Science.gov

Sample records for 216-b-3 pond system

  1. 216-B-3 expansion ponds closure plan

    SciTech Connect

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  2. Ground water impact assessment report for the 216-B-3 Pond system

    SciTech Connect

    Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

    1995-01-01

    Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts.

  3. The installation of the Westbay multiport ground-water sampling system in well 699-43-42K near the 216-B-3 pond

    SciTech Connect

    Gilmore, T.J.

    1989-09-01

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport ground-water sampling system in well 699-43-42K drilled near the 216-B-3 Pond on the Hanford Site in southeastern Washington state. The multiport system will be used to evaluate methods for determining the vertical distribution of contaminants and hydraulic heads in ground water. This installation was in conjunction with a similar multiport installation near the 300 Area of the Hanford Site. Well 699-43-42K is adjacent to two Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells, which will allow for a comparison of sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Eight sampling ports were installed in the upper unconfined aquifer by backfilling at depths of 161.1 ft, 174.1 ft, 187.1 ft, 201.17 ft, 217.2 ft, 230.2 ft, 243.2 ft, and 255.2 ft below land surface. However, because of damage to the casing during installation, only the top four ports should be used for pressure measurements and sampling until repairs occur. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. 4 refs., 8 figs.

  4. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan. Revision 1

    SciTech Connect

    Not Available

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites.

  5. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    SciTech Connect

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  6. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  7. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for

  8. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    SciTech Connect

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program.

  9. Geophysical investigation of the 216-B-3-1 ditch, Operable Unit 200-BP-11, 200 East Area

    SciTech Connect

    Bergstrom, K.A.

    1994-09-13

    Ditch 216-B-3-1 is located within the 200-BP-11 Operable Unit, located immediately northeast of the 200 East Area. At one time, it drained into B Pond. The ditch has been filled with soil and the surrounding area reclaimed. There is no remaining physical evidence showing the original location of the ditch. Survey stakes were recently emplaced that show the documented location of the ditch from survey coordinates. The objective of this investigation was to verify the staked location of the ditch with non-intrusive geophysical methods. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the methods selected for the investigation. GPR has been used successfully to locate similar ditches in other parts of the Hanford Reservation. EMI was used because it is much quicker to collected and interprets, and if successful, could be used to rapidly map the entire length of the ditch. Results are discussed.

  10. Investigation of a ponding irrigation system to recycle agricultural wastewater.

    PubMed

    Chen, P H; Leung, K C; Wang, J T

    2000-08-01

    This article presents the results of natural carrying capacity of ponding irrigation system in Taoyuan agricultural zone, Taiwan. Both the systematic water quality and the ponding effects were examined. The ponding irrigation system included a flow channel and storage ponds. The data showed that most water characteristics deteriorated gradually from upper- to down-stream in the flow channel and the flow channel was not attributed to any self-purification in agricultural returning water practically. On the other hand, the results of storage ponds indicated that they can provide a natural treatment (i.e., the outlet water quality of the ponds is more desirable than that of the inlet). Consequently, the ponding irrigation system offers the natural self-purification in ponds to reuse and recycle the returning agricultural wastewater and to extend the irrigation capacity and efficiency.

  11. Dairy farm wastewater treatment by an advanced pond system.

    PubMed

    Craggs, R J; Tanner, C C; Sukias, J P S; Davies-Colley, R J

    2003-01-01

    Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m(-3), TSS: 64 and 220 g m(-3), NH4-N: 8 and 29 g m(-3), DRP: 13 and 17 g m(-3), and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

  12. Truscott Brine Lake solar-pond system conceptual design

    SciTech Connect

    Leboeuf, C.M.; May, E.K.

    1982-08-01

    Discussed is a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extracted from the solar ponds and used to drive organic Rankine-cycle (ORC) generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  13. Solar pond driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-01-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. 4 refs.

  14. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  15. Nitrogen removal in recirculated duckweed ponds system.

    PubMed

    Benjawan, L; Koottatep, T

    2007-01-01

    Duckweed-based ponds (DWBPs) have the potential for nitrogen (N) removal from wastewater; however, operational problems such as duckweed die-off regularly occur. In this study, effluent recirculation was applied to the DWBPs to solve the above problem as well as to investigate N removal mechanisms. Two pilot scale recirculated DWBPs were employed to treat municipal wastewater. The average removal efficiencies for TN, TKN and NH4-N were 75%, 89% and 92%, respectively at TN loading of 1.3 g/m2.d and were 73%, 74% and 76%, respectively at TN loading of 3.3 g/m2.d. The effluent of the system under both operational conditions had stable quality and met the effluent standard. Duckweed die-off was not observed during the study, which proves the system stability and effluent recirculation which is thought to be a reason. N-mass balance revealed that nitrification-denitrification and duckweed uptake play major roles in these recirculated DWBPs. The rates of nitrification-denitrification were increased as TN loading was higher, which might be an influence from an abundance of N and a suitable condition. The rates of N uptake by duckweed were found similar and did not depend on the higher TN loading applied, as the duckweed has limited capacity to assimilate it.

  16. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  17. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  18. Effectiveness of an urban runoff detention pond - Wetlands system

    USGS Publications Warehouse

    Martin, E.H.

    1988-01-01

    The effectiveness of an urban detention system, composed of a detention pond and wetlands in series, in reducing constituent loads carried in runoff was determined. The detention pond was effective in reducing loads of suspended solids and suspended metals. Suspended-phase efficiencies for solids, lead, and zinc ranged between 42 and 66%. Nutrient efficiencies were variable, ranging for all species and phases, from less than 0 to 72%. The wetlands generally was effective in reducing both suspended and dissolved loads of solids and metals. Total (dissolved + suspended) solids, lead, and zinc efficiencies ranged between 41 and 73%. Efficiencies for total nitrogen and phosphorus were 21 and 17%, respectively. The system, by combining the treatment of the pond of wetlands, was very effective in reducing loads of most constituents. Total solids, lead, and zinc efficiencies ranged between 55 and 83%. Total nitrogen and phosphorus efficiencies were 36 and 43%, respectively.The effectiveness of an urban detention system, composed of a detention pond and wetlands in series, in reducing constituent loads carried in runoff was determined. The detention pond was effective in reducing loads of suspended solids and suspended metals. Nutrient efficiencies were variable, ranging for all species and phases, from less than 0 to 72 percent. The wetlands generally was effective in reducing both suspended and dissolved loads of solids and metals. The system, by combining the treatment of the pond and wetlands, was very effective in reducing loads of most constituents.

  19. Truscott brine lake solar pond system conceptual design

    SciTech Connect

    Leboeuf, C.M.

    1982-01-01

    This paper discusses a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction by the Army Corps of Engineers near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extracted from the solar ponds and used to drive organic Rankine-cycle (ORC) generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  20. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  1. A solar pond driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D. H.; Leboeuf, C. M.; Waddington, D.

    In this paper a solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This has been used to size the system for the application of desalting saline tributaries of the Colorado River.

  2. Solar pond-driven distillation and power production system

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Leboeuf, C. M.; Waddington, D.

    1981-12-01

    A solar pond driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodynamic analysis of the energy and mass balances of the system was performed and a performance model of the system is developed. This model is used to compute the requirements for desalting several saline tributaries of the Colorado River.

  3. Solar pond-driven distillation and power production system

    SciTech Connect

    Johnson, D.H.; Leboeuf, C.M.; Waddington, D.

    1981-12-01

    A solar pond-driven distillation and power production system is described. The storage layer of the solar pond serves as the holding tank for the concentrated brine effluent from the distillation process as well as the collector and storage medium for solar energy used to heat incoming salty river water. Steam from the distillation process expands through a turbine/generator combination to provide power for the water circulation and vacuum pumps of the system. Water from the surface mixed layer of the pond is used to condense the steam. The closely integrated distillation and power production system converts an incoming stream of brackish or saline water into an outlet stream of the required purity. Salt and power are also products of the system. A thermodyanamic analysis of the energy and mass balances of the system has been performed and a performance model of the system has been developed. This model was used to compute the requirements for desalting several saline tributaries of the Colorado River.

  4. Dynamic variation of supernatant quality in a dairy shed waste stabilisation pond system.

    PubMed

    Fyfe, J; Sivakumar, M; Hagare, D; Jenkins, A

    2007-01-01

    An intensive monitoring program of a standard two-stage dairy shed waste stabilisation pond system was undertaken to determine the incidence and extent of spatial and temporal variation of basic physio-chemical parameters, and to shed light on the longer term dynamic nature of in-pond conditions. The anaerobic-facultative pond system, located in a remote rural area, treats wastewater from the hosing down and hydraulic flushing of the milking parlour and holding yard at the farm dairy shed. A number of multi-parameter water quality field monitoring probes were permanently deployed at various locations within the two ponds to enable continuous measurement of temperature, pH, conductivity and dissolved oxygen. In addition, profiling of the supernatant of both ponds was undertaken at different times of the year to examine vertical variation of the same parameters. Continuous monitoring revealed spatial homogeneity in EC and pH levels in the upper metre of both ponds. Physio-chemical parameters also appear to change uniformly across the ponds in response to external stimuli such as rainfall. Neither pond, however, exhibits homogeneity down the profile of the supernatant. Seasonal stratification is prevalent in the facultative pond suggesting poor vertical mixing, while the anaerobic pond is notably affected by sludge accumulation. A long-term pattern of rising conductivity in both ponds indicated accumulation of dissolved salt species in the system due to recirculation of reclaimed effluent for hydraulic flushing of the dairy shed. In the facultative pond, diurnal fluctuations in dissolved oxygen, oxidation-reduction potential and turbidity during warmer months of the year closely followed temperature swings. The extensive data collected in this study provides a detailed picture of the physio-chemical dynamics of two-stage stabilisation pond systems treating dairy shed wastewater.

  5. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  6. Economic feasibility of an in-pond raceway system for commercial catfish production in west Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endeavor of this project was to improve profitability of catfish farming by demonstrating methods to achieve high levels of survival, feed performance, and efficiency in a commercial farm setting. A commercial-scale, in-pond raceway system was constructed in 2007 in a 6.0 ac earthen pond on a ca...

  7. Emergency power for fish produced in intensive, pond-based systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Power failure in a heavily stocked and fed pond-based culture system can result in massive fish losses within minutes. Even in a conventional pond with a stand-by tractor powered aerator, the shock of a sudden loss of power can dramatically affect production resulting in mortalities and reduced perf...

  8. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  9. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  10. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  11. Performance of an intensive pond system treating municipal wastewater in a cold region.

    PubMed

    Wang, B; Qi, P; Wang, L; Lu, W; Liu, S; Zhao, F

    2005-01-01

    A full-scale intensive pond system (IPS) with shorter HRT was designed, constructed and operated in Jining, Inner-Mongolia for the treatment of municipal wastewater, which is a mixed domestic and industrial wastewater characterized by quite high SS and lower BOD5/COD ratio values or lower biodegradability. Therefore, the pond system was designed as an integrated intensive pond system (IIPS) consisting of settling/anaerobic pond (SAP), intensified anaerobic pond (IAP), facultative pond (FP), and polishing ponds (PPs). In order to improve the performance of the IPS, some intensified measures were made, including inlet and outlet even-distribution systems of each unit pond, package of biofilm carrier in IAP for the increase and even distribution of biomass; overflow waterfalls on the dikes between unit ponds for the increase of DO in pond water, gravel filtration dike (or dam) for removing suspended solids including algae, which have improved the performance of the IPS remarkably in terms of removal of main pollutants, such as SS, COD, BOD5, TN, NH3-N, TP and total bacteria. The final effluent from the IPS in warm seasons from May to October were SS 7.2-10.8 mg/L, BOD5 8.5-19.6 mg/L, COD 44.1 - 76.5 mg/L, and NH3-N 1.5-10.2 mg/L, which well meet Chinese national discharge standard (2nd class) of secondary municipal wastewater treatment plants, i.e. BOD5 and SS 30 mg/L respectively, COD 100 mg/L, and NH3-N 25 mg/L. PMID:16114663

  12. Performance of an intensive pond system treating municipal wastewater in a cold region.

    PubMed

    Wang, B; Qi, P; Wang, L; Lu, W; Liu, S; Zhao, F

    2005-01-01

    A full-scale intensive pond system (IPS) with shorter HRT was designed, constructed and operated in Jining, Inner-Mongolia for the treatment of municipal wastewater, which is a mixed domestic and industrial wastewater characterized by quite high SS and lower BOD5/COD ratio values or lower biodegradability. Therefore, the pond system was designed as an integrated intensive pond system (IIPS) consisting of settling/anaerobic pond (SAP), intensified anaerobic pond (IAP), facultative pond (FP), and polishing ponds (PPs). In order to improve the performance of the IPS, some intensified measures were made, including inlet and outlet even-distribution systems of each unit pond, package of biofilm carrier in IAP for the increase and even distribution of biomass; overflow waterfalls on the dikes between unit ponds for the increase of DO in pond water, gravel filtration dike (or dam) for removing suspended solids including algae, which have improved the performance of the IPS remarkably in terms of removal of main pollutants, such as SS, COD, BOD5, TN, NH3-N, TP and total bacteria. The final effluent from the IPS in warm seasons from May to October were SS 7.2-10.8 mg/L, BOD5 8.5-19.6 mg/L, COD 44.1 - 76.5 mg/L, and NH3-N 1.5-10.2 mg/L, which well meet Chinese national discharge standard (2nd class) of secondary municipal wastewater treatment plants, i.e. BOD5 and SS 30 mg/L respectively, COD 100 mg/L, and NH3-N 25 mg/L.

  13. Co-treatment of septage in a municipal sewage treatment pond system.

    PubMed

    Kurup, B; Kurup, R; Mathew, K; Ho, G

    2002-01-01

    This paper deals with the characteristics and treatment options of septage. The objective of the paper is to evaluate the effects of co-treatment of 50 MLD of septage in a sewage treatment pond system. The treatment efficiency of the pond system for BOD5 and Fecal Coliform (FC) has been estimated using a first order kinetics model. The model has predicted that the treatment pond system has a maximum capacity of 8.5 MLD and will have a reserve of 28.3% of its total capacity even after the proposed addition of 50 MLD of septage. Separation of oil and grease from septage prior to discharge into the pond system is recommended.

  14. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    EPA Science Inventory

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  15. Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems

    SciTech Connect

    Not Available

    1993-10-01

    This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

  16. Exceeding tertiary standards with a pond/reed bed system in Norway.

    PubMed

    Browne, W; Jenssen, P D

    2005-01-01

    At Vidaråsen in Norway sewage from a community consisting of 160 people, including a dairy, a food processing workshop, a bakery and a laundry is treated using a pond/reed bed system. The system consists of sludge settlement, pre-treatment surface/vertical-flow constructed wetlands, a 5 m deep enhanced facultative pond, three stabilization ponds, a planted sand filter and finally two horizontal-flow constructed wetlands filled with lightweight aggregate (Filtralite-P). The enhanced facultative pond and the primary stabilization pond are equipped with Flowform-cascades, which provide year-round aeration, rhythmical treatment and mixing of wastewater in the ponds. Treatment performance during the first five years has been high and unaffected by harsh winter conditions. Average phosphorus discharge from the system is 0.25 mg/l with total nitrogen 4 mg/l, total organic carbon (TOC) 5 mg/l and thermo-tolerant coliforms < 100/100 ml. The system is ecologically diverse and supports abundant populations of higher aquatic life such as ducks, amphibians and carp.

  17. Exceeding tertiary standards with a pond/reed bed system in Norway.

    PubMed

    Browne, W; Jenssen, P D

    2005-01-01

    At Vidaråsen in Norway sewage from a community consisting of 160 people, including a dairy, a food processing workshop, a bakery and a laundry is treated using a pond/reed bed system. The system consists of sludge settlement, pre-treatment surface/vertical-flow constructed wetlands, a 5 m deep enhanced facultative pond, three stabilization ponds, a planted sand filter and finally two horizontal-flow constructed wetlands filled with lightweight aggregate (Filtralite-P). The enhanced facultative pond and the primary stabilization pond are equipped with Flowform-cascades, which provide year-round aeration, rhythmical treatment and mixing of wastewater in the ponds. Treatment performance during the first five years has been high and unaffected by harsh winter conditions. Average phosphorus discharge from the system is 0.25 mg/l with total nitrogen 4 mg/l, total organic carbon (TOC) 5 mg/l and thermo-tolerant coliforms < 100/100 ml. The system is ecologically diverse and supports abundant populations of higher aquatic life such as ducks, amphibians and carp. PMID:16042271

  18. A highly sensitive underwater video system for use in turbid aquaculture ponds

    PubMed Central

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  19. Use of polishing pond effluents to cultivate lettuce (Lactuca sativa) in a hydroponic system.

    PubMed

    Keller, R; Perin, K; Souza, W G; Cruz, L S; Zandonade, E; Cassini, S T A; Goncalves, R F

    2008-01-01

    The sanitary quality and productivity of hydroponic lettuce (Lactuca sativa L.) plants cultivated under greenhouse conditions and treated with effluent from anaerobic reactor + polishing pond followed by physical-chemical treatment was evaluated. Two hydroponic cultivations were performed at summer and winter time at Vitoria-ES, Brazil. The treatments for both cultivations were: T1) conventional nutrient solution, T2) effluent from physical-chemical treatment, T3) effluent from polishing pond, and T4) effluent from polishing pond with 50% dilution. The plants were evaluated for microbial contamination, productivity and nutrient content. In all cases, no significant microbial contamination of lettuce was detected and the levels of macronutrients in the shoot system were similar to those in published reports. In the experiments from summer season, the treatments T1 and T2 resulted in higher production than the T3 and T4 treatments. Plants from T3 and T4 had a less developed root system as a result of reduced oxygenation from competition with the higher algae biomass content from the polishing pond effluent. In the winter season, the effect of the algal biomass was pronounced only in the T3 treatment (undiluted effluent from polishing pond). In conclusion, hydroponic cultivation of lettuce with pond effluent is suitable as a complement to water and nutrients for plants. PMID:19039187

  20. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  1. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage. PMID:22856320

  2. Conceptual design of the Truscott Brine Lake solar-pond system. Volume I. Utility-independent scenario

    SciTech Connect

    Not Available

    1981-06-01

    A conceptual design was performed for a series of solar pond systems to provide pumping power for chloride control in the Red River Basin. In the chloride control project, briny waters are diverted so as not to pollute portable water. The diverted brine is stored in a dammed natural basin where, with the aid of natural evaporation, the brine is concentrated to the salinities required for the solar ponds. The brine is transferred to the ponds and injected at the proper levels to establish the gradients and storage layers. The solar ponds are to be located within the Truscott, Texas brine impoundment lake. Heat will be extracted from the ponds and used to drive organic Rankine-cycle turbine generators. The electricity produced will serve the pumping needs of the chloride control project, pump brine from the natural source to the evaporation ponds, pump concentrated brine from the evaporation ponds to the solar ponds, maintain the solar ponds, and supply all system parasitic loads. It was found that five solar ponds with eight organic Rankine-cycle turbine-generators would serve both the average and peaking power requirements of the pumping stations in the Truscott area as they come on-line.

  3. Conceptual design of the Truscott brine lake solar-pond system, volume 1: Utility-independent scenario

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A conceptual design was performed for a series of solar pond systems to provide pumping power for chloride control in the Red River Basin. In the chloride control project, briny waters are diverted so as not to pollute portable water. The diverted brine is stored in a dammed natural basin where, with the aid of natural evaporation, the brine is concentrated to the salinities required for the solar ponds. The brine is transferred to the ponds and injected at the proper levels to establish the gradients and storage layers. The solar ponds are to be located within the Truscott, Texas brine impoundment lake. Heat will be extracted from the ponds and used to drive organic Rankine-cycle turbine generators. The electricity produced will serve the pumping needs of the chloride control project, pump brine from the natural source to the evaporation ponds, pump concentrated brine from the evaporation ponds to the solar ponds, maintain the solar ponds, and supply all system parasitic loads. It was found that five solar ponds with eight organic Rankine-cycle turbine-generators would serve both the average and peaking power requirements of the pumping stations in the Truscott area as they come on-line.

  4. Taenia eggs in a stabilization pond system with poor hydraulics: concern for human cysticercosis?

    PubMed

    Verbyla, Matthew E; Oakley, Stewart M; Lizima, Louis A; Zhang, Jie; Iriarte, Mercedes; Tejada-Martinez, Andres E; Mihelcic, James R

    2013-01-01

    The objective of this study is to compare the removal of Taenia eggs to the removal of Ascaris eggs in a wastewater stabilization pond system consisting of three ponds in series, where the hydraulic residence time distribution has been characterized via a tracer study supported by computational fluid dynamics modeling. Despite a theoretical hydraulic retention time of 30 days, the peak dye concentration was measured in the effluent of the first pond after only 26 hours. The smaller-sized Taenia eggs were detected in higher concentrations than Ascaris eggs in the raw wastewater. Ascaris eggs were not detected in the pond system effluent, but 45 Taenia eggs/L were detected in the system effluent. If some of these eggs were of the species Taenia solium, and if the treated wastewater were used for the irrigation of crops for human consumption, farmers and consumers could potentially be at risk for neurocysticercosis. Thus, limits for Taenia eggs in irrigation water should be established, and precautions should be taken in regions where pig taeniasis is endemic. The results of this study indicate that the theoretical hydraulic retention time (volume/flow) of a pond is not always a good surrogate for helminth egg removal. PMID:24355860

  5. Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system

    USGS Publications Warehouse

    Gammons, C.H.; Grant, T.M.; Nimick, D.A.; Parker, S.R.; DeGrandpre, M.D.

    2007-01-01

    Arsenic concentrations are elevated in surface waters of the Warm Springs Ponds Operable Unit (WSPOU), located at the head of the upper Clark Fork River Superfund site, Montana, USA. Arsenic is derived from historical deposition of smelter emissions (Mill and Willow Creeks) and historical mining and milling wastes (Silver Bow Creek). Although long-term monitoring has characterized the general seasonal and flow-related trends in As concentrations in these streams and the pond system used to treat Silver Bow Creek water, little is known about solubility controls and sorption processes that influence diel cycles in As concentrations. Diel (24-h) sampling was conducted in July 2004 and August 2005 at the outlet of the treatment ponds, at two locations along a nearby reconstructed stream channel that diverts tributary water around the ponds, and at Silver Bow Creek 2??km below the ponds. Dissolved As concentration increased up to 51% during the day at most of the stream sites, whereas little or no diel change was displayed at the treatment-pond outlet. The strong cycle in streams is explained by pH- and temperature-dependent sorption of As onto hydrous metal oxides or biofilms on the streambed. Concentrations of dissolved Ca2+ and HCO3- at the stream sites showed a diel temporal pattern opposite to that of As, and geochemical modeling supports the hypothesis that the concentrations of Ca2+ and HCO3- were controlled by precipitation of calcite during the warm afternoon hours when pH rose above 9.0. Nightly increases in dissolved Mn and Fe(II) concentrations were out of phase with concentrations of other divalent cations and are more likely explained by redox phenomena. ?? 2007 Elsevier B.V. All rights reserved.

  6. Assessment of a full-scale duckweed pond system for septage treatment.

    PubMed

    Papadopoulos, F H; Tsihrintzis, V A

    2011-01-01

    Environmental conditions and wastewater treatment performance in a full-scale duckweed pond system are presented. The treatment system consisted of three stabilization ponds in series and was fed with septage. Vacuum trucks pumped the septage from residential holding tanks and discharged it to the system daily. The inflow rates averaged 36 m3 d(-1) in the cold season and 60 m3 d(-1) in the warm season. Duckweed (Lemna minor) colonized the ponds in the warm months and survived during the cold season. Because of the difficult process for harvesting the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. Samples were collected from the vacuum trucks and from the exit of each pond and were analysed for physicochemical and microbiological parameters over a period of 12 months. The results showed that the duckweed mat suppressed algal biomass, which in turn led to anoxic and neutral pond conditions. On an annual basis, the duckweed system sufficiently removed BOD5 (94%), NH4+ (72%) and E. coli (99.65%), with lower removal of TSS (63%) and Enterococci (91.76%). A slight increase (1.1%) was recorded for o-PO4(3-). Between the two sampling seasons, BOD5 and TSS removal efficiencies were higher in the cold season with the longer retention time. Similar removal values in the warm and the cold season were found for nutrients and bacteria. These findings indicate that BOD5 and TSS removals are less temperature-dependent at higher retention times, while ammonia nitrogen and bacterial removals are substantially influenced by temperature as well as retention time.

