Science.gov

Sample records for 21-cm detection rate

  1. Detecting the 21 cm forest in the 21 cm power spectrum

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline

    2014-07-01

    We describe a new technique for constraining the radio-loud population of active galactic nuclei at high redshift by measuring the imprint of 21 cm spectral absorption features (the 21 cm forest) on the 21 cm power spectrum. Using semi-numerical simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, k ≳ 0.5 Mpc- 1. By simulating foregrounds and noise for current and potential radio arrays, we find that a next-generation instrument with a collecting area of the order of ˜ 0.1 km2 (such as the Hydrogen Epoch of Reionization Array) may separately constrain the X-ray heating history at large spatial scales and radio-loud active galactic nuclei of the model we study at small ones. We extrapolate our detectability predictions for a single radio-loud active galactic nuclei population to arbitrary source scenarios by analytically relating the 21 cm forest power spectrum to the optical depth power spectrum and an integral over the radio luminosity function.

  2. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  3. Enhanced Detectability of Pre-reionization 21 cm Structure

    NASA Astrophysics Data System (ADS)

    Alvarez, Marcelo A.; Pen, Ue-Li; Chang, Tzu-Ching

    2010-11-01

    Before the universe was reionized, it was likely that the spin temperature of intergalactic hydrogen was decoupled from the cosmic microwave background (CMB) by UV radiation from the first stars through the Wouthuysen-Field effect. If the intergalactic medium (IGM) had not yet been heated above the CMB temperature by that time, then the gas would appear in absorption relative to the CMB. Large, rare sources of X-rays could inject sufficient heat into the neutral IGM, so that δTb >0 at comoving distances of tens to hundreds of Mpc, resulting in large 21 cm fluctuations with δTb ~= 250 mK on arcminute to degree angular scales, an order of magnitude larger in amplitude than that caused by ionized bubbles during reionization, δTb ~= 25 mK. This signal could therefore be easier to detect and probe higher redshifts than that due to patchy reionization. For the case in which the first objects to heat the IGM are QSOs hosting 107 M sun black holes with an abundance exceeding ~1 Gpc-3 at z ~ 15, observations with either the Arecibo Observatory or the Five Hundred Meter Aperture Spherical Telescope could detect and image their fluctuations at greater than 5σ significance in about a month of dedicated survey time. Additionally, existing facilities such as MWA and LOFAR could detect the statistical fluctuations arising from a population of 105 M sun black holes with an abundance of ~104 Gpc-3 at z ~= 10-12.

  4. e-MERLIN 21cm constraints on the mass-loss rates of OB stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-08-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the COBRaS Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜ 70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜ 4.4 - 4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲ 2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and LBV candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 days, we detect a ˜ 69% increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  5. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  6. 21-cm signature of the first sources in the Universe: Prospects of detection with SKA

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-04-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and epoch of reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e., the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible make a ˜9 - σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 hours. The exact value of the signal to noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve a SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  7. 21-cm signature of the first sources in the Universe: prospects of detection with SKA

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-07-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and Epoch of Reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e. the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible to make a ˜9σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 h. The exact value of the signal-to-noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve an SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  8. On the Detection of Global 21-cm Signal from Reionization Using Interferometers

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Subrahmanyan, Ravi; Udaya Shankar, N.; Raghunathan, A.

    2015-12-01

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to global signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.

  9. Reionization and beyond: detecting the peaks of the cosmological 21 cm signal

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Ewall-Wice, Aaron; Hewitt, Jacqueline

    2014-04-01

    The cosmological 21 cm signal is set to become the most powerful probe of the early Universe, with first-generation interferometers aiming to make statistical detections of reionization. There is increasing interest also in the pre-reionization epoch when the intergalactic medium (IGM) was heated by an early X-ray background. Here, we perform parameter studies varying the halo masses capable of hosting galaxies and their X-ray production efficiencies. These two fundamental parameters control the timing and relative offset of reionization and IGM heating, making them the most relevant for predicting the signal during both epochs. We also relate these to popular models of warm dark matter cosmologies. For each parameter combination, we compute the signal-to-noise ratio (S/N) of the large-scale (k ˜ 0.1 Mpc-1) 21 cm power for both reionization and X-ray heating for a 2000 h observation with several instruments: 128 tile Murchison Wide Field Array (MWA128T), a 256 tile extension (MWA256T), the Low Frequency Array (LOFAR), the 128 element Precision Array for Probing the Epoch of Reionization (PAPER), and the second-generation Square Kilometre Array (SKA). We show that X-ray heating and reionization in many cases are of comparable detectability. For fiducial astrophysical parameters, MWA128T might detect X-ray heating, thanks to its extended bandpass. When it comes to reionization, both MWA128T and PAPER will also only achieve marginal detections, unless foregrounds on larger scales can be mitigated. On the other hand, LOFAR should detect plausible models of reionization at S/N > 10. The SKA will easily detect both X-ray heating and reionization.

  10. The existence and detection of optically dark galaxies by 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Disney, M. J.; Minchin, R. F.; Auld, R.; Smith, R.

    2006-05-01

    One explanation for the disparity between cold dark matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21-cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper, we use an analytical model of galaxy formation, consistent with CDM, to first show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous `blind' HI surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21-cm blind surveys [Arecibo Legacy Fast ALFA (ALFALFA) survey and Arecibo Galactic Environments Survey (AGES)] using the Arecibo multibeam instrument which should find large numbers of dark galaxies if they exist.

  11. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    PubMed

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes. PMID:16384131

  12. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  13. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  14. 21-cm Intensity Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; GBT-HIM Team

    2016-01-01

    The redshifted 21-cm emission from neutral hydrogen has emerged as a powerful probe for large-scale structure; a significant fraction of the observable universe can be mapped in the Intensity Mapping regime out to high redshifts. At redshifts around unity, the 21-cm emission traces the matter distribution and can be used to measure the Baryon Acoustic Oscillation (BAO) signature and constrain dark energy properties. I will describe our HI Intensity Mapping program at the Green Bank Telescope (GBT), aiming at measuring the 21cm power spectrum at z=0.8. A 800-MHz multi-beam focal-plane array for the GBT is currently under construction in order to facilitate a large-scale survey for BAO and the redshift-space distortion measurements for cosmological constraints.

  15. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA

    NASA Astrophysics Data System (ADS)

    Barry, N.; Hazelton, B.; Sullivan, I.; Morales, M. F.; Pober, J. C.

    2016-09-01

    21 cm epoch of reionization (EoR) observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum (PS) analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalogue completeness, the calibration introduces contamination in otherwise foreground-free PS modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalogue and the inherent spectral smoothness of antennas, and that this has significant implications for the instrumental design of the SKA (Square Kilometre Array) and other future EoR observatories.

  16. Calibration Requirements for Detecting the 21 cm Epoch of Reionization Power Spectrum and Implications for the SKA

    NASA Astrophysics Data System (ADS)

    Barry, N.; Hazelton, B.; Sullivan, I.; Morales, M. F.; Pober, J. C.

    2016-06-01

    21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalogue completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalogue and the inherent spectral smoothness of antennae, and that this has significant implications for the instrumental design of the SKA and other future EoR observatories.

  17. Constraining dark matter through 21-cm observations

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  18. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of <ν _{_TO}>≈ 5× 108 Hz, compared to <ν _{_TO}>≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  19. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  20. Detailed modelling of the 21-cm forest

    NASA Astrophysics Data System (ADS)

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  1. Overcoming the Challenges of 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    just for PAPER, but for nearly all of a large class of new wide-field, drift- scanning radio telescopes: primary beam calibration in the presence of a poorly measured sky. Since these telescopes lack the ability to steer their primary beams, while seeing nearly the entire sky at once, a large number of calibrator sources are necessary to probe the entire beam response. However, the catalogs of radio sources at low-frequencies are not reliable enough to achieve the level of primary beam accuraccy needed for 21cm cosmology experiments. I develop, test, and apply a new technique which -- using only the assumption of symmetry around a 180° rotation -- simultaneously solves for the primary beam and the flux density of large number of sources. In this dissertation, I also present the analysis of new observations from PAPER to test theoretical models which predict foreground emission is confined to a "wedge"-like region of cosmological Fourier space, leaving an "EoR window" free from contamination. For the first time in actual observations, these predictions are spectacularly confirmed. In many ways, this result shifts the burden for upcoming PAPER analysis from foreground removal to increased sensitivity. And although increasing sensitivity is no small feat in-and-of-itself, this result is highly encouraging for 21cm studies, as foreground removal was long-viewed as the principal challenge for this field. The final result in this dissertation is the application of the all the lessons learned building PAPER and the MWA to design a new experiment for 21cm studies at z ˜ 1 with the goal of measuring baryon acoustic oscillations (BAO). The design of the BAO Broadband and Broad-beam (BAOBAB) Array is described, and cosmological forecasts are presented. The bottom line is highly encouraging, suggesting that z ˜ 1 21cm observations can detect the neutral hydrogen power spectrum with a very modest (16 - 32 element) array, and that still reasonably sized (128 - 256 elements

  2. Advancing precision cosmology with 21 cm intensity mapping

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley

    In this thesis we make progress toward establishing the observational method of 21 cm intensity mapping as a sensitive and efficient method for mapping the large-scale structure of the Universe. In Part I we undertake theoretical studies to better understand the potential of intensity mapping. This includes forecasting the ability of intensity mapping experiments to constrain alternative explanations to dark energy for the Universe's accelerated expansion. We also considered how 21 cm observations of the neutral gas in the early Universe (after recombination but before reionization) could be used to detect primordial gravity waves, thus providing a window into cosmological inflation. Finally we showed that scientifically interesting measurements could in principle be performed using intensity mapping in the near term, using existing telescopes in pilot surveys or prototypes for larger dedicated surveys. Part II describes observational efforts to perform some of the first measurements using 21 cm intensity mapping. We develop a general data analysis pipeline for analyzing intensity mapping data from single dish radio telescopes. We then apply the pipeline to observations using the Green Bank Telescope. By cross-correlating the intensity mapping survey with a traditional galaxy redshift survey we put a lower bound on the amplitude of the 21 cm signal. The auto-correlation provides an upper bound on the signal amplitude and we thus constrain the signal from both above and below. This pilot survey represents a pioneering effort in establishing 21 cm intensity mapping as a probe of the Universe.

  3. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  4. Mapmaking for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max; Liu, Adrian; Ewall-Wice, Aaron; Hewitt, Jacqueline N.; Morales, Miguel F.; Neben, Abraham R.; Parsons, Aaron R.; Zheng, Haoxuan

    2015-01-01

    In order to study the "Cosmic Dawn" and the Epoch of Reionization with 21 cm tomography, we need to statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter. Over the last few years, we have learned much about the role our telescopes play in creating a putatively foreground-free region called the "EoR window." In this work, we examine how an interferometer's effects can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This requires a precise understanding of the statistical relationship between the maps we make and the underlying true sky. While some of these calculations would be computationally infeasible if performed exactly, we explore several well-controlled approximations that make mapmaking and the calculation of map statistics much faster, especially for compact and highly redundant interferometers designed specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of Reionization Array, as a case study.

  5. The 21 cm signature of a cosmic string loop

    SciTech Connect

    Pagano, Michael; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2012-05-01

    Cosmic string loops lead to nonlinear baryon overdensities at early times, even before the time which in the standard LCDM model corresponds to the time of reionization. These overdense structures lead to signals in 21 cm redshift surveys at large redshifts. In this paper, we calculate the amplitude and shape of the string loop-induced 21 cm brightness temperature. We find that a string loop leads to a roughly elliptical region in redshift space with extra 21 cm emission. The excess brightness temperature for strings with a tension close to the current upper bound can be as high as 1deg K for string loops generated at early cosmological times (times comparable to the time of equal matter and radiation) and observed at a redshift of z+1 = 30. The angular extent of these predicted 'bright spots' is x{sup '}. These signals should be detectable in upcoming high redshift 21 cm surveys. We also discuss the application of our results to global monopoles and primordial black holes.

  6. THE SIGNATURES OF PARTICLE DECAY IN 21 cm ABSORPTION FROM THE FIRST MINIHALOS

    SciTech Connect

    Vasiliev, Evgenii O.; Shchekinov, Yuri A. E-mail: yus@sfedu.ru

    2013-11-01

    The imprint of decaying dark matter (DM) particles on the characteristics of the {sup 2}1 cm forest{sup —}absorption at 21 cm from minihalos in the spectra of distant radio-loud sources—is considered within a one-dimensional, self-consistent hydrodynamic description of minihalos from their turnaround point to virialization. The most pronounced influence of decaying DM on the evolution of minihalos is found in the mass range M = 10{sup 5}-10{sup 6} M{sub ☉}, for which unstable DM with a current upper limit on its ionization rate of ξ{sub L} = 0.59 × 10{sup –25} s{sup –1} reduces the 21 cm optical depth by an order of magnitude compared with the standard recombination scenario. Even a rather modest ionization, ξ ∼ 0.3ξ{sub L}, practically erases absorption features and results in a considerable decrease (by factor of more than 2.5) of the number of strong (W{sub ν}{sup obs}∼>0.3 kHz at z ≅ 10) absorptions. In such circumstances, broadband observations are more suitable for inferring the physical conditions of the absorbing gas. X-ray photons from stellar activity of the initial episodes of star formation can compete with the contribution from decaying DM only at z < 10. Therefore, observing the 21 cm signal will allow us to follow the evolution of decaying DM particles in the redshift range z = 10-15. On the other hand, a non-detection of the 21 cm signal in the frequency range ν < 140 MHz can establish a lower limit on the ionization rate from decaying DM.

  7. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  8. Combining galaxy and 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.; White, Martin; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2016-04-01

    Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, {k}-dependent noise and anisotropic filtering schemes.

  9. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  10. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  11. Discovery and First Observations of the 21-cm Hydrogen Line

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2005-08-01

    Unlike most of the great discoveries in the first decade of radio astronomy after World War II, the 21 cm hydrogen line was first predicted theoretically and then purposely sought. The story is familiar of graduate student Henk van de Hulst's prediction in occupied Holland in 1944 and the nearly simultaneous detection of the line by teams at Harvard, Leiden, and Sydney in 1951. But in this paper I will describe various aspects that are little known: (1) In van de Hulst's original paper he not only worked out possible intensities for the 21 cm line, but also for radio hydrogen recombination lines (not detected until the early 1960s), (2) in that same paper he also used Jansky's and Reber's observations of a radio background to make cosmological conclusions, (3) there was no "race" between the Dutch, Americans, and Australians to detect the line, (4) a fire that destroyed the Dutch team's equipment in March 1950 ironically did not hinder their progress, but actually speeded it up (because it led to a change of their chief engineer, bringing in the talented Lex Muller). The scientific and technical styles of the three groups will also be discussed as results of the vastly differing environments in which they operated.

  12. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  13. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  14. H I 21 cm ABSORPTION AND UNIFIED SCHEMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2010-03-20

    In a recent study of z >= 0.1 active galactic nuclei (AGNs), we found that 21 cm absorption has never been detected in objects in which the ultraviolet luminosity exceeds L{sub UV} {approx} 10{sup 23} W Hz{sup -1}. In this paper, we further explore the implications that this has for the currently popular consensus that it is the orientation of the circumnuclear obscuring torus, invoked by unified schemes of AGNs, which determines whether absorption is present along our sight line. The fact that at L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}, both type-1 and type-2 objects exhibit a 50% probability of detection, suggests that this is not the case and that the bias against detection of H I absorption in type-1 objects is due purely to the inclusion of the L{sub UV} {approx}> 10{sup 23} W Hz{sup -1} sources. Similarly, the ultraviolet luminosities can also explain why the presence of 21 cm absorption shows a preference for radio galaxies over quasars and the higher detection rate in compact sources, such as compact steep spectrum or gigahertz peaked spectrum sources, may also be biased by the inclusion of high-luminosity sources. Being comprised of all 21 cm searched sources at z >= 0.1, this is a necessarily heterogeneous sample, the constituents of which have been observed by various instruments. By this same token, however, the dependence on the UV luminosity may be an all encompassing effect, superseding the unified schemes model, although there is the possibility that the exclusive 21 cm non-detections at high UV luminosities could be caused by a bias toward gas-poor ellipticals. Additionally, the high UV fluxes could be sufficiently exciting/ionizing the H I above 21 cm detection thresholds, although the extent to which this is related to the neutral gas deficit in ellipticals is currently unclear. Examining the moderate UV luminosity (L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}) sample further, from the profile widths and offsets from the systemic velocities

  15. Measuring the Cosmological 21 cm Monopole with an Interferometer

    NASA Astrophysics Data System (ADS)

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  16. Global 21 cm signal experiments: A designer's guide

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Pritchard, Jonathan R.; Tegmark, Max; Loeb, Abraham

    2013-02-01

    The global (i.e., spatially averaged) spectrum of the redshifted 21 cm line has generated much experimental interest lately, thanks to its potential to be a direct probe of the epoch of reionization and the dark ages, during which the first luminous objects formed. Since the cosmological signal in question has a purely spectral signature, most experiments that have been built, designed, or proposed have essentially no angular sensitivity. This can be problematic because with only spectral information, the expected global 21 cm signal can be difficult to distinguish from foreground contaminants such as galactic synchrotron radiation, since both are spectrally smooth and the latter is many orders of magnitude brighter. In this paper, we establish a systematic mathematical framework for global signal data analysis. The framework removes foregrounds in an optimal manner, complementing spectra with angular information. We use our formalism to explore various experimental design trade-offs, and find that (1) with spectral-only methods, it is mathematically impossible to mitigate errors that arise from uncertainties in one’s foreground model; (2) foreground contamination can be significantly reduced for experiments with fine angular resolution; (3) most of the statistical significance in a positive detection during the dark ages comes from a characteristic high-redshift trough in the 21 cm brightness temperature; (4) measurement errors decrease more rapidly with integration time for instruments with fine angular resolution; and (5) better foreground models can help reduce errors, but once a modeling accuracy of a few percent is reached, significant improvements in accuracy will be required to further improve the measurements. We show that if observations and data analysis algorithms are optimized based on these findings, an instrument with a 5° wide beam can achieve highly significant detections (greater than 5σ) of even extended (high Δz) reionization scenarios

  17. Forecasted 21 cm constraints on compensated isocurvature perturbations

    SciTech Connect

    Gordon, Christopher; Pritchard, Jonathan R.

    2009-09-15

    A 'compensated' isocurvature perturbation consists of an overdensity (or underdensity) in the cold dark matter which is completely cancelled out by a corresponding underdensity (or overdensity) in the baryons. Such a configuration may be generated by a curvaton model of inflation if the cold dark matter is created before curvaton decay and the baryon number is created by the curvaton decay (or vice versa). Compensated isocurvature perturbations, at the level producible by the curvaton model, have no observable effect on cosmic microwave background anisotropies or on galaxy surveys. They can be detected through their effect on the distribution of neutral hydrogen between redshifts 30-300 using 21 cm absorption observations. However, to obtain a good signal to noise ratio, very large observing arrays are needed. We estimate that a fast Fourier transform telescope would need a total collecting area of about 20 square kilometers to detect a curvaton generated compensated isocurvature perturbation at more than 5 sigma significance.

  18. Inferring the distances of fast radio bursts through associated 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Loeb, Abraham

    2016-07-01

    The distances of fast radio burst (FRB) sources are currently unknown. We show that the 21-cm absorption line of hydrogen can be used to infer the redshifts of FRB sources, and determine whether they are Galactic or extragalactic. We calculate a probability of ˜10 per cent for the host galaxy of an FRB to exhibit a 21-cm absorption feature of equivalent width ≳10 km s-1. Arecibo, along with several future radio observatories, should be capable of detecting such associated 21-cm absorption signals for strong bursts of ≳several Jy peak flux densities.

  19. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  20. The imprint of warm dark matter on the cosmological 21-cm signal

    NASA Astrophysics Data System (ADS)

    Sitwell, Michael; Mesinger, Andrei; Ma, Yin-Zhe; Sigurdson, Kris

    2014-03-01

    We investigate the effects of warm dark matter (WDM) on the cosmic 21-cm signal. If dark matter exists as WDM instead of cold dark matter (CDM), its non-negligible velocities can inhibit the formation of low-mass haloes that normally form first in CDM models, therefore delaying star formation. The absence of early sources delays the build-up of UV and X-ray backgrounds that affect the 21-cm radiation signal produced by neutral hydrogen. With use of the 21CMFAST code, we demonstrate that the pre-reionization 21-cm signal can be changed significantly in WDM models with a free-streaming length equivalent to that of a thermal relic with mass mX of up to ˜10-20 keV. In such a WDM cosmology, the 21-cm signal traces the growth of more massive haloes, resulting in a delay of the 21-cm absorption signature and followed by accelerated X-ray heating. CDM models where astrophysical sources have a suppressed photon-production efficiency can delay the 21-cm signal as well, although its subsequent evolution is not as rapid as compared to WDM. This motivates using the gradient of the global 21-cm signal to differentiate between some CDM and WDM models. Finally, we show that the degeneracy between the astrophysics and mX can be broken with the 21-cm power spectrum, as WDM models should have a bias-induced excess of power on large scales. This boost in power should be detectable with current interferometers for models with mX ≲ 3 keV, while next-generation instruments will easily be able to measure this difference for all relevant WDM models.

  1. Cross-correlation of the cosmic 21-cm signal and Lyman α emitters during reionization

    NASA Astrophysics Data System (ADS)

    Sobacchi, Emanuele; Mesinger, Andrei; Greig, Bradley

    2016-07-01

    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the Epoch of Reionization (EoR), eventually providing 3D maps of the early Universe. Initial detections however will be low signal to noise, limited by systematics. To confirm a putative 21-cm detection, and check the accuracy of 21-cm data analysis pipelines, it would be very useful to cross-correlate against a genuine cosmological signal. The most promising cosmological signals are wide-field maps of Lyman α emitting galaxies (LAEs), expected from the Subaru Hyper-Suprime Cam ultradeep field (UDF). Here we present estimates of the correlation between LAE maps at z ˜ 7 and the 21-cm signal observed by both the Low Frequency Array (LOFAR) and the planned Square Kilometre Array Phase 1 (SKA1). We adopt a systematic approach, varying both: (i) the prescription of assigning LAEs to host haloes; and (ii) the large-scale structure of neutral and ionized regions (i.e. EoR morphology). We find that the LAE-21cm cross-correlation is insensitive to (i), thus making it a robust probe of the EoR. A 1000 h observation with LOFAR would be sufficient to discriminate at ≳ 1σ a fully ionized Universe from one with a mean neutral fraction of bar{x}_{H I}≈ 0.50, using the LAE-21 cm cross-correlation function on scales of R ≈ 3-10 Mpc. Unlike LOFAR, whose detection of the LAE-21 cm cross-correlation is limited by noise, SKA1 is mostly limited by ignorance of the EoR morphology. However, the planned 100 h wide-field SKA1-Low survey will be sufficient to discriminate an ionized Universe from one with bar{x}_{H I}=0.25, even with maximally pessimistic assumptions.

  2. DEEP 21 cm H I OBSERVATIONS AT z {approx} 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    SciTech Connect

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-20

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around {alpha}{sub 2000} {approx} 0{sup h}, {delta} {approx} 15{sup 0}42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is {rho}{sub H{sub I}}[z = 0.125] = (1.0 {+-} 0.3){rho}{sub 0}, where {rho}{sub 0} is the H I density at zero redshift.

  3. A 21-cm Neutral Hydrogen Study of Arp 213

    NASA Astrophysics Data System (ADS)

    Wells, S. J.; Simpson, C. E.

    2002-12-01

    We present 21-cm VLA observations of the Sab galaxy Arp 213. An extended HI disk (approx. 2.3 RHolm) was detected, with a bifurcated or extra arm on the west featuring a large HI knot. Based on the kinematics, this knot does not appear to be a dwarf or small companion, but a local enhancement in the arm. Although no unusual kinematics appear in the region of the odd radial dust lanes that attracted Arp's attention to this galaxy, there is a very low level HI cloud just north of the galaxy at the same position angle. The total HI mass for the galaxy was measured to be 2.9 x 109 Msun. Arp 213 has a high rotational velocity (300 km s-1), and a flat rotation curve that rises in the outermost regions. The calculated dynamical mass for the system is quite high at 4.4 x 1011 Msun. The rotation curve and dynamic mass indicate the presence of a large dark matter halo. Further optical data is needed to confirm its mass. This work was supported by NSF grant AST-0097616 and the SARA Consortium REU program.

  4. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    SciTech Connect

    Evoli, C.; Mesinger, A.; Ferrara, A. E-mail: andrei.mesinger@sns.it

    2014-11-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale (k ≅ 0.1 Mpc{sup -1}) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. These signatures are robust to astrophysical uncertainties, and will be easily detectable with second generation interferometers. We also briefly show that decaying warm dark matter has a negligible role in heating the IGM.

  5. Distinctive 21-cm structures of the first stars, galaxies and quasars

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Li, Yuexing

    2014-12-01

    Observations of the redshifted 21-cm line with forthcoming radio telescopes promise to transform our understanding of the cosmic reionization. To unravel the underlying physical process, we investigate the 21-cm structures of three different ionizing sources - Population (Pop) III stars, the first galaxies and the first quasars - by using radiative transfer simulations that include both ionization of neutral hydrogen and resonant scattering of Lyα photons. We find that Pop III stars and quasars produce a smooth transition from an ionized and hot state to a neutral and cold state, because of their hard spectral energy distribution with abundant ionizing photons, in contrast to the sharp transition in galaxies. Furthermore, Lyα scattering plays a dominant role in producing the 21-cm signal because it determines the relation between hydrogen spin temperature and gas kinetic temperature. This effect, also called Wouthuysen-Field coupling, depends strongly on the ionizing source. It is strongest around galaxies, where the spin temperature is highly coupled to that of the gas, resulting in extended absorption troughs in the 21-cm brightness temperature. However, in the case of Pop III stars, the 21-cm signal shows both emission and absorption regions around a small H II bubble. For quasars, a large emission region in the 21-cm signal is produced, and the absorption region decreases as the size of the H II bubble becomes large due to the limited travelling time of photons. We predict that future surveys from large radio arrays, such as the Murchison Widefield Array, the Low Frequency Array and the Square Kilometre Array, might be able to detect the 21-cm signals of primordial galaxies and quasars, but possibly not those of Pop III stars, because of their small angular diameters.

  6. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  7. Precise measurements of primordial power spectrum with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We discuss the issue of how precisely we can measure the primordial power spectrum by using future observations of 21 cm fluctuations and cosmic microwave background (CMB). For this purpose, we investigate projected constraints on the quantities characterizing primordial power spectrum: the spectral index n{sub s}, its running α{sub s} and even its higher order running β{sub s}. We show that future 21 cm observations in combinations with CMB would accurately measure above mentioned observables of primordial power spectrum. We also discuss its implications to some explicit inflationary models.

  8. A comparison of neutral hydrogen 21 cm observations with UV and optical absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Giovanelli, R.; York, D. G.; Shull, J. M.; Haynes, M. P.

    1978-01-01

    Several absorption components detected in visible or UV lines have been identified with emission features in new high-resolution, high signal-to-noise 21 cm observations. Stars for which direct overlap is obtained are HD 28497, lambda Ori, mu Col, HD 50896, rho Leo, HD 93521, and HD 219881. With the use of the inferred H I column densities from 21 cm profiles, rather than the integrated column densities obtained from L-alpha, more reliable densities can be derived from the existence of molecular hydrogen. Hence the cloud thicknesses are better determined; and 21 cm emission maps near these stars can be used to obtain dimensions on the plane of the sky. It is now feasible to derive detailed geometries for isolated clumps of gas which produce visual absorption features.

  9. New H I 21-cm absorbers at low and intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Zwaan, M. A.; Liske, J.; Péroux, C.; Murphy, M. T.; Bouché, N.; Curran, S. J.; Biggs, A. D.

    2015-10-01

    We present the results of a survey for intervening H I 21-cm absorbers at intermediate and low redshift (0 < z < 1.2). For our total sample of 24 systems, we obtained high-quality data for 17 systems, the other seven being severely affected by radio frequency interference (RFI). Five of our targets are low-redshift (z < 0.17) optical galaxies with small impact parameters (<20 kpc) towards radio-bright background sources. Two of these were detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km s- 1, which puts an upper limit on the kinetic temperature of Tk < 270 K. Combining our observations with results from the literature, we measure a weak anticorrelation between impact parameter and integral optical depth in local (z < 0.5) 21-cm absorbers. Of 11 Ca II and Mg II systems searched, two were detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z ˜ 0.6, we measure spin temperatures of Ts = (65 ± 17) K and Ts > 180 K. A subset of our systems was also searched for OH absorption, but no detections were made.

  10. Cosmological constraints from 21cm surveys after reionization

    SciTech Connect

    Visbal, Eli; Loeb, Abraham; Wyithe, Stuart E-mail: aloeb@cfa.harvard.edu

    2009-10-01

    21cm emission from residual neutral hydrogen after the epoch of reionization can be used to trace the cosmological power spectrum of density fluctuations. Using a Fisher matrix formulation, we provide a detailed forecast of the constraints on cosmological parameters that are achievable with this probe. We consider two designs: a scaled-up version of the MWA observatory as well as a Fast Fourier Transform Telescope. We find that 21cm observations dedicated to post-reionization redshifts may yield significantly better constraints than next generation Cosmic Microwave Background (CMB) experiments. We find the constraints on Ω{sub Λ}, Ω{sub m}h{sup 2}, and Ω{sub ν}h{sup 2} to be the strongest, each improved by at least an order of magnitude over the Planck CMB satellite alone for both designs. Our results do not depend as strongly on uncertainties in the astrophysics associated with the ionization of hydrogen as similar 21cm surveys during the epoch of reionization. However, we find that modulation of the 21cm power spectrum from the ionizing background could potentially degrade constraints on the spectral index of the primordial power spectrum and its running by more than an order of magnitude. Our results also depend strongly on the maximum wavenumber of the power spectrum which can be used due to non-linearities.

  11. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma. PMID:20651685

  12. Galaxy-cluster masses via 21st-century measurements of lensing of 21-cm fluctuations

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Kamionkowski, Marc

    2013-03-01

    We discuss the prospects to measure galaxy-cluster properties via weak lensing of 21-cm fluctuations from the dark ages and the epoch of reionization (EOR). We choose as a figure of merit the smallest cluster mass detectable through such measurements. We construct the minimum-variance quadratic estimator for the cluster mass based on lensing of 21-cm fluctuations at multiple redshifts. We discuss the tradeoff among frequency bandwidth, angular resolution, and the number of redshift shells available for a fixed noise level for the radio detectors. Observations of lensing of the 21-cm background from the dark ages will be capable of detecting M≳1012h-1M⊙ mass halos, but will require futuristic experiments to overcome the contaminating sources. Next-generation radio measurements of 21-cm fluctuations from the EOR will, however, have the sensitivity to detect galaxy clusters with halo masses M≳1013h-1M⊙, given enough observation time (for the relevant sky patch) and collecting area to maximize their resolution capabilities.

  13. Invisible Active Galactic Nuclei. II. Radio Morphologies and Five New H i 21cm Absorption Line Detectors

    NASA Astrophysics Data System (ADS)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-01

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  14. The rise of the first stars: Supersonic streaming, radiative feedback, and 21-cm cosmology

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan

    2016-07-01

    Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising method for observing the epoch of the first stars is to use the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also beginning and promise exciting discoveries. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from the astrophysics of the early galaxies that formed during cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced feedback that radically affected both the intergalactic medium and the character of newly-forming stars. Lyman- α radiation from stars generated a strong 21-cm absorption signal, observation of which is currently the only feasible method of detecting the dominant population of galaxies at redshifts as early as z ∼ 25. Another major player is cosmic heating; if due to soft X-rays, then it occurred fairly early (z ∼ 15) and produced the strongest pre-reionization signal, while if it is due to hard X-rays, as now seems more likely, then it occurred later and may have dramatically affected the 21-cm sky even during reionization. In terms of analysis, much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations, a rich dataset that can be used to reconstruct the astrophysical information of greatest interest. This does not, however, diminish the importance of finding additional probes that are complementary or amenable to a more model-independent analysis. Examples include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. Another striking feature may result from a recently recognized effect of a supersonic relative velocity

  15. From Darkness to Light: Signatures of the Universe's First Galaxies in the Cosmic 21-cm Background

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    Within the first billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this Epoch of Reionization -- the emergence of the first stars, black holes, and full-fledged galaxies -- are expected to manifest as spectral "turning points" in the sky-averaged ("global") 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) required to model the signal. In this thesis, I make the first attempt to build the final piece of a global 21-cm data analysis pipeline: an inference tool capable of extracting the properties of the IGM and the Universe's first galaxies from the recovered signal. Such a framework is valuable even prior to a detection of the global 21-cm signal as it enables end-to-end simulations of 21-cm observations that can be used to optimize the design of upcoming instruments, their observing strategies, and their signal extraction algorithms. En route to a complete pipeline, I found that (1) robust limits on the physical properties of the IGM, such as its temperature and ionization state, can be derived analytically from the 21-cm turning points within two-zone models for the IGM, (2) improved constraints on the IGM properties can be obtained through simultaneous fitting of the global 21-cm signal and foregrounds, though biases can emerge depending on the parameterized form of the signal one adopts, (3) a simple four-parameter galaxy formation model can be constrained in only 100 hours of integration provided a stable instrumental response over a broad frequency range (~80 MHz), and (4) frequency-dependent RT solutions in physical models for the global 21-cm signal will be required to properly interpret the 21-cm absorption minimum, as the IGM thermal history is highly sensitive to the

  16. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations

    NASA Astrophysics Data System (ADS)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2016-04-01

    We explore the impact of incorporating physically motivated ionization and recombination rates on the history and topology of cosmic reionization and the resulting 21 cm power spectrum, by incorporating inputs from small-volume hydrodynamic simulations into our semi-numerical code, SIMFAST21, that evolves reionization on large scales. We employ radiative hydrodynamic simulations to parametrize the ionization rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion scales superlinearly with halo mass ({R_ion}∝ M_h^{1.41}), in contrast to previous assumptions. Implementing these scalings into SIMFAST21, we tune our one free parameter, the escape fraction fesc, to simultaneously reproduce recent observations of the Thomson optical depth, ionizing emissivity and volume-averaged neutral fraction by the end of reionization. This yields f_esc=4^{+7}_{-2} per cent averaged over our 0.375 h-1 Mpc cells, independent of halo mass or redshift, increasing to 6 per cent if we also constrain to match the observed z = 7 star formation rate function. Introducing superlinear Rion increases the duration of reionization and boosts small-scale 21 cm power by two to three times at intermediate phases of reionization, while inhomogeneous recombinations reduce ionized bubble sizes and suppress large-scale 21 cm power by two to three times. Gas clumping on sub-cell scales has a minimal effect on the 21 cm power. Superlinear Rion also significantly increases the median halo mass scale for ionizing photon output to ˜ 1010 M⊙, making the majority of reionizing sources more accessible to next-generation facilities. These results highlight the importance of accurately treating ionizing sources and recombinations for modelling reionization and its 21 cm power spectrum.

  17. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  18. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  19. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.

  20. The 21 cm signature of cosmic string wakes

    SciTech Connect

    Brandenberger, Robert H.; Danos, Rebecca J.; Hernández, Oscar F.; Holder, Gilbert P. E-mail: rjdanos@physics.mcgill.ca E-mail: holder@physics.mcgill.ca

    2010-12-01

    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at z{sub i}+1 = 10{sup 3}, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10{sup −7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.

  1. The wedge bias in reionization 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.

    2016-02-01

    A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).

  2. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; Zwart, J. T. L.; Price, D.; Greenhill, L. J.; Mesinger, A.; Dowell, J.; Eftekhari, T.; Ellingson, S. W.; Kocz, J.; Schinzel, F.

    2016-09-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 ≲ z ≲ 30), parametrized by an amplitude A_{H I}, a frequency peak ν _{H I} and a width σ _{H I}, can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 < A_{H I} < 0 mK and σ _{H I} > 6.5 MHz (corresponding to Δz > 1.9 at redshift z ≃ 20) respectively at the 95-per cent confidence level in the range 13.2 < z < 27.4 (100 > ν > 50 MHz).

  3. The 21-cm emission from the reionization epoch: extended and point source foregrounds

    NASA Astrophysics Data System (ADS)

    Di Matteo, Tiziana; Ciardi, Benedetta; Miniati, Francesco

    2004-12-01

    Fluctuations in the redshifted 21-cm emission from neutral hydrogen probe the epoch of reionization. We examine the observability of this signal and the impact of extragalactic foreground radio sources (both extended and point-like). We use cosmological simulations to predict the angular correlation functions of intensity fluctuations due to unresolved radio galaxies, cluster radio haloes and relics and free-free emission from the interstellar and intergalactic medium at the frequencies and angular scales relevant for the proposed 21-cm tomography. In accord with previous findings, the brightness temperature fluctuations due to foreground sources are much larger than those from the primary 21-cm signal at all scales. In particular, diffuse cluster radio emission, which has been previously neglected, provides the most significant foreground contamination. However, we show that the contribution to the angular fluctuations at scales θ>~ 1 arcmin is dominated by the spatial clustering of bright foreground sources. This excess can be removed if sources above flux levels S>~ 0.1 mJy (out to redshifts of z~ 1 and z~ 2 for diffuse and point sources, respectively) are detected and removed. Hence, efficient source removal may be sufficient to allow the detection of angular fluctuations in the 21-cm emission free of extragalactic foregrounds at θ>~ 1 arcmin. In addition, the removal of sources above S= 0.1 mJy also reduces the foreground fluctuations to roughly the same level as the 21-cm signal at scales θ<~ 1 arcmin. This should allow the substraction of the foreground components in frequency space, making it possible to observe in detail the topology and history of reionization.

  4. Interpreting the Global 21-cm Signal from High Redshifts. II. Parameter Estimation for Models of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2015-11-01

    Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyα, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to ˜0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 ≲ ν/MHz ≲ 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z ≳ 15, (ii) extend z ≲ 4 upper limits on the normalization of the X-ray luminosity star formation rate (LX-SFR) relation out to z ˜ 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z ˜ 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from ˜40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.

  5. INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS

    SciTech Connect

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2013-11-10

    The sky-averaged (global) 21 cm signal is a powerful probe of the intergalactic medium (IGM) prior to the completion of reionization. However, so far it has been unclear whether it will provide more than crude estimates of when the universe's first stars and black holes formed, even in the best case scenario in which the signal is accurately extracted from the foregrounds. In contrast to previous work, which has focused on predicting the 21 cm signatures of the first luminous objects, we investigate an arbitrary realization of the signal and attempt to translate its features to the physical properties of the IGM. Within a simplified global framework, the 21 cm signal yields quantitative constraints on the Lyα background intensity, net heat deposition, ionized fraction, and their time derivatives without invoking models for the astrophysical sources themselves. The 21 cm absorption signal is most easily interpreted, setting strong limits on the heating rate density of the universe with a measurement of its redshift alone, independent of the ionization history or details of the Lyα background evolution. In a companion paper, we extend these results, focusing on the confidence with which one can infer source emissivities from IGM properties.

  6. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    NASA Astrophysics Data System (ADS)

    Lopez-Honorez, Laura; Mena, Olga; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C.

    2016-08-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ~100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ~100 MeV.

  7. The foreground wedge and 21-cm BAO surveys

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Jong; Hirata, Christopher M.

    2016-03-01

    Redshifted H I 21 cm emission from unresolved low-redshift large-scale structure is a promising window for ground-based baryon acoustic oscillations (BAO) observations. A major challenge for this method is separating the cosmic signal from the foregrounds of Galactic and extra-Galactic origins that are stronger by many orders of magnitude than the former. The smooth frequency spectrum expected for the foregrounds would nominally contaminate only very small k∥ modes; however, the chromatic response of the telescope antenna pattern at this wavelength to the foreground introduces non-smooth structure, pervasively contaminating the cosmic signal over the physical scales of our interest. Such contamination defines a wedged volume in Fourier space around the transverse modes that is inaccessible for the cosmic signal. In this paper, we test the effect of this contaminated wedge on the future 21-cm BAO surveys using Fisher information matrix calculation. We include the signal improvement due to the BAO reconstruction technique that has been used for galaxy surveys and test the effect of this wedge on the BAO reconstruction as a function of signal to noises and incorporate the results in the Fisher matrix calculation. We find that the wedge effect expected at z = 1-2 is very detrimental to the angular diameter distances: the errors on angular diameter distances increased by 3-4.4 times, while the errors on H(z) increased by a factor of 1.5-1.6. We conclude that calibration techniques that clean out the foreground `wedge' would be extremely valuable for constraining angular diameter distances from intensity-mapping 21-cm surveys.

  8. Probing patchy reionization through τ-21 cm correlation statistics

    SciTech Connect

    Meerburg, P. Daniel; Spergel, David N.; Dvorkin, Cora E-mail: dns@astro.princeton.edu

    2013-12-20

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization (EoR). The free electrons are traced by the optical depth to reionization τ, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anticorrelated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation could help disentangle the bias and the ionization history. We estimate the signal-to-noise ratio of the cross-correlation using the estimator for inhomogeneous reionization τ-hat {sub ℓm} proposed by Dvorkin and Smith. We find that with upcoming radio interferometers and cosmic microwave background (CMB) experiments, the cross-correlation is measurable going up to multipoles ℓ ∼ 1000. We also derive parameter constraints and conclude that, despite the foregrounds, the cross-correlation provides a complementary measurement of the EoR parameters to the 21 cm and CMB polarization autocorrelations expected to be observed in the coming decade.

  9. THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS

    SciTech Connect

    Gu Junhua; Xu Haiguang; Wang Jingying; Chen Wen; An Tao

    2013-08-10

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  10. The Effects of Polarized Foregrounds on 21 cm Epoch of Reionization Power Spectrum Measurements

    NASA Astrophysics Data System (ADS)

    Moore, David F.; Aguirre, James E.; Parsons, Aaron R.; Jacobs, Daniel C.; Pober, Jonathan C.

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  11. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  12. THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS

    SciTech Connect

    Moore, David F.; Aguirre, James E.; Parsons, Aaron R.; Pober, Jonathan C.; Jacobs, Daniel C.

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  13. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  14. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    SciTech Connect

    Brax, Philippe

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  15. A Per-baseline, Delay-spectrum Technique for Accessing the 21 cm Cosmic Reionization Signature

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Pober, Jonathan C.; Aguirre, James E.; Carilli, Christopher L.; Jacobs, Daniel C.; Moore, David F.

    2012-09-01

    A critical challenge in measuring the power spectrum of 21 cm emission from cosmic reionization is compensating for the frequency dependence of an interferometer's sampling pattern, which can cause smooth-spectrum foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We apply the delay transformation introduced in Parsons & Backer to each baseline of an interferometer to concentrate smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that baseline. By focusing on delay modes that correspond to image-domain regions beyond the horizon, we show that it is possible to avoid the bulk of smooth-spectrum foregrounds. We map the point-spread function of delay modes to k-space, showing that delay modes that are uncorrupted by foregrounds also represent samples of the three-dimensional power spectrum, and can be used to constrain cosmic reionization. Because it uses only spectral smoothness to differentiate foregrounds from the targeted 21 cm signature, this per-baseline analysis approach relies on spectrally and spatially smooth instrumental responses for foreground removal. For sufficient levels of instrumental smoothness relative to the brightness of interfering foregrounds, this technique substantially reduces the level of calibration previously thought necessary to detect 21 cm reionization. As a result, this approach places fewer constraints on antenna configuration within an array, and in particular, facilitates the adoption of configurations that are optimized for power-spectrum sensitivity. Under these assumptions, we demonstrate the potential for the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21 cm reionization at an amplitude of 10 mK2 near k ~ 0.2 h Mpc-1 with 132 dipoles in 7 months of observing.

  16. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE

    SciTech Connect

    Parsons, Aaron R.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Carilli, Christopher L.; Jacobs, Daniel C.

    2012-09-10

    A critical challenge in measuring the power spectrum of 21 cm emission from cosmic reionization is compensating for the frequency dependence of an interferometer's sampling pattern, which can cause smooth-spectrum foregrounds to appear unsmooth and degrade the separation between foregrounds and the target signal. In this paper, we present an approach to foreground removal that explicitly accounts for this frequency dependence. We apply the delay transformation introduced in Parsons and Backer to each baseline of an interferometer to concentrate smooth-spectrum foregrounds within the bounds of the maximum geometric delays physically realizable on that baseline. By focusing on delay modes that correspond to image-domain regions beyond the horizon, we show that it is possible to avoid the bulk of smooth-spectrum foregrounds. We map the point-spread function of delay modes to k-space, showing that delay modes that are uncorrupted by foregrounds also represent samples of the three-dimensional power spectrum, and can be used to constrain cosmic reionization. Because it uses only spectral smoothness to differentiate foregrounds from the targeted 21 cm signature, this per-baseline analysis approach relies on spectrally and spatially smooth instrumental responses for foreground removal. For sufficient levels of instrumental smoothness relative to the brightness of interfering foregrounds, this technique substantially reduces the level of calibration previously thought necessary to detect 21 cm reionization. As a result, this approach places fewer constraints on antenna configuration within an array, and in particular, facilitates the adoption of configurations that are optimized for power-spectrum sensitivity. Under these assumptions, we demonstrate the potential for the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21 cm reionization at an amplitude of 10 mK{sup 2} near k {approx} 0.2 h Mpc{sup -1} with 132 dipoles in 7 months of observing.

  17. 21 cm Power Spectrum Upper Limits from PAPER-64

    NASA Astrophysics Data System (ADS)

    Shiraz Ali, Zaki; Parsons, Aaron; Pober, Jonathan; Team PAPER

    2016-01-01

    We present power spectrum results from the 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-64). We find an upper limit of Δ2≤(22.4 mK)2 over the range 0.1521 cm power spectrum constraints to date. In addition, we use these results to place lower limits on the spin temperature at a redshift of 8.4. We find that the spin temperature is at least 10K for a neutral fraction between 15% and 80%. This further suggests that there was heating in the early universe through various sources such as x-ray binaries.

  18. Developing an Interferometer to Measure the Global 21cm Monopole

    NASA Astrophysics Data System (ADS)

    Domagalski, Rachel; Patra, Nipanjana; Day, Cherie; Parsons, Aaron

    2016-01-01

    When radio interferometers observe over very small fields of view, they cannot measure the monopole mode of the sky. However, when the field of view extends to a large region of the sky, it becomes possible to use an measure the monopole with an interferometer. We are currently developing such an interferometer at UC Berkeley's Radio Astronomy Lab (RAL) with the goal of measuring the early stages of the Epoch of Reionization by probing the sky for the global 21cm signal between 50 and 100 MHz, and we have deployed a preliminary version of this experiment in Colorado. We present the current status of the interferometer, the future development plans, and some measurements taken in July of 2015. These measurements demonstrate performance of the analog signal chain of the interferometer as well as the RFI environment of the deployment site in Colorado.

  19. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  20. Cosmic (Super)String Constraints from 21 cm Radiation.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2008-03-01

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV). PMID:18352691

  1. An H I 21-cm line survey of evolved stars

    NASA Astrophysics Data System (ADS)

    Gérard, E.; Le Bertre, T.; Libert, Y.

    2011-12-01

    The HI line at 21 cm is a tracer of circumstellar matter around AGB stars, and especially of the matter located at large distances (0.1-1 pc) from the central stars. It can give unique information on the kinematics and on the physical conditions in the outer parts of circumstellar shells and in the regions where stellar matter is injected into the interstellar medium. However this tracer has not been much used up to now, due to the difficulty of separating the genuine circumstellar emission from the interstellar one. With the Nançay Radiotelescope we are carrying out a survey of the HI emission in a large sample of evolved stars. We report on recent progresses of this long term programme, with emphasis on S-type stars.

  2. HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

    NASA Astrophysics Data System (ADS)

    Zwart, Jonathan T. L.; Price, Daniel; Bernardi, Gianni

    2016-06-01

    HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

  3. The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2008-03-01

    A new generation of radio telescopes are currently being built with the goal of tracing the cosmic distribution of atomic hydrogen at redshifts 6-15 through its 21-cm line. The observations will probe the large-scale brightness fluctuations sourced by ionization fluctuations during cosmic reionization. Since detailed maps will be difficult to extract due to noise and foreground emission, efforts have focused on a statistical detection of the 21-cm fluctuations. During cosmic reionization, these fluctuations are highly non-Gaussian and thus more information can be extracted than just the one-dimensional function that is usually considered, i.e. the correlation function. We calculate a two-dimensional function that if measured observationally would allow a more thorough investigation of the properties of the underlying ionizing sources. This function is the probability distribution function (PDF) of the difference in the 21-cm brightness temperature between two points, as a function of the separation between the points. While the standard correlation function is determined by a complicated mixture of contributions from density and ionization fluctuations, we show that the difference PDF holds the key to separately measuring the statistical properties of the ionized regions.

  4. Searching for signatures of cosmic string wakes in 21cm redshift surveys using Minkowski Functionals

    SciTech Connect

    McDonough, Evan; Brandenberger, Robert H. E-mail: rhb@hep.physics.mcgill.ca

    2013-02-01

    Minkowski Functionals are a powerful tool for analyzing large scale structure, in particular if the distribution of matter is highly non-Gaussian, as it is in models in which cosmic strings contribute to structure formation. Here we apply Minkowski functionals to 21cm maps which arise if structure is seeded by a scaling distribution of cosmic strings embeddded in background fluctuations, and then test for the statistical significance of the cosmic string signals using the Fisher combined probability test. We find that this method allows for detection of cosmic strings with Gμ > 5 × 10{sup −8}, which would be improvement over current limits by a factor of about 3.

