspot Kimama core: implications for Hotspot-controlled lithosphere interactions beneath the Snake River Plain

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Hanan, B. B.; Shervais, J. W.

    2013-12-01

    Project Hotspot, the Snake River Scientific Drilling Project, seeks to understand the evolution of Snake River Plain -Yellowstone Plateau volcanism through time. Radiogenic isotope chemistry, paleomagnetic stratigraphy, and 40Ar/39Ar geochronology from the Kimama core temporally constrain the mass proportions and flux of magma source components in Snake River Plain-Yellowstone Plateau (SRP-YP) basaltic volcanism. We present new radiogenic isotope data for the Kimama core of the central Snake River Plain that support the regional model of plume-continental lithosphere interaction and westward source variation over the past ~ 12 Ma. The 1912 m Kimama core provides a nearly continuous depositional record of basaltic lava flows on the central Snake River Plain from the late Miocene through Pleistocene. Most of the basalt flows are Snake River olivine tholeiites with MgO 6-10%, Fe2O3 < 16%, and K2O <0.9%. Compositionally evolved basalts similar to those erupted at Craters of the Moon (high K2O, Fe2O3, and Zr) were identified at various depths throughout the core. We analyzed 15 basalt samples from a range of geochemical compositions and depths within the Kimama core for Nd, Sr, Hf, and Pb. Radiogenic Pb isotope values for Kimama basalts ranged from 206Pb/204Pb ~18.0--18.5, 207Pb/204Pb ~15.6--15.7, and 208Pb/204Pb ~38.5--39.0. Radiogenic Hf isotopes range from 0.282683--0.282745. Evolved basalts span the same range of 177Hf/176Hf, 207Pb/204Pb, and 208Pb/204Pb as the more primitive basalt compositions (high MgO, Cr, and Ni). Ar/Ar and paleomagnetic dating establish a relatively linear basalt accumulation rate of 305 m/m.y. and a projected bottom hole age of 6.2 Ma.

  17. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    USGS Publications Warehouse

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb < 16.5 and epsilon;Nd near-15 is predominant in anhydrous, two-pyroxene dacites; hydrous rhyolites, rhyodacites, and dacites with epsilon;Nd below-10 are dominated by a second component; hydrous rocks with 206Pb/ 204Pb > 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  18. Taming the Mighty Mississippi: Integrating paleo-flood data and modeling to understand the patterns and causes of extreme floods on a major river system

    NASA Astrophysics Data System (ADS)

    Munoz, Samuel; Giosan, Liviu; Jeffrey, Donnelly; Dee, Sylvia; Shen, Zhixiong

    2016-04-01

    The Mississippi River is an economic artery of the United States that is heavily managed to provide flood control and maintain a navigable shipping channel. The current system of levees and spillway structures was conceived in the early 20th century, but the ability of this system to withstand the altered hydroclimatic conditions projected for the next century is poorly understood. Here, we present initial results from a project that integrates new sedimentary records from floodplain lakes with analyses of sediment geochemistry and climate model simulations to better understand the causes of extreme floods on the lower Mississippi River. In our sedimentary paleoflood records, flood event beds are characterized by an upward fining sequence from deposition of the bedload and suspended load during overbank floods, identified here using high-resolution laser particle-size analysis and elemental composition (XRF), and dated using radioisotopes (137Cs, 210Pb, 14C) and optically-stimulated luminescence (OSL) on quartz. Grain-size descriptors and elemental ratios of Zr/Fe and Fe/Rb are highly correlated, and are used alongside historical discharge records to develop a statistical model for reconstructing flood magnitude in prehistoric contexts. Geochemical analyses of sediments from the floodplains of major tributaries of the Mississippi are used to assess the systematics of 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 208Pb/204Pb across the basin, enabling identification of the synoptic patterns of individual paleo-flood events. We investigate the dynamical drivers of past floods on the lower Mississippi using both reanalysis data and the last millennium simulation from NCAR model CESM1 to find that increased likelihoods of extreme floods on the lower Mississippi River are associated with enhanced moisture flux over midcontinental North America that is controlled by the interaction of seasonally variable soil moisture over major tributaries with inter-annual (e.g., ENSO) and

  19. Pb-Sr-O-C isotope compositions of metacarbonate rocks of the Derbina Formation (East Sayan): Chemostratigraphic and geochronological significance

    NASA Astrophysics Data System (ADS)

    Gorokhov, I. M.; Kuznetsov, A. B.; Ovchinnikova, G. V.; Nozhkin, A. D.; Azimov, P. Ya.; Kaurova, O. K.

    2016-01-01

    The Pb-Sr-O-C isotope compositions of calcite marbles of the Derbina Formation, exposed in the northwestern part of the Derbina block of the East Sayan, were studied. Rocks of the Derbina Formation were metamorphosed under high-temperature amphibolite facies conditions. The carbonate constituent of marbles contains (ppm) 15-130 Mn, 130-160 Fe, 0.008-0.039 Rb, 645-2190 Sr, 0.565-0.894 U, and 0.288-1.42 Pb. These concentrations are similar to those in modern carbonate sediments. The values of δ13C in marbles of the Derbina Formation range from-0.6 to +1.4‰ PDB; the values of δ18O range from 21.5 to 28.6‰ SMOW. The 87Sr/86Sr ratio values in the two least altered rocks, which meet geochemical criteria of the Rb-Sr system preservation in high-grade carbonate rocks, are 0.70804 and 0.70829. The protolith ages of marbles determined using Sr and C chemostratigraphy lie within the interval of 560-530 Ma, which is regarded as the period of carbonate sedimentation. The slope of the straight line on the 206Pb/204Pb-207Pb/204Pb diagram ( n = 9, MSWD = 19) constructed on the basis of the data points of bulk carbonate constituents of all samples studied and those representing leachate steps of one of them in 0.5N HBr yields Late Vendian age (556 ± 31 (2σ) Ma. Taking into account the data on Sr and C isotope systematics of Derbina marbles, this age is regarded as the age of early diagenesis of carbonate sediments close to the age of sedimentation. Thus, metacarbonate rocks of the Derbina Formation preserved the pre-metamorphic chemostratigraphic and isotope-geochronological information. The age obtained testifies that formation of the carbonate cover of the Derbina block occurred in the Late Vendian. At the end of the Cambrian, carbonate deposits were metamorphosed during the Early Caledonian tectonic event in the southeastern part of the Central Asian Fold Belt.

  20. CHRONOLOGICAL CONSTRAINTS ON FLUID CIRCULATION IN MESOZOIC FORMATIONS OF THE EASTERN PART OF THE PARIS BASIN INFERRED FROM U-Pb DATING OF SECONDARY INFILLING CARBONATES

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.

    2009-12-01

    equilibrium composition, indicating that the precipitation phase was older than 650 ky. U-Pb measurements were performed on a VG sector Thermal Ionization Mass Spectrometer (TIMS) using a 205Pb-236U-233U-229Th spike. Pb contents are generally very low, between 3 and 20 ppb, while U contents are more variable, leading to μ = 238U/204Pb up to ~600. Sub-samples with high μ show radiogenic 206Pb/204Pb ratio, but at this stage isochrons generally show high scatter. These U-Pb data however are consistent with an Eocene-Oligocene period for the late carbonates precipitation phase. We will discuss the different processes that may be responsible for these errorchrons (i.e. heterogeneities in the initial isotopic composition; multi-stage growth) as well as the chronological constraints that can be drawn from these data.

  1. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Hollings, Pete; Jin, LuYing

    2016-03-01

    The Baogutu porphyry Cu deposit is a typical reduced porphyry Cu deposit, likely related to ilmenite-series I-type granitoids. However, the nature of the granitoids (ilmenite-series or magnetite-series) and the genesis of the Baogutu deposit are still under debate. In order to resolve these issues, whole-rock magnetic susceptibility, geochemistry and Sr-Nd-Pb isotopic, zircon U-Pb dating and Hf-O isotopic compositions were carried out. Three different intrusive phases are recognized within the deposit, from oldest to youngest, they are diorite with trace gabbro, diorite-granodiorite porphyry, and hornblende diorite porphyry, all of which were emplaced in the Late Carboniferous (320-306 Ma) and show a metaluminous, calc-alkaline I-type granitoid character with typical supra-subduction zone geochemical affinities. The intrusions are characterized by widespread primary pyrrhotite without anhydrite and hematite, dominant ilmenite over magnetite, low whole rock magnetic susceptibility (< 1 × 10- 4 emu g- 1 oe- 1 or < 3 × 10- 3 SI unit) and low whole rock Fe2O3/FeO ratios (< 0.4), indicating that the granitoids are ilmenite- rather than magnetite-series I-type granitoids. Whole rock Sr-Nd-Pb isotopic compositions show limited variation but slightly enriched characteristics with (87Sr/86Sr)i values of 0.70357-0.70404, εNd (t) of + 6.3 to + 7.8, 206Pb/204Pb of 18.20-19.54 and 208Pb/204Pb of 37.97-39.55. Zircon Hf-O isotopic compositions show εHf (t) values of + 10.7 to + 15.8 and δ18O of 5.3-7.4‰. Zircon and apatite saturation thermometries yield temperatures of 720 to 920 °C with relatively higher temperatures for the porphyries than for the diorite. Limited variations in Sr-Nd-Pb-Hf-O isotopic compositions and extremely young whole rock T2DM (Nd) (430 to 570 Ma) and zircon TDMC (Hf) (310 to 640 Ma) do not indicate significant crustal contamination during magma ascent or emplacement. Rather the Baogutu ilmenite-series I-type granitoids were probably formed by

  2. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Ling, H.-F.; von Blanckenburg, F.; Frank, M.; O'Nions, R. K.

    1998-02-01

    Two ferromanganese crusts from the Indian Ocean and one from the Atlantic Ocean have been analysed for 10Be/9Be, 143Nd/144Nd and 208,207,206Pb/204Pb ratios as a function of depth beneath their growth surfaces. 10Be/9Be ratios provide growth rate estimates for these crusts between 1.55 and 2.82 mm Ma-1 and further suggest that 87Sr/86Sr in crusts do not in any case examined so far provide reliable estimates for growth rates. A crust ALV-539 from 35°N in the western N. Atlantic has ɛNd and Pb-isotope variations indistinguishable from crust BM-1969.05 from 39°N in the N. Atlantic [K.W. Burton, H.-F. Ling, R.K. O'Nions, Closure of the central American isthmus and its impact on North Atlantic deepwater circulation, Nature (London) 386 (1997) 382-385] when 10Be/10Be ratios are used to estimate growth rates. Both crusts provide evidence for a marked change in deepwater composition in the western N. Atlantic with a reduction in ɛNd and an increase in 206Pb/204Pb from ~8 Ma ago towards the present day. The two crusts from the Indian Ocean show comparatively small variations in ɛNd between -8.0 and -7.0 over the last 20 Ma and do not show the large shift in ɛNd seen in the Atlantic crusts. Comparison of ɛNd in the crusts analysed here with those published previously [H.-F. Ling, K.W. Burton, R.K. O'Nions, B.S. Kamber, F. von Blanckenburg, A.J. Gibb, J.R. Hein, Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts, Earth Planet. Sci. Lett. 146 (1997) 1-12 K.W. Burton, H-F. Ling, R.K. O'Nions, Closure of the central American isthmus and its impact on North Atlantic deepwater circulation, Nature (London) 386 (1997) 382-385] shows that provinciality in the present-day ɛNd structure of the Pacific, Atlantic and Indian Oceans has been maintained over ~20 Ma or more despite the palaeogeographic changes that have occurred within this period. These include the closure of the Panama gateway and the uplift of the Himalayas. Superimposed on this

  3. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    O'Nions, R. K.; Frank, M.; von Blanckenburg, F.; Ling, H.-F.

    1998-02-01

    Two ferromanganese crusts from the Indian Ocean and one from the Atlantic Ocean have been analysed for 10Be/ 9Be, 143Nd/ 144Nd and 208,207,206Pb/ 204Pb ratios as a function of depth beneath their growth surfaces. 10Be/ 9Be ratios provide growth rate estimates for these crusts between 1.55 and 2.82 mm Ma -1 and further suggest that 87Sr/ 86Sr in crusts do not in any case examined so far provide reliable estimates for growth rates. A crust ALV-539 from 35°N in the western N. Atlantic has ɛNd and Pb-isotope variations indistinguishable from crust BM-1969.05 from 39°N in the N. Atlantic [K.W. Burton, H.-F. Ling, R.K. O'Nions, Closure of the central American isthmus and its impact on North Atlantic deepwater circulation, Nature (London) 386 (1997) 382-385] when 10Be/ 10Be ratios are used to estimate growth rates. Both crusts provide evidence for a marked change in deepwater composition in the western N. Atlantic with a reduction in ɛNd and an increase in 206Pb/ 204Pb from ˜8 Ma ago towards the present day. The two crusts from the Indian Ocean show comparatively small variations in ɛNd between -8.0 and -7.0 over the last 20 Ma and do not show the large shift in ɛNd seen in the Atlantic crusts. Comparison of ɛNd in the crusts analysed here with those published previously [H.-F. Ling, K.W. Burton, R.K. O'Nions, B.S. Kamber, F. von Blanckenburg, A.J. Gibb, J.R. Hein, Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts, Earth Planet. Sci. Lett. 146 (1997) 1-12; K.W. Burton, H-F. Ling, R.K. O'Nions, Closure of the central American isthmus and its impact on North Atlantic deepwater circulation, Nature (London) 386 (1997) 382-385] shows that provinciality in the present-day ɛNd structure of the Pacific, Atlantic and Indian Oceans has been maintained over ˜20 Ma or more despite the palaeogeographic changes that have occurred within this period. These include the closure of the Panama gateway and the uplift of the Himalayas

  4. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  5. Lead isotopic evidence for the origin of Paleo- and Mesoproterozoic rocks of the Colorado Province, U.S.A.

    USGS Publications Warehouse

    Aleinikoff, J.N.; Reed, J.C., Jr.; Wooden, J.L.

    1993-01-01

    Lead isotopic ratios of K-feldspars and whole-rocks from 1.7- and 1.4-Ga plutonic rocks of the Colorado Province are relatively non-radiogenic for 207Pb 204Pb, plotting below the average crust model curve of Stacey and Kramers (1975), indicating that the terrane was derived primarily from juvenile, mantle material. Slightly more radiogenic ratios in the northern part of the terrane, near the Archean Wyoming Province, suggest minor inclusion of an older component. The data from 1.7-Ga plutons plot in a broad field suggesting two episodes of re-equilibration with whole-rock Pb, probably related to heating events in the Mesoproterozoic (1.4 Ga) and Cretaceous (70 Ma). Possible differences in calculated whole-rock Th U, coupled with slight Pb isotopic variations, along the north-south transect suggest either a terrane boundary through central Colorado (near Salida and Gunnison), or fundamental differences in source rocks (metasedimentary vs. metavolcanic). UPb analyses of multigrain splits of detrital zircons from quartzites throughout the Colorado Province have failed to identify Archean detritus. The oldest 207Pb 206Pb ages found (in two samples of quartzite from northern Colorado) are about 2.0 Ga (perhaps derived from rocks of the Trans-Hudson orogen), in contrast to 2.75-Ga detrital zircon in a Paleoproterozoic quartzite from the southern part of the Wyoming Province. While we are not yet able to discern if these ages are true provenance ages or mixtures of Archean and Paleoproterozoic components, the absence of easily recognizable Archean zircons supports other isotopic data and a conclusion that most of the Paleoproterozoic crust of the Colorado Province was ultimately derived from a juvenile (at 1.8 Ga) mantle reservoir. ?? 1993.

  6. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    , kimberlite-like 206Pb/204Pb and 208Pb/204Pb ratios. A multi-stage evolution of the diamond-forming fluids source can be constrained from our new isotopic data, indicating an Achaean enrichment event resulting in elevated U/Pb, Rb/Sr ratios and enrichment in LREEs. This source underwent a more recent fractionation, in the last 500 Myr that may have been related to the diamond-forming event. There is a strong correspondence between fluids with relatively unradiogenic Sr isotopes and relatively low (La, Nd, Sm)/(Nb, Zr) and (Ba, Th)/(Nb) ratios. Sr isotopic enrichment is accompanied by an increase in these ratios. The least trace element enriched and most isotopically depleted fluids are from the high-Mg carbonatitic suite. Thus, HDFs could be derived from asthenospheric mantle as low degree melts that interact to varying degrees with an ancient, metasomatized, rutile- and phlogopite bearing, sub continental lithosphere mantle. The internal heterogeneity in the Sr isotopic ratios within a single diamond suite and even within single diamonds may indicate fluid-mixing processes. Such mixing may occur during migration through preferred mantle veins and may be affected by the small-scale geochemical variability within them.

  7. Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling

    2014-11-01

    The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).

  8. Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya: Implications for the break-up of Eastern Gondwana

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhou, Qing; Lai, Yang; Qing, Chengshi; Li, Yingxu; Wu, Jianyang; Xia, Xiangbiao

    2015-11-01

    The Kerguelen mantle plume triggered the rift of Eastern Gondwana to open the eastern Indian Ocean, with the formation of ~ 132 Ma Comei-Bunbury large igneous province (LIP). The Comei area is located in the eastern Tethyan Himalaya, paleogeographically belonging to Greater India. The Laguila bimodal intrusive rocks from the Comei area consist of mafic (gabbro-diabase) and felsic rocks (quartz monzonite-granodiorite). This paper presents detailed LA-ICP-MS zircon U-Pb chronology, major and trace elements, and Sr-Nd-Pb isotope geochemistry of the Laguila bimodal intrusive rocks, in order to constrain the early activity of the Kerguelen mantle plume. LA-ICP-MS zircon U-Pb dating shows that the Laguila intrusive rocks were emplaced in the Early Cretaceous (~ 134-130 Ma). The Laguila mafic rocks are enriched in LREE, LILE and HFSE, similar to those of oceanic island basalts (OIB). Their 87Sr/86Sri (0.7054 to 0.7066), 143Νd/144Nd (T) (0.512548 to 0.512619) and (206Pb/204Pb)t ratios (18.492 to 18.859) are comparable with those basalts derived by the Kerguelen hot spot. Elemental and isotopic data suggest that they were likely derived by partial melting of the Kerguelen plume source in the spinel-garnet transition zone (~ 60-80 km). The Laguila felsic rocks share most of the geochemical features of A-type granite and show different 87Sr/86Sri (0.7171 to 0.7204), 143Νd/144Nd (T) (0.511874 to 0.511956) and (206Pb/204Pb)t ratios (19.087 to 19.274) from those of the mafic rocks. They were likely derived by partial melting of crustal rocks at a shallow depth (< 30 km) triggered by underplating of the coeval basaltic magmas. The Laguila intrusive rocks were emplaced in a rift setting during the breakup of eastern Gondwana, associated with the Kerguelen plume activity. We calculated the magmatic volume of Comei-Bunbury basalts and the result is ~ 1.1 × 104 km3. The small volume is not reconciled with those typical models for the initial magmatic eruption of mantle plume. It

  9. Volcanism on the Eggvin Bank (Central Norwegian-Greenland Sea, latitude ˜71°N): age, source, and relationship to the Iceland and putative Jan Mayen plumes

    NASA Astrophysics Data System (ADS)

    Mertz, Dieter F.; Sharp, Warren D.; Haase, Karsten M.

    2004-08-01

    The Eggvin Bank (Central Norwegian-Greenland Sea, latitude ˜71°N) is a topographically anomalous shallow area with scattered volcanic peaks extending between the island of Jan Mayen and East Greenland and straddling the northern segment of the mid-Atlantic Kolbeinsey Ridge axis. Basalts dredged from the Eggvin Bank range from variably depleted, tholeiitic, near-axis lavas to enriched, transitional-to-alkaline, off-axis seamount lavas. In terms of normalised incompatible element patterns, the most depleted, near-axis tholeiite is similar to neighbouring Kolbeinsey Ridge basalts, whereas the off-axis, transitional-to-alkaline lavas are similar to other alkaline basalts occurring close to the Eggvin Bank region, e.g., those of Jan Mayen. 40Ar/ 39Ar step heating data indicate that the off-axis seamount lavas are coeval with other alkaline lavas erupted in the Central Norwegian-Greeland Sea at ca. 0.6-0.7 Ma. In contrast, the Eggvin near-axis tholeiites are <0.1 Ma. Volcanic peaks west and north of Jan Mayen show no indication of a systematic age progression. Therefore, the Jan Mayen hot spot hypothesis is not supported by the available radiometric age data. Sr, Nd, and Pb isotope compositions of near-axis and off-axis Eggvin Bank lavas are distinct, implying differences in their mantle sources. Isotope ratios of the off-axis basalts ( 87Sr/ 86Sr=0.70344-0.70352, 143Nd/ 144Nd=0.51283-0.51288, 206Pb/ 204Pb=18.82-18.85) resemble those of neighbouring alkali basalt occurrences, however, isotope ratios of the near-axis tholeiites correspond to lavas erupting in the south-eastern volcanic zone of Iceland, e.g., at Vestmannaeyjar. The near-axis tholeiites are generated by an unusual source with highly radiogenic Pb ( 206Pb/ 204Pb=18.95) together with relatively radiogenic Nd ( 143Nd/ 144Nd=0.51295) and low-radiogenic Sr ( 87Sr/ 86Sr=0.70314), respectively, representing an unique composition in the mantle north of central Iceland. The overlap in isotope compositions between

  10. Anthropogenic and natural lead isotopes in Fe-hydroxides and Fe-sulphates in a watershed associated with arsenic-enriched groundwater, Maine, USA

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.