  7. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  8. Solar-thermal-energy collection/storage-pond system

    DOEpatents

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  9. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  10. Performance of a constructed wetland-pond system for treatment and reuse of wastewater from campus buildings.

    PubMed

    Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te

    2006-11-01

    A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.

  11. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  12. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems.

    PubMed

    Santos, Juliana Ferreira; Soares, Karollina Lopes Siqueira; Assis, Caio Rodrigo Dias; Guerra, Carlos Augusto Martins; Lemos, Daniel; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza

    2016-10-01

    The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein-CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate-SDS-PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation. PMID:27021899

  13. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. PMID:25129566

  14. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses.

  15. Preparation for Retrievals from Sellafield Legacy Ponds Installation of the Gantry Refurbishment System

    SciTech Connect

    Ellison, M.

    2008-07-01

    Retrieval of sludge and fuel from the First Generation Magnox Fuel Storage Pond, and its safe long term storage is one of the NDA's top priorities in the UK clean up programme. The plant is currently undergoing a series of major modifications in preparation for the retrievals operations. The most visible example of these modifications is the Gantry Refurbishment System (GRS), a major work platform which has recently been lifted onto the pond long travel girders used by the Skip Handler. This paper describes the design, manufacture, works test, and site installation of this major piece of equipment. The installation lift, involving the use of an 800Te crane was one of the largest lifts undertaken at Sellafield. The GRS is a mobile platform structure which is designed to be pushed or pulled along the long travel girders by the Skip Handler. Its principle function is to provide a safe and shielded working platform from which to undertake refurbishment of the Skip Handler long travel girders and support structure. The potential hazards and consequences resulting from the modification were fully understood and controls were put in place to ensure that the risk of carrying out the work was as low as reasonably practicable. The work was authorised by the NII, Sellafield Nuclear Safety Committee and an independent readiness review panel. Despite less than perfect weather in the run up to the lift, the GRS was successfully and safely lifted onto the pond on 18 October 2006, the culmination of three years of planning, engineering and construction. (authors)

  16. Fate of pesticides in combined paddy rice-fish pond farming systems in northern Vietnam.

    PubMed

    Anyusheva, Maria; Lamers, Marc; La, Nguyen; Nguyen, Van Vien; Streck, Thilo

    2012-01-01

    During the last decades, high population growth and export-oriented economics in Vietnam have led to a tremendous intensification of rice production, which in turn has significantly increased the amount of pesticides applied in rice cropping systems. Since pesticides are toxic by design, there is a natural concern on the impact of their presence in the environment on human health and environmental quality. The present study was designed to examine the water regime and fate of pesticides (fenitrothion, dimethoate) during two consecutive rice crop seasons in combined paddy rice-fish pond farming systems in northern Vietnam. Major results revealed that 5 and 41% (dimethoate), and 1 and 17% (fenitrothion) of the applied mass of pesticides were lost from the paddy field to the adjacent fish pond during spring and summer crop seasons, respectively. The decrease of pesticide concentration in paddy surface water was very rapid with dissipation half-life values of 0.3 to 0.8 and 0.2 d for dimethoate and fenitrothion, respectively. Key factors controlling the transport of pesticides were water solubility and paddy water management parameters, such as hydraulic residence time and water holding period. Risk assessment indicates that the exposure to toxic levels of pesticides for aquaculture (, ) is significant, at least shortly after pesticide application.

  17. Characterisation of oxygen dynamics within a high-rate algal pond system used to treat abattoir wastewater.

    PubMed

    Evans, R A; Fallowfield, H J; Cromar, N J

    2003-01-01

    As part of a study examining the efficacy of high-rate algal pond treatment of high-strength abattoir wastewater, the oxygen dynamics of a pilot scale system were characterised. The relationship between photosynthesis and irradiance was investigated using online data collected throughout a year of operation under varying conditions of climate and wastewater quality. Changes in climate were reflected in changes in the net rate of photosynthesis in deep ponds, consistent with adaptation of algal populations to changing light intensity, whilst the response of shallow ponds was more varied. The use of online monitoring and the calculation in real time of photosynthetic rates should allow for improved design and management of full scale treatment systems and further the understanding of factors driving biological reactions within these systems. PMID:14510194

  18. Characterisation of oxygen dynamics within a high-rate algal pond system used to treat abattoir wastewater.

    PubMed

    Evans, R A; Fallowfield, H J; Cromar, N J

    2003-01-01

    As part of a study examining the efficacy of high-rate algal pond treatment of high-strength abattoir wastewater, the oxygen dynamics of a pilot scale system were characterised. The relationship between photosynthesis and irradiance was investigated using online data collected throughout a year of operation under varying conditions of climate and wastewater quality. Changes in climate were reflected in changes in the net rate of photosynthesis in deep ponds, consistent with adaptation of algal populations to changing light intensity, whilst the response of shallow ponds was more varied. The use of online monitoring and the calculation in real time of photosynthetic rates should allow for improved design and management of full scale treatment systems and further the understanding of factors driving biological reactions within these systems.

  19. Par Pond water balance

    SciTech Connect

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  20. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration.

    PubMed

    Sfez, Sophie; Van Den Hende, Sofie; Taelman, Sue Ellen; De Meester, Steven; Dewulf, Jo

    2015-08-01

    The environmental sustainability of aquaculture wastewater treatment by microalgal bacterial flocs (MaB-flocs) in an outdoor raceway pond was analyzed using life cycle assessment. Pikeperch aquaculture wastewater treated at pilot scale (Belgium; 28m(2)) and industrial scale (hypothetical up-scaling; 41 ponds of 245m(2)) were compared. The integration of the MaB-floc raceway pond in a broader aquaculture waste treatment system was studied, comparing the valorisation of MaB-flocs as shrimp feed and as biogas. Up-scaling improves the resource footprint of the plant (848MJex,CEENEkg(-1) MaB-floc TSS at pilot scale and 277MJex,CEENEkg(-1) MaB-floc TSS at industrial scale) as well as its carbon footprint and eutrophication potential. At industrial scale, the valorisation of MaB-flocs as shrimp feed is overall more sustainable than as biogas but improvements should be made to reduce the energy use of the MaB-floc raceway pond, especially by improving the energy-efficiency of the pond stirring system.

  1. Performance of a pilot-scale high rate algal pond system treating abattoir wastewater in rural South Australia: nitrification and denitrification.

    PubMed

    Evans, R A; Cromar, N J; Fallowfield, H J

    2005-01-01

    As part of a study examining the efficacy of high-rate algal pond treatment of high-strength abattoir wastewater, the impact of pond configuration and loading rate on nitrification was determined. The extent of nitrification in all ponds was consistent with mass balance estimates of oxygen demand and availability. Deeper ponds were more stable nitrifying systems, with shallow ponds displaying greater variation in response to changes in nitrogen loading. In a separate experiment the pond system was modified by covering a part of an in-series HRAP to exclude light, providing conditions suitable for denitrification. Specific denitrification rates were often within the range typical for endogenous carbon sources, with mass balance calculations indicating removals of up to 95%. PMID:16114673

  2. Advanced treatment of refractory organic pollutants in petrochemical industrial wastewater by bioactive enhanced ponds and wetland system.

    PubMed

    Liu, Shuo; Ma, Qiusha; Wang, Baozhen; Wang, Jifu; Zhang, Ying

    2014-05-01

    A large-scale combined ponds-wetland system was applied for advanced treatment of refractory pollutants in petrochemical industrial wastewater. The system was designed to enhance bioactivity and biological diversity, which consisted of anaerobic ponds (APs), facultative ponds (FPs), aerobic pond and wetland. The refractory pollutants in the petrochemical wastewater to be treated were identified as alkanes, chloroalkanes, aromatic hydrocarbons, and olefins, which were significantly degraded and transformed along with the influent flowing through the enhanced bioactive ponds-wetland system. 8 years of recent operational data revealed that the average removal rate of stable chemical oxygen demand (COD) was 42.7 % and that influent COD varied from 92.3 to 195.6 mg/L. Final effluent COD could reach 65.8 mg/L (average). COD removal rates were high in the APs and FPs and accounted for 75 % of the total amount removed. This result indicated that the APs and FPs degraded refractory pollutants through the facilitation of bacteria growth. The changes in the community structures of major microbes were assessed by 16SrDNA-denaturing gradient gel electrophoresis. The same analysis was used to identify the main bacterial function for the removal of refractory pollutants in the APs and FPs. The APs and FPs displayed similar microbial diversities, and some of the identified bacteria degraded and removed refractory pollutants. The overall results proved the applicability, stability, and high efficiency of the ponds-wetland system with enhanced bioactivity in the advanced removal of refractory pollutants from petrochemical industrial wastewater.

  3. Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Lamers, M.; Nguyen, N.; Streck, T.

    2012-04-01

    During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion

  4. The effects of flow-path modification on water-quality constituent retention in an urban stormwater detention pond and wetland system, Orlando, Florida

    USGS Publications Warehouse

    Gain, W.S.

    1996-01-01

    Changes in constituent retention in a wet stormwater-detention pond and wetland system in Orlando, Florida, were evaluated following the 1988 installation of a flow barrier which approximately doubled the flow path and increased detention time in the pond. The pond and wetland were arranged in series so that stormwater first enters the pond and overflows into the wetland before spilling over to the regional stream system. Several principal factors that contribute to constituent retention were examined, including changes in pond-water quality between storms, stormwater quality, and pond-water flushing during storms. A simple, analytical pond-water mixing model was used as the basis for interpreting changes in retention efficiencies caused by pond modification. Retention efficiencies were calculated by a modified event-mean concentration efficiency method using a minimum variance unbiased estimator approach. The results of this study generally support the hypothesis that changes in the geometry of stormwater treatment systems can significantly affect the constituent retention efficiency of the pond and wetland system. However, the results also indicate that these changes in efficiency are caused not only by changes in residence time, but also by changes in stormwater mixing and pond water flushing during storms. Additionally, the use of average efficiencies as indications of treatment effectiveness may fail to account for biases associated with sample distribution and independent physical properties of the system, such as the range and concentrations of constituents in stormwater inflows and stormwater volume. Changes in retention efficiencies varied among chemical constituents and were significantly different in the pond and wetland. Retention efficiency was related to inflow concentration for most constituents. Increased flushing of the pond after modification caused decreases in retention efficiencies for constituents that concentrate in the pond between storms

  5. Inhibition of nitrification by low oxygen concentrations in an aerated treatment pond system with biofilm promoting mats.

    PubMed

    Jechalke, Sven; Rosell, Mónica; Vogt, Carsten; Richnow, Hans H

    2011-07-01

    Inhibition of nitrification in the presence of low oxygen concentrations (below 1.2 mg/L) and temperature dependency at oxygen saturation levels were observed in an aerated treatment pond system with biofilm promoting mats in two parallel ponds for remediation of ammonium, methyl tertiary butyl ether (MTBE), and benzene-contaminated groundwater. Within the first 18 months, at an average oxygen concentration of 0.7 +/- 0.5 mg/L along the ponds, no significant decrease of ammonium or significant formation of nitrification products were observed. After increasing the aeration to oxygen saturation levels, the ammonium removal increased up to a maximum of 27%, with concomitant formation of nitrite and nitrate (up to 26 and 0.6 mM). The subsequent reduction of aeration in one pond to the previous level resulted in a definitive stop of nitrification, while, in the other pond, nitrification was well-correlated with the water temperature, reaching up to 45% ammonium removal.

  6. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.

    PubMed

    Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon

    2014-01-01

    Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.

  7. Effects of a constructed wetland and pond system upon shallow groundwater quality.

    PubMed

    Ouyang, Ying

    2013-05-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from pre-CW to post-CW but increased from pre-CP to post-CP. The average concentrations of groundwater total Kjeldahl nitrogen and ammonium (NH(4)(+)) increased from pre-CW (or CP) to post-CW (or CP), whereas the average concentrations of groundwater arsenic (As), chromium, nickel, and zinc (Zn) decreased from pre-CW to post-CW regardless of the well locations. Variations of groundwater cadmium, copper, and Zn concentrations were larger in pre-CP than in post-CP and had a tendency to decrease from pre-CP to post-CP. In general, the average concentrations of groundwater aluminum and manganese decreased and of groundwater calcium, iron, magnesium, and sodium increased from pre-CP to post-CP. The average values of water levels (depth from the ground surface), redox potential, and conductance decreased and of chloride and sulfate (SO(4)(-2)) increased after the wetland and pond were constructed regardless of the well locations. Results further revealed that there were significant differences (α = 0.05) between the pre- and post-CW (or CP) for redox potential, water level, and As. This study suggests that the CW-CP system had discernible effects on some of the shallow groundwater quality constituents. This information is very useful for fully estimating overall performance of stormwater treatment with the CW-CP system. PMID:22976119

  8. Effects of a constructed wetland and pond system upon shallow groundwater quality.

    PubMed

    Ouyang, Ying

    2013-05-01

    Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from pre-CW to post-CW but increased from pre-CP to post-CP. The average concentrations of groundwater total Kjeldahl nitrogen and ammonium (NH(4)(+)) increased from pre-CW (or CP) to post-CW (or CP), whereas the average concentrations of groundwater arsenic (As), chromium, nickel, and zinc (Zn) decreased from pre-CW to post-CW regardless of the well locations. Variations of groundwater cadmium, copper, and Zn concentrations were larger in pre-CP than in post-CP and had a tendency to decrease from pre-CP to post-CP. In general, the average concentrations of groundwater aluminum and manganese decreased and of groundwater calcium, iron, magnesium, and sodium increased from pre-CP to post-CP. The average values of water levels (depth from the ground surface), redox potential, and conductance decreased and of chloride and sulfate (SO(4)(-2)) increased after the wetland and pond were constructed regardless of the well locations. Results further revealed that there were significant differences (α = 0.05) between the pre- and post-CW (or CP) for redox potential, water level, and As. This study suggests that the CW-CP system had discernible effects on some of the shallow groundwater quality constituents. This information is very useful for fully estimating overall performance of stormwater treatment with the CW-CP system.

  9. Removal of bacterial and viral faecal indicator organisms in a waste stabilization pond system in Choconta, Cundinamarca (Colombia).

    PubMed

    Campos, C; Guerrero, A; Cárdenas, M

    2002-01-01

    A major objective for domestic wastewater treatment using waste stabilization pond systems is the removal of pathogenic microorganisms. Traditional evaluation parameters for faecal contamination are the total and faecal coliforms. However, epidemiological studies, environmental resistance and the behaviour in the treatment systems, show that viruses are an important disease agent and even more resistant to disinfection than bacteria. Therefore, it is important to introduce viruses as a faecal indicator and to compare them with the traditional bacterial indicators. A waste stabilization pond system was evaluated in the municipality of Chocontá, Cundinamarca (Colombia), for the removal of faecal indicators (such as Escherichia coli, Streptococcus faecalis, Clostridium perfringens) and viruses like F+, somatic and Bacteroides fragilis phages. The system includes two facultative ponds in series with a flow of 1555 m3/day. Samples were collected at the entrance of the system, in the two ponds and from the final effluent. Results show a decrease between 0.3 and 4.7 logarithmic units in the bacterial indicators and between 1 and 4.6 logarithmic units with viral indicators. PMID:11833732

  10. Removal of bacterial and viral faecal indicator organisms in a waste stabilization pond system in Choconta, Cundinamarca (Colombia).

    PubMed

    Campos, C; Guerrero, A; Cárdenas, M

    2002-01-01

    A major objective for domestic wastewater treatment using waste stabilization pond systems is the removal of pathogenic microorganisms. Traditional evaluation parameters for faecal contamination are the total and faecal coliforms. However, epidemiological studies, environmental resistance and the behaviour in the treatment systems, show that viruses are an important disease agent and even more resistant to disinfection than bacteria. Therefore, it is important to introduce viruses as a faecal indicator and to compare them with the traditional bacterial indicators. A waste stabilization pond system was evaluated in the municipality of Chocontá, Cundinamarca (Colombia), for the removal of faecal indicators (such as Escherichia coli, Streptococcus faecalis, Clostridium perfringens) and viruses like F+, somatic and Bacteroides fragilis phages. The system includes two facultative ponds in series with a flow of 1555 m3/day. Samples were collected at the entrance of the system, in the two ponds and from the final effluent. Results show a decrease between 0.3 and 4.7 logarithmic units in the bacterial indicators and between 1 and 4.6 logarithmic units with viral indicators.

  11. Effects of fish barrier screening material on water flow in split-pond aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ponds serve two functions as fish-culture units. They hold water and fish, much like the walls of an aquarium, and they produce oxygen and treat wastes produced during culture. Split-ponds separate those two functions to make management easier. A large lagoon that provides the ecological services is...

  12. In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Abd-Elrahman, Amr; Croxton, Matthew; Pande-Chettri, Roshan; Toor, Gurpal S.; Smith, Scot; Hill, Jeffrey

    Knowledge of water quality parameters is integral to sustainability of freshwater aquaculture operations that raise ornamental fish. Our objective in this study is to evaluate the ability of a mobile, ground-based hyperspectral (HS) imaging sensor to determine chlorophyll-a (Chl-a) concentrations in working aquaculture ponds, which represent manipulated, shallow, nutrient-rich systems, and to determine the effect of using submerged reflectance targets on the accuracy of Chl-a estimation. We collected Chl-a measurements from aquaculture ponds ranging from 0.8 to 494 μg/L. Chl-a measurements showed a strong correlation with two-band and three-band spectral indices computed from the HS image reflectance. Coefficient of determination ( R2) values of 0.975 and 0.982 were obtained for the two- and three-band models, respectively, using spectra captured from the submerged target at 10 cm depth. Using spectra captured from water (no submerged targets), R2 values were slightly lower at 0.833 and 0.862 for two- and three-band models. Data from the submerged target at 30 cm depth had the lowest correlation with measured chlorophyll-a concentrations, potentially due to variations in water column properties and shadows cast by the platform. Modeling total Phosphorous (P) and Nitrogen (N) concentrations of the collected samples with the spectral indices sensitive to Chl-a concentrations showed a moderate level of correlation. Removing a model outlier (observation with maximum N and P concentrations) led to a significant increase in the models' coefficient of determination ( e.g. from 0.478 to 0.823 for the P model using three-band index values), which highlighted the possibility of using HS imagery to estimate N and P concentrations and the need for more research to model the interrelationships between Chl-a and nutrient concentrations in aquaculture water systems.

  13. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and burrows pond rearing system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...

  14. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  15. Comparative evaluation on the performance of bio-rack and shallow pond systems for domestic wastewater treatment.

    PubMed

    Valipour, A; Raman, V K; Badaliansgholikandi, G

    2012-10-01

    Constructed wetlands have been used successfully for treatment of wastewater during the last decades. The bio-rack and shallow pond systems are well engineered wetland process in wastewater treatment. The aim of this study is to compare the potential use of bio-rack and shallow pond systems for domestic wastewater treatment either in presence of high total dissolved solids (TDS) or heavy metal salts. The sewage treatment performance indicates 75.15% & 80.93% chemical oxygen demand (COD), 86.59% & 90.90% biological oxygen demand (BOD5), 27.54% & 15.98% total dissolved solids (TDS), 73.13% & 70.31% total suspended solids (TSS), 8.86% & 3.61% Chlorides, 70.22% & 74.18% ammonia nitrogen (NH3-N), 31.71% & 41.24% phosphate (PO4-P), 92.11% & 96.45% most probable number (MPN) and 93.05% & 98.24% total viable count (TVC) reduction at 10 & 21 h hydraulic retention time (HRT) in bio-rack and shallow pond system respectively. Likewise, the Phragmites sp. and water hyacinth can tolerate TDS up to 9000 and 2000 mg/L. The reduction in TDS is minor (14 & 19%) at the highest tolerable limit whereas the heavy metal reduction is 68 & 65%, 69 & 67%, 67 & 63%, 71 & 69% for Cd, Cu, Ni and Zn in bio-rack and shallow pond system respectively. The overall studies indicate the better treatment efficiency in bio-rack system at low foot print area (91 m2) compared to shallow pond system. PMID:25151708

  16. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis.

    PubMed

    Downing, J B; Bracco, E; Green, F B; Ku, A Y; Lundquist, T J; Zubieta, I X; Oswald, W J

    2002-01-01

    The sustainability of wastewater reclamation and reuse schemes is often limited by the increase in salt concentration that occurs with each water use. In this pilot study, we show that the cost of reclaiming wastewater and removing salt can be dramatically decreased by integrating recent advances in wastewater pond design, solids separation equipment, and membrane technology. Effluent from an AIWPS Facility was clarified in a Krofta Supracell Dissolved Air Flotation (DAF) unit and a Slow Sand Filter (SSF) prior to final treatment in an Expertise S.r.l. reverse osmosis (RO) unit. The ponds of the AIWPS Facility removed an average of 82% of soluble BOD and 80% of soluble nitrogen. Following clarification, filtration, and RO treatment, the pollutant removals were > 99% for soluble BOD, > 99% for soluble nitrogen, and 98% for TDS. Based on membrane fouling rate data, the cleaning interval for the RO membranes in a full-scale AIWPS-RO Facility would be over 100 days. This interval is on par with that typically seen in full-scale reclamation facilities treating secondary activated sludge effluent with microfiltration prior to reverse osmosis. A 4-MLD AIWPS-RO Facility is expected to produce permeate water at substantially lower cost and lower energy consumption (US $698 and 443 kWh per million liters treated) than a system of equal capacity using conventional activated sludge secondary treatment followed by microfiltration and reverse osmosis (US $1274 and 911 kWh per million litres treated). This cost and energy differential is attributable to the lower capital and operating expenses of the AIWPS Technology in comparison with activated sludge.

  17. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system.

    PubMed

    El-Shafai, Saber A; El-Gohary, Fatma A; Nasr, Fayza A; van der Steen, N Peter; Gijzen, Huub J

    2007-03-01

    The pilot-scale wastewater treatment system used in this study comprised a 40-l UASB reactor (6-h HRT) followed by three duckweed ponds in series (total HRT 15 days). During the warm season, the treatment system achieved removal values of 93%, 96% and 91% for COD, BOD and TSS, respectively. Residual values of ammonia, TKN and total phosphorus were 0.41 mg N/l, 4.4 mg N/l and 1.11 mg P/l, with removal efficiencies of 98%, 85% and 78%, respectively. The system achieved 99.998% faecal coliform removal during the warm season with final effluent containing 4 x 10(3) cfu/100 ml. During the winter, the system was efficient in removing COD, BOD and TSS but not nutrients. The system was deficient in the removal of faecal coliforms during the winter, producing effluent with 4.7 x 10(5) cfu/100 ml. During the warm season, the N removal consisted of 80% by plant uptake, 5% by sedimentation and 15% unaccounted for. A duckweed production rate of 33 t dry matter per hectare per 8 months was achieved.

  18. Processing of Oak Ridge B&C pond sludge surrogate in the transportable vitrification system

    SciTech Connect

    Zamecnik, J.R.; Young, S.R.; Peeler, D.K.; Smith, M.E.

    1997-04-16

    The Transportable Vitrification System (TVS) developed at the Savannah River Site is designed to process low-level and mixed radioactive wastes into a stable glass product. The TVS consists of a feed preparation and delivery system, a joule-heated melter, and an offgas treatment system. Surrogate Oak Ridge Reservation (ORR) B&C pond sludge was treated in a demonstration of the TVS system at Clemson University and at ORR. After initial tests with soda-lime-silica (SLS) feed, three melter volumes of glass were produced from the surrogate feed. A forthcoming report will describe glass characterization; and melter feeding, operation, and glass pouring. Melter operations described will include slurry characterization and feeding, factors affecting feed melt rates, glass pouring and pour rate constraints, and melter operating temperatures. Residence time modeling of the melter will also be discussed. Characterization of glass; including composition, predicted liquidity and viscosity, Toxic Characteristic Leaching Procedure (TCLP), and devitrification will be covered. Devitrification was a concern in glass container tests and was found to be mostly dependent on the cooling rate. Crucible tests indicated that melter shutdown with glass containing Fe and Li was also a devitrification concern, so the melter was flushed with SLS glass before cooldown.