  5. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-08-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  6. Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal

    SciTech Connect

    Pritchard, Jonathan R.; Loeb, Abraham

    2010-07-15

    Observations of the frequency dependence of the global brightness temperature of the redshifted 21 cm line of neutral hydrogen may be possible with single dipole experiments. In this paper, we develop a Fisher matrix formalism for calculating the sensitivity of such instruments to the 21 cm signal from reionization and the dark ages. We show that rapid reionization histories with duration {Delta}z < or approx. 2 can be constrained, provided that local foregrounds can be well modeled by low order polynomials. It is then shown that observations in the range {nu}=50-100 MHz can feasibly constrain the Ly{alpha} and x-ray emissivity of the first stars forming at z{approx}15-25, provided that systematic temperature residuals can be controlled to less than 1 mK. Finally, we demonstrate the difficulty of detecting the 21 cm signal from the dark ages before star formation.

  7. Distinctive rings in the 21 cm signal of the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Vonlanthen, P.; Semelin, B.; Baek, S.; Revaz, Y.

    2011-08-01

    Context. It is predicted that sources emitting UV radiation in the Lyman band during the epoch of reionization show a series of discontinuities in their Lyα flux radial profile as a consequence of the thickness of the Lyman-series lines in the primeval intergalactic medium. Through unsaturated Wouthuysen-Field coupling, these spherical discontinuities are also present in the 21 cm emission of the neutral IGM. Aims: We study the effects that these discontinuities have on the differential brightness temperature of the 21 cm signal of neutral hydrogen in a realistic setting that includes all other sources of fluctuations. We focus on the early phases of the epoch of reionization, and we address the question of the detectability by the planned Square Kilometre Array (SKA). Such a detection would be of great interest because these structures could provide an unambiguous diagnostic tool for the cosmological origin of the signal that remains after the foreground cleaning procedure. These structures could also be used as a new type of standard rulers. Methods: We determine the differential brightness temperature of the 21 cm signal in the presence of inhomogeneous Wouthuysen-Field effect using simulations that include (hydro)dynamics as well as ionizing and Lyman lines 3D radiative transfer with the code LICORICE. We include radiative transfer for the higher-order Lyman-series lines and consider also the effect of backreaction from recoils and spin diffusivity on the Lyα resonance. Results: We find that the Lyman horizons are difficult to indentify using the power spectrum of the 21 cm signal but are clearly visible in the maps and radial profiles around the first sources of our simulations, if only for a limited time interval, typically Δz ≈ 2 at z ~ 13. Stacking the profiles of the different sources of the simulation at a given redshift results in extending this interval to Δz ≈ 4. When we take into account the implementation and design planned for the SKA

  8. Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization.

    PubMed

    Loeb, Abraham; Wyithe, J Stuart B

    2008-04-25

    Measurements of the 21 cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We show that a dedicated 21 cm observatory could probe a number of independent modes that is 2 orders of magnitude larger than currently available, and enable a cosmic-variance limited detection of the signature of a neutrino mass approximately 0.05 eV. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision. PMID:18518181

  9. Pilot observations at 74 MHz for global 21cm cosmology with the Parkes 64 m

    NASA Astrophysics Data System (ADS)

    Bannister, Keith; McConnell, David; Reynolds, John; Chippendale, Aaron; Landecker, Tom L.; Dunning, Alex

    2013-10-01

    We propose a single pilot observing session using the existing 74 MHz feed at Parkes to evaluate tools and techniques to optimise low frequency (44-88 MHz) observing. 1. A continuum map of the diffuse emission in the Southern sky at 74 MHz. Such a map would be of great help to single-dipole 21cm cosmology experiments, whose diffuse Galactic foregrounds are currently poorly constrained (Pritchard & Loeb, 2010b; de Oliveira-Costa et al., 2008). 2. A wideband (44-88 MHz) map of of the Southern sky, which can be used as a direct detection of the dark ages global signal. Recent theoretical work has shown that the Parkes aperture of 64 m is the optimal size for such a direct detection, which could be achieved at 25? in as little as 100 hrs of observing (Liu et al., 2012). After receiving a 4.1 grade in the previous round, our observations were not scheduled due to limited receiver changes. We are therefore re-proposing as formality. Since the proposal, we have obtained RFI measurements with the feed pointed at zenith. We are confident the dominant source of RFI can be found and removed. If observing at this band is possible, at least two scientific outputs relevant to global 21cm cosmology (among many others) are put within reach:

  10. 21 cm Fluctuations of the Cosmic Dawn with the Owens Valley Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael; Hallinan, Gregg; Owens Valley LWA Collaboration

    2016-01-01

    The Owens Valley Long Wavelength Array (OVRO LWA) is a 288-antenna interferometer covering 30 to 80 MHz located at the Owens Valley Radio Observatory (OVRO) near Big Pine, California. I am leading the effort to detect spatial fluctuations of the 21 cm transition from the cosmic dawn (z~20) with the OVRO LWA. These spatial fluctuations are primarily sourced by inhomogeneous X-ray heating from early star formation. The spectral hardness of early X-ray sources, stellar feedback mechanisms, and baryon streaming therefore all play a role in shaping the power spectrum. I will present the application of m-mode analysis (Shaw et al. 2014, Shaw et al. 2015) to OVRO LWA data to: 1. compress the data set, 2. create maps of the northern sky that can be fed back into the calibration pipeline, and 3. filter foreground emission. Finally I will present the current status and future prospects of the OVRO LWA for detecting the 21 cm power spectrum at z~20.

  11. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  12. Signatures of clumpy dark matter in the global 21 cm background signal

    SciTech Connect

    Cumberbatch, Daniel T.; Lattanzi, Massimiliano; Silk, Joseph

    2010-11-15

    We examine the extent to which the self-annihilation of supersymmetric neutralino dark matter, as well as light dark matter, influences the rate of heating, ionization, and Lyman-{alpha} pumping of interstellar hydrogen and helium and the extent to which this is manifested in the 21 cm global background signal. We fully consider the enhancements to the annihilation rate from dark matter halos and substructures within them. We find that the influence of such structures can result in significant changes in the differential brightness temperature, {delta}T{sub b}. The changes at redshifts z<25 are likely to be undetectable due to the presence of the astrophysical signal; however, in the most favorable cases, deviations in {delta}T{sub b}, relative to its value in the absence of self-annihilating dark matter, of up to {approx_equal}20 mK at z=30 can occur. Thus we conclude that, in order to exclude these models, experiments measuring the global 21 cm signal, such as EDGES and CORE, will need to reduce the systematics at 50 MHz to below 20 mK.

  13. A fast method for power spectrum and foreground analysis for 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Liu, Adrian; Tegmark, Max

    2013-02-01

    We develop and demonstrate an acceleration of the Liu and Tegmark quadratic estimator formalism for inverse variance foreground subtraction and power spectrum estimation in 21 cm tomography from O(N3) to O(Nlog⁡N), where N is the number of voxels of data. This technique makes feasible the megavoxel scale analysis necessary for current and upcoming radio interferometers by making only moderately restrictive assumptions about foreground models and survey geometry. We exploit iterative and Monte Carlo techniques and the symmetries of the foreground covariance matrices to quickly estimate the 21 cm brightness temperature power spectrum, P(k∥,k⊥), the Fisher information matrix, the error bars, the window functions, and the bias. We also extend the Liu and Tegmark foreground model to include bright point sources with known positions in a way that scales as O[(Nlog⁡N)×(Npointsources)]≤O(N5/3). As a first application of our method, we forecast error bars and window functions for the upcoming 128-tile deployment of the Murchinson Widefield Array, showing that 1000 hours of observation should prove sufficiently sensitive to detect the power spectrum signal from the Epoch of Reionization.

  14. A Low-cost 21 cm Horn-antenna Radio Telescope for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Patel, Rishi N; Kimberk, Robert S; Test, John H; Krolewski, Alex; Ryan, James; Karkare, Kirit S; Kovac, John M; Dame, Thomas M.

    2014-06-01

    Small radio telescopes (1-3m) for observations of the 21 cm hydrogen line are widely used for education and outreach. A pyramidal horn was used by Ewen & Purcell (1951) to first detect the 21cm line at Harvard. Such a horn is simple to design and build, compared to a parabolic antenna which is usually purchased ready-made. Here we present a design of a horn antenna radio telescope that can be built entirely by students, using simple components costing less than $300. The horn has an aperture of 75 cm along the H-plane, 59 cm along the E-plane, and gain of about 20 dB. The receiver system consists of low noise amplifiers, band-pass filters and a software-defined-radio USB receiver that provides digitized samples for spectral processing in a computer. Starting from construction of the horn antenna, and ending with the measurement of the Galactic rotation curve, took about 6 weeks, as part of an undergraduate course at Harvard University. The project can also grow towards building a two-element interferometer for follow-up studies.

  15. Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case

    NASA Astrophysics Data System (ADS)

    Harker, Geraint; Zaroubi, Saleem; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Ciardi, Benedetta; Jelić, Vibor; Koopmans, Leon V. E.; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, André; Pandey, V. N.; Pawlik, Andreas H.; Schaye, Joop; Thomas, Rajat M.; Yatawatta, Sarod

    2010-07-01

    One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different observational strategies which compromise between depth of observation, sky coverage and frequency coverage. A plan in which lower frequencies receive a larger fraction of the time appears to be promising. We also study the nature of the bias which foreground fitting errors induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The angular and line-of-sight power spectra have different merits in this respect, and we suggest considering them separately in the analysis of LOFAR data.

  16. Dicke’s Superradiance in Astrophysics. I. The 21 cm Line

    NASA Astrophysics Data System (ADS)

    Rajabi, Fereshteh; Houde, Martin

    2016-08-01

    We have applied the concept of superradiance introduced by Dicke in 1954 to astrophysics by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions and that the lack of observational evidence of masers for this transition reduces the probability of detecting superradiance, in situations where the conditions necessary for superradiance are met (close atomic spacing, high velocity coherence, population inversion, and long dephasing timescales compared to those related to coherent behavior), our results suggest that relatively low levels of population inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the interstellar medium. Given the results of our analysis, we expect the observational properties of 21 cm superradiance to be characterized by the emission of high-intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to days.

  17. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements

    NASA Astrophysics Data System (ADS)

    Mozdzen, T. J.; Bowman, J. D.; Monsalve, R. A.; Rogers, A. E. E.

    2016-02-01

    Foreground subtraction in global redshifted 21 cm measurements is limited by frequency-dependent (chromatic) structure in antenna beam patterns. Chromatic beams couple angular structures in Galactic foreground emission to spectral structures that may not be removed by smooth functional forms. We report results for simulations based on two dipole antennas used by the Experiment to Detect the Global EoR Signature (EDGES). The residual levels in simulated foreground-subtracted spectra are found to differ substantially between the two antennas, suggesting that antenna design must be carefully considered. Residuals are also highly dependent on the right ascension and declination of the antenna pointing, with rms values differing by as much as a factor of 20 across pointings. For EDGES and other ground-based experiments with zenith pointing antennas, right ascension and declination correspond directly to the local sidereal time and the latitude of the deployment site, hence chromatic beam effects should be taken into account when selecting sites. We introduce the `blade' dipole antenna and show, via simulations, that it has better chromatic performance than the `fourpoint' antenna previously used for EDGES. The blade antenna yields 1-5 mK residuals across the entire sky after a 5-term polynomial is removed from simulated spectra, whereas the fourpoint antenna typically requires a 6-term polynomial for comparable residuals. For both antennas, the signal-to-noise ratio of recovered 21 cm input signals peaks for a 5-term polynomial foreground fit given realistic thermal noise levels.

  18. PAPER-64 Constraints on Reionization: The 21 cm Power Spectrum at z = 8.4

    NASA Astrophysics Data System (ADS)

    Ali, Zaki S.; Parsons, Aaron R.; Zheng, Haoxuan; Pober, Jonathan C.; Liu, Adrian; Aguirre, James E.; Bradley, Richard F.; Bernardi, Gianni; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Pat; MacMahon, David H. E.; Maree, Matthys; Moore, David F.; Razavi, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre

    2015-08-01

    In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ2(k) of (22.4 mK)2 in the range 0.15\\lt k\\lt 0.5h {{Mpc}}-1 at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array.

  19. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively. PMID:25105607

  20. Linear and Circular polarization of CMB and cosmic 21cm radiation

    NASA Astrophysics Data System (ADS)

    De, Soma; Vachaspati, T.; Pogosian, L.; Tashiro, H.

    2014-01-01

    I will discuss the effect of galactic and primordial magnetic field on the linear polarization of CMB. Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level. Next I'll discuss how the galactic magnetic field affects polarization of 21 cm. Unpolarized 21 cm radiation acquires a certain level of linear polarization during the EoR due to Thompson scattering. This linear polarization, if measured, could probe important information about the EoR. We show that a 99 % accuracy on galactic rotation measure (RM) data is necessary to recover the initial E-mode signal. I will conclude my talk by addressing the very interesting question of if CMB can be circularly polarized due to the secondary effects along the line of sight. As the CMB passes through galaxies and galaxy clusters, which could generate a circular polarization by the method of Faraday conversion (FC) (Pacholczyk, 1998, Cooray et al, 2002). Particularly explosions of first stars can induce circular polarization (due to Faraday conversion) and it has no strong local foreground. The unique frequency dependence of FC signal will allow one to eliminate other possible sources of circular polarization enabling to probe the first star explosions.

  1. Angular 21 cm power spectrum of a scaling distribution of cosmic string wakes

    SciTech Connect

    Hernández, Oscar F.; Wang, Yi; Brandenberger, Robert; Fong, José E-mail: wangyi@physics.mcgill.ca E-mail: jose.fong@ens-lyon.fr

    2011-08-01

    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.

  2. 21 cm line bispectrum as a method to probe cosmic dawn and epoch of reionization

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Hayato; Yoshiura, Shintaro; Takahashi, Keitaro; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2016-05-01

    Redshifted 21 cm signal is a promising tool to investigate the state of intergalactic medium (IGM) in the cosmic dawn (CD) and epoch of reionization (EoR). In our previous work, we studied the variance and skewness of the 21 cm fluctuations to give a clear interpretation of the 21 cm power spectrum and found that skewness is a good indicator of the epoch when X-ray heating becomes effective. Thus, the non-Gaussian feature of the spatial distribution of the 21 cm signal is expected to be useful to investigate the astrophysical effects in the CD and EoR. In this paper, in order to investigate such a non-Gaussian feature in more detail, we focus on the bispectrum of the 21 cm signal. It is expected that the 21 cm brightness temperature bispectrum is produced by non-Gaussianity due to the various astrophysical effects such as the Wouthuysen-Field effect, X-ray heating and reionization. We study the various properties of 21 cm bispectrum such as scale dependence, shape dependence and redshift evolution. And also we study the contribution from each component of 21 cm bispectrum. We find that the contribution from each component has characteristic scale-dependent feature. In particular, we find that the bulk of the 21 cm bispectrum at z = 20 comes from the matter fluctuations, while in other epochs it is mainly determined by the spin and/or neutral fraction fluctuations and it is expected that we could obtain more detailed information on the IGM in the CD and EoR by using the 21 cm bispectrum in the future experiments, combined with the power spectrum and skewness.

  3. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-05-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  4. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION

    SciTech Connect

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.

    2012-09-20

    Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional power spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.

  5. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $k\\lesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12\\lesssim z \\lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  6. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-σ upper limit on the EoR power spectrum of Δ^2(k)<1.25×10^4 mK^2 at cosmic scale k=0.236 h Mpc^{-1} and redshift z=6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  7. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-sigma upper limit on the EoR power spectrum of Delta2(k) < 1.25 x 104 mK2 at cosmic scale k = 0.236 h Mpc-1 and redshift z = 6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  8. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  9. A record breaking sightline: Five DLA-strength 21 cm absorbers towards the quasar MG J0414+0534

    NASA Astrophysics Data System (ADS)

    Tanna, Anant; Whiting, Matthew; Curran, Steve

    2013-10-01

    High redshift absorption of the HI 21 cm transition is a powerful probe of star-forming gas and hence evolution of structure in the Universe at large lookback times. Typically a rare occurrence, we have detected an unprecedented number of 21 cm absorbers along a single sightline to the red QSO J0414+0534, suggesting a population of galaxies missed by optical surveys. Extreme RFI in the spectrum of the strongest absorber requires ATCA observations to fully parameterise the system and understand the nature of the absorbing gas. We aim to confirm whether this highly unique sight-line truly does have so many dense absorbers, and use these features toward calculating the cosmic acceleration.

  10. Cross-correlation of 21 cm and soft X-ray backgrounds during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Min; Mao, Xiao-Chun; Qin, Bo

    2016-08-01

    The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulations to create 21 cm and soft X-ray intensity maps and construct their cross power spectra. Our results indicate that the cross power spectra are sensitive to the thermal and ionizing states of the intergalactic medium (IGM). The 21 cm background correlates positively to the SXB on large scales during the early stages of the reionization. However as the reionization develops, these two backgrounds turn out to be anti-correlated with each other when more than ∼ 15% of the IGM is ionized in a warm reionization scenario. The anti-correlated power reaches its maximum when the neutral fraction declines to 0.2–0.5. Hence, the trough in the cross power spectrum might be a useful tool for tracing the growth of HII regions during the middle and late stages of the reionization. We estimate the detectability of the cross power spectrum based on the abilities of the Square Kilometre Array and the Wide Field X-ray Telescope (WFXT), and find that to detect the cross power spectrum, the pixel noise of X-ray images has to be at least 4 orders of magnitude lower than that of the WFXT deep survey.

  11. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  12. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  13. The cross correlation between the 21-cm radiation and the CMB lensing field: a new cosmological signal

    SciTech Connect

    Vallinotto, Alberto

    2011-01-01

    The measurement of Baryon Acoustic Oscillations through the 21-cm intensity mapping technique at redshift z {<=} 4 has the potential to tightly constrain the evolution of dark energy. Crucial to this experimental effort is the determination of the biasing relation connecting fluctuations in the density of neutral hydrogen (HI) with the ones of the underlying dark matter field. In this work I show how the HI bias relevant to these 21-cm intensity mapping experiments can successfully be measured by cross-correlating their signal with the lensing signal obtained from CMB observations. In particular I show that combining CMB lensing maps from Planck with 21-cm field measurements carried out with an instrument similar to the Cylindrical Radio Telescope, this cross-correlation signal can be detected with a signal-to-noise (S/N) ratio of more than 5. Breaking down the signal arising from different redshift bins of thickness {Delta}z = 0.1, this signal leads to constraining the large scale neutral hydrogen bias and its evolution to 4{sigma} level.

  14. Measuring the 21 cm Power Spectrum from the Epoch of Reionization with the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Paciga, Gregory

    The Epoch of Reionization (EoR) is the transitional period in the universe's evolution which starts when the first luminous sources begin to ionize the intergalactic medium for the first time since recombination, and ends when the most of the hydrogen is ionized by about a redshift of 6. Observations of the 21cm emission from hyperfine splitting of the hydrogen atom can carry a wealth of cosmological information from this epoch since the redshifted line can probe the entire volume. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission due to the patchwork of neutral and ionized regions present during the transition. In this work we detail approximately five years of observations at the GMRT, comprising over 900 hours, and an in-depth analysis of about 50 hours which have lead to the first upper limits on the 21cm power spectrum in the range z = 8.1 to 9.2. This includes a concentrated radio frequency interference (RFI) mitigation campaign around the GMRT area, a novel method for removing broadband RFI with a singular value decomposition, and calibration with a pulsar as both a phase and polarization calibrator. Preliminary results from 2011 showed a 2-sigma upper limit to the power spectrum of (70 mK). 2. However, we find that foreground removalstrategies tend to reduce the cosmological signal significantly, and modeling this signal loss is crucial for interpretation of power spectrum measurements. Using a simulated signal to estimate the transfer function of the real 21cm signal through the foreground removal procedure, we are able to find the optimal level of foreground removal and correct for the signal loss. Using this correction, we report a 2-sigma upper limit of (248 mK)2 at k = 0.5 h Mpc-1.

  15. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  16. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.

    PubMed

    Tarter, J

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank. PMID:11537747

  17. Reconstructing the nature of the first cosmic sources from the anisotropic 21-cm signal.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Cohen, Aviad

    2015-03-13

    The redshifted 21-cm background is expected to be a powerful probe of the early Universe, carrying both cosmological and astrophysical information from a wide range of redshifts. In particular, the power spectrum of fluctuations in the 21-cm brightness temperature is anisotropic due to the line-of-sight velocity gradient, which in principle allows for a simple extraction of this information in the limit of linear fluctuations. However, recent numerical studies suggest that the 21-cm signal is actually rather complex, and its analysis likely depends on detailed model fitting. We present the first realistic simulation of the anisotropic 21-cm power spectrum over a wide period of early cosmic history. We show that on observable scales, the anisotropy is large and thus measurable at most redshifts, and its form tracks the evolution of 21-cm fluctuations as they are produced early on by Lyman-α radiation from stars, then switch to x-ray radiation from early heating sources, and finally to ionizing radiation from stars. In particular, we predict a redshift window during cosmic heating (at z∼15), when the anisotropy is small, during which the shape of the 21-cm power spectrum on large scales is determined directly by the average radial distribution of the flux from x-ray sources. This makes possible a model-independent reconstruction of the x-ray spectrum of the earliest sources of cosmic heating. PMID:25815921

  18. RESEARCH PAPER: Foreground removal of 21 cm fluctuation with multifrequency fitting

    NASA Astrophysics Data System (ADS)

    He, Li-Ping

    2009-06-01

    The 21 centimeter (21 cm) line emission from neutral hydrogen in the intergalactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in frequency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary significantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of approx10 mK at 150 MHz with 40 antennas in 120 hours of observations.

  19. Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Parsons, Aaron R.

    2016-04-01

    Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean (`global') signal of the 21 cm brightness temperature. In this paper, we use the recently commenced Hydrogen Epoch of Reionization Array (HERA) as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so, we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fitting cosmological parameters from the Planck satellite, exploring the impact of different Planck data sets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an avenue for 21 cm reionization measurements to constrain cosmology. We additionally forecast HERA's ability to measure the ionization history using a combination of power spectrum measurements and semi-analytic simulations. Finally, we consider ways in which 21 cm global signal and power spectrum measurements can be combined, and propose a method by which power spectrum results can be used to train a compact parametrization of the global signal. This parametrization reduces the number of parameters needed to describe the global signal, increasing the likelihood of a high significance measurement.

  20. Reconstructing the Nature of the First Cosmic Sources from the Anisotropic 21-cm Signal

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Barkana, Rennan; Cohen, Aviad

    2015-03-01

    The redshifted 21-cm background is expected to be a powerful probe of the early Universe, carrying both cosmological and astrophysical information from a wide range of redshifts. In particular, the power spectrum of fluctuations in the 21-cm brightness temperature is anisotropic due to the line-of-sight velocity gradient, which in principle allows for a simple extraction of this information in the limit of linear fluctuations. However, recent numerical studies suggest that the 21-cm signal is actually rather complex, and its analysis likely depends on detailed model fitting. We present the first realistic simulation of the anisotropic 21-cm power spectrum over a wide period of early cosmic history. We show that on observable scales, the anisotropy is large and thus measurable at most redshifts, and its form tracks the evolution of 21-cm fluctuations as they are produced early on by Lyman-α radiation from stars, then switch to x-ray radiation from early heating sources, and finally to ionizing radiation from stars. In particular, we predict a redshift window during cosmic heating (at z ˜15 ), when the anisotropy is small, during which the shape of the 21-cm power spectrum on large scales is determined directly by the average radial distribution of the flux from x-ray sources. This makes possible a model-independent reconstruction of the x-ray spectrum of the earliest sources of cosmic heating.

  1. The 21-cm signature of the first stars during the Lyman-Werner feedback era

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli; Tseliakhovich, Dmitriy; Hirata, Christopher M.

    2013-07-01

    The formation of the first stars is an exciting frontier area in astronomy. Early redshifts (z ˜ 20) have become observationally promising as a result of a recently recognized effect of a supersonic relative velocity between the dark matter and gas. This effect produces prominent structure on 100 comoving Mpc scales, which makes it much more feasible to detect 21-cm fluctuations from the epoch of first heating. We use semi-numerical hybrid methods to follow for the first time the joint evolution of the X-ray and Lyman-Werner radiative backgrounds, including the effect of the supersonic streaming velocity on the cosmic distribution of stars. We incorporate self-consistently the negative feedback on star formation induced by the Lyman-Werner radiation, which dissociates molecular hydrogen and thus suppresses gas cooling. We find that the feedback delays the X-ray heating transition by Δz ˜ 2, but leaves a promisingly large fluctuation signal over a broad redshift range. The large-scale power spectrum is predicted to reach a maximal signal-to-noise ratio of S/N ˜ 3-4 at z ˜ 18 (for a projected first-generation instrument), with S/N >1 out to z ˜ 22-23. We hope to stimulate additional numerical simulations as well as observational efforts focused on the epoch prior to cosmic reionization.

  2. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  3. Mapping kiloparsec-scale structures in the extended H I disc of the galaxy UGC 000439 by H I 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Gupta, N.; Srianand, R.; O'Meara, J. M.

    2016-03-01

    We study the properties of H I gas in the outer regions (˜2r25) of a spiral galaxy, UGC 00439 (z = 0.017 69), using H I 21-cm absorption towards different components of an extended background radio source, J0041-0043 (z = 1.679). The radio source exhibits a compact core coincident with the optical quasar and two lobes separated by ˜7 kpc, all at an impact parameter ˜25 kpc. The H I 21-cm absorption detected towards the southern lobe is found to extend over ˜2 kpc2. The absorbing gas shows sub-kpc-scale structures with the line-of-sight velocities dominated by turbulent motions. Much larger optical depth variations over 4-7 kpc scale are revealed by the non-detection of H I 21-cm absorption towards the radio core and the northern lobe, and the detection of Na I and Ca II absorption towards the quasar. This could reflect a patchy distribution of cold gas in the extended H I disc. We also detect H I 21-cm emission from UGC 00439 and two other galaxies within ˜150 kpc to it, that probably form an interacting group. However, no H I 21-cm emission from the absorbing gas is detected. Assuming a linear extent of ˜4 kpc, as required to cover both the core and the southern lobe, we constrain the spin temperature ≲ 300 K for the absorbing gas. The kinematics of the gas and the lack of signatures of any ongoing in situ star formation are consistent with the absorbing gas being at the kinematical minor axis and corotating with the galaxy. Deeper H I 21-cm observations would help to map in greater detail both the large- and small-scale structures in the H I gas associated with UGC 00439.

  4. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%. PMID:17501040

  5. Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    NASA Astrophysics Data System (ADS)

    Vrbanec, Dijana; Ciardi, Benedetta; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R.; Ghosh, Abhik; Iliev, Ilian T.; Kakiichi, Koki; Koopmans, Léon V. E.; Mellema, Garrelt

    2016-03-01

    The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly α emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly α photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ˜60 h-1 Mpc (corresponding to k ˜ 0.1 h Mpc-1), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.

  6. Bayesian Semi-blind Component Separation for Foreground Removal in Interferometric 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Bunn, Emory F.; Karakci, Ata; Korotkov, Andrei; Sutter, P. M.; Timbie, Peter T.; Tucker, Gregory S.; Wandelt, Benjamin D.

    2016-01-01

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation-Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

  7. A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION

    SciTech Connect

    Parsons, Aaron; Pober, Jonathan; McQuinn, Matthew; Jacobs, Daniel; Aguirre, James

    2012-07-01

    Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer's response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy in the uv-plane-configurations that have been largely ignored since the advent of self-calibration for high-dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations, finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization at a 3{sigma} level at k < 0.25 h Mpc{sup -1} in a bin of {Delta}ln k = 1. We discuss the tradeoffs of low- versus high-redundancy configurations.

  8. Sensitive 21cm Observations of Neutral Hydrogen in the Local Group near M31

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.; Lockman, Felix J.; Pisano, D. J.

    2016-01-01

    Very sensitive 21 cm H i measurements have been made at several locations around the Local Group galaxy M31 using the Green Bank Telescope at an angular resolution of 9.‧1, with a 5σ detection level of NH i = 3.9 × 1017 cm-2 for a 30 km s-1 line. Most of the H i in a 12 square-degree area almost equidistant between M31 and M33 is contained in nine discrete clouds that have a typical size of a few kpc and a H i mass of 105M⊙. Their velocities in the Local Group Standard of Rest lie between -100 and +40 km s-1, comparable to the systemic velocities of M31 and M33. The clouds appear to be isolated kinematically and spatially from each other. The total H i mass of all nine clouds is 1.4 × 106M⊙ for an adopted distance of 800 kpc, with perhaps another 0.2 × 106M⊙ in smaller clouds or more diffuse emission. The H i mass of each cloud is typically three orders of magnitude less than the dynamical (virial) mass needed to bind the cloud gravitationally. Although they have the size and H i mass of dwarf galaxies, the clouds are unlikely to be part of the satellite system of the Local Group, as they lack stars. To the north of M31, sensitive H i measurements on a coarse grid find emission that may be associated with an extension of the M31 high-velocity cloud (HVC) population to projected distances of ˜100 kpc. An extension of the M31 HVC population at a similar distance to the southeast, toward M33, is not observed.

  9. SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286

    SciTech Connect

    Wolfe, Arthur M.; Jorgenson, Regina A.; Robishaw, Timothy; Heiles, Carl; Xavier Prochaska, J. E-mail: raj@ast.cam.ac.uk E-mail: heiles@astro.berkeley.edu

    2011-05-20

    A reanalysis of the Stokes-parameter spectra obtained of the z = 0.692 21 cm absorption line toward 3C 286 shows that our original claimed detection of Zeeman splitting by a line-of-sight magnetic field, B{sub los} = 87 {mu}G, is incorrect. Because of an insidious software error, what we reported as Stokes V is actually Stokes U: the revised Stokes V spectrum indicates a 3{sigma} upper limit of B{sub los}< 17 {mu}G. The correct analysis reveals an absorption feature in fractional polarization that is offset in velocity from the Stokes I spectrum by -1.9 km s{sup -1}. The polarization position-angle spectrum shows a dip that is also significantly offset from the Stokes I feature, but at a velocity that differs slightly from the absorption feature in fractional polarization. We model the absorption feature with three velocity components against the core-jet structure of 3C 286. Our {chi}{sup 2} minimization fitting results in components with differing (1) ratios of H I column density to spin temperature, (2) velocity centroids, and (3) velocity dispersions. The change in polarization position angle with frequency implies incomplete coverage of the background jet source by the absorber. It also implies a spatial variation of the polarization position angle across the jet source, which is observed at frequencies higher than the 839.4 MHz absorption frequency. The multi-component structure of the gas is best understood in terms of components with spatial scales of {approx}100 pc comprised of hundreds of low-temperature (T {<=} 200 K) clouds with linear dimensions of <<100 pc. We conclude that previous attempts to model the foreground gas with a single uniform cloud are incorrect.

  10. Combining Optical and 21 cm Observations: A Study of Baryons in Galaxies

    NASA Astrophysics Data System (ADS)

    Faith Horne, Lisa; Zeh, P.; Rosenberg, J. L.; West, A. A.; ALFALFA Team

    2009-01-01

    This poster presents the first look at combining data from the Arecibo Legacy Fast ALFA (ALFALFA), a blind HI 21cm radio survey, with optical data from the Sloan Digital Sky Survey (SDSS). The goal of the project is to study the state of baryonic mass in galaxies in order to provide a better understanding of the evolution of gas into stars. Optical surveys tend to overlook some gas-rich galaxies such as low surface brightness galaxies because these systems are too low-contrast to easily be identified by their starlight while HI surveys can easily identify such objects by the gas that they contain. However, HI surveys tend to miss elliptical and spheroidal galaxies that have little gas. Therefore, the combination of the ALFALFA and SDSS data will allow a wider selection of objects to be detected and studied than would be possible with only one survey or the other. The data presented here are taken from one region of sky where ALFALFA and SDSS overlap. The environments probed in this region include the Great Wall and the low-density region in front of the Great Wall. It is found that this region contains a variety of galaxies from very dim, gas-deprived ellipticals to extremely bright, gas-rich spirals. We present measurements of HI mass, optical luminosity, and velocity width for galaxies in the sample and examine the relationship between these quantities. ALFALFA, PIs Giovanelli and Haynes, is a legacy survey funded by NAIC and NSF. SDSS is a legacy survey managed by the Astrophysical Research Consortium for the Participating Institutions.

  11. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    SciTech Connect

    Tanna, A.; Webb, J. K.; Curran, S. J.; Whiting, M. T.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  12. Reionization on Large Scales. IV. Predictions for the 21 cm Signal Incorporating the Light Cone Effect

    NASA Astrophysics Data System (ADS)

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the "light cone" effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h -1). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  13. Modelling the cosmic neutral hydrogen from DLAs and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Choudhury, T. Roy; Refregier, Alexandre

    2016-05-01

    We review the analytical prescriptions in the literature to model the 21-cm (emission line surveys/intensity mapping experiments) and Damped Lyman-Alpha (DLA) observations of neutral hydrogen (H I) in the post-reionization universe. While these two sets of prescriptions have typically been applied separately for the two probes, we attempt to connect these approaches to explore the consequences for the distribution and evolution of H I across redshifts. We find that a physically motivated, 21-cm-based prescription, extended to account for the DLA observables provides a good fit to the majority of the available data, but cannot accommodate the recent measurement of the clustering of DLAs at z ˜ 2.3. This highlights a tension between the DLA bias and the 21-cm measurements, unless there is a very significant change in the nature of H I-bearing systems across redshifts 0-3. We discuss the implications of our findings for the characteristic host halo masses of the DLAs and the power spectrum of 21-cm intensity fluctuations.

  14. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    SciTech Connect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  15. Studying the first X-ray sources in our Universe with the redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei

    2016-04-01

    The cosmological 21-cm line is sensitive to the thermal and ionization state of the intergalactic medium (IGM). As it is a line transition, a given observed frequency can be associated with a cosmological redshift. Thus upcoming next-generation radio interferometers, such as HERA and SKA, will map out the 3D structure of the early Universe. This 21-cm signal encodes a weath of information about the first galaxies and IGM structures. In particular, X-ray sources in the first galaxies are thought to have heated the IGM to temperatures above the CMB temperature, well before cosmic reionization. The spatial structure of the 21-cm signal during this epoch of X-ray heating encodes invaluable information about the X-ray luminosity and spectral energy distributions of the first galaxies. I will review this exciting new fronteer, highlighting how the 21-cm line will provide us with a unique opertunity to study high-energy processes inside the first galaxies.

  16. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    SciTech Connect

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  17. Foreground Model and Antenna Calibration Errors in the Measurement of the Sky-averaged λ21 cm Signal at z~ 20

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-01

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ~ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered "spectrally smooth"). Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ~fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  18. Light-cone anisotropy in the 21 cm signal from the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Zawada, Karolina; Semelin, Benoît; Vonlanthen, Patrick; Baek, Sunghye; Revaz, Yves

    2014-04-01

    Using a suite of detailed numerical simulations, we estimate the level of anisotropy generated by the time evolution along the light cone of the 21 cm signal from the epoch of reionization. Our simulations include the physics necessary to model the signal during both the late emission regime and the early absorption regime, namely X-ray and Lyman band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight. We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light-cone anisotropy is visible only on large scales (100 comoving Mpc). However, the detailed behaviour is different. We find that, at three different epochs, the amplitudes of the correlations along and perpendicular to the line of sight differ from each other, indicating anisotropy. We show that these three epochs are associated with three events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman α coupling in regions around the sources. We find that a 20 × 20 deg2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 Mpc (comoving) scale, we show that the light-cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the Square Kilometre Array, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the Low-Frequency Array for radio astronomy, it is likely that only one anisotropy episode (ionized bubble overlap) will fall in the observing frequency range. This episode will be detectable only if sample

  19. Cosmologically probing ultra-light particle dark matter using 21 cm signals

    SciTech Connect

    Kadota, Kenji; Mao, Yi; Silk, Joseph; Ichiki, Kiyomoto E-mail: mao@iap.fr E-mail: j.silk1@physics.ox.ac.uk

    2014-06-01

    There can arise ubiquitous ultra-light scalar fields in the Universe, such as the pseudo-Goldstone bosons from the spontaneous breaking of an approximate symmetry, which can make a partial contribution to the dark matter and affect the large scale structure of the Universe. While the properties of those ultra-light dark matter are heavily model dependent and can vary in a wide range, we develop a model-independent analysis to forecast the constraints on their mass and abundance using futuristic but realistic 21 cm observables as well as CMB fluctuations, including CMB lensing measurements. Avoiding the highly nonlinear regime, the 21 cm emission line spectra are most sensitive to the ultra-light dark matter with mass m ∼ 10{sup −26} eV for which the precision attainable on mass and abundance bounds can be of order of a few percent.

  20. Numerical simulation of soil brightness temperatures at wavelength of 21 cm

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.

    1981-01-01

    A simulation model is applied to reproduce some observed brightness temperatures at a wavelength of 21 cm. The simulated results calculated with two different soil textures are compared directly with observations measured over fields in Arizona and South Dakota. It is found that good agreement is possible by properly adjusting the surface roughness parameter. Correlation analysis and linear regression of the brightness temperatures versus soil moistures are also carried out.

  1. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  2. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.

    2015-02-01

    The highly redshifted 21-cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ˜ 1) up through the Epoch of Reionization (EoR) (z ˜ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21-cm signal, since this approach maximizes the signal to noise in the initial measurement. However, like galaxy surveys, the 21-cm signal is affected by redshift space distortions, and is inherently anisotropic between the line of sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line of sight and transverse directions: the so-called foreground `wedge'. Although foreground subtraction techniques are actively being developed, a `foreground avoidance' approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyse the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21-cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (Hydrogen Epoch of Reionization Array and the Square Kilometre Array), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like Canadian Hydrogen Intensity Mapping Experiment can place non-trivial constraints on cosmological parameters.

  3. Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Prasad, Jayanti; Bharadwaj, Somnath; Ali, Sk. Saiyad; Chengalur, Jayaram N.

    2012-11-01

    Foreground removal is a major challenge for detecting the redshifted 21 cm neutral hydrogen (H I) signal from the Epoch of Reionization. We have used 150 MHz Giant Metrewave Radio Telescope observations to characterize the statistical properties of the foregrounds in four different fields of view. The measured multifrequency angular power spectrum Cℓ(Δν) is found to have values in the range 104-2 × 104 mK2 across 700 ≤ ℓ ≤ 2 × 104 and Δν ≤ 2.5 MHz, which is consistent with model predictions where point sources are the most dominant foreground component. The measured Cℓ(Δν) does not show a smooth Δν dependence, which poses a severe difficulty for foreground removal using polynomial fitting. The observational data were used to assess point source subtraction. Considering the brightest source (˜1 Jy) in each field, we find that the residual artefacts are less than 1.5 per cent in the most sensitive field (FIELD I). Considering all the sources in the fields, we find that the bulk of the image is free of artefacts, the artefacts being localized to the vicinity of the brightest sources. We have used FIELD I, which has an rms noise of 1.3 mJy beam-1, to study the properties of the radio source population to a limiting flux of 9 mJy. The differential source count is well fitted with a single power law of slope -1.6. We find there is no evidence for flattening of the source counts towards lower flux densities which suggests that source population is dominated by the classical radio-loud active galactic nucleus. The diffuse Galactic emission is revealed after the point sources are subtracted out from FIELD I. We find Cℓ ∝ ℓ-2.34 for 253 ≤ ℓ ≤ 800 which is characteristic of the Galactic synchrotron radiation measured at higher frequencies and larger angular scales. We estimate the fluctuations in the Galactic synchrotron emission to be ℓ(ℓ+1)Cℓ/2π≃10 K at ℓ = 800 (θ > 10 arcmin). The measured Cℓ is dominated by

  4. Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-01

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ˜ 10–15 only extends to < {{Δ }}{T}B> ˜ -25 {{mK}}, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ˜ 0.1–1h Mpc‑1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.

  5. Statistics of 21-cm fluctuations in cosmic reionization simulations: PDFs and difference PDFs

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera; Barkana, Rennan

    2010-11-01

    In the coming decade, low-frequency radio arrays will begin to probe the epoch of reionization via the redshifted 21-cm hydrogen line. Successful interpretation of these observations will require effective statistical techniques for analysing the data. Due to the difficulty of these measurements, it is important to develop techniques beyond the standard power-spectrum analysis in order to offer independent confirmation of the reionization history, probe different aspects of the topology of reionization and have different systematic errors. In order to assess the promise of probability distribution functions (PDFs) as statistical analysis tools in 21-cm cosmology, we first measure the 21-cm brightness temperature (one-point) PDFs in six different reionization simulations. We then parametrize their most distinct features by fitting them to a simple model. Using the same simulations, we also present the first measurements of difference PDFs in simulations of reionization. We find that while these statistics probe the properties of the ionizing sources, they are relatively independent of small-scale, subgrid astrophysics. We discuss the additional information that the difference PDF can provide on top of the power spectrum and the one-point PDF.

  6. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  7. Prospects of probing quintessence with HI 21-cm intensity mapping survey

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Thakur, Shruti; Sarkar, Tapomoy Guha; Sen, Anjan A.

    2016-09-01

    We investigate the prospect of constraining scalar field dark energy models using HI 21-cm intensity mapping surveys. We consider a wide class of coupled scalar field dark energy models whose predictions about the background cosmological evolution are different from the ΛCDM predictions by a few percent. We find that these models can be statistically distinguished from ΛCDM through their imprint on the 21-cm angular power spectrum. At the fiducial z = 1.5, corresponding to a radio interferometric observation of the post-reionization HI 21 cm observation at frequency 568 MHz, these models can infact be distinguished from the ΛCDM model at SNR > 3σ level using a 10,000 hr radio observation distributed over 40 pointings of a SKA1-mid like radio-telescope. We also show that tracker models are more likely to be ruled out in comparison with ΛCDM than the thawer models. Future radio observations can be instrumental in obtaining tighter constraints on the parameter space of dark energy models and supplement the bounds obtained from background studies.

  8. Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal

    DOE PAGESBeta

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-20

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc–1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less

  9. Opening the 21 cm Epoch of Reionization Window: Measurements of Foreground Isolation with PAPER

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; MacMahon, Dave; Manley, Jason; Moore, David F.; Stefan, Irina I.; Walbrugh, William P.

    2013-05-01

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a "wedge"-like region of two-dimensional (k , k ∥)-space, creating a window for cosmological studies at higher k ∥ values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this "unsmooth" emission and image its specific k ∥ modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  10. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    SciTech Connect

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-02-20

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km{sup 2} collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km{sup 2} of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  11. Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Santos, Mário G.; Ferreira, Pedro G.; Ferramacho, Luís

    2013-10-01

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z≃1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter fNL, with an error close to σfNL˜1.

  12. A fully sampled λ21 cm linear polarization survey of the southern sky

    NASA Astrophysics Data System (ADS)

    Testori, J. C.; Reich, P.; Reich, W.

    2008-06-01

    Context: Linear polarization of Galactic synchrotron emission provides valuable information on the Galactic magnetic field and on the properties of the Galactic magneto-ionic medium. Polarized high-latitude Galactic emission is the major foreground for polarization studies of the cosmic microwave background. Aims: We present a new southern-sky λ21 cm linear polarization survey, which complements the recent λ21 cm DRAO northern sky polarization data. Methods: We used a 30-m telescope located at Villa Elisa/Argentina to map the southern sky simultaneously in continuum and linear polarization. Results: We present a fully sampled map of linearly polarized emission at λ21 cm of the southern sky for declinations between -10° and -90°. The angular resolution of the survey is 36' and its sensitivity is 15 mK (rms-noise) in Stokes U and Q. The survey's zero-level has been adjusted to that of the recent DRAO 1.4 GHz linear polarization survey by comparing data in the region of overlap between -10° and -27°. Conclusions: The polarized southern sky at 1.4 GHz shows large areas with smooth low-level emission almost uncorrelated to total intensities indicating that Faraday rotation originating in the Galactic interstellar medium along the line of sight is significant at 1.4 GHz. The southern sky is much less contaminated by local foreground features than is the northern sky. Thus high-frequency observations of polarized cosmic microwave emission are expected to be less affected. The percentage polarization of the high-latitude emission is low, which seems to be an intrinsic property of Galactic emission.

  13. 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2015-06-01

    We introduce 21 CMMC: a parallelized, Monte Carlo Markov Chain analysis tool, incorporating the epoch of reionization (EoR) seminumerical simulation 21 CMFAST. 21 CMMC estimates astrophysical parameter constraints from 21 cm EoR experiments, accommodating a variety of EoR models, as well as priors on model parameters and the reionization history. To illustrate its utility, we consider two different EoR scenarios, one with a single population of galaxies (with a mass-independent ionizing efficiency) and a second, more general model with two different, feedback-regulated populations (each with mass-dependent ionizing efficiencies). As an example, combining three observations (z = 8, 9 and 10) of the 21 cm power spectrum with a conservative noise estimate and uniform model priors, we find that interferometers with specifications like the Low Frequency Array/Hydrogen Epoch of Reionization Array (HERA)/Square Kilometre Array 1 (SKA1) can constrain common reionization parameters: the ionizing efficiency (or similarly the escape fraction), the mean free path of ionizing photons and the log of the minimum virial temperature of star-forming haloes to within 45.3/22.0/16.7, 33.5/18.4/17.8 and 6.3/3.3/2.4 per cent, ˜1σ fractional uncertainty, respectively. Instead, if we optimistically assume that we can perfectly characterize the EoR modelling uncertainties, we can improve on these constraints by up to a factor of ˜few. Similarly, the fractional uncertainty on the average neutral fraction can be constrained to within ≲ 10 per cent for HERA and SKA1. By studying the resulting impact on astrophysical constraints, 21 CMMC can be used to optimize (i) interferometer designs; (ii) foreground cleaning algorithms; (iii) observing strategies; (iv) alternative statistics characterizing the 21 cm signal; and (v) synergies with other observational programs.

  14. Primordial non-gaussianity from the bispectrum of 21-cm fluctuations in the dark ages

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2015-10-01

    A measurement of primordial non-Gaussianity will be of paramount importance to distinguish between different models of inflation. Cosmic microwave background (CMB) anisotropy observations have set unprecedented bounds on the non-Gaussianity parameter fNL but the interesting regime fNL≲1 is beyond their reach. Brightness-temperature fluctuations in the 21-cm line during the dark ages (z ˜30 - 100 ) are a promising successor to CMB studies, giving access to a much larger number of modes. They are, however, intrinsically nonlinear, which results in secondary non-gaussianities orders of magnitude larger than the sought-after primordial signal. In this paper we carefully compute the primary and secondary bispectra of 21-cm fluctuations on small scales. We use the flat-sky formalism, which greatly simplifies the analysis, while still being very accurate on small angular scales. We show that the secondary bispectrum is highly degenerate with the primordial one, and argue that even percent-level uncertainties in the amplitude of the former lead to a bias of order Δ fNL˜10 . To tackle this problem we carry out a detailed Fisher analysis, marginalizing over the amplitudes of a few smooth redshift-dependent coefficients characterizing the secondary bispectrum. We find that the signal-to-noise ratio for a single redshift slice is reduced by a factor of ˜5 in comparison to a case without secondary non-gaussianities. Setting aside foreground contamination, we forecast that a cosmic-variance-limited experiment observing 21-cm fluctuations over 30 ≤z ≤100 with a 0.1-MHz bandwidth and 0.1 arc min angular resolution could achieve a sensitivity of order fNLlocal˜0.03 , fNLequil˜0.04 and fNLortho˜0.03 .

  15. Extracting Physical Parameters for the First Galaxies from the Cosmic Dawn Global 21-cm Spectrum

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Mirocha, Jordan; harker, geraint; Tauscher, Keith; Datta, Abhirup

    2016-01-01

    The all-sky or global redshifted 21-cm HI signal is a potentially powerful probe of the first luminous objects and their environs during the transition from the Dark Ages to Cosmic Dawn (35 > z > 6). The first stars, black holes, and galaxies heat and ionize the surrounding intergalactic medium, composed mainly of neutral hydrogen, so the hyperfine 21-cm transition can be used to indirectly study these early radiation sources. The properties of these objects can be examined via the broad absorption and emission features that are expected in the spectrum. The Dark Ages Radio Explorer (DARE) is proposed to conduct these observations at low radio astronomy frequencies, 40-120 MHz, in a 125 km orbit about the Moon. The Moon occults both the Earth and the Sun as DARE makes observations above the lunar farside, thus eliminating the corrupting effects from Earth's ionosphere, radio frequency interference, and solar nanoflares. The signal is extracted from the galactic/extragalactic foreground employing Bayesian methods, including Markov Chain Monte Carlo (MCMC) techniques. Theory indicates that the 21-cm signal is well described by a model in which the evolution of various physical quantities follows a hyperbolic tangent (tanh) function of redshift. We show that this approach accurately captures degeneracies and covariances between parameters, including those related to the signal, foreground, and the instrument. Furthermore, we also demonstrate that MCMC fits will set meaningful constraints on the Ly-α, ionizing, and X-ray backgrounds along with the minimum virial temperature of the first star-forming halos.

  16. Parametrizations of the 21-cm global signal and parameter estimation from single-dipole experiments

    NASA Astrophysics Data System (ADS)

    Harker, Geraint J. A.; Mirocha, Jordan; Burns, Jack O.; Pritchard, Jonathan R.

    2016-02-01

    One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal itself, and propose one based on modelling the Ly α background, intergalactic medium temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the high-frequency parts of the signal by fitting a more complex foreground model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data, though in this case it may be important to choose observing windows which do not include the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations and very broad-band fitting makes these results particularly applicable to experiments such as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean environment of a low lunar orbit, taking data from the far side.