    2008-01-01

    A survey of the natural and anthropogenic sources of lead contributing to secondary minerals in sulphidic schists associated with arsenic-enriched groundwater in Coastal Maine shows that the most likely source is natural Pb, particularly from coexisting sulphide minerals. The secondary minerals also reflect notable contributions from anthropogenic Pb. The Pb isotopes establish pathways by which Pb, and by inference As, could have been transported from As-bearing minerals (arsenian pyrite, arsenopyrite, lollingite, orpiment, arsenic oxide and others), via sulphide oxidation or carbonation reactions into multiple generations of secondary minerals (goethite, hematite, jarosite, natrojarosite and others). Lead isotopic compositions of the sulphides and secondary minerals determined by thermal ionization mass spectrometry (n=53) range widely. Lead and As contents of the sulphides and secondary minerals overlap, and are generally positively correlated. Pyrite, the dominant sulphide in sulphidic schists associated with As-enriched groundwater in Coastal Maine, has values of 206Pb/204Pb from 18.186 to 18.391, 207Pb/204Pb from 15.617 to 15.657, 208Pb/204Pb from 38.052 to 38.210, 206Pb/207Pb from c. 1.1625 to 1.1760 and 208Pb/207Pb from c. 2.4276 to 2.4394. Mixtures of Fe-hydroxide and oxide minerals (predominantly goethite and hematite) and secondary Fe-sulphate minerals (jarosite, natrojarosite, rozenite and melanterite) in the sulphidic schists have overlapping but generally higher values of 206Pb/204Pb from 18.495 to 19.747 (one sample at 21.495), 207Pb/204Pb from 15.595 to 15.722 (one sample at 15.839), 208Pb/204Pb from 38.186 to 39.162,206Pb/207Pb from c.1.1860 to 1.2575 (one sample at 1.3855) and 208Pb/207Pb from c. 2.4441 to 2.4865 than the sulphides. Sulphides from Zn-Pb metal mines are somewhat less radiogenic than sulphides from the schists. Other sulphides (mostly pyrite) associated with pegmatites and granitic rocks are heterogeneous and more

  11. Nd- and Pb-isotope variations in the multicyclic central caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization

    SciTech Connect

    Riciputi, L.R.; Johnson, C.M. )

    1990-10-01

    The {epsilon}{sub Nd} values for six large-volume (100-3000 km{sup 3}) ash-flow tuffs and associated lavas from the multicyclic central caldera cluster of the San Juan volcanic field in south-central Colorado are between those of Proterozoic crust in the region and mantle-derived basaltic magmas, and the values generally become progressively higher in progressively younger tuffs and lavas. The increase in the {epsilon}{sub Nd} values of the tuffs, from -8.0 to -6.0 with decreasing age, can be modeled by assimilation and crystal fractionation of a mantle-derived magma, accompanied by an increase of {approx} 4 units in {epsilon}{sub Nd} values of the assimilated crust. The postulated increase in {epsilon}{sub Nd} values of the crust is envisioned to have occurred by hybridization of the crust through continued injection of mantle-derived magmas during the life of the magmatic system. Decreasing {sup 206}Pb/{sup 204}Pb ratios observed in progressively younger tuffs following the initiation of caldera-related volcanism cannot, however, be solely explained by addition of mantle-derived magmas to the crust, but are more likely to reflect the transfer of lower-crustal Pb into the upper crust as the magmatic system evolved. Input of large volumes (> 300,000 km{sup 3} in the San Juan volcanic field) of mantle-derived magma resulted in extensive hybridization of preexisting crust, suggesting that large-scale silicic volcanism involves generation of large quantities of new crust.

  12. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment--The Obvious Source "Ain't Necessarily So".

    PubMed

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-02-01

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision (204)Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes (208)Pb, (207)Pb and (206)Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town. PMID:26907319

  13. Constraints on the cooling history of the H-chondrite parent body from phosphate and chondrule Pb-isotopic dates from Estacado

    NASA Astrophysics Data System (ADS)

    Blinova, Alexandra; Amelin, Yuri; Samson, Claire

    2007-08-01

    To constrain the metamorphic history of the H-chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U-Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb-Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue-second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the "onion-shell" asteroid model. Several issues, however, need to be addressed before confirming this model for the H-chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.

  14. Dissolved lead in the deep Southeast Pacific Ocean: results of the 2013 US GEOTRACES cruise

    NASA Astrophysics Data System (ADS)

    Boyle, E. A.; Lee, J. M.; Zhang, J.; Echegoyen, Y.

    2014-12-01

    Lead (Pb) in the modern ocean is dominated by anthropogenic Pb, which has been evidenced by highly elevated seawater Pb concentrations and Pb stable isotope ratios (204Pb, 206Pb, 207Pb, and 208Pb) altered from pre-anthropogenic values. A number of studies have shown the human impact on oceanic Pb in many parts of the world ocean, but little Pb data has been available for the Southeast Pacific Ocean. In this presentation, we will show the dissolved Pb (<0.2µm) results from the US GEOTRACES cruise in October - December 2013, which sailed from Manta, Ecuador, to Tahiti along around 12 degrees south. Dissolved Pb concentrations from all 36 surface stations and deep (>1000m) Pb profiles from 18 stations will be presented, and the results will be also compared to our unpublished data from the BiG RAPA cruise in 2010, whose cruise track from Arica, Peru, to Easter Island is slightly south of the US GEOTRACES cruise. The BiG RAPA data showed that dissolved Pb concentrations of the southeast Pacific Ocean are relatively low, varying in the range of 8-20 pmol/kg at the surface with a slight maximum (14-22 pmol/kg) at around 400m depth, and 2-10 pmol/kg in deep waters below 1000m depth. The Pb concentrations were found to be higher at a marginal station off Peru, reaching 45 pmol/kg at the surface and 65 pmol/kg in the subsurface maximum at 150m depth, and varying between 17 and 23 pmol/kg in deep waters. Our dataset, along with the results from the BiG RAPA cruise, will provide the first overview on the dissolved Pb distribution of the southeast Pacific Ocean, which will further our understanding on the human impact on the global ocean.

  15. Evolution of Mauna Kea Volcano, Hawaii: Petrologic and geochemical constraints on postshield volcanism

    SciTech Connect

    Frey, F.A.; Kennedy, A. ); Wise, W.S.; Kwon, S.T. ); Garcia, M.O.; West, H. )

    1990-02-10

    The postshield stage of volcano construction formed as the magma supply rate from the mantle decreased. The basaltic substage (Hamakua Volcanics) contains a diverse array of lava types including picrites, ankaramites, alkalic and tholeiitic basalt, and high Fe-Ti basalt. In contrast, the hawaiite substage (Laupahoehoe Volcanics) contains only evolved alkalic lavas, hawaiite, and mugearite; basalts are absent. Sr and Nd isotopic ratios for lavas from the two substages are similar, but there is a distinct compositional gap between the substages. The authors conclude that the petrogenetic processes forming the postshield lavas at Maina Kea and other Hawaiian volcanoes reflect movement of the volcano away from the hotspot. Specifically, they postulate the following sequence of events for postshield volcanism at Mauna Kea: (1) As the magma supply rate from the mantle decreased, major changes in volcanic plumbing occurred. The shallow magma chamber present during shield construction cooled and crystallized, and the fractures enabling magma ascent to the magma chamber closed. (2) Therefore subsequent basaltic magma ascending from the mantle stagnated within the lower crust, or perhaps at the crust-mantle boundary. Eruptions of basaltic magma ceased. (3) Continued volcanism was inhibited until basaltic magma in the lower crust cooled sufficiently to create relatively low-density, residual hawaiitic melts. Minor assimilation of MORB-related wall rocks, reflected by a trend toward lower {sup 206}Pb/{sup 204}/Pb in evolved postshield lavas, may have occurred at this time. A compositional gap developed because magma ascent was not possible until a low-density hawaiitic melt could escape from a largely crystalline mush.

  16. Geochemistry of the Baie Charrier Basaltic Section, Courbet Peninsula, Kerguelen Archipelago

    NASA Astrophysics Data System (ADS)

    Hanano, D. W.; Weis, D.; Scoates, J. S.; Giret, A.

    2004-12-01

    The Kerguelen Archipelago, located in the Southern Indian Ocean, is the third largest oceanic island and represents the emergent part of the Northern Kerguelen Plateau. We present new petrographic and geochemical data from the Baie Charrier basaltic section on the northern Courbet Peninsula. This dataset complements the 1000 m Mont Crozier basaltic section located 16 km to the southwest in the central part of the peninsula. Isotopic compositions of the Crozier basalts are interpreted to be representative of the enriched component of the Kerguelen mantle plume. The Baie Charrier basalts are mildly alkalic and olivine-phyric, with a range of MgO contents (3.1-16.7 wt.%) significantly larger than that observed in the Crozier section. Mafic phenocrysts are normally zoned, with olivine core compositions of Fo86-70 and clinopyroxene core Mg#'s of 0.88 to 0.79. Mineral-melt equilibria constraints indicate a maximum MgO content for the Baie Charrier parental magmas of 8-10 wt.%. Major and trace element concentrations, as well as Sr, Nd, Pb, and Hf isotopic compositions, identify four distinct volcanic units within the Baie Charrier section, reflecting temporal changes in volcanism derived from a heterogeneous source region. A comparison of the Baie Charrier and Crozier sections shows similar Zr/Nb ratios of 6-7.5, enrichments in incompatible and light rare earth elements, and highly radiogenic Pb compositions (206Pb/204Pb = 18.35-18.64). This suggests that both sections are derived from the same source region and provides further evidence that the Courbet Peninsula is a single volcanic unit. However, the abundance of olivine-phyric basalts at Baie Charrier, and their absence at Crozier, suggests that the eruptive center of this volcano may not coincide with the present geographic center of the peninsula. The Baie Charrier basalts contain a strong signature of the enriched plume component and provide additional constraints on the composition of the Kerguelen mantle plume.

  17. The size of plume heterogeneities constrained by Marquesas isotopic stripes

    NASA Astrophysics Data System (ADS)

    Chauvel, Catherine; Maury, René C.; Blais, Sylvain; Lewin, Eric; Guillou, Hervé; Guille, GéRard; Rossi, Philippe; Gutscher, Marc-André

    2012-07-01

    The scale and geometry of chemical and isotopic heterogeneities in the source of plumes have important scientific implications on the nature, composition and origin of plumes and on the dynamics of mantle mixing over time. Here, we address these issues through the study of Marquesas Islands, one of the Archipelagoes in Polynesia. We present new Sr, Nd, Pb, Hf isotopes as well as trace element data on lavas from several Marquesas Islands and demonstrate that this archipelago consists of two adjacent and distinct rows of islands with significantly different isotopic compositions. For the entire 5.5 Ma construction period, the northern islands, hereafter called the Ua Huka group, has had systematically higher 87Sr/86Sr and lower 206Pb/204Pb ratios than the southern Fatu Hiva group at any given 143Nd/144Nd value. The shape and curvature of mixing arrays preclude the ambient depleted MORB mantle as one of the mixing end-members. We believe therefore that the entire isotopic heterogeneity originates in the plume itself. We suggest that the two Marquesas isotopic stripes originate from partial melting of two adjacent filaments contained in small plumes or "plumelets" that came from a large dome structure located deep in the mantle under Polynesia. Low-degree partial melting under Marquesas and other "weak" Polynesian hot spot chains (Pitcairn-Gambier, Austral-Cook, Society) sample small areas of the dome and preserve source heterogeneities. In contrast, more productive hot spots build up large islands such as Big Island in Hawaii or Réunion Island, and the higher degrees of melting blur the isotopic variability of the plume source.

  18. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  19. A Geochemical Transect Across the Lau and North Fiji Basins: New Evidence for the Distribution of Multiple Mantle Plume Components

    NASA Astrophysics Data System (ADS)

    Price, A. A.; Jackson, M. G.; Blichert-Toft, J.; Arculus, R. J.; Conatser, C. S.; Konter, J. G.; Koppers, A. A. P.; Blusztajn, J.

    2014-12-01

    The Lau and North Fiji backarc basins are located in a tectonically complex region of the South Pacific, where the upper mantle may have been modified by up to five hotspots (Samoa, Rurutu, Rarotonga, Macdonald, and Louisville), each with distinct geochemical fingerprints. We present new Hf, Nd, Sr, and Pb isotopic data for basaltic samples dredged from seven areas along an east-west transect spanning the Lau and North Fiji basins to determine the possible influence and distribution of these various hotspot sources. We find that the isotope ratios of nearly all samples can be explained by mixing a depleted mantle component, which is ubiquitous in the Lau Basin, with a component similar to that found in Samoan shield (EMII) and/or rejuvenated (EMI) lavas. Lavas as far southwest as the Fiji Triple Junction (North Fiji Basin) show enriched geochemical signatures (87Sr/86Sr and 206Pb/204Pb up to 0.7037 and 18.635 respectively, and 143Nd/144Nd and 176Hf/177Hf down to 0.51285 and 0.283023, respectively) trending toward Samoa. This observation extends the range of Samoan influence into the North Fiji Basin 400 km south of its previous observed extent at South Pandora Ridge. The few samples that cannot be explained solely by incorporation of Samoan material are from the northeastern Lau Basin (Falloon et al., 2007) and host a dilute HIMU component that may relate to the incorporation of material from the Rurutu hotspot. This component is not observed further to the west in the Lau and North Fiji basins. A ubiquitous EMI signature in the region may be linked to the Rarotonga hotspot. New dredges from the northeast Lau Basin may give clearer signals that will reveal the identity of the enriched plume component.

  20. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment—The Obvious Source “Ain’t Necessarily So”

    PubMed Central

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-01-01

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision 204Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes 208Pb, 207Pb and 206Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town. PMID:26907319

  1. Pb - Isotopes and Pulses of the Deccan Plume

    NASA Astrophysics Data System (ADS)

    Basu, A. R.; Yannopoulos, A. S.

    2015-12-01

    Mantle plumes are generally implicated for flood basalt generation in both continental and oceanic environments by impact of large plume heads beneath or within the lithosphere. The Deccan and Siberian flood basalt eruptions, synchronous with the Cretaceous-Paleogene and end-Permian extinctions, respectively, continue to fascinate geoscientists in search for the "kill-mechanisms" by impacts, volcanisms or both. Recently, Richards et al. (2015) proposed that bulk of the Deccan eruption was triggered by the Chicxulub impact. We showed (Basu et al., 1993) that early (68.5 Ma) and late (65 Ma) alkalic pulses of the Deccan were before and after the impact event at 66 Ma. Here, we focus on an extensive volcano-stratigraphic study of Pb isotopic systematics of 69 basaltic samples from 3 subgroups and 12 formations of the Deccan, each sampled from bottom to top along the stratigraphic section, covering the 3km thick 12 Deccan formations. Pb is sensitive to crustal contamination of mantle plume-derived magmas as both the upper and lower mantle are low in Pb (0.02 - 0.15 ppm) compared to ~ 4 ppm in continental crust. The lower Deccan formations of Kalsubai and Lonavala have initial 206Pb/204Pb with a widely varying range (16.543 - 22.823) indicating continental crustal contamination. In contrast, the upper formations of the Wai subgroup show a narrow range of 16.883 to 18.956, reflecting the plume signature. In addition, the 206Pb/204Pb and 207Pb/204Pb data of the Kalsubai subgroup lavas give an isochron age of 2603±140 Ma (single-stage, µ = 8). The Wai subgroup shows a narrow and restricted Pb isotopic range plotting closer to the Geochron. We interpret these data to infer that the basement rocks of the Deccan, the Archean Indian craton, were assimilated by the upwelling melt, ultimately clearing the conduit passages for the lavas sourced from direct melting of the plume head.

  2. Historical trends in the lead isotopic composition of archival Sphagnum mosses from Scotland (1838-2000).

    PubMed

    Farmer, John G; Eades, Lorna J; Atkins, Hannah; Chamberlain, David F

    2002-01-15

    The analysis of almost 200 Scottish Sphagnum moss samples collected over the past 170 years has revealed trends in the isotopic composition of lead similar to those previously established for dated Scottish lake sediments and peat bogs, lending credibility to these proxy records of atmospheric lead contamination and deposition. The effect of temporal variations in contributions from sources such as smelting of indigenous lead ores (206Pb/207Pb approximately 1.16-1.18), coal combustion (206Pb/207Pb approximately 1.17-1.19), and the use of imported Australian lead (206Pb/207Pb approximately 1.04) was clearly seen in the Scottish moss 206Pb/207Pb record. This showed some differences from the corresponding archival herbage record for the south of England, where the initial influence of Australian lead occurred earlier, at the end of the 19th century. A significant decline from a 206Pb/ 207Pb value of approximately 1.17 in the Scottish moss record began in the 1920s and continued until the 1980s (206Pb/207Pb approximately 1.12). The success of measures to reduce lead emissions to the atmosphere over the past 20 years in the U.K., in particular from petrol-engined vehicles using alkyl lead additives manufactured primarily from Australian lead, is evident in both the increasing 206Pb/207Pb ratio and falling lead concentration data for Scottish moss. PMID:11827048

  3. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Xi; Bai, Jun-Hao; Huang, Zhi-Long; Zhu, Dan; Yan, Zai-Fei; Lv, Zhi-Cheng

    2015-02-01

    The Jinshachang Pb-Zn deposit, an exceptionally radiogenic Pb-enriched sulfide deposit, hosted by dolostone of the Upper Sinian (Neoproterozoic) Dengying Formation and the Lower Cambrian Meishucun Formation, is located in the western Yangtze Block, about 300 km northeast of Kunming city in southwest China. Ore bodies in this deposit are dominated by strata-bound type and steeply dipping vein type. Primary ores in these two types are composed of sphalerite, galena, fluorite, barite and quartz with massive, banded, veined and disseminated structures. Twenty-seven ore bodies in the Jinshachang deposit host 4.6 million tons of sulfide ores at average grades of 4.07 wt.% Pb and 5.03 wt.% Zn. Quartz separates from the sulfide ores have δDH2O values ranging from -137‰ to -86.2‰ with an average of -114‰ (n = 7), lower than those of magmatic, metamorphic and meteoric water, suggesting a contribution of organic water. δ34SCDT values of ninety-one sulfide separates range from +1.1‰ to +13.4‰ with an average of +5.7‰, lower than those of evaporites (δ34SCDT = +15‰ to +35‰) in the Cambrian to Triassic sedimentary strata in NE Yunnan province. δ34SCDT values of eight barite separates range from +32‰ to +35‰ (average +34‰), within the range of evaporites. These data suggest that S2- in the hydrothermal fluids derived from evaporites by thermo-chemical sulfate reduction (TSR), whereas SO42- directly originated from the evaporites. Six sulfide separates have highly radiogenic 206Pb/204Pb ratios ranging from 20.74 to 21.18 (average 20.92), 207Pb/204Pb ratios ranging from 15.85 to 15.89 (average 15.87), and 208Pb/204Pb ratios ranging from 40.89 to 41.42 (average 41.16). The Pb isotopes of the sulfides plot above the upper crust Pb average evolution curve and overlap the Cambrian sedimentary rocks, but are different from the Sinian dolostone. This indicates a crustal source of Pb most likely derived from the Cambrian sedimentary rocks. The initial 87Sr/86Sr

  4. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zhao, Zi-Fu; Zheng, Yong-Fei

    2014-03-01

    A combined study of whole-rock major-trace elements and Sr-Nd-Pb-Hf isotopes as well as zircon U-Pb ages and Hf-O isotopes was carried out for Mesozoic andesitic-basaltic volcanics from the Luzong basin in the Middle-Lower Yangtze River Belt, South China. The results provide insights into the origin of mantle sources above fossil Andes-type oceanic subduction zone and thus into the petrogenesis of andesitic rocks on fossil and modern continental margins. These volcanics are primarily composed of basaltic trachyandesite and trachyandesite, with small amounts of trachybasalt and trachyte. They exhibit variable contents of SiO2 (48.66-63.43 wt.%), MgO (0.39-4.85 wt.%), Na2O (1.22-6.07 wt.%) and K2O (2.53-10.10 wt.%), with highly variable K2O/Na2O ratios from 0.45 to 7.39. They are characterized by arc-like trace element distribution patterns, with significant enrichment of LILE, Pb and LREE but depletion of HFSE. They exhibit relatively enriched Sr-Nd-Pb-Hf isotope compositions, with initial 87Sr/86Sr ratios of 0.7050 to 0.7066, negative ɛNd(t) values of - 8.0 to - 3.1, negative ɛHf(t) values of - 11.1 to - 1.1, and elevated 207Pb/204Pb and 208Pb/204Pb ratios at given 206Pb/204Pb ratios. Zircon U-Pb dating yields consistent ages of 127 ± 2 to 137 ± 1 Ma for magma emplacement through volcanic eruption. The zircon exhibits slightly high δ18O values of 5.3 to 7.6‰ and variable ɛHf(t) values of - 13.1 to 2.6. An integrated interpretation of all these geochemical data leads to the conclusion that the Luzong andesitic-basaltic volcanics were primarily derived from partial melting of fertile and enriched, mafic-ultramafic mantle sources that are similar to those of continental arc andesites. Such mantle sources are hypothesized to form by reaction of the mantle wedge peridotite not only with hydrous felsic melts derived from partial melting of seafloor sediment but also with aqueous fluid derived from metamorphic dehydration of altered oceanic basalt during

  5. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Cannaò, E.; Scambelluri, M.; Agostini, S.; Tonarini, S.; Godard, M.