  19. Consortia of microalgae and bacteria in the performance of a stabilization pond system treating landfill leachate.

    PubMed

    Costa, R H R; Martins, C L; Fernandes, H; Velho, V F

    2014-01-01

    This study treated sanitary landfill leachate and was conducted in a pilot-scale system composed of three serial ponds (P1, P2 and P3), followed by a rock filter, in order to evaluate the microbial consortium influence on system performance and to investigate microorganism dynamics in the process. The system was broken into three stages, with a continuous flow rate (Q = 200 L d⁻¹) for 43 weeks. The stages were as follows: conventional operation (stage I), 12 h aeration in P2 (stage II), and 18 h aeration in P2 (stage III). The results showed the possibilities for treating landfill leachate, presenting an average efficiency of 75% for both filtered biochemical oxygen demand and ammonium. At the end of stage III, the ammonium concentration was 6 mg L⁻¹, which is lower than that established by Brazilian regulations for wastewater discharge (CONAMA 430/2011). The aeration applied in P2 led to a change in the microbial consortia during the second and third stage, which influenced the quality of the final effluent. The best performance was seen in stage III, where the system showed high microbial diversity, including the presence of nitrifying bacteria. PMID:25098879

  20. Solar pond seawater heating system for shellfish mariculture. Final progress report

    SciTech Connect

    Kassner, J.

    1984-01-01

    To supplement natural hard clam (Mercenaria mercenaria) production, Brookhaven Township constructed an onland facility to culture seed clasm in 1980. The facility is only operated from June to October when water temperatures are above 60/sup 0/F, the minimum acceptable for hard clam growth. If seawater could be heated economically, operation of the facility could begin in March, thereby increasing hard clam production. The use of solar energy is particularly suited for this purpose since the seawater need only be warmed a few degrees. After considering a number of active and passive type systems, the Town opted for the latter since it would be simpler to build and operate, less expensive, and at the same time would meet the biological requirements of the hard clam. The two basic components of the solar pond, as the system is known, are a reservoir in which the seawater is heated by direct absorption and a transparent cover to minimize heat loss. For an initial production of 1 million .75mm seed clams, two tanks each measuring 10 feet by 20 feet by 3 feet deep were installed beneath a greenhouse type structure. Total cost of the system was less than $23,000.

  1. Entrainment in diffusive thermohaline systems: Application to salt gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Atkinson, J. F.; Adams, E. E.; Melville, W. K.; Harleman, D. R. F.

    1985-07-01

    The development of a numerical model for simulating the temporal evolution of vertical temperature and salinity profiles in a salt-gradient solar pond is discussed. The model uses a mixed-layer approach, and a general entrainment relation is derived for predicting the growth of the upper mixed layer. One major effort involved studying the process of mixed-layer deepening in a strongly stratified diffusive double-diffusive system. In the first of two experiments, a vertically oscillating grid drove interfacial mixing in a two-layer system in which the temperature and salinity differences between the layers were varied. The second experiment addressed wind-induced mixing in a laboratory wind/wave tank. Tests involved several different mean wind speeds and considered two-layer systems with salt or diffusive double-diffusive stratification. No differences could be seen in the results for the two different kinds of stratification. Additional experiments in the wind/wave tank tested the effect of placing floating plastic pipes or netting on the water surface. Results showed that both pipes and netting can effectively reduce wind mixing. Experimental data and data from previous research define suggested values for the coefficients in the entrainment model, which is incorporated into the full numerical simulation model.

  2. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    PubMed

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD. PMID:27232407

  3. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    PubMed

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  4. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  5. Removal of faecal bacteria from septage by treating it in a full-scale duckweed-covered pond system.

    PubMed

    Papadopoulos, Frantzis H; Tsihrintzis, Vassilios A; Zdragas, Antonios G

    2011-12-01

    Performance of a full-scale duckweed-covered treatment system in removing faecal bacteria is presented. The system consisted of three ponds in series and received septage from holding tanks. Inflow averaged between 36 m(3) d(-1) in the cold season and 60 m(3) d(-1) in the warm season, resulting in a total hydraulic retention time of 88 and 58 days, respectively. Duckweed (Lemna minor) colonized the ponds in the summer and continued to grow in the cold season. Due to the difficult harvesting process of the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. The system was monitored for temperature, pH, oxygen, chlorophyll-a, Escherichia coli and Enterococci. Duckweed growth resulted in chlorophyll-a concentration reduction from 924 to 13 μg L(-1), causing neutral and anoxic conditions in the pond water. A temperature effect was noticed on the E. coli decay coefficient with a decreasing trend along the treatment system. Enterococci always decayed less than E. coli. Differences on decay coefficients and removal efficiencies were not observed between the three ponds for both bacterial types. Effluent quality in terms of E. coli was 489 and 1377 cfu/100 mL, in the warm and the cold seasons, respectively, with average removals of 99.65 ± 1.46% and 99.33 ± 3.03%. Total Enterococci removal was 88.91 ± 23.1% in the warm season and 94.43 ± 24.45% in the cold season, resulting in mean effluent values of 1058 and 1404 cfu/100 mL, respectively. The seasonal differences in total removal efficiencies were insignificant for both bacterial types.

  6. Lagoons and oxidation ponds. [Wastewater treatment

    SciTech Connect

    George, D.B.

    1982-06-01

    A review of the literature on waste stabilization pond systems is presented. Factors such as wastewater temperature, and levels of heavy metals that affect the stability of the lagoons and oxidation ponds, and methods to upgrade stabilization pond effluent to meet state and federal effluent requirements are discussed. Model simulations utilized to predict the treatment efficiency of various waste stabilization pond geometries, and inlet and outlet configurations are reviewed. (KRM)

  7. Investigation of sodium carbonate, sodium bicarbonate and water systems for saturated solar ponds. Final report

    SciTech Connect

    1980-03-28

    The overall objective of this study was to gather relevant data primarily from the published literature to investigate the technical feasibility of using a Na/sub 2/CO/sub 3/-NaHCO/sub 3/ mixture for a saturated solar pond. This objective was accomplished by a literature search and review of existing chemical information and by performing simple chemistry experiments in the laboratory. Information on density, solubility, phase diagram, equilibrium compositions, reaction rate constant, equilibrium constant, diffusion coefficient, vapor pressure and potentially useful additives is compiled. It is concluded that even though both the saturation density and solubility increase with temperature for trona, it is not chemically stable either at room temperature or higher temperatures (80/sup 0/C). Therefore, as is, trona is not suitable for use in a saturated solar pond. From the literature it has been found that sugar and gum can retard the decomposition of bicarbonate to carbonate in the mixture. Nevertheless, trona is a very attractive solute for an unsaturated solar pond. A laboratory unsaturated pond with a stable density gradient has worked without any problems for about two months at InterTechnology/Solar Corporation.

  8. Connectivity in a pond system influences migration and genetic structure in threespine stickleback

    PubMed Central

    Seymour, Mathew; Räsänen, Katja; Holderegger, Rolf; Kristjánsson, Bjarni K

    2013-01-01

    Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales. PMID

  9. Connectivity in a pond system influences migration and genetic structure in threespine stickleback.

    PubMed

    Seymour, Mathew; Räsänen, Katja; Holderegger, Rolf; Kristjánsson, Bjarni K

    2013-03-01

    Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.

  10. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant. PMID:25026585

  11. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  12. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    PubMed

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. PMID:22051341

  13. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  14. The spatial and temporal dynamics of carbon dioxide fluxes from a continental Canadian wetland-pond system

    NASA Astrophysics Data System (ADS)

    Schmiedeskamp, Marcel; Blodau, Christian

    2016-04-01

    Due to their high number, small continental ponds are often an important and significant source of methane (CH4) and carbon dioxide (CO2) on the landscape scale. Until now, only little is known about temporal and especially spatial dynamics of carbon fluxes of a temperate wetland-pond system yet. We determined the CO2 fluxes in one of this systems (847 m2) in southern Ontario, Canada, along a high spatial resolution transect of seven sites and high temporal solution (10 min interval) continuously over the complete summer of 2015, using measurement units in closed chamber based on small ELG CO2 loggers (SenseAir), which detect CO2 by non-dispersive infrared (NDIR) spectroscopy, and using one NDIR sensor in a water impermeable, gas permeable membrane deployed under water. All sites showed a net source of CO2 to the atmosphere, but they showed spatial differences in size of fluxes amounting from 16.73 (-14.48 to 124.52) mmol CO2 m‑2 d‑1 to 80.45 (-2.44 to 210.65) mmol CO2 m‑2 d‑1. At all sites the CO2 fluxes decreased significantly in fall, it can be explained by a correlation with radiation and wind. Due to the wind, there is an increased release and stock emptying. The spatial differences are mainly explained by the groundwater dynamics, which have a rising effect on the carbon fluxes. This study shows the large spatial variability of CO2 at the peatland-pond system and the importance of the spatial differences in determination of CO2 fluxes for a complete system, which should not be ignored in order to estimate the correct amount of greenhouse gases to the atmosphere.

  15. The spatial and temporal dynamics of carbon dioxide fluxes from a continental Canadian wetland-pond system

    NASA Astrophysics Data System (ADS)

    Schmiedeskamp, Marcel; Blodau, Christian

    2016-04-01

    Due to their high number, small continental ponds are often an important and significant source of methane (CH4) and carbon dioxide (CO2) on the landscape scale. Until now, only little is known about temporal and especially spatial dynamics of carbon fluxes of a temperate wetland-pond system yet. We determined the CO2 fluxes in one of this systems (847 m2) in southern Ontario, Canada, along a high spatial resolution transect of seven sites and high temporal solution (10 min interval) continuously over the complete summer of 2015, using measurement units in closed chamber based on small ELG CO2 loggers (SenseAir), which detect CO2 by non-dispersive infrared (NDIR) spectroscopy, and using one NDIR sensor in a water impermeable, gas permeable membrane deployed under water. All sites showed a net source of CO2 to the atmosphere, but they showed spatial differences in size of fluxes amounting from 16.73 (-14.48 to 124.52) mmol CO2 m-2 d-1 to 80.45 (-2.44 to 210.65) mmol CO2 m-2 d-1. At all sites the CO2 fluxes decreased significantly in fall, it can be explained by a correlation with radiation and wind. Due to the wind, there is an increased release and stock emptying. The spatial differences are mainly explained by the groundwater dynamics, which have a rising effect on the carbon fluxes. This study shows the large spatial variability of CO2 at the peatland-pond system and the importance of the spatial differences in determination of CO2 fluxes for a complete system, which should not be ignored in order to estimate the correct amount of greenhouse gases to the atmosphere.

  16. Design and analysis of microalgal open pond systems for the purpose of producing fuels: A subcontract report

    SciTech Connect

    Weissman, J.C.; Goebel, R.P.

    1987-04-01

    The designs and systems developed include many innovative concepts and experiments, including the design and operation of a low-cost system. Cost-effectiveness is realized by minimizing capital costs of the system and achieving efficient use of inputs. Extensive engineering analysis of carbonation, mixing, and harvesting subsystems has elucidated both the lowest cost, most efficient options and the essential parameters needed to construct, test, and evaluate these subsystems. The use of growth ponds sealed with clay and lined with crushed rock results in construction cost savings of 50% over ponds lined with synthetic membranes. In addition a low-cost but efficient design allows improvements in technology to have maximum impact on final product cost reductions. In addition to the innovations in low-cost construction, the operational efficiency of the design is both higher and more feasible than that attained by any previous system concept of comparable scale. The water analysis has led to operational specifications that minimize water use and virtually eliminate losses of carbon dioxide to the atmosphere. The carbon dioxide injection system is designed for 95% efficiency, but is still low in cost. The construction of a large-scale, covered anaerobic lagoon to recycle carbon, nitrogen, and phosphorus has not been attempted at the scale analyzed here. Yet efficient recycling is essential for achieving economic affordability. 23 refs., 21 figs., 53 tabs.

  17. Operation of an integrated algae pond system for the treatment of municipal sewage: a South African case study.

    PubMed

    Mambo, Prudence M; Westensee, Dirk K; Render, David S; Cowan, A Keith

    2014-01-01

    Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect sewage treatment. In the present work, the performance of IAPS was evaluated to determine the efficiency of this technology for treatment of municipal sewage under South African conditions. Composite samples were analysed over an 8 month period before and after tertiary treatment. Spectrophotometric assays indicated that the treated water from this IAPS was compliant with the discharge limits for phosphate-P, ammonium-N and nitrate/nitrite-N, and mean values were: 5.3, 2.9 and 12.4 mg L(-1), respectively. Chemical oxygen demand (COD), however, fluctuated significantly and was dependent on full function of the IAPS. Mean COD of the final treated water was 72.2 mg L(-1). Although these results suggest that the treated water discharged from this IAPS operating under South African conditions meets the standard for discharge, mean total suspended solids (TSS) was routinely above the limit at 34.5 ± 13 mg L(-1) and faecal coliforms were higher than expected. Tertiary treatment using a maturation pond series (MPS), slow sand filtration (SSF), or a controlled rock filter (CRF) ensured that the final treated water from the IAPS was of a quality suitable for discharge to the environment with CRF > SSF > MPS.

  18. Operation of an integrated algae pond system for the treatment of municipal sewage: a South African case study.

    PubMed

    Mambo, Prudence M; Westensee, Dirk K; Render, David S; Cowan, A Keith

    2014-01-01

    Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect sewage treatment. In the present work, the performance of IAPS was evaluated to determine the efficiency of this technology for treatment of municipal sewage under South African conditions. Composite samples were analysed over an 8 month period before and after tertiary treatment. Spectrophotometric assays indicated that the treated water from this IAPS was compliant with the discharge limits for phosphate-P, ammonium-N and nitrate/nitrite-N, and mean values were: 5.3, 2.9 and 12.4 mg L(-1), respectively. Chemical oxygen demand (COD), however, fluctuated significantly and was dependent on full function of the IAPS. Mean COD of the final treated water was 72.2 mg L(-1). Although these results suggest that the treated water discharged from this IAPS operating under South African conditions meets the standard for discharge, mean total suspended solids (TSS) was routinely above the limit at 34.5 ± 13 mg L(-1) and faecal coliforms were higher than expected. Tertiary treatment using a maturation pond series (MPS), slow sand filtration (SSF), or a controlled rock filter (CRF) ensured that the final treated water from the IAPS was of a quality suitable for discharge to the environment with CRF > SSF > MPS. PMID:24960021

  19. Effect of gamma irradiation on the reproductive system of the pond snail Physa acuta

    SciTech Connect

    Fujita, S.; Egami, N.

    1984-05-01

    Changes in the survival rate in adults and embryos of the pond snail Physa acuta were studied after acute whole-body ..gamma.. irradiation. The LD/sub 50/ value of the adult snails was about 40 kR. The LD/sub 50/ values of the embryos irradiated 0 and 1 day after oviposition were about 0.9 and 2 kR, respectively. Histological changes in the ovotestis, the number of eggs laid, and their hatchability were examined in the irradiated adult snails. A fall and a subsequent recovery were observed for these characteristics after irradiation with 8 kR of ..gamma.. rays. The relative constitution of the germ-cell populations was greatly changed by the same dose of ..gamma.. rays. After depletion, the ovotestis was first repopulated with gonia, and then with oocytes, spermatocytes, and spermatids.

  20. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.

    PubMed

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Sen; Wu, Qing; Yan, Lijian

    2015-12-01

    Given that few studies investigated the effects of aeration position (AP) on the performance of aerated constructed wetlands, the aim of this study was to evaluate the effects of AP on organics, nitrogen and phosphorus removal in lab-scale combined oxidation pond-constructed wetland (OP-CW) systems. Results showed that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve greater removals of COD and NH3-N, while the CW under bottom aeration and surface aeration demonstrated more distinct stratification of oxygen distribution and surface aeration brought about better TN removal capacity for the OP-CW system. However, no significant influence of artificial aeration or AP on TP removal was observed. Overall, AP could significantly affect the spatial distribution of dissolved oxygen by influencing the oxygen diffusion paths in aerated CWs, thereby influencing the removal of pollutants, especially organics and nitrogen, which offers a reference for the design of aerated CWs.

  1. Sport fishery potential of power plant cooling ponds: Final report

    SciTech Connect

    Heidinger, R.C.; Lewis, W.M.

    1986-10-01

    This research was undertaken to determine if cooling ponds could serve as habitat for several coolwater fish species and also to evaluate the potential use of cooling ponds as nursery areas for receiving waters. The work was conducted on two cooling ponds in northern Illinois. Walleye (Stizostedion vitreum), muskellunge (Esox masquinongy), striped bass (Morone saxatilis) fingerlings, and adult threadfin shad (Dorosoma petenense) were stocked into both cooling ponds. The hybrids between the striped bass and white bass (M. chrysops) had been previously stocked into Collins Pond. Smallmouth bass (Micropterus dolomieui) fingerlings and larval striped bass and walleye were stocked in Dresden Pond. Several sampling techniques including seining, electrofishing, and rotenoning were used to monitor growth and survival of stocked species. In addition, escapement of stocked and indigenous species was monitored at the Dresden Pond spillway. Walleye, muskellunge, striped bass and hybrid striped bass exhibited excellent growth in Collins Pond as did smallmouth bass in Dresden Pond. One of the primary differences between an open system (such as Dresden Pond) and a closed system (such as Collins Pond) is the potential that the open system has to serve as a fish nursery area for receiving waters. The stocking of ''coolwater'' species in a closed type system such as Collins Pond is an effective way to control and maintain selected sport species. Dresden Pond was not open to public fishing during this study, but Collins Pond developed an excellent sport fishery as a result of these stockings.

  2. Evaluation of a recirculating pond system for rearing juvenile freshwater mussels at White Sulphur Springs National Fish Hatchery, West Virginia, U.S.A.

    USGS Publications Warehouse

    Mummert, A.; Newcomb, T.J.; Neves, R.J.; Parker, B.

    2006-01-01

    A recirculating double-pond system at White Sulphur Springs National Fish Hatchery in West Virginia, U.S.A., was evaluated for suitability for culturing juvenile freshwater mussels. Newly metamorphosed juveniles of Villosa iris and Lampsilis fasciola were placed in the system, and their growth and survival were evaluated for 94 days. Throughout the study, parameters of water quality remained within ranges suitable for mussel survival. Planktonic algal densities in the pond system ranged from 2850 to 6892 cells/ml. Thirty-seven algal taxa were identified, primarily green algae (Chlorophyta), diatoms (Bacillariophyceae), and blue-green algae (Cyanoprokaryota). Over the culture period, juveniles of L. fasciola experienced significantly lower (p < 0.001) survival (6.3% ?? 4.5) than those of V. iris (49.8% ?? 14.5). The very low survival rate of L. fasciola may indicate a failure of the flow-through pond environment to meet its habitat requirements or that variable microhabitat conditions within culture containers existed. Growth did not differ significantly between the species (p = 0.13). Survival of V. iris and growth of both species were similar to previous trials to culture juvenile mussels. Survival rates as high as 66.4% at 93 days for V. iris suggest that juveniles of some riverine species can be successfully cultured in a recirculating pond environment.

  3. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  4. Lagoons and Oxidation Ponds.

    ERIC Educational Resources Information Center

    O'Brien, W. J.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers lagoons and oxidation ponds, and it includes some areas such as improving the effluents from ponds, stabilization ponds, aerated lagoons, and oxidation ditches. A list of 36 references is also presented. (HM)

  5. Waste Stabilization Ponds.

    ERIC Educational Resources Information Center

    Koundakjian, Philip

    This self-paced course contains reading assignments from a waste stabilization ponds operating manual, supportive text, example problems, and review questions, and a final examination. The course covers calculation of pond surface area, pond volume, organic load, detention time, drawdown, storage capacity, efficiency, and discharge. In addition,…

  6. Surface Sediments in Precooler Ponds 2, 4, and 5: March 2000

    SciTech Connect

    Dunn, D.L.

    2001-01-29

    Pond 2, Pond 4, and Pond 5 are inactive reactor cooling impoundments built in 1961 on the R-Reactor Effluent System in the east-central portion of the Department of Energy's Savannah River Site in Aiken, South Carolina. These precooler ponds are part of the Par Pond cooling water system and are considered part of the Par Pond operable unit. The intent was not to characterize the ponds, but to identify the maximum levels of contamination that could be exposed if the ponds are drained to remove the danger of dam failure.

  7. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  8. Embryogenesis of the histaminergic system in the pond snail, Lymnaea stagnalis L.: an immunocytochemical and biochemical study.

    PubMed

    Hegedus, E; Kaslin, J; Elekes, K

    2004-01-01

    Embryogenesis of the histaminergic system in the pond snail, Lymnaea stagnalis, was investigated by means of immunocytochemistry and HPLC assay. From the earliest onset of the of histamine-immunoreactive (HA-IR) elements, the labelled neurons were confined to the pedal, cerebral and buccal ganglia, whereas no IR cells within the pleural, parietal and visceral ganglia were detectable during the embryogenesis. Peripheral projections of the embryonic HA-IR neurons were missing. No transient HA-IR neurons could be found either inside or outside the CNS. The first HA-IR elements appeared at about E55% of embryonic development, at the beginning of metamorphosis, and were represented by three pairs of neurons located in the cerebral ganglia. Following metamorphosis, four pairs of HA-IR neurons were added; two of them occurred in the pedal (E65% stage of development) and two in the buccal (E90% stage of development) ganglia. During embryogenesis, HA-IR fibers were present in the cerebro-pedal connectives and in the cerebral, pedal and buccal commissures, whereas only little arborization could be observed in the neuropil of the ganglia. HPLC measurements revealed a gradual increase of HA content in the embryos during development, corresponding well to the course of the appearance of immunolabeled elements. It is suggested that the developing HAergic system plays a specific role in the process of gangliogenesis and CNS plasticity of embryonic Lymnaea.

  9. A Decision Support System for Evaluatingquality Safety Risk Contaminated By Water Pollution in Aquaculture Pond

    NASA Astrophysics Data System (ADS)

    Tian, Dong; Li, Nan; Huang, Honghui; Fu, Zetian; Zhang, Xiaoshuan

    Water pollution is becoming the major factor damaging the sustainable development of aquaculture and the quality security of aquatic product in China. This paper introduces a decision support system for evaluating and managing quality risk contaminated by water pollution. The architecture, main components and their functions, especially a series of risk evaluation methods and models are described. At present, the system is in pilot in the city of Beijing in China. The stage achievements in developing the system are summarized.

  10. Effects of flow speed and circulation interval on water quality and zooplankton in a pond-ditch circulation system.

    PubMed

    Ma, Lin; He, Feng; Sun, Jian; Huang, Tao; Xu, Dong; Zhang, Yi; Wu, Zhenbin

    2015-07-01

    A pond-ditch circulation system (PDCS) shows great promises for ecological restoration of rural contaminated water in southern China. In this study, the optimal flow speed, circulation interval, and their combination for the system were investigated for higher pollutant removal efficiency and lower costs in three separate experiments: I, II, and III, respectively. In each experiment, there are three PDCSs (S1, S2, and S3) with different water circulation speeds or circulation intervals, respectively. The results demonstrated that in experiment I, total nitrogen (TN) removal rates, species numbers, and diversity indexes of zooplankton in S1 with a flow speed of 3.6 L/h were significantly higher than those in S2 (7.2 L/h) and S3 (10.2 L/h), respectively. Similarly, in experiment II, S3 circulating every other 4 h had significantly higher TN reduction rates, species numbers, and diversity indexes than S1 and S2 circulating every other 1 and 2 h, respectively. In experiment III, water qualities in S1 (circulation of 3.6 L/h + interval of 4 h) were better than those in S2 (7.2 L/h + 4 h) and S3 (10.2 L/h + 6 h), respectively. Together, circulation at every other 4 h (3.6 L/h) is probably the optimal operating condition for the PDCS in remediating rural contaminated water. PMID:25693828

  11. Vaccine policies across the pond: looking at the U.K. and U.S. systems.

    PubMed

    Freed, Gary L

    2005-01-01

    Major differences exist in the immunization programs of the United Kingdom and the United States. If one believes that most health policy decisions in Western industrialized democracies are political, then many of the differences may seem to reflect the variance in the nature of political systems. However, each program has unique components that appear paradoxical, and what works in one society will not necessarily work in another. Those who seek to substitute portions of one vaccine system with those of another must appreciate the context within which each functions.

  12. An evaluation of duckweed-based pond systems as an alternative option for decentralised treatment and reuse of wastewater in Zimbabwe.