  17. Statistics of the epoch of reionization 21-cm signal - I. Power spectrum error-covariance

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman

    2016-02-01

    The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum P(k). We have used a large ensemble of seminumerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix {C}ij. Our analytical model shows that {C}ij has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of P(k). The other is the trispectrum of the signal. Using the simulated 21-cm Signal Ensemble, an ensemble of the Randomized Signal and Ensembles of Gaussian Random Ensembles we have quantified the effect of the trispectrum on the error variance {C}ii. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the k range 0.3 ≤ k ≤ 1.0 Mpc-1, and can be even ˜200 times larger at k ˜ 5 Mpc-1. We also establish that the off-diagonal terms of {C}ij have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different k modes are not independent. We find a strong correlation between the errors at large k values (≥0.5 Mpc-1), and a weak correlation between the smallest and largest k values. There is also a small anticorrelation between the errors in the smallest and intermediate k values. These results are relevant for the k range that will be probed by the current and upcoming EoR 21-cm experiments.

  18. A Large-Scale Radio Polarization Survey of the Southern Sky at 21cm

    NASA Astrophysics Data System (ADS)

    Testori, J. C.; Reich, P.; Reich, W.

    2004-02-01

    We have successfully reduced the polarization data from the recently published 21 cm continuum survey of the southern sky carried out with a 30-m antenna at Villa Elisa (Argentina). We describe the reduction and calibration methods of the survey. The result is a fully sampled survey, which covers declinations from -90 degrees to -10 degrees with a typical rms-noise of 15 mK TB. The map of polarized intensity shows large regions with smooth low-level emission, but also a number of enhanced high-latitude features. Most of these regions have no counterpart in total intensity and indicate Faraday active regions.

  19. 21-cm lensing and the cold spot in the cosmic microwave background.

    PubMed

    Kovetz, Ely D; Kamionkowski, Marc

    2013-04-26

    An extremely large void and a cosmic texture are two possible explanations for the cold spot seen in the cosmic microwave background. We investigate how well these two hypotheses can be tested with weak lensing of 21-cm fluctuations from the epoch of reionization measured with the Square Kilometer Array. While the void explanation for the cold spot can be tested with Square Kilometer Array, given enough observation time, the texture scenario requires significantly prolonged observations, at the highest frequencies that correspond to the epoch of reionization, over the field of view containing the cold spot. PMID:23679703

  20. Effects of the sources of reionization on 21-cm redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Majumdar, Suman; Jensen, Hannes; Mellema, Garrelt; Chapman, Emma; Abdalla, Filipe B.; Lee, Kai-Yan; Iliev, Ilian T.; Dixon, Keri L.; Datta, Kanan K.; Ciardi, Benedetta; Fernandez, Elizabeth R.; Jelić, Vibor; Koopmans, Léon V. E.; Zaroubi, Saleem

    2016-02-01

    The observed 21 cm signal from the epoch of reionization will be distorted along the line of sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21 cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.

  1. 21 cm signal from cosmic dawn - II. Imprints of the light-cone effects

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Datta, Kanan K.; Choudhury, T. Roy

    2015-11-01

    Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21 cm signal. These observations, however, will be affected by the evolution of the signal along the line of sight which is known as the `light-cone effect'. We model this effect by post-processing a dark matter N-body simulation with an 1D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly α coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the spherically averaged power spectrum up to a factor of 3 (0.6) at large scales (k ˜ 0.05 Mpc- 1) when the light-cone effect is included, though these numbers are highly dependent on the source model. The effect is particularly significant near the peak and dip-like features seen in the power spectrum. The peaks and dips are suppressed and thus the power spectrum can be smoothed out to a large extent if the width of the frequency band used in the experiment is large. We argue that it is important to account for the light-cone effect for any 21-cm signal prediction during cosmic dawn.

  2. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    SciTech Connect

    Sekiguchi, Toyokazu; Sugiyama, Naoshi; Tashiro, Hiroyuki; Silk, Joseph E-mail: hiroyuki.tashiro@asu.edu E-mail: naoshi@nagoya-u.jp

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2∼21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  3. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ∼ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ∼2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  4. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Muñoz, Julian B.; Kamionkowski, Marc; Raccanelli, Alvise

    2016-05-01

    Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic microwave background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here, we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving upon the current CMB constraints by ˜2 orders of magnitude for a dipolar asymmetry and by ˜1 - 3 orders of magnitude for a quadrupolar asymmetry case.

  5. The 21-cm BAO signature of enriched low-mass galaxies during cosmic reionization

    NASA Astrophysics Data System (ADS)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan

    2016-06-01

    Studies of the formation of the first stars have established that they formed in small haloes of ˜105-106 M⊙ via molecular hydrogen cooling. Since a low level of ultraviolet radiation from stars suffices to dissociate molecular hydrogen, under the usually assumed scenario this primordial mode of star formation ended by redshift z ˜ 15 and much more massive haloes came to dominate star formation. However, metal enrichment from the first stars may have allowed the smaller haloes to continue to form stars. In this Letter, we explore the possible effect of star formation in metal-rich low-mass haloes on the redshifted 21-cm signal of neutral hydrogen from z = 6 to 40. These haloes are significantly affected by the supersonic streaming velocity, with its characteristic baryon acoustic oscillation (BAO) signature. Thus, enrichment of low-mass galaxies can produce a strong signature in the 21-cm power spectrum over a wide range of redshifts, especially if star formation in the small haloes was more efficient than suggested by current simulations. We show that upcoming radio telescopes can easily distinguish among various possible scenarios.

  6. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ˜ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ˜2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  7. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    SciTech Connect

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  8. The 21cm power spectrum and the shapes of non-Gaussianity

    SciTech Connect

    Chongchitnan, Sirichai

    2013-03-01

    We consider how measurements of the 21cm radiation from the epoch of reionization (z = 8−12) can constrain the amplitudes of various 'shapes' of primordial non-Gaussianity. The limits on these shapes, each parametrized by the non-linear parameter f{sub NL}, can reveal whether the physics of inflation is more complex than the standard single-field, slow-roll scenario. In this work, we quantify the effects of the well-known local, equilateral, orthogonal and folded types of non-Gaussianities on the 21cm power spectrum, which is expected to be measured by upcoming radio arrays such as the Square-Kilometre Array (SKA). We also assess the prospects of the SKA in constraining these non-Gaussianities, and found constraints that are comparable with those from cosmic-microwave-background experiments such as Planck. We show that the limits on various f{sub NL} can be tightened to O(1) using a radio array with a futuristic but realistic set of specifications.

  9. A WSRT 21 CM deep survey of two fields in Hercules

    NASA Astrophysics Data System (ADS)

    Oort, M. J. A.; van Langevelde, H. J.

    1987-10-01

    A deep 21 cm survey, carried out with the Westerbork Synthesis Radio Telescope (WSRT), of two fields in the constellation of Hercules is presented. These areas were observed previously at 21 cm in the Leiden-Berkeley Deep Survey (LBDS), (Windhorst et al., 1984), but with a factor of three higher noise level. A complete sample is defined, containing 116 radio sources with a peak flux above 5 sigma, within the -7dB attenuation radius (0.464 deg). This complete sample is used to determine the 1412 MHz source counts down to 0.45 mJy. The counts from the current sample show the same small scale structure at about 1 mJy, as was found in previous surveys. A direct comparison is made with the LBDS observations of the same fields. It is shown that the 5 sigma peak flux cut-off in the complete sample is not stringent enough to sufficiently avoid contamination by spurious sources, especially when strong (S of not less than 100 mJy) sources are present in the field. Finally, a search was made for the variable sources.

  10. Constraining the population of radio-loud active galactic nuclei at high redshift with the power spectrum of the 21 cm Forest

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.

    2014-06-01

    The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.

  11. Event rates for WIMP detection

    SciTech Connect

    Vergados, J. D.; Moustakidis, Ch. C.; Oikonomou, V.

    2006-11-28

    The event rates for the direct detection of dark matter for various types of WIMPs are presented. In addition to the neutralino of SUSY models, we considered other candidates (exotic scalars as well as particles in Kaluza-Klein and technicolour theories) with masses in the TeV region. Then one finds reasonable branching ratios to excited states. Thus the detection of the WIMP can be made not only by recoil measurements, by measuring the de-excitation {gamma}-rays as well.

  12. A synthetic 21-cm Galactic Plane Survey of a smoothed particle hydrodynamics galaxy simulation

    NASA Astrophysics Data System (ADS)

    Douglas, Kevin A.; Acreman, David M.; Dobbs, Clare L.; Brunt, Christopher M.

    2010-09-01

    We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90° <= l <= 180°, using a model spiral galaxy from smoothed particle hydrodynamics (SPH) simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of outer Galaxy `Perseus arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.

  13. Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.

  14. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc‑1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  15. Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 cm width

    NASA Technical Reports Server (NTRS)

    Bernstein, Gary M.; Guhathakurta, Puragra; Raychaudhury, Somak; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.

    1994-01-01

    We examine the precision of the Tully-Fisher relation (TFR) using a sample of galaxies in the Coma region of the sky, and find that it is good to 5% or better in measuring relative distances. Total magnitudes and disk axis ratios are derived from H and I band surface photometry, and Arecibo 21 cm profiles define the rotation speeds of the galaxies. Using 25 galaxies for which the disk inclination and 21 cm width are well defined, we find an rms deviation of 0.10 mag from a linear TFR with dI/d(log W(sub c)) = -5.6. Each galaxy is assumed to be at a distance proportional to its redshift, and an extinction correction of 1.4(1-b/a) mag is applied to the total I magnitude. The measured scatter is less than 0.15 mag using milder extinction laws from the literature. The I band TFR scatter is consistent with measurement error, and the 95% CL limits on the intrinsic scatter are 0-0.10 mag. The rms scatter using H band magnitudes is 0.20 mag (N = 17). The low width galaxies have scatter in H significantly in excess of known measurement error, but the higher width half of the galaxies have scatter consistent with measurement error. The H band TFR slope may be as steep as the I band slope. As the first applications of this tight correlation, we note the following: (1) the data for the particular spirals commonly used to define the TFR distance to the Coma cluster are inconsistent with being at a common distance and are in fact in free Hubble expansion, with an upper limit of 300 km/s on the rms peculiar line-of-sight velocity of these gas-rich spirals; and (2) the gravitational potential in the disks of these galaxies has typical ellipticity less than 5%. The published data for three nearby spiral galaxies with Cepheid distance determinations are inconsistent with our Coma TFR, suggesting that these local calibrators are either ill-measured or peculiar relative to the Coma Supercluster spirals, or that the TFR has a varying form in different locales.

  16. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  17. 2MTF III. H I 21 cm observations of 1194 spiral galaxies with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Crook, Aidan; Hong, Tao; Jarrett, T. H.; Koribalski, Bärbel S.; Macri, Lucas; Springob, Christopher M.; Staveley-Smith, Lister

    2014-09-01

    We present H I 21 cm observations of 1194 galaxies out to a redshift of 10 000 km s-1 selected as inclined spirals (i ≳ 60°) from the 2MASS redshift survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing programme is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine H I widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the Arecibo Legacy Fast Arecibo L-band Feed Array survey at Arecibo, and S/N > 10 and spectral resolution vres < 10 km s-1 published widths from a variety of telescopes. We will use these H I widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper, we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal to noise and symmetric H I global profiles suitable for use in the Tully-Fisher relation in 484.

  18. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  19. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Technical Reports Server (NTRS)

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  20. 21 cm Synthesis Observations of VIRGOHI 21-A Possible Dark Galaxy in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Minchin, Robert; Davies, Jonathan; Disney, Michael; Grossi, Marco; Sabatini, Sabina; Boyce, Peter; Garcia, Diego; Impey, Chris; Jordan, Christine; Lang, Robert; Marble, Andrew; Roberts, Sarah; van Driel, Wim

    2007-12-01

    Many observations indicate that dark matter dominates the extragalactic universe, yet no totally dark structure of galactic proportions has ever been convincingly identified. Previously, we have suggested that VIRGOHI 21, a 21 cm source we found in the Virgo Cluster using Jodrell Bank, was a possible dark galaxy because of its broad line width (~200 km s-1) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral hydrogen line and find what could be a dark, edge-on, spinning disk with the mass and diameter of a typical spiral galaxy. Moreover, VIRGOHI 21 has unquestionably been involved in an interaction with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Numerical models of NGC 4254 call for a close interaction ~108 yr ago with a perturber of ~1011 Msolar. This we take as additional evidence for the massive nature of VIRGOHI 21, as there does not appear to be any other viable candidate. We have also used the Hubble Space Telescope to search for stars associated with the H I and find none down to an I-band surface brightness limit of 31.1+/-0.2 mag arcsec-2.

  1. a Dark Galaxy in the Virgo Cluster Imaged at 21-CM

    NASA Astrophysics Data System (ADS)

    Minchin, R.; Disney, M. J.; Davies, J. I.; Marble, A. R.; Impey, C. D.; Boyce, P. J.; Garcia, D. A.; Grossi, M.; Jordan, C. A.; Lang, R. H.; Roberts, S.; Sabatini, S.; van Driel, W.

    Dark Matter supposedly dominates the extragalactic Universe (Peebles 1993; Peacock 1998; Moore et al. 1999; D'Onghi & Lake 2004), yet no dark structure of galactic proportions has ever been convincingly identified. Earlier (Minchin et al. 2005) we suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster at Jodrell Bank using single-dish observations (Davies et al. 2004), was probably such a dark galaxy because of its broad line-width (~200 km s-1) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral-hydrogen line, and have found what appears to be a dark, edge-on, spinning disc with the mass and diameter of a typical spiral galaxy. Moreover the disc has unquestionably interacted with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Published numerical models (Vollmer et al. 2005) of NGC 4254 call for a close interaction ~108 years ago with a perturber of ~1011 solar masses. This we take as further, independent evidence for the massive nature of VIRGOHI 21.

  2. Erasing the variable: empirical foreground discovery for global 21 cm spectrum experiments

    SciTech Connect

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ∼ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ∼10{sup –4}. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼10{sup –2} level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  3. 21 cm signal from cosmic dawn: imprints of spin temperature fluctuations and peculiar velocities

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2015-02-01

    The 21 cm brightness temperature δTb fluctuations from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the δTb distribution using dark matter simulations and a 1D radiative transfer code. Our analysis is able to account for the spin temperature TS fluctuations arising from inhomogeneous X-ray heating and Lyα coupling during cosmic dawn. The δTb power spectrum amplitude at large scales (k ˜ 0.1 Mpc-1) is maximum when ˜10 per cent of the gas (by volume) is heated above the cosmic microwave background temperature. The power spectrum shows a `bump'-like feature during cosmic dawn and its location measures the typical sizes of heated regions. We find that the effect of peculiar velocities on the power spectrum is negligible at large scales for most part of the reionization history. During early stages (when the volume averaged ionization fraction ≲ 0.2) this is because the signal is dominated by fluctuations in TS. For reionization models that are solely driven by stars within high-mass (≳ 109 M⊙) haloes, the peculiar velocity effects are prominent only at smaller scales (k ≳ 0.4 Mpc-1) where patchiness in the neutral hydrogen density dominates the signal. The conclusions are unaffected by changes in the amplitude or steepness in the X-ray spectra of the sources.

  4. MITEoR: a scalable interferometer for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Tegmark, M.; Buza, V.; Dillon, J. S.; Gharibyan, H.; Hickish, J.; Kunz, E.; Liu, A.; Losh, J.; Lutomirski, A.; Morrison, S.; Narayanan, S.; Perko, A.; Rosner, D.; Sanchez, N.; Schutz, K.; Tribiano, S. M.; Valdez, M.; Yang, H.; Adami, K. Zarb; Zelko, I.; Zheng, K.; Armstrong, R. P.; Bradley, R. F.; Dexter, M. R.; Ewall-Wice, A.; Magro, A.; Matejek, M.; Morgan, E.; Neben, A. R.; Pan, Q.; Penna, R. F.; Peterson, C. M.; Su, M.; Villasenor, J.; Williams, C. L.; Zhu, Y.

    2014-12-01

    We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of the high-sensitivity 3D mapping required for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that the calibration parameters precisely describe the effect of the instrument upon our measurements, allowing us to form a model that is consistent with χ2 per degree of freedom <1.2 for as much as 80 per cent of the observations. We use these results to develop an optimal estimator of calibration parameters using Wiener filtering, and explore the question of how often and how finely in frequency visibilities must be reliably measured to solve for calibration coefficients. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen Epoch of Reionization Array project and other next-generation instruments, which would incorporate many identical or similar technologies.

  5. 21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies

    SciTech Connect

    Loeb, Abraham

    2008-05-15

    The clumpy maser discs observed in some galactic nuclei mark the outskirts of the accretion disc that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser discs is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disc. Here we propose a method for mapping the atomic hydrogen distribution in nuclear discs through its 21 cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21 cm optical depth may approach unity for high angular resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from x-ray absorption data, {approx}10{sup 23} cm{sup -2}. Spreading the 21 cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of {approx}0.1. Spectroscopic searches for the 21 cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous discs which are not masing in our direction. Follow-up imaging of 21 cm silhouettes of accelerating clumps within these discs can in turn be used to measure cosmological distances.

  6. EXPLORING THE COSMIC REIONIZATION EPOCH IN FREQUENCY SPACE: AN IMPROVED APPROACH TO REMOVE THE FOREGROUND IN 21 cm TOMOGRAPHY

    SciTech Connect

    Wang, Jingying; Xu, Haiguang; Guo, Xueying; Li, Weitian; Liu, Chengze; An, Tao; Wang, Yu; Gu, Junhua; Martineau-Huynh, Olivier; Wu, Xiang-Ping E-mail: zishi@sjtu.edu.cn

    2013-02-15

    With the intent of correctly restoring the redshifted 21 cm signals emitted by neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space in order to investigate whether they work satisfactorily with complex foreground by quantitatively evaluating the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias b and average ionization fraction x{sub e} of the reionization processes, at z = 8 and the noise level of 60 mK we find that although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of the Mpc-scale components of the 21 cm signals (75% for {approx}> 6 h {sup -1} Mpc scales and 34% for {approx}> 1 h {sup -1} Mpc scales) is lost because it tends to be misidentified as part of the foreground when the single-narrow-segment separation approach is applied. The best restoration of the 21 cm signals and the tightest determination of b and x{sub e} can be obtained with the three-narrow-segment fitting technique as proposed in this paper. Similar results can be obtained at other redshifts.

  7. A Practical Theorem on Using Interferometry to Measure the Global 21-cm Signal

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Chang, Tzu-Ching; Doré, Olivier; Hirata, Christopher M.

    2016-08-01

    The sky-averaged, or global, background of redshifted 21 cm radiation is expected to be a rich source of information on cosmological reheating and reionization. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e., the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g., absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor—instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short-dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.

  8. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert; Pen, Ue-Li

    2015-04-01

    In this paper we continue to develop the m -mode formalism, a technique for efficient and optimal analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to give an accurate treatment of the polarized sky, fully accounting for the effects of polarization leakage and cross polarization. We use the geometry of the measured set of visibilities to project down to pure temperature modes on the sky, serving as a significant compression, and an effective first filter of polarized contaminants. As in our previous work, we use the m -mode formalism with the Karhunen-Loève transform to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic polarized skies observed with an instrument suffering from substantial off axis polarization leakage. We develop an optimal quadratic estimator in the m -mode formalism which can be efficiently calculated using a Monte Carlo technique. This is used to assess the implications of foreground removal for power spectrum constraints where we find that our method can clean foregrounds well below the foreground wedge, rendering only scales k∥<0.02 h Mpc-1 inaccessible. As this approach assumes perfect knowledge of the telescope, we perform a conservative test of how essential this is by simulating and analyzing data sets with deviations about our assumed telescope. Assuming no other techniques to mitigate bias are applied, we find we recover unbiased power spectra when the per-feed beamwidth to be measured to 0.1%, and amplifier gains to be known to 1% within each minute. Finally, as an example application, we extend our forecasts to a wideband 400-800 MHz cosmological observation and consider the implications for probing dark energy, finding a pathfinder-scale medium-sized cylinder telescope improves the Dark Energy Task Force figure of merit by around 70% over Planck and Stage II experiments alone.

  9. 21-cm Observations with the Morehead Radio Telescope: Involving Undergraduates in Observing Programs

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2000-12-01

    Herein we report astronomical observations made by undergraduate students with the Morehead Radio Telescope (MRT). The MRT, located at Morehead State University, Morehead, Kentucky, is small aperture (44-ft.) instrument designed by faculty, students, and industrial partners to provide a research instrument and active laboratory for undergraduate astronomy, physics, pre-engineering, and computer science students. Small aperture telescopes like the MRT have numerous advantages as active laboratories and as research instruments. The benefits to students are based upon a hands-on approach to learning concepts in astrophysics and engineering. Students are provided design and research challenges and are allowed to pursue their own solutions. Problem-solving abilities and research design skills are cultivated by this approach. Additionally, there are still contributions that small aperture centimeter-wave instruments can make. The MRT operates over a 6 MHz bandwidth centered at 1420 MHz (21-cm), which corresponds to the hyperfine transition of atomic hydrogen (HI). The HI spatial distribution and flux density associated with cosmic phenomena can be observed and mapped. The dynamics and kinematics of celestial objects can be investigated by observing over a range of frequencies (up to 2.5 MHz) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. The sensitivity and versatility of the telescope design facilitate investigation of a wide variety of cosmic phenomena, including supernova remnants, emission and planetary nebulae, extended HI emission from the Milky Way, quasars, radio galaxies, and the sun. Student observations of galactic sources herein reported include Taurus A, Cygnus X, and the Rosette Nebula. Additionally, we report observations of extragalactic phenomena, including Cygnus A, 3C 147, and 3C 146. These observations serve as a performance and capability test-bed of the MRT. In addition to the astronomical results of these

  10. The impact of spin-temperature fluctuations on the 21-cm moments

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2015-12-01

    This paper considers the impact of Lyman α coupling and X-ray heating on the 21-cm brightness-temperature one-point statistics (as predicted by seminumerical simulations). The X-ray production efficiency is varied over four orders of magnitude and the hardness of the X-ray spectrum is varied from that predicted for high-mass X-ray binaries, to the softer spectrum expected from the hot interstellar medium. We find peaks in the redshift evolution of both the variance and skewness associated with the efficiency of X-ray production. The amplitude of the variance is also sensitive to the hardness of the X-ray spectral energy distribution. We find that the relative timing of the coupling and heating phases can be inferred from the redshift extent of a plateau that connects a peak in the variance's evolution associated with Lyman α coupling to the heating peak. Importantly, we find that late X-ray heating would seriously hamper our ability to constrain reionization with the variance. Late X-ray heating also qualitatively alters the evolution of the skewness, providing a clean way to constrain such models. If foregrounds can be removed, we find that LOFAR, MWA and PAPER could constrain reionization and late X-ray heating models with the variance. We find that HERA and SKA (phase 1) will be able to constrain both reionization and heating by measuring the variance using foreground-avoidance techniques. If foregrounds can be removed they will also be able to constrain the nature of Lyman α coupling.

  11. A Flux Scale for Southern Hemisphere 21 cm Epoch of Reionization Experiments

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bowman, Judd; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Klima, Pat; MacMahon, Dave H. E.; Manley, Jason R.; Moore, David F.; Pober, Jonathan C.; Stefan, Irina I.; Walbrugh, William P.

    2013-10-01

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46° to -40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of -0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  12. Models of the Cosmological 21 cm Signal from the Epoch of Reionization Calibrated with Lyα and CMB Data

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2016-08-01

    We present here 21 cm predictions from high dynamic range simulations for a range of reionization histories that have been tested against available Lyα and CMB data. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen spin temperature is significantly larger than the CMB temperature. Models consistent with the available Lyα data and CMB measurement of the Thomson optical depth predict typical values of 10-20 mK2 for the variance of the 21 cm brightness temperature at redshifts z = 7-10 at scales accessible to ongoing and upcoming experiments (k ≲ 1 cMpc-1h). This is within a factor of a few magnitude of the sensitivity claimed to have been already reached by ongoing experiments in the signal rms value. Our different models for the reionization history make markedly different predictions for the redshift evolution and thus frequency dependence of the 21 cm power spectrum and should be easily discernible by LOFAR (and later HERA and SKA1) at their design sensitivity. Our simulations have sufficient resolution to assess the effect of high-density Lyman limit systems that can self-shield against ionizing radiation and stay 21 cm bright even if the hydrogen in their surroundings is highly ionized. Our simulations predict that including the effect of the self-shielded gas in highly ionized regions reduces the large scale 21 cm power by about 30%.

  13. New 21 cm Power Spectrum Upper Limits From PAPER II: Constraints on IGM Properties at z = 7.7

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan; Ali, Zaki; Parsons, Aaron; Paper Team

    2015-01-01

    Using a simulation-based framework, we interpret the power spectrum measurements from PAPER of Ali et al. in the context of IGM physics at z = 7.7. A cold IGM will result in strong 21 cm absorption relative to the CMB and leads to a 21 cm fluctuation power spectrum that can exceed 3000 mK^2. The new PAPER measurements allow us to rule out extreme cold IGM models, placing a lower limit on the physical temperature of the IGM. We also compare this limit with a calculation for the predicted heating from the currently observed galaxy population at z = 8.

  14. H I SHELLS AND SUPERSHELLS IN THE I-GALFA H I 21 cm LINE SURVEY. I. FAST-EXPANDING H I SHELLS ASSOCIATED WITH SUPERNOVA REMNANTS

    SciTech Connect

    Park, G.; Koo, B.-C.; Gibson, S. J.; Newton, J. H.; Kang, J.-H.; Lane, D. C.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C.

    2013-11-01

    We search for fast-expanding H I shells associated with Galactic supernova remnants (SNRs) in the longitude range l ≈ 32° to 77° using 21 cm line data from the Inner-Galaxy Arecibo L-band Feed Array (I-GALFA) H I survey. Among the 39 known Galactic SNRs in this region, we find such H I shells in 4 SNRs: W44, G54.4-0.3, W51C, and CTB 80. All four were previously identified in low-resolution surveys, and three of those (excluding G54.4-0.3) were previously studied with the Arecibo telescope. A remarkable new result, however, is the detection of H I emission at both very high positive and negative velocities in W44 from the receding and approaching parts of the H I expanding shell, respectively. This is the first detection of both sides of an expanding shell associated with an SNR in H I 21 cm emission. The high-resolution I-GALFA survey data also reveal a prominent expanding H I shell with high circular symmetry associated with G54.4-0.3. We explore the physical characteristics of four SNRs and discuss what differentiates them from other SNRs in the survey area. We conclude that these four SNRs are likely the remnants of core-collapse supernovae interacting with a relatively dense (∼> 1 cm{sup –3}) ambient medium, and we discuss the visibility of SNRs in the H I 21 cm line.

  15. H I 21cm emission from the subdamped Lyman-α absorber at z = 0.0063 towards PG 1216+069

    NASA Astrophysics Data System (ADS)

    Chengalur, Jayaram N.; Ghosh, T.; Salter, C. J.; Kanekar, N.; Momjian, E.; Keeney, B. A.; Stocke, J. T.

    2015-11-01

    We present H I 21 cm emission observations of the z ˜ 0.006 32 subdamped Lyman-α absorber (sub-DLA) towards PG 1216+069 made using the Arecibo Telescope and the Very Large Array (VLA). The Arecibo H I 21cm spectrum corresponds to an H I mass of ˜3.2 × 107 M⊙, two orders of magnitude smaller than that of a typical spiral galaxy. This is surprising since in the local Universe the cross-section for absorption at high H I column densities is expected to be dominated by spirals. The H I 21cm emission detected in the VLA spectral cube has a low signal-to-noise ratio, and represents only half the total flux seen at Arecibo. Emission from three other sources is detected in the VLA observations, with only one of these sources having an optical counterpart. This group of H I sources appears to be part of complex `W', believed to lie in the background of the Virgo cluster. While several H I cloud complexes have been found in and around the Virgo cluster, it is unclear whether the ram pressure and galaxy harassment processes that are believed to be responsible for the creation of such clouds in a cluster environment are relevant at the location of this cloud complex. The extremely low metallicity of the gas, ˜1/40 solar, also makes it unlikely that the sub-DLA consists of material that has been stripped from a galaxy. Thus, while our results have significantly improved our understanding of the host of this sub-DLA, the origin of the gas cloud remains a mystery.

  16. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    SciTech Connect

    Jacobs, Daniel C.; Bowman, Judd; Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E.; Gugliucci, Nicole E.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  17. Redshift-space distortion of the 21-cm background from the epoch of reionization - I. Methodology re-examined

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Shapiro, Paul R.; Mellema, Garrelt; Iliev, Ilian T.; Koda, Jun; Ahn, Kyungjin

    2012-05-01

    The peculiar velocity of the intergalactic gas responsible for the cosmic 21-cm background from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional power spectrum of brightness temperature fluctuations. Measurement of this anisotropy by future 21-cm surveys is a promising tool for separating cosmology from 21-cm astrophysics. However, previous attempts to model the signal have often neglected peculiar velocity or only approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21-cm signal in detail, improving upon past treatment and addressing several issues for the first time. (1) We show that even the angle-averaged power spectrum, P(k), is affected significantly by the peculiar velocity. (2) We re-derive the brightness temperature dependence on atomic hydrogen density, spin temperature, peculiar velocity and its gradient and redshift to clarify the roles of thermal versus velocity broadening and finite optical depth. (3) We show that properly accounting for finite optical depth eliminates the unphysical divergence of the 21-cm brightness temperature in overdense regions of the intergalactic medium found by previous work that employed the usual optically thin approximation. (4) We find that the approximation made previously to circumvent the diverging brightness temperature problem by capping the velocity gradient can misestimate the power spectrum on all scales. (5) We further show that the observed power spectrum in redshift space remains finite even in the optically thin approximation if one properly accounts for the redshift-space distortion. However, results that take full account of finite optical depth show that this approximation is only accurate in the limit of high spin temperature. (6) We also show that the linear theory for redshift-space distortion widely employed to predict the 21-cm power spectrum results in a ˜30 per cent error in the observationally relevant wavenumber range k˜ 0

  18. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    SciTech Connect

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-20

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s{sup -1}). The absorbers have sub-damped Ly{alpha} column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  19. The Impact of Peculiar Velocity and Reionization Patchiness on 21cm Cosmology from the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Shapiro, P. R.; Iliev, I. T.; Mellema, G.; Ahn, K.; Datta, K.

    2012-01-01

    Neutral hydrogen atoms in the intergalactic medium at high redshift contribute a diffuse background of redshifted 21cm radiation which encodes information about the physical conditions in the early universe at z>6 during and before the epoch of reionization (EOR). Tomography of this 21cm background has emerged as a promising cosmological probe. The assumption that cosmological information in the 21cm signal can be separated from astrophysical information (i.e. that fluctuations in the total matter density can be measured separately from the dependence on patchy reionization and spin temperature) is based on linear perturbation theory and the anisotropy introduced by peculiar velocity. While it is true that fluctuations in the matter density at such high redshift are likely to be of linear amplitude on the large scales which correspond to the beam- and bandwidths of upcoming experiments, the nonlinearity of smaller scale structure in density, velocity and reionization patchiness can leave its imprint on the signal, which might then spoil the linear separation scheme. We have built a robust and efficient computational scheme to predict the 21cm background in observer redshift space, given real-space simulation data, which accounts for peculiar velocity in every detail. We apply this to the results of new state-of-the-art large-scale reionization simulations which combine large-box, high-resolution N-body simulations of the LCDM universe (with up to 165 billion particles in comoving boxes up to 607 Mpc on a side in present units) with radiative transfer simulations of reionization, to test the validity of using 21cm background measurements for cosmology and characterize the predicted signal for upcoming radio surveys. This work was supported in part by NSF grants AST-0708176 and AST-1009799, NASA grants NNX07AH09G, NNG04G177G and NNX11AE09G, and Chandra grant SAO TM8-9009X.

  20. Probing primordial non-Gaussianity: the 3D Bispectrum of Ly-α forest and the redshifted 21-cm signal from the post reionization epoch

    SciTech Connect

    Sarkar, Tapomoy Guha; Hazra, Dhiraj Kumar E-mail: dhiraj@apctp.org

    2013-04-01

    We explore possibility of using the three dimensional bispectra of the Ly-α forest and the redshifted 21-cm signal from the post-reionization epoch to constrain primordial non-Gaussianity. Both these fields map out the large scale distribution of neutral hydrogen and maybe treated as tracers of the underlying dark matter field. We first present the general formalism for the auto and cross bispectrum of two arbitrary three dimensional biased tracers and then apply it to the specific case. We have modeled the 3D Ly-α transmitted flux field as a continuous tracer sampled along 1D skewers which corresponds to quasars sight lines. For the post reionization 21-cm signal we have used a linear bias model. We use a Fisher matrix analysis to present the first prediction for bounds on f{sub NL} and the other bias parameters using the three dimensional 21-cm bispectrum and other cross bispectra. The bounds on f{sub NL} depend on the survey volume, and the various observational noises. We have considered a BOSS like Ly-α survey where the average number density of quasars n-bar = 10{sup −3}Mpc{sup −2} and the spectra are measured at a 2-σ level. For the 21-cm signal we have considered a 4000 hrs observation with a futuristic SKA like radio array. We find that bounds on f{sub NL} obtained in our analysis (6 ≤ Δf{sub NL} ≤ 65) is competitive with CMBR and galaxy surveys and may prove to be an important alternative approach towards constraining primordial physics using future data sets. Further, we have presented a hierarchy of power of the bispectrum-estimators towards detecting the f{sub NL}. Given the quality of the data sets, one may use this method to optimally choose the right estimator and thereby provide better constraints on f{sub NL}. We also find that by combining the various cross-bispectrum estimators it is possible to constrain f{sub NL} at a level Δf{sub NL} ∼ 4.7. For the equilateral and orthogonal template we obtain Δf{sub NL}{sup equ} ∼ 17 and

  1. Predictions for BAO distance estimates from the cross-correlation of the Lyman-α forest and redshifted 21-cm emission

    SciTech Connect

    Sarkar, Tapomoy Guha; Bharadwaj, Somnath E-mail: somnath@phy.iitkgp.ernet.in

    2013-08-01

    We investigate the possibility of using the cross-correlation of the Lyman-α forest and redshifted 21-cm emission to detect the baryon acoustic oscillation (BAO). The standard Fisher matrix formalism is used to determine the accuracy with which it will be possible to measure cosmological distances using this signal. Earlier predictions [1] indicate that it will be possible to measure the dilation factor D{sub V} with 1.9% accuracy at z = 2.5 from the BOSS Lyman-α forest auto-correlation. In this paper we investigate if it is possible to improve the accuracy using the cross-correlation. We use a simple parametrization of the Lyman-α forest survey which very loosely matches some properties of the BOSS. For the redshifted 21-cm observations we consider a hypothetical radio interferometric array layout. It is assumed that the observations span z = 2 to 3 and covers the 10,000 deg{sup 2} sky coverage of BOSS. We find that it is possible to significantly increase the accuracy of the distance estimates by considering the cross-correlation signal.

  2. X-rays and hard ultraviolet radiation from the first galaxies: ionization bubbles and 21-cm observations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna; Benson, Andrew

    2011-11-01

    The first stars and quasars are known sources of hard ionizing radiation in the first billion years of the Universe. We examine the joint effects of X-rays and hard ultraviolet (UV) radiation from such first-light sources on the hydrogen and helium reionization of the intergalactic medium (IGM) at early times, and the associated heating. We study the growth and evolution of individual H II, He II and He III regions around early galaxies with first stars and/or quasi-stellar object populations. We find that in the presence of helium-ionizing radiation, X-rays may not dominate the ionization and thermal history of the IGM at z˜ 10-20, contributing relatively modest increases to IGM ionization and heating up to ˜103-105 K in IGM temperatures. We also calculate the 21-cm signal expected from a number of scenarios with metal-free starbursts and quasars in varying combinations and masses at these redshifts. The peak values for the spin temperature reach ˜104-105 K in such cases. The maximum values for the 21-cm brightness temperature are around 30-40 mK in emission, while the net values of the 21-cm absorption signal range from ˜a few to 60 mK on scales of 0.01-1 Mpc. We find that the 21-cm signature of X-ray versus UV ionization could be distinct, with the emission signal expected from X-rays alone occurring at smaller scales than that from UV radiation, resulting from the inherently different spatial scales at which X-ray and UV ionization/heating manifests. This difference is time-dependent and becomes harder to distinguish with an increasing X-ray contribution to the total ionizing photon production. Such differing scale-dependent contributions from X-ray and UV photons may therefore 'blur' the 21-cm signature of the percolation of ionized bubbles around early haloes (depending on whether a cosmic X-ray or UV background is built up first) and affect the interpretation of 21-cm data constraints on reionization.

  3. Comparison of the thermal and nonthermal radiation characteristics of Jupiter at 6, 11, and 21 cm with model calculations

    NASA Technical Reports Server (NTRS)

    De Pater, I.; Kenderdine, S.; Dickel, J. R.

    1982-01-01

    Four different data sets on Jupiter, one at 6, one at 11, and two at 21 cm, are compared to each other and with the synchrotron radiation model of the magnetosphere developed by de Pater (1981). The model agrees with all these data sets, and hence was used to derive and interpret the characteristics of the thermal radiation component at all three wavelengths. The disk temperatures are 233 + or - 17, 280 + or - 20, and 340 + or - 26 K at 6, 11, and 21 cm, respectively. A comparison of the data with atmospheric model calculations strongly suggests that the disk is uniform at 6 and 11 cm near the center of the disk, where mu is greater than 0.6-0.7. This may indicate a nonuniform distribution of ammonia at layers at and above the visible cloud layers.

  4. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  5. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NASA Astrophysics Data System (ADS)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Mellema, G.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.

    2013-07-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21 cm emission is initially correlated with haloes on large scales (≳30 Mpc), anticorrelated on intermediate (˜5 Mpc) and uncorrelated on small (≲3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anticorrelated on large scales. The normalization of the cross-power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a powerful tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21 cm signal the noise expected from the LOw Frequency ARray (LOFAR) telescope, we find that while the normalization of the cross-power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for an Lyα Emitter (LAE) survey both the normalization and the shape of the cross-power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21 cm signal at the planned redshifts. If the ionized fraction at z ˜ 7 is lower than the one estimated here, then using the cross-power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.

  6. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    SciTech Connect

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  7. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  8. How Ewen and Purcell discovered the 21-cm interstellar hydrogen line.

    NASA Astrophysics Data System (ADS)

    Stephan, K. D.

    1999-02-01

    The story of how Harold Irving Ewen and Edward Mills Purcell detected the first spectral line ever observed in radio astronomy, in 1951, has been told for general audiences by Robert Buderi (1996). The present article has a different purpose. The technical roots of Ewen and Purcell's achievement reveal much about the way science often depends upon "borrowed" technologies, which were not developed with the needs of science in mind. The design and construction of the equipment is described in detail. As Ewen's photographs, records, and recollections show, he and Purcell had access to an unusual combination of scientific knowledge, engineering know-how, critical hardware, and technical assistance at Harvard, in 1950 and 1951. This combination gave them a competitive edge over similar research groups in Holland and Australia, who were also striving to detect the hydrogen line, and who succeeded only weeks after the Harvard researchers did. The story also shows that Ewen and Purcell did their groundbreaking scientific work in the "small-science" style that prevailed before World War II, while receiving substantial indirect help from one of the first big-science projects at Harvard.

  9. Constraints on the temperature of the intergalactic medium at z = 8.4 with 21-cm observations

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei; Pober, Jonathan C.

    2016-02-01

    We compute robust lower limits on the spin temperature, TS, of the z = 8.4 intergalactic medium (IGM), implied by the upper limits on the 21-cm power spectrum recently measured by PAPER-64. Unlike previous studies which used a single epoch of reionization (EoR) model, our approach samples a large parameter space of EoR models: the dominant uncertainty when estimating constraints on TS. Allowing TS to be a free parameter and marginalizing over EoR parameters in our Markov Chain Monte Carlo code 21CMMC, we infer TS ≥ 3 K (corresponding approximately to 1σ) for a mean IGM neutral fraction of bar{x}_{HI}≳ 0.1. We further improve on these limits by folding-in additional EoR constraints based on: (i) the dark fraction in QSO spectra, which implies a strict upper limit of bar{x}_{HI}[z=5.9]≤ 0.06+0.05 (1σ ); and (ii) the electron scattering optical depth, τe = 0.066 ± 0.016 (1σ) measured by the Planck satellite. By restricting the allowed EoR models, these additional observations tighten the approximate 1σ lower limits on the spin temperature to TS ≥ 6 K. Thus, even such preliminary 21-cm observations begin to rule out extreme scenarios such as `cold reionization', implying at least some prior heating of the IGM. The analysis framework developed here can be applied to upcoming 21-cm observations, thereby providing unique insights into the sources which heated and subsequently reionized the very early Universe.

  10. Multi-redshift limits on the 21cm power spectrum from PAPER 64: XRays in the early universe

    NASA Astrophysics Data System (ADS)

    Kolopanis, Matthew; Jacobs, Danny; PAPER Collaboration

    2016-06-01

    Here we present new constraints on 21cm emission from cosmic reionization from the 64 element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). These results extend the single redshift 8.4 result presented in Ali et al 2015 to include redshifts from 7.3 to 10.9. These new limits offer as much as a factor of 4 improvement in sensitivity compared to previous 32 element PAPER results by Jacobs et al (2015). Using these limits we place constraints on a parameterized model of heating due to XRays emitted by early collapsed objects.

  11. Wearable sensor for heart rate detection

    NASA Astrophysics Data System (ADS)

    Shi, Cong; Liu, Xiaohua; Kong, Lingqin; Wu, Jizhe; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2015-08-01

    In recent years heart and blood vessel diseases kill more people than everything else combined. The daily test of heart rate for the prevention and treatment of the heart head blood-vessel disease has the vital significance. In order to adapt the transformation of medical model and solve the low accuracy problem of the traditional method of heart rate measuring, we present a new method to monitor heart rate in this paper. The heart rate detection is designed for daily heart rate detection .The heart rate signal is collected by the heart rate sensor. The signal through signal processing circuits converts into sine wave and square wave in turn. And then the signal is transmitted to the computer by data collection card. Finally, we use LABVIEW and MATLAB to show the heart rate wave and calculate the heart rate. By doing contrast experiment with medical heart rate product, experimental results show that the system can realize rapidly and accurately measure the heart rate value. A measurement can be completed within 10 seconds and the error is less than 3beat/min. And the result shows that the method in this paper has a strong anti-interference ability. It can effectively suppress the movement interference. Beyond that the result is insensitive to light.

  12. 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Santos, Mario G.; Alonso, David; Bull, Philip; Camera, Stefano; Ferreira, Pedro G.

    2014-05-01

    A new generation of radio telescopes with unprecedented capabilities for astronomy and fundamental physics will be in operation over the next few years. With high sensitivities and large fields of view, they are ideal for cosmological applications. We discuss their uses for cosmology focusing on the observational technique of HI intensity mapping, in particular at low redshifts (z < 4). This novel observational window promises to bring new insights for cosmology, in particular on ultra-large scales and at a redshift range that can go beyond the dark energy domination epoch. In terms of standard constraints on the dark energy equation of state, telescopes such as Phase I of the SKA should be able to obtain constrains about as well as a future galaxy redshift surveys. Statistical techniques to deal with foregrounds and calibration issues, as well as possible systematics are also discussed.

  13. A 21-cm line study of NGC 5963, an SC galaxy with a low-surface brightness disk

    NASA Astrophysics Data System (ADS)

    Bosma, A.; Athanassoula, E.; van der Hulst, J. M.

    1988-06-01

    Results are presented from a detailed 21-cm line study of the Sc galaxy NGC 5963. The extent of the H I emission is found to be roughly coincident with the optical image, the latter being of much lower surface brightness than normal for Sc galaxies. The velocity field shows little deviation from axial symmetry, and the derived rotation curve is typical for Sc galaxies about twice as bright as NGC 5963. A composite mass model is presented using the observed light distribution to calculate a rotation curve for the luminous part of the galaxy (assuming a constant M/L-ratio with radius); this calculated rotation curve is compared to the observed one to derive a rotation law for a dark halo. Comparison with Sc galaxies having normal disk surface brightnesses suggests that the halo in NGC 5963 is more concentrated than in normal Scs with similar rotation curves. The origin of the low surface brightness of the disk is discussed.

  14. Surveys of the Milky Way and Magellanic System in the λ21-cm line of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Dickey, J. M.

    2012-02-01

    In the next three years, surveys of the Northern and Southern skies using focal plane arrays on aperture synthesis radio telescopes will lead to a breakthrough in our knowledge of the warm and cool atomic phases of the interstellar medium and their relationship with the diffuse molecular gas. The sensitivity and resolution of these surveys will give an order of magnitude or more improvement over existing interstellar medium data. The GASKAP (South) and GAMES (North) projects together constitute a complete survey of the Milky Way plane and the Magellanic Clouds and Stream in both emission and absorption in the H I 21-cm line and the OH 18-cm lines. The overall goal of this project is to understand the mechanism of galaxy evolution, through a detailed tracing of the astrophysical processes that drive the cycle of star formation in very different environments. Comparison of 21-cm emission and absorption highlights the transition from the warm, diffuse medium to cool clouds. Tracing turbulence in the Magellanic Stream shows how extra-galactic gas makes the difficult passage through the halo to replenish the disk. Finally, high resolution images of OH masers trace outflows from evolved stars that enrich the medium with heavy elements. To understand how the Milky Way was assembled and how it has evolved since, the speed and efficiency of these processes must be measured, as functions of Galactic radius and height above the plane. Observations of similar processes in the Magellanic Clouds show how differently they might have worked in conditions typical of the early universe.

  15. 3.5 keV x rays as the "21 cm line" of dark atoms, and a link to light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Liu, Zuowei; Moore, Guy D.; Farzan, Yasaman; Xue, Wei

    2014-06-01

    The recently discovered 3.5 keV x-ray line from extragalactic sources may be evidence of dark matter scatterings or decays. We show that dark atoms can be the source of the emission, through their hyperfine transitions, which would be the analog of 21 cm radiation from a dark sector. We identify two families of dark atom models that match the x-ray observations and are consistent with other constraints. In the first, the hyperfine excited state is long lived compared to the age of the Universe, and the dark atom mass is relatively unconstrained; dark atoms could be strongly self-interacting in this case. In the second, the excited state is short lived, and viable models are parametrized by the value of the dark proton-to-electron mass ratio R: for R =102-104, the dark atom mass is predicted to be in the range 350-1300 GeV, with fine structure constant α'≅0.1-0.6. In either class of models, the dark photon is expected to be massive with mγ'˜1 MeV and decay into e+e-. Evidence for the model could come from direct detection of the dark atoms. In a natural extension of this framework, the dark photon could decay predominantly into invisible particles, for example, ˜0.5 eV sterile neutrinos, explaining the extra radiation degree of freedom recently suggested by data from BICEP2, while remaining compatible with big bang nucleosynthesis.

  16. Drowsiness detection using heart rate variability.

    PubMed

    Vicente, José; Laguna, Pablo; Bartra, Ariadna; Bailón, Raquel

    2016-06-01

    It is estimated that 10-30 % of road fatalities are related to drowsy driving. Driver's drowsiness detection based on biological and vehicle signals is being studied in preventive car safety. Autonomous nervous system activity, which can be measured noninvasively from the heart rate variability (HRV) signal obtained from surface electrocardiogram, presents alterations during stress, extreme fatigue and drowsiness episodes. We hypothesized that these alterations manifest on HRV and thus could be used to detect driver's drowsiness. We analyzed three driving databases in which drivers presented different sleep-deprivation levels, and in which each driving minute was annotated as drowsy or awake. We developed two different drowsiness detectors based on HRV. While the drowsiness episodes detector assessed each minute of driving as "awake" or "drowsy" with seven HRV derived features (positive predictive value 0.96, sensitivity 0.59, specificity 0.98 on 3475 min of driving), the sleep-deprivation detector discerned if a driver was suitable for driving or not, at driving onset, as function of his sleep-deprivation state. Sleep-deprivation state was estimated from the first three minutes of driving using only one HRV feature (positive predictive value 0.80, sensitivity 0.62, specificity 0.88 on 30 drivers). Incorporating drowsiness assessment based on HRV signal may add significant improvements to existing car safety systems. PMID:26780463

  17. The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration with Early MWA Epoch of Reionization Observations

    NASA Astrophysics Data System (ADS)

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua. S.; Emrich, D.; Ewall-Wice, A. M.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Sethi, Shiv K.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k∥ modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  18. Detection of temporal changes in earthquake rates

    NASA Astrophysics Data System (ADS)

    Touati, S.

    2012-12-01

    Many statistical analyses of earthquake rates and time-dependent forecasting of future rates involve the detection of changes in the basic rate of events, independent of the fluctuations caused by aftershock sequences. We examine some of the statistical techniques for inferring these changes, using both real and synthetic earthquake data to check the statistical significance of these inferences. One common method is to use the Akaike Information Criterion (AIC) to choose between a single model and a double model with a changepoint; this criterion evaluates the strength of the fit and incorporates a penalty for the extra parameters. We test this method on many realisations of the ETAS model, with and without changepoints present, to see how often it chooses the correct model. A more rigorous method is to calculate the Bayesian evidence, or marginal likelihood, for each model and then compare these. The evidence is essentially the likelihood of the model integrated over the whole of the model space, giving a measure of how likely the data is for that model. It does not rely on estimation of best-fit parameters, making it a better comparator than the AIC; Occam's razor also arises naturally in this process due to the fact that more complex models tend to be able to explain a larger range of observations, and therefore the relative likelihood of any particular observations will be smaller than for a simpler model. Evidence can be calculated using Markov Chain Monte Carlo techniques. We compare these two approaches on synthetic data. We also look at the 1997-98 Colfiorito sequence in Umbria-Marche, Italy, using maximum likelihood to fit the ETAS model and then simulating the ETAS model to create synthetic versions of the catalogue for comparison. We simulate using ensembles of parameter values sampled from the posterior for each parameter, with the largest events artificially inserted, to compare the resultant event rates, inter-event time distributions and other

  19. THE 21 cm 'OUTER ARM' AND THE OUTER-GALAXY HIGH-VELOCITY CLOUDS: CONNECTED BY KINEMATICS, METALLICITY, AND DISTANCE

    SciTech Connect

    Tripp, Todd M.; Song Limin

    2012-02-20

    Using high-resolution ultraviolet spectra obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectroscopic Explorer, we study the metallicity, kinematics, and distance of the gaseous 'outer arm' (OA) and the high-velocity clouds (HVCs) in the outer Galaxy. We detect the OA in a variety of absorption lines toward two QSOs, H1821+643 and HS0624+6907. We search for OA absorption toward eight Galactic stars and detect it in one case, which constrains the OA Galactocentric radius to 9 kpc detect HVC Complex G, which is projected near the OA at a similar velocity, in absorption toward two stars; Complex G is therefore in the same region at R{sub G} = 8-10 kpc. HVC Complex C is known to be at a similar Galactocentric radius. Toward H1821+643, the low-ionization absorption lines are composed of multiple narrow components, indicating the presence of several cold clouds and rapid cooling and fragmentation. Some of the highly ionized gas is also surprisingly cool. Accounting for ionization corrections, we find that the OA metallicity is Z = 0.2-0.5 Z{sub Sun }, but nitrogen is underabundant and some species are possibly mildly depleted by dust. The similarity of the OA metallicity, Galactocentric location, and kinematics to those of the adjacent outer-Galaxy HVCs, including high velocities that are not consistent with Galactic rotation, suggests that the OA and outer-Galaxy HVCs could have a common origin.