    2016-10-01

    Recent geochemical work shows that subduction-zone serpentinites are repositories for fluid-mobile elements absorbed during interaction with sediment-derived fluids. Unraveling the geochemical fingerprint of these rocks helps to define timing of tectonic accretion of sediments along the subduction interface and the role of serpentinite in element recycling to volcanic arcs. Here we present the trace element and isotopic composition (B-O-H, Sr, Pb) of high-pressure serpentinites from the Voltri Massif (Ligurian Western Alps, Italy), to discuss their role as incompatible element carriers and their contribution to recycling of sediment-derived components in subduction zones. The serpentinites presented here record metamorphic olivine growth during eclogite-facies metamorphism and show undeformed and mylonitic textures. Field relations show that undeformed rocks are enclosed in deformed ones and that no metasedimentary rocks are present nearby. Undeformed serpentinite has very high δ11BSRM951 (from +26‰ to +30‰), low Sr and Pb isotope ratios (87Sr/86Sr = 0.7053-0.7069; 206Pb/204Pb = 18.131-18.205) and low As and Sb contents (0.1 and 0.01 μg/g, respectively). Oxygen and hydrogen isotope compositions are +4.5‰ and -67‰, respectively. In contrast, mylonitic serpentinite shows lower δ11B (from +22‰ to +17‰), significant enrichment in radiogenic Sr and Pb isotopes (87Sr/86Sr up to 0.7105; 206Pb/204Pb up to 18.725), and enrichment in As and Sb (1.3 and 0.39 μg/g, respectively). δ18O of the mylonitic serpentinites reaches values of +5.9‰, whereas δD is comparable with that of undeformed rocks (approximately -70‰). In mylonitic serpentinites, the B and Sr isotopic values and the fluid-mobile element (FME) concentrations are near those for the Voltri metasedimentary rocks (calc- and mica-schists). Pb systematics also reveal influx of a crust-derived component. Our dataset shows that undeformed serpentinite still preserves an oceanic geochemical fingerprint

  6. Magma types and mantle sources of the Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Halldórsson, Sæmundur; Rubin, Ken; Sverrisdóttir, Guðrún; Sigurðsson, Gylfi

    2015-04-01

    , Holocene lavas from the Veiðivötn fissure swarm lie on two parallel trends, with 206Pb/204Pb ratios >18.40. In contrast, subglacial formations in the Dyngjuháls region, form a single trend with 206Pb/204Pb always <18.39. Significantly, another group of young lavas fall right in-between the three trends: those from the new fissure lava north of Dyngjujökull, historical Veiðivötn fissure swarm lavas, and Holocene Dyngjuháls lavas. In sharp contrast, samples of unknown age from the ice-free part of the Bárðarbunga volcano display significant heterogeneity and overlap all of these data/trends. We propose that at least three mantle components contribute melts to the BVS, in different proportions in space and time. However, recent eruptions, regardless of location appear to be fed from the same or at least a more uniform magma source. Finally, we note that removal of ~2500 m. of glacial ice that overlaid the BVS during the last deglaciation, could have strongly influenced the melting regime in addition to magma delivery and/or storage under central Iceland - much more so than along the Northern rift zone (e.g., Theistareykir; Slater et al. 1998). Slater, L., Jull, M., McKenzie, D., Grönvold, K., 1998. Deglaciation effects on mantle melting beneath Iceland: Results from the northern volcanic zone. Earth Planet. Sci. Lett. 164, 151-164.

  7. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204

  8. The influence of melt flux and crustal processing on Re-Os isotope systematics of ocean island basalts: Constraints from Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Dale, C. W.; Geist, D. J.; Day, J. A.; Brügmann, G.; Harpp, K. S.

    2016-09-01

    New rhenium-osmium data for high-MgO (>9 wt.%) basalts from the Galápagos Archipelago reveal a large variation in 187Os/188Os (0.1304 to 0.173), comparable with the range shown by primitive global ocean island basalts (OIBs). Basalts with the least radiogenic 187Os/188Os occur closest to the Galápagos plume stem: those in western Galápagos have low 187Os/188Os, moderate 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb and high 3He/4He whereas basalts in the south also have low 187Os/188Os but more radiogenic 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb and 3He/4He. Our new Os isotope data are consistent with the previously established spatial zonation of the common global isotopic mantle reservoir "C" and ancient recycled oceanic crust in the mantle plume beneath western and southern parts of Galápagos, respectively. Galápagos basalts with the most radiogenic 187Os/188Os (up to 0.1875) typically have moderate MgO (7-9 wt.%) and low Os (<50 pg g-1) but have contrastingly unenriched Sr, Nd and Pb isotope signatures. We interpret this decoupling of chalcophile and lithophile isotopic systems as due to assimilation of young Pacific lower crust during crystal fractionation. Mixing models show the assimilated crust must have higher contents of Re and Os, and more radiogenic 187Os/188Os (0.32), than previously proposed for oceanic gabbros. We suggest the inferred, exceptionally-high radiogenic 187Os of the Pacific crust may be localised and due to sulfides precipitated from hydrothermal systems established at the Galápagos Spreading Centre. High 187Os/188Os Galápagos basalts are found where plume material is being dispersed laterally away from the plume stem to the adjacent spreading centre (i.e. in central and NE parts of the archipelago). The extent to which crustal processing influences 187Os/188Os appears to be primarily controlled by melt flux: as distance from the stem of the Galápagos plume increases, the melt flux decreases and crustal assimilation becomes proportionally

  9. Origin of enriched ocean ridge basalts and implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Donnelly, Kathleen E.; Goldstein, Steven L.; Langmuir, Charles H.; Spiegelman, Marc

    2004-10-01

    The Mid-Atlantic Ridge (MAR) south of the Kane Fracture Zone at ˜23°N (the MARK area) is distant from hot spots and a type area for "normal" mid-ocean ridge basalt (N-MORB) depleted in highly incompatible elements. High-density sampling reveals that a small proportion of basalt are enriched in incompatible elements (enriched mid-ocean ridge basalts, E-MORB) from the MARK area. It is apparent that enriched magma sources, not associated with hot spots, are widespread in the upper mantle and are a common occurrence on both fast- and slow-spreading ridges. Evaluation of the trace-element systematics shows that E-MORB generation requires two stages. Low-degree melts metasomatise the upper mantle to create an enriched source, which later undergoes large extents of melting. A significant time lapse between the two events is required by differences in radiogenic isotope ratios. Atlantic, Pacific, and Indian ocean ridges that are far from hot spots show "mantle isochron" ages of ˜300 Ma for the Sm-Nd, Rb-Sr, and 238U- 206Pb systems after corrections for melting, but these ages need not be indicative of a specific event. Instead, they can result from continuous processes of formation and destruction of enriched mantle sources by melting and convective mixing. A two-box model describing these processes illuminates relationships between mantle isochron ages and upper mantle dynamics. If formation-destruction of enriched mantle is at steady state, constant "mantle isochron" ages are maintained and depend on the residence time of enriched mantle sources, the half-life of the radioactive system, and the daughter element behavior during mantle melting. The common ages of the Sr, Nd, and Pb systems reflects their long half-lives and similar melting behavior. In contrast, 207Pb/ 204Pb- 206Pb/ 204Pb ages are approximately twice as old due to the short half-life of 235U relative to the age of the Earth. For the long-lived systems, the mantle isochron ages approximate the residence

  10. Sources and Spatial Distribution of Metal Pollutants in Soils near the El Paso Smelter: A Forensic Study with Pb and Pu Isotopes.

    NASA Astrophysics Data System (ADS)

    Ketterer, Michael; Moan, Matthew; Gremillion, Paul

    2010-05-01

    Lead and copper smelting has been conducted at El Paso since the late 1800's, and as a result, environmental media near the smelter have become contaminated. A study has been conducted to investigate the sources and spatial distribution of metal pollutants (Pb, Cd, Zn, Hg, As, Cu) and concomitant tracers (Ag, In, Sb, Bi) in soils from the smelter vicinity. Sampled locations were residential and non-residential locations in El Paso (Texas, USA), Anapra (New Mexico, USA) and Ciudad Juarez (Chihuahua, Mexico). Lead isotope studies indicate that the soil Pb is derived from smelting, and is consistent with two-component mixing between lead ores from Chihuahua (northern Mexico) having 206Pb/204Pb of 18.6 - 18.8 and ores from the Hanover, New Mexico (USA) mining district with 206Pb/204Pb of ~ 17.6. The Pb isotope results also exclude other common anthropogenic Pb sources such as paint and gasoline emissions as being major contributors. Concentrations of Hg and Pb of up to 10 and 11,000 ppm were found in surface soils within 1 km of the smelter. The metal concentration results clearly indicate that soils near the smelter (< 5 km) exhibit much higher concentrations of smelter-related elements than do soils from control locations (> 10 km distant). A general trend of decreasing concentrations vs. distance from the smelter was also observed. However, the results indicate that metal concentrations vary widely even at a fixed distance from the smelter point source. This phenomenon results from a combination of natural and anthropogenic processes that disturb and re-distribute soils in the surface environment. The site conditions consist of a very arid environment with little vegetation cover that is frequently disturbed by high winds and severe episodic rainfall. To study these effects, we have investigated stratospheric fallout plutonium (239+240Pu) as a proxy measure of disturbed vs. undisturbed soil conditions. The premise is that 'undisturbed' locations will have high 239

  11. LA-MC-ICPMS Pb Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, Julie K.; Baker, Joel A.

    2006-04-01

    Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ⩽20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/ 204Pb and 207Pb/ 204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb- 206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature ( Tc) for Pb diffusion in rutile that is less than the Tc of monazite ⩽0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than

  12. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    USGS Publications Warehouse

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206Pb/204Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206Pb/ 204Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb

  13. Ion Microprobe U-Pb Dating and REE Analysis of Apatite from Kerogen-rich Silica Dike from North Pole Area, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Nishizawa, M.

    2003-12-01

    In order to provide a time constraint on the 13C-depleted kerogen in silica dikes that intruded 3.5 Ga greenstone from Pilbara Craton in Western Australia, we have carried out an ion microprobe U-Pb dating and rare earth element (REE) analysis of apatite from the dike. Two types of apatite were identified in the dikes based on their occurrences. One is stick-shape apatites (Type 1) in secondary silica micro-veins that cut the silica dike. The other is granular apatites (Type 2) that occurs in matrix of the dike. Occurrence in the secondary micro-veins (Type 1), non-igenous chondrite normalized REE patterns (Type 1 and 2), chemical zoning (some of Type 1 and 2), and presence of mineral inclusion that is composed of Fe and S (some of Type 2) suggest that both Type 1 and 2 apatites were crystallized in the silica dike. Ion microprobe U-Pb dating of Type 1 apatite did not give a meaningful age, while Type 2 apatite yields a Tera-Wasserburg concordia intercept age of 3214 +/- 140 Ma (95 per cent confidence level, MSWD = 0.6) in a three-dimensional 238U/206Pb-207Pb/206Pb-204Pb/206Pb diagram, and a 204Pb/206Pb-207Pb/206Pb isochron age of 3191 +/- 150 Ma (95 per cent confidence level, MSWD = 0.5). It is difficult to judge whether the U-Pb and Pb-Pb age of Type 2 apatite is crystallization age or metamorphic age, since the estimated range of closure temperature of U-Pb system in the apatite and that of metamorphic temperature is partly overlapped. In either case, it can be safely concluded that the minimum age of the dike and kerogen is 3.0 Ga. These ages might allow the interpretation that the kerogen was produced by biological carbon fixation and/or abiological reaction (such as Fischer-Tropsch Type reaction) at least before 3.0 Ga.

  14. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    USGS Publications Warehouse

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  15. Lead and strontium isotope data for thermal waters of the regional geothermal system in the Twin Falls and Oakley areas, South-Central Idaho

    SciTech Connect

    Mariner, R.H.; Young, H.W.

    1995-12-31

    Thermal fluids obviously related to aquifers in both rhyolite and limestone occur in the Twin Falls-Oakley area of south-central Idaho. Limestone-related waters (high calcium with low silica and fluoride) occur in the middle and upper (southern) parts of the area. Rhyolite-related waters (low calcium but high in silica and fluoride) occur in the lower (northern) part of the area. The relation of thermal fluids in Paleozoic limestone to thermal fluids in Tertiary rhyolite is unknown. Thermal fluids from limestone are dilute, so water-rock reaction in rhyolite could obliterate chemical evidence of fluid residence in a limestone. However, isotopic tracers such as {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb, and {sup 87}Sr/{sup 86}Sr might preserve evidence of fluid residence in limestone. Systematic relations between these isotopes and dissolved constituents in the water demonstrate the presence of limestone beneath most if not all of the study area and that aquifers in the limestone and rhyolite are hydrologically connected.

  16. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise.

    PubMed

    Mougel, Berengere; Agranier, Arnaud; Hemond, Christophe; Gente, Pascal

    2014-01-01

    Radiogenic isotopes in oceanic basalts provide a window into the different geochemical components defining the composition of Earth's mantle. Here we report the discovery of a novel geochemical signature in volcanic glasses sampled at a sub-kilometre scale along the East Pacific Rise between 15°37'N and 15°47'N. The most striking aspect of this signature is its unradiogenic lead ((206)Pb/(204)Pb=17.49, (207)Pb/(204)Pb=15.46 and (208)Pb/(204)Pb=36.83). In conjunction with enriched Sr, Nd and Hf signatures, Pb isotopes depict mixing lines that trend away from any known mantle end-members. We suggest that this unradiogenic lead component sampled by magmatic melts corresponds to a novel upper mantle reservoir that should be considered in the Pb isotope budget of the bulk silicate Earth. Major, trace element and isotope compositions are suggestive of an ancient and lower continental origin for this unradiogenic lead component, possibly sulphide-bearing pyroxenites that were preserved even after prolonged stirring within the ambient upper mantle. PMID:25027032

  17. Lead concentration and isotopic composition in five peridotite inclusions of probable mantle origin

    USGS Publications Warehouse

    Zartman, R.E.; Tera, F.

    1973-01-01

    The lead content of five whole-rock peridotite inclusions (four lherzolites and one harzburgite) in alkali basalt ranges from 82 to 570 ppb (parts per billion). Approximately 30-60 ppb of this amount can be accounted for by analyzed major silicate minerals (olivine ??? 10 ppb; enstatite 5-28 ppb; chrome diopside ???400 ppb). Through a series of acid leaching experiments, the remainder of the lead is shown to be quite labile and to reside in either glassy or microcrystalline veinlets or accessory mineral phases, such as apatite and mica. The lead isotopic composition of the peridotites (206Pb/204Pb = 18.01-18.90; 207Pb/204Pb = 15.52-15.61; 208Pb/204Pb = 37.80-38.86) lies within the range of values defined by many modern volcanic rocks and, in particular, is essentially coextensive with the abyssal tholeiite field. In all but one instance, isotopic differences were found between the peridotite and its host alkali basalt. Two of the peridotites clearly demonstrated internal isotopic heterogeneity between leachable and residual fractions that could not simply be due to contamination by the host basalt. However, there is no evidence that these ultramafic rocks form some layer in the mantle with isotopic characteristics fundamentally different from those of the magma sources of volcanic rocks. ?? 1973.

  18. U-Pb systematics of pre-Cambrian carbonates: The Riphean Sukhaya Tunguska Formation in the Turukhansk Uplift, Siberia

    SciTech Connect

    Ovchinnikova, G.V.; Gorokhov, I.M.; Belyatskii, B.V.

    1995-09-01

    A brief review of the geochemistry of U, Th, and Pb in oceanic water and marine carbonates is given, and the U-Th-Pb systematics in limestones and dolomites of the Sukhaya Tunguska Formation in the Turukhansk Uplift is studied. The analysis of phases with different solubilities in ammonium acetate and hydrochloric acid and the plotting of available results along the {sup 207}Pb/{sup 204}Pb-{sup 206}Pb/{sup 204}Pb coordinates yield an age of 1035{plus_minus}60 Ma. This value matches the stratigraphic position of the Sukhaya Tunguska Formation rocks at the Middle-Late Riphean boundary and may be interpreted as the age of an early diagenesis of sediments. Evidence for the temporal compatibility of the processes of sedimentation, dolomitization, and early diagenesis is provided. Isotope-geochemical data, which indicate a recent uranium loss by carbonate rocks, are in good agreement with results of the study of Cenozoic evolution in the Turukhansk Uplift. The average {sup 238}U/{sup 204}Pb value (8.22) calculated for the source of the Sukhaya Tunguska carbonate deposits suggests that Pb from mantle sources or a relatively young crust was abundant in the near-contact fluid phase that governed the composition of carbonate rocks 1035{plus_minus}60 Ma ago.

  19. Pb isotope composition in lichens and aerosols from eastern Sicily: Insights into the regional impact of volcanoes on the environment

    SciTech Connect

    Monna, F. ); Aiuppa, A.; Varrica, D. ); Dongarra, G. CNR, Palermo . Istituto Geochimica dei Fluidi)

    1999-08-01

    A total of 25 lichen thalli of Parmelia conspersa (Ehrh), collected at Vulcano island and at Mt. Etna, during a one-year biogeochemical survey, were analyzed for Pb, br, Al, Sc,[sup 206]Pb/[sup 207]Pb, and [sup 208]Pb/[sup 206]Pb ratios. Lead isotope ratios were also measured on aerosol samples from urban areas and industrial sites of Sicily. The observed [sup 206]Pb/[sup 207]Pb range for urban and industrial aerosols matches the anthropogenic signature. Lichens instead, are closer to the compositional field of [sup 206]Pb rich geogenic sources. This natural input is more evident at Vulcano island than at Mt. Etna, where the anthropogenic activities are considerably more effective. On the basis of lead isotope data, Pb/Br ratios and calculated lead enrichment factors, a natural lead pollution from volcanoes is suggested. Volcanic lead contribution ranges from 10 to 30% at Mt. Etna to 10--80% at Vulcano island.

  20. Petrology of the Guenfalabo ring-complex: An example of a complete series along the Cameroon Volcanic Line (CVL), Cameroon

    NASA Astrophysics Data System (ADS)

    Donald Ngonge, E.; Hollanda, Maria Helena B. M.; Nsifa, E. Nkonguin; Tchoua, Felix M.