    PubMed

    Nhapi, I; Dalu, J; Ndamba, J; Siebel, M A; Gijzen, H J

    2003-01-01

    A study was carried out in Zimbabwe to evaluate the performance of duckweed ponds as an option for treating and reusing wastewater in small, decentralised communities. The study focused on nitrogen and phosphorus removal, operational problems, and duckweed application. Two full-scale trial plants at Nemanwa and Gutu-Mupandawana growth points were used. Sewage samples were collected and analysed monthly from September 2000 to August 2001 for NO3, NH4(-)1 TKN, TP, COD, and other field measurements. The duckweed was harvested daily and fed to chickens. The Nemanwa plant had high nutrient levels due to nil outflows caused by water rationing in the area. The Gutu effluent had averages of 38.7 +/- 23.1 mg/l TN and 7.5 +/- 2.4 mg/l TP which are above the respective Zimbabwean standards of 10 mg/l TN and 1 mg/l TP. COD removal efficiency at Gutu was poor at 45%. The performance of Gutu and Nemanwa plants suffered from inappropriate design especially pond depth and short-circuiting. The duckweed died off in the November-January period, this being attributed to excessive levels of ammonia. It was concluded that the duckweed pond systems would offer a good alternative for managing and reusing wastewater at community level provided due regard is paid to appropriate design criteria.

  13. Indoor Pond Biology

    ERIC Educational Resources Information Center

    Kunkel, Erika R.

    1977-01-01

    This year-long science program involved fifth grade students in the investigation of a meadow pond. Two field trips to collect pond water and organisms were arranged for the beginning and conclusion of the program. Classroom activities were designed to study aquatic organisms, life cycles, populations, and ecosystems. (MA)

  14. Solar ponds: a selected bibliography

    SciTech Connect

    Not Available

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  15. Tracing source, mixing and uptaking processes of carbon in an epikarst spring-pond system in southeastern Guizhou of China by carbon isotopes (13C-14C)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Chen, B.; Liu, Z.; Li, H. C.; Yang, R.

    2015-12-01

    δ13C and Δ14C of dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan County, Guizhou Province in January, July and October of 2013 were measured to understand the roles of aquatic photosynthesis through DIC uptake in karst surface waters. The mean Δ14C and δ13C values of DIC for the spring pool, midstream and downstream ponds are -60.6±26.3‰ and -13.53±1.97‰, -62.8±62.9‰ and -11.72±2.72‰, and -54.2±56.5‰ and -9.40±2.03‰, respectively. Both Δ14C and δ13C show seasonal variations, with lower Δ14C values but heavier δ13C values in dry season and vice versa in summer rainy season. This observation indicates that (1) the main carbon source of the spring DIC is from limestone bedrock dissolution and soil CO2 with higher contribution in summer due to higher productivity; and (2) 13C and 14C have different behaviors during DIC uptake by aquatic plants and during CO2 exchange between DIC and the atmospheric CO2. Biological uptake of CO2 will not affect the Δ14C of DIC, but lead to δ13CDIC enrichment. CO2 exchange between DIC and the atmospheric CO2 should elevate both the Δ14C and δ13C of DIC. In Laqiao spring-pond system, it seems that the effect of biological uptake on the Δ14C and δ13C of DIC is much stronger than that of CO2 exchange with the atmosphere. The mean Δ14C values of POC from the spring pool, midstream and downstream ponds are -308.1 ±64.3‰, -164.4±84.4‰ and -195.1±108.5‰, respectively, indicating mixture of aquatic algae and detrital particle (clay and dust). More aquatic algae were formed in the stream ponds especially in the summer. SEM results of the POC samples support this conclusion. Furthermore, the Δ14C values of the submerged aquatic plants range from -200.0‰ to -51.3 ‰ and were similar to those of the DIC, indicating that the aquatic plants used DIC for photosynthesis. The Δ14C value of an emergent plant

  16. Ecologic simulation of warm water aquaculture ponds

    SciTech Connect

    Piedrahitu, R.H.; Brune, D.E.; Orlob, G.T.; Tchobanoglous, G.

    1983-06-01

    A generalized ecologic model of a fertilized warm-water aquaculture pond is under development. The model is intended to represent the pond ecosystem and its response to external stimuli. The major physical, chemical and biological processes and parameters are included in the model. A total of 19 state variables are included in the model (dissolved oxygen, alkalinity, pH, ammonia, phytoplankton, etc.). The model is formulated as a system of mass balance equations. The equations include stimulatory and inhibitory effects of environmental parameters on processes taking place in the pond. The equations may be solved for the entire growth period and diurnal as well as seasonal fluctuations may be identified. The ultimate objective of the model is to predict the fish biomass that can be produced in a pond under a given set of environmental conditions.

  17. Exploring Pond Water

    ERIC Educational Resources Information Center

    Raun, Chester E.; Metz, William C.

    1975-01-01

    An activity utilizing a bucket of pond water for study of microorganisms as presented to elementary school preservice and inservice teachers, and subsequently to their pupils, is described. Procedures for collecting, studying, tabulating data and extended activities are presented. (EB)

  18. Cannibalism in single-batch hybrid catfish production ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...

  19. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture.

  20. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. PMID:23490108

  1. Falmouth pond watchers: Water quality monitoring of Falmouth's coastal ponds. Report from the 1992 season

    SciTech Connect

    Howes, B.L.; Goehringer, D.D.

    1993-04-01

    1992 has seen a significant expansion in the focus of the Pond Watchers program. The long-term, high quality data base for the ponds is now enabling more emphasis on the ecological management and remediation aspects of the study, the ultimate goal of the program. Overall, 1992 saw only slight variation in the water quality conditions of Oyster, Little, Green, Great and Bournes Ponds from previous years, with a declining trend for Green Pond and small improvements in lower Great and Bournes Ponds. However, Oyster Pond showed a potentially significant improvement in bottom water oxygen conditions which suggests a new management direction for this system. All of the ponds continue to exhibit high nutrient levels and periodic bottom water oxygen depletion, especially in their upper reaches, and all stations exceed the nutrient levels specified by the Nutrient Overlay Bylaw. In contrast, the first year measurements in West Falmouth Harbor indicate high levels of water quality, although the inner reaches of the harbor do exceed those levels specified by the Bylaw.

  2. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  3. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  4. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  5. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  6. Heat extraction from a large solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Etter, D. E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 squares meters, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system was installed externally to the pond and operated successfully to deliver 391 GJ (271 million Btu) of heat during May to June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper 10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond were tested in order to minimize the effect of turbulence upon the salt gradient zone.

  7. Heat extraction from a large solar pond

    SciTech Connect

    Wittenberg, L.J.; Etter, D.E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 m/sup 2/, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system has been installed externally to the pond and operated successfully to deliver 391 GJ (371 million Btu) of heat during May-June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper-10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond have been tested in order to minimize the effect of turbulence upon the salt gradient zone.

  8. Heat extraction from a large solar pond

    SciTech Connect

    Wittenberg, L.J.; Etter, D.E.

    1982-01-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 m/sup 2/, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/yr (1,000 million Btu/yr) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system has been installed externally to the pond and operated successfully to deliver 391 GJ (371 million BTU) of heat during May-June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper-10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond have been tested in order to minimize the effect of turbulence upon the salt gradient zone.

  9. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    DOE PAGES

    Coleman, Andre M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.; Langholtz, Matthew H.; Eaton, Laurence M.

    2016-03-03

    To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr–1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. Under this scenario, open-pond microalgae production is projected to use 1.2 × 106 ha of private pastureland, while terrestrial biomass feedstocks would use 14.0 × 106 ha of private pastureland. A spatial meta-analysismore » indicates that potential competition for land under this scenario would be concentrated in 110 counties, containing 1.0 and 1.7 × 106 ha of algal and terrestrial dedicated feedstock production, respectively. Furthermore, a land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county's pastureland, representing 2%–5% of total pastureland in the U.S.; therefore suggesting little overall competition between algae production, terrestrial energy feedstocks and alternative uses for existing agricultural production such as livestock grazing.« less

  10. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  11. Design and fish culture considerations for catfish farming in split ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Split ponds are simple, pond-based aquaculture systems constructed by dividing an existing catfish pond into two unequal basins with an earthen levee. Fish are confined in the smaller basin (usually about 15-20% of total water area) while the larger basin serves as a waste-treatment lagoon. A high-v...

  12. Comparing and assessing acid rain-sensitive ponds.

    PubMed

    Hagar, W G; Crosby, B A; Stallsmith, B W

    2000-05-29

    Changes in pH and temperature were monitored in two freshwater ponds in Southeastern Massachusetts from 1990 to 1993 using a remote-sensing system that collected data on a continuous basis. The sensing system included a combination electrode, pH meter and portable computer powered by a marine battery. Temperature and pH information from the pH meter were acquired every 10 min and stored in the computer. The two ponds, located within 2 km of one another, have a different average pH and sensitivity to acid precipitation. Maquan Pond has an average pH of 6.0 and an alkalinity of 7.4 mg/l, while Furnace Pond has an average pH of 6.9 and alkalinity of 14.9 mg/l. The pH of both ponds varied seasonally and showed diel changes due to the photosynthetic and respiratory activity of aquatic organisms. Precipitation events did not change the pH of Furnace Pond. Maquan Pond on the other hand, did exhibit changes in surface water pH due to specific acidic precipitation events. During certain rainstorms, the pH of Maquan surface waters dropped to values as low as pH 4. In addition to the transient changes in pH, the acid-sensitive pond also exhibited differences in planktonic distribution patterns.

  13. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  14. A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation.

    PubMed

    Suárez, Francisco; Tyler, Scott W; Childress, Amy E

    2010-08-01

    Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP.

  15. Pond-aquifer flow and water availability in the vicinity of two coastal area seepage ponds, Glynn and Bulloch Counties, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Rumman, Malek Abu

    2005-01-01

    Pond-aquifer flow and water availability at excavated seepage pond sites in Glynn County and in southern Bulloch County, Georgia, were evaluated to determine their potential as sources of water supply for irrigation. Excavated seepage ponds derive water primarily from ground water seeping into the pond, in a manner similar to a dug well completed in a surficial aquifer. The availability of water from seepage ponds is controlled by the permeability of surficial deposits, the amount of precipitation recharging the ground-water system, and the volume of water stored in the pond. The viability of seepage ponds as supplies for irrigation is limited by low seepage rates and high dependence on climatic conditions. Ponds will not refill unless there is adequate precipitation to recharge the surficial aquifer, which subsequently drains (seeps) into the pond. Ground-water seepage was estimated using a water-budget approach that utilized on-site climatic and hydrologic measurements, computing pond-volume changes during pond pumping tests, and by digital simulation using steady-state and transient ground-water flow models. From August 1999 to May 2000, the Glynn County pond was mostly losing water (as indicated by negative net seepage); whereas from October 2000 to June 2001, the Bulloch County pond was mostly gaining water. At both sites, most ground-water seepage entered the pond following major rainfall events that provided recharge to the surficial aquifer. Net ground-water seepage, estimated using water-budget analysis and simulation, ranged from -11.5 to 15 gallons per minute (gal/min) at the Glynn County pond site and from -55 to 31 gal/min at the Bulloch County pond site. Simulated values during pumping tests indicate that groundwater seepage to both ponds increases with decreased pond stage. At the Glynn County pond, simulated net ground-water seepage varied between 7.8 gal/min at the beginning of the test (high pond stage and low hydraulic gradient) and 103 gal

  16. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  17. Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands.

    PubMed

    Morand, Philippe; Robin, Paul; Pourcher, Anne-Marie; Oudart, Didier; Fievet, Sebastien; Luth, Daniel; Cluzeau, Daniel; Picot, Bernadette; Landrain, Brigitte

    2011-01-01

    Since 2001 the swine experimental station of Guernévez has studied biological treatment plants for nutrient recovery and water recycling, suited to the fresh liquid manure coming out of flushing systems. An integrated system with continuous recycling was set up in 2007, associated with a piggery of 30 pregnant sows. It includes a screen, a vermifilter, and macrophyte ponds alternating with constructed wetlands. The screen and the vermifilter had a lower removal efficiency than in previous studies on finishing pigs. A settling tank was then added between the vermifilter and the first lagoon to collect the worm casts. A second vermifilter was added to recover this particulate organic matter. A storage lagoon was added to compensate for evaporative losses and complete pollution abatement, with goldfish as a bioindicator of water quality. The removal efficiency of the whole system was over 90% for COD and nitrogen, over 70% for phosphorus and potassium, and more than 4 logarithmic units for pathogens (E. coli, enterococci, C perfringens). Plant production was about 20 T DM ha(-1) y(-1). Floating macrophytes (Azolla caroliniana, Eichhornia crassipes, Hydrocotyle vulgaris) were more concentrated in nutrients than helophytes (Phragmites australis, Glyceria aquatica,…). Azolla caroliniana was successfully added to feed finishing pigs.

  18. Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands.

    PubMed

    Morand, Philippe; Robin, Paul; Pourcher, Anne-Marie; Oudart, Didier; Fievet, Sebastien; Luth, Daniel; Cluzeau, Daniel; Picot, Bernadette; Landrain, Brigitte

    2011-01-01

    Since 2001 the swine experimental station of Guernévez has studied biological treatment plants for nutrient recovery and water recycling, suited to the fresh liquid manure coming out of flushing systems. An integrated system with continuous recycling was set up in 2007, associated with a piggery of 30 pregnant sows. It includes a screen, a vermifilter, and macrophyte ponds alternating with constructed wetlands. The screen and the vermifilter had a lower removal efficiency than in previous studies on finishing pigs. A settling tank was then added between the vermifilter and the first lagoon to collect the worm casts. A second vermifilter was added to recover this particulate organic matter. A storage lagoon was added to compensate for evaporative losses and complete pollution abatement, with goldfish as a bioindicator of water quality. The removal efficiency of the whole system was over 90% for COD and nitrogen, over 70% for phosphorus and potassium, and more than 4 logarithmic units for pathogens (E. coli, enterococci, C perfringens). Plant production was about 20 T DM ha(-1) y(-1). Floating macrophytes (Azolla caroliniana, Eichhornia crassipes, Hydrocotyle vulgaris) were more concentrated in nutrients than helophytes (Phragmites australis, Glyceria aquatica,…). Azolla caroliniana was successfully added to feed finishing pigs. PMID:21436573

  19. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  20. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  1. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  2. Chemical (polycyclic aromatic hydrocarbon and heavy metal) levels in contaminated stormwater and sediments from a motorway dry detention pond drainage system.

    PubMed

    Kamalakkannan, Ragunathan; Zettel, Vic; Goubatchev, Alex; Stead-Dexter, Karen; Ward, Neil I

    2004-03-01

    control evaluation using two certified reference materials. Typical detection limits were found to be below 0.1 [micro sign]g l(-1) for stormwater and 0.005 mg kg(-1) for acid digested sediments. Raised heavy metal levels were found throughout the dry detention pond facility and only decrease when the stormwater is diluted following discharge into the river Eden. Statistical analysis also confirms that some significant correlations exist between various heavy metals and PAHs. However, no overall conclusive trend is found indicating that a particular PAH is deposited in sediment relative to a specific heavy metal/s. These results raise some serious concerns about the dispersion and accumulation of chemicals in the sediments of motorway stormwater drainage systems and the need for maintenance and clean-up of contaminated material from such systems.

  3. [Task 1.] Biodenitrification of low nitrate solar pond waters using sequencing batch reactors. [Task 2.] Solidification/stabilization of high strength and biodenitrified heavy metal sludges with a Portland cement/flyash system

    SciTech Connect

    Figueroa, L.; Cook, N.E.; Siegrist, R.L.; Mosher, J.; Terry, S.; Canonico, S.

    1995-09-22

    Process wastewater and sludges were accumulated on site in solar evaporation ponds during operations at the Department of Energy's Rocky Flats Plant (DOE/RF). Because of the extensive use of nitric acid in the processing of actinide metals, the process wastewater has high concentrations of nitrate. Solar pond waters at DOE/RF contain 300-60,000 mg NO{sub 3}{sup {minus}}/L. Additionally, the pond waters contain varying concentrations of many other aqueous constituents, including heavy metals, alkali salts, carbonates, and low level radioactivity. Solids, both from chemical precipitation and soil material deposition, are also present. Options for ultimate disposal of the pond waters are currently being evaluated and include stabilization and solidification (S/S) by cementation. Removal of nitrates can enhance a wastes amenability to S/S, or can be a unit operation in another treatment scheme. Nitrate removal is also a concern for other sources of pollution at DOE/RF, including contaminated groundwater collected by interceptor trench systems. Finally, nitrate pollution is a problem at many other DOE facilities where actinide metals were processed. The primary objective of this investigation was to optimize biological denitrification of solar pond waters with nitrate concentrations of 300--2,100 mg NO{sub 3}{sup {minus}}/L to below the drinking water standard of 45 mg NO{sub 3}{sup {minus}}/L (10 mg N/L). The effect of pH upon process stability and denitrification rate was determined. In addition, the effect Cr(VI) on denitrification and fate of Cr(VI) in the presence of denitrifying bacteria was evaluated.

  4. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  5. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  6. Oxygen and nitrogen dyamics in split ponds vs. intensive and conventional catfish production ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Split Pond aquaculture system (SP) has captured the attention of catfish producers across the southern U.S. The SP represents a lower cost adaptation of Clemson University’s Partitioned Aquaculture System (PAS). The original PAS design relied on slowly rotating paddlewheels to move water throu...

  7. One-dimensional transient finite difference model of an operational salinity gradient solar pond

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Golding, Peter

    1992-01-01

    This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.

  8. Permanent salt evaporation ponds in a semi-arid Mediterranean region as model systems to study primary production processes under hypersaline conditions

    NASA Astrophysics Data System (ADS)

    Asencio, Antonia D.

    2013-06-01

    A change from planktonic to benthic primary production was observed along an increasing salinity gradient in a permanent solar saltpan sequence (Las Salinas del Pinet) in a semi-arid Mediterranean region (Spain). The biomass and photosynthesis of the water column decreased greatly when salinity increased, while benthic production increased when cyanobacteria crusts developed. This produced a change from autotrophic to heterotrophic in water column productivity. However in the benthos, the changes from heterotrophic to autotrophic were seen throughout the pond sequence. Changes in phytoplankton composition in the studied saltern appeared more influenced by phytoplankton salinity tolerance since 88.0% of variation in the photosynthesis rates and 76.0% in the respiration rates were negatively and positively explained by increased salinity, respectively. However the changes in the benthos composition did not appear to be highly influenced by the benthos salinity tolerance since only half of the variation in the photosynthesis rates were explained by increased salinity. A lack of correlation between the respiration and photosynthesis benthic values can be explained by the oxygen consumed by heterotrophic organisms and by chemical demand. The nutrients system varied seasonally in this saltern, and this variability appeared to relate to the occurrence of the evaporative concentration of water and bacterial activity. This study highlighted that stressors such as water salinity should be considered in future hydrological management plans in order to preserve water resources, especially in warmer and drier climates.

  9. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Third quarterly technical progress report, March 16--June 15, 1994

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-09-21

    The threat of global warming, mounting concerns about air and water pollution, prospective food shortages, and declining reserves of low-cost fossil fuels, have spawned a burgeoning interest in photobiological processes using microalgae as a method of large-scale utilization of CO{sub 2} for the production of fuels, food, and waste treatment. Background to this technology can be found in prior progress reports. During this quarterly period, the following main subjects were investigated: (1) Wastewater treatment with microalgae as a sink for CO{sub 2} derived from power plants. (2) Exploration of a method to increase in photosynthetic efficiencies by a factor of two to three fold with microalgae cultures. This quarterly report reflects this work only partially, as some of it is still in progress. In addition to the specific work reported on here, work also progressed on several other areas, in particular the economics of the construction of a large-scale pond system and the review of prior efforts in this area. These will be reported on in later reports.

  10. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  11. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis.

    PubMed

    Pirger, Zsolt; Laszlo, Zita; Hiripi, Laszlo; Hernadi, Laszlo; Toth, Gabor; Lubics, Andrea; Reglodi, Dora; Kemenes, Gyorgy; Mark, Laszlo

    2010-11-01

    PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.

  12. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    PubMed

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda.

  13. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    PubMed

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. PMID:26881733

  14. Limnological database for Par Pond: 1959 to 1980

    SciTech Connect

    Tilly, L.J.

    1981-03-01

    A limnological database for Par Pond, a cooling reservoir for hot reactor effluent water at the Savannah River Plant, is described. The data are derived from a combination of research and monitoring efforts on Par Pond since 1959. The approximately 24,000-byte database provides water quality, primary productivity, and flow data from a number of different stations, depths, and times during the 22-year history of the Par Pond impoundment. The data have been organized to permit an interpretation of the effects of twenty years of cooling system operations on the structure and function of an aquatic ecosystem.

  15. Stability and economics of solar ponds using ammonium salts

    SciTech Connect

    Hull, J.R.

    1986-01-01

    The use of ammonium salts in salt gradient solar ponds eliminates the environmental problems associated with NaCl by incorporating the salt discharge from the solar pond into the fertilizer cycle of an agricultural system. An examination of thermophysical properties of several ammonium salts suggests that both ammonium nitrate and ammonium sulfate can provide hydrodynamic stability equivalent to NaCl. The cost of the fertilizer salt is based on the real interest for holding the fertilizer in inventory. Costs are independent of the rate at which the salt is cycled through the pond, which makes desirable a maintenance scheme that minimizes the thickness of the upper convecting zone.

  16. Treatment of oilfield produced water by waste stabilization ponds.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2007-01-01

    Produced water (PW) from oil wells can serve as an alternative water resource for agriculture if the main pollutants (hydrocarbons and heavy metals) can be removed to below irrigation standards. Waste stabilization ponds seem like a promising solution for PW treatment, especially in the Middle East where solar radiation is high and land is available. In this work, hydrocarbon removal from PW in a biological waste stabilization pond was examined at lab-scale followed by an intermittent slow sand filter. The system was run for 300 days and removed around 90% of the oil in the pond, and 95% after the sand filter. COD removal was about 80% in the pond effluent, and 85% after the filter. The system was tested under various operational modes and found to be stable to shock loads. Installation of oil booms and decantation of surface oil seem to be important in order to maintain good system performance over time.

  17. Renewable energy for the aeration of wastewater ponds.

    PubMed

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  18. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.

    PubMed

    Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng

    2016-05-01

    The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (<75 μm) was low, even minus results being recorded, especially for particles smaller than 25 μm. The length of GSs is a key factor in its performance. The WDPs can remove particles of all sizes by sedimentation. In addition, WDPs can improve water quality due to their buffering and dilution capacity during rainfall as well as their water purification ability during dry periods. Overall, the ecological system of GSs coupled with WDPs is an effective system for agricultural runoff pollution control. PMID:26832867

  19. Comparison of water quality and channel catfish production in earthen ponds or a biofloc technology production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofloc technology (BFT) production systems are being used more commonly to produce high yields of fish or shrimp because very high feed rates are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particulate organic matter and is maintained in s...

  20. Surface and subsurface soils at the Pond B dam: July 1998

    SciTech Connect

    Halverson, N.V.

    1999-12-03

    Pond B, 685-13G, is an inactive reactor cooling impoundment built in 1961 on the Savannah River Site (SRS). Between 1961 and 1964, Pond B received R-Reactor cooling water discharges that were contaminated with {sup 137}Cs, {sup 90}Sr and plutonium. Though the pond has not been used since 1964, radionuclides from the contaminated cooling water remain in the water and in the surface sediments of the pond. The current proposal to fix and repair the Pond B dam structure includes installing a new drain system and monitoring equipment. The dam will be reinforced with additional previous material on the downstream face of the dam. The objectives of this report are to describe the sampling methodology used during the July 1998 sampling event at the downstream face of the Pond B dam and in Pond B, present the results of the sampling event, and compare, where possible, these results to related risk-based standards.

  1. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds.

    PubMed

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Miranda-Baeza, Anselmo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30-35 ind m(-2) and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m(3) kg(-1) cycle(-1)), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha(-1) shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  2. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds.

    PubMed

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Miranda-Baeza, Anselmo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30-35 ind m(-2) and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m(3) kg(-1) cycle(-1)), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha(-1) shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming.

  3. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Miranda-Baeza, Anselmo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  4. Groundwater impact assessment report for the 100-D Ponds

    SciTech Connect

    Alexander, D.J.