  20. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    SciTech Connect

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  1. New Limits on 21 cm Epoch of Reionization from PAPER-32 Consistent with an X-Ray Heated Intergalactic Medium at z = 7.7

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Liu, Adrian; Aguirre, James E.; Ali, Zaki S.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; MacMahon, David H. E.; Manley, Jason R.; Moore, David F.; Pober, Jonathan C.; Stefan, Irina I.; Walbrugh, William P.

    2014-06-01

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK2). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK)2 for k = 0.27 h Mpc-1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  2. Heart rate detection from plantar bioimpedance measurements.

    PubMed

    González Landaeta, R; Casas, O; Pallàs-Areny, R

    2006-01-01

    The heart rate is a basic health indicator, useful in both clinical measurements and home health care. Current home care systems often require the attachment of electrodes or other sensors to the body, which can be cumbersome to the patient. Moreover, some measurements are sensitive to movement artifacts, are not user-friendly and require a specialized supervision. In this paper, a novel technique for heart rate measurement for a standing subject is proposed, which is based on plantar bioimpedance measurements, such as those performed by some bathroom weighting scales for body composition analysis. Because of the low level of heart-related impedance variations, the measurement system has a gain of 1400. We have implemented a fully differential AC amplifier with a common-mode rejection ratio (CMRR) of 105 dB at 10 kHz. Coherent demodulation based on synchronous sampling yields a signal-to-noise ratio (SNR) of 55 dB. The system has a sensitivity of 1.9 V/Omega. The technique has been demonstrated on 18 volunteers, whose bioimpedance signal and ECG were simultaneously measured to validate the results. The average cross-correlation coefficient between the heart rates determined from these two signals was 0.998 (std. dev. 0.001). PMID:17946677

  3. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Neben, Abraham R.; Hewitt, Jacqueline N.; Tegmark, Max; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; de Oliveira-Costa, A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hernquist, L.; Hurley-Walker, N.; Jacobs, D. C.; Kim, H. S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; McKinley, B.; Mitchell, D. A.; Morales, M. F.; Offringa, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S.; Shankar, N. Udaya; Subrahmanyan, R.; Sullivan, I.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C.; Wayth, R. B.; Webster, R. L.; Wyithe, S.; Bernardi, G.; Cappallo, R. J.; Deshpande, A. A.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.

    2015-06-01

    The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Δ2(k )<3.7 ×104 mK2 at comoving scale k =0.18 h Mpc-1 and at z =6.8 , consistent with existing limits.

  4. Use of genetic algorithms in the optimization of patch antennas and patch antenna arrays for the observation of the 21cm H-I line

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew N.

    Radio Astronomy allows for astrophysicists and astronomers to observe parts of the Universe outside of the visible spectrum. Within radio astronomy, the 21cm wavelength is a very popular choice for observation. The 21cm wavelength emission/absorption corresponds to transitions of neutral hydrogen electrons in their orbitals and is a very useful wavelength to observe due to the prevalence of neutral hydrogen gas throughout the Universe. However, due to the physical size of wavelengths in the radio spectrum, radio telescopes tend to be very large and therefore very expensive. This thesis uses evolutionary optimization algorithms to optimize the much cheaper and rugged micro-patch antennas in a phased array. The evolutionary algorithm optimizes the geometry of the micro-patch antenna and 2-D phased array parameters that will culminate in a single radio telescope. The micropatch antenna parameters to be optimized are the geometry of top metal patch, dielectric thickness, dielectric constant, and feed point. The array factor parameters that are optimized are the relative weights for each array element and their relative periodic spacing.

  5. Expected constraints on models of the epoch of reionization with the variance and skewness in redshifted 21 cm-line fluctuations

    NASA Astrophysics Data System (ADS)

    Kubota, Kenji; Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-06-01

    The redshifted 21 cm-line signal from neutral hydrogen in the intergalactic medium (IGM) gives a direct probe of the epoch of reionization (EoR). In this paper, we investigate the potential of the variance and skewness of the probability distribution function of the 21 cm brightness temperature for constraining EoR models. These statistical quantities are simple, easy to calculate from the observed visibility, and thus suitable for the early exploration of the EoR with current telescopes such as the Murchison Widefield Array (MWA) and LOw Frequency ARray (LOFAR). We show, by performing Fisher analysis, that the variance and skewness at z = 7-9 are complementary to each other to constrain the EoR model parameters such as the minimum virial temperature of halos which host luminous objects, ionizing efficiency, and mean free path of ionizing photons in the IGM. Quantitatively, the constraining power highly depends on the quality of the foreground subtraction and calibration. We give a best case estimate of the constraints on the parameters, neglecting the systematics other than the thermal noise.

  6. Expected constraints on models of the epoch of reionization with the variance and skewness in redshifted 21 cm-line fluctuations

    NASA Astrophysics Data System (ADS)

    Kubota, Kenji; Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-08-01

    The redshifted 21 cm-line signal from neutral hydrogen in the intergalactic medium (IGM) gives a direct probe of the epoch of reionization (EoR). In this paper, we investigate the potential of the variance and skewness of the probability distribution function of the 21 cm brightness temperature for constraining EoR models. These statistical quantities are simple, easy to calculate from the observed visibility, and thus suitable for the early exploration of the EoR with current telescopes such as the Murchison Widefield Array (MWA) and LOw Frequency ARray (LOFAR). We show, by performing Fisher analysis, that the variance and skewness at z = 7-9 are complementary to each other to constrain the EoR model parameters such as the minimum virial temperature of halos which host luminous objects, ionizing efficiency, and mean free path of ionizing photons in the IGM. Quantitatively, the constraining power highly depends on the quality of the foreground subtraction and calibration. We give a best case estimate of the constraints on the parameters, neglecting the systematics other than the thermal noise.

  7. From Darkness to Light: Observing the First Stars and Galaxies with the Redshifted 21-cm Line using the Dark Ages Radio Explorer

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Lazio, Joseph; Bowman, Judd D.; Bradley, Richard F.; Datta, Abhirup; Furlanetto, Steven; Jones, Dayton L.; Kasper, Justin; Loeb, Abraham; Harker, Geraint

    2015-01-01

    The Dark Ages Radio Explorer (DARE) will reveal when the first stars, black holes, and galaxies formed in the early Universe and will define their characteristics, from the Dark Ages (z=35) to the Cosmic Dawn (z=11). This epoch of the Universe has never been directly observed. The DARE science instrument is composed of electrically-short bi-conical dipole antennas, a correlation receiver, and a digital spectrometer that measures the sky-averaged, low frequency (40-120 MHz) spectral features from the highly redshifted 21-cm HI line that surrounds the first objects. These observations are possible because DARE will orbit the Moon at an altitude of 125 km and takes data when it is above the radio-quiet, ionosphere-free, solar-shielded lunar farside. DARE executes the small-scale mission described in the NASA Astrophysics Roadmap (p. 83): 'mapping the Universe's hydrogen clouds using 21-cm radio wavelengths via lunar orbiter from the farside of the Moon'. This mission will address four key science questions: (1) When did the first stars form and what were their characteristics? (2) When did the first accreting black holes form and what was their characteristic mass? (3) When did reionization begin? (4) What surprises emerged from the Dark Ages (e.g., Dark Matter decay). DARE uniquely complements other major telescopes including Planck, JWST, and ALMA by bridging the gap between the smooth Universe seen via the CMB and rich web of galaxy structures seen with optical/IR/mm telescopes. Support for the development of this mission concept was provided by the Office of the Director, NASA Ames Research Center and by JPL/Caltech.

  8. Video rate multispectral imaging for camouflaged target detection

    NASA Astrophysics Data System (ADS)

    Henry, Sam

    2015-05-01

    The ability to detect and identify camouflaged targets is critical in combat environments. Hyperspectral and Multispectral cameras allow a soldier to identify threats more effectively than traditional RGB cameras due to both increased color resolution and ability to see beyond visible light. Static imagers have proven successful, however the development of video rate imagers allows for continuous real time target identification and tracking. This paper presents an analysis of existing anomaly detection algorithms and how they can be adopted to video rates, and presents a general purpose semisupervised real time anomaly detection algorithm using multiple frame sampling.

  9. Calculations of rates for direct detection of neutralino dark matter

    NASA Technical Reports Server (NTRS)

    Griest, Kim

    1988-01-01

    The detection rates in cryogenic detectors of neutralinos, the most well motivated supersymmetric dark-matter candidate, are calculated. These rates can differ greatly from the special case of pure photinos and pure Higgsinos which are usually considered. In addition, a new term is found in the elastic-scattering cross section proportional to the Z-ino component which is 'spin independent', even for these Majorana particles. As a result, substantial detection rates exist for previously disfavored, mostly spinless materials such as germanium and mercury.

  10. Heart rate detection from an electronic weighing scale.

    PubMed

    González-Landaeta, R; Casas, O; Pallàs-Areny, R

    2007-01-01

    We propose a novel technique for heart rate detection on a subject that stands on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear, and does not require any sensors attached to the body. We have applied our method to three different weighing scales, and estimated whether their sensitivity and frequency response suited heart rate detection. Scale sensitivities were from 490 nV/V/N to 1670 nV/V/N, all had an underdamped transient response and their dynamic gain error was below 19% at 10 Hz, which are acceptable values for heart rate estimation. We also designed a pulse detection system based on off-the-shelf integrated circuits, whose gain was about 70x10(3) and able to sense force variations about 240 mN. The signal-to-noise ratio (SNR) of the main peaks of the pulse signal detected was higher than 48 dB, which is large enough to estimate the heart rate by simple signal processing methods. To validate the method, the ECG and the force signal were simultaneously recorded on 12 volunteers. The maximal error obtained from heart rates determined from these two signals was +/-0.6 beats/minute. PMID:18003457

  11. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    SciTech Connect

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.

  12. Temperature lapse rate as an adjunct to wind shear detection

    NASA Technical Reports Server (NTRS)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  13. Towards a quantitative prediction of the blob detection rate

    NASA Astrophysics Data System (ADS)

    Fuchert, G.; Carralero, D.; Manz, P.; Stroth, U.; Wolfrum, E.; ASDEX Upgrade Team

    2016-05-01

    To estimate the particle and energy flux to the plasma facing components of a future fusion power plant, the transport carried by filaments of increased pressure, called blobs, is of critical importance. To understand this transport the rate of the filaments has to be known. The novel approach presented here allows the prediction of both the blob generation and detection rates based on background plasma parameters only. The prediction is in a good overall agreement with recent experiments in ASDEX Upgrade.

  14. Near-Earth Asteroids Detection Rate with LISA

    NASA Technical Reports Server (NTRS)

    Tricarico, P.

    2009-01-01

    The LISA space mission, designed to monitor low frequency gravitational waves, is also sensitive to passages of asteroids nearby one of its three spacecrafts. We report the expected rate of detections of asteroid passages, using the known catalog of asteroids and a modeled population. The method adopted consists of determining for each known asteroid the critical encounter distance capable of producing a detectable event, and then computing the rate of encounters within this distance. Results are then scaled to the modeled population using its differential distribution in absolute magnitude, correcting for selection effects. We find that an average of 2.0 +/- 0.1 events per year at a signal-to-noise ratio of 1 will be detected by LISA, including all the asteroids in the modeled population with absolute magnitude H < 22, roughly equivalent to all asteroids with a diameter larger than 100 m.

  15. Respiratory rate detection algorithms by photoplethysmography signal processing.

    PubMed

    Lee, E M; Kim, N H; Trang, N T; Hong, J H; Cha, E J; Lee, T S

    2008-01-01

    Photoplethysmography (PPG) offers the clinically meaningful parameters, such as, heart rate, and respiratory rate. In this study, we presented three respiratory signal detection algorithms using photoplethysmography raw data generated from commercial PPG sensor: (1)Min-Max (2)Peak-to-Peak (3)Pulse Shape. As reference signal, nasal sensor signal was acquired simultaneously and compared and analyzed. We used two types of moving average filtering technique to process three PPG parameters. In laboratory experiment, 6 subjects' PPG signals were measured when they respire ten and fifteen, and arbitrary times per minute. From the results, following conclusions were drawn. Min-Max and Peak-to-Peak algorithms perform better than Pulse shape algorithm. They can be used to detect respiratory rate. But, Pulse Shape algorithm was accurate for subject 4 only. More experimental data is necessary to improve the accuracy and reliability. PMID:19162865

  16. Improved coded optical communication error rates using joint detection receivers

    NASA Astrophysics Data System (ADS)

    Dutton, Zachary; Guha, Saikat; Chen, Jian; Habif, Jonathan; Lazarus, Richard

    2012-02-01

    It is now known that coherent state (laser light) modulation is sufficient to reach the ultimate quantum limit (the Holevo bound) for classical communication capacity. However, all current optical communication systems are fundamentally limited in capacity because they perform measurements on single symbols at a time. To reach the Holevo bound, joint quantum measurements over long symbol blocks will be required. We recently proposed and demonstrated the ``conditional pulse nulling'' (CPN) receiver -- which acts jointly on the time slots of a pulse-position-modulation (PPM) codeword by employing pulse nulling and quantum feedforward -- and demonstrated a 2.3 dB improvement in error rate over direct detection (DD). In a communication system coded error rates are made arbitrary small by employing an outer code (such as Reed-Solomon (RS)). Here we analyze RS coding of PPM errors with both DD and CPN receivers and calculate the outer code length requirements. We find the improved PPM error rates with the CPN translates into >10 times improvement in the required outer code length at high rates. This advantage also translates increase the range for a given coding complexity. In addition, we present results for outer coded error rates of our recently proposed ``Green Machine'' which realizes a joint detection advantage for binary phase shift keyed (BPSK) modulation.

  17. SETI Pulse Detection Algorithm: Analysis of False-alarm Rates

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1983-01-01

    Some earlier work by the Search for Extraterrestrial Intelligence (SETI) Science Working Group (SWG) on the derivation of spectrum analyzer thresholds for a pulse detection algorithm based on an analysis of false alarm rates is extended. The algorithm previously analyzed was intended to detect a finite sequence of i periodically spaced pulses that did not necessarily occupy the entire observation interval. This algorithm would recognize the presence of such a signal only if all i-received pulse powers exceeded a threshold T(i): these thresholds were selected to achieve a desired false alarm rate, independent of i. To simplify the analysis, it was assumed that the pulses were synchronous with the spectrum sample times. This analysis extends the earlier effort to include infinite and/or asynchronous pulse trains. Furthermore, to decrease the possibility of missing an extraterrestrial intelligence signal, the algorithm was modified to detect a pulse train even if some of the received pulse powers fall below the threshold. The analysis employs geometrical arguments that make it conceptually easy to incorporate boundary conditions imposed on the derivation of the false alarm rates. While the exact results can be somewhat complex, simple closed form approximations are derived that produce a negligible loss of accuracy.

  18. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  19. Detection of nonneutral substitution rates on mammalian phylogenies

    PubMed Central

    Pollard, Katherine S.; Hubisz, Melissa J.; Rosenbloom, Kate R.; Siepel, Adam

    2010-01-01

    Methods for detecting nucleotide substitution rates that are faster or slower than expected under neutral drift are widely used to identify candidate functional elements in genomic sequences. However, most existing methods consider either reductions (conservation) or increases (acceleration) in rate but not both, or assume that selection acts uniformly across the branches of a phylogeny. Here we examine the more general problem of detecting departures from the neutral rate of substitution in either direction, possibly in a clade-specific manner. We consider four statistical, phylogenetic tests for addressing this problem: a likelihood ratio test, a score test, a test based on exact distributions of numbers of substitutions, and the genomic evolutionary rate profiling (GERP) test. All four tests have been implemented in a freely available program called phyloP. Based on extensive simulation experiments, these tests are remarkably similar in statistical power. With 36 mammalian species, they all appear to be capable of fairly good sensitivity with low false-positive rates in detecting strong selection at individual nucleotides, moderate selection in 3-bp elements, and weaker or clade-specific selection in longer elements. By applying phyloP to mammalian multiple alignments from the ENCODE project, we shed light on patterns of conservation/acceleration in known and predicted functional elements, approximate fractions of sites subject to constraint, and differences in clade-specific selection in the primate and glires clades. We also describe new “Conservation” tracks in the UCSC Genome Browser that display both phyloP and phastCons scores for genome-wide alignments of 44 vertebrate species. PMID:19858363

  20. A PC-aided optical foetal heart rate detection system.

    PubMed

    Oweis, Rami J; As'ad, Hala; Aldarawsheh, Amany; Al-Khdeirat, Rawan; Lwissy, Kaldoun

    2014-01-01

    Safe monitoring of foetal heart rate is a valuable tool for the healthy evolution and wellbeing of both foetus and mother. This paper presents a non-invasive optical technique that allows for foetal heart rate detection using a photovoltaic infrared (IR) detector placed on the mother's abdomen. The system presented here consists of a photoplethysmography (PPG) circuit, abdomen circuit and a personal computer equipped with MATLAB. A near IR beam having a wavelength of 880 nm is transmitted through the mother's abdomen and foetal tissue. The received abdominal signal that conveys information pertaining to the mother and foetal heart rate is sensed by a low noise photodetector. The PC receives the signal through the National Instrumentation Data Acquisition Card (NIDAQ). After synchronous detection of the abdominal and finger PPG signals, the designed MATLAB-based software saves, analyses and extracts information related to the foetal heart rate. Extraction is carried out using recursive least squares adaptive filtration. Measurements on eight pregnant women with gestational periods ranging from 35-39 weeks were performed using the proposed system and CTG. Results show a correlation coefficient of 0.978 and a correlation confidence interval between 88-99.6%. The t test results in a p value of 0.034, which is less than 0.05. Low power, low cost, high signal-to-noise ratio, reduction of ambient light effect and ease of use are the main characteristics of the proposed system. PMID:24195701

  1. Coherent Detection of High-Rate Optical PPM Signals

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Fernandez, Michela Munoz

    2006-01-01

    A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to

  2. Motion-compensated non-contact detection of heart rate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Ming; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua

    2015-12-01

    A new non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. This poses a great challenge to compensate the motion artifacts during measurements. In order to circumvent this problem, we have proposed the amplitude spectrum and phase spectrum adaptive filter. Comparing with the time-domain adaptive filter and independent component analysis, the amplitude spectrum and phase spectrum adaptive filter can suppress the interference caused by the two circuit differences and effectively compensate the motion artifacts. To make the device is much compact and portable, a photoelectric probe is designed. The measurement distance is from several centimeters up to several meters. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor.

  3. A change detection approach to moving object detection in low fame-rate video

    NASA Astrophysics Data System (ADS)

    Porter, Reid; Harvey, Neal; Theiler, James

    2009-05-01

    Moving object detection is of significant interest in temporal image analysis since it is a first step in many object identification and tracking applications. A key component in almost all moving object detection algorithms is a pixellevel classifier, where each pixel is predicted to be either part of a moving object or part of the background. In this paper we investigate a change detection approach to the pixel-level classification problem and evaluate its impact on moving object detection. The change detection approach that we investigate was previously applied to multi- and hyper-spectral datasets, where images were typically taken several days, or months apart. In this paper, we apply the approach to lowframe rate (1-2 frames per second) video datasets.

  4. A change detection approach to moving object detection in low frame-rate video

    SciTech Connect

    Porter, Reid B; Harvey, Neal R; Theiler, James P

    2009-01-01

    Moving object detection is of significant interest in temporal image analysis since it is a first step in many object identification and tracking applications. A key component in almost all moving object detection algorithms is a pixel-level classifier, where each pixel is predicted to be either part of a moving object or part of the background. In this paper we investigate a change detection approach to the pixel-level classification problem and evaluate its impact on moving object detection. The change detection approach that we investigate was previously applied to multi-and hyper-spectral datasets, where images were typically taken several days, or months apart. In this paper, we apply the approach to low-frame rate (1-2 frames per second) video datasets.

  5. Ionospheric Modulation of Venus Express Lightning Detection Rates

    NASA Astrophysics Data System (ADS)

    Hart, Richard A.; Russell, Christopher T.; Zhang, Tielong

    2015-11-01

    Venus Express completed its nearly 9 year campaign at Earth’s sister planet in late 2014. During this period the onboard fluxgate magnetometer collected data up to 64 Hz in frequency while near periapsis. This is the expected frequency range for lightning-generated whistler-mode waves at Venus, between the local electron and ion gyrofrequencies. These waves are right-hand circularly polarized and are guided by the local magnetic field. When the Venusian ionopause is low enough in altitude to reside in the collisional region, the interplanetary magnetic field can get carried down with the ions and magnetize the lower ionosphere. As the field travels towards the terminator it gains a radial component, enabling whistlers to reach higher altitudes and be detected by the spacecraft. The mission covered almost an entire solar cycle and frequently observed a magnetized ionosphere during the solar minimum phase when the ionosphere was weak due to reduced incident EUV. Detection was most common at 250 km altitude where the waves travel more slowly due to reduced ionospheric density. In response they increase in amplitude in order to conserve magnetic energy flux. Here, we examine the changes in the ionospheric properties associated with the evolution of the solar cycle and the rate of detection of these lightning-generated signals.

  6. Sleep apnea detection using time-delayed heart rate variability.

    PubMed

    Nano, Marina-Marinela; Xi Long; Werth, Jan; Aarts, Ronald M; Heusdens, Richard

    2015-08-01

    Sleep apnea is a sleep disorder distinguished by repetitive absence of breathing. Compared with the traditional expensive and cumbersome methods, sleep apnea diagnosis or screening with physiological information that can be easily acquired is needed. This paper describes algorithms using heart rate variability (HRV) to automatically detect sleep apneas as long as it can be easily acquired with unobtrusive sensors. Because the changes in cardiac activity are usually hysteretic than the presence of apneas with a few minutes, we propose to use the delayed HRV features to identify the episodes with sleep apneic events. This is expected to help improve the apnea detection performance. Experiments were conducted with a data set of 23 sleep apnea patients using support vector machine (SVM) classifiers and cross validations. Results show that using eleven HRV features with a time delay of 1.5 minutes rather than the features without time delay for SA detection, the overall accuracy increased from 74.9% to 76.2% and the Cohen's Kappa coefficient increased from 0.49 to 0.52. Further, an accuracy of 94.5% and a Kappa of 0.89 were achieved when applying subject-specific classifiers. PMID:26738071

  7. Local dynamics of heart rate: detection and prognostic implications.

    PubMed

    Moss, Travis J; Lake, Douglas E; Moorman, J Randall

    2014-10-01

    The original observation that reduced heart rate variability (HRV) confers poor prognosis after myocardial infarction has been followed by many studies of heart rate dynamics. We tested the hypothesis that an entropy-based local dynamics measure gave prognostic information in ambulatory patients undergoing 24-h electrocardiography. In this context, entropy is the probability that short templates will find matches in the time series. We studied RR interval time series from 24-h Holter monitors of 1564 consecutive patients over age 39. We generated histograms of the count of templates as a function of the number of templates matches in short RR interval time series, and found characteristic appearance of histograms for atrial fibrillation, sinus rhythm with normal HRV, and sinus rhythm with reduced HRV and premature ventricular contractions (PVCs). We developed statistical models to detect the abnormal dynamic phenotype of reduced HRV with PVCs and fashioned a local dynamics score (LDs) that, after controlling for age, added more prognostic information than other standard risk factors and common HRV metrics, including, to our surprise, the PVC count and the HRV of normal-to-normal intervals. Addition of the LDs to a predictive model using standard risk factors significantly increased the ROC area and the net reclassification improvement was 27%. We conclude that abnormal local dynamics of heart rate confer adverse prognosis in patients undergoing 24-h ambulatory electrocardiography. PMID:25229393

  8. Heart rate analysis by sparse representation for acute pain detection.

    PubMed

    Tejman-Yarden, Shai; Levi, Ofer; Beizerov, Alex; Parmet, Yisrael; Nguyen, Tu; Saunders, Michael; Rudich, Zvia; Perry, James C; Baker, Dewleen G; Moeller-Bertram, Tobias

    2016-04-01

    Objective pain assessment methods pose an advantage over the currently used subjective pain rating tools. Advanced signal processing methodologies, including the wavelet transform (WT) and the orthogonal matching pursuit algorithm (OMP), were developed in the past two decades. The aim of this study was to apply and compare these time-specific methods to heart rate samples of healthy subjects for acute pain detection. Fifteen adult volunteers participated in a study conducted in the pain clinic at a single center. Each subject's heart rate was sampled for 5-min baseline, followed by a cold pressor test (CPT). Analysis was done by the WT and the OMP algorithm with a Fourier/Wavelet dictionary separately. Data from 11 subjects were analyzed. Compared to baseline, The WT analysis showed a significant coefficients' density increase during the pain incline period (p < 0.01) and the entire CPT (p < 0.01), with significantly higher coefficient amplitudes. The OMP analysis showed a significant wavelet coefficients' density increase during pain incline and decline periods (p < 0.01, p < 0.05) and the entire CPT (p < 0.001), with suggestive higher amplitudes. Comparison of both methods showed that during the baseline there was a significant reduction in wavelet coefficient density using the OMP algorithm (p < 0.001). Analysis by the two-way ANOVA with repeated measures showed a significant proportional increase in wavelet coefficients during the incline period and the entire CPT using the OMP algorithm (p < 0.01). Both methods provided accurate and non-delayed detection of pain events. Statistical analysis proved the OMP to be by far more specific allowing the Fourier coefficients to represent the signal's basic harmonics and the wavelet coefficients to focus on the time-specific painful event. This is an initial study using OMP for pain detection; further studies need to prove the efficiency of this system in different settings. PMID:26264057

  9. Detection and rate discrimination of amplitude modulation in electrical hearing.

    PubMed

    Chatterjee, Monita; Oberzut, Cherish

    2011-09-01

    Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener. PMID:21895095

  10. Defining Error Rates and Power for Detecting Answer Copying.

    ERIC Educational Resources Information Center

    Wollack, James A.; Cohen, Allan S.; Serlin, Ronald C.

    2001-01-01

    Developed a family wise approach for evaluating the significance of copying indices designed to hold the Type I error rate constant for each examinee. Examined the Type I error rate and power of two indices under a variety of copying situations. Results indicate the superiority of a family wise definition of Type I error rate over a pair-wise…

  11. Gait Event Detection during Stair Walking Using a Rate Gyroscope

    PubMed Central

    Formento, Paola Catalfamo; Acevedo, Ruben; Ghoussayni, Salim; Ewins, David

    2014-01-01

    Gyroscopes have been proposed as sensors for ambulatory gait analysis and functional electrical stimulation systems. These applications often require detection of the initial contact (IC) of the foot with the floor and/or final contact or foot off (FO) from the floor during outdoor walking. Previous investigations have reported the use of a single gyroscope placed on the shank for detection of IC and FO on level ground and incline walking. This paper describes the evaluation of a gyroscope placed on the shank for determination of IC and FO in subjects ascending and descending a set of stairs. Performance was compared with a reference pressure measurement system. The absolute mean difference between the gyroscope and the reference was less than 45 ms for IC and better than 135 ms for FO for both activities. Detection success was over 93%. These results provide preliminary evidence supporting the use of a gyroscope for gait event detection when walking up and down stairs. PMID:24651724

  12. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Chung, Kun Ho; Lee, Wanno; Park, Doo-Won; Kang, Mun-Ja

    2014-04-01

    A spectrometric determination of the dose rate using a detector is a very useful method to identify the contribution of artificial nuclides. In addition, the individual dose rate for detected gamma nuclides from the radioactive materials as well as the environment can give further information such as the in-situ measurement because of the direct relation between the individual dose rate and the activity of a nuclide. In this study, the calculation method for the individual dose rate for detected gamma nuclides was suggested by introducing the concept of the dose rate spectroscopy and the peak-to-total ratio in the energy spectrum for the dose rate, which means just a form of multiplied counts and the value of a G-factor in the spectrum. In addition, the validity of the suggested method for the individual dose rate was experimentally verified through a comparison of the calculation results on the energy spectra for several conditions of the standard source.

  13. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  14. Ambulatory respiratory rate detection using ECG and a triaxial accelerometer.

    PubMed

    Chan, Alexander M; Ferdosi, Nima; Narasimhan, Ravi

    2013-01-01

    Continuous monitoring of respiratory rate in ambulatory conditions has widespread applications for screening of respiratory diseases and remote patient monitoring. Unfortunately, minimally obtrusive techniques often suffer from low accuracy. In this paper, we describe an algorithm with low computational complexity for combining multiple respiratory measurements to estimate breathing rate from an unobtrusive chest patch sensor. Respiratory rates derived from the respiratory sinus arrhythmia (RSA) and modulation of the QRS amplitude of electrocardiography (ECG) are combined with a respiratory rate derived from tri-axial accelerometer data. The three respiration rates are combined by a weighted average using weights based on quality metrics for each signal. The algorithm was evaluated on 15 elderly subjects who performed spontaneous and metronome breathing as well as a variety of activities of daily living (ADLs). When compared to a reference device, the mean absolute error was 1.02 breaths per minute (BrPM) during metronome breathing, 1.67 BrPM during spontaneous breathing, and 2.03 BrPM during ADLs. PMID:24110623

  15. Cardiac rate detection method based on the beam splitter prism

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Xiaohua; Liu, Ming; Zhao, Yuejin; Dong, Liquan; Zhao, Ruirui; Jin, Xiaoli; Zhao, Jingsheng

    2013-09-01

    A new cardiac rate measurement method is proposed. Through the beam splitter prism, the common-path optical system of transmitting and receiving signals is achieved. By the focusing effect of the lens, the small amplitude motion artifact is inhibited and the signal-to-noise is improved. The cardiac rate is obtained based on the PhotoPlethysmoGraphy (PPG). We use LED as the light source and use photoelectric diode as the receiving tube. The LED and the photoelectric diode are on the different sides of the beam splitter prism and they form the optical system. The signal processing and display unit is composed by the signal processing circuit, data acquisition device and computer. The light emitted by the modulated LED is collimated by the lens and irradiates the measurement target through the beam splitter prism. The light reflected by the target is focused on the receiving tube through the beam splitter prism and another lens. The signal received by the photoelectric diode is processed by the analog circuit and obtained by the data acquisition device. Through the filtering and Fast Fourier Transform, the cardiac rate is achieved. We get the real time cardiac rate by the moving average method. We experiment with 30 volunteers, containing different genders and different ages. We compare the signals captured by this method to a conventional PPG signal captured concurrently from a finger. The results of the experiments are all relatively agreeable and the biggest deviation value is about 2bmp.

  16. Looking for Dark Galaxies at 21-cm

    NASA Astrophysics Data System (ADS)

    Disney, mike; Lang, Robert. Hugh

    2012-10-01

    Blind HI surveys have so far failed to find the Dark and Low Surface Brightness Galaxies, and the Intergalactic Gas Clouds which were widely expected. It now appears very likely that this has been caused through incorrectly identifying many sources with clustered visible galaxies in the same groups. We aim to rectify this situation by using ATCA to find interferometric positions accurate to ~ 1 arc minute for a selection of the most unlikely identifications in the HIPASS catalogue and so either to find such objects, or conclusively rule out their existence.

  17. Spectral photoplethysmographic imaging sensor fusion for enhanced heart rate detection

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-03-01

    Continuous heart rate monitoring can provide important context for quantitative clinical assessment in scenarios such as long-term health monitoring and disability prevention. Photoplethysmographic imaging (PPGI) systems are particularly useful for such monitoring scenarios as contact-based devices pose problems related to comfort and mobility. Each pixel can be regarded as a virtual PPG sensor, thus enabling simultaneous measurements of multiple skin sites. Existing PPGI systems analyze temporal PPGI sensor uctuations related to hemodynamic pulsations across a region of interest to extract the blood pulse signal. However, due to spatially varying optical properties of the skin, the blood pulse signal may not be consistent across all PPGI sensors, leading to inaccurate heart rate monitoring. To increase the hemodynamic signal-to-noise ratio (SNR), we propose a novel spectral PPGI sensor fusion method for enhanced estimation of the true blood pulse signal. Motivated by the observation that PPGI sensors with high hemodynamic SNR exhibit a spectral energy peak at the heart rate frequency, an entropy-based fusion model was formulated to combine PPGI sensors based on the sensors' spectral energy distribution. The optical PPGI device comprised a near infrared (NIR) sensitive camera and an 850 nm LED. Spatially uniform irradiance was achieved by placing optical elements along the LED beam, providing consistent illumination across the skin area. Dual-mode temporally coded illumination was used to negate the temporal effect of ambient illumination. Experimental results show that the spectrally weighted PPGI method can accurately and consistently extract heart rate information where traditional region-based averaging fails.

  18. Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats.

    PubMed

    Yeh, Bih-Chyun; Lin, Wen-Piao

    2016-03-01

    Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an "irregular interbeat on" or "irregular interbeat off" event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3% in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants. PMID:26643078

  19. Comparison of heart rate variability and pulse rate variability detected with photoplethysmography

    NASA Astrophysics Data System (ADS)

    Rauh, Robert; Limley, Robert; Bauer, Rainer-Dieter; Radespiel-Troger, Martin; Mueck-Weymann, Michael

    2004-08-01

    This study compares ear photoplethysmography (PPG) and electrocardiogram (ECG) in providing accurate heart beat intervals for use in calculations of heart rate variability (HRV, from ECG) or of pulse rate variability (PRV, from PPG) respectively. Simultaneous measurements were taken from 44 healthy subjects at rest during spontaneous breathing and during forced metronomic breathing (6/min). Under both conditions, highly significant (p > 0.001) correlations (1.0 > r > 0.97) were found between all evaluated common HRV and PRV parameters. However, under both conditions the PRV parameters were higher than HRV. In addition, we calculated the limits of agreement according to Bland and Altman between both techniques and found good agreement (< 10% difference) for heart rate and standard deviation of normal-to-normal intervals (SDNN), but only moderate (10-20%) or even insufficient (> 20%) agreement for other standard HRV and PRV parameters. Thus, PRV data seem to be acceptable for screening purposes but, at least at this state of knowledge, not for medical decision making. However, further studies are needed before more certain determination can be made.

  20. Patient Diagnostic Rate as Indicator of Tuberculosis Case Detection, South Africa

    PubMed Central

    van Schalkwyk, Cari; Dunbar, Rory; Ayles, Helen; Beyers, Nulda

    2016-01-01

    To address the uncertainty of the indirectly measured tuberculosis case detection rate, we used survey data stratified by HIV status to calculate the patient diagnostic rate, a directly measurable indicator, in 8 communities in South Africa. Rates were lower among HIV-negative than HIV-positive persons. Tuberculosis programs should focus on HIV-negative persons. PMID:26891185

  1. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  2. Persistence rates and detection probabilities of oiled king eider carcasses on St Paul Island, Alaska

    USGS Publications Warehouse

    Fowler, A.C.; Flint, P.L.

    1997-01-01

    Following an oil spill off St Paul Island, Alaska in February 1996, persistence rates and detection probabilities of oiled king eider (Somateria spectabilis) carcasses were estimated using the Cormack-Jolly-Seber model. Carcass persistence rates varied by day, beach type and sex, while detection probabilities varied by day and beach type. Scavenging, wave action and weather influenced carcass persistence. The patterns of persistence differed on rock and sand beaches and female carcasses had a different persistence function than males. Weather, primarily snow storms, and degree of carcass scavenging, diminished carcass detectability. Detection probabilities on rock beaches were lower and more variable than on sand beaches. The combination of persistence rates and detection probabilities can be used to improve techniques of estimating total mortality.

  3. The effects of pulse rate, power, width and coding on signal detectability

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    The effects on the signal detectability of varying the pulse repetition rate (PRF), peak pulse power (p(pk)) and pulse width (tau(p)) (tp) are examined. Both coded and uncoded pulses are considered. The following quantities are assumed to be constant; (1) antenna area, (z)echo reflectivity, (3) Doppler shift, (4) spectral width, (5) spectral resolution, (6) effective sampling rate, and (7) total incoherent spectral averagaing time. The detectability is computed for two types of targets.

  4. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    SciTech Connect

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R.

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  5. A pilot study on low power pulse rate detection based on compressive sampling.

    PubMed

    Huang, B Y; Wang, L; Wang, B; Lin, S J; Wu, D; Zhang, Y T

    2009-01-01

    Low power consumption is one of the key design challenges for various pervasive healthcare systems. Compressive Sampling (CS) is an emerging technique for reconstructing signals from data sampled under the Nyquist rate. CS has great potentials for low power pulse rate detection based on photoplethysmograph (PPG) signals, since by reducing the PPG data sampling rate the LEDs could be turned off for a prolonged period of time. Obviously the higher CS rate, the lower power consumption and lower pulse rate measurement accuracies. In this paper, a feasibility study of using CS for low power pulse rate detection was conducted. A miniature PPG measurement device based on our body sensor networks platform was employed for signal acquisition. Experiments for evaluation the pulse rate estimation and the power consumption were completed. Results suggested that the Gradient Projection for Sparse Reconstruction (GPSR) algorithm is a highly efficient for retrieving pulse rate from PPG signals. It was suggested that the CS rate should be approximate 3 for low power pulse rate detections with averaging estimation mean-square error being less than 5. PMID:19963730

  6. Can Sample-Specific Simulations Help Detect Low Base-Rate Taxonicity?

    ERIC Educational Resources Information Center

    Beach, Steven R. H.; Amir, Nader; Bau, Jinn Jonp

    2005-01-01

    The authors examined the role of the sample-specific simulations (SSS; A. M. Ruscio & J. Ruscio, 2002; J. Ruscio & A. M. Ruscio, 2004) procedure in detecting low base-rate taxa that might otherwise prove elusive. The procedure preserved key distributional characteristics for moderate to high base-rate taxa, but it performed inadequately for low…

  7. DETECTION RATES FOR SURVEYS FOR FAST TRANSIENTS WITH NEXT GENERATION RADIO ARRAYS

    SciTech Connect

    Macquart, Jean-Pierre

    2011-06-10

    We relate the underlying properties of a population of fast radio-emitting transient events to its expected detection rate in a survey of finite sensitivity. The distribution of the distances of the detected events is determined in terms of the population luminosity distribution and survey parameters, for both extragalactic and Galactic populations. The detection rate as a function of Galactic position is examined to identify regions that optimize survey efficiency in a survey whose field of view is limited. The impact of temporal smearing caused by scattering in the interstellar medium has a large and direction-dependent bearing on the detection of impulsive signals, and we present a model for the effects of scattering on the detection rate. We show that the detection rate scales as {Omega}S{sup -3/2+{delta}}{sub 0}, where {Omega} is the field of view, S{sub 0} is the minimum detectable flux density, and 0 < {delta} {<=} 3/2 for a survey of Galactic transients in which interstellar scattering or the finite volume of the Galaxy is important. We derive formal conditions on the optimal survey strategy to adopt under different circumstances for fast transient surveys on next generation large-element, wide-field arrays, such as ASKAP, LOFAR, the MWA, and the SKA, and show how interstellar scattering and the finite spatial extent of a Galactic population modify the choice of optimal strategy.

  8. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging

    PubMed Central

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  9. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.

    PubMed

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  10. Existence detection and embedding rate estimation of blended speech in covert speech communications.

    PubMed

    Li, Lijuan; Gao, Yong

    2016-01-01

    Covert speech communications may be used by terrorists to commit crimes through Internet. Steganalysis aims to detect secret information in covert communications to prevent crimes. Herein, based on the average zero crossing rate of the odd-even difference (AZCR-OED), a steganalysis algorithm for blended speech is proposed; it can detect the existence and estimate the embedding rate of blended speech. First, the odd-even difference (OED) of the speech signal is calculated and divided into frames. The average zero crossing rate (ZCR) is calculated for each OED frame, and the minimum average ZCR and AZCR-OED of the entire speech signal are extracted as features. Then, a support vector machine classifier is used to determine whether the speech signal is blended. Finally, a voice activity detection algorithm is applied to determine the hidden location of the secret speech and estimate the embedding rate. The results demonstrate that without attack, the detection accuracy can reach 80 % or more when the embedding rate is greater than 10 %, and the estimated embedding rate is similar to the real value. And when some attacks occur, it can also reach relatively high detection accuracy. The algorithm has high performance in terms of accuracy, effectiveness and robustness. PMID:27462497

  11. Cancer detection rates of different prostate biopsy regimens in patients with renal failure.

    PubMed

    Hoşcan, Mustafa Burak; Özorak, Alper; Oksay, Taylan; Perk, Hakkı; Armağan, Abdullah; Soyupek, Sedat; Serel, Tekin Ahmet; Koşar, Alim

    2014-07-01

    We aimed to evaluate the cancer detection rates of 6-, 10-, 12-core biopsy regimens and the optimal biopsy protocol for prostate cancer diagnosis in patients with renal failure. A total of 122 consecutive patients with renal failure underwent biopsy with age-specific prostate-specific antigen (PSA) levels up to 20 ng/mL. The 12-core biopsy technique (sextant biopsy + lateral base, lateral mid-zone, lateral apex, bilaterally) performed to all patients. Pathology results were examined separately for each sextant, 10-core that exclude parasagittal mid-zones from 12-cores (10a), 10-core that exclude apex zones from 12-cores (10b) and 12-core biopsy regimens. Of 122 patients, 37 (30.3%) were positive for prostate cancer. The cancer detection rates for sextant, 10a, 10b and 12 cores were 17.2%, 29%, 23.7% and 30.7%, respectively. Biopsy techniques of 10a, 10b and 12 cores increased the cancer detection rates by 40%, 27.5% and 43.2% among the sextant technique, respectively. Biopsy techniques of 10a and 12 cores increased the cancer detection rates by 17.1% and 21.6% among 10b biopsy technique, respectively. There were no statistical differences between 12 core and 10a core about cancer detection rate. Adding lateral cores to sextant biopsy improves the cancer detection rates. In our study, 12-core biopsy technique increases the cancer detection rate by 5.4% among 10a core but that was not statistically different. On the other hand, 12-core biopsy technique includes all biopsy regimens. We therefore suggest 12-core biopsy or minimum 10-core strategy incorporating six peripheral biopsies with elevated age- specific PSA levels up to 20 ng/mL in patients with renal failure. PMID:24797801

  12. Extinction and the rate of superstring microlensing detection for WFIRST survey of the Bulge

    NASA Astrophysics Data System (ADS)

    Morris, Taylor Andrew; Chernoff, David F.

    2015-01-01

    A network of superstrings produced during the epoch of inflation gives birth to long-lived string loops if, as current observational constraints imply, the string tension G μ/c2 < 10-9. String loops track dark matter when galaxy formation occurs. As part of an ongoing Cornell project we investigate the detection rate of string loop microlensing of stars within the Galaxy and make detailed estimates for the WFIRST survey of the Bulge. In particular, here we compare the rate estimates for different models of J-band extinction. Most of the stars microlensed by strings reside near the Galactic center and the range of variation in extinction models induces a factor of 5 in the overall rate. While this rate-sensitivity is non-trivial we conclude that the overall microlensing rate is sufficiently large that detecting strings over a tension range 10-14 to 10-10 is feasible. For a well-defined model of the string loop population, stellar blending and our effective magnitude cutoff in the WFIRST survey currently dominate our rate uncertainties. For example, detection rates at S/N=102 (cutoff of 23) are about an order of magnitude less than rates at marginal S/N (cutoff of 27). Future work will explore the effective cutoff and the resultant rates.

  13. The Impact of Colonoscopy Quality Control Table on Adenoma Detection Rates

    PubMed Central

    Deng, Bin; Zhi, Jiehua; Chen, Yaosheng; Liang, Lanyu; Wu, Jian; Gao, Xuefen; Xiao, Weiming; Ding, Yanbing

    2016-01-01

    Objective. This study aims to investigate the effects of reporting colonoscopy findings and the regular review of outcomes on adenoma detection rates. Methods. Patients who underwent colonoscopy from August 2013 to February 2014 were selected as the intervention group. The preintervention group included patients who underwent colonoscopy from January 2013 to July 2013, in which the procedure sheet for this group of patients was not accomplished. The primary outcome was adenoma detection rate (ADR), and secondary outcomes included the success rate of intubation and withdrawal time. Results. This study included 2,467 cases: 1,302 cases in the intervention group and 1,165 cases in the preintervention group. There was no significant difference in demographic characteristics between the two groups. In the intervention group, withdrawal time of colonoscopy was longer (P < 0.01), and the success rate of intubation (92.5% versus 89.1%, P < 0.05) and detection rate of polyps (32.6% versus 27.6%, P < 0.05) and adenomas (20.0% versus 16.1%, P < 0.05) were higher. Significantly high detection rates for proximal adenomas, flat adenomas, and adenomas with a diameter <5 mm were observed in the intervention group (all P < 0.01). Conclusion. The reporting and review of procedure details help to improve quality indicators of colonoscopy. PMID:27340398

  14. Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users.

    PubMed

    Cosentino, Stefano; Carlyon, Robert P; Deeks, John M; Parkinson, Wendy; Bierer, Julie A

    2016-08-01

    Cochlear implant (CI) users have poor temporal pitch perception, as revealed by two key outcomes of rate discrimination tests: (i) rate discrimination thresholds (RDTs) are typically larger than the corresponding frequency difference limen for pure tones in normal hearing listeners, and (ii) above a few hundred pulses per second (i.e. the "upper limit" of pitch), CI users cannot discriminate further increases in pulse rate. Both RDTs at low rates and the upper limit of pitch vary across listeners and across electrodes in a given listener. Here, we compare across-electrode and across-subject variation in these two measures with the variation in performance on another temporal processing task, gap detection, in order to explore the limitations of temporal processing in CI users. RDTs were obtained for 4-5 electrodes in each of 10 Advanced Bionics CI users using two interleaved adaptive tracks, corresponding to standard rates of 100 and 400 pps. Gap detection was measured using the adaptive procedure and stimuli described by Bierer et al. (JARO 16:273-284, 2015), and for the same electrodes and listeners as for the rate discrimination measures. Pitch ranking was also performed using a mid-point comparison technique. There was a marginal across-electrode correlation between gap detection and rate discrimination at 400 pps, but neither measure correlated with rate discrimination at 100 pps. Similarly, there was a highly significant across-subject correlation between gap detection and rate discrimination at 400, but not 100 pps, and these two correlations differed significantly from each other. Estimates of low-rate sensitivity and of the upper limit of pitch, obtained from the pitch ranking experiment, correlated well with rate discrimination for the 100- and 400-pps standards, respectively. The results are consistent with the upper limit of rate discrimination sharing a common basis with gap detection. There was no evidence that this limitation also applied to rate

  15. A double-observer method to estimate detection rate during aerial waterfowl surveys

    USGS Publications Warehouse

    Koneff, M.D.; Royle, J. Andrew; Otto, M.C.; Wortham, J.S.; Bidwell, J.K.

    2008-01-01

    We evaluated double-observer methods for aerial surveys as a means to adjust counts of waterfowl for incomplete detection. We conducted our study in eastern Canada and the northeast United States utilizing 3 aerial-survey crews flying 3 different types of fixed-wing aircraft. We reconciled counts of front- and rear-seat observers immediately following an observation by the rear-seat observer (i.e., on-the-fly reconciliation). We evaluated 6 a priori models containing a combination of several factors thought to influence detection probability including observer, seat position, aircraft type, and group size. We analyzed data for American black ducks (Anas rubripes) and mallards (A. platyrhynchos), which are among the most abundant duck species in this region. The best-supported model for both black ducks and mallards included observer effects. Sample sizes of black ducks were sufficient to estimate observer-specific detection rates for each crew. Estimated detection rates for black ducks were 0.62 (SE = 0.10), 0.63 (SE = 0.06), and 0.74 (SE = 0.07) for pilot-observers, 0.61 (SE = 0.08), 0.62 (SE = 0.06), and 0.81 (SE = 0.07) for other front-seat observers, and 0.43 (SE = 0.05), 0.58 (SE = 0.06), and 0.73 (SE = 0.04) for rear-seat observers. For mallards, sample sizes were adequate to generate stable maximum-likelihood estimates of observer-specific detection rates for only one aerial crew. Estimated observer-specific detection rates for that crew were 0.84 (SE = 0.04) for the pilot-observer, 0.74 (SE = 0.05) for the other front-seat observer, and 0.47 (SE = 0.03) for the rear-seat observer. Estimated observer detection rates were confounded by the position of the seat occupied by an observer, because observers did not switch seats, and by land-cover because vegetation and landform varied among crew areas. Double-observer methods with on-the-fly reconciliation, although not without challenges, offer one viable option to account for detection bias in aerial waterfowl

  16. Microscopic examination of gallbladder stones improves rate of detection of Clonorchis sinensis infection.

    PubMed

    Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Zheng, Pei-ming; Luo, Zhen-liang; Yang, Liu-qing

    2013-08-01

    To improve the rate of detection of Clonorchis sinensis infection, we compared different specimens from patients with cholecystolithiasis. Feces, gallbladder bile, and gallbladder stones collected from 179 consecutive patients with cholecystolithiasis underwent microscopic examination, and according to the results, 30 egg-positive and 30 egg-negative fecal, gallbladder bile, and gallbladder stone specimens, respectively, underwent real-time fluorescent PCR. The detection rates of eggs in feces, bile, and gallbladder stones were 30.7%, 44.7%, and 69.8%, respectively, and the differences were statistically significant (P<0.01). The PCR results confirmed that the eggs in the specimens were C. sinensis eggs. Eggs in the feces were "fresh" and in the gallbladder stones were "old." Microscopic examination of gallbladder stones may improve the detection rates of C. sinensis infection, which is important for developing individualized treatments to prevent the recurrence of gallbladder stones and to prevent the occurrence of severe liver damage and cholangiocarcinoma. PMID:23698535

  17. [Detection of Heart Rate of Fetal ECG Based on STFT and BSS].