    2014-08-01

    In the Guenfalabo ring-complex (GRC), two non-comagmatic rock suites have been identified as a result of two volcanic episodes: Suite 1 (68.8 ± 1.7 Ma by K/Ar on trachyte) of peralkaline trachytes and pantellerites cogenetic with alkaline syenites, granites and rhyolitic flows and tuffs; Suite 2 (62 ± 2 Ma by K/Ar on basalt), a bimodal and complete series of alkali olivine basalts and associated microgabbro dykes, diorites, syenites and granites, cross-cutting the former. Kaersutite in the trachytes of Suite 1 has mantle-derived signatures: TiO2 > 4%, MgO < 15%, FeO > 8%, Ti = 0.63 c.p.f.u. and Al = 2, characteristic of kaersutites of HP and HT origin: 13-23 kbar, 1100-1220 °C. The trachytes are probably products of FC of a basaltic parent that did not attain higher crustal levels. The Suite 1 rocks are enriched in Rb, K, Zr, Nb, LREE, alkalis, and (Ce/Yb)N = 7-15 probably due to some effect of metasomatism during the magma ascension. Fe-Ti enrichment is corroborated by the presence of ferropseudobrookite-ilmenite-ulvospinel in the syenites and ilmenite in the pantellerite. The Rb/Ba > 1 in the trachytes (2.44, 26.7), pantellerite (6.33), alkaline granites (0.63-1.8) and the 87Sr/86Sr in the alkaline granites (=0.74060) depict the role of AFC. The ankaramites of the Suite 2 rocks are olivine-phyric (25%), Fo85-88, have 50-52% clinopyroxene (salite), 5% plagioclase (An55-36) and 7% Fe-Ti oxides. Trace element modeling indicates an origin from a basaltic magma of about 25% PM of spinel lherzolite mixed with a magma from <1% PM of garnet lherzolite (3-4% garnet) in a proportion of 1:4. The cogenetic alkali basalts and the microgabbro-diorite-syenite-granite that constitute the Suite 2 rocks, with a Daly gap of 54% > SiO2 < 58%, result from this Early Cenozoic magmatic event. The basalts have: Zr = 225-253, Nb = 98-111, Y = 33-56, typical of FOZO, a HIMU-type OIB related magmas (Sr/Sri = 0.70202-0.7034; Nd/Nd = 0.51282-0.512545; 206Pb/204Pb = 19.13, 207Pb/204Pb = 15

  1. Petrochemistry of igneous rocks of the California-Vetas mining district, Santander, Colombia: Implications for northern Andean tectonics and porphyry Cu (-Mo, Au) metallogeny

    NASA Astrophysics Data System (ADS)

    Bissig, Thomas; Mantilla Figueroa, Luis Carlos; Hart, Craig J. R.

    2014-07-01

    Porphyry Mo and Cu mineralization in the California-Vetas mining district is contemporaneous with 10.9 to 8.4 Ma granodiorite porphyry stocks and overprinted by Au-Ag mineralization of epithermal affinity. Mineralization is hosted by Grenvillian aged paragneisses (Bucaramanga Gneiss of the Santander Massif) and late Triassic to early Jurassic granitic rocks. All intrusive rocks are high-K calc-alkaline. Late Triassic to early Jurassic rocks include peraluminous granites with more than 70 wt.% SiO2 as well as metaluminous diorites, tonalites and granodiorites with SiO2 between 54.9 and 60.4 wt.%. Late Miocene rocks are weakly peraluminous granodiorite porphyries with SiO2 between 61 and 67 wt.% SiO2. Late Miocene rocks share some characteristics with adakite-like rocks which are widely associated with porphyry and epithermal style mineralization elsewhere in the Andes. They have high Ba (930 to 1500 ppm) and high Ba/La (28 to 50), high Sr (850 to 1100 ppm) and Sr/Y (48-78) and depleted middle rare earth elements (MREE) compared to the Mesozoic granites, which have 400 to 700 ppm Ba (Ba/La 14 to 25) and 80 to 150 ppm Sr (Sr/Y 2.5 to 14), and Mesozoic diorites and tonalites, which have ~ 900 to 1200 ppm Ba (Ba/La 20 to 32) and ~ 610 to 750 ppm Sr (Sr/Y 22 to 25). Miocene granodiorite porphyries, in contrast to Mesozoic intrusive rocks have only weak negative Eu anomalies. The Miocene rocks have 87Sr/86Sr ratios of 0.7052 to 0.7067 and εNd of - 1.9 to - 5.4 and are significantly more isotopically primitive than all other rocks in the study area including the Mesozoic diorites to tonalites (87Sr/86Sr = 0.7082 and 0.7092; εNd = - 6.7 and - 7.2), granites (87Sr/86Sr = 0.730 (n = 2); εNd = - 8.2 and - 8.3) and Bucaramanga Gneiss (0.718 to 0.743; εNd = - 10.8 to - 14.1). Lead isotope data are broadly consistent with the Sr and Nd isotope data and the Miocene porphyries have the lowest 207Pb/204Pb ratios but overlap with the Mesozoic diorites to tonalites in their 206Pb

  2. Trace Element and Pb Isotope Constraints on Dynamic Evolution of Earth Reservoirs

    NASA Astrophysics Data System (ADS)

    Collerson, K.; Kamber, B.

    2001-12-01

    Advances in interpretation of Pb isotope systematics provide constraints for modelling Earth evolution. Such improved understanding of Pb isotope systematics has coincided with advances in techniques for accurate Pb isotope ratio measurement by MC-ICPMS. Continental growth since 3.75 Ga has occurred at convergent margins via dehydration of subducted slabs and supra-subduction zone melting. Nb is preferentially retained in slabs relative to U and Th, which are lost to escaping fluids. Over time, the depleted upper mantle (DM) lost U and Th relative to Nb. Thus Nb/Th and Nb/U of UM mirror amount of continental crust present. Because Nb, Th and U are similarly incompatible during MORB melting, temporal Nb-Th-U systematics of mantle can be reconstructed from uncontaminated, depleted-mantle derived rocks1. Excellent agreement exists between crustal growth curve based on Nb/Th and those based on Pb isotope systematics2 and geophysics 3. Temporal variation of Nb/U reflects crustal extraction until 2 Ga. It then reflects preferential U recycling into DM, constraining timing of preservation of a pandemic oxygenated atmosphere. Increase in atmospheric O2 explains the second Pb paradox and refines understanding of DM evolution. Key to understanding mantle Pb isotope evolution is the realization that DM has highly dynamic U/Pb and Th/U ratios relative to undegassed lower mantle (LM). Thus, so-called OIB EM-1 reservoir could reflect LM4. Pb data for Phanerozoic and Proterozoic Gp 2 kimberlites from South Africa plot in thorogenic and uranogenic Pb space consistent with a LM source [4]. Mineralogically, chemically and isotopically different Gp 1 kimberlites, which are readily discernable in plots of PM normalized Ta/U and Nb/Th have very radiogenic 206Pb/204Pb and 208Pb/204Pb but relatively unradiogenic 207Pb/204Pb, compositions identical to HIMU OIB's. We have suggested in [4] that the HIMU isotopic composition can be derived from EM-1 during a transient <100 Ma stage of strong

  3. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  4. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico

    USGS Publications Warehouse

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.

    2000-01-01

    the volcanic rocks, from 0.7042 to 0.7046 and 0 +2.6. The range of these isotope ratios and those reported for the basement rocks in this region suggest a relatively low degree of old crustal involvement for most of the studied rocks. The Pb isotopic compositions of the Tertiary magmatic rocks also show a narrow range [(206Pb/204Pb) = 18.67-18.75; (207Pb/204Pb) = 15.59-15.62; (208Pb/204Pb) = 38.44-38.59], suggesting a similar source region for the volcanic and plutonic rocks. Trace elements and isotopic compositions suggest a mantle source in the subcontinental lithosphere that has been enriched by a subduction component. General tectonic features in this region indicate a more active rate of transtensional deformation for the inland volcanic region than along the coastal margin during the main events of Oligocene magmatism. The lower degree of differentiation of the inland volcanic sequences, particularly the upper unit of the northern sector, compared to the plutons of the coastal margin, suggests that the differentiation of the Tertiary magmas in southern Mexico was controlled to a great extent by the characteristics of the different strain domains. (C) 2000 Elsevier Science B.V. All rights reserved.

  5. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    .728 Ga (Normetal) to 2.70 Ga (Noranda). The Pb isotopic compositions from these galenas, when normalized to a common age of 2.7 Ga, define a highly linear array in 207Pb/204Pb vs. 206Pb/204Pb. This array is nearly coincident with the 2.7 Ga geochron with a slope that corresponds to an age of ~4.4 Ga and with an extraordinary large range of 207Pb/204Pb, about the same magnitude as modern MORB. These data have important implications for the evolution of the Archean mantle. First, the slope of the Abitibi Pb-Pb array and its coincidence with the 2.7 Ga geochron suggests widespread U-Pb differentiation within the first hundred million years of Earth's history. This may have been due to either core formation or silicate/melt differentiation due to widespread melting of the mantle (e.g., formation of a magma ocean). Second, variations in μ in the Abitibi mantle and the subsequent Pb isotopic heterogeneities, whatever their cause, have not been significantly changed from 4.4 until 2.7 Ga. This implies that changes in μ in the Abitibi mantle source between 4.4 and 2.7 Ga, such as would be caused by crust extraction or recycling of older crust into this region of the mantle, were insufficient to destroy the original μ variations created at 4.4 Ga. Therefore, it appears that this portion of the mantle had essentially remained isolated and undisturbed from the early Hadean until the late Archean.

  6. Genesis of the Touissit-Bou Beker Mississippi valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision

    USGS Publications Warehouse

    Bouabdellah, M.; Sangster, D.F.; Leach, D.L.; Brown, A.C.; Johnson, C.A.; Emsbo, P.

    2012-01-01

    isotope ratios ( 206Pb/ 204Pb = 18.319-18.390; 207Pb/ 204Pb = 15.620. 15.680; 208Pb/ 204Pb = 38.452-38.650) of sulfides are consistent with Pb being derived from the Visean rhyodacite and associated volcaniclastic rocks. The intimate link between faults and mineralization suggests the strong possibility of brine flow along both ENE-trending regional-scale faults and NW-SW-trending local-scale faults. The data suggest that MVT mineralization was emplaced during the late Neogene-Quaternary (i.e., ca. 15.0 Ma), possibly as a result of subsurface gravity-driven fluid flow in response to the collision between the African and Eurasian plates. ?? 2012 Society of Economic Geologists, Inc.

  7. Genesis of the Touissit-Bou Beker Mississippi Valley-type district (Morocco-Algeria) and its relation to the Africa-Europe collision

    USGS Publications Warehouse

    Bouabdellah, Mohammed; Sangster, Donald F.; Leach, David L.; Brown, Alex C.; Johnson, Craig A.; Emsbo, Poul

    2012-01-01

    isotope ratios (206Pb/204Pb = 18.319–18.390; 207Pb/204Pb = 15.620–15.680; 208Pb/204Pb = 38.452–38.650) of sulfides are consistent with Pb being derived from the Visean rhyodacite and associated volcaniclastic rocks. The intimate link between faults and mineralization suggests the strong possibility of brine flow along both ENE-trending regional-scale faults and NW-SW-trending local-scale faults. The data suggest that MVT mineralization was emplaced during the late Neogene-Quaternary (i.e., ca. 15–0 Ma), possibly as a result of subsurface gravity-driven fluid flow in response to the collision between the African and Eurasian plates.

  8. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr

    NASA Astrophysics Data System (ADS)

    Pettke, Thomas; Halliday, Alex N.; Hall, Chris M.; Rea, David K.

    2000-05-01

    The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions ( ɛNd=-8.6 to -10.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. ɛNd values of up to -6.5 for samples <2.9 Ma indicate ≤35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/ 204Pb=18.97±0.06, 207Pb/ 204Pb=15.67±0.02, 208Pb/ 204Pb=39.19±0.11. 87Sr/ 86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ˜250 Ma. 40Ar/ 39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite≥smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/ 39Ar age data, therefore, are insensitive to smectite formation

  9. Petrogenesis of Tertiary continental intra-plate lavas between Siebengebirge and Westerwald, Germany: Constraints from trace element systematics and Nd, Sr and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schubert, S.; Jung, S.; Pfänder, J. A.; Hauff, F.; Garbe-Schönberg, D.

    2015-10-01

    New 39Ar/40Ar ages and major- and trace-element and radiogenic isotope data are presented for basanites and alkali basalts from the transition area between the Westerwald and Siebengebirge volcanic fields (Germany) that belongs to the Central European Volcanic Province (CEVP). The 39Ar/40Ar ages indicate ages of c. 24 and c. 5 Ma which are fully compatible with previous K/Ar ages indicating that the evolution of this volcanic field belongs to the Westerwald area (28-22 Ma and 5 Ma) rather than to the Siebengebirge area (26-23 Ma). Based on the occurrence of > 30 isolated volcanic plugs with a simple igneous history, this volcanic field can be viewed as a monogenetic volcanic field. Compositions of some basanites are primitive, whereas others and the alkali basalts show decreasing Cr and Ni contents and CaO/Al2O3 ratios. However, increasing TiO2, Al2O3 and incompatible elements (Sr, Zr, Y, Hf, Ta) concentrations with decreasing MgO indicating fractionation of mainly olivine with minor amounts of clinopyroxene and spinel can be noticed. Rare earth element systematics suggest that most of the alkaline rocks are generated by different degrees of melting (5%-10%) of a garnet-bearing peridotite containing some residual amphibole. Negative anomalies of Rb and K in primitive mantle-normalized diagrams and a lack of Ba/Rb fractionation suggest that amphibole was the major OH-bearing mineral phase in the mantle. The alkaline rocks have a restricted range in 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.7033 to 0.7044 and from 0.51275 to 0.51285, respectively. Lead isotope compositions (206Pb/204Pb: 19.21-19.65; 207Pb/204Pb: 15.62-15.67; 208Pb/204Pb: 39.10-39.46) of the alkaline rocks are within the range of most OIB in which the higher values approach the composition of the European Asthenospheric Reservoir (EAR). The correlation between Sr and Nd isotopes and trace element constraints (Ce/Pb; Nb/U) indicates that for some samples interaction with crustal rocks during

  10. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios

    NASA Astrophysics Data System (ADS)

    Erel, Yigal; Veron, Alain; Halicz, Ludwik

    1997-11-01

    The isotopic composition of lead in aerosols and soils in Israel is used to characterize the sources of anthropogenic lead in the region, to ascertain the isotopic composition of natural, rock-derived lead in specific areas, and to determine rates of anthropogenic lead migration in soils. The isotopic composition of lead currently emitted from cars in Israel ( 206Pb /207Pb = 1.115 ± 2 ) is controlled by alkyl-lead produced in France and Germany. In addition to petrol-lead, two more sources of anthropogenic lead can be detected in sampled aerosols: the first one has low concentrations of lead (˜4 ng/m 3) and 206Pb /207Pb ˜ 1.157 , and is most likely lead, emitted in Turkey, that traveled across the eastern Mediterranean basin; the second type of aerosols contains a mixture of lead emitted in several countries including Turkey, Greece, and Ukraine ( 206Pb /207Pb value of 1.155-1.160; [Pb] ˜ 20-30 ng/m 3). Anthropogenic lead is more accessible for acid leaching than natural lead, therefore, it is more labile in the soil. The isotopic composition of lead in the acid-leached fraction of near-road soil profiles record the histor of alkyl-lead emission in the country. Based on changes in the isotopic composition of lead with soil depth, it is estimated that anthropogenic lead migrates into the soil at approximately 0.5 cm/y. A soil profile from a relatively remote area is less contaminated by anthropogenic lead and displays a different distribution of lead isotopic values with depth. The isotopic composition of lead suggests that natural lead in soils developed on carbonate bedrock is derived from clays, either from the rock-esidue (the clay fraction in the carbonate bedrock), or from airborne clay, but not from lead released from the carbonate fraction in the rock.

  11. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang

    2016-05-01

    relatively higher δ34S values of 22.7-28.7 ‰. Lead isotopes indicate that the granites have higher 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios than the host Precambrian metasedimentary rocks, and the sulfide minerals from the orebodies fall in between them. Again, there is no difference for Pb isotopes between the Sn deposits (Huangjinwa, Zengjialong, Jianfengpo) and the Zhangshiba Pb-Zn deposit. The coincidence in S and Pb isotope compositions for Sn and Pb-Zn deposits suggests that similar sources for these mineralization, possibly derived from a mixed source of the granitic magmas and the Precambrian metasedimentary rocks. These data therefore favor of a magmatic-hydrothermal origin for both the Sn and Pb-Zn polymetallic mineralization in the Pengshan district.

  12. Improving the resolution of the mantle picture

    NASA Astrophysics Data System (ADS)

    Salters, V. J.; Bizimis, M.; Langmuir, C. E.

    2007-12-01

    reanalyzed a suite of basalts from Makapuu Head on Koolau volcano, the isotopically enriched endmember of Hawaiian lavas. In 208Pb/204Pb vs 206Pb/204Pb space our new data forms a steeper slope than the KSDP lavas, and extend towards more unradiogenic Pb ratios than previously published. In contrast to the KSDP lavas, the Makapuu lavas converge with the posterosional Honolulu volcanics and Salt Lake Crater pyroxenite compositions (our new data) in the unradiogenic Pb isotope end. In 208Pb/204Pb vs. Nd isotopes the Makapuu lavas also extent towards the isotopically depleted endmember of the Hawaiian plume compositions as this is defined by the Honolulu volcanics and the pyroxenites. These observations are consistent with the presence of an ancient depleted component within the enriched Koolau endmember. These data combined with other recent high precision isotopic data from other Hawaiian volcanoes reveals that each volcano requires distinct endmember isotopic compositions. These two examples show that detailed investigations at local scales are important in defining the components present in the mantle. In addition these local studies, done at high resolution and high precision, are now able to provide information on the length scales of the heterogeneities. It is expected that more of these high-resolution studies will redefine our view of the dynamics of the mantle.

  13. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    USGS Publications Warehouse

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  14. Tracing of ca 800 yr old mining activity in peat bog using Pb elemental concentrations and isotope compositions.

    NASA Astrophysics Data System (ADS)

    Baron, S.; Carignan, J.; Ploquin, A.

    2003-04-01

    Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric

  15. Geochemistry and argon thermochronology of the Variscan Sila Batholith, southern Italy: source rocks and magma evolution

    USGS Publications Warehouse

    Ayuso, R.A.; Messina, A.; de Vivo, B.; Russo, S.; Woodruff, L.G.; Sutter, J.F.; Belkin, H.E.

    1994-01-01

    The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica??cordierite??Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293-289 Ma). SiO2 content in the granitic rocks ranges from ???57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite??amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica??Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite??hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to ???300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40-4.5), Th/Sm (0.1-3.6), Th/Ta (0-70), Ba/Nb (1-150), and Ba/Ta (???50-2100), as well as low values of Nb/U (???2-28) and La/Th (???1-10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock ??18O ranges from ???+8.2 to +11.7???; the mafic cumulate enclaves have the lowest ??18O values and the two-mica granites have the highest values. ??18O values for biotite??honblende tonalitic and granodioritic rocks (9.1 to 10.8???) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7???). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb ???18.17-18.45, 207Pb/204Pb ???15.58-15.77, 208Pb/204Pb ???38.20-38.76) also indicates the predominance of a crustal source

  16. The role of slab melting in the petrogenesis of high-Mg andesites: evidence from Simbo Volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    König, S.; Schuth, S.; Münker, C.; Qopoto, C.

    2007-01-01

    .4 to +7.9 and +12 to +14.4, respectively. These values reveal the presence of the Indian-Australian mantle domain beneath Simbo (i.e. the Indian-Australian plate) and also beneath all other volcanic islands of the New Georgia group, which are located north of the San Cristobál trench. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values (18.43-18.52, 15.49-15.55 and 18.13-18.34, respectively) confirm the presence of slab melts from the subducted Pacific plate beneath southern Simbo where the highest Gd(N)/Yb(N) ratios are reported. A spatial shift towards an Indian-Australian slab signature is observed when approaching the active San Cristobál trench on northern Simbo, reflecting the decreasing influence of slab melts from the old subducted Pacific plate.

  17. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy

    USGS Publications Warehouse

    Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal, R.R., II; Paone, A.

    1998-01-01

    commonly seen in rocks generated at orogenic margins are absent in our samples. Sr isotopic compositions are known to be variable within some of the units, in agreement with our data (87Sr/86Sr ~ 0.70699 to 0.70803) and with contributions from several isotopic components. Isotopic compositions for ??18O (7.3 to 10.2%), Pb for mineral separates and whole rocks (206Pb/204Pb ~ 18.947 to 19.178, 207Pb/204/Pb ~ 15.617 to 15.769, 208Pb/204Pb ~38.915 to 39.345), and Nd (143Nd ~ 0.51228 to 0.51251) also show variability. Oxygen isotope data show that pumices have higher ??18O values than cogenetic lavas, and that ??18O values and SiO2 are correlated. Radiogenic and stable isotope data plot within range of isotopic compositions for the Roman comagmatic province. Fractional crystallization cannot account for the radiogenic isotopic compositions of the Vesuvius magmas. We favor instead the combined effects of heterogeneous magma sources, together with isotopic exchange near the roof of the magma chamber. We suggest that metasomatized continental mantle lithosphere is the principal source of the magmas. This kind of enriched mantle was melted and reactivated in an area of continental extension (incipient rift setting) without direct reliance on contemporaneous subduction processes but possibly with input from mantle sources that resemble those that produce ocean island basalts.