    1993-07-01

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

  5. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  6. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    PubMed

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water. PMID:26164269

  7. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    PubMed

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water.

  8. Spatial landscape evolution analysis of dike-pond in Foshan City based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Mo; Wang, Longchao; Zhao, Yong

    2008-10-01

    Dike-pond system is one of the most tradition agriculture with local characteristics in the Pearl River Delta. This study selects Foshan city in the Pearl River Delta as study area. Three temporal Landsat TM images are used to monitoring the area changes of dike-pond system with Remote Sensing techniques in the last two decades. Discussing the spatial landscape evolution characteristics of dike-pond system integrated GIS techniques and statistics analysis method.

  9. Ultimate Heat Sink Cooling Pond and Spray Pond Analysis Models.

    1999-05-02

    Version 00 Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function ofmore » windspeed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted.« less

  10. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that

  11. USING GIS TO MAP THE DEPTH TO SEDIMENT OF A POND USING A SONIC DEPTH METER AND A TRIMBLE GPS SYSTEM

    EPA Science Inventory

    During a research project to identify the source of Arsenic in a watershed, it became necessary to characterize the subsurface sediments in a pond associated with the watershed. This paper describes the process that we used to measure the depth and identify the location of the d...

  12. Selective School Systems and Academic Self-Concept: How Explicit and Implicit School-Level Tracking Relate to the Big-Fish--Little-Pond Effect across Cultures

    ERIC Educational Resources Information Center

    Salchegger, Silvia

    2016-01-01

    A large body of research has demonstrated a big-fish--little-pond effect (BFLPE) by showing that equally able students have lower academic self-concepts in high-ability schools than in low-ability schools. Although the BFLPE generalizes across many countries, it varies significantly between countries. The reasons for this variation are still…

  13. Pond Ecology in the Classroom.

    ERIC Educational Resources Information Center

    Kneidl, Sally Stenhouse

    1993-01-01

    Describes activities with organisms from freshwater ponds and ditches. Several experiments involve predation, some involve habitat choices, and one addressees the role of sunlight in supporting plant-eating animals. (PR)

  14. Role of aminergic (serotonin and dopamine) systems in the embryogenesis and different embryonic behaviors of the pond snail, Lymnaea stagnalis.

    PubMed

    Filla, Adrienn; Hiripi, László; Elekes, Károly

    2009-01-01

    A detailed biochemical and pharmacological analysis of the dopaminergic (DAergic) and serotonergic (5-HTergic) systems was performed during the embryogenesis of Lymnaea stagnalis, to monitor their role in development and different behaviors. The dopamine (DA) level and the synthesizing decarboxylase enzyme activity showed a continuous increase, whereas the serotonin (5-HT) concentration remained low until late postmetamorphic development, when they all showed a rapid and significant increase. Application of monoamine precursors increased, whereas enzyme inhibitors and neurotoxins reduced monoamine levels; all treatments resulting in a prolongation of embryogenesis. Following, p-chlorphenylalanine (pCPA) and 3-hydroxybenzylhydrazine (Nsd-1015) treatments, no 5-HT immunoreactivity could be detected in the embryonic nervous system. These findings suggest that changes of monoamine levels in either (negative or positive) direction cause slowing of embryogenesis. Embryonic rotation and radula protrusion rate was enhanced following both serotonin and dopamine application, whereas frequency of gliding was increased by serotonin treatment. These results clearly indicate the involvement of 5-HT and DA in the regulation of a broad range of embryonic behaviors. Pharmacological characterization of a 5-HT receptor associated with the L. stagnalis embryonic behaviors studied revealed that a mammalian 5-HT(1)-like receptor type is involved in the 5-HTergic regulation of locomotion activity.

  15. Sound management of sediment yields at the catchment scale by small detention ponds

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Wasilewicz, M.; Banasik, K.

    2012-04-01

    Keywords: small detention pond, sediment deposits, reservoir silting, urban catchment Globally observed land use and climate changes have a clear impact on the sediment yields deriving from the catchment. Released sediments may originate from different point and non-point sources. Thereby it is difficult to manage and reduce sediment loads directly at the source without undertaking detailed and expensive monitoring programs. Small detention ponds are therefore frequently used water management systems in urban settlements to improve water quality at the catchment scale. Such ponds located at the outlet of small basins allow reducing sediment loads downstream. Additionally, they capture sediment-associated contaminants as heavy metals, nutrients and micropollutants. On the other hand, a sedimentation within the pond may be a severe problem because it decreases over the time its retention capacity. This is especially significant for small detention ponds, where the siltation rate is high. These ponds can loose their total capacity already after few years of their exploitation when no dredging operations are considered. Unfortunately, maintenance costs of small ponds are expensive and usually not taken into account when planning and constructing such ponds. Consequently, many small detention ponds become inefficient after an entire use of their capacity. Therefore careful planning of maintenance options is essential to keep an effectiveness of such ponds on the expected level. Within presented here study we addressed the problem of silting small detention ponds and we assessed an applicability of such ponds to manage sediment yields discharged from small urban catchments. To this end, a periodic measurement of deposited sediments within a small detention pond (1.35 ha, 5 years old, Warsaw, Poland) has been undertaken. This pond receives a polluted runoff from a small urbanized basin (30 km2), for which no routine sediment measurement exists. The spatial sediment

  16. Par Pond vegetation status 1996

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.

  17. Modeling of shallow stabilization ponds

    SciTech Connect

    Babarutsi, S.; Marchand, P.; Safieddine, T.

    1999-07-01

    A two-dimensional hydrodynamic model is used to simulate shallow stabilization ponds. The model computes the flow field and the concentration distribution of a conservative tracer in the entire area of a pond. The location and the size of the dead zones, the bypassing, and the recirculating areas are also determined by the model. The numerical results are in good agreement with the experimental data obtained in the laboratory.

  18. Biogeochemical ecology of aquaculture ponds

    SciTech Connect

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put Are organically loaded aquaculture ponds autotrophic How do rates of organic production vary temporally Are there diurnal changes in respiration rates Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of {sup 14}C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two.

  19. 2101-M pond closure plan. Volume 1, Revision 2

    SciTech Connect

    Izatt, R. D.; Lerch, R. E.

    1993-06-01

    This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment.

  20. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1996-03-21

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with three commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.

  1. Segregated solar pond

    SciTech Connect

    Assaf, G.

    1984-10-09

    A segregated solar pond includes an upper level of water overlying a lower level of water, and an impermeable barrier interposed between the two levels for preventing intermixing. The average density of the upper level exceeds the average density of the upper level. Floats on the periphery of the upper level buoyantly support it on the surface of a larger body of water connected to the lower level. The upper level contains dissolved salts establishing a halocline that renders the upper level non-convective such that it is heated by absorption of solar radiation, the heat being transferred to the lower level by conduction across the barrier. Vertical curtains attached to the periphery of the barrier inhibit mixing of the water in the lower level with the water in the larger body of water such that the lower level constitutes a heat storage layer. The barrier between the two layers includes a sheet of flexible material and a frame supporting the same rigidly connected to the floats. The upper level is stabilized by additional floats rigidly connected to the frames and floating in the upper level.

  2. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  3. Macroinvertebrates of Par Pond and Pond B: Final report, January 1984-June 1985

    SciTech Connect

    Kondratieff, B.C.; Chimney, M.J.; Painter, W.B.

    1985-08-01

    This document reports on the Par Pond and Pond B macroinvertebrate sampling program from January 1984 through June 1985. It includes data on quantitative and qualitative benthic sampling, quantitative meroplankton sampling and quarterly diel sample. The basic objectives were to: (1) characterize the benthic and meroplankton macroinvertebrate communities of Par Pond and Pond B, with respect to taxonomic composition and diversity, density and relative abundance of functional feeding groups; (2) assess the impact of thermal discharges on the macroinvertebrate community of Par Pond; (3) assess the impact and significance of entrainment losses of macroinvertebrate meroplankton from Par Pond; and (4) compare Par Pond macroninvertebrate communities with those in Pond B.

  4. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  5. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  6. Holocene Closure of Lib Pond, Marshall Islands

    PubMed Central

    Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  7. Blogging from North Pond

    NASA Astrophysics Data System (ADS)

    Marziali, C. G.; Edwards, K. J.

    2009-12-01

    Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.

  8. Locations and areas of ponds and Carolina Bays at the Savannah River Plant

    SciTech Connect

    Shields, J.D.; Woody, N.D.; Dicks, A.S.; Hollod, G.J.; Schalles, J.; Leversee, G.J.

    1982-05-01

    The Savannah River Plant has 28 ponds and 190 Carolina Bays on its 192,000-acreite. Excluding the Par Pond system, the mean pond area is 17.6 acre, with a range of 0.4 to 202.8 acres. Par Pond is the largest pond, with an area of 2500 acres. The mean Carolina Bay area is 6.6 acres, with a range of less than 0.3 to 124.0 acres. The geographical location of each pond and bay has been digitized and can be graphically displayed by computer. This capability will facilitate identification of wetland areas as required by Executive Order 11990 (Protection of Wetlands, May 24, 1977).

  9. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident

    PubMed Central

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-01-01

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (137Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of 137Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total 137Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more 137Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of 137Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of 137Cs in pond sediment, as well as the amount lost through hydraulic flushing. PMID:24682011

  10. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-03-31

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  11. The Western Pond Turtle; Habitat and History, 1993-1994 Final Report.

    SciTech Connect

    Holland, Dan C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy.

  12. Environmental impacts of two kind of ponds for shrimp production at Northwest Mexico.

    PubMed

    Gonzalez-Ocampo, Hector; Romero-Schmidt, Heidi; Serrano-Pinto, Vania; Arguelles, Cerafina; Salinas, Federico; Rodríguez, Antonio; Castellanos, Aradit; Ortega-Rubio, Alfredo

    2004-01-01

    Aquaculture offers a major opportunity for the economic development of Baja California Sur (BCS), Mexico. The severely limited freshwater supply and the geographic isolation of the state place limits on other productive activities. Despite the aridity, the natural vegetation of BCS is diverse and structurally complex with a high percentage (20%) of endemic species. In this work we compare the environmental impacts produced by two kinds of aquaculture systems: coastal ponds vs. inland ponds. Construction and operation of coastal ponds does not require destruction of the natural vegetation and, as is true for inland ponds. Coastal ponds are also compatible with conservation of mangroves, sea grasses and sensitive habitats for fish and mollusks. To reduce the negative impacts of aquaculture and to protect the vegetation of Baja California Sur, we recommend the use of coastal ponds for shrimp production.

  13. Preliminary design of sedimentation ponds

    SciTech Connect

    Wilson, L.C.; Wayland, L.D.

    1982-12-01

    Almost one-hundred sedimentation ponds were conceptually designed for a large surface mining study are in northeast Texas. An approximate procedure was developed to economically estimate construction quantities in order to predict surface water control costs. This procedure utilized site-specific empirical relationships developed from detailed analyses on a representative number of proposed sedimentation ponds. Use of these equations provided earthwork volumes, and spillway pipe lengths. The procedure developed for this study is presented along with the results of a verification analysis.

  14. High rates of methane emissions from south taiga wetland ponds.

    NASA Astrophysics Data System (ADS)

    Glagolev, M.; Kleptsova, I.; Maksyutov, S.

    2012-04-01

    Since wetland ponds are often assumed to be insignificant sources of methane, there is a limited data about its fluxes. In this study, we found surprisingly high rates of methane emission at several shallow ponds in the south taiga zone of West Siberia. Wetland ponds within the Great Vasyugan Mire ridge-hollow-pool patterned bog system were investigated. 22 and 24 flux measurements from ponds and surrounded mires, respectively, were simultaneously made by a static chamber method in July, 2011. In contrast to previous measurements, fluxes were measured using the small boat with floated chamber to avoid disturbance to the water volume. Since the ebullition is most important emission pathway, minimization of physical disturbance provoking gas bubbling significantly increases the data accuracy. Air temperature varied from 15 to 22° C during the measurements, and pH at different pond depths - from 4.4 to 5. As it was found, background emission from surrounding ridges and hollows was 1.7/2.6/3.3 mgC·m-2·h1 (1st/2nd/3rd quartiles). These rates are in a perfect correspondence with the typical methane emission fluxes from other south taiga bogs. Methane emission from wetland ponds turned out to be by order of magnitude higher (9.3/11.3/15.6 mgC·m-2·h1). Comparing to other measurements in West Siberia, many times higher emissions (70.9/111.6/152.3 mgC·m-2·h1) were found in forest-steppe and subtaiga fen ponds. On the contrary, West Siberian tundra lakes emit methane insignificantly, with the flux rate close to surrounding wetlands (about 0.2-0.3 mgC·m-2·h1). Apparently, there is a naturally determined distribution of ponds with different flux rates over different West Siberia climate-vegetation zones. Further investigations aiming at revelation of the zones with different fluxes would be helpful for total flux revision purposes. With respect to other studies, high emission rates were already detected, for instance, in Baltic ponds (Dzyuban, 2002) and U.K. lakes

  15. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. 4th Quarterly technical progress report

    SciTech Connect

    Benemann, J.R.

    1994-12-28

    Microalgae cultivation in large open ponds is the only photosynthetic process likely to directly utilize power plant flue gas CO{sub 2} for production of biomass. The algal biomass can be converted into substitutes for fossil fuels, in particular liquid fuels such as biodiesel (vegetable oil methyl or ethyl esters), thus reducing atmospheric CO{sub 2} levels and the potential for global warming. This concept is being investigated, among others, at the National Renewable Energy Laboratory at Golden, Colorado, with support from PETC.

  16. Distance Education of Pennsylvania Pond Owners.

    ERIC Educational Resources Information Center

    Schmidt, Katherine L.; Swistock, Bryan R.; Sharpe, William E.

    2003-01-01

    Evaluations by 175 of 557 Pennsylvania pond owners who attended an Extension program via satellite revealed that most were interested in aesthetic/recreational pond use and pond management. They wanted more in-depth information over a shorter time frame. Only 10% did not favor satellite delivery. Shorter, more focused satellite programs and…

  17. Par Pond Fish, Water, and Sediment Chemistry

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  18. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  19. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These

  20. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  1. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  2. New factors in the design, operation and performance of waste-stabilization ponds

    PubMed Central

    Marais, G. v. R.

    1966-01-01

    In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235

  3. Feasibility of using saturated solar ponds for brine unmixing. Final report

    SciTech Connect

    Not Available

    1980-09-30

    The overall objective of this study was to investigate in the laboratory the feasibility of using saturated solar ponds for unmixing a brine of intermediate concentration into dilute and concentrated brine streams for salinity gradient energy conversion systems. This objective was accomplished by conducting experiments on laboratory saturated ponds using borax, potassium perchlorate, potassium nitrate, disodium phosphate and potassium alum. Results from ponds using borax, potassium nitrate and disodium phosphate conclusively demonstrated that saturated solar ponds can self-generate and self-maintain a stable density gradient. Moreover, these ponds reestablished stable density profiles after the ponds were externally mixed. Based on preliminary results, the residence time for unmixing of a brine of intermediate concentration into dilute and concentrated brine streams varies from a few days for the borax pond to about two weeks for the disodium phosphate pond, depending upon the characteristics of the individual saturated solution. Because of only a very small increase in the density of saturated solutions from 25/sup 0/C to 90/sup 0/C, the potassium perchlorate pond could not establish a stable density stratification.

  4. How Healthy Is Our Pond?

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Hargrove, Dori L.

    2014-01-01

    With crosscutting concepts such as stability and change in the "Next Generation Science Standards," this article was written for those who have wondered how to teach these concepts in a way that is relevant to students. In this investigation, students ask the question, "Why is the pond dirty?" As students investigate the health…

  5. Regional applicability and potential of salt-gradient solar ponds in the United States. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    A comprehensive assessment of the regional applicability and potential of salt-gradient solar ponds in the United States is provided. The assessment is focused on the general characteristics of twelve defined geographic regions. Natural resources essential to solar ponds are surveyed. Meteorological and hydrogeological conditions affecting pond performance are examined. Potentially favorable pond sites are identified. Regional thermal and electrical energy output from solar ponds is calculated. Selected pond design cases are studied. Five major potential market sectors are evaluated in terms of technical and energy-consumption characteristics, and solar-pond applicability and potential. Relevant pond system data and financial factors are analyzed. Solar-pond energy costs are compared with conventional energy costs. The assessment concludes that, excepting Alaska, ponds are applicable in all regions for at least two market sectors. Total solar pond energy supply potential in the five market sectors examined is estimated to be 8.94 quads/yr by the year 2000, approximately 7.2% of the projected total national energy demand.

  6. Anaerobic ponds treatment of starch wastewater: case study in Thailand.

    PubMed

    Rajbhandari, B K; Annachhatre, A P

    2004-11-01

    Anaerobic ponds are particularly effective in treating high-strength wastewater containing biodegradable solids as they achieve the dual purpose of particulate settlement and organic removal. Performance of an anaerobic pond system for treatment of starch wastewater containing high organic carbon, biodegradable starch particulate matter and cyanide was assessed under tropical climate conditions. Approximately 5000 m3/d of wastewater from starch industry was treated in a series of anaerobic ponds with a total area of 7.39 ha followed by facultative ponds with an area of 29.11 ha. Overall COD and TSS removal of over 90% and CN removal of 51% was observed. Active biomass obtained from the anaerobic ponds sediments and bulk liquid layer exhibited specific methanogenic activity of 20.7 and 11.3 ml CH4/g VSS d, respectively. The cyanide degradability of sludge at initial cyanide concentration of 10 and 20 mg/l were determined to be 0.43 and 0.84 mg CN-/g VSS d, respectively. A separate settling column experiment with starch wastewater revealed that a settling time of approximately 120 min is sufficient to remove 90-95% of the influent TSS.

  7. Effect of upstream ponds on stream temperature

    NASA Astrophysics Data System (ADS)

    Ham, J.; Toran, L.; Cruz, J.

    2006-05-01

    Many tributaries feeding streams are connected to ponds that heat up during summer months; however, the influence of these ponds on receiving stream temperature was not known. Stream temperature affects microfauna and fish habitats in aquatic ecosystems. Three tributaries with headwater ponds exposed to sunlight and one tributary unassociated with a large, upstream pond were selected for study within the Pennypack Creek watershed in the Philadelphia Metropolitan Area. Temperature loggers were installed in the pond (when applicable), associated tributary, and in the Pennypack Creek up and downstream of its confluence with the tributary. Although diurnal temperature fluctuations were apparent, the study showed no significant differences in temperature up and downstream of tributary discharge to Pennypack Creek. Pond water temperatures were up to 4°C warmer than the Pennypack Creek; however, temperatures downstream and upstream of the tributaries leading out of the ponds were within 1°C of each other.

  8. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  9. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions. PMID:25714630

  10. POND MOUNTAIN AND POND MOUNTAIN ADDITION ROADLESS AREAS, TENNESSEE.

    USGS Publications Warehouse

    Griffitts, W.R.; Bitar, Richard

    1984-01-01

    As a result of a mineral study of the Pond Mountain Roadless Areas, Tennessee, a probable potential for the occurrence of tin, niobium, and tungsten resource with associated beryllium, molybdenum, zinc, and fluorite was identified in rocks of Precambrian age particularly in the southeastern part of the area. Detailed geologic mapping and geochemical sampling of the soils and rocks in the area of Precambrian rocks is recommended to identify and delimit the areas of potential resources of tin, niobium, and tungsten.

  11. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  12. Relation between species assemblages of fishes and water quality in salt ponds and sloughs in South San Francisco Bay

    USGS Publications Warehouse

    Mejia, F.; Saiki, M.K.; Takekawa, J.Y.

    2008-01-01

    This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species

  13. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  14. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. PMID:23869702

  15. Toxicity of stormwater treatment pond sediments to Hyalella azteca (Amphipoda)

    SciTech Connect

    Karouna-Renier, N.K. |; Sparling, D.W.

    1997-04-01

    Stormwater runoff from highways and commercial, industrial, and residential areas contains a wide spectrum of pollutants including heavy metals, petroleum hydrocarbons, pesticides, herbicides, sediment, and nutrients. Recent efforts to reduce the impacts of urbanization on natural wetlands and other receiving waters have included the construction of stormwater treatment ponds and wetlands. These systems provide flood control and improve water quality through settling, adsorption, and precipitation of pollutants removing up to 95% of metals, nutrients and sediment before discharged from the site. The design of stormwater ponds to provide habitat for aquatic wildlife has prompted concern over the potential exposure of aquatic organisms to these contaminants. Aquatic sediments concentrate a wide array of organic and inorganic pollutants. Although water quality criteria may not be exceeded, organisms living in or near the sediments may be adversely affected. The availability of chemicals in sediments depends strongly on the prevailing chemistry. Physical conditions of the sediment and water quality characteristics including pH, redox potential and hardness, also influence contaminant availability. Studies have shown that heavy metals and nutrients carried by runoff concentrate in the sediment of stormwater ponds. Although several investigations have assessed the toxicity of sediments in streams receiving urban runoff, there have been few studies of the toxicity of stormwater treatment pond sediments to aquatic organisms. This study was part of a large-scale assessment of the contaminant hazards of stormwater treatment ponds. The objective of this study was to evaluate the toxicity of sediments and water from stormwater ponds over a 10-d period to juvenile Hyalella azteca. Bioassay results were related to concentrations of acid volatile sulfides and metals of the tested sediments. 17 refs., 4 tabs.

  16. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.

    2012-01-01

    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  17. Preliminary study of solar ponds for salinity control in the Colorado River Basin. Technical report

    SciTech Connect

    Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

    1982-12-01

    In this study, the Bureau of Reclamation investigates the technical and economic benefits of using solar salt-gradient ponds in the Colorado River Basin to provide salinity control and to produce project power and freshwater. It was assumed that the saline water needed for pond construction would be transported to one of two dry lakebeds in the Basin(Danby Dry Lake in southern California or Sevier Dry Lake in western Utah) as part of a salinity control/coal transport project. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Economic benefits were compiled for two methods of concentrating the necessary brine for the ponds--one representing stage construction using collected brine only and the other using salt at the site to produce the concentrated brine.

  18. How to Maximally Support Local and Regional Biodiversity in Applied Conservation? Insights from Pond Management

    PubMed Central

    Lemmens, Pieter; Mergeay, Joachim; De Bie, Tom; Van Wichelen, Jeroen; De Meester, Luc; Declerck, Steven A. J.

    2013-01-01

    Biodiversity and nature values in anthropogenic landscapes often depend on land use practices and management. Evaluations of the association between management and biodiversity remain, however, comparatively scarce, especially in aquatic systems. Furthermore, studies also tend to focus on a limited set of organism groups at the local scale, whereas a multi-group approach at the landscape scale is to be preferred. This study aims to investigate the effect of pond management on the diversity of multiple aquatic organism groups (e.g. phytoplankton, zooplankton, several groups of macro-invertebrates, submerged and emergent macrophytes) at local and regional spatial scales. For this purpose, we performed a field study of 39 shallow man-made ponds representing five different management types. Our results indicate that fish stock management and periodic pond drainage are crucial drivers of pond biodiversity. Furthermore, this study provides insight in how the management of eutrophied ponds can contribute to aquatic biodiversity. A combination of regular draining of ponds with efforts to keep ponds free of fish seems to be highly beneficial for the biodiversity of many groups of aquatic organisms at local and regional scales. Regular draining combined with a stocking of fish at low biomass is also preferable to infrequent draining and lack of fish stock control. These insights are essential for the development of conservation programs that aim long-term maintenance of regional biodiversity in pond areas across Europe. PMID:23951328

  19. Sludge accumulation in shallow maturation ponds treating UASB reactor effluent: results after 11 years of operation.

    PubMed

    Possmoser-Nascimento, Thiago Emanuel; Rodrigues, Valéria Antônia Justino; von Sperling, Marcos; Vasel, Jean-Luc

    2014-01-01

    Polishing ponds are natural systems used for the post-treatment of upflow anaerobic sludge blanket (UASB) effluents. They are designed as maturation ponds and their main goal is the removal of pathogens and nitrogen and an additional removal of residual organic matter from the UASB reactor. This study aimed to evaluate organic matter and suspended solids removal as well as sludge accumulation in two shallow polishing ponds in series treating sanitary effluent from a UASB reactor with a population equivalent of 200 inhabitants in Brazil, operating since 2002. For this evaluation, long-term monitoring of biochemical oxygen demand and total suspended solids and bathymetric surveys have been undertaken. The ponds showed an irregular distribution of total solids mass in the sludge layer of the two ponds, with mean accumulation values of 0.020 m(3) person(-1) year(-1) and 0.004 m(3) person(-1) year(-1) in Ponds 1 and 2, leading to around 40% and 8% of the liquid volume occupied by the sediments after 11 years of operation. The first pond showed better efficiency in relation to organic matter removal, although its contribution was limited, due to algal growth. No simple input-output mass balance of solids can be applied to the ponds due to algal growth in the liquid phase and sludge digestion in the sludge.