    PubMed

    Wang, Xu; Cai, Kun

    2016-01-01

    Changes in heart rate of fetal is function regulating performance of the circulatory system and the central nervous system, it is significant to detect heart rate of fetus in perinatal fetal. This paper puts forward the fetal heart rate detection method based on short time Fourier transform and blind source separation. First of all, the mixed ECG signal was preprocessed, and then the wavelet transform technique was used to separate the fetal ECG signal with noise from mixed ECG signal, after that, the short-time Fourier transform and the blind separation were carried on it, and then calculated the correlation coefficient of it, Finally, An independent component that it has strongest correlation with the original signal was selected to make FECG peak detection and calculated the fetal instantaneous heart rate. The experimental results show that the method can improve the detection rate of the FECG peak (R), and it has high accuracy in fixing peak(R) location in the case of low signal-noise ratio. PMID:27197491

  18. Higher Adenoma Detection Rates with Endocuff-Assisted Colonoscopy – A Randomized Controlled Multicenter Trial

    PubMed Central

    Fitzlaff, Rüdiger; Röming, Hermann; Ameis, Detlev; Heinecke, Achim; Kunsch, Steffen; Ellenrieder, Volker; Ströbel, Philipp; Schepke, Michael; Meister, Tobias

    2014-01-01

    Objectives The Endocuff is a device mounted on the tip of the colonoscope to help flatten the colonic folds during withdrawal. This study aimed to compare the adenoma detection rates between Endocuff-assisted (EC) colonoscopy and standard colonoscopy (SC). Methods This randomized prospective multicenter trial was conducted at four academic endoscopy units in Germany. Participants: 500 patients (235 males, median age 64[IQR 54–73]) for colon adenoma detection purposes were included in the study. All patients were either allocated to EC or SC. The primary outcome measure was the determination of the adenoma detection rates (ADR). Results The ADR significantly increased with the use of the Endocuff compared to standard colonoscopy (35.4%[95% confidence interval{CI} 29–41%] vs. 20.7%[95%CI 15–26%], p<0.0001). Significantly more sessile polyps were detected by EC. Overall procedure time and withdrawal time did not differ. Caecal and ileum intubation rates were similar. No major adverse events occurred in both groups. In multivariate analysis, age (odds ratio [OR] 1.03; 95%[CI] 1.01–1.05), male sex (OR 1.74; 95%CI 1.10–2.73), withdrawal time (OR 1.16; 95%CI 1.05–1.30), procedure time (OR 1.07; 95%CI 1.04–1.10), colon cleanliness (OR 0.60; 95%CI 0.39–0.94) and use of Endocuff (OR 2.09; 95%CI 1.34–3.27) were independent predictors of adenoma detection rates. Conclusions EC increases the adenoma detection rate by 14.7%(95%CI 6.9–22.5%). EC is safe, effective, easy to handle and might reduce colorectal interval carcinomas. Trial Registration ClinicalTrials.gov NCT02034929. PMID:25470133

  19. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    NASA Astrophysics Data System (ADS)

    Pořízka, Pavel; Klessen, Benjamin; Kaiser, Jozef; Gornushkin, Igor; Panne, Ulrich; Riedel, Jens

    2014-07-01

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  20. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect

    Pořízka, Pavel; Kaiser, Jozef

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  1. Detection and Modeling of Non-Tidal Oceanic Effects on the Earth's Rotation Rate

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Chao, Y.; Dickey, J. O.; Gegout, P.

    1998-01-01

    Sub-decadal changes in the Earth's rotation rate, and hence in the length-of-day (LOD), are largely controlled by variations in atmospheric angular momentum. Results from two oceanic general circulation models (OGCMs), forced by observed wind stress and heat flux for the years 1992-1994, show that ocean current and mass distribution changes also induce detectable LOD variations.

  2. SETI: The transmission rate of radio communication and the signal's detection

    NASA Astrophysics Data System (ADS)

    Fridman, P. A.

    2011-11-01

    The transmission rate of communication between radio telescopes on Earth and extraterrestrial intelligence (ETI) is here calculated up to distances of 1000 light years. Both phase-shift keying (PSK) and frequency-shift keying (FSK) modulation schemes are considered. It is shown that M-ary FSK is advantageous in terms of energy. Narrow-band pulses scattered over the spectrum sharing a common drift rate can be the probable signals of ETI. Modern SETI spectrum analyzers are well suited to searching for these types of signals. Such signals can be detected using the Hough transform which is a dedicated tool for detecting patterns in an image. The time-frequency plane representing the power output of the spectrum analyzer during the search for ETI gives an image from which the Hough transform (HT) can detect signal patterns with frequency drift.

  3. Real-time, low-complexity, low-memory solution to ECG-based heart rate detection.

    PubMed

    Ravindran, Sourabh; Dunbar, Steven; Nisarga, Bhargavi

    2009-01-01

    This paper addresses the issue of heart rate detection from noisy ECG data, and presents a method with low complexity and low memory requirements that can detect QRS complex in the presence of noise and muscle artifacts. On the MIT-BIH arrhythmia database we were able to detect 99.3% of QRS complexes with 0.47% false detection. This method can also be applied to heart rate detection using phonocardio signals. PMID:19964757

  4. Reducing sojourn points from recurrence plots to improve transition detection: Application to fetal heart rate transitions.

    PubMed

    Zaylaa, Amira; Charara, Jamal; Girault, Jean-Marc

    2015-08-01

    The analysis of biomedical signals demonstrating complexity through recurrence plots is challenging. Quantification of recurrences is often biased by sojourn points that hide dynamic transitions. To overcome this problem, time series have previously been embedded at high dimensions. However, no one has quantified the elimination of sojourn points and rate of detection, nor the enhancement of transition detection has been investigated. This paper reports our on-going efforts to improve the detection of dynamic transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence plots were developed, i.e. embedded with specific settings, derivative-based and m-time pattern. Determinism, cross-determinism and percentage of reduced sojourn points were computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and embedded recurrence plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates, embedded recurrence plots with specific settings provided the best performance, followed by derivative-based recurrence plot, then unembedded recurrence plot using the determinism parameter. The relative errors between healthy and distressed fetuses were 153%, 95% and 91%. More than 50% of sojourn points were eliminated, allowing better detection of heart transitions triggered by gaseous exchange factors. This could be significant in improving the diagnosis of fetal state. PMID:25308517

  5. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  6. Extinction rate estimates for plant populations in revisitation studies: Importance of detectability

    USGS Publications Warehouse

    Kery, M.

    2004-01-01

    Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.

  7. Estimating site occupancy rates when detection probabilities are less than one

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J. Andrew; Langtimm, C.A.

    2002-01-01

    Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frogwatch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo americanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.

  8. Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.

    PubMed

    Kim, Sung Woo; Choi, Soo Beom; An, Yong-Jun; Kim, Byung-Hyun; Kim, Deok Won; Yook, Jong-Gwan

    2015-11-01

    Novel nonintrusive technologies for wrist pulse detection have been developed and proposed as systems for sleep monitoring using three types of radio frequency (RF) sensors. The three types of RF sensors for heart rate measurement on wrist are a flexible RF single resonator, array resonators, and an injection-locked PLL resonator sensor. To verify the performance of the new RF systems, we compared heart rates between presleep time and postsleep onset time. Heart rates of ten subjects were measured using the RF systems during sleep. All three RF devices detected heart rates at 0.2 to 1 mm distance from the skin of the wrist over clothes made of cotton fabric. The wrist pulse signals of a flexible RF single resonator were consistent with the signals obtained by a portable piezoelectric transducer as a reference. Then, we confirmed that the heart rate after sleep onset time significantly decreased compared to before sleep. In conclusion, the RF system can be utilized as a noncontact nonintrusive method for measuring heart rates during sleep. PMID:26057527

  9. Development of an algorithm for automatic detection and rating of squeak and rattle events

    NASA Astrophysics Data System (ADS)

    Chandrika, Unnikrishnan Kuttan; Kim, Jay H.

    2010-10-01

    A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.

  10. Cross Sections, relic abundance, and detection rates for neutralino dark matter

    NASA Technical Reports Server (NTRS)

    Griest, Kim

    1988-01-01

    Neutralino annihilation and elastic scattering cross sections are derived which differ in important ways from previous work. These are applied to relic abundance calculations and to direct detection of neutralino dark matter from the galactic halo. Assuming the neutralino to be the lightest supersymmetric particle and that it is less massive than the Z sup 0, we find relic densities of neutralinos greater than 4 percent of critical density for almost all values of the supersymmetric parameters. We constrain the parameter space by using results from PETRA (chargino mass less than 23 GeV) and ASP, and then assuming a critical density of neutralinos, display event rates in a cryogenic detector for a variety of models. A new term implies spin independent elastic scattering even for those majorana particles and inclusion of propagator momenta increases detection rates by 10 to 300 percent for pure photinos. Z sup 0-squark interference leads to very low detection rates for some values of the parameters. The new term in the elastic cross section dominates for heavy, mostly spinless materials and mitigates the negative interference cancellations in light materials; except for the pure photino or pure higgsinos cases where it does not contribute. In general, the rates can be substantially different from the pure photino and pure higgsino special cases usually considered.

  11. Analysis of Artificial Spacecraft Detecting Rate via Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Jiang, Hu; Yin, Zen-Shan; Wang, Xiao-Ya; Yu, Jin-Pei; Liang, Xu-Wen

    2007-12-01

    With increasing number of spacecrafts in space, collision probabilities of spacecrafts are correspondingly growing. In order to ensure the safety of both Chinese satellites and other satellites and reduce interference with other satellites, it is necessary to remotely sense information of orbiting spacecrafts, including the orbit elements and physical structures. In addition to the ground-based techniques for remotely sensing of spacecrafts, satellite-based detecting of spacecrafts is a useful complementary way for sensing of spacecrafts. Based on spacecraft databank at hand, the detecting rate is presented under the assumption thet the observing instruments are mounted on a low Earth orbiting satellite.

  12. Stochastic optimization for the detection of changes in maternal heart rate kinetics during pregnancy

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Barakat, R. O.; Cordente Martínez, C. A.; Sampedro Molinuevo, J.

    2011-03-01

    The stochastic optimization method ALOPEX IV has been successfully applied to the problem of detecting possible changes in the maternal heart rate kinetics during pregnancy. For this reason, maternal heart rate data were recorded before, during and after gestation, during sessions of exercises of constant mild intensity; ALOPEX IV stochastic optimization was used to calculate the parameter values that optimally fit a dynamical systems model to the experimental data. The results not only demonstrate the effectiveness of ALOPEX IV stochastic optimization, but also have important implications in the area of exercise physiology, as they reveal important changes in the maternal cardiovascular dynamics, as a result of pregnancy.

  13. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    NASA Astrophysics Data System (ADS)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  14. Predicting the capture rate in the Sun from a direct detection signal independently of the astrophysics

    NASA Astrophysics Data System (ADS)

    Herrero-Garcia, Juan

    2016-05-01

    The goal of the works on which this talk is based is to relate a direct detection signal with neutrino limits from the Sun independently of the astrophysics. In order to achieve this we derive a halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal, with which one can set upper limits on the branching ratios into different channels from the absence of a high-energy neutrino flux in neutrino observatories. We also extend this bound to the case of inelastic scattering, both endothermic and exothermic. From two inelastic signals we show how the dark matter mass, the mass difference of the states and the couplings to neutrons and protons can be obtained. Furthermore, one can also pin down the exothermic/endothermic nature of the scattering, and therefore a precise lower bound on the solar capture rate is predicted. We also discuss isospin violation and uncertainties due to form factors.

  15. Swimmer detection and pose estimation for continuous stroke-rate determination

    NASA Astrophysics Data System (ADS)

    Zecha, Dan; Greif, Thomas; Lienhart, Rainer

    2012-02-01

    In this work we propose a novel approach to automatically detect a swimmer and estimate his/her pose continuously in order to derive an estimate of his/her stroke rate given that we observe the swimmer from the side. We divide a swimming cycle of each stroke into several intervals. Each interval represents a pose of the stroke. We use specifically trained object detectors to detect each pose of a stroke within a video and count the number of occurrences per time unit of the most distinctive poses (so-called key poses) of a stroke to continuously infer the stroke rate. We extensively evaluate the overall performance and the influence of the selected poses for all swimming styles on a data set consisting of a variety of swimmers.

  16. Luminance level of a monitor: influence on detectability and detection rate of breast cancer in 2D mammography

    NASA Astrophysics Data System (ADS)

    Bemelmans, Frédéric; Rashidnasab, Alaleh; Chesterman, Frédérique; Kimpe, Tom; Bosmans, Hilde

    2016-03-01

    Purpose: To evaluate lesion detectability and reading time as a function of luminance level of the monitor. Material and Methods: 3D mass models and microcalcification clusters were simulated into ROIs of for processing mammograms. Randomly selected ROIs were subdivided in three groups according to their background glandularity: high (>30%), medium (15-30%) and low (<15%). 6 non-spiculated masses (9 - 11mm), 6 spiculated masses (5 - 7mm) and 6 microcalcification clusters (2 - 4mm) were scaled in 3D to create a range of sizes. The linear attenuation coefficient (AC) of the masses was adjusted from 100% glandular tissue to 90%, 80%, 70%, to create different contrasts. Six physicists read the full database on Barco's Coronis Uniti monitor for four different luminance levels (300, 800, 1000 and 1200 Cd/m2), using a 4-AFC tool. Percentage correct (PC) and time were computed for all different conditions. A paired t-test was performed to evaluate the effect of luminance on PC and time. A multi-factorial analysis was performed using MANOVA.. Results: Paired t-test indicated a statistically significant difference for the average time per session between 300 and 1200; 800 and 1200; 1000 and 1200 Cd/m2, for all participants combined. There was no effect on PC. MANOVA denoted significantly lower reading times for high glandularity images at 1200 Cd/m2. Both types of masses were significantly faster detected at 1200 Cd/m2, for the contrast study. In the size study, microcalcification clusters and spiculated masses had a significantly higher detection rate at 1200 Cd/m2. Conclusion: These results demonstrate a significant decrease in reading time, while detectability remained constant.

  17. Improved bowel preparation increases polyp detection and unmasks significant polyp miss rate

    PubMed Central

    Papanikolaou, Ioannis S; Sioulas, Athanasios D; Magdalinos, Nektarios; Beintaris, Iosif; Lazaridis, Lazaros-Dimitrios; Polymeros, Dimitrios; Malli, Chrysoula; Dimitriadis, George D; Triantafyllou, Konstantinos

    2015-01-01

    AIM: To retrospectively compare previous-day vs split-dose preparation in terms of bowel cleanliness and polyp detection in patients referred for polypectomy. METHODS: Fifty patients underwent two colonoscopies: one diagnostic in a private clinic and a second for polypectomy in a University Hospital. The latter procedures were performed within 12 wk of the index ones. Examinations were accomplished by two experienced endoscopists, different in each facility. Twenty-seven patients underwent screening/surveillance colonoscopy, while the rest were symptomatic. Previous day bowel preparation was utilized initially and split-dose for polypectomy. Colon cleansing was evaluated using the Aronchick scale. We measured the number of detected polyps, and the polyp miss rates per-polyp. RESULTS: Excellent/good preparation was reported in 38 cases with previous-day preparation (76%) vs 46 with split-dose (92%), respectively (P = 0.03). One hundred and twenty-six polyps were detected initially and 169 subsequently (P < 0.0001); 88 vs 126 polyps were diminutive (P < 0.0001), 25 vs 29 small (P = 0.048) and 13 vs 14 equal or larger than 10 mm. The miss rates for total, diminutive, small and large polyps were 25.4%, 30.1%, 13.7% and 6.6%, respectively. Multivariate analysis revealed that split-dose preparation was significantly associated (OR, P) with increased number of polyps detected overall (0.869, P < 0.001), in the right (0.418, P = 0.008) and in the left colon (0.452, P = 0.02). CONCLUSION: Split-dose preparation improved colon cleansing, enhanced polyp detection and unmasked significant polyp miss rates. PMID:26488024

  18. Non-contact detection of cardiac rate based on visible light imaging device

    NASA Astrophysics Data System (ADS)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  19. Estimating the rate of retinal ganglion cell loss to detect glaucoma progression: An observational cohort study.

    PubMed

    Hirooka, Kazuyuki; Izumibata, Saeko; Ukegawa, Kaori; Nitta, Eri; Tsujikawa, Akitaka

    2016-07-01

    This study aimed to evaluate the relationship between glaucoma progression and estimates of the retinal ganglion cells (RGCs) obtained by combining structural and functional measurements in patients with glaucoma.In the present observational cohort study, we examined 116 eyes of 62 glaucoma patients. Using Cirrus optical coherence tomography (OCT), a minimum of 5 serial retinal nerve fiber layer (RNFL) measurements were performed in all eyes. There was a 3-year separation between the first and last measurements. Visual field (VF) testing was performed on the same day as the RNFL imaging using the Swedish Interactive Threshold Algorithm Standard 30-2 program of the Humphrey Field Analyzer. Estimates of the RGC counts were obtained from standard automated perimetry (SAP) and OCT, with a weighted average then used to determine a final estimate of the number of RGCs for each eye. Linear regression was used to calculate the rate of the RGC loss, and trend analysis was used to evaluate both serial RNFL thicknesses and VF progression.Use of the average RNFL thickness parameter of OCT led to detection of progression in 14 of 116 eyes examined, whereas the mean deviation slope detected progression in 31 eyes. When the rates of RGC loss were used, progression was detected in 41 of the 116 eyes, with a mean rate of RGC loss of -28,260 ± 8110 cells/year.Estimation of the rate of RGC loss by combining structural and functional measurements resulted in better detection of glaucoma progression compared to either OCT or SAP. PMID:27472691

  20. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  1. Microscopic Examination of Gallbladder Stones Improves Rate of Detection of Clonorchis sinensis Infection

    PubMed Central

    Ma, Rui-hong; Luo, Xiao-bing; Zheng, Pei-ming; Luo, Zhen-liang; Yang, Liu-qing

    2013-01-01

    To improve the rate of detection of Clonorchis sinensis infection, we compared different specimens from patients with cholecystolithiasis. Feces, gallbladder bile, and gallbladder stones collected from 179 consecutive patients with cholecystolithiasis underwent microscopic examination, and according to the results, 30 egg-positive and 30 egg-negative fecal, gallbladder bile, and gallbladder stone specimens, respectively, underwent real-time fluorescent PCR. The detection rates of eggs in feces, bile, and gallbladder stones were 30.7%, 44.7%, and 69.8%, respectively, and the differences were statistically significant (P < 0.01). The PCR results confirmed that the eggs in the specimens were C. sinensis eggs. Eggs in the feces were “fresh” and in the gallbladder stones were “old.” Microscopic examination of gallbladder stones may improve the detection rates of C. sinensis infection, which is important for developing individualized treatments to prevent the recurrence of gallbladder stones and to prevent the occurrence of severe liver damage and cholangiocarcinoma. PMID:23698535

  2. Improvement of the detection rate in digital watermarked images against image degradation caused by image processing

    NASA Astrophysics Data System (ADS)

    Nishio, Masato; Ando, Yutaka; Tsukamoto, Nobuhiro; Kawashima, Hironao; Nakamura, Shinya

    2004-04-01

    In the current environment of medical information disclosure, the general-purpose image format such as JPEG/BMP which does not require special software for viewing, is suitable for carrying and managing medical image information individually. These formats have no way to know patient and study information. We have therefore developed two kinds of ID embedding methods: one is Bit-swapping method for embedding Alteration detection ID and the other is data-imposing method in Fourier domain using Discrete Cosine Transform (DCT) for embedding Original image source ID. We then applied these two digital watermark methods to four modality images (Chest X-ray, Head CT, Abdomen CT, Bone scintigraphy). However, there were some cases where the digital watermarked ID could not be detected correctly due to image degradation caused by image processing. In this study, we improved the detection rate in digital watermarked image using several techniques, which are Error correction method, Majority correction method, and Scramble location method. We applied these techniques to digital watermarked images against image processing (Smoothing) and evaluated the effectiveness. As a result, Majority correction method is effective to improve the detection rate in digital watermarked image against image degradation.

  3. Satellite change detection analysis of deforestation rates and patterns along the Colombia-Ecuador border.

    PubMed

    Viña, Andrés; Echavarria, Fernando R; Rundquist, Donald C

    2004-05-01

    This study uses Landsat satellite data to document the rates and patterns of land-cover change along a portion of the Colombia-Ecuador border during a 23-yr period (1973-1996). Human colonization has resulted in extensive deforestation in both countries. Satellite change detection analysis showed that the annual rates of deforestation were considerably higher for the Colombian side of the border. In addition, loss of forest cover on the Colombian side for the study period was almost 43%, while only 22% on the Ecuadorian side. The study found that there is no single factor driving deforestation on either side of the border, but concluded that the higher rates on the Colombian side may be due to higher colonization pressures and intensification of illegal coca cultivation. On the Ecuador side of the border the satellite images documented patterns of deforestation that reflected road networks associated with oil exploration and development. PMID:15151380

  4. Hemoglobin-carbon monoxide binding rate. Low temperature magneto-optical detection of spin-tunneling.

    PubMed Central

    Redi, M H; Gerstman, B S; Hopfield, J J

    1981-01-01

    The spin-tunneling model of Hb--CO binding is used to calculate the binding rate at low temperature and high magnetic fields. The rate is calculated in second order perturbation theory assuming that spin-orbit coupling mediates the Hb iron electronic state change. The reaction which occurs at the crossing of the S = 2 and S = 0 energy vs. configuration coordinate curves is nonadiabatic, having a small electronic transition matrix element. Since detection of CO binding by polarized light in the Soret band makes it possible to observe hemes at specific orientation to the field direction, the rate is calculated for arbitrary heme orientation. Comparison with measurements at low temperature in zero field is made for spin quantization along the molecular crystal field direction. PMID:6268215

  5. GEO-to-GEO Optical Sensors: Estimating the Detection Rate of Uncataloged Debris Objects

    NASA Astrophysics Data System (ADS)

    Shell, J.

    2013-09-01

    The GEO debris environment remains ill-characterized, in particular the population of small (< 1m) debris objects. While the space object catalog only contains debris attributed to two GEO fragmentation events, many estimate that ten or more GEO fragmentation events have occurred. Further complicating the small debris estimates are wide-ranging assumptions on fragmentation event kinematics, and the extent to which the NASA breakup model applies. However, candidate efforts may enable GEO-hosted optical sensors, thus providing an opportunity for empirical examination of the small debris population. These potential missions beg the question of exactly what will be seen from such payloads. Will the exponentially increasing small debris population flood such sensors with many detection events from small objects at relatively short ranges? Or, will the angular rates of such objects at required ranges for adequate signal result in minimal small objects detected? A physics-based model is employed to estimate detection events given an optical payload with a parameterized estimate of the GEO small debris environment. It is found that only for the most aggressive small debris population estimates that small objects dominate detections. Object sizes on the order of 10 cm and larger are found to comprise the majority of detection events.

  6. Detection of Artificial Satellites in Images Acquired in Track Rate Mode

    NASA Astrophysics Data System (ADS)

    Levesque, M.

    2011-09-01

    For surveillance of space needs, satellites must be re-observed periodically to measure their position and update their orbital parameters. This represents an incredible volume of data for which an automatic processing capability is desired. Previous developments [1,2,3] produced automatic detection algorithms for images acquired in Step Stare mode (SSM) with sidereal tracking. However, it was proven that the track rate mode (TRM) [6] is more sensitive. Hence, the algorithmic framework was redesigned and applied to this mode. When an imaging sensor tracks a satellite (or a satellite cluster), the stars appear as streaks while the satellites are point-like objects. A series of algorithms was developed for the detection of satellites and star streaks. The centroids of the star streaks are first detected. They are necessary for the astrometric calibration of the image. Thereafter, the satellites are detected using two sets of logical conditions; they are detected with the maximum of sensitivity against the dark sky background, and with the contrast criteria if they are overlapping star streaks. This algorithm framework automatically extracts all required information from the image and adapts the processing parameters and strategy consequently, so no a priori knowledge is require for their execution, which is a requirement for automatic processing capacity.

  7. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra

  8. Digital Mammography Screening: Does Age Influence the Detection Rates of Low-, Intermediate-, and High-Grade Ductal Carcinoma in Situ?

    PubMed

    Weigel, Stefanie; Hense, Hans W; Heidrich, Jan; Berkemeyer, Shoma; Heindel, Walter; Heidinger, Oliver

    2016-03-01

    Purpose To investigate the association between age at screening and detection rates for ductal carcinoma in situ (DCIS) separately for different nuclear grades after introduction of a population-based digital mammography screening program. Materials and Methods The retrospective study was approved by the ethics board and did not require informed consent. In 733 905 women aged 50-69 years who participated in a screening program for the first time in 2005-2008 (baseline examinations were performed with digital mammography), DCIS detection rates were determined for 5-year age groups (detection rates per 1000 women screened) to distinguish high-, intermediate-, and low-grade DCIS. Multivariable logistic regression was used to compare detection rates between age groups by adjusting for screening units (P < .05). Results There were 989 graded DCIS diagnoses among 733 905 women (detection rate, 1.35‰): 419 diagnoses of high-grade DCIS (detection rate, 0.57‰), 388 diagnoses of intermediate-grade DCIS (detection rate, 0.53‰), and 182 diagnoses of low-grade DCIS (detection rate, 0.25‰). Detection rate for types of DCIS combined increased significantly across age groups (50-54 years, detection rate of 1.15‰ [254 of 220 985 women]; 55-59 years, detection rate of 1.23‰ [218 of 177 782 women]; 60-64 years, detection rate of 1.34‰ [201 of 150 415 women]; and 65-69 years, detection rate of 1.71‰ [316 of 184 723 women]; P < .001). Of note, the detection rate for high-grade DCIS showed a significant increase with age (odds ratio, 1.18 per 5-year age group; P < .0001). The increase was lower for intermediate-grade DCIS (odds ratio, 1.11; P = .016) and not significant for low-grade DCIS (P = .10). Conclusion Total DCIS detection rates increase with age, mostly because of an increase in high- and intermediate-grade DCIS, which are precursor lesions that carry a higher risk for transition to more aggressive invasive breast cancer than low-grade DCIS. (©) RSNA, 2015

  9. Detection of change points in underlying earthquake rates, with application to global mega-earthquakes

    NASA Astrophysics Data System (ADS)

    Touati, Sarah; Naylor, Mark; Main, Ian

    2016-02-01

    The recent spate of mega-earthquakes since 2004 has led to speculation of an underlying change in the global `background' rate of large events. At a regional scale, detecting changes in background rate is also an important practical problem for operational forecasting and risk calculation, for example due to volcanic processes, seismicity induced by fluid injection or withdrawal, or due to redistribution of Coulomb stress after natural large events. Here we examine the general problem of detecting changes in background rate in earthquake catalogues with and without correlated events, for the first time using the Bayes factor as a discriminant for models of varying complexity. First we use synthetic Poisson (purely random) and Epidemic-Type Aftershock Sequence (ETAS) models (which also allow for earthquake triggering) to test the effectiveness of many standard methods of addressing this question. These fall into two classes: those that evaluate the relative likelihood of different models, for example using Information Criteria or the Bayes Factor; and those that evaluate the probability of the observations (including extreme events or clusters of events) under a single null hypothesis, for example by applying the Kolmogorov-Smirnov and `runs' tests, and a variety of Z-score tests. The results demonstrate that the effectiveness among these tests varies widely. Information Criteria worked at least as well as the more computationally expensive Bayes factor method, and the Kolmogorov-Smirnov and runs tests proved to be the relatively ineffective in reliably detecting a change point. We then apply the methods tested to events at different thresholds above magnitude M ≥ 7 in the global earthquake catalogue since 1918, after first declustering the catalogue. This is most effectively done by removing likely correlated events using a much lower magnitude threshold (M ≥ 5), where triggering is much more obvious. We find no strong evidence that the background rate of large

  10. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    SciTech Connect

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin; Salyk, Colette; Carr, John S.; Najita, Joan

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emission lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are due to a

  11. Fluctuations in the Venusian Ionosphere and Their Effect on Venus Express Lightning Detection Rates

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Russell, C. T.; Zhang, T.

    2015-12-01

    Venus Express completed its nearly 9 year campaign at Earth's sister planet in late 2014. During this period the onboard fluxgate magnetometer collected data up to 64 Hz in frequency near periapsis. This is the expected frequency range for lightning-generated whistler-mode waves at Venus, between the local electron (~100 Hz) and ion gyrofrequencies (~1 Hz). These waves are right-hand circularly polarized and are guided by the local magnetic field. When the Venusian ionopause is low enough to reside in the collisional region, the interplanetary magnetic field can get carried down with the ions and magnetize the lower ionosphere. As the field travels towards terminator it gains a radial component, enabling whistlers to reach higher altitudes and be detected by the spacecraft. The mission covered almost an entire solar cycle and frequently observed a magnetized ionosphere during the solar minimum phase when the ionosphere was weak due to reduced incident EUV. In addition, the detection rate of whistler-mode signals varied with the solar cycle. Here, we examine the changes in the ionospheric properties associated with the evolution of the solar cycle and the rate of detection of these lightning-generated signals.

  12. Time-Frequency Analysis of Heart Rate Variability for Neonatal Seizure Detection

    NASA Astrophysics Data System (ADS)

    Malarvili, M. B.; Mesbah, Mostefa; Boashash, Boualem

    2007-12-01

    There are a number of automatic techniques available for detecting epileptic seizures using solely electroencephalogram (EEG), which has been the primary diagnosis tool in newborns. The electrocardiogram (ECG) has been much neglected in automatic seizure detection. Changes in heart rate and ECG rhythm were previously linked to seizure in case of adult humans and animals. However, little is known about heart rate variability (HRV) changes in human neonate during seizure. In this paper, we assess the suitability of HRV as a tool for seizure detection in newborns. The features of HRV in the low-frequency band (LF: 0.03-0.07 Hz), mid-frequency band (MF: 0.07-0.15 Hz), and high-frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency distribution (TFD). Results of ongoing time-frequency (TF) research are presented. Based on our preliminary results, the first conditional moment of HRV which is the mean/central frequency in the LF band and the variance in the HF band can be used as a good feature to discriminate the newborn seizure from the nonseizure.

  13. Fetal QRS detection and heart rate estimation: a wavelet-based approach.

    PubMed

    Almeida, Rute; Gonçalves, Hernâni; Bernardes, João; Rocha, Ana Paula

    2014-08-01

    Fetal heart rate monitoring is used for pregnancy surveillance in obstetric units all over the world but in spite of recent advances in analysis methods, there are still inherent technical limitations that bound its contribution to the improvement of perinatal indicators. In this work, a previously published wavelet transform based QRS detector, validated over standard electrocardiogram (ECG) databases, is adapted to fetal QRS detection over abdominal fetal ECG. Maternal ECG waves were first located using the original detector and afterwards a version with parameters adapted for fetal physiology was applied to detect fetal QRS, excluding signal singularities associated with maternal heartbeats. Single lead (SL) based marks were combined in a single annotator with post processing rules (SLR) from which fetal RR and fetal heart rate (FHR) measures can be computed. Data from PhysioNet with reference fetal QRS locations was considered for validation, with SLR outperforming SL including ICA based detections. The error in estimated FHR using SLR was lower than 20 bpm for more than 80% of the processed files. The median error in 1 min based FHR estimation was 0.13 bpm, with a correlation between reference and estimated FHR of 0.48, which increased to 0.73 when considering only records for which estimated FHR > 110 bpm. This allows us to conclude that the proposed methodology is able to provide a clinically useful estimation of the FHR. PMID:25070210

  14. Heart rate and blood pressure control in obesity - how to detect early dysregulation?

    PubMed

    Javorka, Michal; Turianikova, Zuzana; Tonhajzerova, Ingrid; Lazarova, Zuzana; Czippelova, Barbora; Javorka, Kamil

    2016-09-01

    Obesity is accompanied by many severe complications including various cardiovascular disorders. An impairment of cardiovascular control by autonomic nervous system could be one of the possible links between obesity and cardiovascular complications development. The aim of this study was to compare spontaneous heart rate and systolic blood pressure oscillations reflecting cardiovascular autonomic control of young obese subjects with normal control subjects by linear and nonlinear methods and to find sensitive markers of early autonomic dysregulation. Continuous recordings of beat-to-beat systolic blood pressure and RR intervals from ECG were obtained from 40 obese subjects (25 female, age 14·2 [13·1-16·1] (median [interquartile range]) years) and gender and age matched non-obese control subjects. In addition to linear measures (time and frequency domain), we performed recurrence quantification analysis (RQA) and multiscale entropy analysis for both signals. While no significant differences in heart rate and systolic blood pressure dynamics were detected by linear measures and MSE, analysis of recurrence plots from RR intervals time series showed significant differences - indices trapping time and maximal length of vertical from RQA were significantly higher in obese compared to control group. We conclude that heart rate and blood pressure control by autonomic nervous system in young obese subjects is relatively well preserved. However, novel RQA-related measures are able to detect early subtle abnormalities in cardiac autonomic control in obese subjects indicating decreased signal complexity. PMID:25684329

  15. Detecting Parental Deception Using a Behavior Rating Scale during Assessment of Attention-Deficit/Hyperactivity Disorder: An Experimental Study

    ERIC Educational Resources Information Center

    Norfolk, Philip A.; Floyd, Randy G.

    2016-01-01

    It is often assumed that parents completing behavior rating scales during the assessment of attention-deficit/hyperactivity disorder (ADHD) can deliberately manipulate the outcomes of the assessment. To detect these actions, items designed to detect over-reporting or under-reporting of results are sometimes embedded in such rating scales. This…

  16. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    PubMed

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module. PMID:26524782

  17. Wavelet based R-peak detection for heart rate variability studies.

    PubMed

    Sunkaria, R K; Saxena, S C; Kumar, V; Singhal, A M

    2010-02-01

    Detection of QRS complex in electrocardiogram (ECG) signals is of immense importance in cardiac health prognosis. In this paper a new symmetric wavelet for detection of R-peak is presented, which has been designed based on spectral characteristics and morphology of QRS complex. The detection of R-peak was carried out using this designed wavelet, and with existing symmetric wavelets such as db3, db6, haar and bior2.2. The detection accuracy with this wavelet is 99.99%, which is higher than those with existing symmetric wavelets. The algorithm has been tested on standard databases such as Fantasia database of normal and healthy subjects, MIT/BIH (Massachusetts Institute of Technology/Beth Israel Hospital) arrhythmia database, and on self-recorded electrocardiograms of normal subjects and patients under diseased stress. The study of heart rate variability (HRV) through computation of RR-tachogram using the new wavelet has proved to be effective in reliably evaluating HRV parameters. PMID:20059305

  18. Improved Theoretical Predictions of Microlensing Rates for the Detection of Primordial Black Hole Dark Matter

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.; Griest, Kim

    2013-04-01

    Primordial black holes (PBHs) remain a dark matter (DM) candidate of the Standard Model of Particle Physics. Previously, we proposed a new method of constraining the remaining PBH DM mass range using microlensing of stars monitored by NASA's Kepler mission. We improve this analysis using a more accurate treatment of the population of the Kepler source stars, their variability, and limb darkening. We extend the theoretically detectable PBH DM mass range down to 2 × 10-10 M ⊙, two orders of magnitude below current limits and one-third order of magnitude below our previous estimate. We address how to extract the DM properties, such as mass and spatial distribution, if PBH microlensing events were detected. We correct an error in a well-known finite-source limb-darkening microlensing formula and also examine the effects of varying the light curve cadence on PBH DM detectability. We also introduce an approximation for estimating the predicted rate of detection per star as a function of the star's properties, thus allowing for selection of source stars in future missions, and extend our analysis to planned surveys, such as the Wide-Field Infrared Survey Telescope.

  19. Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lehtomäki, Janne J.; Vuohtoniemi, Risto; Umebayashi, Kenta; Mäkelä, Juha-Pekka

    Recently, there has been growing interest in opportunistically utilizing the 2.4GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.

  20. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  1. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    NASA Astrophysics Data System (ADS)

    Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.

    2014-05-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.

  2. On the Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2015-10-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  3. The Enhanced Coronal Mass Ejection Detection Rate since the Solar Cycle 23 Polar Field Reversal

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength and the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.

  4. A New Approach to Detect Congestive Heart Failure Using Short-Term Heart Rate Variability Measures

    PubMed Central

    Wang, Qian; Zhou, GuangMin; Wang, Ying; Jiang, Qing

    2014-01-01

    Heart rate variability (HRV) analysis has quantified the functioning of the autonomic regulation of the heart and heart's ability to respond. However, majority of studies on HRV report several differences between patients with congestive heart failure (CHF) and healthy subjects, such as time-domain, frequency domain and nonlinear HRV measures. In the paper, we mainly presented a new approach to detect congestive heart failure (CHF) based on combination support vector machine (SVM) and three nonstandard heart rate variability (HRV) measures (e.g. SUM_TD, SUM_FD and SUM_IE). The CHF classification model was presented by using SVM classifier with the combination SUM_TD and SUM_FD. In the analysis performed, we found that the CHF classification algorithm could obtain the best performance with the CHF classification accuracy, sensitivity and specificity of 100%, 100%, 100%, respectively. PMID:24747432

  5. Estimating site occupancy rates for aquatic plants using spatial sub-sampling designs when detection probabilities are less than one

    USGS Publications Warehouse

    Nielson, Ryan M.; Gray, Brian R.; McDonald, Lyman L.; Heglund, Patricia J.

    2011-01-01

    Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.

  6. Calculating inspector probability of detection using performance demonstration program pass rates

    NASA Astrophysics Data System (ADS)

    Cumblidge, Stephen; D'Agostino, Amy

    2016-02-01

    The United States Nuclear Regulatory Commission (NRC) staff has been working since the 1970's to ensure that nondestructive testing performed on nuclear power plants in the United States will provide reasonable assurance of structural integrity of the nuclear power plant components. One tool used by the NRC has been the development and implementation of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI Appendix VIII[1] (Appendix VIII) blind testing requirements for ultrasonic procedures, equipment, and personnel. Some concerns have been raised, over the years, by the relatively low pass rates for the Appendix VIII qualification testing. The NRC staff has applied statistical tools and simulations to determine the expected probability of detection (POD) for ultrasonic examinations under ideal conditions based on the pass rates for the Appendix VIII qualification tests for the ultrasonic testing personnel. This work was primarily performed to answer three questions. First, given a test design and pass rate, what is the expected overall POD for inspectors? Second, can we calculate the probability of detection for flaws of different sizes using this information? Finally, if a previously qualified inspector fails a requalification test, does this call their earlier inspections into question? The calculations have shown that one can expect good performance from inspectors who have passed appendix VIII testing in a laboratory-like environment, and the requalification pass rates show that the inspectors have maintained their skills between tests. While these calculations showed that the PODs for the ultrasonic inspections are very good under laboratory conditions, the field inspections are conducted in a very different environment. The NRC staff has initiated a project to systematically analyze the human factors differences between qualification testing and field examinations. This work will be used to evaluate and prioritize

  7. DIURNAL AND ANNUAL VARIATIONS OF DIRECTIONAL DETECTION RATES OF DARK MATTER

    SciTech Connect

    Bandyopadhyay, Abhijit; Majumdar, Debasish E-mail: debasish.majumdar@saha.ac.in

    2012-02-10

    Direction-sensitive direct detection of weakly interacting massive particles (WIMPs) as dark matter would provide an unambiguous non-gravitational signature of dark matter. The diurnal variation of dark matter signal due to Earth's rotation around its own axis can be a significant signature for Galactic WIMPs. Because of a particular orientation of Earth's axis of rotation with respect to the WIMP wind direction, the apparent direction of WIMP wind as observed at a detector can alter widely in a day. In this work, we calculate the directional detection rates with their daily and yearly modulations in Earth-bound dark matter experiments considering detailed features of the geometry and dynamics of the Earth-Sun system along with the solar motion in a Galactic frame. A separate halo model, namely the dark disk model other than the usual standard halo model for dark matter halo, is also considered and the results for two models are compared. We demonstrate the results for two types of gas detectors, namely DRIFT (target material CS{sub 2}) and NEWAGE (target material CF{sub 4}), which use Time Projection Chamber techniques for measuring directionality of the recoil nucleus. The WIMP mass and recoil energy dependence of the daily variation of event rates are computed for a specific detector, and the sensitive ranges of mass and recoil energies for the considered detector are probed.

  8. Light WIMP Direct Detection Rates in Simulations of the Milky Way and Sagittarius Stream

    NASA Astrophysics Data System (ADS)

    Purcell, Chris W.

    2013-07-01

    I discuss the analysis of self-consistent N-body simulations of the Milky Way disk and the ongoing disruption of the Sagittarius dwarf satellite, toward the study of the effect of Sagittarius tidal debris on dark matter detection experiments. We find that the nearby Sagittarius debris is likely to have a non-negligible influence on dark matter detection experiments even when the stellar debris is centered several kpc from the solar neighborhood. Relative to models without an infalling Sagittarius dwarf, the Sagittarius dark matter debris in our models induces an energy-dependent enhancement of direct search event rates of as much as ~20 - 45%, an energy-dependent reduction in the amplitude of the annual modulation of the event rate by as much as a factor of two, a shift in the phase of the annual modulation by as much as ~20 days, and a shift in the recoil energy at which the modulation reverses phase. These influences of Sagittarius are of general interest in the interpretation of dark matter searches, but may be particularly important in the case of relatively light (m_X < 20 GeV) dark matter because the Sagittarius stream impacts the solar system at high speed compared to the primary halo dark matter.

  9. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine

    PubMed Central

    2014-01-01

    Background Detecting impaired glomerular filtration rate (GFR) is important in intensive care units (ICU) in order to diagnose acute kidney injuries and adjust the dose of renally excreted drugs. Whether serum Cystatin C (SCysC) may better reflect glomerular filtration rate than serum creatinine (SCr) in the context of intensive care medicine is uncertain. Methods We compared the performance of SCysC and SCr as biomarkers of GFR in 47 critically ill patients (median SOFA (Sepsis-related Organ Failure Assessment) score of 5) for whom GFR was measured by a reference method (urinary clearance of iohexol). Results Mean Iohexol clearance averaged 96 ± 54 mL/min and was under 60 mL/min in 28% of patients. Mean SCr and SCysC concentrations were 0.70 ± 0.33 mg/dL and 1.26 ± 0.61 mg/L, respectively. Area under the ROC curve for a GFR threshold of 60 mL/min was 0.799 and 0.942 for SCr and SCysC, respectively (p = 0.014). Conclusions We conclude that ScysC significantly outperfoms SCr for the detection of an impaired GFR in critically ill patients. Trial registration ClinicalTrials.gov: B7072006347 PMID:24410757

  10. Using uterine activity to improve fetal heart rate variability analysis for detection of asphyxia during labor.

    PubMed

    Warmerdam, G J J; Vullings, R; Van Laar, J O E H; Van der Hout-Van der Jagt, M B; Bergmans, J W M; Schmitt, L; Oei, S G

    2016-03-01

    During labor, uterine contractions can cause temporary oxygen deficiency for the fetus. In case of severe and prolonged oxygen deficiency this can lead to asphyxia. The currently used technique for detection of asphyxia, cardiotocography (CTG), suffers from a low specificity. Recent studies suggest that analysis of fetal heart rate variability (HRV) in addition to CTG can provide information on fetal distress. However, interpretation of fetal HRV during labor is difficult due to the influence of uterine contractions on fetal HRV. The aim of this study is therefore to investigate whether HRV features differ during contraction and rest periods, and whether these differences can improve the detection of asphyxia. To this end, a case-control study was performed, using 14 cases with asphyxia that were matched with 14 healthy fetuses. We did not find significant differences for individual HRV features when calculated over the fetal heart rate without separating contractions and rest periods (p  >  0.30 for all HRV features). Separating contractions from rest periods did result in a significant difference. In particular the ratio between HRV features calculated during and outside contractions can improve discrimination between fetuses with and without asphyxia (p  <  0.04 for three out of four ratio HRV features that were studied in this paper). PMID:26862891

  11. Dark matter direct detection rate in a generic model with micrOMEGAs_2.2

    NASA Astrophysics Data System (ADS)

    Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A.

    2009-05-01

    We present a new module of the micrOMEGAs package for the calculation of WIMP-nuclei elastic scattering cross sections relevant for the direct detection of dark matter through its interaction with nuclei in a large detector. With this new module, the computation of the direct detection rate is performed automatically for a generic model of new physics which contains a WIMP candidate. This model needs to be implemented within micrOMEGAs 2.2. Program summaryProgram title: micrOMEGAs2.2 Catalogue identifier: ADQR_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQR_v2_2.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 206 949 No. of bytes in distributed program, including test data, etc.: 2 245 230 Distribution format: tar.gz Programming language: C and Fortran Computer: PC, Alpha, Mac Operating system: UNIX (Linux, OSF1, Darwin, Cygwin) RAM: 17 MB depending on the number of processes required Classification: 1.9, 11.6 Catalogue identifier of previous version: ADQR_v2_1 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 894 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of the relic density and of direct and indirect detection rates of the lightest stable particle in a generic new model of particle physics. Solution method: In numerically solving the evolution equation for the density of darkmatter, relativistic formulae for the thermal average are used. All tree-level processes for annihilation and coannihilation of new particles in the model are included. The cross-sections for all processes are calculated exactly with CalcHEP after definition of a model file. Higher-order QCD corrections to Higgs couplings to quark pairs are included. The coefficients of the effective Lagrangian which describes the

  12. Contactless vision-based pulse rate detection of Infants Under Neurological Examinations.

    PubMed

    Sikdar, Arindam; Behera, Santosh Kumar; Dogra, Debi Prosad; Bhaskar, Harish

    2015-08-01

    In this paper, we propose a method for detecting variations in the Pulse Rate (PR) of infants undergoing the Hammersmith Infant Neurological Examinations (HINE) using video data. As in every other medical examination the measurement of the PR is critical to underpin the physiological state of living beings. During HINE, measuring the infant's PR is important as its variations against physical conditions, age and other factors must be studied and correlated against developmental scores. However, this becomes highly complicated with active infants where their movements often lead to inconsistent PR estimation. We propose the use of a non-linear dimensionality reduction technique, called Laplacian Eigenmap (LE), to uncover the pulse information encapsulated within the high dimensional visual manifold characterized by normalized RGB feature vectors. Furthermore, low-level image filtering is applied to accurately detect PR within a chosen region-of-interest (ROI) from different parts of the infant's body. For validation and analysis, a set of 14 video sequences of infants undergoing five important tests of HINE have been chosen. Experimental results suggest that a bi-parametrized combination of color features from the RG and GB channels provide more valuable information in comparison to the RB and RGB channels. Results have demonstrated that this contactless method of PR detection has promising prospects for its future use in other clinical examinations of infants. PMID:26736346

  13. Detection rates of geckos in visual surveys: Turning confounding variables into useful knowledge

    USGS Publications Warehouse

    Lardner, Bjorn; Rodda, Gordon H.; Yackel Adams, Amy A.; Savidge, Julie A.; Reed, Robert N.

    2016-01-01

    Transect surveys without some means of estimating detection probabilities generate population size indices prone to bias because survey conditions differ in time and space. Knowing what causes such bias can help guide the collection of relevant survey covariates, correct the survey data, anticipate situations where bias might be unacceptably large, and elucidate the ecology of target species. We used negative binomial regression to evaluate confounding variables for gecko (primarily Hemidactylus frenatus and Lepidodactylus lugubris) counts on 220-m-long transects surveyed at night, primarily for snakes, on 9,475 occasions. Searchers differed in gecko detection rates by up to a factor of six. The worst and best headlamps differed by a factor of at least two. Strong winds had a negative effect potentially as large as those of searchers or headlamps. More geckos were seen during wet weather conditions, but the effect size was small. Compared with a detection nadir during waxing gibbous (nearly full) moons above the horizon, we saw 28% more geckos during waning crescent moons below the horizon. A sine function suggested that we saw 24% more geckos at the end of the wet season than at the end of the dry season. Fluctuations on a longer timescale also were verified. Disturbingly, corrected data exhibited strong short-term fluctuations that covariates apparently failed to capture. Although some biases can be addressed with measured covariates, others will be difficult to eliminate as a significant source of error in longterm monitoring programs.