  18. Petrogenesis of Mafic Volcanic Rocks from the Pribilof Islands, Alaska, by Melting of Metasomatically Enriched Depleted Lithosphere, Crystallization Differentiation, and Magma Mixing

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Chang, J. M.; Deraps, M. R.

    2008-12-01

    all rocks are MORB-like, ranging from 0.70270 to 0.70304 and 0.51276 to 0.51311, respectively. 208Pb/204Pb vs 206Pb/204Pb values are also similar to MORB, although they deviate slightly towards HIMU (high time-integrated 238U/204Pb). Despite these similarities to MORB, other major and trace element characteristics are similar to ocean island basalts, such as enriched alkali and incompatible trace element contents. These characteristics are interpreted to indicate that the underlying mantle experienced an ancient melt-removal event and then was affected by metasomatism that elevated incompatible trace element contents, but was too young to produce significant time-integrated changes in radiogenic isotopic ratios. Evidence suggests, therefore, that the Pribilof Islands did not form in either a plume or a mid-ocean ridge tectonic setting. Rather, magmas erupted on the islands were produced by melting of depleted, metasomatically enriched peridotite at relatively low temperatures and were able to ascend to the surface through extensional or transtensional faults that acted as conduits.

  19. Fluid inclusions and isotopic characteristics of the Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao

    2015-05-01

    The large Jiawula Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein style orebodies of the deposit occur along NWW- to NNW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-pyrrhotite-chalcopyrite stage, a middle quartz-carbonate-pyrite-galena-sphalerite stage, and a late quartz-carbonate-pyrite stage. Sulfide Rb-Sr dating indicates that the Jiawula deposit formed at ca. 143-142 Ma. Four types of fluid inclusions have been distinguished in quartz veins including liquid-rich, gas-rich, H2O-CO2, and daughter mineral-bearing inclusions. The fluid inclusions of the early stage are mainly liquid-rich, gas-rich, and H2O-CO2 types, with a small number containing daughter minerals. Cumulatively, the types have homogenization temperatures, densities, and salinities of 304-438 °C, 0.35-1.37 g/cm3, and 0.8-44.6 wt.% NaCl eqv., respectively. Inclusions of the middle stage are mainly liquid-rich and gas-rich types, with a small amount of H2O-CO2 and daughter mineral-bearing types; their homogenization temperatures, densities, and salinities vary from 242 °C to 297 °C, 0.71 to 1.44 g/cm3, and 0.4 wt.% to 36.8 wt.% NaCl eqv., respectively. The late stage only comprises liquid-rich inclusions with homogenization temperatures, densities, and salinities of 181-238 °C, 0.81-0.90 g/cm3, and 0.2-1.9 wt.% NaCl eqv., respectively. The ore-forming fluids of the Jiawula deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl-CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from -13.4‰ to -9.1‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from -166‰ to -133‰, suggesting that the ore-forming fluids mainly consist of meteoric water with a small amount of magmatic water. The δ34SV-CDT values range from 1.2‰ to 8.4‰. The 206Pb/204Pb

  20. Climate Forcing on the Sedimentary Pb Isotope Record of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Zabel, M.

    2001-12-01

    The forcing mechanism for the radiogenic isotopes variations recorded in marine sediments over the past few million years remains debatable and a causal link between isotope tracers and climate is difficult to ascertain. We report evidence for a climate control on Pb sources to the Equatorial Atlantic using high precision Pb triple spike data (Galer, 1999) on two sediments cores covering the last six Marine Isotope Stages ( ~200 ka). Core GeoB1523-1 (3° 49,9'N, 41° 37.3'W, 3292m) is located on the Ceará Rise (West Atlantic) close to the Amazon mouth and core GeoB2910-1 (4° 50.7'N, 21° 03.2'W, 2703m) on the Sierra Leone Rise (East Atlantic) on the downwind trajectory of the boreal winter Saharan dust plume. These cores are ideally situated for monitoring climate-related Pb isotopic variations, since they have been shown to record past variations in terrigenous fluxes in response to Earth's orbital changes (Zabel et al., 1999; Rühlemann et al., 2001). Pb isotope data were obtained on bulk sediments which, given the two orders of magnitude difference in Pb contents of detritus ( ~10ppm) and carbonate (1-10ppb), will essentially reflect the composition of the terrigenous fraction. Pb isotope ratios display periodic fluctuations over the last ~200 ka in both cores and are quite distinct in the two basins. The east Atlantic core exhibits higher 207Pb/204Pb and 208Pb/204Pb but lower 206Pb/204Pb than the west Atlantic core. The Pb isotope signal is cyclical and closely follows the \\delta 18O record, interglacial periods being systematically more radiogenic than glacial periods. This pattern is observed in both cores, although changes in the western Atlantic seem to lead those in the eastern Atlantic. In Pb isotope space, the west Atlantic data form a unique Pb isotope array that is quite distinct from the east Atlantic where two trends are found. This clearly demonstrates that the Pb sources feeding the two basins are different. Furthermore, the persistence of a

  1. Uranium series and beryllium isotope evidence for an extended history of subduction modification of the mantle below Nicaragua

    SciTech Connect

    Reagan, M.K.; Herrstrom, E.A. ); Morris, J.D. ); Murrell, M.T. )

    1994-10-01

    U-series nuclides and beryllium and lead isotopes have been measured on historic lavas from eight volcanoes in Nicaragua. Low-Ti samples from northern Nicaragua have ([sup 230]Th)/([sup 232]Th) ratios from 2.23 to 2.56 and are enriched in [sup 238]U and [sup 234]U over [sup 230]Th by 1-16%. Those from southern Nicaragua have ([sup 230]Th)/([sup 232]Th) [approx] 2.1 and have ([sup 238]U)/([sup 230]Th) = 1.0-0.9. High-Ti samples have intermediate ([sup 230]Th)/([sup 232]Th) ratios and are strongly enriched in [sup 230]Th. Lead isotopic data for all samples plot in the mantle array with [sup 206]Pb/[sup 204]Pb = 18.50-18.63. Th isotopic ratios for all samples imply source U/Th ratios that are significantly higher than those implied by lead isotopic ratios. All historic samples have ([sup 210]Po)/([sup 230]Th) and thus ([sup 226]Ra)/([sup 230]Th) > 1, suggesting that lavas erupt less than 8,000 y after generation. Thorium isotopic ratios for all volcanic samples correlate well with [sup 10]Be/[sup 9]Be and B/Be as well as with [sup 87]Sr/[sup 86]Sr and Ba/La ratios from the literature. ([sup 238]U)/([sup 230]Th) ratios do not correlate well with any of these ratios but rather anti-correlate with Th concentrations and published La/Yb ratios. These observations, and inferences therefrom, lead to the following preferred, although not completely unique, interpretations. Comparison of thorium, beryllium, and strontium isotopic ratios of the Cocos plate sediments at DSDP 495 with the low-Ti volcanic regression trends shows that the subducted component transferred to the mantle has isotopic compositions similar to the bulk sediments. B/Be and Ba/La ratios of the volcanic samples are well correlated with the isotopes, but the inferred ratios in the subduction component are at least 10 and 5 times higher, respectively, than values in the bulk sediment.

  2. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

    USGS Publications Warehouse

    Tosdal, R.M.

    1996-01-01

    Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link

  3. The Golden Ratio

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2004-01-01

    The Golden Ratio is sometimes called the "Golden Section" or the "Divine Proportion", in which three points: A, B, and C, divide a line in this proportion if AC/AB = AB/BC. "Donald in Mathmagicland" includes a section about the Golden Ratio and the ratios within a five-pointed star or pentagram. This article presents two computing exercises that…

  4. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  5. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Sisson, Thomas W.; Nakano, Natsuko; Coombs, Michelle L.; Lipman, Peter W.

    2006-03-01

    Submarine lavas recovered from the Hilina bench region, offshore Kilauea, Hawaii Island provide information on ancient Kilauea volcano and the geochemical components of the Hawaiian hotspot. Alkalic lavas, including nephelinite, basanite, hawaiite, and alkali basalt, dominate the earliest stage of Kilauea magmatism. Transitional basalt pillow lavas are an intermediate phase, preceding development of the voluminous tholeiitic subaerial shield and submarine Puna Ridge. Most alkalic through transitional lavas are quite uniform in Sr-Nd-Pb isotopes, supporting the interpretation that variable extent partial melting of a relatively homogeneous source was responsible for much of the geochemical diversity of early Kilauea magmas ( Sisson et al., 2002). These samples are among the highest 206Pb/ 204Pb known from Hawaii and may represent melts from a distinct geochemical and isotopic end-member involved in the generation of most Hawaiian tholeiites. This end-member is similar to the postulated literature Kea component, but we propose that it should be renamed Hilina, to avoid confusion with the geographically defined Kea-trend volcanoes. Isotopic compositions of some shield-stage Kilauea tholeiites overlap the Hilina end-member but most deviate far into the interior of the isotopic field defined by magmas from other Hawaiian volcanoes, reflecting the introduction of melt contributions from both "Koolau" (high 87Sr/ 86Sr, low 206Pb/ 204Pb) and depleted (low 87Sr/ 86Sr, intermediate 206Pb/ 204Pb) source materials. This shift in isotopic character from nearly uniform, end-member, and alkalic, to diverse and tholeiitic corresponds with the major increase in Kilauea's magmatic productivity. Two popular geodynamic models can account for these relations: (1) The upwelling mantle source could be concentrically zoned in both chemical/isotopic composition, and in speed/extent of upwelling, with Hilina (and Loihi) components situated in the weakly ascending margins and the Koolau

  6. High precision Pb, Sr, and Nd isotope geochemistry of alkalic early Kilauea magmas from the submarine Hilina bench region, and the nature of the Hilina/Kea mantle component

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Sisson, T. W.; Nakano, N.; Coombs, M. L.; Lipman, P. W.

    2004-12-01

    Submarine lavas recovered from the Hilina bench region, offshore Kilauea, Hawaii Island provide information on ancient Kilauea volcano and the geochemical components of the Hawaiian hotspot. Alkalic lavas, including nephelinite, basanite, hawaiite, and alkali basalt, dominate the earliest stage of Kilauea magmatism. Transitional basalt pillow lavas are an intermediate phase, preceding development of the voluminous tholeiitic subaerial shield and submarine Puna Ridge. Most alkalic through transitional lavas are quite uniform in Sr-Nd-Pb isotopes, supporting the interpretation that variable extent partial melting of a relatively homogeneous source was responsible for much of the geochemical diversity of early Kilauea magmas (Sisson et al., 2002). These samples are among the highest 206Pb/204Pb known from the Hawaii islands and may represent melts from a distinct geochemical and isotopic endmember involved in the generation of most Hawaiian tholeiites. This endmember is similar to the postulated literature Kea component, but we propose it should be renamed Hilina, to avoid confusion with the geographically defined Kea-trend volcanoes. Isotopic compositions of some shield-stage Kilauea tholeiites overlap the Hilina endmember but most deviate far into the interior of the isotopic field defined by magmas from other Hawaiian volcanoes, reflecting the introduction of melt contributions from both _gKoolau_h (high 87Sr/86Sr, low 206Pb/204Pb) and depleted (low 87Sr/86Sr, intermediate 206Pb/204Pb) source materials. This shift in isotopic character from nearly uniform, endmember, and alkalic, to diverse and tholeiitic corresponds with the major increase in Kilauea_fs magmatic productivity. Two popular geodynamic models can account for these relations: (1) The upwelling mantle source could be concentrically zoned in both chemical/isotopic composition, and in speed/extent of upwelling, with Hilina (and Loihi) components situated in the weakly ascending margins and the Koolau

  7. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component

    USGS Publications Warehouse

    Kimura, Jun-Ichi; Sisson, T.W.; Nakano, N.; Coombs, M.L.; Lipman, P.W.

    2006-01-01

    Submarine lavas recovered from the Hilina bench region, offshore Kilauea, Hawaii Island provide information on ancient Kilauea volcano and the geochemical components of the Hawaiian hotspot. Alkalic lavas, including nephelinite, basanite, hawaiite, and alkali basalt, dominate the earliest stage of Kilauea magmatism. Transitional basalt pillow lavas are an intermediate phase, preceding development of the voluminous tholeiitic subaerial shield and submarine Puna Ridge. Most alkalic through transitional lavas are quite uniform in Sr-Nd-Pb isotopes, supporting the interpretation that variable extent partial melting of a relatively homogeneous source was responsible for much of the geochemical diversity of early Kilauea magmas (Sisson et al., 2002). These samples are among the highest 206Pb/204Pb known from Hawaii and may represent melts from a distinct geochemical and isotopic end-member involved in the generation of most Hawaiian tholeiites. This end-member is similar to the postulated literature Kea component, but we propose that it should be renamed Hilina, to avoid confusion with the geographically defined Kea-trend volcanoes. Isotopic compositions of some shield-stage Kilauea tholeiites overlap the Hilina end-member but most deviate far into the interior of the isotopic field defined by magmas from other Hawaiian volcanoes, reflecting the introduction of melt contributions from both "Koolau" (high 87Sr/86Sr, low 206Pb/204Pb) and depleted (low 87Sr/86Sr, intermediate 206Pb/204Pb) source materials. This shift in isotopic character from nearly uniform, end-member, and alkalic, to diverse and tholeiitic corresponds with the major increase in Kilauea's magmatic productivity. Two popular geodynamic models can account for these relations: (1) The upwelling mantle source could be concentrically zoned in both chemical/isotopic composition, and in speed/extent of upwelling, with Hilina (and Loihi) components situated in the weakly ascending margins and the Koolau component

  8. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  9. Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey)

    NASA Astrophysics Data System (ADS)

    Çelik, Ömer Faruk; Chiaradia, Massimo; Marzoli, Andrea; Özkan, Mutlu; Billor, Zeki; Topuz, Gültekin

    2016-03-01

    The Kızılırmak accretionary complex near Kargı is tectonically bounded by the Jurassic and Early Cretaceous metamorphic massives of the Central Pontides. It consists mainly of serpentinite, serpentinized peridotite, gabbro, basalt, metabasite and deep-marine sedimentary rocks. The metabasites in the Kızılırmak accretionary complex are tectonically located within a serpentinite, radiolarian chert, spilitized basalt, gabbro association and commonly display a steep contact with serpentinites. Amphiboles from metabasites yielded robust 40Ar/39Ar plateau ages ranging between 159.4 ± 0.4 Ma and 163.5 ± 0.8 Ma. These are interpreted as cooling ages of the metabasites. The metabasites have 87Sr/86Sr(i) between 0.7035 and 0.7044 and 206Pb/204Pb(i) ranging between 18.18 and 18.92. The gabbros have higher 87Sr/86Sr(i) between 0.7044 and 0.7060 and 206Pb/204Pb(i) ranging between 17.98 and 18.43. Three basalt samples display 87Sr/86Sr(i) between 0.7040 and 0.7059. Their 206Pb/204Pb(i) are unrealistically low (15.42 and 15.62), suggesting, most likely, Pb loss which results in over-corrected values for decay through time. Pb-Sr-Nd isotopic compositions for all samples consistently plot between the fields of MORB or the Depleted MORB Mantle reservoirs and enriched mantle reservoirs (EMII rather than EMI). All the samples (except one dolerite dike) have negative ɛNdDM(t = 160 Ma) values, suggesting derivation from a reservoir more enriched than the depleted mantle. The protoliths of metabasites correspond to diverse sources (N-MORB, E-MORB, OIB and IAT) based on whole rock major and trace element composition. An IAT-like protolith for the metabasites indicates that the İzmir-Ankara-Erzincan ocean domain was subducting and the tectonic regime was compressional during Late Jurassic and before. The protoliths of these rocks were metamorphosed during the subduction/accretion processes, as observed in the metamorphic rocks located along the Balkan, Northern Turkey and

  10. Isotopic Constraints on Magmatic Sources at Nyiragongo and Nyamulagira Volcanoes, Virunga Volcanic Province, DR Congo

    NASA Astrophysics Data System (ADS)

    Phillips, E. H. W.; Sims, K. W. W.; Tedesco, D.; Blichert-Toft, J.; Scott, S. R.; Reagan, M. K.

    2015-12-01

    The active volcanoes Nyiragongo and Nyamulagira in the DR Congo have very different physical and geochemical characteristics, despite being situated a mere 15 km apart. Nyiragongo's foiditic lavas are some of the most silica-undersaturated on earth, whereas the highly effusive Nyamulagira erupts primarily basanites and tephrites. To determine the extent and scale of mantle heterogeneities and gain insight into the magmatic sources beneath this portion of the East African Rift, we have measured Hf and Pb isotope compositions for 43 samples from Nyiragongo and Nyamulagira. The Nd and Sr isotope data for the same sample dissolutions are forthcoming. Nyiragongo lavas are clearly distinct from Nyamulagira lavas in terms of their Hf and Pb isotope compositions, suggesting that a long-lived and small-scale heterogeneous mantle source exists beneath these two volcanoes. Nyiragongo lavas have ɛHf ranging from +1.8 to +5.5 with an average of +2.9 (n=29) and 206Pb/204Pb ranging from 19.4049 to 19.7252 with an average of 19.6329 (n=29). Nyamulagira lavas have ɛHf ranging from -0.5 to +1.5 with an average of +0.5 (n=14) and 206Pb/204Pb ranging from 19.2518 to 19.2828 with an average of 19.2663 (n=13). Nyiragongo lavas erupted in 2002 or later have amongst the highest 206Pb/204Pb within this suite of samples. We note that Chakrabarti et al. (2009, Chem Geol 259) measured bulk silicate earth-like Nd and Sr isotope compositions for Nyiragongo lavas and proposed a primitive mantle/bulk-earth plume source for this volcano. Our new Hf isotope compositions for Nyiragongo, however, are higher than bulk silicate earth, suggesting a more depleted source for these highly alkaline lavas. We also note that the He isotope compositions of olivine and clinopyroxene from Nyiragongo lavas (R/Ra = 6.7-8.5; Pik et al., 2006, Chem Geol 226; Tedesco et al., 2010, J Geophys Res 115) are inconsistent with a long-term bulk silicate earth-like source.

  11. Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications

    USGS Publications Warehouse

    Vallier, T.L.; Jenner, G.A.; Frey, F.A.; Gill, J.B.; Davis, A.S.; Volpe, A.M.; Hawkins, J.W.; Morris, J.D.; Cawood, Peter A.; Morton, J.L.; Scholl, D. W.; Rautenschlein, M.; White, W.M.; Williams, Ross W.; Stevenson, A.J.; White, L.D.

    1991-01-01

    Tholeiitic andesite was dredged from two sites on Valu Fa Ridge (VFR), a back-arc spreading center in Lau Basin. Valu Fa Ridge, at least 200 km long, is located 40-50 km west of the active Tofua Volcanic Arc (TVA) axis and lies about 150 km above the subducted oceanic plate. One or more magma chambers, traced discontinuously for about 100 km along the ridge axis, lie 3-4 km beneath the ridge. The mostly aphyric and glassy lavas had high volatile contents, as shown by the abundance and large sizes of vesicles. An extensive fractionation history is inferred from the high SiO2 contents and FeO* MgO ratios. Chemical data show that the VFR lavas have both volcanic arc and back-arc basin affinities. The volcanic arc characteristics are: (1) relatively high abundances of most alkali and alkaline earth elements; (2) low abundances of high field strength elements Nb and Ta; (3) high U/Th ratios; (4) similar radiogenic isotope ratios in VFR and TVA lavas, in particular the enrichment of 87Sr 86Sr relative to 206Pb 204Pb; (5) high 238U 230Th, 230Th 232Th, and 226Ra 230Th activity ratios; and (6) high ratios of Rb/Cs, Ba/Nb, and Ba/La. Other chemical characteristics suggest that the VFR lavas are related to MORB-type back-arc basin lavas. For example, VFR lavas have (1) lower 87Sr 86Sr ratios and higher 143Nd 144Nd ratios than most lavas from the TVA, except samples from Ata Island, and are similar to many Lau Basin lavas; (2) lower Sr/REE, Rb/Zr, and Ba/Zr ratios than in arc lavas; and (3) higher Ti, Fe, and V, and higher Ti/V ratios than arc lavas generally and TVA lavas specifically. Most characteristics of VFR lavas can be explained by mixing depleted mantle with either small amounts of sediment and fluids from the subducting slab and/or an older fragment of volcanic arc lithosphere. The eruption of subalkaline andesite with some arc affinities along a back-arc spreading ridge is not unique. Collision of the Louisville and Tonga ridges probably activated back-arc extension

  12. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  13. Geochemical and Isotopic Data from Micron to Across-Arc Scales in the Andean Central Volcanic Zone: Applications for Resolving Crustal Magmatic Differentiation and Modification Processes

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Wilder, A.; Feeley, T.