  20. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    demethylation rates in intact sediment cores collected in 2007 from 8 sites encompassing a range of physico-chemical parameters to investigate why concentrations of MeHg measured in wetland ponds vary greatly among sites, despite superficial similarities in site characteristics. Our presentation will explore spatial and temporal variability in MeHg dynamics in Arctic wetlands in an attempt to determine the biogeochemical factors controlling MeHg cycling and abundance in Arctic freshwater systems.

  1. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  2. Cooling ponds/lakes and fish

    SciTech Connect

    Monzingo, R.G.; Hughes, J.H.

    1980-01-01

    The discussions concern both cooling ponds and cooling lakes. By regulatory definition, cooling ponds, also called perched ponds, are constructed by building dikes and pumping water, usually from a nearby river, into the diked area. Cooling lakes on the other hand, are created by damming a stream or streams, thereby producing impoundments. The paper begins the discussion with a more detailed examination of the problem at the Collins Station.

  3. Review of SERI Solar Pond Work

    NASA Technical Reports Server (NTRS)

    Zangrando, F.; Johnson, D. H.

    1984-01-01

    Development of models of pond thermal performance; analysis of solar pond use for building space heat and hot water production; use of low-temperature pond-produced heat for industrial processes, desalination, and electricity production; development of direct-contact heat exchanger to reduce conversion equipment cost; determination of effects of extracted heat and mass from the storage layer on pond performance; and investigation of factors which determine gradient layer stability and the stability of this interface between this level and the upper and lower convecting layers were described.

  4. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    PubMed

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  5. Visibility from roads predict the distribution of invasive fishes in agricultural ponds.

    PubMed

    Kizuka, Toshikazu; Akasaka, Munemitsu; Kadoya, Taku; Takamura, Noriko

    2014-01-01

    Propagule pressure and habitat characteristics are important factors used to predict the distribution of invasive alien species. For species exhibiting strong propagule pressure because of human-mediated introduction of species, indicators of introduction potential must represent the behavioral characteristics of humans. This study examined 64 agricultural ponds to assess the visibility of ponds from surrounding roads and its value as a surrogate of propagule pressure to explain the presence and absence of two invasive fish species. A three-dimensional viewshed analysis using a geographic information system quantified the visual exposure of respective ponds to humans. Binary classification trees were developed as a function of their visibility from roads, as well as five environmental factors: river density, connectivity with upstream dam reservoirs, pond area, chlorophyll a concentration, and pond drainage. Traditional indicators of human-mediated introduction (road density and proportion of urban land-use area) were alternatively included for comparison instead of visual exposure. The presence of Bluegill (Lepomis macrochirus) was predicted by the ponds' higher visibility from roads and pond connection with upstream dam reservoirs. Results suggest that fish stocking into ponds and their dispersal from upstream sources facilitated species establishment. Largemouth bass (Micropterus salmoides) distribution was constrained by chlorophyll a concentration, suggesting their lower adaptability to various environments than that of Bluegill. Based on misclassifications from classification trees for Bluegill, pond visual exposure to roads showed greater predictive capability than traditional indicators of human-mediated introduction. Pond visibility is an effective predictor of invasive species distribution. Its wider use might improve management and mitigate further invasion. The visual exposure of recipient ecosystems to humans is important for many invasive species that

  6. Visibility from Roads Predict the Distribution of Invasive Fishes in Agricultural Ponds

    PubMed Central

    Kizuka, Toshikazu; Akasaka, Munemitsu; Kadoya, Taku; Takamura, Noriko

    2014-01-01

    Propagule pressure and habitat characteristics are important factors used to predict the distribution of invasive alien species. For species exhibiting strong propagule pressure because of human-mediated introduction of species, indicators of introduction potential must represent the behavioral characteristics of humans. This study examined 64 agricultural ponds to assess the visibility of ponds from surrounding roads and its value as a surrogate of propagule pressure to explain the presence and absence of two invasive fish species. A three-dimensional viewshed analysis using a geographic information system quantified the visual exposure of respective ponds to humans. Binary classification trees were developed as a function of their visibility from roads, as well as five environmental factors: river density, connectivity with upstream dam reservoirs, pond area, chlorophyll a concentration, and pond drainage. Traditional indicators of human-mediated introduction (road density and proportion of urban land-use area) were alternatively included for comparison instead of visual exposure. The presence of Bluegill (Lepomis macrochirus) was predicted by the ponds' higher visibility from roads and pond connection with upstream dam reservoirs. Results suggest that fish stocking into ponds and their dispersal from upstream sources facilitated species establishment. Largemouth bass (Micropterus salmoides) distribution was constrained by chlorophyll a concentration, suggesting their lower adaptability to various environments than that of Bluegill. Based on misclassifications from classification trees for Bluegill, pond visual exposure to roads showed greater predictive capability than traditional indicators of human-mediated introduction. Pond visibility is an effective predictor of invasive species distribution. Its wider use might improve management and mitigate further invasion. The visual exposure of recipient ecosystems to humans is important for many invasive species that

  7. Pond Identification, Classification, and Inundation Dynamics at St. Marks National Wildlife Refuge in northwest Florida, USA

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Calhoun, D.; Barichivich, J.

    2012-12-01

    The persistence and resilience of amphibian communities is largely dependent on adequate breeding habitat. This is especially important for threatened and endangered species that may often exist as isolated populations and have specific requirements for breeding. A study currently being conducted by the U.S. Geological Survey is investigating the feasibility of a repatriation effort of the Striped Newt (Notophthalmus perstriatus), a federal candidate species, within the St. Marks National Wildlife Refuge (SMNWR) in northwest Florida. This amphibian species requires ponds that are free of fishes and, for this reason, generally chooses ephemeral ponds as breeding sites. The delineation of potential breeding habitat is a first step in selecting candidate areas for repatriation. To achieve this, a LIDAR (Light Detection and Ranging) derived digital elevation model (DEM) and a topographic position index (TPI) classification scheme was used to identify and classify isolated depressions across the landscape. The TPI evaluates the difference in elevation from a central DEM cell to the mean elevation of a neighborhood of surrounding DEM cells and is a robust tool for locating depressional features within a landscape. These candidate depression features were then screened to remove large perennial ponds and smaller connected ponds from further consideration. In addition, the perimeters of twenty-two field identified ephemeral ponds were surveyed with a high precision RTK GPS (Real Time Kinematic Global Positioning System) unit to provide a calibration dataset to evaluate the performance of the feature identification method. This set of ponds was also instrumented with water-level recorders to investigate inundation dynamics across a wide range of hydrologic conditions. We anticipate being able to classify pond hydroperiod—thus each pond's potential as breeding habitat—at the monitored locations through this combination of approaches. Using estimates of pond size

  8. Disappearing Arctic Tundra Ponds: Assessing 60 Years of Change in the Barrow Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Andresen, C.; Lougheed, V.

    2012-12-01

    Decadal hydrological changes of closed-basin tundra ponds in continuous permafrost fills a missing gap in arctic fresh water research. Furthermore, the lack of historic datasets and high resolution historical imagery adds to the challenge of understanding the long-term trends of these ecosystems. Given the dominance of these aquatic ecosystems in the Arctic landscape, documenting hydrological changes is important to understand carbon and energy balance, trophic energy flow, and biodiversity. We utilized historic aerial imagery from USGS archives of 1948 and modern high-resolution Quickbird imagery from 2008 to assess areal changes in arctic ponds over the past 60 years. Object-oriented classification was used to extract the areal extent of ponds and validated using a combination of ground-based measurements such as Kite Aerial Photography (KAP) and Differential Geographic Positioning System (DGPS). A total of 1120 ponds in different drained thaw lake basins (DTLB) distributed across the Barrow Peninsula were assessed. Analysis indicated a decline in total pond area and a decrease of 36% in the number of ponds, with change more pronounced in smaller ponds (<100m2). Aquatic plant cover data collected over a 40 year period (1970-2012) indicate that expansion of vegetation into the ponds may be a primary mechanism whereby ponds may experience infilling. Other mechanisms may include increased evaporation due to warmer and longer summers, transpiration from encroaching aquatic grasses and changes in precipitation patterns. However, images from additional years will be analyzed to separate out the roles of these variables on inter- versus intra-annual variability in pond surface area.

  9. Elimination and accumulation of polycyclic aromatic hydrocarbons in urban stormwater wet detention ponds.

    PubMed

    Istenic, Darja; Arias, Carlos A; Matamoros, Víctor; Vollertsen, Jess; Brix, Hans

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHS) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded with sand filters and other means to improve the removal of micropollutants. The concentrations of sigmaPAH in the sediments varied between 6 +/- 5 and 2,222 +/- 603 ng g(-1) dry weight (mean +/- standard deviation), and were highest in the ponds with lower pond volume per catchment area and did not clearly reflect different activities in the catchments. In general, the concentrations of PAHS in the sediments decreased from inlet to outlet, especially in the systems with good conditions for sedimentation such as systems with flow perpendicular sand dikes and extensive submerged vegetation. High molecular weight PAHs were predominant in the sediments indicating the pyrogenic origin of the PAHS. There was no correlation between PAH species concentrations in water or sediments and their hydrophobicity (log K(ow)). PAH concentrations in water fluctuated in response to intensity and frequency of rain events, whereas concentrations in the sediments integrated the pollutant load over time. Pond systems expanded with sand filters and other technologies to enhance removal of micropollutants consistently had concentrations of PAHS in the effluents below the detection level.

  10. Elimination and accumulation of polycyclic aromatic hydrocarbons in urban stormwater wet detention ponds.

    PubMed

    Istenic, Darja; Arias, Carlos A; Matamoros, Víctor; Vollertsen, Jess; Brix, Hans

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHS) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded with sand filters and other means to improve the removal of micropollutants. The concentrations of sigmaPAH in the sediments varied between 6 +/- 5 and 2,222 +/- 603 ng g(-1) dry weight (mean +/- standard deviation), and were highest in the ponds with lower pond volume per catchment area and did not clearly reflect different activities in the catchments. In general, the concentrations of PAHS in the sediments decreased from inlet to outlet, especially in the systems with good conditions for sedimentation such as systems with flow perpendicular sand dikes and extensive submerged vegetation. High molecular weight PAHs were predominant in the sediments indicating the pyrogenic origin of the PAHS. There was no correlation between PAH species concentrations in water or sediments and their hydrophobicity (log K(ow)). PAH concentrations in water fluctuated in response to intensity and frequency of rain events, whereas concentrations in the sediments integrated the pollutant load over time. Pond systems expanded with sand filters and other technologies to enhance removal of micropollutants consistently had concentrations of PAHS in the effluents below the detection level. PMID:22097066

  11. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  12. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  13. Origin and flatness of ponds on asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Prockter, L. M.; Barnouin, O. S.; Ernst, C. M.; Kahn, E.; Gaskell, R. W.

    2013-12-01

    Over 300 landforms have been identified on asteroid 433 Eros, consisting of flat, smooth deposits typically located at the bottoms of craters or other topographic lows [1-2]. These landforms are tens of meters across, and their surfaces appear to lie on a geopotential [2]. They are clearly delineated from the surrounding terrain by sharp embayments of the bounding depressions in which they lie. Where these depressions are emplaced on a local slope, the deposits are located downslope of the geometric center of the crater [1]. The deposits are slightly bluer in color than the surroundings [1] and are interpreted to consist of fine-grained material [2]. Because of their morphological resemblance to the terrestrial lacustrine features of similar size, these deposits have been called "ponds". A database of the locations and sizes of 334 ponds observed with the Multi-spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR)-Shoemaker spacecraft has been archived in the Planetary Data System (PDS) [3]. These ponds are largely concentrated near the equator at the ends of the long-axis of the asteroid [2]. Several mechanisms have been proposed for the origin of the ponds including electrostatic levitation of dust [2], seismic shaking due to impacts [1] and disaggregation of central boulders observed within several of the ponds [4]. Here, we further investigate the topography of ponds on Eros using a new shape model derived from stereophotoclinometric (SPC) analysis [5], which we have tied to altimetry measurements made by the NEAR Laser Rangefinder (NLR). We update the locations of 55 pond candidates identified in images registered to the new shape model. We classify the flatness of these features according to the behavior of the first and second derivatives of the topography. We find that a significant fraction (55% - 75%) of pond candidates do not have flat floors. On the basis of these results, we favor an origin for the ponds deposits from a source external to

  14. A Landsat analysis of variability of supraglacial ponds for the debris-covered glaciers of the Langtang Valley

    NASA Astrophysics Data System (ADS)

    Miles, Evan; Willis, Ian; Arnold, Neil; Pellicciotti, Francesca

    2016-04-01

    Debris-covered glaciers have received renewed interest in recent years in an attempt to improve understanding of climate-glacier interactions in High Mountain Asia. Understanding of key processes occurring in supraglacial ponds has advanced conceptually to include conduit-collapse formation, subaqueous and waterline melting, calving, and englacial filling and drainage. The behaviour of systems of ponds, however, has received little attention, as most process observations have been made on individual features. Several studies have used satellite data to determine pond distributions at a single point in time or their variability across several years or decades. However, no attempt has been made to document the seasonal and inter-annual variability of ponds, even though individual ponds have been observed to fill and drain periodically. We analyse 172 Landsat TM/ETM+ scenes for the period 1999-2013 to identify thawed supraglacial ponds for the debris-covered tongues of five glaciers in the Langtang Valley of Nepal. We apply an advanced atmospheric correction routine (LandCor/6S) and improve upon previous band-ratio and image morphological techniques to identify ponds, then apply this database of identified ponds to: 1) measure the density of supraglacial ponding for five glaciers with differing characteristics, and evaluate the dependency of pond density to those glaciers' characteristics; 2) evaluate the controls that surface gradient and glacier velocity in particular exert on pond occurrence; 3) document the seasonal cycle of pond thawing and formation followed by freezing and draining; 4) document pond persistence, recurrence, and evolution over the 15-year period; and 5) determine if surface ponding has increased over time for the study glaciers. We find high variability between glaciers (0.08-1.69% of debris-covered area during ablation season), related primarily to glacier size, velocity, and surface gradient. At the glacier scale, pond cover is also correlated

  15. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices

    NASA Astrophysics Data System (ADS)

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  16. Analysis of storm-water infiltration ponds on the North Carolina Outer Banks

    SciTech Connect

    Chescheir, G.M.; Fipps, G.; Skaggs, R.W.

    1990-09-01

    Increasing development along the North Carolina coast has been linked to the deterioration of water quality in adjacent sounds and estuaries. Degradation of water quality in sounds and estuaries threatens the coastal ecology which provides resources for the area's fishing and tourism industries. The state of N.C. adopted the current Stormwater Runoff Disposal Rules in 1988 requiring stormwater management plans for new development in 20 coastal counties. Stormwater infiltration pond systems are approved by the State as an option for retaining stormwater on the developed site; however, the long-term performance of these systems has not been measured or determined. The study was conducted to monitor the hydrology of stormwater infiltration ponds on the North Carolina barrier islands and to develop a model that continuously simulates the performance of these ponds. The hydrology of two operating infiltration ponds systems was evaluated in an 18-month field study. Rainfall, pond stage, and water table elevations at selected locations were monitored continuously. Water table elevations at additional locations were monitored on a biweekly basis. Soil hydraulic conductivities and soil water characteristic relationships were determined at both field sites. The subsurface geology was described at one site and an aquifer pump test was performed to determine aquifer transmissivity and specific yield. Both of the infiltration ponds in the field studies effectively served their primary purpose of retaining on site the stormwater runoff from the first 38 mm (1.5 in) of rainfall. In nearly every case, the pond seepage rate was sufficient to completely draw down the pond within 5 days. The hydrology of the infiltration ponds at the two research sites was very different.

  17. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  18. The Pond Community. Primary Level. Teacher's Manual.

    ERIC Educational Resources Information Center

    Conner, Shirley

    This teacher's guide includes four lessons dealing with animals and plants associated with ponds. Species discussed are selected because of their unusual means of adaptation to the pond environment. Each lesson includes suggestions on introducing the unit, discussion suggestions, blackboard activities, and activities with pictures and a magnetic…

  19. 100-D Ponds closure plan. Revision 1

    SciTech Connect

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

  20. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  1. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  2. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  3. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  4. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon...

  5. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief introduction and…

  6. Gradient zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1995-11-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. A simple (linear) correlation of entrainment rate with wind speed was found, for conditions which are typical of those encountered in mariculture pond operations.

  7. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    PubMed

    Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.

  8. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  9. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    PubMed

    Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  10. Insights into the Effects of the Spatial Configuration of Flood Retention Ponds on Flood Frequency

    NASA Astrophysics Data System (ADS)

    Ayalew, T. B.; Krajewski, W. F.; Mantilla, R.

    2014-12-01

    As the construction of large dams for flood control purposes becomes no longer attractive due to their high cost and adverse environmental impacts, the use of spatially distributed flood retention ponds in both urban and rural settings is becoming an alternative flood management practice. However, little is known about how the spatial configuration of ponds and their storage and release capacities relative to their location in the drainage network affect the flood frequency at different locations in the catchment. In this study, we investigate this issue using a continuous simulation approach where a randomly generated rainfall time series is used to derive a hydrologic model that mimics the translation, aggregation, and attenuation of flows along the drainage network. We began by investigating how flood retention ponds that are configured either in series or in parallel affect the flood frequency using a hypothetical catchment (A=30 km2) whose drainage network is idealized using the deterministic Mandelbrot-Viseck tree. Our results show that ponds that are configured in parallel and placed at the upstream section of the basin offer a better peak flood reduction than ponds that are either configured in series along the main stem of the drainage network or a single bigger pond that is located at the outlet. The results also show that, for ponds that are configured in series, emptying the upstream dam first offers better regulation of flood peaks than emptying the downstream pond first. Moreover, our results show that, when the two ponds that are configured in series have different storage capacities, it is better to put the larger pond in the upstream section of the catchment. We further expanded the analysis to the Soap Creek catchment (A=660 km2) located in southeastern Iowa, and simulated a system of 132 flood retention ponds that have already been built across that catchment. Our results show how these ponds modify the flood frequency at different locations in

  11. Transport of fecal-derived microorganisms from latrine ponds to aquifers in Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; McKay, L. D.; Layton, A.; Alam, M.; Williams, D.; Huq, M. R.; Mailloux, B. J.; Ferguson, A.; Feighery, J. E.; Culligan, P. J.; Escamilla, V.; Emch, M.; Akita, Y.; Serre, M. L.; Perfect, E.; Gentry, R. W.; Ahmed, K. M.; van Geen, A.

    2009-12-01

    Groundwater has been the principal source of drinking water for over 100 million people in rural Bangladesh for the past twenty years. The shallow depths and simple construction of the private wells has raised concern that these wells may be receiving fecal contamination from the densely populated rural areas with poor sanitation, contributing to high rates of diarrheal disease. Ponds are ubiquitous in Bangladesh, serving multiple purposes, including receiving fecal effluent from latrines, and private wells are frequently located in close proximity to these potential groundwater contamination sources. After detecting E. coli in up to 70% of private and monitoring wells throughout a village in Araihazar, the numerous ponds throughout the village were hypothesized to be sources of this contamination. To test this hypothesis 9 lateral transects of 4 monitoring wells each, 7 m deep and placed 1 m apart, were installed radiating away from four ponds of contrasting ages and near surface geology. These transects were monitored throughout the year to look for evidence that the ponds were contributing E. coli to the groundwater system. During the dry season from September 2008 to May 2009 no E. coli was observed in the shallow monitoring wells. In contrast, when the rains began in June 2009 several of the transects showed increasing water levels and E. coli with proximity to the pond, providing evidence that some ponds were acting as a contamination point source. A major rainfall event was simulated in June 2009 in each of the four ponds, raising the water level by 20 to 30 cm while adjacent transects were monitored. In two recently dug, deep ponds E. coli travelled up to 6 m into the medium sand aquifer within 24 hours as a result of the simulated rainfall event. In the two older ponds, which had well developed silt layers on the bottom or were emplaced in silty aquifers little E. coli was detected in the adjacent monitoring wells under natural or forced gradient

  12. Long-Term Hydrological Changes of Coastal Arctic Tundra Ponds in Drained Thaw Lake Basins

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lougheed, V.

    2013-12-01

    Given the dominance of these ponds in the tundra landscape, documenting long-term changes in these aquatic systems is essential to understand carbon and energy balance, trophic energy flow, and biodiversity for the Arctic. The combination of remote sensing using historical imagery, as well as rare historical data from the International Biological Program, provides a unique opportunity for understanding long-term changes in hydrology, chemistry and biology of these significant freshwater environments. To assess the changes in pond area and abundance in 22 drained thaw-lake basins (DTLB) across the Barrow Peninsula over the past 60 years, we utilized historic aerial imagery from USGS archives (1948) and modern high-resolution Quickbird (2002, 2008, 2010). Age classification of DTLB was based on Hinkel et al 2003. We compared water temperature, active layer thickness, and aboveground biomass of these systems to historical datasets compiled in the Limnology of Tundra Ponds' by Hobbie et al 1975. We observed an overall decrease of 28% in pond area and 19% decrease in pond number, where smaller ponds (<100m2) had the highest change. These losses were coincident with significantly higher air and water temperature and reduced annual rainfall, which has decreased by 2.5 cm over the past 62 years (-0.4mm/yr). Active layer in ponds increased on average by 15cm. Aquatic grasses increased in density and cover in ponds over the past 40 years. Area and number of ponds loss was independent of DTLB age; however, medium-age DTLBs had significantly higher number of new ponds over old and ancient-age basins. While we observe new ponds due to thaw lake processes, climate seems to be having a stronger effect on these systems by reducing the overall inundated area and pond number in these basins. Increased evaporation due to warmer and longer summers, permafrost degradation, transpiration from encroaching aquatic grasses and changes in precipitation patterns are likely the current major

  13. Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1989-01-01

    Substantial carbonate deposits were observed on rectrices of Ruddy Ducks (Oxyura jamaicensis) collected during 1982-1984 on evaporation ponds in the San Joaquin Valley, California. Carbonate deposits were composed of about 75% aragonite and 25% calcite, both polymorphous forms of CaCO3. Significantly more carbonate deposits were observed on Ruddy Ducks as length of exposure to agricultural drain water increased, during the 1983-1984 field season when salt concentrations in the ponds were higher, and in certain evaporation-pond systems.

  14. Responses of plankton communities to the introduction of grass carp into some Georgia ponds

    USGS Publications Warehouse

    Terrell, T.T.

    1982-01-01

    Net plankton community structure and numbers were studied in soft-water, acidic ponds containing aquatic macrophytes, after introduction of the herbivorous grass carp (Ctenopharyngodon idella). The plankton communities in ponds with grass carp consisted of significantly fewer individuals, genera, and orders than did the communities in control ponds. Expected shifts from desirable to undesirable species of plankton did not occur. These results demonstrate that plankton blooms are not an inevitable result of stocking grass carp, and support the suggestion that macrophytes may be especially significant in nutrient cycling in soft-water, acidic systems.

  15. Proposal to characterise legacy Sellafield ponds using SONAR and RadLine™.

    PubMed

    Reddy, Sarah F; Monk, Stephen D; Nye, Daniel W; Colling, Bethany R; Stanley, Steven J

    2012-07-01

    Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map. PMID:22698817

  16. Maturation ponds, rock filters and reedbeds in the UK: statistical analysis of winter performance.

    PubMed

    Johnson, M; Camargo Valero, M A; Mara, D D

    2007-01-01

    Wastewater treatment technologies suitable for serving large populations are generally reliable and reasonably cost-effective, yet they are almost always financially inappropriate for small communities (< 2,000 p.e.). Comparative cost data suggests that waste stabilization ponds should be an attractive option for small communities, yet perceptions relating to land costs, climate and effluent quality have limited their application in the UK. This paper details typical UK land costs, climate and winter performance data for a pilot-scale waste stabilization pond with various upgrading technologies: system A, two tertiary maturation ponds in series; B, two tertiary maturation ponds in series followed by a reed bed channel; C, a control rock filter; D, an aerated rock filter; and E, a constructed wetland. System D was found to perform best, closely followed by system B.