  14. Detection of changes in the fractal scaling of heart rate and speed in a marathon race

    NASA Astrophysics Data System (ADS)

    Billat, Véronique L.; Mille-Hamard, Laurence; Meyer, Yves; Wesfreid, Eva

    2009-09-01

    The aim of this study was to detect changes in the fractal scaling behavior of heart rate and speed fluctuations when the average runner’s speed decreased with fatigue. Scaling analysis in heart rate (HR) and speed (S) dynamics of marathon runners was performed using the detrended fluctuation analysis (DFA) and the wavelet based structure function. We considered both: the short-range ( α1) and the long-range ( α2) scaling exponents for the DFA method separated by a change-point, n0=64=5.3 min (box length), the same for all the races. The variability of HR and S decreased in the second part of the marathon race, while the cardiac cost time series (i.e. the number of cardiac beats per meter) increased due to the decreasing speed behavior. The scaling exponents α1 and α2 of HR and α1 of S, increased during the race ( p<0.01) as did the HR wavelet scaling exponent ( τ). These findings provide evidence of the significant effect of fatigue induced by long exercise on the heart rate and speed variability.

  15. Adenoma detection rates decline with increasing procedural hours in an endoscopist’s workload

    PubMed Central

    Almadi, Majid A; Sewitch, Maida; Barkun, Alan N; Martel, Myriam; Joseph, Lawrence

    2015-01-01

    BACKGROUND: Operator fatigue may negatively influence adenoma detection (AD) during screening colonoscopy. OBJECTIVE: To better characterize factors affecting AD, including the number of hours worked, and the number and type of procedures performed before an index screening colonoscopy. METHODS: A retrospective cohort study was conducted involving individuals undergoing a screening colonoscopy at a major tertiary care hospital in Montreal, Quebec. Individuals were identified using an endoscopic reporting database; AD was identified by an electronic chart review. A hierarchical logistic regression analysis was performed to determine the association between patient- and endoscopist-related variables and AD. RESULTS: A total of 430 consecutive colonoscopies performed by 10 gastroenterologists and two surgeons were included. Patient mean (± SD) age was 63.4±10.9 years, 56.3% were males, 27.7% had undergone a previous colonoscopy and the cecal intubation rate was 95.7%. The overall AD rate was 25.7%. Age was associated with AD (OR 1.06 [95% CI 1.03 to 1.08]), while female sex (OR 0.44 [95% CI 0.25 to 0.75]), an indication for average-risk screening (OR 0.47 [95% CI 0.27 to 0.80]) and an increase in the number of hours during which endoscopies were performed before the index colonoscopy (OR 0.87 [95% CI 0.76 to 0.99]) were associated with lower AD rates. On exploratory univariable analysis, a threshold of 3 h of endoscopy time performed before the index colonoscopy was associated with decreased AD. CONCLUSION: The number of hours devoted to endoscopies before the index colonoscopy was inversely associated with AD rate, with decreased performance possibly as early as within 3 h. This metric should be confirmed in future studies and considered when optimizing scheduling practices. PMID:25996612

  16. Use of dew-point detection for quantitative measurement of sweating rate

    NASA Technical Reports Server (NTRS)

    Brengelmann, G. L.; Mckeag, M.; Rowell, L. B.

    1975-01-01

    A method of measuring sweat rate (SR) based on detection of dew point (DP) is proposed which has advantages that may be attractive to other laboratories concerned with recording SR from selected areas of skin. It is similar to other methods in that dry gas is passed through a capsule which isolates several square centimeters of skin surface. The difference is in the means of determining how much gaseous water is carried off in the effluent moist gas. The DP detector used is free of the drawbacks of previous devices. DP is obtained through the fundamental technique of determining the temperature at which condensate forms on a mirror. Variations in DP are tracked rapidly, and accurately (+ or - 0.8 C nominal, sensitivity + or - 0.05 C) over a wide range ( -40 C to +50 C) without measurable hysteresis. The detector asembly is rugged and readily opened for cleaning and inspection.

  17. Application of stochastic discrete event system framework for detection of induced low rate TCP attack.

    PubMed

    Barbhuiya, F A; Agarwal, Mayank; Purwar, Sanketh; Biswas, Santosh; Nandi, Sukumar

    2015-09-01

    TCP is the most widely accepted transport layer protocol. The major emphasis during the development of TCP was its functionality and efficiency. However, not much consideration was given on studying the possibility of attackers exploiting the protocol, which has lead to several attacks on TCP. This paper deals with the induced low rate TCP attack. Since the attack is relatively new, only a few schemes have been proposed to mitigate it. However, the main issues with these schemes are scalability, change in TCP header, lack of formal frameworks, etc. In this paper, we have adapted the stochastic DES framework for detecting the attack, which addresses most of these issues. We have successfully deployed and tested the proposed DES based IDS on a test bed. PMID:26073643

  18. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  19. Signal detection and threshold modeling of confidence-rating ROCs: A critical test with minimal assumptions.

    PubMed

    Kellen, David; Klauer, Karl Christoph

    2015-07-01

    An ongoing discussion in the recognition-memory literature concerns the question of whether recognition judgments reflect a direct mapping of graded memory representations (a notion that is instantiated by signal detection theory) or whether they are mediated by a discrete-state representation with the possibility of complete information loss (a notion that is instantiated by threshold models). These 2 accounts are usually evaluated by comparing their (penalized) fits to receiver operating characteristic data, a procedure that is predicated on substantial auxiliary assumptions, which if violated can invalidate results. We show that the 2 accounts can be compared on the basis of critical tests that invoke only minimal assumptions. Using previously published receiver operating characteristic data, we show that confidence-rating judgments are consistent with a discrete-state account. (PsycINFO Database Record PMID:26120910

  20. Heart rate variability derived from exercise ECG in the detection of coronary artery disease.

    PubMed

    Virtanen, Matti; Kähönen, Mika; Nieminen, Tuomo; Karjalainen, Pasi; Tarvainen, Mika; Lehtimäki, Terho; Lehtinen, Rami; Nikus, Kjell; Kööbi, Tiit; Niemi, Mari; Niemelä, Kari; Turjanmaa, Väinö; Malmivuo, Jaakko; Viik, Jari

    2007-10-01

    The diagnostic performance of heart rate variability (HRV) analysis from exercise ECG in the detection of coronary artery disease (CAD) is unknown. Bicycle exercise ECG recordings from The Finnish Cardiovascular Study (FINCAVAS) of angiography-proofed CAD patients (n = 112) and a patient group with a low likelihood of CAD (n = 114) were analyzed. HRV parameters (SDNN, RMSSD, Poincaré SD1 and SD2) were calculated from 1 min segments before exercise, during exercise and after exercise. All the parameters were in addition calculated from heart rate (HR)-corrected RR-interval segments. The ST-segment depressions in each stage were also determined. The diagnostic performance of the parameters was evaluated with the area under the receiver operating characteristic (ROC) curve method. The uncorrected HRV parameters showed the best diagnostic performance in the recovery segments but the correlation with HR was also high (SDNN: 0.758/-0.64, RMSSD: 0.747/-0.60; area under the ROC/correlation coefficient). The HR correction decreased the correlation and the diagnostic performance in recovery segments (SDNN: 0.515/-0.12, RMSSD: 0.609/0.20). The diagnostic performance of ST-level at its best was higher than any of HRV parameters (ST-level: 0.795/0.36). According to the results, the HR correction decreased the diagnostic performance of the recovery phase. The HRV parameters calculated from 1 min segments of exercise test ECG were not as capable as traditional ST-segment analysis. In conclusion, the HRV analysis from exercise or recovery phase seems to be inadequate in the detection of CAD. PMID:17906387

  1. Detection of the oxygen consumption rate of migrating zebrafish by electrochemical equalization systems.

    PubMed

    Yasukawa, Tomoyuki; Koide, Masahiro; Tatarazako, Norihisa; Abe, Ryoko; Shiku, Hitoshi; Mizutani, Fumio; Matsue, Tomokazu

    2014-01-01

    A novel measurement system to determine oxygen consumption rates via respiration in migrating Zebrafish (Danio rerio) has been developed. A signal equalization system was adapted to detect oxygen in a chamber with one fish, because typical electrochemical techniques cannot measure respiration activities for migrating organisms. A closed chamber was fabricated using a pipet tip attached to a Pt electrode, and a columnar Vycor glass tip was used as the salt bridge. Pt electrode, which was attached to the chamber with one zebrafish, and Ag electrode were immersed in 10 mM potassium iodide (KI), and both the electrodes were connected externally to form a galvanic cell. Pt and Ag electrodes act as the cathode and anode to reduce oxygen and oxidize silver, respectively, allowing the deposition of insoluble silver iodide (AgI). The AgI acts as the signal source accumulated on the Ag electrode by conversion of oxygen. The amount of AgI deposited on the Ag electrode was determined by cathodic stripping voltammetry. The presence of zebrafish or its embryo led to a decrease in the stripping currents generated by a 10 min conversion of oxygen to AgI. The conversion of oxygen to AgI is disturbed by the migration of the zebrafish and allows the detection of different equalized signals corresponding to respiration activity. The oxygen consumption rates of the zebrafish and its embryo were estimated and determined to be ∼4.1 and 2.4 pmol·s(-1), respectively. The deposited AgI almost completely disappeared with a single stripping process. The signal equalization system provides a method to determine the respiration activities for migrating zebrafish and could be used to estimate environmental risk and for effective drug screening. PMID:24328209

  2. CWA stand-off detection, a new figure-of-merit: the field surface scanning rate

    NASA Astrophysics Data System (ADS)

    Bernascolle, Philippe F.

    2013-05-01

    All the manufacturers of stand-off CWA detectors communicate on the "same" characteristics. And one can find these parameters in the comparison table published between all the different products [1]. These characteristics are for example the maximum detection range, the number of different detectable compounds, the weight, the price, etc… All these parameters are good to compare products between them, but they omit one very important point: the reaction time in case of an unexpected incoming chemical threat, in the case of the surveillance application. To answer this important question, we imagine a new parameter: the Field Surface Scanning Rate (FSSR). This value is a classical parameter in astronomical survey, use by astronomers to compare the performance of different telescopes, they compute the quantity of sky (in sky square degrees) analyzed per unit of time by the system. In this paper we will compare this new figure-of-merit, the FSSR, of some commercially off the shelf stand-off detector. The comparison between classical FTIR system and gas imaging system in term of FSSR will be presented.

  3. Dark Matter Candidate in a Heavy Higgs Model:. Direct Detection Rates

    NASA Astrophysics Data System (ADS)

    Majumdar, Debasish; Ghosal, Ambar

    We investigate direct detection rates for Dark Matter candidates arise in a SU(2)L×U(1)Y with an additional doublet Higgs proposed by Barbieri, Hall and Rychkov. We refer to this model as "Heavy Higgs Model". The Standard Model Higgs mass comes out from this model is very heavy, so there is very slim chance that there is no Higgs boson mass below 200 GeV. The additional Higgs boson develops neither any VEV due to the choice of coefficient of the scalar potential of the model nor it has any coupling with fermions due to the incorporation of a discrete parity symmetry. Thus, the neutral components of the extra doublet are stable and can be considered as probable candidate of Cold Dark Matter. We have made calculations for three different types of Dark Matter experiments, namely, 76Ge (like GENIUS), DAMA (NaI) and XENON (131Xe). Also demonstrated the annual variation of Dark Matter detection in case of all three

  4. Detection rate evaluation of ex-core detectors in the subcritical OPR-1000 reactor

    SciTech Connect

    Won, B. H.; Shin, C. H.; Kim, S. H.; Kim, H. C.; Park, J. J.; Kim, J. K.

    2012-07-01

    The OPR-1000 is a PWR reactor developed in Korea. One-type ex-core detectors for monitoring of power distributions were installed in the OPR-1000 reactor to alternate the three-types of the ex-core detectors. For the verification of the detection performances, neutron transport calculation was performed by using MCNP5 code. The reaction rate in the ex-core detectors and the neutron flux were evaluated by using MCNP5 code as changing the boron concentration from 1800 ppm to 1122 ppm in the subcritical condition. The reaction rate results in fission chamber show that minimum and maximum values are 0.03577 and 3.33563 reactions/cm{sup 3}-sec, respectively. This study can be directly used for the verification and improvement of fission chamber performance in using one-type ex-core detector. Also, it can be utilized for the production of the reference data in determining neutron source strength. It is expected the proposed simulation method can be utilized to the improvement of the dose monitoring system. (authors)

  5. Impact of the Introduction of Digital Mammography in an Organized Screening Program on the Recall and Detection Rate.

    PubMed

    Campari, Cinzia; Giorgi Rossi, Paolo; Mori, Carlo Alberto; Ravaioli, Sara; Nitrosi, Andrea; Vacondio, Rita; Mancuso, Pamela; Cattani, Antonella; Pattacini, Pierpaolo

    2016-04-01

    In 2012, the Reggio Emilia Breast Cancer Screening Program introduced digital mammography in all its facilities at the same time. The aim of this work is to analyze the impact of digital mammography introduction on the recall rate, detection rate, and positive predictive value. The program actively invites women aged 45-74 years. We included women screened in 2011, all of whom underwent film-screen mammography, and all women screened in 2012, all of whom underwent digital mammography. Double reading was used for all mammograms, with arbitration in the event of disagreement. A total of 42,240 women underwent screen-film mammography and 45,196 underwent digital mammography. The recall rate increased from 3.3 to 4.4% in the first year of digital mammography (relative recall adjusted by age and round 1.46, 95% CI = 1.37-1.56); the positivity rate for each individual reading, before arbitration, rose from 3 to 5.7%. The digital mammography recall rate decreased during 2012: after 12 months, it was similar to the recall rate with screen-film mammography. The detection rate was similar: 5.9/1000 and 5.2/1000 with screen-film and digital mammography, respectively (adjusted relative detection rate 0.95, 95% CI = 0.79-1.13). The relative detection rate for ductal carcinoma in situ remained the same. The introduction of digital mammography to our organized screening program had a negative impact on specificity, thereby increasing the recall rate. The effect was limited to the first 12 months after introduction and was attenuated by the double reading with arbitration. We did not observe any relevant effects on the detection rate. PMID:26537932

  6. Retrospective analysis showing the water method increased adenoma detection rate - a hypothesis generating observation.

    PubMed

    Leung, Joseph W; Do, Lynne D; Siao-Salera, Rodelei M; Ngo, Catherine; Parikh, Dhavan A; Mann, Surinder K; Leung, Felix W

    2011-01-01

    BACKGROUND: A water method developed to attenuate discomfort during colonoscopy enhanced cecal intubation in unsedated patients. Serendipitously a numerically increased adenoma detection rate (ADR) was noted. OBJECTIVE: To explore databases of sedated patients examined by the air and water methods to identify hypothesis-generating findings. DESIGN: Retrospective analysis. SETTING: VA endoscopy center. PATIENTS: creening colonoscopy. INTERVENTIONS: From 1/2000-6/2006 the air method was used - judicious air insufflation to permit visualization of the lumen to aid colonoscope insertion and water spray for washing mucosal surfaces. From 6/2006-11/2009 the water method was adopted - warm water infusion in lieu of air insufflation and suction removal of residual air to aid colonoscope insertion. During colonoscope withdrawal adequate air was insufflated to distend the colonic lumen for inspection, biopsy and polypectomy in a similar fashion in both periods. Main outcome measurements: ADR. RESULTS: The air (n=683) vs. water (n=495) method comparisons revealed significant differences in overall ADR 26.8% (183 of 683) vs. 34.9% (173 of 495) and ADR of adenomas >9 mm, 7.2% vs. 13.7%, respectively (both P<0.05, Fisher's exact test). LIMITATIONS: Non-randomized data susceptible to bias by unmeasured parameters unrelated to the methods. CONCLUSION: Confirmation of the serendipitous observation of an impact of the water method on ADR provides impetus to call for randomized controlled trials to test hypotheses related to the water method as an approach to improving adenoma detection. Because of recent concerns over missed lesions during colonoscopy, the provocative hypothesis-generating observations warrant presentation. PMID:21686105

  7. High-dose-rate pulse x-ray detection using a multipixel photon counter

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hitomi, Keitaro; Nomiya, Seiichiro; Onabe, Hideaki; Shoji, Tadayoshi; Tanaka, Etsuro; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi

    2007-09-01

    Detection of high-dose-rate pulse x-rays from a samarium plasma flash x-ray generator utilizing a multipixel photon counter is described. Monochromatic K-series characteristic x-rays are detected by a plastic scintillator, and fluorescent lights are lead to the photon counter through a 10-m-length plastic fiber. The reverse bias was 70.0 V, and x-ray outputs were recorded by a digital storage scope. The samarium plasma flash x-ray generator is useful for performing high-speed enhanced K-edge angiography using cone beams because K-series characteristic x-rays from the samarium target are absorbed effectively by iodine-based contrast media. In the flash x-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash x-rays are produced by the discharging. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current are approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the K-series characteristic x-ray intensities of samarium increased. Bremsstrahlung x-ray intensity rate decreased with increasing the charging voltage, and K lines were produced with a charging voltage of 80 kV. The x-ray pulse widths were approximately 100 ns, and the time-integrated x-ray intensity had a value of approximately 500 μGy at 1.0 m from the x-ray source with a charging voltage of 80 kV. Angiography was performed using a filmless computed radiography (CR) system and iodine-based contrast media. In the angiography of nonliving animals, we observed fine blood vessels of approximately 100 μm with high contrasts.

  8. Optimizing convergence rates of alternating minimization reconstruction algorithms for real-time explosive detection applications

    NASA Astrophysics Data System (ADS)

    Bosch, Carl; Degirmenci, Soysal; Barlow, Jason; Mesika, Assaf; Politte, David G.; O'Sullivan, Joseph A.

    2016-05-01

    X-ray computed tomography reconstruction for medical, security and industrial applications has evolved through 40 years of experience with rotating gantry scanners using analytic reconstruction techniques such as filtered back projection (FBP). In parallel, research into statistical iterative reconstruction algorithms has evolved to apply to sparse view scanners in nuclear medicine, low data rate scanners in Positron Emission Tomography (PET) [5, 7, 10] and more recently to reduce exposure to ionizing radiation in conventional X-ray CT scanners. Multiple approaches to statistical iterative reconstruction have been developed based primarily on variations of expectation maximization (EM) algorithms. The primary benefit of EM algorithms is the guarantee of convergence that is maintained when iterative corrections are made within the limits of convergent algorithms. The primary disadvantage, however is that strict adherence to correction limits of convergent algorithms extends the number of iterations and ultimate timeline to complete a 3D volumetric reconstruction. Researchers have studied methods to accelerate convergence through more aggressive corrections [1], ordered subsets [1, 3, 4, 9] and spatially variant image updates. In this paper we describe the development of an AM reconstruction algorithm with accelerated convergence for use in a real-time explosive detection application for aviation security. By judiciously applying multiple acceleration techniques and advanced GPU processing architectures, we are able to perform 3D reconstruction of scanned passenger baggage at a rate of 75 slices per second. Analysis of the results on stream of commerce passenger bags demonstrates accelerated convergence by factors of 8 to 15, when comparing images from accelerated and strictly convergent algorithms.

  9. Seeing better - Evidence based recommendations on optimizing colonoscopy adenoma detection rate

    PubMed Central

    Aranda-Hernández, Javier; Hwang, Jason; Kandel, Gabor

    2016-01-01

    Colorectal cancer is one of the three most frequent causes of cancer deaths in men and women in Europe and North America. Diagnosis and resection of adenomas has convincingly demonstrated its utility in diminishing colorectal cancer incidence. Therefore, colonoscopy is now the gold standard for colorectal cancer screening. But it is also known that colonoscopy effectiveness varies among endoscopists. Among different quality indicators, the most used is the adenoma detection rate (ADR) which is the percentage of average-risk patients for colorectal cancer who are found to have at least one adenoma or adenocarcinoma during a screening colonoscopy. There is compelling evidence supporting an inverse correlation between ADR and interval colorectal cancer (cancer found after a screening colonoscopy). Many factors such as quality of precolonoscopy preparation, additional observers, manoeuvres with the endoscope (second view, retroflexion, water inflation rather than air), time spent during withdrawal, changes in patient position, fold-flattener devices, new imaging or endoscopic modalities and use of intravenous or through the scope sprayed drugs, have been studied and developed with the aim of increasing the ADR. This reviews discusses these factors, and the current evidence, to “see better” in the colon and optimize ADR. PMID:26855536

  10. Using near infrared spectroscopy and heart rate variability to detect mental overload.

    PubMed

    Durantin, G; Gagnon, J-F; Tremblay, S; Dehais, F

    2014-02-01

    Mental workload is a key factor influencing the occurrence of human error, especially during piloting and remotely operated vehicle (ROV) operations, where safety depends on the ability of pilots to act appropriately. In particular, excessively high or low mental workload can lead operators to neglect critical information. The objective of the present study is to investigate the potential of functional near infrared spectroscopy (fNIRS) - a non-invasive method of measuring prefrontal cortex activity - in combination with measurements of heart rate variability (HRV), to predict mental workload during a simulated piloting task, with particular regard to task engagement and disengagement. Twelve volunteers performed a computer-based piloting task in which they were asked to follow a dynamic target with their aircraft, a task designed to replicate key cognitive demands associated with real life ROV operating tasks. In order to cover a wide range of mental workload levels, task difficulty was manipulated in terms of processing load and difficulty of control - two critical sources of workload associated with piloting and remotely operating a vehicle. Results show that both fNIRS and HRV are sensitive to different levels of mental workload; notably, lower prefrontal activation as well as a lower LF/HF ratio at the highest level of difficulty, suggest that these measures are suitable for mental overload detection. Moreover, these latter measurements point toward the existence of a quadratic model of mental workload. PMID:24184083

  11. Detecting Randomness: the Sensitivity of Statistical Tests to Deviations from a Constant Rate Poisson Process

    NASA Astrophysics Data System (ADS)

    Michael, A. J.

    2012-12-01

    Detecting trends in the rate of sporadic events is a problem for earthquakes and other natural hazards such as storms, floods, or landslides. I use synthetic events to judge the tests used to address this problem in seismology and consider their application to other hazards. Recent papers have analyzed the record of magnitude ≥7 earthquakes since 1900 and concluded that the events are consistent with a constant rate Poisson process plus localized aftershocks (Michael, GRL, 2011; Shearer and Stark, PNAS, 2012; Daub et al., GRL, 2012; Parsons and Geist, BSSA, 2012). Each paper removed localized aftershocks and then used a different suite of statistical tests to test the null hypothesis that the remaining data could be drawn from a constant rate Poisson process. The methods include KS tests between event times or inter-event times and predictions from a Poisson process, the autocorrelation function on inter-event times, and two tests on the number of events in time bins: the Poisson dispersion test and the multinomial chi-square test. The range of statistical tests gives us confidence in the conclusions; which are robust with respect to the choice of tests and parameters. But which tests are optimal and how sensitive are they to deviations from the null hypothesis? The latter point was raised by Dimer (arXiv, 2012), who suggested that the lack of consideration of Type 2 errors prevents these papers from being able to place limits on the degree of clustering and rate changes that could be present in the global seismogenic process. I produce synthetic sets of events that deviate from a constant rate Poisson process using a variety of statistical simulation methods including Gamma distributed inter-event times and random walks. The sets of synthetic events are examined with the statistical tests described above. Preliminary results suggest that with 100 to 1000 events, a data set that does not reject the Poisson null hypothesis could have a variability that is 30% to

  12. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy

    SciTech Connect

    Erven, Katrien; Florian, Anca; Slagmolen, Pieter; Sweldens, Caroline; Jurcut, Ruxandra; Wildiers, Hans; Voigt, Jens-Uwe; Weltens, Caroline

    2013-04-01

    Purpose: Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function. We investigated the role of SRI and troponin I (TnI) in the detection of subclinical radiation therapy (RT)-induced cardiotoxicity in breast cancer patients. Methods and Materials: This study prospectively included 75 women (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes. Sequential echocardiographs with SRI were obtained before RT, immediately after RT, and 8 and 14 months after RT. TnI levels were measured on the first and last day of RT. Results: Mean heart and left ventricle (LV) doses were both 9 ± 4 Gy for the left-sided patients and 4 ± 4 Gy and 1 ± 0.4 Gy, respectively, for the right-sided patients. A decrease in strain was observed at all post-RT time points for left-sided patients (−17.5% ± 1.9% immediately after RT, −16.6% ± 1.4% at 8 months, and −17.7% ± 1.9% at 14 months vs −19.4% ± 2.4% before RT, P<.01) but not for right-sided patients. When we considered left-sided patients only, the highest mean dose was given to the anterior left ventricular (LV) wall (25 ± 14 Gy) and the lowest to the inferior LV wall (3 ± 3 Gy). Strain of the anterior wall was reduced after RT (−16.6% ± 2.3% immediately after RT, −16% ± 2.6% at 8 months, and −16.8% ± 3% at 14 months vs −19% ± 3.5% before RT, P<.05), whereas strain of the inferior wall showed no significant change. No changes were observed with conventional echocardiography. Furthermore, mean TnI levels for the left-sided patients were significantly elevated after RT compared with before RT, whereas TnI levels of the right-sided patients remained unaffected. Conclusions: In contrast to conventional echocardiography, SRI detected a regional, subclinical decline in cardiac function up to 14 months after breast RT. It remains to be determined whether these changes are related to clinical

  13. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R., IV; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  14. Implementation of a program to improve the quality of colonoscopy increases the neoplasia detection rate: a prospective study

    PubMed Central

    Viola, Luis Alberto; Cassella, Federico; Wonaga, Andrés; Arnao Dellamea, Gloria; Di Paola, Leandro; Ubeira Salim, Rodrigo; Fernández, José Luis

    2016-01-01

    Background and study aims: Endoscopists worldwide have been encouraged to report quality indicators in order to evaluate their performance. We aimed to determine whether a program to improve the quality of colonoscopy results in better rates of neoplasia detection. Patients and methods: This is a prospective study set in a private endoscopy center. From May 2009 to March 2010, we evaluated 1573 consecutive colonoscopies (group 1). After the implementation of a quality program, from February 2011 to January 2012, we prospectively evaluated 1583 colonoscopies (group 2). Our quality-enhancing intervention consisted of instructing both patients and endoscopists. We measured the cecal intubation rate and the neoplasia detection rate. Overall neoplasias, high-risk adenomas, carcinomas, right colon adenomas, and adenomas detected in screening studies were analyzed. Results: Cecal intubation was documented in 1384 cases from group 1 (88 %) and 1534 from group 2 (96.9 %) (P < 0.0001). The neoplasia detection rates in groups 1 and 2 were, respectively: neoplasias 288 (18.3 %) and 427 (27 %) (P < 0.0001), high-risk adenomas 76 (4.8 %) and 142 (9 %) (P < 0.0001), carcinomas 16 (1 %) and 21 (1.3 %) (P = 0.52), right colon adenomas 112 (7.1 %) and 154 (9.7 %) (P = 0.01), and adenomas 141 (16.5 %) and 233 (28 %) (P < 0.0001). Conclusions: Implementation of a quality program improves the neoplasia detection rate. Because of the small number of cancerous lesions found in both groups, we were unable to identify differences in the carcinoma detection rate. PMID:26793787

  15. Multiredshift Limits on the 21 cm Power Spectrum from PAPER

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Pober, Jonathan C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bowman, Judd; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Klima, Pat; Liu, Adrian; MacMahon, David H. E.; Manley, Jason R.; Moore, David F.; Stefan, Irina I.; Walbrugh, William P.

    2015-03-01

    The epoch of the reionization (EoR) power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope, which place new limits on the H i power spectrum over the redshift range of 7.5\\lt z\\lt 10.5, extending previously published single-redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of k-space. Our 500 hr integration is the longest such yet recorded and demonstrates this method to a dynamic range of 104. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise-limited measurements of Δ2 at k = 0.2 hr Mpc-1 and z = 7.55 reach as low as (48 mK)2 (1σ). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, unflagged radio frequency interference, and calibration errors. We conclude by discussing data reduction improvements that promise to remove much of this excess.

  16. Dead time and count loss determination for radiation detection systems in high count rate applications

    NASA Astrophysics Data System (ADS)

    Patil, Amol

    This research is focused on dead time and the subsequent count loss estimation in radiation detection systems. The dead time is the minimum amount of time required between two events to permit detection of those events individually by a radiation detection system. If events occur during the system dead time, they are lost. Such lost information can be important in many applications including high-precision spectroscopy, positron emission tomography (PET), and the scanning of spent nuclear fuel. Understanding of the behavior of radiation detection systems is important; thus this work included a comprehensive review of dead time and pulse pile-up models and methods. The most common way to estimate detector dead time is by one-parameter approximations known as nonparalyzable and paralyzable models. This research proposes a two parameter model that estimates the detector paralysis factor and the dead time based on a graphical method. To determine the two parameters characteristics of a detection system, this work tested a novel technique to saturate the detector using a decaying source. The modified decaying source method, unlike other methods, does not assume the idealized behavior of detection system in use and calculates the overall dead time of the detection system. The paralysis factor for high purity germanium detection system was estimated approaching 100% and the dead time was on the order of 5--10 micros which compares well with the literature.

  17. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    NASA Astrophysics Data System (ADS)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  18. Comparison of detection rates of breeding marsh birds in passive and playback surveys at Lacreek National Wildlife Refuge, South Dakota

    USGS Publications Warehouse

    Allen, T.; Finkbeiner, S.L.; Johnson, D.H.

    2004-01-01

    We compared detection rates of passive and playback breeding bird survey techniques on elusive marsh birds - Pied-billed Grebe (Podilymbus podiceps), American Bittern (Botaurus lentiginosus), Least Bittern (Ixobrychus exilis), Virginia Rail (Rallus limicola), and Sora (Porzana carolina) - during a two-year study at Lacreek National Wildlife Refuge, in southwestern South Dakota. We conducted 151 passive point counts followed by playback-response surveys at the same points in marsh-bird habitat on the refuge. Playback surveys detected secretive water birds more frequently than our passive surveys, increasing rates for each species by factors of 2.4 to 7.0. The distance a bird was detected from a point varied with the species and the survey technique.

  19. Prostate-specific Antigen Density Variation Rate as a Potential Guideline Parameter for Second Prostate Cancer Detection Biopsy

    PubMed Central

    Xie, Gan-Sheng; Lyv, Jin-Xing; Li, Gang; Yan, Chun-Yin; Hou, Jian-Quan; Pu, Jin-Xian; Ding, Xiang; Huang, Yu-Hua

    2016-01-01

    Background: The diagnostic value of current prostate-specific antigen (PSA) tests is challenged by the poor detection rate of prostate cancer (PCa) in repeat prostate biopsy. In this study, we proposed a novel PSA-related parameter named PSA density variation rate (PSADVR) and designed a clinical trial to evaluate its potential diagnostic value for detecting PCa on a second prostate biopsy. Methods: Data from 184 males who underwent second ultrasound-guided prostate biopsy 6 months after the first biopsy were included in the study. The subjects were divided into PCa and non-PCa groups according to the second biopsy pathological results. Prostate volume, PSA density (PSAD), free-total PSA ratio, and PSADVR were calculated according to corresponding formulas at the second biopsy. These parameters were compared using t-test or Mann-Whitney U-test between PCa and non-PCa groups, and receiver operating characteristic analysis were used to evaluate their predictability on PCa detection. Results: PCa was detected in 24 patients on the second biopsy. Mean values of PSA, PSAD, and PSADVR were greater in the PCa group than in the non-PCa group (8.39 μg/L vs. 7.16 μg/L, 0.20 vs. 0.16, 14.15% vs. −1.36%, respectively). PSADVR had the largest area under the curve, with 0.667 sensitivity and 0.824 specificity when the cutoff was 10%. The PCa detection rate was significantly greater in subjects with PSADVR >10% than PSADVR ≤10% (28.6% vs. 6.5%, P < 0.001). In addition, PSADVR was the only parameter in this study that showed a significant correlation with mid-to-high-risk PCa (r = 0.63, P = 0.03). Conclusions: Our results demonstrated that PSADVR improved the PCa detection rate on second biopsies, especially for mid-to-high-risk cancers requiring prompt treatment. PMID:27453228

  20. Statistical Considerations in Designing Tests of Mine Detection Systems: II - Measures Related to the False Alarm Rate

    SciTech Connect

    Simonson, K.M.

    1998-08-01

    The rate at which a mine detection system falsely identifies man-made or natural clutter objects as mines is referred to as the system's false alarm rate (FAR). Generally expressed as a rate per unit area or time, the FAR is one of the primary metrics used to gauge system performance. In this report, an overview is given of statistical methods appropriate for the analysis of data relating to FAR. Techniques are presented for determining a suitable size for the clutter collection area, for summarizing the performance of a single sensor, and for comparing different sensors. For readers requiring more thorough coverage of the topics discussed, references to the statistical literature are provided. A companion report addresses statistical issues related to the estimation of mine detection probabilities.

  1. Incorporation of Slow Off-Rate Modified Aptamers Reagents in Single Molecule Array Assays for Cytokine Detection with Ultrahigh Sensitivity.

    PubMed

    Wu, Danlu; Katilius, Evaldas; Olivas, Edgar; Dumont Milutinovic, Milena; Walt, David R

    2016-09-01

    Slow off-rate modified aptamers (SOMAmers) are attractive protein recognition reagents due to their high binding affinities, stable chemical structures, easy production, and established selection process. Here, biotinylated SOMAmer reagents were incorporated into single molecule array (Simoa)-based assays in place of traditional detection antibodies for six cytokine targets. Optimization and validation were conducted for TNF-α as a demonstration using a capture antibody/detection-SOMAmer detection scheme to highlight the performance of this approach. The optimized assay has a broad dynamic range (>4 log10 units) and an ultralow detection limit of 0.67 fM (0.012 pg/mL). These results show comparable sensitivity to our antibody pair-based Simoa assays, and tens to thousands-fold enhancement in sensitivity compared with conventional ELISAs. High recovery percentages were observed in a spike-recovery test using human sera, demonstrating the feasibility of this novel Simoa assay in detecting TNF-α in clinically relevant samples. Detection SOMAmers were also used to detect other cytokines, such as IFN-γ, IL-1β, IL-2, IL-6, and IL-10, in human samples. Although not yet demonstrated, in principle it should be possible to eventually replace both the capture and detector antibodies with corresponding SOMAmer pairs in sandwich immunoassays. The combination of the ultrasensitive Simoa platform with the higher reliability of SOMAmer binding reagents will greatly benefit both biomarker discovery and disease diagnostic fields. PMID:27529794

  2. Slip-rate increase at Parkfield in 1993 detected by high-precision EDM and borehole tensor strainmeters

    USGS Publications Warehouse

    Langbein, J.; Gwyther, R.L.; Hart, R.H.G.; Gladwin, M.T.

    1999-01-01

    On two of the instrument networks at Parkfield, California, the two-color Electronic Distance Meter (EDM) network and Borehole Tensor Strainmeter (BTSM) network, we have detected a rate change starting in 1993 that has persisted at least 5 years. These and other instruments capable of measuring crustal deformation were installed at Parkfield in anticipation of a moderate, M6, earthquake on the San Andreas fault. Many of these instruments have been in operation since the mid 1980s and have established an excellent baseline to judge changes in rate of deformation and the coherence of such changes between instruments. The onset of the observed rate change corresponds in time to two other changes at Parkfield. From late 1992 through late 1994, the Parkfield region had an increase in number of M4 to M5 earthquakes relative to the preceding 6 years. The deformation-rate change also coincides with the end of a 7-year period of sub-normal rainfall. Both the spatial coherence of the rate change and hydrological modeling suggest a tectonic explanation for the rate change. From these observations, we infer that the rate of slip increased over the period 1993-1998.On two of the instrument networks at Parkfield, California, the two-color Electronic Distance Meter (EDM) network and Borehole Tensor Strainmeter (BTSM) network, we have detected a rate change starting in 1993 that has persisted at least 5 years. These and other instruments capable of measuring crustal deformation were installed at Parkfield in anticipation of a moderate, M6, earthquake on the San Andreas fault. Many of these instruments have been in operation since the mid 1980s and have established an excellent baseline to judge changes in rate of deformation and the coherence of such changes between instruments. The onset of the observed rate change corresponds in time to two other changes at Parkfield. From late 1992 through late 1994, the Parkfield region had an increase in number of M4 to M5 earthquakes

  3. Extragalactic Synchrotron Transients in the Era of Wide-field Radio Surveys. I. Detection Rates and Light Curve Characteristics

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Williams, P. K. G.; Berger, Edo

    2015-06-01

    The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on-axis and off-axis gamma-ray bursts (GRBs), supernovae, tidal disruption events, compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the minimum variability of the transients during the survey and an assessment of host galaxy contamination. We find that near-term GHz frequency surveys (ASKAP/VAST, Very Large Array Sky Survey) will detect few events: ≲ 30-50 on- and off-axis long GRBs (LGRBs) and off-axis tidal disruption events, and ∼ 50-100 neutron star binary mergers if ∼ 0.5% of the mergers result in a stable millisecond magnetar. Low-frequency surveys (e.g., LOFAR) are unlikely to detect any transients, while a hypothetical large-scale mm survey may detect ∼40 on-axis LGRBs. On the other hand, we find that SKA1 surveys at ∼ 0.1-1 GHz have the potential to uncover thousands of transients, mainly on-axis and off-axis LGRBs, on-axis short GRBs, off-axis TDEs, and neutron star binary mergers with magnetar remnants.

  4. DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis.

    PubMed

    Bahoura, M; Hassani, M; Hubin, M

    1997-01-01

    An algorithm based on wavelet transform (WTs) suitable for real time implementation has been developed in order to detect ECG characteristics. In particular, QRS complexes, P and T waves may be distinguished from noise, baseline drift or artefacts. This algorithm is implemented in a DSP (SPROC-1400) with a 50 MHz frequency clock. The performance of this algorithm is discussed, its accuracy is evaluated and a comparison is made with a similar algorithm implemented in C language. For the standard MIT/BIH arrhythmia database, this algorithm correctly detects 99.7% of the QRS complexes. PMID:9034668

  5. Effect of the Brazilian Conditional Cash Transfer and Primary Health Care Programs on the New Case Detection Rate of Leprosy

    PubMed Central

    Nery, Joilda Silva; Pereira, Susan Martins; Rasella, Davide; Penna, Maria Lúcia Fernandes; Aquino, Rosana; Rodrigues, Laura Cunha; Barreto, Mauricio Lima; Penna, Gerson Oliveira

    2014-01-01

    Background Social determinants can affect the transmission of leprosy and its progression to disease. Not much is known about the effectiveness of welfare and primary health care policies on the reduction of leprosy occurrence. The aim of this study is to evaluate the impact of the Brazilian cash transfer (Bolsa Família Program-BFP) and primary health care (Family Health Program-FHP) programs on new case detection rate of leprosy. Methodology/Principal Findings We conducted the study with a mixed ecological design, a combination of an ecological multiple-group and time-trend design in the period 2004–2011 with the Brazilian municipalities as unit of analysis. The main independent variables were the BFP and FHP coverage at the municipal level and the outcome was new case detection rate of leprosy. Leprosy new cases, BFP and FHP coverage, population and other relevant socio-demographic covariates were obtained from national databases. We used fixed-effects negative binomial models for panel data adjusted for relevant socio-demographic covariates. A total of 1,358 municipalities were included in the analysis. In the studied period, while the municipal coverage of BFP and FHP increased, the new case detection rate of leprosy decreased. Leprosy new case detection rate was significantly reduced in municipalities with consolidated BFP coverage (Risk Ratio 0.79; 95% CI  = 0.74–0.83) and significantly increased in municipalities with FHP coverage in the medium (72–95%) (Risk Ratio 1.05; 95% CI  = 1.02–1.09) and higher coverage tertiles (>95%) (Risk Ratio 1.12; 95% CI  = 1.08–1.17). Conclusions At the same time the Family Health Program had been effective in increasing the new case detection rate of leprosy in Brazil, the Bolsa Família Program was associated with a reduction of the new case detection rate of leprosy that we propose reflects a reduction in leprosy incidence. PMID:25412418

  6. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes.

    PubMed

    Williamson, R; Andrews, B J

    2001-05-01

    Knee joint angle and angular velocity were calculated in real time during standing up and sitting down. Two small modules comprising rate gyroscopes and accelerometers were attached to the thigh and shank of two able-bodied volunteers and one T5 ASIA(A) paraplegic assisted by functional electrical stimulation (FES). The offset and drift of the rate gyroscopes was compensated for by auto-resetting and auto-nulling algorithms. The tilt of the limb segments was calculated by combining the signals of the accelerometer and the rate gyroscope. The joint angle was calculated as the difference in tilt of the segments. The modules were also tested on a two-dimensional model. The mean differences between the rate gyroscope-accelerometer system and the reference goniometer for the model, able-bodied and paraplegic standing trials were 2.1 degrees, 2.4 degrees and 2.3 degrees respectively for knee angle and 2.3 degrees s(-1), 5.0 degrees s(-1) and 11.8 degrees s(-1) respectively for knee velocity. The rate gyroscope-accelerometer system was more accurate than using the accelerometer as a tilt meter, possibly due to the greater bandwidth of the rate gyroscope-accelerometer system. PMID:11465883

  7. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  8. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  9. Simultaneous Use of Multiple Answer Copying Indexes to Improve Detection Rates

    ERIC Educational Resources Information Center

    Wollack, James A.

    2006-01-01

    Many of the currently available statistical indexes to detect answer copying lack sufficient power at small [alpha] levels or when the amount of copying is relatively small. Furthermore, there is no one index that is uniformly best. Depending on the type or amount of copying, certain indexes are better than others. The purpose of this article was…

  10. Constant false alarm rate algorithm for the dim-small target detection based on the distribution characteristics of target coordinates

    NASA Astrophysics Data System (ADS)

    Fei, Xiao-Liang; Ren, Kan; Qian, Wei-xian; Wang, Peng-cheng

    2015-10-01

    CFAR (Constant False Alarm Rate) is a key technology in Infrared dim-small target detection system. Because the traditional constant false alarm rate detection algorithm gets the probability density distribution which is based on the pixel information of each area in the whole image and calculates the target segmentation threshold of each area by formula of Constant false alarm rate, the problems including the difficulty of probability distribution statistics and large amount of algorithm calculation and long delay time are existing. In order to solve the above problems effectively, a formula of Constant false alarm rate based on target coordinates distribution is presented. Firstly, this paper proposes a new formula of Constant false alarm rate by improving the traditional formula of Constant false alarm rate based on the single grayscale distribution which objective statistical distribution features are introduced. So the control of false alarm according to the target distribution information is implemented more accurately and the problem of high false alarm that is caused of the complex background in local area as the cloud reflection and the ground clutter interference is solved. At the same time, in order to reduce the amount of algorithm calculation and improve the real-time characteristics of algorithm, this paper divides the constant false-alarm statistical area through two-dimensional probability density distribution of target number adaptively which is different from the general identifying methods of constant false-alarm statistical area. Finally, the target segmentation threshold of next frame is calculated by iteration based on the function of target distribution probability density in image sequence which can achieve the purpose of controlling the false alarm until the false alarm is down to the upper limit. The experiment results show that the proposed method can significantly improve the operation time and meet the real-time requirements on

  11. A comparison of error detection rates between the reading aloud method and the double data entry method.

    PubMed

    Kawado, Miyuki; Hinotsu, Shiro; Matsuyama, Yutaka; Yamaguchi, Takuhiro; Hashimoto, Shuji; Ohashi, Yasuo

    2003-10-01

    Data entry and its verification are important steps in the process of data management in clinical studies. In Japan, a kind of visual comparison called the reading aloud (RA) method is often used as an alternative to or in addition to the double data entry (DDE) method. In a typical RA method, one operator reads previously keyed data aloud while looking at a printed sheet or computer screen, and another operator compares the voice with the corresponding data recorded on case report forms (CRFs) to confirm whether the data are the same. We compared the efficiency of the RA method with that of the DDE method in the data management system of the Japanese Registry of Renal Transplantation. Efficiency was evaluated in terms of error detection rate and expended time. Five hundred sixty CRFs were randomly allocated to two operators for single data entry. Two types of DDE and RA methods were performed. Single data entry errors were detected in 358 of 104,720 fields (per-field error rate=0.34%). Error detection rates were 88.3% for the DDE method performed by a different operator, 69.0% for the DDE method performed by the same operator, 59.5% for the RA method performed by a different operator, and 39.9% for the RA method performed by the same operator. The differences in these rates were significant (p<0.001) between the two verification methods as well as between the types of operator (same or different). The total expended times were 74.8 hours for the DDE method and 57.9 hours for the RA method. These results suggest that in detecting errors of single data entry, the RA method is inferior to the DDE method, while its time cost is lower. PMID:14500053

  12. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R⊙, explosion energies of 1051 erg, and ejecta masses of 10 M⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  13. Simultaneous detection of tissue autofluorescence decay distribution and time-gated photo-bleaching rates

    NASA Astrophysics Data System (ADS)

    Lihachev, Alexey; Ferulova, Inesa; Spigulis, Janis; Tamosiunas, Mindaugas

    2015-05-01

    Experimental methodology for parallel measurements of in-vivo skin autofluorescence (AF) lifetimes and photobleaching dynamic has been developed and tested. The AF lifetime decay distributions were periodically collected from fixed tissue area with subsequent detection of the fluorescence intensity decrease dynamic at different time gates after the pulse excitation. Temporal distributions of human in-vivo skin AF lifetimes and bleaching kinetics were collected and analyzed by means of commercial time-correlated single photon counting system.

  14. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  15. High Detection Rates of Enteropathogens in Asymptomatic Children Attending Day Care

    PubMed Central

    Enserink, Remko; Scholts, Rianne; Bruijning-Verhagen, Patricia; Duizer, Erwin; Vennema, Harry; de Boer, Richard; Kortbeek, Titia; Roelfsema, Jeroen; Smit, Henriette; Kooistra-Smid, Mirjam; van Pelt, Wilfrid

    2014-01-01

    Background Gastroenteritis morbidity is high among children under the age of four, especially amongst those who attend day care. Objective To determine the prevalence of a range of enteropathogens in the intestinal flora of children attending day care and to relate their occurrence with characteristics of the sampled child and the sampling season. Methods We performed three years of enteropathogen surveillance in a network of 29 child day care centers in the Netherlands. The centers were instructed to take one fecal sample from ten randomly chosen children each month, regardless of gastrointestinal symptoms at time of sampling. All samples were analyzed for the molecular detection of 16 enteropathogenic bacteria, parasites and viruses by real-time multiplex PCR. Results Enteropathogens were detected in 78.0% of the 5197 fecal samples. Of the total, 95.4% of samples were obtained from children who had no gastroenteritis symptoms at time of sampling. Bacterial enteropathogens were detected most often (most prevalent EPEC, 19.9%), followed by parasitic enteropathogens (most prevalent: D. fragilis, 22.1%) and viral enteropathogens (most prevalent: norovirus, 9.5%). 4.6% of samples related to children that experienced symptoms of gastroenteritis at time of sampling. Only rotavirus and norovirus were significantly associated with gastroenteritis among day care attendees. Conclusions Our study indicates that asymptomatic infections with enteropathogens in day care attendees are not a rare event and that gastroenteritis caused by infections with these enteropathogens is only one expression of their presence. PMID:24586825

  16. RS slope detection algorithm for extraction of heart rate from noisy, multimodal recordings.

    PubMed

    Gierałtowski, Jan; Ciuchciński, Kamil; Grzegorczyk, Iga; Kośna, Katarzyna; Soliński, Mateusz; Podziemski, Piotr

    2015-08-01

    Current gold-standard algorithms for heart beat detection do not work properly in the case of high noise levels and do not make use of multichannel data collected by modern patient monitors. The main idea behind the method presented in this paper is to detect the most prominent part of the QRS complex, i.e. the RS slope. We localize the RS slope based on the consistency of its characteristics, i.e. adequate, automatically determined amplitude and duration. It is a very simple and non-standard, yet very effective, solution. Minor data pre-processing and parameter adaptations make our algorithm fast and noise-resistant. As one of a few algorithms in the PhysioNet/Computing in Cardiology Challenge 2014, our algorithm uses more than two channels (i.e. ECG, BP, EEG, EOG and EMG). Simple fundamental working rules make the algorithm universal: it is able to work on all of these channels with no or only little changes. The final result of our algorithm in phase III of the Challenge was 86.38 (88.07 for a 200 record test set), which gave us fourth place. Our algorithm shows that current standards for heart beat detection could be improved significantly by taking a multichannel approach. This is an open-source algorithm available through the PhysioNet library. PMID:26218763

  17. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination

    PubMed Central

    2011-01-01

    Background This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Results Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination. PMID:22059697

  18. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.

    PubMed

    Rabosky, Daniel L

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858

  19. Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees

    PubMed Central

    Rabosky, Daniel L.

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858

  20. Respiratory rate detection algorithm based on RGB-D camera: theoretical background and experimental results.

    PubMed

    Benetazzo, Flavia; Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro

    2014-09-01

    Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors. PMID:26609383

  1. Response and Remission in Adolescent Mania: Signal Detection Analyses of the Young Mania Rating Scale

    ERIC Educational Resources Information Center

    Patel, Nick C.; Patrick, Danielle M.; Youngstrom, Eric A.; Strakowski, Stephen M.; Delbello, Melissa P.

    2007-01-01

    Objective: The purpose of this study was to determine optimal criteria for defining response and remission in adolescents with acute mania. Method: Data were analyzed from three treatment studies of adolescents with acute mania (N = 99). Trained raters completed the Young Mania Rating Scale (YMRS), and clinicians completed the Clinical Global…

  2. Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults

    ERIC Educational Resources Information Center

    Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie

    2016-01-01

    Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…

  3. Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging.

    PubMed

    Wang, Zi; Zheng, Wei; Huang, Zhiwei

    2016-09-01

    We report on the development of a unique lock-in-detection-free line-scan stimulated Raman scattering microscopy technique based on a linear detector with a large full well capacity controlled by a field-programmable gate array (FPGA) for near video-rate Raman imaging. With the use of parallel excitation and detection scheme, the line-scan SRS imaging at 20 frames per second can be acquired with a ∼5-fold lower excitation power density, compared to conventional point-scan SRS imaging. The rapid data communication between the FPGA and the linear detector allows a high line-scanning rate to boost the SRS imaging speed without the need for lock-in detection. We demonstrate this lock-in-detection-free line-scan SRS imaging technique using the 0.5 μm polystyrene and 1.0 μm poly(methyl methacrylate) beads mixed in water, as well as living gastric cancer cells. PMID:27607947

  4. A halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas

    2015-05-21

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on the capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or bb start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.