    2014-12-01

    Plagioclase crystals from silicic (andesitic to dacitic) lavas and domes at Volcán Uturuncu, a potentially active volcano in the back-arc of the Andean CVZ (22.3°S, 67.2°W), exhibit large variations in An contents, textures, and core to rim 87Sr/86Sr ratios. Many of the isotopic variations can not have existed at magmatic temperatures for more than a few thousand years. The crystals likely derived from different locations in the crustal magmatic system and mixed just prior to eruption. Uturuncu magmas initially assimilated crustal rocks with high 87Sr/86Sr ratios. The magmas were subsequently modified by frequent recharge of more mafic magmas with lower 87Sr/86Sr ratios. A typical Uturuncu silicic magma therefore only attains its final composition just prior to or during eruption. In the Lazufre region of active surface uplift (~25˚14'S; Volcán Lastarria and Cordon del Azufre) closed system differentiation processes are not the only factors influencing silicic magma compositions. 87Sr/86Sr (0.70651-0.70715) and 206Pb/204Pb ratios (18.83-18.88) are highly elevated and143Nd/144Nd ratios (0.512364 -0.512493) are low relative to similar composition rocks from the "southern Cordillera domain." These data, along with major and trace element trends, reflect a multitude of differentiation processes and magma sources including crystallization-differentiation of more mafic magmas, melting and assimilation of older crustal rocks, and magma mixing and mingling. On an arc-wide scale silicic lavas erupted from three well-characterized composite volcanoes between 21oS and 22oS (Aucanquilcha, Ollagüe, and Uturuncu) display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front apparently reflect melting of relatively young, mafic

  14. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    USGS Publications Warehouse

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.

    1991-01-01

    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  15. Deterrence and arrest ratios.

    PubMed

    Carmichael, Stephanie E; Piquero, Alex R

    2006-02-01

    In the limited research on the origins of sanction threat perceptions, researchers have focused on either the effects of actively engaging in crime or the effects of formal sanctioning but rarely on both (i.e., the arrest ratio or the number of arrests relative to the number of crimes committed). This article extends this line of research by using a sample of Colorado inmates and measures arrest ratios and sanction perceptions for eight different crime types. Analyses reveal that the offenders report both significant experiential and arrest ratio effects. Theoretical and policy implications, limitations, and directions for future research are outlined. PMID:16397123

  16. Simplifying Likelihood Ratios

    PubMed Central

    McGee, Steven

    2002-01-01

    Likelihood ratios are one of the best measures of diagnostic accuracy, although they are seldom used, because interpreting them requires a calculator to convert back and forth between “probability” and “odds” of disease. This article describes a simpler method of interpreting likelihood ratios, one that avoids calculators, nomograms, and conversions to “odds” of disease. Several examples illustrate how the clinician can use this method to refine diagnostic decisions at the bedside.

  17. High Aspect Ratio Wrinkles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Crosby, Alfred

    2015-03-01

    Buckling-induced surface undulations are widely found in living creatures, for instance, gut villi and the surface of flower petal cells. These undulations provide unique functionalities with their extremely high aspect ratios. For the synthetic systems, sinusoidal wrinkles that are induced by buckling a thin film attached on a soft substrate have been proposed to many applications. However, the impact of the synthetic wrinkles have been restricted by limited aspect ratios, ranging from 0 to 0.35. Within this range, wrinkle aspect ratio is known to increase with increasing compressive strain until a critical strain is reached, at which point wrinkles transition to localizations, such as folds or period doublings. Inspired by the living creatures, we propose that wrinkles can be stabilized in high aspect ratio by manipulating the strain energy in the substrate. We experimentally demonstrate this idea by forming a secondary crosslinking network in the wrinkled surface and successfully achieve aspect ratio as large as 0.8. This work not only provides insights for the mechanism of high aspect ratio structures seen in living creatures, but also demonstrates significant promise for future wrinkle-based applications.

  18. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  19. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  20. Lithium Isotope Systematics in Azores Basalts

    NASA Astrophysics Data System (ADS)

    Yu, H.; Widom, E.; Qiu, L.; Rudnick, R.; Gelinas, A.; Franca, Z.

    2009-05-01

    Basalts from the Azores archipelago and MORB from the nearby Azores Platform exhibit extreme chemical and isotopic variations attributed to the influence of a heterogeneous mantle plume, with compositions ranging from depleted mantle (DMM) to strong HIMU, EMI and EMII signatures. In order to assess the utility of Li isotopes as a mantle source tracer and to better constrain the origin of heterogeneous mantle beneath the Azores, we have analyzed Li isotopes in a suite of young, fresh, MgO-rich basalts from São Miguel and three Central Group islands including Pico, Faial and Terceira. Despite large variations in radiogenic isotope signatures (e.g. 206Pb/204Pb = 19.3 to 20.1), δ7Li varies only slightly (3.1-4.7‰), and is within the range for global and North Atlantic MORB [1, 2]. More extreme δ7Li values such as those reported previously for some EMII, EMI and HIMU ocean island basalts (-17‰ to +10‰; [3-5]) were not observed. Nevertheless, basalts from the Central Group islands with EMI-type signatures are, on average, slightly heavier in δ7Li than the São Miguel samples, and they exhibit positive correlations with 87Sr/86Sr and negative correlations with 206Pb/204Pb, Nd, and Hf isotopes. Li isotopes do not correlate with indices of fractionation such as MgO, suggesting that the δ7Li correlations with radiogenic isotopes may represent subtle variations in mantle source signatures. Positive and negative correlations of δ7Li with 87Sr/86Sr and 206Pb/204Pb, respectively, and relatively unradiogenic Os (187Os/188Os = 0.1244-0.1269), may reflect old, slab-fluid metasomatized mantle beneath the Central Group islands. In contrast, δ7Li signatures in the São Miguel basalts do not correlate with radiogenic isotopes. Rather, δ7Li is essentially constant despite extremely high 87Sr/86Sr and 206Pb/204Pb and low ΔɛHf signatures that have been attributed to 3.5 Ga recycled E-MORB or evolved oceanic crust [6; 7]. This suggests either that the São Miguel source

  1. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Elburg, Marlina A.; van Bergen, Manfred; Hoogewerff, Jurian; Foden, John; Vroon, Pieter; Zulkarnain, Iskandar; Nasution, Asnawir

    2002-09-01

    Four volcanoes in the Pantar Strait, the westernmost part of the extinct sector of the east Sunda arc, show remarkable across-arc variation in elemental abundances (K 2O: 1.2 to 4.3%), trace element ratios (Pb/Ce: 0.4 to 0.18; Ce/Yb: 20 to 55) and isotope ratios ( 143Nd/ 144Nd: 0.51263 to 0.51245; 87Sr/ 86Sr: 0.7053 to 0.7068; 206Pb/ 204Pb: 19.29 to 19.15). Pb isotopes are decoupled from Sr and Nd isotopes, with the frontal volcanoes showing the higher Nd and Pb and lower Sr isotopic ratios. The isotopic and trace element ratios of the volcanic samples are best explained by modification of a MORB-type source (with Indian Ocean island basalt-type Pb isotopic characteristics) by a fluid and a partial melt of subducted continental material (SCM). The frontal volcano contains the highest proportion of the fluid component, with a small contribution of partial melt. The source of the rear-arc volcano is strongly influenced by a partial melt of SCM that had undergone a previous dehydration event, by which it lost most of its fluid-mobile elements such as Pb. The SCM partial melt was in equilibrium with both rutile and garnet, whereas mantle melting took place in the presence of residual mica. The relatively large across-arc increase in incompatible elements can be explained by a combination of increasing addition of SCM partial melt, changing mantle wedge fertility and smaller degrees of partial melting toward the rear of the arc. Comparison with a more westerly across-arc transect shows that the relatively low 143Nd/ 144Nd ratios of the frontal volcano, and the decoupling of Pb from Sr and Nd isotopes are unique to the Pantar Strait volcanoes. This is likely to reflect magma generation in a collisional environment, where the leading edge of the Australian continent, rather than subducted sediment, contributes to the magma source.

  2. A Recipe for Ratio

    ERIC Educational Resources Information Center

    Moffett, Pamela

    2012-01-01

    Many learners still struggled to appreciate, and understand the difference between, the concepts of fractions and ratio. This is not just a UK phenomenon, which is demonstrated here by the use of a resource developed by the Wisconsin Centre for Education, in association with the Freudenthal Institute of the University of Utrecht, with a group of…

  3. Southern Cordilleran basaltic andesite suite, southern Chihuahua, Mexico: A link between Tertiary continental arc and flood basalt magmatism in North America

    NASA Astrophysics Data System (ADS)

    Cameron, K. L.; Nimz, G. J.; Kuentz, D.; Niemeyer, S.; Gunn, S.

    1989-06-01

    Mid-Cenozoic orogenic andesites and ignimbrites of western Mexico, southwestern New Mexico, and Arizona are commonly capped by basaltic andesites, most from 29-20 Ma. We refer to these mafic lavas as the Southern Cordilleran Basaltic Andesite (SCORBA) suite, and they may constitute the most extensive Cenozoic basaltic suite in North America. The SCORBA suite has trace element and isotopic characteristics of orogenic (arc) rocks (e.g., Ba/Nb>40), and silica content (53-56% SiO2) like the Grande Ronde Basalt, which represents about 80% of the volume of the Columbia River Group. Geochemical and isotopic data are presented on SCORBA lavas and rare mafic lavas (PRE-SCORBA) interlayered with older ignimbrites from a 700-km-long NE-SW transect of southern Chihuahua, Mexico. SCORBA and PRE-SCORBA lavas with relatively low K/P (<7) and differing Ba/Nb (50 versus 18) have similar isotopic compositions, arguing against their isotopic signatures being controlled by crustal assimilation. Along the entire length of the transect, the basaltic rocks have ɛNd and 87Sr/86Sr near bulk Earth and 206Pb/204Pb and 207Pb/204Pb ratios that lie along a 1.7 Ga pseudoisochron. The Pb isotopic variation is geographically controlled, becoming more radiogenic from east to west, reflecting mixing in mantle source regions. The eastern mantle source has low 206Pb/204Pb and is a mixture of an enriched, enriched-mantle-like (EMI) component with one or more depleted components, which could include an intraplate component with relatively high Nb/Y (>0.8). The western mantle source contains less of the intraplate component and is more oceanic in character. Overprinting both the eastern and western sources is a Cenozoic subduction component that is responsible for the western radiogenic Pb, and this component fades out inland to the east. This transect crosses the inferred position of the Mojave-Sonora megashear, previously proposed to be a major lithospheric boundary, separating Proterozoic basement to

  4. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  5. Miocene-Pleistocene magmas in the Monbetsu area, Northeast Hokkaido, tap N-MORB-like sources contaminated by slab-derived fluids

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen; Miyagi, Isoji; Itoh, Jun'ichi

    2015-05-01

    Cenozoic intraplate volcanism in northern and northeastern Hokkaido appears to have been closely associated with the Late Oligocene to Mid-Miocene opening of the Japan and Okhotsk Seas (c. 23-12 Ma). Between 12 and 2 Ma, volcanism appeared in the Monbetsu area of northeastern Hokkaido, whose magmatic products are characterized by relative depletions in Nb and Ta and enrichments in LILE and Pb, suggesting a subduction-related source. Likewise, their N-MORB-like isotopic affinity resembles that of active arcs in eastern Hokkaido. These geochemical features are distinct from those of intraplate Cenozoic magmas in Sikhote-Alin, Sakhalin and within the Japan Sea itself, which appear to show a secular change from high-87Sr/86Sr, -206Pb/204Pb and low-143Nd/144Nd (EM2-rich) mantle sources to relatively low-87Sr/86Sr and -206Pb/204Pb (EM1-rich) types, resembling the progression of magmatic activity during early stages of Japan Sea opening. The EM2 is interpreted to derive from lithospheric mantle while EM1-like components may have been introduced by material delaminated from the Sino-Korea craton, following the Indo-Eurasia collision. In contrast, the Cenozoic Monbetsu volcanics in northern and northeastern Hokkaido appear to lack any such temporal pattern, implying that their respective source regions have not changed since at least c. 14 Ma. We suggest, accordingly, that upper mantle beneath Hokkaido may have been isolated after opening of the Japan and Okhotsk Seas, to the west and northwest, the Kurile Basin to the northeast, and continuing west-vergent subduction of the Pacific plate. Given the fact that Cenozoic volcanism in north and northeastern Hokkaido shows apparent subduction-related character, and that the relationship between this activity and opening of the Kurile Basin remains unclear, we tentatively conclude that intraplate mantle melting may reflect a combination of effects, that of slab-derived hydrous fluid superimposed on upwelling asthenosphere.

  6. A potential link between magmatic volatiles and mantle source lithology in the Hawaiian Plume: a view from olivine-hosted melt inclusions and osmium isotopes

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Garcia, M. O.; Pietruszka, A. J.

    2013-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in lavas from Hawaiian volcanoes reveal important magmatic processes (e.g., melting of a heterogeneous source and magma degassing). Based on variations in ratios of highly incompatible trace elements (e.g., Nb/La) and radiogenic isotopes (e.g., 206Pb/204Pb), shield-stage Hawaiian lavas likely originate from a plume source containing peridotite and ancient recycled oceanic crust (pyroxenite). The source region may also be heterogeneous with respect to volatile concentrations. However, shallow magma degassing makes it difficult to determine if there is a link between mantle source composition and the volatile budget. We analyzed osmium isotopic ratios and volatile contents in olivines and glasses for 34 samples from Koolau, Mauna Kea, Mauna Loa, Hualalai, Kilauea, and Loihi to determine if volatiles in magmas correlate with geochemical tracers of source lithology. For a given volcano, most 187Os/188Os values of olivines (0.127-0.134) are similar to the whole-rock values, yet some Mauna Loa and Loihi olivines display the lower ratios (0.116-0.118) that may reflect partial melts of ancient recycled mantle lithosphere. SIMS analyses of Hawaiian glasses reveal a range in abundances of CO2 (10-250 ppm), H2O (0.2-1.2 wt.%), S (38-2960 ppm), and Cl (39-2960 ppm). However, most samples have low CO2 contents (<100 ppm) indicating that the lavas are degassed. Olivine-hosted melt inclusions from the same Hawaiian samples display a wider range of volatile abundances (i.e. 10-760 ppm CO2) than matrix glasses that may reflect mixing of undegassed to moderately degassed magmas. The average CO2 and H2O/CO2 contents in the least degassed olivine-hosted melt inclusions (with >200 ppm CO2) display a broad correlation with the osmium isotopic compositions of the olivines. This indicates a potential link between pre-eruptive volatile budgets and mantle sources lithology may exist within the

  7. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios

    SciTech Connect

    Erel, Y.; Veron, A.; Halicz, L.

    1997-11-01

    The isotopic composition of lead in aerosols and soils in Israel is used to characterize the sources of anthropogenic lead in the region, to ascertain the isotopic composition of natural, rock-derived lead in specific areas, and to determine rates of anthropogenic lead migration in soils. The isotopic composition of lead currently emitted from cars in Israel ({sup 206}Pb/{sup 207}Pb = 1.115 {+-} 2) is controlled by alkyl-lead produced in France and Germany. In addition to petrol-lead, two more sources of anthropogenic lead can be detected in sampled aerosols; the first one has low concentrations of lead ({approximately} ng/m{sup 3}) and {sup 206}Pb/{sup 207}Pb {approximately} 1.157, and is most likely lead, emitted in Turkey, that traveled across the eastern Mediterranean basin; the second type of aerosols contains a mixture of lead emitted in several countries including Turkey, Greece, and Ukraine ({sup 206}Pb/{sup 207}Pb value of 1.155-1.160; [Pb] {approximately}20-30 ng/m{sup 3}). Anthropogenic lead is more accessible for acid leaching than natural lead, therefore, it is more labile in the soil. The isotopic composition of lead in the acid-leached fraction of near-road soil profiles records the history of alkyl-lead emission in the country. Based on changes in the isotopic composition of lead with soil depth, it is estimated that anthropogenic lead migrates into the soil at approximately 0.5 cm/y. A soil profile from a relatively remote area is less contaminated by anthropogenic lead and displays a different distribution of lead isotopic values with depth. The isotopic composition of lead suggests that natural lead in soils developed on carbonate bedrock is derived from clays, either from the rock-residue (the clay fraction in the carbonate bedrock), or from airborne clay, but not from lead released from the carbonate fraction in the rock. 44 refs., 6 figs., 2 tabs.

  8. Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Príbram, Czech Republic).

    PubMed

    Mihaljevic, M; Zuna, M; Ettler, V; Sebek, O; Strnad, L; Goliás, V

    2006-12-15

    The content and the isotopic composition of lead (Pb) were studied in a peat deposit on the ridge of the Brdy Hills, in the vicinity of the Príbram metallurgical works, in the Czech Republic. Quadrupole ICP MS was employed to determine the elemental composition and (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios. The individual layers were dated using alpha spectrometric measurement of the (210)Pb activity. The historical time period covered by the studied cores reached back to the 18th century. The Pb concentration in the studied profiles varied from 10 to 550 mg kg(-1). The (206)Pb/(207)Pb ratio varied in the range from 1.154 to 1.194 in the individual parts of the profile. The metallurgy of the Pb ores ((206)Pb/(207)Pb approximately 1.16), lithogenic Pb ((206)Pb/(207)Pb approximately 1.2), metallurgical processing of automobile batteries ((206)Pb/(207)Pb approximately 1.17) and the combustion of coal ((206)Pb/(207)Pb approximately 1.17-1.19) yield isotopic signatures that determine the isotope compositions of the individual profiles. Deposition rates between 15 mg m(-2) year(-1) at the beginning of the 19th century and 320 mg m(-2) year(-1) in the 1980s were determined in the dated profiles. The increased deposition rates determined on the dated profiles correspond to the increasing production of Pb ores in the Príbram mining area at the turn of the 19th and 20th centuries. The maximum for metallurgical production corresponds to the highest deposition rates recorded in 1960s and 1970s. The current deposition rate of 5-89 mg m(-2) year(-1) Pb is related to erosion of contaminated soils and waste dumps. PMID:17081595

  9. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ˜3×10 6 km 2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96±0.16, n=64 out of 79 samples, 2σ) and initial Nd-Pb isotopic compositions (e.g. 143Nd/ 144Nd in=0.51291±3, ɛNdi=7.3±0.6, 206Pb/ 204Pb in=18.86±0.12, n=54 out of 66, 2σ). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/ 4He in olivines of enriched picrites at Quepos are ˜12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on

  10. Petrogenesis and economic potential of the Erhongwa mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China: Constraints from olivine chemistry, U-Pb age and Hf isotopes of zircons, and whole-rock Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Qian, Zhuang-Zhi; Li, Chusi; Xia, Ming-Zhe; Yang, Su-Hong

    2013-12-01

    The Erhongwa mafic-ultramafic intrusion is located in the southern margin of the Central Asian Orogenic Belt in northern Xinjiang where many early-Permian mafic-ultramafic intrusions host important Ni-Cu sulfide deposits. In this paper we report zircon U-Pb age, olivine chemistry and integrated whole-rock chemical and isotopic compositions for the Erhongwa mafic-ultramafic intrusion. This intrusion is composed of lherzolites and gabbroic rocks. The U-Pb age of zircon from a large olivine gabbro sample from the intrusion is 283.1 ± 1.5 Ma, which indicates that the Erhongwa intrusion is contemporaneous with the early-Permian sulfide ore-bearing mafic-ultramafic intrusions in the central Tianshan region. Olivine from the Erhongwa intrusion contains up to 89.5 mol% Fo and 3000 ppm Ni, which are the highest among all known early-Permian mafic-ultramafic intrusions in the region. The occurrence of small sulfide inclusions in the most primitive olivine and significant Ni depletion in more fractionated olivine in the Erhongwa intrusion indicate that sulfide segregation took place during olivine fractional crystallization. The Erhongwa intrusive rocks are characterized by light REE enrichment relative to heavy REE, negative Nb anomalies, positive εNd (t = 283 Ma) values from + 6.3 to + 7.7, low initial 87Sr/86Sr ratios from 0.7034 to 0.7036, initial 206Pb/204Pb ratios from 17.8 to 17.9 and zircon εHf values from 8.0 to 15.5. The Erhongwa mafic-ultramafic rocks and coeval A-type granites in the region have similar isotopic compositions but the former have lower Th/Nb ratios than the latter. These similarities and differences are consistent with the interpretation that the Erhongwa magma formed by the mixing of a mafic magma derived from a depleted mantle with a granitic melt derived from a juvenile arc crust. It is deduced that sulfide saturation in the Erhongwa magmatic system was related to the magma mixing event at depth. More significant sulfide mineralization may

  11. From Purgatory to Paradise: The Volatile Life of Hawaiian Magma

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2014-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other

  12. Directional gear ratio transmissions

    NASA Technical Reports Server (NTRS)

    Lafever, A. E. (Inventor)

    1984-01-01

    Epicyclic gear transmissions which transmit output at a gear ratio dependent only upon the input's direction are considered. A transmission housing envelops two epicyclic gear assemblies, and has shafts extending from it. One shaft is attached to a sun gear within the first epicyclic gear assembly. Planet gears are held symmetrically about the sun gear by a planet gear carrier and are in mesh with both the sun gear and a ring gear. Two unidirectional clutches restrict rotation of the first planet gear carrier and ring gear to one direction. A connecting shaft drives a second sun gear at the same speed and direction as the first planet gear carrier while a connecting portion drives a second planet gear carrier at the same speed and direction as the first ring gear. The transmission's output is then transmitted by the second ring gear to the second shaft. Input is transmitted at a higher gear ratio and lower speed for all inputs in the first direction than in the opposite direction.