  17. Proposal to characterise legacy Sellafield ponds using SONAR and RadLine™.

    PubMed

    Reddy, Sarah F; Monk, Stephen D; Nye, Daniel W; Colling, Bethany R; Stanley, Steven J

    2012-07-01

    Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map.

  18. Don Quixote Pond Sediments: Surface and Subsurface Chemistry and Mineralogy

    NASA Astrophysics Data System (ADS)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2014-12-01

    Don Quixote Pond, like Don Juan Pond in the South Fork of Wright Valley, Antarctica, is a model for calcium and chlorine weathering and distribution on Mars. It is located in the western part of the North Fork about 100 m above Mean Seawater Level; its brine is seasonally frozen [1]. Field observations show zones of discoloration which grow lighter with distance from the pond edges. Four sediment cores, a set of radial surface samples, special surface samples, and samples of local rocks were obtained [2]. We report on chemical and mineral analyses of traverse samples and on two cores. Core DQ20 is a northeastern shoreline core. Its soluble salt concentration exceeds 200 micromoles/g in the top 5 cm, and then falls to less than 70 micromoles/g at the permafrost depth of 15 cm. These concentrations are low when compared to similarly positioned locations at Don Juan Pond and to cores from Prospect Mesa close to Lake Vanda, Wright Valley. Halite, soda niter, tachyhydrite and/bischovite are suggested from the ionic molar relationships Measured halite concentrations of surface samples, collected along a traverse of 35 m from the pond outwards, range from over 5% to trace amounts, decreasing with distance. Gypsum is also present in almost all of these samples ranging from 0.2% to 2.6%, but does not exhibit a trend. However, in core DQ35, located at a distance of 15 m along the traverse, gypsum decreases from 2.5% to 0.6% from the surface to the permafrost depth of 12 cm. While DQ35 and radial samples show high quartz and albite abundance, samples that contained visible encrustations and evaporites are low in these minerals and rich in highly diverse alteration products. Don Juan Basin ponds may have formed by a complex surface water mobilization of weathering products [3] and local groundwater action [4,5]. In contrast, Don Quixote pond mineralogy and chemistry may be consistent with a less complex shallow and deep groundwater system origin [1]. [1] Harris H

  19. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick J.; Shedlock, Robert J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 μg 1 -1), and low bicarbonate concentrations (2 mg l 4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system.

  20. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    SciTech Connect

    Moline, G.R.

    1999-06-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO{sub 2} through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system.

  1. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology

    NASA Astrophysics Data System (ADS)

    Vignoli, Leonardo; Bologna, Marco A.; Luiselli, Luca

    2007-03-01

    We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.

  2. Widespread occurrence of ranavirus in pond-breeding amphibian populations.

    PubMed

    Hoverman, Jason T; Gray, Matthew J; Miller, Debra L; Haislip, Nathan A

    2012-03-01

    Ranaviruses are an emerging threat for many amphibian populations, yet their distribution in amphibian communities and the association of infection with possible stressors and species is not fully understood due to historically sparse surveillance. Agricultural practices that reduce the water quality of amphibian breeding habitats (e.g., cattle access to wetlands) and environmental stressors (e.g., lower temperatures) may contribute to ranavirus emergence. We tested larval amphibians for ranavirus infection across four seasons in farm ponds (n = 40) located in Tennessee, USA. Cattle at various densities were allowed access to half of the sampled ponds. Ranavirus infections were detected in nine species and in 33 of the sampled ponds (83%), illustrating widespread occurrence of the pathogen. Species within the family Ranidae were the most frequently infected. In 13 of the ponds containing infected individuals, prevalence exceeded 40% during at least one season. Infections were detected in multiple seasons in 20 of the sampled ponds containing infections, suggesting that ranaviruses are relatively persistent in these systems. Cattle had negative effects on water quality (turbidity and ammonia) and there was a positive association between cattle abundance and ranavirus prevalence in the summer. Counter to previous field studies in North America, we found a significant positive association between water temperature and ranavirus prevalence in the fall sampling events. Despite these findings, the influences of cattle and temperature on ranavirus prevalence were not consistent across seasons. As such, the mechanisms driving high ranavirus prevalence across the landscape and over time remain unclear. Given the widespread occurrence of ranaviruses in wild amphibians, we encourage the implementation of surveillance programs to help identify potential drivers of emergence. Sites with high ranavirus prevalence should be monitored annually for outbreaks, and the long

  3. Benthic Primary Production in a Saltmarsh Pond: Insights from Fluxes of Dissolved Inorganic Carbon and Oxygen

    NASA Astrophysics Data System (ADS)

    Karolewski, J. S.; Stanley, R. H.; Howard, E. M.; Spivak, A. C.

    2014-12-01

    Salt marshes are important carbon sinks that exist at continental margins and act as mediators in the exchange of nutrients and carbon between terrestrial and marine environments. Within salt marshes, 10-20% of total surface area is covered by marshtop ponds. The fractional area of marshtop ponds is predicted to increase as sea level rises. Despite their potential importance, the balance between autotrophic and heterotrophic processes within such ponds remain poorly understood. To quantify the balance of metabolic fluxes within salt marsh ponds, chemical fluxes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) were measured in July, 2014 in benthic flux chambers inserted into a salt marsh pond in the Plum Island Estuary Long-Term Ecosystem Research (PIE-LTER) site. Light and dark chambers were used to enable separation of rates of photosynthesis and respiration. Separate chambers were used to enclose sediment covered by primarily benthic microalgae and primarily benthic macroalgae. Net ecosystem metabolism in the microalgae was ~10 and in the macroalgae ~15 mmol C/m2/hour. Respiration rates were ~10 mmol C/m2/ hour for both microalgae and macroalgae. The resulting fluxes of net ecosystem production in the ponds will be compared with overall marsh net ecosystem flux as measured by an eddy flux tower that was located 100 meters from the pond. Additionally, concurrent measurements of DIC and DO allow quantification of the C:O ratio during respiration (i.e. respiratory quotient) in this system.

  4. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    PubMed

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth. PMID:20182083

  5. Ultimate Heat Sink Thermal Performance and Water Utilization: Measurements on Cooling and Spray Ponds

    SciTech Connect

    Athey, G. F.; Hadlock, R. K.; Abbey, O. B.

    1982-02-01

    A data acquisition research program, entitled "Ultimate Heat Sink Performance Field Experiments," has been brought to completion. The primary objective is to obtain the requisite data to characterize thermal performance and water utilization for cooling ponds and spray ponds at elevated temperature. Such data are useful for modeling purposes, but the work reported here does not contain modeling efforts within its scope. The water bodies which have been studied are indicative of nuclear reactor ultimate heat sinks, components of emergency core cooling systems. The data reflect thermal performance and water utilization for meteorological and solar influences which are representative of worst-case combinations of conditions. Constructed water retention ponds, provided with absolute seals against seepage, have been chosen as facilities for the measurement programs; the first pond was located at Raft River, Idaho, and the second at East Mesa, California. The data illustrate and describe, for both cooling ponds and spray ponds, thermal performance and water utilization as the ponds cool from an initially elevated temperature. To obtain the initial elevated temperature, it has been convenient to conduct the measurements at geothermal sites having large supplies and delivery rates of hot geothermal fluid. The data are described and discussed in the text, and presented in the form of data volumes as appendices.

  6. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, J.Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  7. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  8. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    PubMed Central

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an

  9. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities.

    PubMed

    Bell, Tisza A S; Prithiviraj, Bharath; Wahlen, Brad D; Fields, Matthew W; Peyton, Brent M

    2015-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal "crop." In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open

  10. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGES

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  11. Stable density stratification solar pond

    NASA Technical Reports Server (NTRS)

    Lansing, F. L. (Inventor)

    1985-01-01

    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.

  12. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    SciTech Connect

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

  13. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere. PMID:23755306

  14. Photosynthesis and fish production in culture ponds

    SciTech Connect

    Szyper, J.P.

    1995-12-31

    The widely-cultured Nile tilapia, Oreochromis niloticus, has been the major species used in standardized experiments by the Pond Dynamics/Aquaculture Collaborative Research Support Program (PD/ACRSP). Yields of Nile Tilapia from fertilized, unfed ponds have served as a bioassay for effectiveness of pond management protocols developed during worldwide tropical experiments. Yield rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates of primary production. Fish production is related to daytime net photosynthetic production, but it is not clear whether production of food materials or oxygen is the more direct influence. Excessively high standing stocks of phytoplankton are not the best net producers, and increase and risk of nighttime oxygen depletion. Fish readily grow to individual sizes of 200-300 g/fish in fertilized ponds, which is sufficient market size in many locations. Supplemental feeding of caged or free-ranging fish greatly accelerates growth beyond 300 g and potentiates high areal yields; the PD/A CRSP has also developed efficient feeding regimes and shown that supplemental feeding need not begin before fish reach 200 g weight. High standing stocks of phytoplankton and high photosynthetic rates in eutrophic ponds make study of photosynthesis possible without radioisotopes. Such ponds also exhibit complete extinction of incident solar radiation within shallow depths, and vertical temperature structure resembling that of deeper bodies of water. These characteristics make ponds useful as microcosms for study of some aspects of photosynthesis in natural waters.

  15. Solar ponds. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    Federally funded research on the design, performance, and use of solar ponds is discussed on these. Topic areas cover the use of solar ponds in industrial process heat production, roof ponds for passive solar buildings, and solar ponds use in the production of biomass for renewable fuels.

  16. Multi-stage ponds-wetlands ecosystem for effective wastewater treatment*

    PubMed Central

    Peng, Jian-feng; Wang, Bao-zhen; Wang, Lin

    2005-01-01

    The performance of the Dongying multi-stage ponds-wetlands ecosystem was investigated in this work. Study of the removal of different pollutants (BOD5, COD, SS, TP, TN, NH3-N, etc.) in different temperature seasons and different units in this system indicated that effluent BOD5 and SS were constant to less than 11 mg/L and 14 mg/L throughout the experimental processes; but that the removal efficiencies of pollutants such as TP, TN, NH3-N, COD varied greatly with season. The higher the temperature was, the higher was the observed removal in this system. Additionally, each unit of the system functioned differently in removing pollutants. BOD5 and SS were mainly removed in the first three units (hybrid facultative ponds, aeration ponds and aerated fish ponds), whereas nitrogen and phosphates were mainly removed in hydrophyte ponds and constructed reed wetlands. The multi-stage ponds-wetlands ecosystem exhibits good potential of removing different pollutants, and the effluent quality meet several standards for wastewater reuse. PMID:15822145

  17. 216-U-10 Pond and 216-Z-19 Ditch characterization studies

    SciTech Connect

    Last, G.V.; Duncan, D.W.; Graham, M.J.; Hall, M.D.; Hall, V.W.; Landeen, D.S.; Leitz, J.G.; Mitchell, R.M.

    1994-02-01

    The chemical, reprocessing of spent nuclear fuels at the US Department of Energy`s Hanford Site has generated large volumes of radioactive liquid effluents. The majority of these effluents have been used strictly for cooling or other supportive functions and have been discharged to ditches and ponds. The 216-U-10 Pond and 216-Z-19 Ditch are two such disposal facilities. These facilities are components of an integrated system of ditches, ponds, and overflow facilities collectively referred to as the U-Pond disposal system. The U-Pond system has been used since 1943 and has received a large variety of radioisotopes from several sources. This study covered tho major aspects of the environment, including wind resuspension, biological uptake and transport, geologic distribution in surface and subsurface sediments, and ground-water impacts. The long-term use of U-Pond and the Z-19 Ditch has resulted in the localized accumulation of transuranic and fission product inventories as a result of sorption and filtration of particulates onto the uppermost sediments.

  18. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  19. "No evidence for intercohort cannibalism in mixed-size cultures of food-size and fingerling hybrid catfish (channel catfish x blue catfish) grown in ponds in winter or summer."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid catfish (' Channel Catfish Ictalurus punctatus X ' Blue Catfish I. furcatus) are normally harvested by seining single-batch pond production systems in fall or winter. Ponds are typically restocked without draining. There is concern that without completely draining the pond after harvest, food...

  20. This Pond Is Not for Ducks.

    ERIC Educational Resources Information Center

    American School and University, 1980

    1980-01-01

    The latest development in solar energy is a four-acre pond planned for Clark College in Vancouver (Washington). Filled with brine, it will serve both as collector and heat storage tank for the entire campus. (Author)

  1. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  2. Solar perspectives - Israel, solar pond innovator

    NASA Astrophysics Data System (ADS)

    Winsberg, S.

    1981-07-01

    Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.

  3. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  4. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    SciTech Connect

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jonathan M.; Chavis, Aaron R.; Kyndt, John; Kacira, Murat; Ogden, Kimberly L.; Huesemann, Michael H.

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 °C, the water temperature was 18 °C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  5. Inverse dependency of particle residence times in ponds to the concentration of phosphate, the limiting nutrient.

    PubMed

    Roberts, Kimberly A; Santschi, Peter H

    2004-01-01

    234Th, a commonly used short-lived particle-reactive tracer in marine systems, was measured in three different holding pond series at the Rocky Flats Environmental Technology Site (RFETS), Colorado, along with its parent nuclide 238U, to determine steady-state residence times of particle-reactive actinides such as Pu, and of particles. Series B ponds, which received industrial effluent that includes ortho-phosphate (PO4) and actinides, differed from series A and C ponds, which did not. This difference was also evident in the calculated particle residence times, which were <1 day for the ponds B4 and B5, where PO4 concentrations were higher (1.4 and 1.8 mg/l), and 3 and 3.4 days for ponds A3 and C2, respectively, where ortho-phosphate concentrations were lower (<0.1 mg/l). Particle residence times thus showed an inverse relationship with the concentration of ortho-phosphate, the limiting nutrient in fresh water systems. The same relationship to the concentration of ortho-phosphate or any of the other nutrient elements was not evident for the residence times of dissolved 234Th, which ranged between 0.1 and 2 days. This can be attributed to higher concentrations of dissolved and particulate ligands with greater binding potential for actinides such as four-valent Th and Pu in ponds with higher ortho-phosphate concentrations. Regardless of actual ortho-phosphate concentration, however, at water residence (holding) times of 1 month in these ponds, particles and associated actinides would be expected to be completely removed from the pond water to sediments. PMID:15261419

  6. Inverse dependency of particle residence times in ponds to the concentration of phosphate, the limiting nutrient.

    PubMed

    Roberts, Kimberly A; Santschi, Peter H

    2004-01-01

    234Th, a commonly used short-lived particle-reactive tracer in marine systems, was measured in three different holding pond series at the Rocky Flats Environmental Technology Site (RFETS), Colorado, along with its parent nuclide 238U, to determine steady-state residence times of particle-reactive actinides such as Pu, and of particles. Series B ponds, which received industrial effluent that includes ortho-phosphate (PO4) and actinides, differed from series A and C ponds, which did not. This difference was also evident in the calculated particle residence times, which were <1 day for the ponds B4 and B5, where PO4 concentrations were higher (1.4 and 1.8 mg/l), and 3 and 3.4 days for ponds A3 and C2, respectively, where ortho-phosphate concentrations were lower (<0.1 mg/l). Particle residence times thus showed an inverse relationship with the concentration of ortho-phosphate, the limiting nutrient in fresh water systems. The same relationship to the concentration of ortho-phosphate or any of the other nutrient elements was not evident for the residence times of dissolved 234Th, which ranged between 0.1 and 2 days. This can be attributed to higher concentrations of dissolved and particulate ligands with greater binding potential for actinides such as four-valent Th and Pu in ponds with higher ortho-phosphate concentrations. Regardless of actual ortho-phosphate concentration, however, at water residence (holding) times of 1 month in these ponds, particles and associated actinides would be expected to be completely removed from the pond water to sediments.

  7. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond.

    PubMed

    Simachew, Addis; Lanzén, Anders; Gessesse, Amare; Øvreås, Lise

    2016-02-01

    The effect of salinity on prokaryotic community diversity in Abijata-Shalla Soda Ash Concentration Pond system was investigated by using high-throughput 16S rRNA gene 454 pyrosequencing. Surface water and brine samples from five sites spanning a salinity range of 3.4 % (Lake Abijata) to 32 % (SP230F, crystallizer pond) were analyzed. Overall, 33 prokaryotic phyla were detected, and the dominant prokaryotic phyla accounted for more than 95 % of the reads consisting of Planctomycetes, Bacteroidetes, candidate division TM7, Deinococcus-Thermus, Firmicutes, Actinobacteria, Proteobacteria, and Euryarchaeota. Diversity indices indicated that operational taxonomic unit (OTU) richness decreases drastically with increasing salinity in the pond system. A total of 471 OTUs were found at 3.4 % salinity whereas 49 OTUs were detected in pond SP211 (25 % salinity), and only 19 OTUs in the crystallization pond at 32 % salinity (SP230F). Along the salinity gradient, archaeal community gradually replaced bacterial community. Thus, archaeal community accounted for 0.4 % in Lake Abijata while 99.0 % in pond SP230F. This study demonstrates that salinity appears to be the key environmental parameter in structuring the prokaryotic communities of haloalkaline environments. Further, it confirmed that the prokaryotic diversity in Lake Abijata is high and it harbors taxa with low or no phylogenetic similarities to existing prokaryotic taxa and thus represents novel microorganisms.

  8. Sewage reuse for aquaculture after treatment in oxidation and duckweed pond.

    PubMed

    Ghangrekar, M M; Kishor, N; Mitra, A

    2007-01-01

    The benefits of treating sewage by pond systems offer, through a simple and low-cost technology, social and commercial benefits, from the waste raw materials. The objective of this work was to demonstrate an effective treatment of the sewage by using natural treatment systems, and use of treated wastewater for aquaculture. The study was conducted for the sewage generated from the IIT Kharagpur campus. After characterization of the sewage, laboratory scale experiments were conducted for treatment using oxidation pond and duckweed pond. Survival and growth of fishes were observed in the experimental ponds using treated sewage. Based on the experimental results, full-scale treatment plant was designed to meet the aquaculture water quality. From the economics of the proposed full-scale plant, and utilization of the treated sewage for aquaculture, it is estimated that, the amount of Rs. 20,0000 can be generated every year. This amount recovered from the aquaculture will be more than the operating cost of the treatment plant, hence, making the operation of sewage treatment plant self sufficient. Use of a UASB reactor as the first stage treatment before sewage passes to the oxidation pond, can be a more attractive alternative because of less land requirement as compared to the oxidation pond alone, and additional land can be made available for aquaculture to increase revenue.

  9. Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds.

    PubMed

    Williams, Clayton J; Frost, Paul C; Xenopoulos, Marguerite A

    2013-09-01

    Urban stormwater ponds are considered to be a best management practice for flood control and the protection of downstream aquatic ecosystems from excess suspended solids and other contaminants. Following this, urban ponds are assumed to operate as unreactive settling basins, whereby their overall effectiveness in water treatment is strictly controlled by physical processes. However, pelagic microbial biogeochemical dynamics could be significant contributors to nutrient and carbon cycling in these small, constructed aquatic systems. In the present study, we examined pelagic biogeochemical dynamics in 26 stormwater ponds located in southern Ontario, Canada, during late summer. Initially, we tested to see if total suspended solids (TSS) concentration, which provides a measure of catchment disturbance, landscape stability, and pond performance, could be used as an indirect predictor of plankton stocks in stormwater ponds. Structural equation modeling (SEM) using TSS as a surrogate for external loading suggested that TSS was an imperfect predictor. TSS masked plankton-nutrient relationships and appeared to reflect autochthonous production moreso than external forces. When TSS was excluded, the SEM model explained a large amount of the variation in dissolved organic matter (DOM) characteristics (55-75%) but a small amount of the variation in plankton stocks (3-38%). Plankton stocks were correlated positively with particulate nutrients and extracellular enzyme activities, suggesting rapid recycling of the fixed nutrient and carbon pool with consequential effects on DOM. DOM characteristics across the ponds were mainly of autochthonous origin. Humic matter from the watershed formed a larger part of the DOM pool only in ponds with low productivity and low dissolved organic carbon concentrations. Our results suggest that in these small, high nutrient systems internal processes might outweigh the impact of the landscape on carbon cycles. Hence, the overall benefit that

  10. Pond culture of seaweed Sargassum hemiphyllum in southern China

    NASA Astrophysics Data System (ADS)

    Yu, Zonghe; Hu, Chaoqun; Sun, Hongyan; Li, Haipeng; Peng, Pengfei

    2013-03-01

    The seaweed Sargassum hemiphyllum is widely distributed throughout the coastal waters of Asia and has high commercial value. In recent years, its natural biomass has declined due to over-exploitation and environmental pollution. To seek for a feasible way to culture this seaweed efficiently, we designed a simple long-line system in a shrimp pond for the culture during winter, and the growth and nutritional composition of the seaweed were examined. Results show that the culture system was durable and flexible allowing S. hemiphyllum to grow vertically off the muddy bottom of the pond. Although the length of pondcultured S. hemiphyllum was inhibited by water depth, the weight-specific growth rate ((1.65±0.17)%/d) was nearly three times higher than that of wild plants ((0.62±0.19)%/d). The crude protein (6.92%±0.88%) and ash content (21.52%±0.07%) of the pond-cultured seaweed were significantly lower than those of the wild plants (9.38%±0.43% and 26.93%±0.07%, respectively); however, crude fat (1.01%±0.04%) was significantly higher than that of the wild plants (0.87%±0.02%). In addition, the nutritional composition of both pond-cultured and wild S. hemiphyllum was comparable to or even higher than those of other common seaweeds being used as food and/or aquaculture fodder. Future studies shall be focused on the impact of environmental parameters on its growth and nutritional composition.

  11. Analysis of changes in farm pond network connectivity in the peri-urban landscape of the Taoyuan area, Taiwan.

    PubMed

    Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia

    2012-04-01

    The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.

  12. Analysis of changes in farm pond network connectivity in the peri-urban landscape of the Taoyuan area, Taiwan.

    PubMed

    Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia

    2012-04-01

    The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed. PMID:22366919

  13. Nitrification-denitrification in waste stabilisation ponds: a mechanism for permanent nitrogen removal in maturation ponds.

    PubMed

    Camargo Valero, M A; Read, L F; Mara, D D; Newton, R J; Curtis, T P; Davenport, R J

    2010-01-01

    A pilot-scale primary maturation pond was spiked with (15)N-labelled ammonia ((15)NH(4)Cl) and (15)N-labelled nitrite (Na(15)NO(2)), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of delta(15)N showed that nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity. PMID:20220235

  14. Comparison of litter decomposition in a natural versus coal-slurry pond reclaimed as a wetland

    USGS Publications Warehouse

    Taylor, J.; Middleton, B.A.

    2004-01-01

    Decomposition is a key function in reclaimed wetlands, and changes in its rate have ramifications for organic-matter accumulation, nutrient cycling, and production. The purpose of this study was to compare leaf litter decomposition rates in coal-slurry ponds vs. natural wetlands on natural floodplain wetlands in Illinois, USA. The rate of decomposition was slower in the natural wetland vs. the coal pond (k=0.0043??0.0008 vs. 0.0066??0.0011, respectively); the soil of the natural wetland was more acidic than the coal pond in this study (pH=5.3 vs. 7.9, respectively). Similarly, higher organic matter levels were related to lower pH levels, and organic matter levels were seven-times higher in the natural wetland than in the coal pond. The coal slurry pond was five years old at the time of the study, while the natural oxbow wetland was older (more than 550 years). The coal-slurry pond was originally a floodplain wetland (slough); the downstream end was blocked with a stoplog structure and the oxbow filled with slurry. The pattern of decomposition for all species in the coal pond was the same as in the natural pond; Potomogeton nodosus decomposed more quickly than Phragmites australis, and both of these species decomposed more quickly than either Typha latifolia or Cyperus erythrorhizos (k=0.0121??0.0008, 0.0051??0.0006, 0.0024??0.0001, 0-0024??0.0004, respectively). Depending on how open or closed the system is to outside inputs, decomposition rate regulates other functions such as production, nutrient cycling, organic-layer accumulation in the soil, and the timing and nature of delivery of detritus to the food chain. ?? 2004 John Wiley and Sons, Ltd.

  15. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  16. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems.