  5. Detecting psychological distress among patients attending secondary health care clinics. Self-report and physician rating.

    PubMed

    Feldman, D; Rabinowitz, J; Ben Yehuda, Y

    1995-11-01

    A study was conducted to determine the prevalence of psychological distress, as reported by patients and their physicians, in orthopedic, neurology, dermatology, and ophthalmology clinics; to study their accuracy in detecting psychological distress; and to determine if there is any connection among psychological distress, accuracy of detecting distress, and use of mental health and primary health care physicians' prognosis for the somatic complaints. Five hundred and fifty-six patients, ages 18-21, responded to the Psychiatric Epidemiology Research Interview Demoralization Scale (PERI-D), a measure of psychological distress, and to questions about their mental health and use of mental health and primary health services. Physicians, who were blind to patients' responses, were asked to what extent they thought the cause of patients' complaints was physical and to what extent they thought it was psychological in nature, and to prognosticate. Based on the PERI-D, about 25% of patients were distressed, this was less for females than males and varied between clinics. Based on self-reporting, about 14% of patients (males and females) were distressed. Based on physician reporting, about 17% (males less) were distressed. Physicians identified 35% of the PERI-D-distressed cases and 79% of nondistressed cases. About 66% of patients identified their distress and 83% their lack of distress. Increased use of primary health care and mental health care was related to distress. The prognosis was negatively related to distress. Based on this study, there is a need for more attention to psychological distress among secondary health care patients. Patients' ability to identify their distress suggests the importance of involving the patient in the diagnostic process. Correct detection of distress alone does not appear to decrease the use of primary medical and mental health services. PMID:8714802

  6. Discrimination power of long-term heart rate variability measures for chronic heart failure detection.

    PubMed

    Melillo, Paolo; Fusco, Roberta; Sansone, Mario; Bracale, Marcello; Pecchia, Leandro

    2011-01-01

    The aim of this study was to investigate the discrimination power of standard long-term heart rate variability (HRV) measures for the diagnosis of chronic heart failure (CHF). The authors performed a retrospective analysis on four public Holter databases, analyzing the data of 72 normal subjects and 44 patients suffering from CHF. To assess the discrimination power of HRV measures, an exhaustive search of all possible combinations of HRV measures was adopted and classifiers based on Classification and Regression Tree (CART) method was developed, which is a non-parametric statistical technique. It was found that the best combination of features is: Total spectral power of all NN intervals up to 0.4 Hz (TOTPWR), square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD) and standard deviation of the averages of NN intervals in all 5-min segments of a 24-h recording (SDANN). The classifiers based on this combination achieved a specificity rate and a sensitivity rate of 100.00 and 89.74%, respectively. The results are comparable with other similar studies, but the method used is particularly valuable because it provides an easy to understand description of classification procedures, in terms of intelligible "if … then …" rules. Finally, the rules obtained by CART are consistent with previous clinical studies. PMID:21203855

  7. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Frechette, Jonathan; Grossmann, Peter J.; Busacker, David E.; Jordy, George J.; Duerr, Erik K.; McIntosh, K. Alexander; Oakley, Douglas C.; Bailey, Robert J.; Ruff, Albert C.; Brattain, Michael A.; Funk, Joseph E.; MacDonald, Jason G.; Verghese, Simon

    2012-06-01

    An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by a finite state machine that actively quenches an APD upon a photon detection event, and re-biases the device into Geiger mode after a programmable hold-off time. While an individual APD is in hold-off mode, other elements in the array are biased and available to detect photons. This approach enables high pixel refresh frequency (PRF), making the device suitable for applications including optical communications and frequency-agile ladar. A built-in electronic shutter that de-biases the whole array allows the detector to operate in a gated mode or allows for detection to be temporarily disabled. On-chip data reduction reduces the high bandwidth requirements of simultaneous detection and readout. Additional features include programmable single-pixel disable, region of interest processing, and programmable output data rates. State-based on-chip clock gating reduces overall power draw. ROIC operation has been demonstrated with hybridized InP APDs sensitive to 1.06-μm and 1.55-μm wavelength, and fully packaged focal plane arrays (FPAs) have been assembled and characterized.

  8. Automatic detection of rate change in large data sets with an unsupervised approach: the case of influenza viruses.

    PubMed

    Labonté, Kasandra; Aris-Brosou, Stéphane

    2016-04-01

    Influenza viruses evolve at such a high rate that vaccine recommendations need to be changed, but not quite on a regular basis. This observation suggests that the rate of evolution of these viruses is not constant through time, which begs the question as to when such rate changes occur, if they do so independently of the host in which they circulate and (or) independently of their subtype. To address these outstanding questions, we introduce a novel heuristics, Mclust*, that is based on a two-tier clustering approach in a phylogenetic context to estimate (i) absolute rates of evolution and (ii) when rate change occurs. We employ the novel approach to compare the two influenza surface proteins, hemagglutinin and neuraminidase, that circulated in avian, human, and swine hosts between 1960 and 2014 in two subtypes: H3N2 and H1N1. We show that the algorithm performs well in most conditions, accounting for phylogenetic uncertainty by means of bootstrapping and scales up to analyze very large data sets. Our results show that our approach is robust to the time-dependent artifact of rate estimation, and confirm pervasive punctuated evolution across hosts and subtypes. As such, the novel approach can potentially detect when vaccine composition needs to be updated. PMID:26966881

  9. Ultra deep sequencing detects a low rate of mosaic mutations in Tuberous Sclerosis Complex

    PubMed Central

    Qin, Wei; Kozlowski, Piotr; Taillon, Bruce E.; Bouffard, Pascal; Holmes, Alison J.; Janne, Pasi; Camposano, Susana; Thiele, Elizabeth; Franz, David; Kwiatkowski, David J.

    2010-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome caused by mutations in TSC1 and TSC2. However, 10 to 15% TSC patients have no mutation identified with conventional molecular diagnostic studies. We used the ultra-deep pyrosequencing technique of 454 Sequencing to search for mosaicism in 38 TSC patients who had no TSC1 or TSC2 mutation identified by conventional methods. Two TSC2 mutations were identified, each at 5.3% read frequency in different patients, consistent with mosaicism. Both mosaic mutations were confirmed by several methods. Five of 38 samples were found to have heterozygous non-mosaic mutations, which had been missed in earlier analyses. Several other possible low frequency mosaic mutations were identified by deep sequencing, but were discarded as artifacts by secondary studies. The low frequency of detection of mosaic mutations, 2 (6%) of 33, suggests that the majority of TSC patients who have no mutation identified are not due to mosaicism, but rather other causes, which remain to be determined. These findings indicate the ability of deep sequencing, coupled with secondary confirmatory analyses, to detect low frequency mosaic mutations. PMID:20165957

  10. Unusually high recombination rate detected in the sex locus region of the honey bee (Apis mellifera).

    PubMed Central

    Beye, M; Hunt, G J; Page, R E; Fondrk, M K; Grohmann, L; Moritz, R F

    1999-01-01

    Sex determination in Hymenoptera is controlled by haplo-diploidy in which unfertilized eggs develop into fertile haploid males. A single sex determination locus with several complementary alleles was proposed for Hymenoptera [so-called complementary sex determination (CSD)]. Heterozygotes at the sex determination locus are normal, fertile females, whereas diploid zygotes that are homozygous develop into sterile males. This results in a strong heterozygote advantage, and the sex locus exhibits extreme polymorphism maintained by overdominant selection. We characterized the sex-determining region by genetic linkage and physical mapping analyses. Detailed linkage and physical mapping studies showed that the recombination rate is <44 kb/cM in the sex-determining region. Comparing genetic map distance along the linkage group III in three crosses revealed a large marker gap in the sex-determining region, suggesting that the recombination rate is high. We suggest that a "hotspot" for recombination has resulted here because of selection for combining favorable genotypes, and perhaps as a result of selection against deleterious mutations. The mapping data, based on long-range restriction mapping, suggest that the Q DNA-marker is within 20,000 bp of the sex locus, which should accelerate molecular analyses. PMID:10581277

  11. An investigation towards real time dose rate monitoring, and fuel rod detection in a First Generation Magnox Storage Pond (FGMSP).

    PubMed

    Jackson, Sarah F; Monk, Stephen D; Riaz, Zahid

    2014-12-01

    The First Generation Magnox Storage Pond (FGMSP) is located on the Sellafield Nuclear Site, housing legacy spent Magnox nuclear fuel. Some of which has since corroded, forming a layer of Corroded Magnox Sludge (CMS) creating one of the largest decommissioning challenges the UK has faced. In this work the composition, physical properties and potentially high hazard nature of CMS are discussed, as are the gamma emission spectra of spent Magnox fuel rods typical of the ilk stored. We assess the potential use of a RadLine gamma detector to dose rate map this area and provide fuel rod detection. RadLine consists of a small scintillator, fibre optic cable and photon counter. The probe has the unusual advantage of not being electrically active and therefore fully submersible underwater, with the option to deploy hundreds of metres in length. Our experimental method encompasses general purpose Monte Carlo radiation transport code, MCNP, where we describe the modelling of CMS and pond liquor in comprehensive detail, including their radiological spectrum, chemical composition data, and physical properties. This investigation concludes that the maximum energy deposited within the scintillator crystal due to ambient CMS corresponds to a dose rate of 5.65Gy h(-1), thus above this value positive detection of a fuel rod would be anticipated. It is additionally established that the detectable region is within a 20cm range. PMID:25244071

  12. Real-time detection of respiration rate with non-contact mode based on low-end imaging equipment

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoli; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua; Liu, Ming; Yang, Lei; Liu, Weiyu; Zhao, Jingsheng; Xing, Jinhui

    2013-09-01

    Standard instrumentation for the assessment of respiration rate is large and based on invasive method, and not suitable for daily inspection. An optical, simple and non-contact measurement method to detect human respiration rate using lowend imaging equipment is discussed. This technology is based on the visible light absorption of blood, which contains many important physiological information of the cardiovascular system. The light absorption of facial area can be indirectly reflected to gray value of the corresponding area image. In this paper, we acquire the respiration rate through the video signal captured by low-end imaging equipment. Firstly, the color CCD captures the facial area below the eyes and every frame of the video can be separated into three RGB channels. The blue channel is extracted as the research object. Then, we calculate the mean gray value for each image and draw the mean gray curve along the time. Fourier transform can get the frequency spectrogram of the graph, which is filtered through the Fourier filter. The extreme point is the value of the respiratory rate. Finally, an available interface program is designed and we have some volunteers tested. The correlation coefficient between the experimental data and the data provided by a reference instrument is 0.98. The consistency of the experimental results is very well. This technology costs so low that it will be widely used in medical and daily respiration rate measurement.

  13. Incorporating an Exercise Detection, Grading, and Hormone Dosing Algorithm Into the Artificial Pancreas Using Accelerometry and Heart Rate.

    PubMed

    Jacobs, Peter G; Resalat, Navid; El Youssef, Joseph; Reddy, Ravi; Branigan, Deborah; Preiser, Nicholas; Condon, John; Castle, Jessica

    2015-11-01

    In this article, we present several important contributions necessary for enabling an artificial endocrine pancreas (AP) system to better respond to exercise events. First, we show how exercise can be automatically detected using body-worn accelerometer and heart rate sensors. During a 22 hour overnight inpatient study, 13 subjects with type 1 diabetes wearing a Zephyr accelerometer and heart rate monitor underwent 45 minutes of mild aerobic treadmill exercise while controlling their glucose levels using sensor-augmented pump therapy. We used the accelerometer and heart rate as inputs into a validated regression model. Using this model, we were able to detect the exercise event with a sensitivity of 97.2% and a specificity of 99.5%. Second, from this same study, we show how patients' glucose declined during the exercise event and we present results from in silico modeling that demonstrate how including an exercise model in the glucoregulatory model improves the estimation of the drop in glucose during exercise. Last, we present an exercise dosing adjustment algorithm and describe parameter tuning and performance using an in silico glucoregulatory model during an exercise event. PMID:26438720

  14. Fetal hydronephrosis: optimal renal pelvic measurement to increase detection rate for renal pathology.

    PubMed

    Leader, J; Letshwiti, J; Stuart, B; Turner, M J; White, M; Kennelly, M

    2012-06-01

    We reviewed the outcome of fetal hydronephrosis with a renal pelvic dilatation (RPD) of 4-7 mm to assess whether a RPD > 7 mm had a higher predictive value for renal pathology. 373 fetuses were diagnosed with hydronephrosis giving an incidence of 2.2%. The male: female ratio was 1.8:1. 5(1.34%) fetuses with antenatal hydronephrosis were diagnosed with Down Syndrome. 299 (91.7% fetuses with an RPD of 4-7 mm had resolved by 34 weeks gestation with 10 (3.1%) having moderate to severe hydronephrosis. The resolution rate for RPD > 7 mm was 60.7% (17) with 11 fetuses (39.3%) requiring long term follow up. PMID:22973656

  15. Using the Autism Detection in Early Childhood (ADEC) and Childhood Autism Rating Scales (CARS) to Predict Long Term Outcomes in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Nah, Yong-Hwee; Young, Robyn L.; Brewer, Neil

    2014-01-01

    This study evaluated the predictive validity of the Autism Detection in Early Childhood (ADEC; Young, Autism detection in early childhood: ADEC. Australian Council of Educational Research, Camberwell, VIC 2007) and a well-established screening tool, the Childhood Autism Rating Scale (CARS; Schopler et al. The childhood autism rating scale (CARS).…

  16. The Aldosterone Renin Ratio (ARR) APP as Tool to Enhance the Detection Rate of Primary Aldosteronism.

    PubMed

    Rossi, Gian Paolo; Bisogni, Valeria

    2016-06-01

    Primary aldosteronism is one of the most common forms of secondary hypertension, but it is often under diagnosed, which leads to the development of cardiovascular damage, and excess costs for long-term drug treatment and management of complications. The aldosterone to renin ratio (ARR) is a key step for early detection of primary aldosteronism, but unfortunately is not easily estimated. This is because plasma aldosterone and renin are measured with different assays, which provide results in different units of measure, with ensuing difficulty of obtaining the calculation of the ARR in the proper units and impossibility of interpreting results with reference to established cut off values. Therefore, doctors are often unable to draw unambiguous conclusions to be used for the clinical decision-making. To the aim of making the diagnostic work-up easier, we have developed an Application that provide a swift calculation of the ARR regardless of the units of measure used for plasma aldosterone and renin values. If the concomitant serum potassium level is available the App also provides the patient's probability of having an aldosterone-producing adenoma based on a validated logistic discriminant analysis. PMID:26883242

  17. A useful tool to improve the case detection rate of primary aldosteronism: the aldosterone-renin ratio (ARR)-App.

    PubMed

    Rossi, Gian Paolo; Bisogni, Valeria

    2016-05-01

    The aldosterone-renin ratio is the most popular test for the case detection of primary aldosteronism, which entails the most common, albeit overlooked, form of endocrine secondary hypertension. A major hindrance to the clinical use of the aldosterone-renin ratio depends on the difficulty of achieving the calculation of this ratio, given that laboratories provide plasma aldosterone in different units of measurement, and renin is measured as plasma renin activity or direct active renin. We have therefore developed an App, which can be downloaded from the ESH website and the Apple store, to assist practising physicians in performing this calculation. Our hope is that this simple tool will help in increasing the detection rate of primary aldosteronism and ultimately the long-term cure of many hypertensive patients. PMID:26870884

  18. Acute Radiation Effects on Cardiac Function Detected by Strain Rate Imaging in Breast Cancer Patients

    SciTech Connect

    Erven, Katrien; Jurcut, Ruxandra; Weltens, Caroline; Giusca, Sorin; Ector, Joris; Wildiers, Hans; Van den Bogaert, Walter; Voigt, Jens-Uwe

    2011-04-01

    Purpose: To investigate the occurrence of early radiation-induced changes in regional cardiac function using strain rate imaging (SRI) by tissue Doppler echocardiography. Methods and Materials: We included 20 left-sided and 10 right-sided breast cancer patients receiving radiotherapy (RT) to the breast or chest wall. Standard echocardiography and SRI were performed before RT (baseline), immediately after RT (post-RT), and at 2 months follow-up (FUP) after RT. Regional strain (S) and strain rate (SR) values were obtained from all 18 left ventricular (LV) segments. Data were compared to the regional radiation dose. Results: A reduction in S was observed post-RT and at FUP in left-sided patients (S{sub post-RT}: -17.6 {+-} 1.5%, and S{sub FUP}: -17.4 {+-} 2.3%, vs. S{sub baseline}: -19.5 {+-} 2.1%, p < 0.001) but not in right-sided patients. Within the left-sided patient group, S and SR were significantly reduced after RT in apical LV segments (S{sub post-RT}: -15.3 {+-} 2.5%, and S{sub FUP}: -14.3 {+-} 3.7%, vs. S{sub baseline}: -19.3 {+-} 3.0%, p < 0.01; and SR{sub post-RT}: -1.06 {+-} 0.15 s {sup -1}, and SR{sub FUP}: -1.16 {+-} 0.28 s {sup -1}, vs. SR{sub baseline}: -1.29 {+-} 0.27s {sup -1}, p = 0.01), but not in mid- or basal segments. Furthermore, we observed that segments exposed to more than 3 Gy showed a significant decrease in S after RT (S{sub post-RT}: -16.1 {+-} 1.6%, and S{sub FUP}: -15.8 {+-} 3.4%, vs. S{sub baseline}: -18.9 {+-} 2.6%, p < 0.001). This could not be observed in segments receiving less than 3 Gy. Conclusions: SRI shows a dose-related regional decrease in myocardial function after RT. It might be a useful tool in the evaluation of modern RT techniques, with respect to cardiac toxicity.

  19. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    PubMed

    Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P

    2015-07-01

    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts. PMID:25545417

  20. Detection rate of diarrhoea-causing Kudoa hexapunctata in Pacific bluefin tuna Thunnus orientalis from Japanese waters.

    PubMed

    Suzuki, Jun; Murata, Rie; Yokoyama, Hiroshi; Sadamasu, Kenji; Kai, Akemi

    2015-02-01

    Diffuse outbreaks of food poisoning with unknown aetiologies leading to diarrhoea and vomiting within a short time after ingesting flatfish (Paralichthys olivaceus), tuna (Thunnus spp.), or amberjack (Seriola dumerili) have occurred nationwide in Japan, including the Tokyo metropolitan area. In this study, we surveyed the detection rates of kudoid parasites in 12 tuna samples that caused clinical diarrhoea from 2009 to 2012; we assessed 104 samples of whole juvenile Pacific bluefin tuna (PBT, Thunnus orientalis) and 153 block samples of other tuna distributed in the Tokyo Metropolitan Central Wholesale Market. The survey revealed that more than 70% of clinical diarrhoea cases due to tuna ingestion occurred between June and September, and Kudoa hexapunctata were detected in 9 of 12 tuna samples associated with clinical diarrhoea cases. The numbers of spores and 18S ribosomal DNA (rDNA) copies per gram of fish in 8 of 9 samples were more than 1×10(6) spores and 1×10(9) copies, respectively. Market research revealed that the K. hexapunctata-positive rate in juvenile PBT from Japanese waters was 64.4% (67/104) but that in adult PBT was 10.4% (7/67). The numbers of K. hexapunctata 18S rDNA copies in 64.5% (20/31) samples and 72.7% (16/22) of <5kg fish samples collected between May and July were more than 1×10(9)copies/g. On the other hand, kudoid parasites were not detected from 73 tuna samples except for a single sample of Thunnus albacares. Cell monolayer permeability assays performed to examine the toxicity of K. hexapunctata against Caco-2 cells revealed that the transepithelial electrical resistance (TER) in 5×10(7)K. hexapunctata spores decreased by 80% within 2-4h. In conclusion, K. hexapunctata was commonly detected in juvenile PBT from Japanese waters and are a likely cause of the diarrhoea outbreaks. PMID:25461601

  1. Targeted carrier screening for four recessive disorders: high detection rate within a founder population.

    PubMed

    Mathijssen, Inge B; Henneman, Lidewij; van Eeten-Nijman, Janneke M C; Lakeman, Phillis; Ottenheim, Cecile P E; Redeker, Egbert J W; Ottenhof, Winnie; Meijers-Heijboer, Hanne; van Maarle, Merel C

    2015-03-01

    In a genetically isolated community in the Netherlands four severe recessive genetic disorders occur at relatively high frequency (pontocerebellar hypoplasia type 2 (PCH2), fetal akinesia deformation sequence (FADS), rhizomelic chondrodysplasia punctata type 1 (RCDP1), and osteogenesis imperfecta (OI) type IIB/III. Over the past decades multiple patients with these disorders have been identified. This warranted the start of a preconception outpatient clinic, in 2012, aimed at couples planning a pregnancy. The aim of our study was to evaluate the offer of targeted genetic carrier screening as a method to identify high-risk couples for having affected offspring in this high-risk subpopulation. In one year, 203 individuals (92 couples and 19 individuals) were counseled. In total, 65 of 196 (33.2%) tested individuals were carriers of at least one disease, five (7.7%) of them being carriers of two diseases. Carrier frequencies of PCH2, FADS, RCDP1, and OI were 14.3%, 11.2%, 6.1%, and 4.1% respectively. In individuals with a positive family history for one of the diseases, the carrier frequency was 57.8%; for those with a negative family history this was 25.8%. Four PCH2 carrier-couples were identified. Thus, targeted (preconception) carrier screening in this genetically isolated population in which a high prevalence of specific disorders occurs detects a high number of carriers, and is likely to be more effective compared to cascade genetic testing. Our findings and set-up can be seen as a model for carrier screening in other high-risk subpopulations and contributes to the discussion about the way carrier screening can be offered and organized in the general population. PMID:25641760

  2. Effects of the presentation of false heart-rate feedback on the performance of two common heartbeat-detection tasks.

    PubMed

    Phillips, G C; Jones, G E; Rieger, E J; Snell, J B

    1999-07-01

    Research has indicated that performance on heartbeat counting tasks may be influenced by beliefs about heart rate. Sixty male subjects were administered the Schandry heartbeat counting task after viewing fast, slow, or no heart rate feedback. Subjects were also administered the Whitehead signal-detection type task. Results indicated that subjects who received fast or no heartbeat feedback performed better on the Schandry task than subjects who received slow feedback. Feedback presentation did not affect performance on the Whitehead task. These results suggest that the Schandry task is influenced by external variables (expectations, beliefs) beyond pure awareness of "discrete" visceral sensations and, thus, may not be as powerful a method for determining awareness of individual heartbeats as some other paradigms. PMID:10432800

  3. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  4. Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2013-10-01

    Spores of coprophilous fungi, and in particular those of Sporormiella, are a routinely used proxy for detecting late Quaternary herbivore extinction events in sedimentary records. Spore abundance is typically quantified as a percentage of the total, or dryland, pollen sum. Although this is a quick method that does not require the development of site-specific age-depth models, it relies on stable pollen accumulation rates and is therefore highly sensitive to changes in vegetation. This may lead to incorrect placement of extinction events in sedimentary records, particularly when they occur contemporaneously with major climatic/vegetation transitions. We suggest that the preferred method of quantification should be accumulation rate, and that pollen abundance data should also be presented, particularly for periods of major vegetation change. This approach provides a more reliable record of past herbivore abundance independent of vegetation change, allowing extinction events to be more accurately placed in stratigraphic sequences.

  5. A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate

    PubMed Central

    Zhou, Xiaolin; Ding, Hongxia; Wu, Wanqing; Zhang, Yuanting

    2015-01-01

    Atrial fibrillation (AF), the most frequent cause of cardioembolic stroke, is increasing in prevalence as the population ages, and presents with a broad spectrum of symptoms and severity. The early identification of AF is an essential part for preventing the possibility of blood clotting and stroke. In this work, a real-time algorithm is proposed for accurately screening AF episodes in electrocardiograms. This method adopts heart rate sequence, and it involves the application of symbolic dynamics and Shannon entropy. Using novel recursive algorithms, a low-computational complexity can be obtained. Four publicly-accessible sets of clinical data (Long-Term AF, MIT-BIH AF, MIT-BIH Arrhythmia, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. The first database was selected as a training set; the receiver operating characteristic (ROC) curve was performed, and the best performance was achieved at the threshold of 0.639: the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and overall accuracy (ACC) were 96.14%, 95.73%, 97.03% and 95.97%, respectively. The other three databases were used for independent testing. Using the obtained decision-making threshold (i.e., 0.639), for the second set, the obtained parameters were 97.37%, 98.44%, 97.89% and 97.99%, respectively; for the third database, these parameters were 97.83%, 87.41%, 47.67% and 88.51%, respectively; the Sp was 99.68% for the fourth set. The latest methods were also employed for comparison. Collectively, results presented in this study indicate that the combination of symbolic dynamics and Shannon entropy yields a potent AF detector, and suggest this method could be of practical use in both clinical and out-of-clinical settings. PMID:26376341

  6. Prospective assessment of the false positive rate of the Australian snake venom detection kit in healthy human samples.

    PubMed

    Nimorakiotakis, Vasilios Bill; Winkel, Kenneth D

    2016-03-01

    The Snake Venom Detection Kit (SVDK; bioCSL Pty Ltd, Australia) distinguishes venom from the five most medically significant snake immunotypes found in Australia. This study assesses the rate of false positives that, by definition, refers to a positive assay finding in a sample from someone who has not been bitten by a venomous snake. Control unbroken skin swabs, simulated bite swabs and urine specimens were collected from 61 healthy adult volunteers [33 males and 28 females] for assessment. In all controls, simulated bite site and urine samples [a total of 183 tests], the positive control well reacted strongly within one minute and no test wells reacted during the ten minute incubation period. However, in two urine tests, the negative control well gave a positive reaction (indicating an uninterpretable test). A 95% confidence interval for the false positive rate, on a per-patient rate, derived from the findings of this study, would extend from 0% to 6% and, on a per-test basis, it would be 0-2%. It appears to be a very low incidence (0-6%) of intrinsic true false positives for the SVDK. The clinical impresssion of a high SVDK false positive rate may be mostly related to operator error. PMID:26690978

  7. Analysis of variables affecting unemployment rate and detecting for cluster in West Java, Central Java, and East Java in 2012

    NASA Astrophysics Data System (ADS)

    Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian

    2016-02-01

    The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.

  8. Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Yang, Min; Bai, Bowen; Li, Xiaoping; Zhou, Hui; Guo, Lixin

    2016-01-01

    Radio blackout during the re-entry has puzzled the aerospace industry for decades and has not yet been completely resolved. To achieve a continuous data link in the spacecraft's re-entry period, a simple and practicable communication method is proposed on the basis that (1) the electromagnetic-wave backscatter of the plasma sheath affects the voltage standing wave ratio (VSWR) of the antenna, and the backscatter is negatively correlated to transmission components, and (2) the transmission attenuation caused by the plasma sheath reduces the channel capacity. We detect the voltage standing wave ratio changes of the antenna and then adjust the information rate to accommodate the varying channel capacity, thus guaranteeing continuous transmission (for fewer critical data). The experiment was carried out in a plasma generator with an 18-cm-thick and 30-cm-diameter hollow propagation path, and the adaptive communication was implemented using spread spectrum frequency, shift key modulation with a variable spreading factor. The experimental results indicate that, when the over-threshold of VSWR was detected, the bit rate reduced to 250 bps from 4 Mbps automatically and the tolerated plasma density increased by an order of magnitude, which validates the proposed scheme. The proposed method has little additional cost, and the adaptive control does not require a feedback channel. The method is therefore applicable to data transmission in a single direction, such as that of a one-way telemetry system.

  9. Endoscopy Nurse Participation May Increase the Polyp Detection Rate by Second-Year Fellows during Screening Colonoscopies

    PubMed Central

    Kim, Tae Sun; Lee, Do Young; Yoon, Jang Hyuk; Park, Jung Ho; Kim, Hong Joo; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik; Lim, Jae Wan

    2012-01-01

    Background/Aims The aim of this study was to assess the effects of endoscopy nurse participation on polyp detection rate (PDR) and adenoma detection rate (ADR) of second-year fellows during screening colonoscopies. Methods This was a single-center, prospective, randomized study comparing a fellow alone and a fellow plus an endoscopy nurse as an additional observer during afternoon outpatient screening colonoscopies. The primary end points were PDR and ADR. Results One hundred ninety-one colonoscopies performed by a fellow alone and 192 colonoscopies performed by a fellow plus an endoscopy nurse were analyzed. The PDR was significantly higher when the nurse was involved (53.1% vs. 41.3%, p<0.05); however, there was no significant difference in the ADR between the two groups (38.5% vs. 29.8%, p=0.073). There was no difference in the percentage of patients with ≥2 polyps, advanced adenomas, polyp size, polyp location, and polyp shapes between the two groups. There was no difference in the PDR according to the level of experience of the endoscopy nurse. Conclusions Endoscopy nurse participation as an additional observer during screening colonoscopy performed by second-year fellow increases the PDR; however, the level of experience of the nurse was not an important factor. PMID:22844563

  10. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  11. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy

    SciTech Connect

    Andersen, Claus E.; Nielsen, Soeren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-15

    Purpose: The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Methods: Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with {sup 192}Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from {+-}5 to {+-}15 mm) were simulated in software in order to assess the ability of the system to detect errors. Results: For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when

  12. Monte Carlo simulations of the diurnal variation in seismic detection rate of sporadic meteoroid impacts on the moon

    NASA Technical Reports Server (NTRS)

    Oberst, J.; Nakamura, Y.

    1989-01-01

    The rate of detection of meteoroid impacts on the moon by the lunar seismic network shows a characteristic diurnal variation. Assuming that these meteoroids have a flux and a preimpact orbital distribution similar to that of fireballs observed by terrestrial camera networks, one can compute the expected diurnal variation for a given set of parameters that describe the seismic wave generation and transmission on the moon. An iterative process to match the theoretical variation with the observed one has led us to the following results: (1) the majority of the detected impact events occur within a closer range of the network than was believed earlier. This results in higher meteoroid flux estimates from lunar seismic data that agree with the terrestrially measured flux. (2) For meteoroid masses smaller than 1000 g, seismic amplitude is approximately proportional to the one-fifth power of the impact speed; for larger masses it is approximately proportional to the eight-fifth power, provided that the terrestrial meteor data used for analysis are not biased. (3) Seismic efficiency of meteoroids smaller than 1000 g is significantly less than that of large meteoroids. (4) Using orbits of fireballs that represent meteorites, we predict that the share of meteorites among the detected impacts is approximately 15 percent assuming that seismic efficiency of the high-density meteorites is the same as that of average meteoroids. A greatly increased seismic efficiency for these high-density objects is not likely.

  13. Detecting Glaucoma Progression From Localized Rates of Retinal Changes in Parametric and Nonparametric Statistical Framework With Type I Error Control

    PubMed Central

    Balasubramanian, Madhusudhanan; Arias-Castro, Ery; Medeiros, Felipe A.; Kriegman, David J.; Bowd, Christopher; Weinreb, Robert N.; Holst, Michael; Sample, Pamela A.; Zangwill, Linda M.

    2014-01-01

    Purpose. We evaluated three new pixelwise rates of retinal height changes (PixR) strategies to reduce false-positive errors while detecting glaucomatous progression. Methods. Diagnostic accuracy of nonparametric PixR-NP cluster test (CT), PixR-NP single threshold test (STT), and parametric PixR-P STT were compared to statistic image mapping (SIM) using the Heidelberg Retina Tomograph. We included 36 progressing eyes, 210 nonprogressing patient eyes, and 21 longitudinal normal eyes from the University of California, San Diego (UCSD) Diagnostic Innovations in Glaucoma Study. Multiple comparison problem due to simultaneous testing of retinal locations was addressed in PixR-NP CT by controlling family-wise error rate (FWER) and in STT methods by Lehmann-Romano's k-FWER. For STT methods, progression was defined as an observed progression rate (ratio of number of pixels with significant rate of decrease; i.e., red-pixels, to disk size) > 2.5%. Progression criterion for CT and SIM methods was presence of one or more significant (P < 1%) red-pixel clusters within disk. Results. Specificity in normals: CT = 81% (90%), PixR-NP STT = 90%, PixR-P STT = 90%, SIM = 90%. Sensitivity in progressing eyes: CT = 86% (86%), PixR-NP STT = 75%, PixR-P STT = 81%, SIM = 39%. Specificity in nonprogressing patient eyes: CT = 49% (55%), PixR-NP STT = 56%, PixR-P STT = 50%, SIM = 79%. Progression detected by PixR in nonprogressing patient eyes was associated with early signs of visual field change that did not yet meet our definition of glaucomatous progression. Conclusions. The PixR provided higher sensitivity in progressing eyes and similar specificity in normals than SIM, suggesting that PixR strategies can improve our ability to detect glaucomatous progression. Longer follow-up is necessary to determine whether nonprogressing eyes identified as progressing by these methods will develop glaucomatous progression. (ClinicalTrials.gov number, NCT00221897.) PMID:24519427

  14. Detection rate and outcome of colonic serrated epithelial changes in patients with ulcerative colitis or Crohn’s colitis

    PubMed Central

    Johnson, D. H.; Khanna, S.; Smyrk, T. C.; Loftus, E. V.; Anderson, K. S.; Mahoney, D. W.; Ahlquist, D. A.; Kisiel, J. B.

    2016-01-01

    SUMMARY Background Chronic ulcerative colitis (CUC) and colonic Crohn’s disease (CD) increase colorectal neoplasia (CRN) risk. While sessile serrated polyp (SSP) is a known cancer precursor, serrated epithelial changes (SEC) are of uncertain prevalence and neoplastic risk. Aim To assess the serrated lesion detection rates in CUC and CD and documented incidence of subsequent CRN in a retrospective, single-centre cohort study. Methods Patients were identified by a central diagnostic index and pathology review confirmed SEC, SSP, CUC and CD diagnoses from 2006–12. Matched controls were identified from among all CUC and CD patients having colonoscopy during the second half of the time period. All were followed for incident CRN, estimated by the Kaplan–Meier method. Results Between 2006 and 2012, 79 SEC and 10 SSP cases were identified. Detection rates were estimated to be 10/1000 and 2/1000 patients, for SEC and SSP respectively, among 4208 unique CUC or CD patients having colonoscopy from 2010–12. With only 10 cases, SSP patients were not further analysed. Cumulative incidence of subsequent CRN at 1 and 3 years was 12% (95% CI, 0–30%) and 30% (3–57%), respectively, in SEC patients compared to 4% (0–12%) and 9% (0–23%), respectively, in CUC or CD controls (P = 0.047, log-rank). However, this statistical difference was not significant after patients were stratified for history of prior or synchronous dysplasia (P = 0.09). Conclusions Serrated epithelial changes and sessile serrated polyps are uncommonly detected by colonoscopy in chronic ulcerative colitis and Crohn’s disease patients. Histology with changes of serrated epithelium may be associated with risk of subsequent colorectal neoplasia, however further studies are needed to explore this relationship. PMID:24779703

  15. How to Calculate Renyi Entropy from Heart Rate Variability, and Why it Matters for Detecting Cardiac Autonomic Neuropathy

    PubMed Central

    Cornforth, David J.;  Tarvainen, Mika P.; Jelinek, Herbert F.

    2014-01-01

    Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to an abnormal control of heart rate. An open question is to what extent this condition is detectable from heart rate variability (HRV), which provides information only on successive intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG recording. A variety of measures may be extracted from HRV, including time domain, frequency domain, and more complex non-linear measures. Among the latter, Renyi entropy has been proposed as a suitable measure that can be used to discriminate CAN from controls. However, all entropy methods require estimation of probabilities, and there are a number of ways in which this estimation can be made. In this work, we calculate Renyi entropy using several variations of the histogram method and a density method based on sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and compare their effectiveness in separating the different classes of participants. We found that the histogram method using single RR intervals yields an entropy measure that is either incapable of discriminating CAN from controls, or that it provides little information that could not be gained from the SD of the RR intervals. In contrast, probabilities calculated using a density method based on sequences of RR intervals yield an entropy measure that provides good separation between groups of participants and provides information not available from the SD. The main contribution of this work is that different approaches to calculating probability may affect the success of detecting disease. Our results bring new clarity to the methods used to calculate the Renyi entropy in general, and in particular, to the successful detection of CAN. PMID:25250311

  16. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development

    PubMed Central

    Brändle, Johanna; Preissl, Hubert; Draganova, Rossitza; Ortiz, Erick; Kagan, Karl O.; Abele, Harald; Brucker, Sara Y.; Kiefer-Schmidt, Isabelle

    2015-01-01

    Fetal behavioral states are defined by fetal movement and heart rate variability (HRV). At 32 weeks of gestational age (GA) the distinction of four fetal behavioral states represented by combinations of quiet or active sleep or awakeness is possible. Prior to 32 weeks, only periods of fetal activity and quiesence can be distinguished. The increasing synchronization of fetal movement and HRV reflects the development of the autonomic nervous system (ANS) control. Fetal magnetocardiography (fMCG) detects fetal heart activity at high temporal resolution, enabling the calculation of HRV parameters. This study combined the criteria of fetal movement with the HRV analysis to complete the criteria for fetal state detection. HRV parameters were calculated including the standard deviation of the normal-to-normal R–R interval (SDNN), the mean square of successive differences of the R–R intervals (RMSSD, SDNN/RMSSD ratio, and permutation entropy (PE) to gain information about the developing influence of the ANS within each fetal state. In this study, 55 magnetocardiograms from healthy fetuses of 24–41 weeks’ GA were recorded for up to 45 min using a fetal biomagnetometer. Fetal states were classified based on HRV and movement detection. HRV parameters were calculated for each state. Before GA 32 weeks, 58.4% quiescence and 41.6% activity cycles were observed. Later, 24% quiet sleep state (1F), 65.4% active sleep state (2F), and 10.6% active awake state (4F) were observed. SDNN increased over gestation. Changes of HRV parameters between the fetal behavioral states, especially between 1F and 4F, were statistically significant. Increasing fetal activity was confirmed by a decrease in PE complexity measures. The fHRV parameters support the differentiation between states and indicate the development of autonomous nervous control of heart rate function. PMID:25904855

  17. Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.

    2015-08-01

    In 2016 NASA will launch the InSight discovery-class mission, which aims to study the detailed internal structure of Mars for the first time. Short- and long-period seismometers form a major component of InSight's payload and have the potential to detect seismic waves generated by meteorite impacts. Large globally detectable impact events producing craters with diameters of ∼ 100 m have been investigated previously and are likely to be rare (Teanby, N.A., Wookey, J. [2011]. Phys. Earth Planet. Int. 186, 70-80), but smaller impacts producing craters in the 0.5-20 m range are more numerous and potentially occur sufficiently often to be detectable on regional scales (≲1000 km). At these distances, seismic waves will have significant high frequency content and will be suited to detection with InSight's short-period seismometer SEIS-SP. In this paper I estimate the current martian crater production function from observations of new craters (Malin, M.C. et al. [2006]. Science 314, 1573-1577; Daubar, I.J. et al. [2013]. Icarus 225, 506-516), model results (Williams, J.P., Pathare, A.V., Aharonson, O. [2014]. Icarus 235, 23-36), and standard isochrons (Hartmann, W.K. [2005]. Icarus 174, 294-320). These impact rates are combined with an empirical relation between impact energy, source-receiver distance, and peak seismogram amplitude, derived from a compilation of seismic recordings of terrestrial and lunar impacts, chemical explosions, and nuclear tests. The resulting peak seismogram amplitude scaling law contains significant uncertainty, but can be used to predict impact detection rates. I estimate that for a short-period instrument, with a noise spectral density of 10-8 ms-2 Hz-1/2 in the 1-16 Hz frequency band, approximately 0.1-30 regional impacts per year should be detectable with a nominal value of 1-3 impacts per year. Therefore, small regional impacts are likely to be a viable source of seismic energy for probing Mars' crustal and upper mantle structure. This is

  18. Rates and characteristics of radiographically detected intracerebral cavernous malformations after cranial radiation therapy in pediatric cancer patients.

    PubMed

    Gastelum, Erica; Sear, Katherine; Hills, Nancy; Roddy, Erika; Randazzo, Dominica; Chettout, Nassim; Hess, Christopher; Cotter, Jennifer; Haas-Kogan, Daphne A; Fullerton, Heather; Mueller, Sabine

    2015-06-01

    Rates and characteristics of intracerebral cavernous malformations after cranial radiation therapy remain poorly understood. Herein we report on intracerebral cavernous malformations detected on follow-up imaging in pediatric cancer patients who received cranial radiation therapy at age ≤18 years from 1980 to 2009. Through chart reviews (n = 362) and phone interviews (n = 104) of a retrospective cohort, we identified 10 patients with intracerebral cavernous malformations. The median latency time for detection of intracerebral cavernous malformations after cranial radiation therapy was 12 years (range 1-24 years) at a median age of 21.4 years (interquartile range = 15-28). The cumulative incidence was 3% (95% confidence interval 1%-8%) at 10 years post cranial radiation therapy and 14% (95% confidence interval 7%-26%) at 15 years. Three patients underwent surgical resection. Two surgical specimens were pathologically similar to sporadically occurring intracerebral cavernous malformations; one was consistent with capillary telangiectasia. Intracerebral cavernous malformations are common after cranial radiation therapy and can show a spectrum of histologic features. PMID:25122111

  19. In Vivo Mn-Enhanced MRI for Early Tumor Detection and Growth Rate Analysis in a Mouse Medulloblastoma Model12

    PubMed Central

    Suero-Abreu, Giselle A.; Praveen Raju, G.; Aristizábal, Orlando; Volkova, Eugenia; Wojcinski, Alexandre; Houston, Edward J.; Pham, Diane; Szulc, Kamila U.; Colon, Daniel; Joyner, Alexandra L.; Turnbull, Daniel H.

    2014-01-01

    Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm3. Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain. PMID:25499213

  20. Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier.

    PubMed

    Li, Gang; Chung, Wan-Young

    2013-01-01

    Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use. PMID:24316564

  1. Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier

    PubMed Central

    Li, Gang; Chung, Wan-Young

    2013-01-01

    Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use. PMID:24316564

  2. More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses

    PubMed Central

    Schildknecht, Konstantin; Tabelow, Karsten; Dickhaus, Thorsten

    2016-01-01

    Signal detection in functional magnetic resonance imaging (fMRI) inherently involves the problem of testing a large number of hypotheses. A popular strategy to address this multiplicity is the control of the false discovery rate (FDR). In this work we consider the case where prior knowledge is available to partition the set of all hypotheses into disjoint subsets or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If the proportion of true null hypotheses differs between families, this structural information can be used to increase statistical power. We propose a two-stage multiple test procedure which first excludes those families from the analysis for which there is no strong evidence for containing true alternatives. We show control of the family-wise error rate at this first stage of testing. Then, at the second stage, we proceed to test the hypotheses within each non-excluded family and obtain asymptotic control of the FDR within each family at this second stage. Our main mathematical result is that this two-stage strategy implies asymptotic control of the FDR with respect to all hypotheses. In simulations we demonstrate the increased power of this new procedure in comparison with established procedures in situations with highly unbalanced families. Finally, we apply the proposed method to simulated and to real fMRI data. PMID:26914144

  3. Genotype–phenotype associations: substitution models to detect evolutionary associations between phenotypic variables and genotypic evolutionary rate

    PubMed Central

    O'Connor, Timothy D.; Mundy, Nicholas I.

    2009-01-01

    Motivation: Mapping between genotype and phenotype is one of the primary goals of evolutionary genetics but one that has received little attention at the interspecies level. Recent developments in phylogenetics and statistical modelling have typically been used to examine molecular and phenotypic evolution separately. We have used this background to develop phylogenetic substitution models to test for associations between evolutionary rate of genotype and phenotype. We do this by creating hybrid rate matrices between genotype and phenotype. Results: Simulation results show our models to be accurate in detecting genotype–phenotype associations and robust for various factors that typically affect maximum likelihood methods, such as number of taxa, level of relevant signal, proportion of sites affected and length of evolutionary divergence. Further, simulations show that our method is robust to homogeneity assumptions. We apply the models to datasets of male reproductive system genes in relation to mating systems of primates. We show that evolution of semenogelin II is significantly associated with mating systems whereas two negative control genes (cytochrome b and peptidase inhibitor 3) show no significant association. This provides the first hybrid substitution model of which we are aware to directly test the association between genotype and phenotype using a phylogenetic framework. Availability: Perl and HYPHY scripts are available upon request from the authors. Contact: to252@cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19478022

  4. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  5. Recruitment Methods and Show Rates to a Prostate Cancer Early Detection Program for High-Risk Men: A Comprehensive Analysis

    PubMed Central

    Giri, Veda N.; Coups, Elliot J.; Ruth, Karen; Goplerud, Julia; Raysor, Susan; Kim, Taylor Y.; Bagden, Loretta; Mastalski, Kathleen; Zakrzewski, Debra; Leimkuhler, Suzanne; Watkins-Bruner, Deborah

    2009-01-01

    Purpose Men with a family history (FH) of prostate cancer (PCA) and African American (AA) men are at higher risk for PCA. Recruitment and retention of these high-risk men into early detection programs has been challenging. We report a comprehensive analysis on recruitment methods, show rates, and participant factors from the Prostate Cancer Risk Assessment Program (PRAP), which is a prospective, longitudinal PCA screening study. Materials and Methods Men 35–69 years are eligible if they have a FH of PCA, are AA, or have a BRCA1/2 mutation. Recruitment methods were analyzed with respect to participant demographics and show to the first PRAP appointment using standard statistical methods Results Out of 707 men recruited, 64.9% showed to the initial PRAP appointment. More individuals were recruited via radio than from referral or other methods (χ2 = 298.13, p < .0001). Men recruited via radio were more likely to be AA (p<0.001), less educated (p=0.003), not married or partnered (p=0.007), and have no FH of PCA (p<0.001). Men recruited via referrals had higher incomes (p=0.007). Men recruited via referral were more likely to attend their initial PRAP visit than those recruited by radio or other methods (χ2 = 27.08, p < .0001). Conclusions This comprehensive analysis finds that radio leads to higher recruitment of AA men with lower socioeconomic status. However, these are the high-risk men that have lower show rates for PCA screening. Targeted motivational measures need to be studied to improve show rates for PCA risk assessment for these high-risk men. PMID:19758657

  6. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis.

    PubMed

    Treglia, Giorgio; Villani, Maria Felicia; Giordano, Alessandro; Rufini, Vittoria

    2012-12-01

    Several studies evaluated the diagnostic performance of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET), and positron emission tomography/computed tomography (PET/CT) in detecting recurrent medullary thyroid carcinoma (MTC) with conflicting results. Aim of our study is to meta-analyze published data about this topic. A comprehensive computer literature search of studies published in PubMed/MEDLINE, Scopus, and Embase databases through December 2011 and regarding FDG PET or PET/CT in patients with suspected recurrent MTC was carried out. Pooled detection rate (DR) on a per patient-based analysis was calculated to measure the diagnostic performance of FDG PET and PET/CT in this setting. A sub-analysis considering PET device used, serum calcitonin, carcino-embryonic antigen (CEA), calcitonin doubling time (CTDT), and CEA doubling time (CEADT) values was also performed. Twenty-four studies comprising 538 patients with suspected recurrent MTC were included. DR of FDG PET or PET/CT in suspected recurrent MTC on a per patient-based analysis was 59 % (95 % confidence interval: 54-63 %). Heterogeneity between the studies was revealed. DR increased in patients with serum calcitonin ≥ 1,000 ng/L (75 %), CEA ≥ 5 ng/ml (69 %), CTDT <12 months (76 %), and CEADT <24 months (91 %). In patients with suspected recurrent MTC FDG PET and PET/CT are associated with a non-optimal DR since about 40 % of suspected recurrent MTC remain usually unidentified. However, FDG PET and PET/CT could modify the patient management in a certain number of recurrent MTC because these methods are often performed after negative conventional imaging studies. DR of FDG PET and PET/CT increases in patients with higher calcitonin and CEA values and lower CTDT and CEADT values, suggesting that these imaging methods could be very helpful in patients with more aggressive disease. PMID:22527889

  7. TOLERANCE TO COCAINE’S EFFECTS FOLLOWING CHRONIC ADMINISTRATION OF A DOSE WITHOUT DETECTED EFFECTS ON RESPONSE RATE OR PAUSE

    PubMed Central

    Minervini, Vanessa; Branch, Marc N.

    2014-01-01

    To observe tolerance to drug effects on operant behavior, the dose that researchers have often selected for chronic administration is one that disrupts, but does not abolish, responding. Some evidence suggests that tolerance may develop after chronic administration of relatively smaller doses. The purpose of the present experiment was to assess systematically effects of chronic administration of a dose without detected effect on responding. Specifically, response rates and postreinforcement pauses of five pigeons key pecking under a three-component multiple fixed-ratio schedule of food reinforcement were observed under chronic cocaine administration. We evaluated the effects of a range of doses (1.0 mg/kg to 17.0 mg/kg) during acute administration. The largest dose that failed to alter responding acutely then was administered chronically (1.0 mg/kg for one pigeon, 3.0 mg/kg for three pigeons, and 5.6 mg/kg for one pigeon). After 30 consecutive sessions of chronic administration, smaller and larger doses occasionally were substituted for the chronic dose. Pigeons then received presession saline administration for 30 consecutive sessions, and the postchronic effects of the series of doses on responding were determined. All subjects developed tolerance to doses of cocaine that initially had caused large decreases in rate, with the magnitude of the effects varying across components of the multiple schedule and subjects. Specifically, tolerance generally was greatest in the components with smaller ratios. Following postchronic saline administration, tolerance was usually diminished. Overall, the results demonstrate that under these conditions, repeated experience with disruptive effects of cocaine on food-maintained responding is not a necessary factor in the development of tolerance. PMID:24019029

  8. Tolerance to cocaine's effects following chronic administration of a dose without detected effects on response rate or pause.