  13. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  14. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  15. Last Glacial-magnitude Ice-Rafted Debris Deposition and its Provenance in the Earliest Pleistocene Sub-Polar North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bailey, I.; Foster, G. L.; Wilson, P. A.; Jovane, L.; Storey, C.; Becker, J.; Bolton, C. T.

    2011-12-01

    We present the first spatial reconstruction of ice-rafted debris (IRD) deposition and its provenance in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma). Our flux estimates indicate that the magnitude of IRD deposition during MIS 100 was large with maximum inputs (at ~53 N) comparable to the Last Glacial Maximum (LGM). IRD provenance was determined using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb isotope composition (206Pb/204Pb and 207Pb/204Pb) of individual ice-rafted (>150μm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 are very similar to those deposited at the centre of the LGM IRD belt during ambient ice-rafting episodes (Gwiazda et al., 1996a). Based on a comparison to known Pb isotopic composition of potential source regions we propose that abundant iceberg calving sourced from large, multiple circum-North Atlantic Ocean ice-sheets (located on North America, Scandinavia, Greenland and possibly Britain) characterised MIS 100. However, unlike for the LGM, the locus of abundant iceberg melting and IRD deposition may have been situated north of the Last Glacial IRD-belt (~50 N) due to a reduced glacial meridional sea-surface temperature gradient relative to the late Pleistocene scenario.

  16. The Pb isotopic evolution of the Martian mantle constrained by initial Pb in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.

    2015-12-01

    The Pb isotopic compositions of maskelynite and pyroxene grains were measured in ALH84001 and three enriched shergottites (Zagami, Roberts Massif 04262, and Larkman Nunatuk 12011) by secondary ion mass spectrometry. A maskelynite-pyroxene isochron for ALH84001 defines a crystallization age of 4089 ± 73 Ma (2σ). The initial Pb isotopic composition of each meteorite was measured in multiple maskelynite grains. ALH84001 has the least radiogenic initial Pb isotopic composition of any Martian meteorite measured to date (i.e., 206Pb/204Pb = 10.07 ± 0.17, 2σ). Assuming an age of reservoir formation for ALH84001 and the enriched shergottites of 4513 Ma, a two-stage Pb isotopic model has been constructed. This model links ALH84001 and the enriched shergottites by their similar μ value (238U/204Pb) of 4.1-4.6 from 4.51 Ga to 4.1 Ga and 0.17 Ga, respectively. The model employed here is dependent on a chondritic μ value (~1.2) from 4567 to 4513 Ma, which implies that core segregation had little to no effect on the μ value(s) of the Martian mantle. The proposed Pb isotopic model here can be used to calculate ages that are in agreement with Rb-Sr, Lu-Hf, and Sm-Nd ages previously determined in the meteorites and confirm the young (~170 Ma) ages of the enriched shergottites and ancient, >4 Ga, age of ALH84001.

  17. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bi-directional transport

    USGS Publications Warehouse

    Zartman, R.E.; Haines, S.M.

    1988-01-01

    Version IV of plumbotectonics expands and refines the original model of Doe and Zartman (1979) and Zartman and Doe (1981) for explaining Pb (Sr, and Nd) isotopic systematics among major terrestrial reservoirs. A case for bi-directional transport among reservoirs is based on the observed isotopic compositions for different tectonic settings, and finds a rationale in the kinetics of plate tectonics. Chemical fractionation and radioactive decay create isotopic differences during periods of isolation of one reservoir from another, whereas dynamic processes allowing mixing between reservoirs tend to reduce these differences. Observed isotopic characteristics reflect a balance between these opposing tendencies and provide constraints on the extent and timing of fractionation and mixing processes. Plumbotectonics does not require interaction with a lower mantle or core reservoir over most of the Earth's lifetime, and, in fact, achieves a material balance consistent with no such exchange of material. Important evidence of the amount and timing of crustal recycling, and of the residence times of mantle heterogeneities lies in the coupled 207Pb 204Pb-206 Pb 204Pb systematics. We believe that examination of the published data base fully supports our contention of significant bi-directional transport of material among terrestrial reservoirs. Plumbotectonics allows us to explore many aspects of reservoir interaction, and to identify parameters that provide meaningful constraints on mantle-crust differentiation. We put forth a compromise fit to many of the model variables in version IV, which can serve as a reference for future work. ?? 1988.

  18. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona

    SciTech Connect

    Kempton, P.D.; Hawkesworth, C.J. ); Harmon, R.S. ); Moorbath, S. )

    1990-12-01

    Mafic to intermediate composition granulite xenoliths occur in Pliocene to Recent alkali basalts from the Geronimo Volcanic Field (GVF), southeastern Arizona, USA. The range of compositions and mineral assemblages observed suggests that the ultimate derivation of these rocks is from a variety of protoliths and that more than one mechanism has operated during the geologic evolution of the lower crust in this area. Two-pyroxene, two-feldspar granulites (meta-diorites) have major and trace element characteristics similar to estimates of post-Archaen lower crust. Low {sup 143}Nd/{sup 144}Nd values and Proterozoic Nd-depleted-mantle model ages (1.2-1.4 Ga) for these rocks require that Precambrian material exists in the lower crust of southeastern Arizona, either as the meta-diorites themselves or as older crust available for melting during production of the meta-diorite protoliths. K-feldspar-free granulites have more mafic compositions and their trace element characteristics are consistent with a cumulate origin. A negative correlation of {sup 208}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb suggests that the meta-cumulate granulites represent mixing between Basin and Range age lavas with older meta-diorite crust and is, thus, evidence for Cenozoic underplating of the lower crust beneath the Basin and Range.

  19. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Marchionni, Sara; Rosa, Davide; Giordano, Guido; Boari, Elena; Avanzinelli, Riccardo

    2009-01-01

    The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr-Nd-Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788-18.851 for 206Pb/204Pb, 15.685-15.701 for 207Pb/204Pb, and 39.048-39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc

  20. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  1. Triassic fluid mobilization and epigenetic lead-zinc sulphide mineralization in the Transdanubian Shear Zone (Pannonian Basin, Hungary)

    NASA Astrophysics Data System (ADS)

    Benkó, Zsolt; Molnár, Ferenc; Lespinasse, Marc; Billström, Kjell; Pécskay, Zoltán; Németh, Tibor

    2014-06-01

    A combined fluid inclusion, fluid inclusion plane, lead isotope and K/Ar radiometric age dating work has been carried out on two lead-zinc mineralizations situated along the Periadriatic-Balaton Lineament in the central part of the Pannonian Basin, in order to reveal their age and genetics as well as temporal-spatial relationships to other lead-zincfluorite mineralization in the Alp-Carpathian region. According to fluid inclusion studies, the formation of the quartzfluorite- galena-sphalerite veins in the Velence Mts is the result of mixing of low (0-12 NaCl equiv. wt. %) and high salinity (10-26 CaCl2 equiv. wt. %) brines. Well-crystallized (R3-type) illite associated with the mineralized hydrothermal veins indicates that the maximum temperature of the hydrothermal fluids could have been around 250 °C. K/Ar radiometric ages of illite, separated from the hydrothermal veins provided ages of 209-232 Ma, supporting the Mid- to Late-Triassic age of the hydrothermal fluid flow. Fluid inclusion plane studies have revealed that hydrothermal circulation was regional in the granite, but more intensive around the mineralized zones. Lead isotope signatures of hydrothermal veins in the Velence Mts (206Pb/204Pb = 18.278-18.363, 207Pb/204Pb = 15.622-15.690 and 208Pb/204Pb = 38.439-38.587) and in Szabadbattyán (206Pb/204Pb = 18.286-18.348, 207Pb/204Pb = 15.667-15.736 and 208Pb/204Pb = 38.552-38.781) form a tight cluster indicating similar, upper crustal source of the lead in the two mineralizations. The nature of mineralizing fluids, age of the fluid flow, as well as lead isotopic signatures of ore minerals point towards a genetic link between epigenetic carbonate-hosted stratiform-stratabound Alpine-type lead-zinc-fluorite deposits in the Southern and Eastern Alps and the studied deposits in the Velence Mts and at Szabadbattyán. In spite of the differences in host rocks and the depth of the ore precipitation, it is suggested that the studied deposits along the Periadriatic

  2. Isotopic Variations in the Post-Shield Lavas of Mauna Kea, Hualalai and Kohala: Evidence for a Koolau Component

    NASA Astrophysics Data System (ADS)

    Aciego, S.; Depaolo, D. J.; Eiler, J. M.; Hanano, D.; Weis, D.

    2005-12-01

    We have measured O, He, Pb, Sr, and Nd isotope ratios in olivine separates and whole rock powders from post-shield lavas of the island of Hawaii. These small-volume eruptions, which presumably correspond to small-volume source regions in the mantle, serve as high resolution probes of geochemical heterogeneity to complement data available from shield-stage tholeiites that originate in the primary melting region. He, Sr, and Nd ratios show small amplitude variations, well within the range of previously published data indicating little evidence for isotopically anomalous material in the melting region - either recycled sediments or oceanic crust. These data suggest that the plume does not contain large-amplitude isotopic variations at the scale of the source volume of post-shield lavas, which is likely to be about 100 times smaller than the volume averaged during main stage tholeiite production. However, the oxygen and lead isotope data indicate consistent, large amplitude differences between Hualalai and the other volcanoes. Samples from Hualalai have high δ18O (+5.5) and low 206Pb/204Pb (17.888-18.028). The only other volcanoes in the Hawaiian chain with such correlated extreme values are Koolau and Lanai, which have enriched radiogenic isotopic Sr and Nd compositions not seen in the data from Hualalai. Furthermore, correlated low helium values (8-10R/Ra)- high δ18O from Hualalai are consistent with a Koolau component in the source region for this volcano. The high δ18O contra-indicates a significant lithospheric interaction that would probably decrease δ18O rather than increase it to the values we measure. Samples from Mauna Kea and Kohala are consistently lower in δ18O (+4.8-5.12) than those from Hualalai, and fall within the range of previously measured values for late shield-stage lavas. The multiple isotope systems measured on the same post-shield samples indicate that simple models for Kea and Loa trends based on main stage tholeiitic lavas do not capture

  3. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  4. Mantle flow deduced from geochemical variations in alkaline magmas of HIMU affinity from continent to ocean, northwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Panter, K. S.; McIntosh, W. C.

    2011-12-01

    Cenozoic alkaline magmatism in the northwestern Ross Sea (NWRS) region has been recently expanded to include numerous volcanic seamounts on the continental shelf and hundreds more located within the oceanic Adare Basin [1]. The seamounts are Pliocene in age and petrogenetically akin to volcanism on land in the West Antarctic rift system. In general, trace element and Sr-Nd-Pb isotopic data resemble those from ocean islands with HIMU affinity. Apart from the well studied Cameroon volcanic line in West Africa, the NWRS is a unique setting for comparing contemporary alkaline volcanism bridging the transition from oceanic to thinned continental lithosphere adjacent to the thick East Antarctic craton. The geochemistry of NWRS basalts, extending to the northeast from the Mariner Glacier to the Adare Peninsula and into the Adare Basin (~168°E 73°S to ~173°E 70°S), shows a remarkable orderly increase in degree of silica-undersaturation, P2O5, Nb, Zr, Sr contents and La/Yb, Nb/Y, 143Nd/144Nd and 206Pb/204Pb ratios, coupled with a decrease in Ba/La and 87Sr/86Sr ratios, suggesting they were generated from a common heterogeneous mantle source at progressively smaller melt fractions from land to sea. Geochemical variations coincide with northward age propagation in magmatism and southward increase in rifting since the middle Miocene [2]. We propose that the HIMU-like signature in both continental and oceanic sectors is derived from metasomatized lithosphere, whereby the most easily fusible components contribute to the smaller degree melts in greater proportions ocean-ward. Melting may have been triggered by influx of warm asthenosphere initially beneath the continent and then northward by edge-driven convection and channelized by focused extension [3] into the Adare Basin where the metasomatized source is more dispersed. [1] Panter & Castillo (2008) USGS Open-File Report 2007-1047, 069. [2] Granot et al. (2010) Geochem. Geophys. Geosyst. 11(8). [3] Huerta & Harry (2007

  5. U-series, SrNdPb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface

    NASA Astrophysics Data System (ADS)

    Hoogewerff, J. A.; Van Bergen, M. J.; Vroon, P. Z.; Hertogen, J.; Wordel, R.; Sneyers, A.; Nasution, A.; Varekamp, J. C.; Moens, H. L. E.; Mouchel, D.

    1997-03-01

    We present U-series, SrNdz.sbnd;Pb isotope and trace-element results of a regional study of geochemical systematics across an island arc-continent collision zone in the East Sunda Arc of Indonesia. Samples from four active volcanoes exhibit a striking compositional range from low-K tholeiitic to ultrapotassic, but all are characterised by high 87Sr/86Sr (0.7053-0.7067), radiogenic lead isotope ratios ( 206Pb/204Pb = 18.99-19.15), low ( 230Th) /( 232Thz) (0.66-0.85), and low 143Nd/144Nd (0.51255-0.51272), except for high 143Nd/144Nd (>0.51286) at the volcanic front. Low ( 230Th) /( 232Th) ratios are also found in terrigenous sediments in front of the arc, which, in combination with Srz.sbnd;Ndz.sbnd;Pb isotopic constraints, indicates that subducted continental material contributes to magma sources in this arc sector. The volcanoes close to the trench show a large excess of 238U over . 230Th (up to 80%) and of 226Ra over 230Th (up to 800%). In addition, they are enriched in elements thought to be mobile in hydrous fluids during slab-wedge transfer, such as Ba, Pb, and Sr. In contrast, Uz.sbnd;Thz.sbnd;Ra systematics are close to equilibrium in the volcanoes behind the front. Abundance patterns of incompatible trace elements in these rocks are similar to those of the terrigenous sediments, so that, in comparison with the arc-front lavas, they possess low Ba/La, Ba/Th, La/Th, Pb/Ce, and Zr/Nb. Higher concentration levels and less interelement fractionation form conspicuous differences with the front volcanics. Our combined isotopic and trace element data are consistent with three-component mixing whereby a slab-derived hydrous fluid and a siliceous melt are both added to the sub-arc mantle source. The hydrous fluid largely controls the input in the shallow part of the subduction zone, whereas the siliceous melt dominates the flux at deeper levels. Sedimentary material is considered to be the primary source of both. The large U-Th-Ra disequilibria at the front

  6. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.

    PubMed

    Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong

    2015-01-20

    A novel "wave" signal-smoothing and mercury-removing device has been developed for laser ablation quadrupole and multiple collector ICPMS analysis. With the wave stabilizer that has been developed, the signal stability was improved by a factor of 6.6-10 and no oscillation of the signal intensity was observed at a repetition rate of 1 Hz. Another advantage of the wave stabilizer is that the signal decay time is similar to that without the signal-smoothing device (increased by only 1-2 s for a signal decay of approximately 4 orders of magnitude). Most of the normalized elemental signals (relative to those without the stabilizer) lie within the range of 0.95-1.0 with the wave stabilizer. Thus, the wave stabilizer device does not significantly affect the aerosol transport efficiency. These findings indicate that this device is well-suited for routine optimization of ICPMS, as well as low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. With the wave signal-smoothing and mercury-removing device, the mercury gas background is reduced by 1 order of magnitude. More importantly, the (202)Hg signal intensity produced in the sulfide standard MASS-1 by laser ablation is reduced from 256 to 0.7 mV by the use of the wave signal-smoothing and mercury-removing device. This result suggests that the mercury is almost completely removed from the sample aerosol particles produced by laser ablation with the operation of the wave mercury-removing device. The wave mercury-removing device that we have designed is very important for Pb isotope ratio and accessory mineral U-Pb dating analysis, where removal of the mercury from the background gas and sample aerosol particles is highly desired. The wave signal-smoothing and mercury-removing device was applied successfully to the determination of the (206)Pb/(204)Pb isotope ratio in samples with low Pb content and/or high Hg content. PMID:25511501

  7. Contribution of lead from calcium supplements to blood lead.

    PubMed Central

    Gulson, B L; Mizon, K J; Palmer, J M; Korsch, M J; Taylor, A J

    2001-01-01

    We conducted a case-control study to determine the contribution of lead to blood from consumption of calcium supplements approximating the recommended daily intakes over a 6-month period. Subjects were males and females ages 21 to 47 years (geometric mean 32 years) with a geometric mean blood lead concentration of 2.5 microg/dL. They were subdivided into three groups. One treatment group (n = 8) was administered a complex calcium supplement (carbonate/phosphate/citrate) and the other treatment group (n = 7) calcium carbonate. The control group (n = 6) received no supplement. The lead isotopic compositions of the supplements were completely different from those of the blood of the subjects, allowing us easily to estimate contribution from the supplements. The daily lead dose from the supplements at 100% compliance was about 3 microg Pb. Three blood samples were taken at 2-month intervals before treatment to provide background values, and three were taken during treatment. Subjects in the treatment group were thus their own controls. Lead isotopic compositions for the complex supplement showed minimal change during treatment compared with pretreatment. Lead isotopic compositions in blood for the calcium carbonate supplement showed increases of up to 0.5% in the (206)Pb/(204)Pb ratio, and for all isotope ratios there was a statistically significant difference between baseline and treatment (p < 0.005). The change from baseline to treatment for the calcium carbonate supplement differed from that for both the control group and the group administered the complex supplement. Blood lead concentrations, however, showed minimal changes. Variations in blood lead levels over time did not differ significantly between groups. Our results are consistent with earlier investigations using radioactive and stable lead tracers, which showed minimal gastrointestinal absorption of lead in the presence of calcium (+/- phosphorus) in adults. Even though there is no discernible increase in

  8. Geochemical and tectonic implications on plate-interface evolution achieved from high-pressure ultramafic rocks in mélange settings

    NASA Astrophysics Data System (ADS)

    Cannaò, E.; Agostini, S.; Scambelluri, M.; Tonarini, S.

    2014-12-01

    Geochemical studies of fluid-mobile elements (FME) joined with B, Sr and Pb isotopic analyses of high-pressure mélanges terranes help constraining tectonic processes and mass transfer during accretion of slab and suprasubduction mantle in plate-interface domains. Here we focus on ultramafic rocks from two plate interface settings: (I) metasediment-dominated mélange (Cima di Gagnone, CdG, Adula Unit), where eclogite-facies de-serpentinized garnet peridotite and chlorite harzburgite lenses are embedded in paraschist; (II) dominated by high-pressure serpentinite (Erro-Tobbio, ET, and Voltri Units, VU, Ligurian Alps). CdG metaperidotite shows low [B], negative δ 11B and high Sr and Pb isotopic ratios. As, Sb loss from metasediment and gain by garnet and chlorite metaperidotite points to exchange between the two systems. Presence of As and Sb in eclogite-facies peridotite minerals and preferential low-T mobility of such elements suggest that exchange was during early subduction burial and prior to eclogitization. Based on high [B], positive δ11B, oxygen and hydrogen isotope, the ET serpentinties were recently interpreted as supra-subduction mantle flushed by slab fluids (Scambelluri & Tonarini, 2012, Geology, 40, 907-910). Their 206Pb/204Pb and 87Sr/86Sr isotope ratios range between 18.300-18.514 and 0.7048-0.7060, respectively. Compared with ET rocks, VU serpentinites have higher As, Sb (up to 1.3 and 0.39 ppm, respectively) and are enriched in radiogenic Sr (up to 0.7105 87Sr/86Sr). This signature reflects interaction with fluids that exchanged with sedimentary rocks, either in outer rise environments or during accretion atop the slab. In the above cases, the serpentinized mantle rocks fingerprint interaction with fluids from different sources, indicating a timing of accretion to plate interface domains. We provide evidence that serpentinized mantle slices of different size and provenance (slab or wedge) accreted to plate interface domains since early subduction

  9. Assessing the origin of old apparent ages derived by Pb stepwise leaching of vein-hosted epidote from Mount Isa, northwest Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Duncan, Robert J.; Maas, Roland

    2014-12-01

    Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small

  10. New isotopic data for Mid-Atlantic Ridge basalts from the Arkhangelsk-Sierra Leone fracture zone (central Atlantic)

    NASA Astrophysics Data System (ADS)

    Skolotnev, S. G.

    2014-11-01

    This study presents Sr, Nd, and Pb isotopic data for basalts collected from the MAR axis between the Arkhangelsk transform fault and 5° N. The isotopic data for basalts from the MAR segment between the Arkhangelsk and Vernadsky faults indicate the presence of N-MORB depleted tholeiites, which are similar to some basalts from the MAR segment between the Cape Verde and Marathon faults, at the location of the 14° N geochemical anomaly. Broad positive along-axis gradients in isotopic values (and negative for 143Nd/144Nd) are observed from south to north, superimposed by isotopic variations in the 9.6° N anomalous basalts. A north-south increase in (La/Sm) n suggests a smaller degree of partial melting. The range of isotopic variations in basalts south of the Bogdanov fault is similar to that of basalts recovered at the more southerly 1.7° N anomaly. P-MORB compositions with a large proportion of the HIMU-like component are widely distributed in the vicinity of the 5.4° N rise. The isotopic ratios decrease gradually (with increasing 143Nd/144Nd) farther to the north toward the Bogdanov transform fault. A similar trend is observed for (La/Sm) n . Therefore, the basalts recovered to the south and north of Bogdanov fault have different sources of radiogenic isotope enrichment: 5.4° N and 9.6° N rises. Basalts recovered to the north of the Vernadsky transform fault have higher 143Nd/144Nd and lower 206Pb/204Pb at similar 87Sr/86Sr ratios. We conclude that the localized manifestations of enriched basalts with isotopic characteristics close to the HIMU-like plume-derived component, including the 14° N and 1.7° N geochemical anomalies, may have been formed by microplumes entrained at the base of the upper mantle by asthenospheric mantle flows arranged into a system of cylindrical convective cells, 450-500 km in diameter. Northward of the Bogdanov transform, the upper mantle is contaminated with lower continental crust material, which was entrained during tectonic

  11. Variable compression ratio control

    SciTech Connect

    Johnson, K.A.

    1988-04-19

    In a four cycle engine that includes a crankshaft having a plural number of main shaft sections defining the crankshaft rotational axis and a plural number of crank arms defining orbital shaft sections, a plural number of combustion cylinders, a movable piston within each cylinder, each cylinder and its associated piston defining a combustion chamber, a connecting rod connecting each piston to an orbital shaft section of the crankshaft, and a plural number of stationary support walls spaced along the crankshaft axis for absorbing crankshaft forces: the improvement is described comprising means for adjustably supporting the crankshaft on the stationary walls such that the crankshaft rotational axis is adjustable along the piston-cylinder axis for the purpose of varying a resulting engine compression ratio; the adjustable support means comprising a circular cavity in each stationary wall. A circular disk swivably is seated in each cavity, each circular disk having a circular opening therethrough eccentric to the disk center. The crankshaft is arranged so that respective ones of its main shaft sections are located within respective ones of the circular openings; means for rotating each circular disk around its center so that the main shaft sections of the crankshaft are adjusted toward and away from the combustion chamber; a pinion gear on an output end of the crankshaft in axial alignment with and positioned beyond the respective ones of the main shaft sections, and a rotary output gear located about and engaged with teeth extending from the pinion gear.

  12. Origin of the Honolulu Volcanics Series (Oahu, Hawaii) From High Precision Pb Isotope Data

    NASA Astrophysics Data System (ADS)

    Fekiacova, Z.; Abouchami, W.; Galer, S. J.; Garcia, M. O.

    2005-12-01

    The origin and sources of rejuvenated volcanism in Hawaii has been long debated with the depleted isotopic features commonly attributed to assimilation of the 110 Ma-old Pacific oceanic lithosphere underlying Hawaii. Alternatively, it has been recently suggested that this depleted component is a long-lived feature intrinsic to the Hawaiian plume [1, 2]. Here, we report triple-spike Pb isotope data on lavas erupted from the different evolutionary stages of Koolau volcano, including the rejuvenated Honolulu Volcanics Series (HVS), the main shield stage lavas, sampled by the Koolau Scientific Drilling Project (KSDP) and late-shield Makapuu subaerial lavas [3]. These data demonstrate the existence of compositional source variations throughout the evolution of the volcano. In addition, we obtained new Pb isotope data on basalts from ODP Site 843, located 225 km southwest of Honolulu which sampled 110 Ma-old Pacific crust. If these data are representative of the local oceanic crust and mantle, then the Hawaiian Pacific lithosphere is not a viable source component for the rejuvenated Honolulu Volcanics. Despite a narrow range in Pb isotope ratios, both the KSDP and HVS lavas define linear isotope arrays in Pb isotope space. While the two arrays have distinct slopes in 208Pb-206Pb space, suggesting the involvement of at least three Pb components, the two datasets overlap in 207Pb-206Pb space due to the extremely limited variation (< 1per mil) in 207Pb/204Pb ratios. By comparison, ODP site 843 basalts have significantly more radiogenic Pb isotopic compositions and form a linear Pb isotope array distinct from that of the HVS, although lying within the field of present-day EPR MORB [4]. Thus, there appears to be no major differences in the Pb isotopic character of ''old'' vs. ''young'' Pacific MORB. We infer that three distinct Pb components were involved in the source of Koolau: (1) an EM-type component, corresponding to the so-called ''Koolau component'', predominantly

  13. Origin and temporal evolution of Kóolau Volcano, Hawaíi: Inferences from isotope data on the Kóolau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843

    NASA Astrophysics Data System (ADS)

    Fekiacova, Z.; Abouchami, W.; Galer, S. J. G.; Garcia, M. O.; Hofmann, A. W.

    2007-09-01

    The "Kóolau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapúu section of Kóolau Volcano. The 679 m-deep Kóolau Scientific Drilling Project (KSDP) allows the long-term evolution of Kóolau Volcano to be reconstructed and the longevity of the "Kóolau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ˜ 2.8 m.y.), and from ˜ 110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawaíi. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/ 204Pb- 206Pb/ 204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapúu" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapúu" component upsection. Thus, the "Makapúu" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapúu and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise

  14. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    USGS Publications Warehouse

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  15. Plume-orogenic lithosphere interaction recorded in the Haladala layered intrusion in the Southwest Tianshan Orogen, NW China

    NASA Astrophysics Data System (ADS)

    He, Peng-Li; Huang, Xiao-Long; Xu, Yi-Gang; Li, Hong-Yan; Wang, Xue; Li, Wu-Xian

    2016-03-01

    The plume-orogenic lithosphere interaction may be common and important for the generation of large igneous provinces. The information regarding such a process is recorded by the Haladala gabbroic intrusion (~300 Ma), the largest layered ultramafic-mafic intrusion hosting V-Ti magnetite deposits in the Southwest Tianshan Orogen, NW China. The Haladala gabbros exhibit unfractionated chondrite-normalized rare earth element patterns with negative Nb and Ta anomalies and positive Pb anomaly on the primitive mantle-normalized multielement variation diagram. They are characterized by low initial Sr isotopes, slightly decoupled but high positive bulk rock ɛNd(t) and ɛHf(t), and high 207Pb/204Pb and 208Pb/204Pb relative to 206Pb/204Pb, delineating a DUPAL signature in the sources. The Haladala gabbros cannot be arc or postcollisional magmatism, given the lack of hydrous minerals and low K contents, respectively. This is further supported by the relatively low oxygen fugacity required for the gradual enrichment of V-Ti magnetite during the magma fractionation and by an overall anhydrous mantle source suggested by troctolite mineral assemblage (olivine + plagioclase). The emplacement age of the Haladala gabbros is identical to that of the Wajilitag kimberlites in the Tarim's interior, which have been interpreted as the first magmatic expression of the Tarim mantle plume. We thus propose that the Haladala gabbroic intrusion was generated in a hybrid geodynamic setting in which the Southwest Tianshan Orogen was impacted by an upwelling mantle plume. In this sense, the Haladala layered gabbroic intrusion records the early phase of magmatism of the Tarim plume, which was preferentially emplaced in a lithospheric weak zone.

  16. Isotope Compositions of Submarine North Kona Tholeiitic Lavas, Hualalai Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Tagami, T.; Kani, T.; Hanan, B. B.

    2006-12-01

    Four remote and manned submersible dives examined the deep submarine portion of the North Kona region, offshore Hualalai during 2001 and 2002 JAMSTEC cruises. The dives encountered compositionally homogeneous tholeiitic pillow lavas that are interpreted to have erupted from Hualalai during its shield stage. Hualalai volcano, the westernmost volcano on the Island of Hawaii is presently in the post-shield alkalic stage and most of its subaerial surface is covered by alkalic basalt. Difficulty accessing buried tholeiite is one reason that compositional data from the volumetrically dominant stage in the volcano's edifice are scarce. To identify source materials involved in shield stage of Hualalai can provide important information about the isotopic variation and evolution during Hawaiian volcano growth. We report the results of Hf, Pb, Sr, Nd isotopic compositions of 34 tholeiitic lava samples collected from submarine North Kona region. Hf, Nd, Sr isotopic compositions of the submarine North Kona lavas are similar to Mauna Loa tholeiites, and define a clear mixing line showing that the mantle source consists of at least two components. Some of new Pb isotopic data have higher 207Pb/204Pb and ^{208}Pb/204Pb, for a given 206Pb/204Pb, than published data from Mauna Loa and Hualalai. The trend emerges towards to 'Kea'-like component. Although in general Hawaiian basalts require more than two components to account for their geochemical variations, the isotopic variations in Hualalai shield lavas appear dominated by a mixture of two components: 'Koolau'-like enriched component and a 'Kea'-like depleted component, and contributed to relatively higher proportion of the 'Kea'-like component than the Mauna Loa.

  17. The evolution of climatically driven weathering inputs into the western Arctic Ocean since the late Miocene: Radiogenic isotope evidence

    NASA Astrophysics Data System (ADS)

    Dausmann, Veit; Frank, Martin; Siebert, Christopher; Christl, Marcus; Hein, James R.

    2015-06-01

    We present the first continuous records of dissolved radiogenic neodymium, hafnium, and lead isotope compositions of deep waters in the western Arctic Ocean, spanning the time from the late Miocene to the present. The data were obtained from three hydrogenetic ferromanganese (Fe-Mn) crusts recovered from seamounts along the northernmost edge of the Northwind Ridge in the Canada Basin from water depths of 2200, 2400, and 3600 m. Dating the crusts using cosmogenic 10Be documents undisturbed present-day growth surfaces and yields growth rates between 27 and 2.2 mm/Myr. The Nd (Hf) isotope time series of the three crusts show similar evolutions from εNd (εHf) of -8.5 (+4) in the oldest parts to -11.5 (-4) at the surfaces and a pronounced trend to less radiogenic values starting at ∼4 Ma. This coincided with a trend of the Pb isotope evolution towards more radiogenic 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb. It is inferred that climatically controlled changes in weathering regime and sediment transport along the North American continent were responsible for the major change of the radiogenic isotope composition of the Arctic Deep Water (ADW) in the Canada Basin. Based on these records we conclude that weathering inputs from the North American continent linked to enhanced glacial conditions started to increase and to influence the radiogenic isotope composition of ADW ∼4 million years ago and were further intensified at ∼1 Ma. These new time series differ markedly from the radiogenic isotope evolution of Arctic Intermediate Water recorded on the Lomonosov Ridge and suggest that much larger isotopic differences between the water masses of the Arctic Ocean than today prevailed in the past.

  18. Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: A long-lasting magmatism since continental collision through slab steepening

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Niu, Yaoling; Mo, Xuanxue

    2016-03-01

    In this paper we present a new model that can explain the large zircon age spectrum of ~ 510 - 420 Ma within a single sample from the Gangcha (Gcha) biotite granodiorite and the Huangyuan (HY) two-mica monzogranite on the northern Tibetan Plateau. The large age spread recorded in zircons is characteristic of granitoid samples from the studied region, which is best explained by the long-lasting magmatism since the onset of continental collision at ~ 500 Ma, followed by slab steepening and the ultimate slab break-off at ~ 450 Ma. These granitoids have a large major and trace element compositional variation, but limited initial Sr (ISr[450] = 0.709 to 0.715), Nd (ԐNd[450] = - 6.5 to - 3.7), Hf (ԐHf[450] = - 4.3 to 1.5) and Pb (206Pb/204Pb[450] = 17.70 to 17.17; 207Pb/204Pb[450] = 15.60 to 15.69; 208Pb/204Pb[450] = 38.04 to 38.73) isotopic variation. The small negative whole rock ԐNd[450] and ԐHf[450] values are most consistent with the granitoid source being dominated by subducted seafloor materials. The inherited zircons with large negative ԐHf[450] values (e.g. - 50) are indicative of input from the lower continental crust and subducted sediments. The correlated variations among major elements, trace elements and radiogenic isotopes are best interpreted as reflecting melting-induced mixing of a compositionally heterogeneous source with superimposed effect of varying extent of fractional crystallization and crustal assimilation. The inherited zircons of Palaeo-Proterozoic age and the Archean crustal model ages signify the involvement of ancient basement rocks.

  19. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  20. Formation and age of sphalerite mineralization in carbonate rocks of Bajocian age in the Swiss Jura Mountains: evidence of Mesozoic hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Efimenko, Natalia; Schneider, Jens; Spangenberg, Jorge E.; Chiaradia, Massimo; Adatte, Thierry; Föllmi, Karl B.

    2014-06-01

    A combination of petrographic and geochemical techniques was applied to better constrain the origin and evolution of the fluid systems responsible for the formation of disseminated, Cd-rich (up to 0.6 wt%), sphalerite (ZnS) mineralization in the northeastern part of the Jura Mountains, Switzerland. The Rb-Sr ages of sphalerite samples indicate that a main phase of sphalerite formation occurred near the boundary between the late Middle and early Late Jurassic, at around 162 Ma. The negative δ34S values (-22.3 to -5.3 ‰) suggest that biogenic sulfide sulfur was involved in ZnS precipitation. The strontium isotope composition is more radiogenic than that of contemporaneous seawater, reflecting the interaction of mineralizing fluids with silicate rocks. Lead isotope signatures are very uniform (206Pb/204Pb = 18.63-18.67, 207Pb/204Pb = 15.63-15.64, 208Pb/204Pb = 38.51-38.63), indicating an isotopically well-homogenized fluid system. The basement rocks underlying the Jurassic strata are considered to be the main source of metals for the sphalerite mineralization. The migration of deep-sourced hydrothermal saline metal-bearing fluids into the Bajocian host carbonates containing sedimentary reduced sulfur resulted in the precipitation of sulfides. The period of sphalerite formation near the Middle-Late Jurassic boundary is characterized by enhanced tectonic and hydrothermal activity in Europe, related to the opening of the Central Atlantic and tectonic/thermal subsidence during spreading of the Alpine Tethys. Our study provides evidence that the Bajocian carbonate rocks in the Jura Mountains area were affected by the circulation of deep-sourced metal-bearing hydrothermal fluids in response to these continent-wide tectonothermal events. The presence of sphalerite mineralization and associated geochemical anomalies in Zn and Cd contents in carbonate rocks may also be used to trace basement features.

  1. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.

    2013-10-01

    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr <0.70305. The revised isotope composition also suggests that this depleted component may contribute to LOA and KEA trend shield stage Hawaiian lavas, consistent with the rejuvenated source being part of the Hawaiian plume and not entrained upper mantle. The isotope systematics of rejuvenated magmas along the Kaula-Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.

  2. Zircon U-Pb age, geochemical, and Sr-Nd-Pb isotopic constraints on the origin of alkaline intrusions in eastern Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Hu, Ruizhong; Gao, Shan; Wang, Tao; Feng, Guangying; Qi, Youqiang; Coulson, Ian M.; Lai, Shaocong

    2013-08-01

    Alkaline intrusions in the eastern Shandong Province consist of quartz monzonite and granite. U-Pb zircon ages, geochemical data, and Sr-Nd-Pb isotopic data for these rocks are reported in the present paper. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 114.3 ± 0.3 to 122.3 ± 0.4 Ma for six samples of the felsic rocks. The felsic rocks are characterised by a wide range of chemical compositions (SiO2 = 55.14-77.63 wt. %, MgO = 0.09-4.64 wt. %, Fe2O3 = 0.56-7.6 wt. %, CaO = 0.40-5.2 wt. %), light rare earth elements (LREEs) and large ion lithophile elements (LILEs) (i.e., Rb, Pb, U) enrichment, as well as significant rare earth elements (HREEs) and heavy field strength (HFSEs) (Nb, Ta, P and Ti) depletion, various and high (87Sr/86Sr) i ranging from 0.7066 to 0.7087, low ɛ Nd (t) values from -14.1 to -17.1, high neodymium model ages (TDM1 = 1.56-2.38Ga, TDM2 = 2.02-2.25Ga), 206Pb/204Pb = 17.12-17.16, 207Pb/204Pb = 15.44-15.51, and 208Pb/204Pb = 37.55-37.72. The results suggested that these rocks were derived from an enriched crustal source. In addition, the alkaline rocks also evolved as the result of the fractionation of potassium feldspar, plagioclase, +/- ilmenite or rutile and apatite. However, the alkaline rocks were not affected by crustal contamination. Moreover, the generation of the alkaline rocks can be attributed to the structural collapse of the Sulu organic belt due to various processes.

  3. Expanded Geochemical Analysis of the Eocene Crescent Formation, Olympic Peninsula, Washington

    NASA Astrophysics Data System (ADS)

    Haileab, B.; Denny, A.; Harrison, B. K.

    2012-12-01

    The Coast Range Volcanic Province (Siletzia) of Washington and Oregon formed adjacent to western North America in the early Eocene, and consists of an estimated 250,000 km3 of predominantly tholeiitic flows. In the Crescent Formation, which is locally divided into a submarine lower member and a subaerial upper member, this basaltic flow sequence reaches stratigraphic thicknesses of up to 16 km. A consensus has yet to be reached on the origin of this Large Igneous Province (LIP); proposed mechanisms include slab windows, margin-parallel rifting, and the action of the Yellowstone hotspot. Outcrop evidence for shallow-water depositional environments in the Lower Crescent argues against the member's origin as an abducted portion of oceanic crust, as has also been proposed, and further supports the widely held view that the Upper and Lower Crescent members together represent a nearly continuous eruptive sequence. Rare Earth Element plots for both members display three distinct trends that suggest high and low degrees of both mantle partial melting and fractional crystallization. We also present here what we believe are the first isotopic values for the Lower Crescent (0.512941<143Nd/144Nd<0.512997, 0.703287<87Sr/86Sr<0.703678, 18.907<206Pb/204Pb<19.240, 15.599<207Pb/204Pb<15.661, 38.521<208Pb/204Pb<39.034), which are similar to previous isotopic data collected for the Upper Crescent and suggest a plume component in the mantle source for these rocks.

  4. U-Th-Pb systematics in dolomites and whole-rock dolostones from Burlington-Keokuk Formations, Iowa, Illinois, and Missouri

    SciTech Connect

    Hoff, J.A.; Hanson, G.N.; Meyers, W.J.

    1988-01-01

    Although the U-Th-Pb system is a powerful geochemical tracer, there has been little application to carbonate diagenetic systems, primarily due to difficulties in analyzing trace quantities of lead. Procedures developed in this study have allowed routine analysis of 20 mg samples with lead concentrations of 1 ppm. These procedures used trace element and isotopic data on high-purity dolomite separated and whole-rock dolostones from the Burlington-Keokuk formations (Osagian). Lead-concentrations in the whole-rock dolostones (those analyzed were > 90% dolomite) ranged from 3 to 10 ppm. Although dolomite is the dominant mineral present in these whole rocks, in certain samples a significant proportion of the lead resides in other phases. To place constraints on the origin of lead in the dolomites, it has been necessary to separate carefully the dolomite from the whole rocks prior to analysis. The present isotopic composition of lead in the earliest generation of dolomite is similar to that reported for other sedimentary rocks in the Mid-Continent region and initial isotopic compositions (calculated at 340 Ma) approximate model ..mu.. = 8(/sup 238/U//sup 204Pb/) and kappa = 4(/sup 232/Th//sup 238/U) growth curves. At present, the source of lead in this generation of dolomite cannot be strictly identified. Possible sources include the precursor carbonates and surround