    PubMed

    Minervini, Vanessa; Branch, Marc N

    2013-11-01

    To observe tolerance to drug effects on operant behavior, the dose that researchers have often selected for chronic administration is one that disrupts, but does not abolish, responding. Some evidence suggests that tolerance may develop after chronic administration of relatively smaller doses. The purpose of the present experiment was to assess systematically effects of chronic administration of a dose without detected effect on responding. Specifically, response rates and post-reinforcement pauses of five pigeons key pecking under a three-component multiple fixed-ratio schedule of food reinforcement were observed under chronic cocaine administration. We evaluated the effects of a range of doses (1.0 mg/kg to 17.0  mg/kg) during acute administration. The largest dose that failed to alter responding acutely then was administered chronically (1.0  mg/kg for 1 pigeon, 3.0  mg/kg for 3 pigeons, and 5.6  mg/kg for 1 pigeon). After 30 consecutive sessions of chronic administration, smaller and larger doses occasionally were substituted for the chronic dose. Pigeons then received pre-session saline administration for 30 consecutive sessions, and the post-chronic effects of the series of doses on responding were determined. All subjects developed tolerance to doses of cocaine that initially had caused large decreases in rate, with the magnitude of the effects varying across components of the multiple schedule and subjects. Specifically, tolerance generally was greatest in the components with smaller ratios. Following post-chronic saline administration, tolerance was usually diminished. Overall, the results demonstrate that under these conditions, repeated experience with disruptive effects of cocaine on food-maintained responding is not a necessary factor in the development of tolerance. PMID:24019029

  9. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual’s state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  10. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy.

    PubMed

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual's state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities. PMID:22419117

  11. Detection rates of high-grade prostate cancer during subsequent screening visits. Results of the European Randomized Screening Study for Prostate Cancer.

    PubMed

    van der Kwast, Theodorus H; Ciatto, Stefano; Martikainen, Paula M; Hoedemaeker, Robert; Laurila, Marita; Pihl, Carl-Gustaph; Hugosson, Jonas; Neetens, Ingrid; Nelen, Vera; Di Lollo, Simonetta; Roobol, Monique J; Määtänen, Liisa; Santonja, Carlos; Moss, Sue; Schröder, Fritz H

    2006-05-15

    Screening for prostate cancer using prostate-specific antigen (PSA) tests has led to a stage and grade shift as compared to the pre-PSA era. Effectiveness of screening for prostate cancer should be manifested by a reduction in detection rate of aggressive cancers during subsequent screening. In 6 centers of the European Randomized Screening study for Prostate Cancer, a total of 58,710 men were tested for prostate cancer. Screening centers differed with regard to age-range, screening interval and biopsy indications. During the 2nd visit, the proportion of Gleason score 6 cancers increased from 62.5 to 75%, mainly at the expense of Gleason score 7 cancers. High-grade (Gleason score 8-10) cancer detection rates varied per screening center during the 1st visit from 5.1 to 41.1, and during the 2nd visit from 6.4 to 29.3/10,000 men. The overall detection rate of high-grade cancers showed a reduction during the 2nd visit from 26 to 12/10,000 men, an effect mainly attributable to the screening center with the highest cancer detection rate (i.e. 507/10,000 men). Variations in detection rates among screening centers related among others to biopsy compliance and age range. PMID:16353141

  12. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder.

    PubMed

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y C; Hou, Sanna

    2016-02-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  13. Effects of fixed time AI and AI at detected estrus on conception rate in smallholder zebu and crossbred heifers and cows subjected to double PGF2α administration.

    PubMed

    Gugssa, Tadesse; Ashebir, Gebregiorgis; Yayneshet, Tesfay

    2016-08-01

    The study was conducted to evaluate estrus response, time to the onset of estrus, and conception rate at fixed time AI and AI at detected estrus in local and crossbred heifers and cows subjected to double administration of PGF2α. One hundred twenty local (heifers, n = 27; cows, n = 33) and crossbreds (heifers, n = 21; cows, n = 39) were used for the study. About 63 and 85.7 % of the local and crossbred heifers, respectively, exhibited estrus. Similarly, all crossbred cows and 90.9 % of local cows showed estrus. Most heifers came to estrus between 48 and 72 h while cows exhibited behavioral signs of estrus between 72 and 96 h. AI at detected estrus resulted in higher conception rate than fixed time AI. Pregnancy per artificial insemination was higher in AI at detected estrus than fixed time AI. Accurate estrus detection followed by insemination are crucial factors in maximizing pregnancy, and this study has demonstrated that conception rate in smallholder heifers and cows should be inseminated following estrus detection to maximize the conception rate of the animals. PMID:27184042

  14. Detection of "punctuated equilibrium" by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny.

    PubMed

    Bokma, Folmer

    2008-11-01

    Algorithms are presented to simultaneously estimate probabilities of speciation and extinction, rates of anagenetic and cladogenetic phenotypic evolution, as well as ancestral character states, from a complete ultrametric species-level phylogeny with dates assigned to all bifurcations and one or more phenotypes in three or more extant species, using Metropolis-Hastings Markov Chain Monte Carlo sampling. The algorithms also estimate missing phenotypes of extant species and numbers of speciation events that occurred on all branches of the phylogeny. The algorithms are discussed and their performance is evaluated using simulated data. That evaluation shows that precise estimation of rates of evolution of one or a few phenotypes requires large phylogenies. Estimation accuracy improves with the number of species on the phylogeny. PMID:18752617

  15. Bayesian belief network for CO2 leak detection by near-surface flux rates for CO2 and perfluorocarbon (PFC) tracer

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Small, M. J.; Ogretim, E.; Gray, D. D.; Bromhal, G. S.; Strazisar, B. R.; Wells, A. W.

    2010-12-01

    To incorporate the use of multiple geologic sequestration monitoring techniques, a Bayesian Belief Network (BBN) for leak detection inference is applied to integrate the information provided by different techniques deployed at a site. In this study, two monitoring methods, near-surface soil CO2 flux and perfluorocarbon (PFC) tracer concentration, are included in the BBN. First, possible near-surface flux rates for CO2 and PFC tracer as a function of distance from a leakage point are simulated by TOUGH2, given different leakage rates and permeabilities. Then, the natural near-surface CO2 flux and background PFC tracer concentration measured at the Zero Emission Research and Technology (ZERT) site are used to determine critical values for leak inference and to calculate the probabilities of leak detection given a monitoring network. A BBN of leak detection is established by combing the TOUGH2 simulations and the background characterization of near-surface CO2 flux and PFC tracer at the sequestration site. The results show a positive correlation between the detection abilities of PFC tracer and soil CO2 flux, but the PFC tracer is more sensitive for detecting a leak in most cases. The BBN of leak detection including both soil CO2 flux and PFC tracer concentration gives an integrated probability estimation of leak detection for different permeability and leakage rates for a given monitoring network. A BBN developed using the proposed methodology can be used to help site engineers and decision makers to evaluate leakage signals and the risk of undetected leakage, given a suite of monitoring techniques and site conditions.

  16. The detection and upgrade rates of prostate adenocarcinoma following transperineal template-guided prostate biopsy – a tertiary referral centre experience

    PubMed Central

    Telford, Robert; Viney, Richard; Patel, Prashant

    2016-01-01

    Introduction We aim to present transperineal template-guided prostate biopsy (template biopsy) outcomes at a tertiary referral centre. Furthermore, to identify the detection rate of prostate cancer in those with a previous negative transrectal ultrasound guided prostate biopsy and the upgrade rate of those on active surveillance for Gleason 3 + 3 = 6 prostate adenocarcinoma. Material and methods We conducted a prospective study of 200 consecutive men who underwent template biopsy over a 22-month period in a tertiary referral centre, using a standard 24 region template prostate biopsy technique. Indications and histology results, as well as complications, were recorded. Results Median age was 67 years and median PSA was 10 ng/mL. Overall detection rate was 47%. 39.5% of cases with previous negative transrectal biopsies were found to have prostate adenocarcinoma. 47.5% of cases on active surveillance for Gleason 3 + 3 = 6 prostate adenocarcinoma were upgraded. The most frequent complication was acute urinary retention at a rate of 12.5%, however, the use of a single prophylactic dose of tamsulosin was found to be beneficial, with 13 cases needed to treat to prevent one episode. Conclusions Template biopsies are safe and efficacious with an overall detection rate of 47% in the present series. Due to the high detection rate, one must consider template biopsy following one negative transrectal biopsy where there is persistent clinical suspicion. Furthermore, those considering active surveillance for Gleason 3 + 3 = 6 disease should be offered template biopsy to confirm the grade of their disease. PMID:27123325

  17. Influence of the pointing direction and detector sensitivity variations on the detection rate of a double station meteor camera

    NASA Astrophysics Data System (ADS)

    Albin, T.; Koschny, D.; Drolshagen, G.; Soja, R.; Srama, R.; Poppe, B.

    2015-01-01

    The Canary Islands Long-Baseline Observatory (CILBO) is a double station meteor observation site on Tenerife and La Palma (Koschny et al., 2013; Koschny et al., 2014). Meteors are detected within the 40 ms long video frames of the identically built cameras using MetRec (Molau, 1999). MOTS (version 3, Koschny & Diaz, 2002) is used to determine the meteor trajectories of double-station observations. First scientific results regarding the velocity distribution and meteoroid flux have been published by Drolshagen et al., 2014 and Ott et al., 2014. Both authors found effects related to the Apex direction, such as an increasing number of detections in the morning hours. Sporadic meteors from the Apex cause additional observational bias, including in the velocity-magnitude domain and the meteor trail length determination. We show how the detection threshold conditions vary depending on the pointing direction of the cameras for both CILBO cameras. The angular velocity distribution of the meteors depends on the camera orientation. Meteors with a smaller angular velocity illuminate less CCD pixels in the same time interval than faster meteors causing a higher Signal-to-Noise ratio and consequently better detection threshold conditions. Additionally, we analyzed the detection distribution within the field of view of the CILBO cameras. We quantified this effect, which can be attributed mainly to vignetting in the wide-angle system.

  18. The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Mandel, I.

    2016-08-01

    We explore the predictions for detectable gravitational-wave signals from merging binary black holes formed through chemically homogeneous evolution in massive short-period stellar binaries. We find that ˜500 events per year could be detected with advanced ground-based detectors operating at full sensitivity. We analyse the distribution of detectable events, and conclude that there is a very strong preference for detecting events with nearly equal components (mass ratio >0.66 at 90 per cent confidence in our default model) and high masses (total source-frame mass between 57 and 103 M⊙ at 90 per cent confidence). We consider multiple alternative variations to analyse the sensitivity to uncertainties in the evolutionary physics and cosmological parameters, and conclude that while the rates are sensitive to assumed variations, the mass distributions are robust predictions. Finally, we consider the recently reported results of the analysis of the first 16 double-coincident days of the O1 LIGO (Laser Interferometer Gravitational-wave Observatory) observing run, and find that this formation channel is fully consistent with the inferred parameters of the GW150914 binary black hole detection and the inferred merger rate.

  19. The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Mandel, I.

    2016-08-01

    We explore the predictions for detectable gravitational-wave signals from merging binary black holes formed through chemically homogeneous evolution in massive short-period stellar binaries. We find that $\\sim 500$ events per year could be detected with advanced ground-based detectors operating at full sensitivity. We analyze the distribution of detectable events, and conclude that there is a very strong preference for detecting events with nearly equal components (mass ratio $>0.66$ at 90\\% confidence in our default model) and high masses (total source-frame mass between $57$ and $103\\, M_\\odot$ at 90\\% confidence). We consider multiple alternative variations to analyze the sensitivity to uncertainties in the evolutionary physics and cosmological parameters, and conclude that while the rates are sensitive to assumed variations, the mass distributions are robust predictions. Finally, we consider the recently reported results of the analysis of the first 16 double-coincident days of the O1 LIGO (Laser Interferometer Gravitational-wave Observatory) observing run, and find that this formation channel is fully consistent with the inferred parameters of the GW150914 binary black hole detection and the inferred merger rate.

  20. The chemically homogeneous evolutionary channel for binary black hole mergers: Rates and Properties of gravitational-wave events detectable by advanced LIGO

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Mandel, I.

    2016-05-01

    We explore the predictions for detectable gravitational-wave signals from merging binary black holes formed through chemically homogeneous evolution in massive short-period stellar binaries. We find that ˜500 events per year could be detected with advanced ground-based detectors operating at full sensitivity. We analyze the distribution of detectable events, and conclude that there is a very strong preference for detecting events with nearly equal components (mass ratio >0.66 at 90% confidence in our default model) and high masses (total source-frame mass between 57 and 103 M⊙ at 90% confidence). We consider multiple alternative variations to analyze the sensitivity to uncertainties in the evolutionary physics and cosmological parameters, and conclude that while the rates are sensitive to assumed variations, the mass distributions are robust predictions. Finally, we consider the recently reported results of the analysis of the first 16 double-coincident days of the O1 LIGO observing run, and find that this formation channel is fully consistent with the inferred parameters of the GW150914 binary black hole detection and the inferred merger rate.

  1. The effect of the light size and telecommunication rate on homodyne detection efficiency in the satellite-to-ground laser communication

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoping; Sun, Jianfeng; Zhi, Yanan; Lu, Wei; Xu, Qian; Liu, Liren

    2013-09-01

    Atmospheric turbulence influences the wave-front, and reduces homodyne detection efficiency and bit error rate in the Satellite-to-Ground Laser Communication. Free-space differential interference structure based on differential phase shift keying (DPSK) is applied in the optical signal receiver. The free-space Mach-Zehnder delay interferometer without lens is suited for differential delay which is equal to the one bit period. Differential information is obtained by the subtraction of the two successive wave-front phases when made to interfere. Differential distance at the interference receiver is varied with transmission rate from satellite to ground. And through the receiving telescope, the spot size of incident signal light within the interference became small than before, which influences the interference efficiency of the two unequal branches. So that, it is significant for increasing homodyne efficiency to determine the optical signal rate and choose the magnification of receiving telescope. In this paper, the effect of the spot size of incident light and transmission data rate on homodyne detection efficiency is analysed. By the simulation result of efficiency in different spot size and transmission date of incident light, the homodyne efficiency will be predicted in the given data rate and light spot size on the basis of experiment setup. And application condition of free-space differential structure at DPSK differential receiver is proposed.

  2. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational-Wave Detection Rates by Exploiting the Mass Distribution of Neutron Star and Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Bartos, Imre; Marka, Szabolcs; LIGO Collaboration; Virgo Collaboration

    2016-03-01

    We explore the advantage of focusing on regions of the parameter space in gravitational-wave searches for the binary mergers of neutron stars and black holes. For neutron star binaries, we show that taking advantage of their narrow observed mass distribution could improve detection rates, in some cases by more than 50%. A reduced template bank can also represent significant improvement in technical cost. We present a detailed search method using binary mass distribution to incorporate information on the mass distribution.

  3. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay

    PubMed Central

    Schwaederle, Maria; Husain, Hatim; Fanta, Paul T.; Piccioni, David E.; Kesari, Santosh; Schwab, Richard B.; Banks, Kimberly C.; Lanman, Richard B.; Talasaz, AmirAli; Parker, Barbara A.; Kurzrock, Razelle

    2016-01-01

    Analysis of cell-free DNA using next-generation sequencing (NGS) is a powerful tool for the detection/monitoring of alterations present in circulating tumor DNA (ctDNA). Plasma extracted from 171 patients with a variety of cancers was analyzed for ctDNA (54 genes and copy number variants (CNVs) in three genes (EGFR, ERBB2 and MET)). The most represented cancers were lung (23%), breast (23%), and glioblastoma (19%). Ninety-nine patients (58%) had at least one detectable alteration. The most frequent alterations were TP53 (29.8%), followed by EGFR (17.5%), MET (10.5%), PIK3CA (7%), and NOTCH1 (5.8%). In contrast, of 222 healthy volunteers, only one had an aberration (TP53). Ninety patients with non-brain tumors had a discernible aberration (65% of 138 patients; in 70% of non-brain tumor patients with an alteration, the anomaly was potentially actionable). Interestingly, nine of 33 patients (27%) with glioblastoma had an alteration (6/33 (18%) potentially actionable). Overall, sixty-nine patients had potentially actionable alterations (40% of total; 69.7% of patients (69/99) with alterations); 68 patients (40% of total; 69% of patients with alterations), by a Food and Drug Administration (FDA) approved drug. In summary, 65% of diverse cancers (as well as 27% of glioblastomas) had detectable ctDNA aberration(s), with the majority theoretically actionable by an approved agent. PMID:26848768

  4. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases.

    PubMed

    Schadt, Eric E; Banerjee, Onureena; Fang, Gang; Feng, Zhixing; Wong, Wing H; Zhang, Xuegong; Kislyuk, Andrey; Clark, Tyson A; Luong, Khai; Keren-Paz, Alona; Chess, Andrew; Kumar, Vipin; Chen-Plotkin, Alice; Sondheimer, Neal; Korlach, Jonas; Kasarskis, Andrew

    2013-01-01

    Current generation DNA sequencing instruments are moving closer to seamlessly sequencing genomes of entire populations as a routine part of scientific investigation. However, while significant inroads have been made identifying small nucleotide variation and structural variations in DNA that impact phenotypes of interest, progress has not been as dramatic regarding epigenetic changes and base-level damage to DNA, largely due to technological limitations in assaying all known and unknown types of modifications at genome scale. Recently, single-molecule real time (SMRT) sequencing has been reported to identify kinetic variation (KV) events that have been demonstrated to reflect epigenetic changes of every known type, providing a path forward for detecting base modifications as a routine part of sequencing. However, to date no statistical framework has been proposed to enhance the power to detect these events while also controlling for false-positive events. By modeling enzyme kinetics in the neighborhood of an arbitrary location in a genomic region of interest as a conditional random field, we provide a statistical framework for incorporating kinetic information at a test position of interest as well as at neighboring sites that help enhance the power to detect KV events. The performance of this and related models is explored, with the best-performing model applied to plasmid DNA isolated from Escherichia coli and mitochondrial DNA isolated from human brain tissue. We highlight widespread kinetic variation events, some of which strongly associate with known modification events, while others represent putative chemically modified sites of unknown types. PMID:23093720

  5. High detection rates of cryptococcal antigen in pulmonary cryptococcosis by Eiken latex agglutination test with pronase pretreatment.

    PubMed

    Kohno, S; Yasuoka, A; Koga, H; Kaku, M; Maesaki, S; Tanaka, K; Mitsutake, K; Matsuda, H; Hara, K

    1993-08-01

    Two different kits for the detection of serum cryptococcal antigen in patients with pulmonary cryptococcosis were evaluated. The Eiken test (the Eiken Co., Tokyo), which uses pronase for pretreatment of serum, was compared with the Crypto-LA test (International Biological Laboratories, Cranbury, NJ), which did not use pronase prior to testing. Cryptococcal antigen was detected in 21 of 23 patients (91%) with the Eiken test and in only 10 of 23 patients (43%) with the Crypto-LA test (p < 0.01 by McNemar test). However, the sensitivity of two tests was identical without use of pronase, as both tests could detect as little as 10(4) cells/ml of Cryptococcus neoformans and 10 ng/ml of capsular polysaccharide of C. neoformans. In those serum specimens for which both tests were positive, titers were much higher for the Eiken test, but there was a statistically significant correlation between the two tests (coefficient correlation 0.79, p < 0.01). Cryptococcal antigen titer levels measured by the Eiken test correlated well with clinical courses. There was one false-positive reaction among 82 sera of non-cryptococcal patients. Pronase enhanced the sensitivity of the Eiken test, which appeared to be useful in patients with pulmonary cryptococcal disease, and its use may prevent unneeded lung biopsies. PMID:8264770

  6. Defining Treatment Response and Remission in Child Anxiety: Signal Detection Analysis Using the Pediatric Anxiety Rating Scale

    ERIC Educational Resources Information Center

    Caporino, Nicole E.; Brodman, Douglas M.; Kendall, Philip C.; Albano, Anne Marie; Sherrill, Joel; Piacentini, John; Sakolsky, Dara; Birmaher, Boris; Compton, Scott N.; Ginsburg, Golda; Rynn, Moira; McCracken, James; Gosch, Elizabeth; Keeton, Courtney; March, John; Walkup, John T.

    2013-01-01

    Objective: To determine optimal Pediatric Anxiety Rating Scale (PARS) percent reduction and raw score cut-offs for predicting treatment response and remission among children and adolescents with anxiety disorders. Method: Data were from a subset of youth (N = 438; 7-17 years of age) who participated in the Child/Adolescent Anxiety Multimodal Study…

  7. Evaluation of a laser scanning sensor on detection of complex shaped targets for variable-rate sprayer development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensors that can accurately measure canopy structures are prerequisites for development of advanced variable-rate sprayers. A 270° radial range laser sensor was evaluated for its accuracy to measure dimensions of target surfaces with complex shapes and sizes. An algorithm for data acquisition and 3-...

  8. A Failure to Detect an Influence of Magnetic Fields on the Growth Rate and Circadian Rhythm of Neurospora crassa1

    PubMed Central

    Bitz, D. Michael; Sargent, Malcolm L.

    1974-01-01

    Low strength magnetic fields, 6.36 and 32.25 gauss, were found to have no effect, with one questionable exception, on the circadian rhythm and growth rate of Neurospora crassa. This was true whether the fields were continuous, pulsed 20 minutes daily, or on a 12: 12, on-off cycle. PMID:16658667

  9. Interphase Molecular Cytogenetic Detection Rates of Chronic Lymphocytic Leukemia-Specific Aberrations Are Higher in Cultivated Cells Than in Blood or Bone Marrow Smears.

    PubMed

    Alhourani, Eyad; Aroutiounian, Rouben; Harutyunyan, Tigran; Glaser, Anita; Schlie, Cordula; Pohle, Beate; Liehr, Thomas

    2016-08-01

    Banding cytogenetics is still the gold standard in many fields of leukemia diagnostics. However, in chronic lymphocytic leukemia (CLL), GTG-banding results are hampered by a low mitotic rate of the corresponding malignant lymphatic cells. Thus, interphase fluorescence in situ hybridization (iFISH) for the detection of specific cytogenetic aberrations is done nowadays as a supplement to or even instead of banding cytogenetics in many diagnostic laboratories. These iFISH studies can be performed on native blood or bone marrow smears or in nuclei after cultivation and stimulation by a suitable mitogen. As there are only few comparative studies with partially conflicting results for the detection rates of aberrations in cultivated and native cells, this question was studied in 38 CLL cases with known aberrations in 11q22.2, 11q22.3, 12, 13q14.3, 14q32.33, 17p13.1, or 18q21.32. The obtained results implicate that iFISH directly applied on smears is in general less efficient for the detection of CLL-specific genetic abnormalities than for cultivated cells. This also shows that applied cell culture conditions are well suited for malignant CLL cells. Thus, to detect malignant aberrant cells in CLL, cell cultivation and cytogenetic workup should be performed and the obtained material should be subjected to banding cytogenetics and iFISH. PMID:27315825

  10. Multi-Target Tracking With Time-Varying Clutter Rate and Detection Profile: Application to Time-Lapse Cell Microscopy Sequences.

    PubMed

    Rezatofighi, Seyed Hamid; Gould, Stephen; Vo, Ba Tuong; Vo, Ba-Ngu; Mele, Katarina; Hartley, Richard

    2015-06-01

    Quantitative analysis of the dynamics of tiny cellular and sub-cellular structures, known as particles, in time-lapse cell microscopy sequences requires the development of a reliable multi-target tracking method capable of tracking numerous similar targets in the presence of high levels of noise, high target density, complex motion patterns and intricate interactions. In this paper, we propose a framework for tracking these structures based on the random finite set Bayesian filtering framework. We focus on challenging biological applications where image characteristics such as noise and background intensity change during the acquisition process. Under these conditions, detection methods usually fail to detect all particles and are often followed by missed detections and many spurious measurements with unknown and time-varying rates. To deal with this, we propose a bootstrap filter composed of an estimator and a tracker. The estimator adaptively estimates the required meta parameters for the tracker such as clutter rate and the detection probability of the targets, while the tracker estimates the state of the targets. Our results show that the proposed approach can outperform state-of-the-art particle trackers on both synthetic and real data in this regime. PMID:25594963

  11. Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity.

    PubMed

    Wang, Yuan; Tanner, Bertrand C W; Lombardo, Andrew T; Tremble, Sarah M; Maughan, David W; Vanburen, Peter; Lewinter, Martin M; Robbins, Jeffrey; Palmer, Bradley M

    2013-01-01

    We measured myosin crossbridge detachment rate and the rates of MgADP release and MgATP binding in mouse and rat myocardial strips bearing one of the two cardiac myosin heavy chain (MyHC) isoforms. Mice and rats were fed an iodine-deficient, propylthiouracil diet resulting in ~100% expression of β-MyHC in the ventricles. Ventricles of control animals expressed ~100% α-MyHC. Chemically-skinned myocardial strips prepared from papillary muscle were subjected to sinusoidal length perturbation analysis at maximum calcium activation pCa 4.8 and 17°C. Frequency characteristics of myocardial viscoelasticity were used to calculate crossbridge detachment rate over 0.01 to 5mM [MgATP]. The rate of MgADP release, equivalent to the asymptotic value of crossbridge detachment rate at high MgATP, was highest in mouse α-MyHC (111.4±6.2s(-1)) followed by rat α-MyHC (65.0±7.3s(-1)), mouse β-MyHC (24.3±1.8s(-1)) and rat β-MyHC (15.5±0.8s(-1)). The rate of MgATP binding was highest in mouse α-MyHC (325±32 mM(-1) s(-1)) then mouse β-MyHC (152±23 mM(-1) s(-1)), rat α-MyHC (108±10 mM(-1) s(-1)) and rat β-MyHC (55±6 mM(-1) s(-1)). Because the events of MgADP release and MgATP binding occur in a post power-stroke state of the myosin crossbridge, we infer that MgATP release and MgATP binding must be regulated by isoform- and species-specific structural differences located outside the nucleotide binding pocket, which is identical in sequence for these four myosins. We postulate that differences in the stiffness profile of the entire myosin molecule, including the thick filament and the myosin-actin interface, are primarily responsible for determining the strain on the nucleotide binding pocket and the subsequent differences in the rates of nucleotide release and binding observed among the four myosins examined here. PMID:23123290

  12. Multi-scale heart rate dynamics detected by phase-rectified signal averaging predicts mortality after acute myocardial infarction

    PubMed Central

    Kisohara, Masaya; Stein, Phyllis K.; Yoshida, Yutaka; Suzuki, Mari; Iizuka, Narushi; Carney, Robert M.; Watkins, Lana L.; Freedland, Kenneth E.; Blumenthal, James A.; Hayano, Junichiro

    2013-01-01

    Aims Acceleration and deceleration capacity (AC and DC) for beat-to-beat short-term heart rate dynamics are powerful predictors of mortality after acute myocardial infarction (AMI). We examined if AC and DC for minute-order long-term heart rate dynamics also have independent predictive value. Methods and results We studied 24-hr Holter electrcardiograms in 708 post-AMI patients who were followed up for up to 30 months thereafter. Acceleration capacity and DC was calculated with the time scales of T (window size defining heart rate) and s (wavelet scale) from 1 to 500 s and compared their prognostic values with conventional measures (ACconv and DCconv) that were calculated with (T,s) = [1,2 (beat)]. During the follow-up, 47 patients died. Both increased ACconv and decreased DCconv predicted mortality (C statistic, 0.792 and 0.797). Concordantly, sharp peaks of C statistics were observed at (T,s) = [2,7 (sec)] for both increased AC and decreased DC (0.762 and 0.768), but there were larger peaks of C statistics at around [30,60 (sec)] for both (0.783 and 0.796). The C statistic was greater for DC than AC at (30,60) (P = 0.0012). Deceleration capacity at (30,60) was a significant predictor even after adjusted for ACconv (P = 0.020) and DCconv (P = 0.028), but the predictive power of AC at (30,60) was no longer significant. Conclusion A decrease in DC for minute-order long-term heart rate dynamics is a strong predictor for post-AMI mortality and the predictive power is independent of ACconv and DCconv for beat-to-beat short-term heart rate dynamics. PMID:23248218

  13. MR Imaging of Pulmonary Nodules: Detection Rate and Accuracy of Size Estimation in Comparison to Computed Tomography

    PubMed Central

    Cieszanowski, Andrzej; Lisowska, Antonina; Dabrowska, Marta; Korczynski, Piotr; Zukowska, Malgorzata; Grudzinski, Ireneusz P.; Pacho, Ryszard; Rowinski, Olgierd; Krenke, Rafal

    2016-01-01

    Objective The aims of this study were to assess the sensitivity of various magnetic resonance imaging (MRI) sequences for the diagnosis of pulmonary nodules and to estimate the accuracy of MRI for the measurement of lesion size, as compared to computed tomography (CT). Methods Fifty patients with 113 pulmonary nodules diagnosed by CT underwent lung MRI and CT. MRI studies were performed on 1.5T scanner using the following sequences: T2-TSE, T2-SPIR, T2-STIR, T2-HASTE, T1-VIBE, and T1-out-of-phase. CT and MRI data were analyzed independently by two radiologists. Results The overall sensitivity of MRI for the detection of pulmonary nodules was 80.5% and according to nodule size: 57.1% for nodules ≤4mm, 75% for nodules >4-6mm, 87.5% for nodules >6-8mm and 100% for nodules >8mm. MRI sequences yielded following sensitivities: 69% (T1-VIBE), 54.9% (T2-SPIR), 48.7% (T2-TSE), 48.7% (T1-out-of-phase), 45.1% (T2-STIR), 25.7% (T2-HASTE), respectively. There was very strong agreement between the maximum diameter of pulmonary nodules measured by CT and MRI (mean difference -0.02 mm; 95% CI –1.6–1.57 mm; Bland-Altman analysis). Conclusions MRI yielded high sensitivity for the detection of pulmonary nodules and enabled accurate assessment of their diameter. Therefore it may be considered an alternative to CT for follow-up of some lung lesions. However, due to significant number of false positive diagnoses, it is not ready to replace CT as a tool for lung nodule detection. PMID:27258047

  14. REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION

    SciTech Connect

    Regimbau, T.; Siellez, K.; Meacher, D.; Gendre, B.; Boër, M.

    2015-01-20

    We use realistic Monte Carlo simulations including both gravitational-wave (GW) and short gamma-ray burst (sGRB) selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z = 0, but increases with the distance until it reaches 100% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of three compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third-generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.

  15. Breaking the Barrier to Slow Water Exchange Rates for Optimal Magnetic Resonance Detection of paraCEST Agents.

    PubMed

    Fernando, W Shirangi; Martins, André F; Zhao, Piyu; Wu, Yunkou; Kiefer, Garry E; Platas-Iglesias, Carlos; Sherry, A Dean

    2016-03-21

    EuDOTA-tetraamide complexes as paraCEST agents offer an attractive platform for designing biological sensors and responsive agents. The early versions of these agents showed low sensitivity at temperature and power levels suitable for in vivo applications partly due to non-optimal water exchange rates. Here we report two new EuDOTA derivatives having glutamyl-phosphonate side arms that display the slowest water exchange rates of any other paraCEST agent reported so far. The advantages of such systems are demonstrated experimentally both in vitro and in vivo and DFT calculations were performed to help understand the physical-chemical reasons for this interesting behavior. PMID:26937683

  16. Detectability of the Eurasian otter by standard surveys: an approach using marking intensity to estimate false negative rates

    NASA Astrophysics Data System (ADS)

    Balestrieri, Alessandro; Remonti, Luigi; Prigioni, Claudio

    2011-01-01

    False negative detections may bias the surveys for rare species and reduce the reliability of models based on the proportion of occupied patches. We assessed the detectability of the Eurasian otter Lutra lutra through the standard survey method by analysing the detection history of 28 sampling stretches surveyed monthly between March 2001 and January 2003. Each survey negative for otter spraints was considered as a false negative if the otter had been recorded in the previous and/or following month (respectively, cFN and FN). Otter marking intensity (MI) (MI=N° of spraints per kilometre) was calculated and assumed to represent an index of its relative abundance. Spraints were found in 81.7% of all surveys. Yearly MI ranged from 1.02 to 101.4 spraints per kilometre. In 2002, mean MI was significantly lower than in the previous year, while no clear seasonal trend could be outlined. The minimum number of surveys required to establish the occurrence of the otter, as estimated by a probability model, was 2.6 and was inversely related to MI. For a sub-sample of 18 sampling stretches, the relation between the frequency of both cFN and FN and five variables of potential interest for otters was tested by means of stepwise linear multiple regressions, yielding two highly significant models, which both included only MI as the explanatory variable. The frequency of both FN and cFN was correlated to MI and the resulting equations used to assess the percentage of surveys positive for otters in both years. After the correction for non-detections, otter site occupancy did not vary between the 2 years, except for one river when applying the more conservative estimate of false negatives (cFN). Multiple visits and the assessing of MI should become standard components of otter surveys. This approach has broad applicability and may be applied to assess the large-scale distribution of other rare or elusive mammalian carnivores.

  17. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing

    PubMed Central

    Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis G.; Atkins, David C.; Narayanan, Shrikanth S.

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy–observational coding–has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies. PMID:26630392

  18. Defining Treatment Response and Remission in Child Anxiety: Signal Detection Analysis Using the Pediatric Anxiety Rating Scale

    PubMed Central

    Caporino, Nicole E.; Brodman, Douglas M.; Kendall, Philip C.; Albano, Anne Marie; Sherrill, Joel; Piacentini, John; Sakolsky, Dara; Birmaher, Boris; Compton, Scott N.; Ginsburg, Golda; Rynn, Moira; McCracken, James; Gosch, Elizabeth; Keeton, Courtney; March, John; Walkup, John T.

    2013-01-01

    Objective To determine optimal Pediatric Anxiety Rating Scale (PARS) percent reduction and raw score cut-offs for predicting treatment response and remission among children and adolescents with anxiety disorders. Method Data were from a subset of youth (N =438; 7–17 years of age) who participated in the Child/Adolescent Anxiety Multimodal Study (CAMS), a multi-site, randomized controlled trial that examined the relative efficacy of cognitive-behavioral therapy (CBT; Coping Cat), medication (sertraline [SRT]), their combination, and pill placebo for the treatment of separation anxiety disorder, generalized anxiety disorder, and social phobia. The clinician-rated PARS was administered pre- and posttreatment (delivered over 12 weeks). Quality receiver operating characteristic methods assessed the performance of various PARS percent reductions and absolute cut-off scores in predicting treatment response and remission, as determined by posttreatment ratings on the Clinical Global Impression scales and the Anxiety Disorders Interview Schedule for DSM-IV. Corresponding change in impairment was evaluated using the Child Anxiety Impact Scale. Results Reductions of 35% and 50% on the six-item PARS optimally predicted treatment response and remission, respectively. Post-treatment PARS raw scores of 8 to 10 optimally predicted remission. Anxiety improved as a function of PARS-defined treatment response and remission. Conclusions Results serve as guidelines for operationalizing treatment response and remission in future research and in making cross-study comparisons. These guidelines can facilitate translation of research findings into clinical practice. PMID:23265634

  19. Value of systematic intervention for chronic obstructive pulmonary disease in a regional Japanese city based on case detection rate and medical cost

    PubMed Central

    Tawara, Yuichi; Senjyu, Hideaki; Tanaka, Kenichiro; Tanaka, Takako; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Honda, Sumihisa; Sawai, Terumitsu

    2015-01-01

    Objective We established a COPD taskforce for early detection, diagnosis, treatment, and intervention. We implemented a pilot intervention with a prospective and longitudinal design in a regional city. This study evaluates the usefulness of the COPD taskforce and intervention based on COPD case detection rate and per capita medical costs. Method We distributed a questionnaire to all 8,878 inhabitants aged 50–89 years, resident in Matsuura, Nagasaki Prefecture in 2006. Potentially COPD-positive persons received a pulmonary function test and diagnosis. We implemented ongoing detection, examination, education, and treatment interventions, performed follow-up examinations or respiratory lessons yearly, and supported the health maintenance of each patient. We compared COPD medical costs in Matsuura and in the rest of Nagasaki Prefecture using data from 2004 to 2013 recorded by the association of Nagasaki National Health Insurance Organization, assessing 10-year means and annual change. Results As of 2014, 256 people have received a definitive diagnosis of COPD; representing 31% of the estimated total number of COPD patients. Of the cases detected, 87.5% were mild or moderate in severity. COPD medical costs per patient in Matsuura were significantly lower than the rest of Nagasaki Prefecture, as was rate of increase in cost over time. Conclusion The COPD program in Matsuura enabled early detection and treatment of COPD patients and helped to lower the associated burden of medical costs. The success of this program suggests that a similar program could reduce the economic and human costs of COPD morbidity throughout Japan. PMID:26347397

  20. Relation between detection rate and inappropriate shocks in single versus dual chamber cardioverter-defibrillator - an analysis from the OPTION trial.

    PubMed

    Kolb, Christof; Sturmer, Marcio; Babuty, Dominique; Sick, Peter; Davy, Jean Marc; Molon, Giulio; Schwab, Jörg Otto; Mantovani, Giuseppe; Wickliffe, Andrew; Lennerz, Carsten; Semmler, Verena; Siot, Pierre-Henri; Reif, Sebastian

    2016-01-01

    The programming of implantable cardioverter-defibrillators (ICDs) influences inappropriate shock rates. The aim of the study is to analyse rates of patients with appropriate and inappropriate shocks according to detection zones in the OPTION trial. All patients received dual chamber (DC) ICDs randomly assigned to be programmed either to single chamber (SC) or to DC settings including PARAD+ algorithm. In a post-hoc analysis, rates of patients with inappropriate and appropriate shocks were calculated for shocks triggered at heart rates ≥170 bpm (ventricular tachycardia zone) and at rates ≥200 bpm (ventricular fibrillation zone). In the SC group, higher rates of patients with total and inappropriate shocks were delivered at heart rates ≥170 bpm than at rates ≥200 bpm (total shocks: 21.1% vs. 16.6%; p = 0.002; inappropriate shocks: 7.6% vs. 4.5%, p = 0.016; appropriate shocks: 15.2% vs. 13.5%; p = n.s.). No such differences were observed in the DC group (total shocks: 14.3% vs. 12.6%; p = n.s.; inappropriate shocks: 3.9% vs. 3.6%; p = n.s.; appropriate shocks: 12.2% vs. 10.4%; p = n.s.). The higher frequency of patients with total shocks with SC settings than with DC settings that benefit from PARAD+ was driven by a higher percentage of patients with inappropriate shocks in the VT zone (170-200 bpm) in the SC population. PMID:26892534

  1. Relation between detection rate and inappropriate shocks in single versus dual chamber cardioverter-defibrillator – an analysis from the OPTION trial

    PubMed Central

    Kolb, Christof; Sturmer, Marcio; Babuty, Dominique; Sick, Peter; Davy, Jean Marc; Molon, Giulio; Schwab, Jörg Otto; Mantovani, Giuseppe; Wickliffe, Andrew; Lennerz, Carsten; Semmler, Verena; Siot, Pierre-Henri; Reif , Sebastian

    2016-01-01

    The programming of implantable cardioverter-defibrillators (ICDs) influences inappropriate shock rates. The aim of the study is to analyse rates of patients with appropriate and inappropriate shocks according to detection zones in the OPTION trial. All patients received dual chamber (DC) ICDs randomly assigned to be programmed either to single chamber (SC) or to DC settings including PARAD+ algorithm. In a post-hoc analysis, rates of patients with inappropriate and appropriate shocks were calculated for shocks triggered at heart rates ≥170 bpm (ventricular tachycardia zone) and at rates ≥200 bpm (ventricular fibrillation zone). In the SC group, higher rates of patients with total and inappropriate shocks were delivered at heart rates ≥170 bpm than at rates ≥200 bpm (total shocks: 21.1% vs. 16.6%; p = 0.002; inappropriate shocks: 7.6% vs. 4.5%, p = 0.016; appropriate shocks: 15.2% vs. 13.5%; p = n.s.). No such differences were observed in the DC group (total shocks: 14.3% vs. 12.6%; p = n.s.; inappropriate shocks: 3.9% vs. 3.6%; p = n.s.; appropriate shocks: 12.2% vs. 10.4%; p = n.s.). The higher frequency of patients with total shocks with SC settings than with DC settings that benefit from PARAD+ was driven by a higher percentage of patients with inappropriate shocks in the VT zone (170–200 bpm) in the SC population. PMID:26892534

  2. The Effect Of Pixel Size On The Detection Rate Of Early Pulmonary Sarcoidosis In Digital Chest Radiographic Systems

    NASA Astrophysics Data System (ADS)

    MacMahon, Heber; Vyborny, Carl; Powell, Gregory; Doi, Kunio; Metz, Charles E.

    1984-08-01

    In digital radiography the pixel size used determines the potential spatial resolution of the system. The need for spatial resolution varies depending on the subject matter imaged. In many areas, including the chest, the minimum spatial resolution requirements have not been determined. Sarcoidosis is a disease which frequently causes subtle interstitial infiltrates in the lungs. As the initial step in an investigation designed to determine the minimum pixel size required in digital chest radiographic systems, we have studied 1 mm pixel digitized images on patients with early pulmonary sarcoidosis. The results of this preliminary study suggest that neither mild interstitial pulmonary infiltrates nor other abnormalities such as pneumothoraces may be detected reliably with 1 mm pixel digital images.

  3. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements

    USGS Publications Warehouse

    Langbein, J.; Bock, Y.

    2004-01-01

    A network of 13 continuous GPS stations near Parkfield, California has been converted from 30 second to 1 second sampling with positions of the stations estimated in real-time relative to a master station. Most stations are near the trace of the San Andreas fault, which exhibits creep. The noise spectra of the instantaneous 1 Hz positions show flicker noise at high frequencies and change to frequency independence at low frequencies; the change in character occurs between 6 to 8 hours. Our analysis indicates that 1-second sampled GPS can estimate horizontal displacements of order 6 mm at the 99% confidence level from a few seconds to a few hours. High frequency GPS can augment existing measurements in capturing large creep events and postseismic slip that would exceed the range of existing creepmeters, and can detect large seismic displacements. Copyright 2004 by the American Geophysical Union.

  4. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  5. The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako; Sargent, B.; Swinyard, Bruce; Yates, Jeremy; Royer, P.; Barlow, M. J.; Boyer, Martha; Decin, L.; Khouri, Theo; Meixner, Margaret; van Loon, Jacco Th.; Woods, Paul M.

    2016-08-01

    Using the PACS and SPIRE spectrometers on-board the Herschel Space Observatory, we obtained spectra of two red supergiants (RSGs) in the Large Magellanic Cloud (LMC). Multiple rotational CO emission lines (J=6-5 to 15-14) and 15 H2O lines were detected from IRAS 05280-6910, and one CO line was detected from WOH G64. This is the first time CO rotational lines have been detected from evolved stars in the LMC. Their CO line intensities are as strong as those of the Galactic RSG, VY CMa. Modelling the CO lines and the spectral energy distribution results in an estimated mass-loss rate for IRAS 05280-6910 of 3 × 10-4 M⊙ yr-1. The model assumes a gas-to-dust ratio and a CO-to-H2 abundance ratio is estimated from the Galactic values scaled by the LMC metallicity ([Fe/H]˜-0.3), i.e., that the CO-to-dust ratio is constant for Galactic and LMC metallicities within the uncertainties of the model. The key factor determining the CO line intensities and the mass-loss rate found to be the stellar luminosity.

  6. Detecting When “Quality of Life” Has Been “Enhanced”: Estimating Change in Quality of Life Ratings

    PubMed Central

    Tractenberg, Rochelle E.; Yumoto, Futoshi; Aisen, Paul S.

    2015-01-01

    Objective To demonstrate challenges in the estimation of change in quality of life (QOL). Methods Data were taken from a completed clinical trial with negative results. Responses to 13 QOL items were obtained 12 months apart from 258 persons with Alzheimer’s disease (AD) participating in a randomized, placebo-controlled clinical trial with two treatment arms. Two analyses to estimate whether “change” in QOL occurred over 12 months are described. A simple difference (later - earlier) was calculated from total scores (standard approach). A Qualified Change algorithm (novel approach) was applied to each item: differences in ratings were classified as either: improved, worsened, stayed poor, or stayed “positive” (fair, good, excellent). The strengths of evidence supporting a claim that “QOL changed”, derived from the two analyses, were compared by considering plausible alternative explanations for, and interpretations of, results obtained under each approach. Results Total score approach: QOL total scores decreased, on average, in the two treatment (both −1.0, p < 0.05), but not the placebo (=−0.59, p > 0.3) groups. Qualified change approach: Roughly 60% of all change in QOL items was worsening in every arm; 17% - 42% of all subjects experienced change in each item. Conclusions Totalling the subjective QOL item ratings collapses over items, and suggests a potentially misleading “overall” level of change (or no change, as in the placebo arm). Leaving the items as individual components of “quality” of life they were intended to capture, and qualifying the direction and amount of change in each, suggests that at least 17% of any group experienced change on every item, with 60% of all observed change being worsening. Discussion Summarizing QOL item ratings as a total “score” collapses over the face-valid, multi-dimensional components of the construct “quality of life”. Qualified Change provides robust evidence of changes to QOL or

  7. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    SciTech Connect

    Buttafava, Mauro Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  8. Optimizing Detection Rate and Characterization of Subtle Paroxysmal Neonatal Abnormal Facial Movements with Multi-Camera Video-Electroencephalogram Recordings.

    PubMed

    Pisani, Francesco; Pavlidis, Elena; Cattani, Luca; Ferrari, Gianluigi; Raheli, Riccardo; Spagnoli, Carlotta

    2016-06-01

    Objectives We retrospectively analyze the diagnostic accuracy for paroxysmal abnormal facial movements, comparing one camera versus multi-camera approach. Background Polygraphic video-electroencephalogram (vEEG) recording is the current gold standard for brain monitoring in high-risk newborns, especially when neonatal seizures are suspected. One camera synchronized with the EEG is commonly used. Methods Since mid-June 2012, we have started using multiple cameras, one of which point toward newborns' faces. We evaluated vEEGs recorded in newborns in the study period between mid-June 2012 and the end of September 2014 and compared, for each recording, the diagnostic accuracies obtained with one-camera and multi-camera approaches. Results We recorded 147 vEEGs from 87 newborns and found 73 episodes of paroxysmal facial abnormal movements in 18 vEEGs of 11 newborns with the multi-camera approach. By using the single-camera approach, only 28.8% of these events were identified (21/73). Ten positive vEEGs with multicamera with 52 paroxysmal facial abnormal movements (52/73, 71.2%) would have been considered as negative with the single-camera approach. Conclusions The use of one additional facial camera can significantly increase the diagnostic accuracy of vEEGs in the detection of paroxysmal abnormal facial movements in the newborns. PMID:27111027

  9. Statistical Approach to Decreasing the Error Rate of Noninvasive Prenatal Aneuploid Detection caused by Maternal Copy Number Variation.

    PubMed

    Zhang, Han; Zhao, Yang-Yu; Song, Jing; Zhu, Qi-Ying; Yang, Hua; Zheng, Mei-Ling; Xuan, Zhao-Ling; Wei, Yuan; Chen, Yang; Yuan, Peng-Bo; Yu, Yang; Li, Da-Wei; Liang, Jun-Bin; Fan, Ling; Chen, Chong-Jian; Qiao, Jie

    2015-01-01

    Analyses of cell-free fetal DNA (cff-DNA) from maternal plasma using massively parallel sequencing enable the noninvasive detection of feto-placental chromosome aneuploidy; this technique has been widely used in clinics worldwide. Noninvasive prenatal tests (NIPT) based on cff-DNA have achieved very high accuracy; however, they suffer from maternal copy-number variations (CNV) that may cause false positives and false negatives. In this study, we developed an algorithm to exclude the effect of maternal CNV and refined the Z-score that is used to determine fetal aneuploidy. The simulation results showed that the algorithm is robust against variations of fetal concentration and maternal CNV size. We also introduced a method based on the discrepancy between feto-placental concentrations to help reduce the false-positive ratio. A total of 6615 pregnant women were enrolled in a prospective study to validate the accuracy of our method. All 106 fetuses with T21, 20 with T18, and three with T13 were tested using our method, with sensitivity of 100% and specificity of 99.97%. In the results, two cases with maternal duplications in chromosome 21, which were falsely predicted as T21 by the previous NIPT method, were correctly classified as normal by our algorithm, which demonstrated the effectiveness of our approach. PMID:26534864

  10. Statistical Approach to Decreasing the Error Rate of Noninvasive Prenatal Aneuploid Detection caused by Maternal Copy Number Variation

    PubMed Central

    Zhang, Han; Zhao, Yang-Yu; Song, Jing; Zhu, Qi-Ying; Yang, Hua; Zheng, Mei-Ling; Xuan, Zhao-Ling; Wei, Yuan; Chen, Yang; Yuan, Peng-Bo; Yu, Yang; Li, Da-Wei; Liang, Jun-Bin; Fan, Ling; Chen, Chong-Jian; Qiao, Jie

    2015-01-01

    Analyses of cell-free fetal DNA (cff-DNA) from maternal plasma using massively parallel sequencing enable the noninvasive detection of feto-placental chromosome aneuploidy; this technique has been widely used in clinics worldwide. Noninvasive prenatal tests (NIPT) based on cff-DNA have achieved very high accuracy; however, they suffer from maternal copy-number variations (CNV) that may cause false positives and false negatives. In this study, we developed an algorithm to exclude the effect of maternal CNV and refined the Z-score that is used to determine fetal aneuploidy. The simulation results showed that the algorithm is robust against variations of fetal concentration and maternal CNV size. We also introduced a method based on the discrepancy between feto-placental concentrations to help