    PubMed

    McEnroe, Nicola A; Williams, Clayton J; Xenopoulos, Marguerite A; Porcal, Petr; Frost, Paul C

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.

  17. Habitat selection by breeding waterbirds at ponds with size-structured fish populations.

    PubMed

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp (Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe (Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  18. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  19. Investigation of salt stratified solar pond operational characteristics

    NASA Astrophysics Data System (ADS)

    Newell, T. A.

    1980-12-01

    Operational characteristics and economic feasibility of the salt stratified solar pond are examined. A one dimensional transient numerical model is developed which offers flexibility for pond property specifications, thermal energy performance prediction, and thermal energy extraction uses. Stability of the gradient zone of a salt stratified pond is one of the most important areas of pond operational feasibility. A criterion for the operational state of a solar pond which constrains the allowable salinity and temperature profiles is developed and extended for use as a design tool for solar ponds. The decanting method of thermal energy extraction is most feasible for large scale ponds. A two dimensional numerical fluid dynamics program has been developed for this purpose and examines the effect of inlet and outlet jet placement in the storage zone of a pond. A simple laboratory experiment for qualitative investigations of solar pond phenomena is described.

  20. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-01-15

    This report provides an economic analysis and feasibility study for the utilization by microalgal systems of carbon dioxide generated from coal-fired power plants. The resulting biomass could be a fuel substitute for fossil fuels.

  1. The application of remote sensing in the environmental risk monitoring of tailings pond: a case study in Zhangjiakou area of China

    NASA Astrophysics Data System (ADS)

    Xiao, Rulin; Shen, Wenming; Fu, Zhuo; Shi, Yuanli; Xiong, Wencheng; Cao, Fei

    2012-10-01

    As a kind of huge environmental risk source, tailings pond could cause a huge environmental disaster to the downstream area once an accident happened on it. Therefore it has become one key target of the environmental regulation in china. Especially, recently environmental emergencies caused by tailings pond are growing rapidly in China, the environmental emergency management of the tailings pond has been confronting with a severe situation. However, the regulatory agency is badly weak in the environmental regulation of tailings pond, due to the using of ground surveys and statistics which is costly, laborious and time consuming, and the lacking of strong technical and information support. Therefore, in this paper, according to the actual needs of the environmental emergency management of tailings pond, we firstly make a brief analysis of the characteristics of the tailings pond and the advantages and capability of remote sensing technology, and then proposed a comprehensive and systematic indexes system and the method of environmental risk monitoring of tailings pond based on remote sensing and GIS. The indexes system not only considers factors from the upstream area, the pond area and the downstream area in a perspective of the risk space theory, but also considers factors from risk source, risk receptor and risk control mechanism in a perspective of risk systems theory. Given that Zhangjiakou city has up to 580 tailings pond and is nearly located upstream of the water source of Beijing, so finally we apply the proposed indexes system and method in Zhangjiakou area in China to help collect environmental risk data of tailings pond in that area and find out it works well. Through the use case in Zhajiakou, the technique of using remote sensing to monitor environmental risk of tailings pond is feasible and effective, and would contribute to the establishment of `Space-Ground' monitoring network of tailings pond in future.

  2. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  3. SOLPOND: a simulation program for salinity gradient solar ponds

    SciTech Connect

    Henderson, J.; Leboeuf, C.M.

    1980-01-01

    A computer simulation design tool was developed to simulate dynamic thermal performance for salinity gradient solar ponds. Dynamic programming techniques allow the user significant flexibility in analyzing pond performance under realistic load and weather conditions. Finite element techniques describe conduction heat transfer through the pond, earth, and edges. Results illustrate typical thermal performance of salinity gradient ponds. Sensitivity studies of salty pond thermal performance with respect to geometry, load, and optical transmission are included. Experimental validation of the program with an operating pond is also presented.

  4. Anaerobic pond treatment of wastewater containing sulphate.

    PubMed

    Rajbhandari, B K; Annachhatre, A P

    2007-01-01

    Anaerobic ponds are usually used for treatment of industrial and agricultural wastes which contain high organic matter and sulphate. Competition for substrate between sulphate reducing bacteria and methane producing archaea, and the inhibitory effects of sulphide produced from microbial sulphate reduction reported in the literature varied considerably. In this research, a laboratory scale column-in-series anaerobic pond reactor, consisting of five cylindrical columns of acrylic tubes, was operated to evaluate the effect of COD and sulphate ratio on pond performance treating wastewater containing high organic matter and sulphate from a tapioca starch industry. The result depicted that no adverse effect of COD:SO4 ratios between 5 and 20 on overall COD removal performance of anaerobic pond operated with organic loading rate (OLR) of 150 to 600 g COD/m3d. Sulphate reducing bacteria could out-compete methane producing archaea for the same substrate at COD:SO4 ratio equal to or lower than 5 and OLR greater than 300 g COD/m3d. Sulphide inhibition was not observed on overall performance of pond up to an influent sulphate concentration of 650 mg/L.

  5. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage.

    PubMed

    Awuah, Esi; Oppong-Peprah, M; Lubberding, H J; Gijzen, H J

    A bench-scale continuous-flow wastewater treatment system comprising three parallel lines using duckweed (Spirodela polyrhiza), water lettuce (Pistia stratiotes), and algae (natural colonization) as treatment agents was set up to determine environmental conditions, fecal coliform profiles and general treatment performance. Each line consisted of four ponds connected in series fed by diluted sewage. Influent and effluent parameters measured included environmental conditions, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, nitrite, ammonia, total phosphorus, fecal coliforms, mosquito larvae, and sludge accumulations. Environmental conditions and fecal coliforms profiles were determined in the sediments (0.63 m), suspensions (0.35 m), and surfaces (0.1 m) of each pond. Acidic conditions were observed in the pistia ponds, neutral conditions in duckweed ponds, and alkaline conditions in algal ponds. Fecal coliforms log removals of 6, 4, and 3 were observed in algal, duckweed, and pistia ponds, respectively, in the final effluents, with die-off rates per pond of 2.7, 2.0, and 1.6. Sedimentation accounted for over 99% fecal coliform removal in most of the algal and pistia ponds. BOD removal was highest in the duckweed system, followed by pistia and algae at 95%, 93%, and 25%, respectively. COD removals were 65% and 59%, respectively, for duckweed and pistia, while COD increased in algal ponds by 56%. Nitrate removals were 72%, 70%, and 36%, respectively for duckweed, pistia, and algal ponds. Total phosphorus removals were 33% and 9% for pistia and duckweed systems, while an increase of 19% was observed in the algal treatment system. Ammonia removals were 95% in both pistia and duckweed and 93% in algal systems. Removals of total dissolved solids (TDS) were 70% for pistia, 15% for duckweed, and 9% for algae. Mosquito populations of 11,175/m(2), 3516/m(2), and 96/m(2) were counted in pistia, algal, and duckweed ponds, respectively. Low

  6. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  7. Effects of urbanization on three ponds in Middleton, Wisconsin

    USGS Publications Warehouse

    House, Leo B.

    1984-01-01

    A digital hydrologic model was used to simulate the effects of future residential development on pond inflow volumes and resulting water levels of three ponds in Middleton, Wisconsin. The model computed the daily water budget and the resulting water level for each pond. The results of the model calibration are presented in the report, along with the existing watershed hydrologic conditions and runoff volumes for the 1982 study period. Data was collected during 1982 to claibrate the model; the data included pond stage, ground-water levels, precipitation and other meteorological characteristics. In addition, water-quality samples were collected at each pond to characterize the water quality. Simulation of pond levels with the 1982 rainfall and fully developed watersheds did not result in stages greater than those observed in 1982. Simulation of pond levels with rainfall having a 20-year recurrence interval (1978) and hypothetical, fully developed watersheds resulted in maximum pond stages above those observed in 1982. Peak stage of Tiedeman 's Pond would increase by 2.77 feet, Stricker 's Pond by 3.91 feet, and Esser 's Pond by 1.44 feet. Simulation of pond levels with an estimated 100-year rainfall and hyopthetical, fully developed watersheds would result in peak stage increases of 5.30, 5.32, and 1.97 feet above the peak 1982 observed stages for Tiedeman's, Stricker's, and Esser 's Ponds, respectively. (USGS)

  8. Limnological studies of Papnash pond, Bidar (Karnataka).

    PubMed

    Angadi, S B; Shiddamallayya, N; Patil, P C

    2005-04-01

    The Papnash pond is an oldest pond of Bidar, Kamataka state. It is situated at 77 degrees-32 longitude and 17 degrees-55 latitude, located 551 m above mean sea level. It has been used daily for bathing and washing of clothes by large number of pilgrims. The samples were collected fortnightly during October 1999 to September 2000 to analyze physico-chemical and biological status of water, such as temperature, pH, total alkalinity, total hardness, dissolved oxygen, free carbon dioxide, chloride, organic matter, nitrite, phosphate, sulphate and algal flora. Variations in physico-chemical parameters were noted. The results also revealed that the pond water was hard, alkaline and polluted. Totally 39 species of algae were reported from the four classes.

  9. Trace metal concentrations in oxidation ponds

    SciTech Connect

    Suffern, J.S.; Fitzgerald, C.M.; Szluha, A.T.

    1981-11-01

    Heavy metal concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the wastewater, sludge, and biotic components of the Oak Ridge National Laboratory oxidation ponds were examined to determine whether metals accumulated in tilapia. Results indicated that metal levels in the wastewater and biotic components are generally low and that the major metal reservoir is the sludge. Metals did not accumulate beyond established standards in the muscle or liver of tilapia grown in the oxidation ponds. This result may be partially due to the rapid growth rates of these fish (1-2 g fish/sup -1//day/sup -1/), with new tissue developing more rapidly than metals can accumulate. Another factor may be that the high concentrations of organic complexes in the ponds lower the availability of metals to the biota.

  10. Salt Ponds, South San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    higher resolution 1000 pixel-wide image The red and green colors of the salt ponds in South San Francisco Bay are brilliant visual markers for astronauts. The STS-111 crew photographed the bay south of the San Mateo bridge in June, 2002. This photograph is timely because a large number of the salt ponds (more than 16,500 acres) that are owned by Cargill, Inc. will be sold in September for wetlands restoration-a restoration project second in size only to the Florida Everglades project. Rough boundaries of the areas to be restored are outlined on the image. Over the past century, more than 80% of San Francisco Bay's wetlands have been filled and developed or diked off for salt mining. San Francisco Bay has supported salt mining since 1854. Cargill has operated most of the bay's commercial salt ponds since 1978, and had already sold thousands of acres to the State of California and the Don Edwards National Wildlife Refuge. This new transaction will increase San Francisco Bay's existing tidal wetlands by 50%. The new wetlands, to be managed by the California Department of Fish and Game and the U.S. Fish and Wildlife Service, will join the Don Edwards National Wildlife Refuge, and provide valuable habitat for birds, fish and other wildlife. The wetlands will contribute to better water quality and flood control in the bay, and open up more coastline for public enjoyment. Additional information: Cargill Salt Ponds (PDF) Turning Salt Into Environmental Gold Salt Ponds on Way to Becoming Wetlands Historic Agreement Reached to Purchase San Francisco Bay Salt Ponds Astronaut photograph STS111-376-3 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  11. Geohydrology of the Flints Pond Aquifer, Hollis, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Flints pond has been subjected to accelerated eutrophication as a result of watershed development (building of new homes and conversion of summer cottages into permanent homes) since the 1930's. Ground-water flow is the primary recharge and discharge mechanism for Flints Pond. The saturated thickness, transmissive properties, and altitude of the water table were determined by use of surface geophysics, test drilling, and aquifer-test data. Information on the geohydrology of the adjacent Flints Pond aquifer can be used in developing a water and nutrient budget for the pond-aquifer system. Ground-penetrating-radar surveys were done over more than 4 miles of the study area and on Flints Pond. Three distinct reflection signatures were commonly identifiable on the radar profiles: (1) thin, relatively flat-lying, continuous reflectors that represent fine-grained lacustrine sediment; (2) subparallel to hummocky and chaotic, coarse-grained reflectors that possibly represent coarse-grained ice-contact deposits or deltaic sediments in a lacustrine environment; and (3) sharply diffracted, fine-grained, chaotic reflectors that represent till and (or) till over bedrock. The saturated thickness of the aquifer exceeds 90 feet in the northern end of the study area and averages 30 to 50 feet in the southern and eastern parts. The saturated thickness of the western part is generally less than 10 feet. Test borings were completed at 19 sites and 13 wells (6 of which were nested pairs) were installed in various lithologic units. A water-table map, constructed from data collected in November 1994, represents average water-table conditions in the aquifer. Horizontal hydraulic conductivities calculated from single-well aquifer test data for stratified drift range from 2.8 to 226 feet per day. Hydraulic conductivities were quantitatively correlated with the reflector signatures produced with ground-penetrating radar so that transmissivities could be inferred for areas where well data were

  12. Processing data streams from an instrumented small pond: visualizing processes and properties

    NASA Astrophysics Data System (ADS)

    Branco, B.; Torgersen, T.

    2006-12-01

    It is estimated that there are 0.5 million man-made ponds and 277 million natural ponds (order 100mx100m) worldwide. These ponds offer stock watering and irrigation opportunities, stormwater runoff mitigation, suspended sediment control and some degree of contaminant sequestration. Such ponds are also typically associated with first and second order streams and thus represent a primary biogeochemical and hydrologic control on uplands watersheds. We have developed an in situ instrument (BORIS) that profiles ponds (six levels) on the half-hour timescale using off the shelf components to investigate the fundamental variability and controls on pond biogeochemical processes. The instrument provides standard measures of temperature, pH, dissolved oxygen and specific conduction, etc. and data are streamed directly to a website with as little as 0.5hr delay. Standard data stream presentation indicates that daily stratification/destratification, random rainfall events and variable weather contribute to significant changes in water quality measures and exert strong controls on the pond processing of terrestrial organic material and (primarily) recycled nutrients. However, the data stream can also be presented as gas-exchange-corrected total CO2 and total O2 that quantify net ecosystem productivity, minimum microbial carbon metabolism and process vectors that reflect in situ redox controls and microbial decomposition pathways. Because of their high temporal and spatial sampling capability, instrumented shallow aquatic systems, even at a simple level, can be used to fundamentally change the means by which we view process geochemistry of hydrologic systems and can provide near real time (<0.5hr) indicators to guide specific water column sampling and collection strategies.

  13. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms.

    PubMed

    Mohr, S; Berghahn, R; Feibicke, M; Meinecke, S; Ottenströer, T; Schmiedling, I; Schmiediche, R; Schmidt, R

    2007-05-01

    The chloroacetamide metazachlor is a commonly used pre-emergent herbicide to inhibit growth of plants especially in rape culture. It occurs in surface and ground water due to spray-drift or run-off in concentrations up to 100 microgL(-1). Direct and indirect effects of metazachlor on aquatic macrophytes were investigated at oligo- to mesotrophic nutrient levels employing eight stream and eight pond indoor mesocosms. Five systems of each type were dosed once with 5, 20, 80, 200 and 500 microgL(-1) metazachlor and three ponds and three streams served as controls. Pronounced direct negative effects on macrophyte biomass of Potamogeton natans, Myriophyllum verticillatum and filamentous green algae as well as associated changes in water chemistry were detected in the course of the summer 2003 in both pond and stream mesocosms. Filamentous green algae dominated by Cladophora glomerata were the most sensitive organisms in both pond and stream systems with EC(50) ranging from 3 (streams) to 9 (ponds) microgL(-1) metazachlor. In the contaminated pond mesocosms with high toxicant concentrations (200 and 500 microgL(-1)), a species shift from filamentous green algae to the yellow-green alga Vaucheria spec. was detected. The herbicide effects for the different macrophyte species were partly masked by interspecific competition. No recovery of macrophytes was observed at the highest metazachlor concentrations in both pond and stream mesocosms until the end of the study after 140 and 170 days. Based on the lowest EC(50) value of 4 microgL(-1) for total macrophyte biomass, it is argued that single exposure of aquatic macrophytes to metazachlor to nominal concentrations >5 microgL(-1) is likely to have pronounced long-term effects on aquatic biota and ecosystem function. PMID:17353057

  14. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Fourth quarterly technical progress report, June 16, 1994--September 15, 1994

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-12-28

    The threat of global warming, mounting concerns about air and water pollution, prospective food shortages, and declining reserves of low-cost fossil fuels, have spawned a burgeoning interest in photobiological processes using microalgae as a method of large-scale utilization of CO{sub 2} for the production of fuels, food, and waste treatment. The major activity during this quarter was the development of cost data for the algal production system, including alternatives to the basic design previously used. The results of this work are still being developed and will be reported in the Final Report. This progress report summarizes a study of a production processes for one specific alga, Botryococcus braunii. This alga is of particular interest in this project as it produces an almost pure hydrocarbon fuel, and does so in rather large amounts. Technology for the production of this organism has, however, not yet been developed. This progress report reviews the literature on this interesting alga and suggests potential methods for its production. 62 refs.

  15. Natural or Simulated Ponds: An Environmental Baseline Study.

    ERIC Educational Resources Information Center

    Exline, Joseph D.

    1978-01-01

    Presents methods for analyzing soil and water samples in this classroom. Includes a classroom diagram, a listing of suggested materials, and the procedures for a classroom simulated pond. Relates classroom activities to work at a natural pond. (MA)

  16. ESTIMATING AMPHIBIAN OCCUPANCY RATES IN PONDS UNDER COMPLEX SURVEY DESIGNS

    EPA Science Inventory

    Monitoring the occurrence of specific amphibian species in ponds is one component of the US Geological Survey's Amphibian Monitoring and Research Initiative. Two collaborative studies were conducted in Olympic National Park and southeastern region of Oregon. The number of ponds...

  17. 1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  18. 2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY WITH FOREBAY IN FOREGROUND, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  19. Prototype computer-interactive goundwater monitoring methodology: an example for sedimentation ponds. Proj. report 1979-81

    SciTech Connect

    Everett, L.G.; Rasmussen, W.O.; Tempo, K.

    1983-04-01

    This report describes a prototype computer-interactive system that assists the development of a groundwater monitoring program for sedimentation ponds at coal strip mines. Even though the monitoring of sedimentation ponds is used as an example, the system consists of a set of instructions applicable to monitoring any specific groundwater pollution source. The instructions enable the user to select from a large amount of text information those portions appropriate to be written into his own file.

  20. Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds.

    PubMed

    van der Steen, N P; Nakiboneka, P; Mangalika, L; Ferrer, A V M; Gijzen, H J

    2003-01-01

    Treatment of wastewater in stabilisation pond systems prevents the negative environmental impact of uncontrolled disposal of sewage. However, even a natural treatment system may generate secondary negative environmental impacts in terms of energy consumption, emission of greenhouse gases and emission of odorous compounds. Whereas natural systems have an advantage over electro-mechanical systems in that they use less hardware and less energy, it is not yet known whether secondary environmental effects in the form of greenhouse gas emissions are lower for these systems. This research intends to be a first step in the direction of answering this question by assessing gas emissions from two types of natural systems, namely algae-based and duckweed-based stabilisation ponds. The H2S volatilisation from laboratory scale pond-reactors has been determined by drawing the air above the water surface continuously through a solution of 1 M NaOH for absorption of sulphide. The amount of H2S that volatilised from the algae pond-reactor, and was trapped in the NaOH trap, was found to be 2.5-86 mg/m2/day. The H2S volatilisation from the duckweed pond-reactor was found to be negligible, even though the sulphide concentration was 9.7 mg/l S(2-). The duckweed cover was a physical barrier for volatilisation, since bubbles were trapped in the cover. In addition the duckweed layer was found to be afavourable environment for both aerobic sulphide oxidisers (Beggiatoa gigantae) as well as for photosynthetic purple sulphur bacteria belonging to the genus Chromatium. These may also have contributed to the prevention of H2S volatilisation. Results on methane emissions were not conclusive so far, but the same mechanisms that prevent H2S volatilisation may also prevent methane volatilisation. Therefore it was concluded that duckweed covers on stabilisation ponds may reduce the emission of both odorous and greenhouse gases.

  1. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  2. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  3. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  4. One year's experience with an operating saturated solar pond

    SciTech Connect

    Ochs, T.L.; Stojanoff, C.G.; Day, D.L.

    1980-01-01

    While the saturated non-convecting solar pond concept is not new, the borax pond at the Desert Research Institute (DRI) is the first application of the concept to an operating solar pond. As with any new application there have been experimentally identified problem areas. Four of these problems are discussed: 1) departure from saturation, 2) contamination, 3) bottom crystalization, and 4) covers.

  5. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.

    PubMed

    Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani

    2014-01-01

    Knowledge of the hydraulic behaviour is very important in the characterization of a stabilization pond, since pond hydrodynamics plays a fundamental role in treatment efficiency. An advanced hydrodynamics characterization may be achieved by carrying out measurements with tracers, dyes and drogues or using mathematical simulation employing computational fluid dynamics (CFD). The current study involved experimental determinations and mathematical simulations of a full-scale facultative pond in Brazil. A 3D CFD model showed major flow lines, degree of dispersion, dead zones and short circuit regions in the pond. Drogue tracking, wind measurements and dye dispersion were also used in order to obtain information about the actual flow in the pond and as a means of assessing the performance of the CFD model. The drogue, designed and built as part of this research, and which included a geographical positioning system (GPS), presented very satisfactory results. The CFD modelling has proven to be very useful in the evaluation of the hydrodynamic conditions of the facultative pond. A virtual tracer test allowed an estimation of the real mean hydraulic retention time and mixing conditions in the pond. The computational model in CFD corresponded well to what was verified in the field.

  6. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, J.Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  7. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, J.Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5-18 g l-1) to hyperhaline (> 40 g l-1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l-1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems. ?? Springer 2006.

  8. Contour Mapping for Pools and Ponds.

    ERIC Educational Resources Information Center

    Berry, Noel

    1985-01-01

    Simple jigs (positioning devices) to make contour mapping tasks easier and more accurate are easily constructed from 5mm-thick acetate sheets. These plastic holders are used with meter sticks to provide scanning guides to measure pools and ponds. Instructions for making the jigs and sample results are included. (DH)

  9. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP currently being monitored, a retention pond with wetland plantings, is in the Richmond Creek (RC) watershed part of New Yor...

  10. Cibola High Levee Pond annual report 2004

    USGS Publications Warehouse

    Mueller, Gordon A.; Carpenter, Jeanette; Marsh, Paul C.

    2005-01-01

    Remaining work will be finished this coming summer and a final report describing CHLP and the ecology of these fish will be completed by the end of 2005. We offer our assistance to the Fish and Wildlife Service in the pond’s renovation and support for the creation of additional refuge ponds. Funding for this work ends September 2005.

  11. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  12. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  13. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  14. In-situ denitrification of ponds

    SciTech Connect

    Napier, J.M.

    1984-11-01

    An in-situ biological denitrification process successfully reduced nitrate ion concentrations in four 2.5 million gallon open-air holding ponds from nearly 40,000 mg/L to less than 50 mg/L. Concurrently, heavy metal concentrations were reduced to levels acceptable for discharge. 3 figures.

  15. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...

  16. 120-D-1 (100-D) ponds training plan

    SciTech Connect

    G. B. Mitchem

    1997-12-31

    This is the Environmental Restoration Contractor Team training plan for the 100-D Ponds treatment, storage, and disposal unit. This plan is intended to meet the requirements of WAC 173-303-330 and the Hanford Dangerous Waste Permit. The WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiar, where applicable, with waste feed cut-off systems, proper responses to groundwater contamination incidents, shutdown of operations, response to fire or explosion, and other process operation activities.

  17. Source or Sink: Investigating the role of storm water retention ponds in the urban landscape (Invited)

    NASA Astrophysics Data System (ADS)

    Lev, S.; Casey, R.; Ownby, D.; Snodgrass, J.

    2009-12-01

    The impact of human activities on surface water, groundwater and soil is nowhere more apparent than in urban and suburban systems. Dramatic changes to watersheds in urbanizing areas have led to changes in hydrology and an associated increase in the flux of sediment and contaminants to surface and ground waters. In an effort to mediate these impacts, Best Management Practices (BMP) have been established in order to increase infiltration of runoff and trap sediment and particulates derived from impervious surfaces before they enter surface waters. Perhaps the most ubiquitous BMP are storm water retention ponds. While these structures are designed to reduce runoff and particulate loading to urban streams, their addition to the urban landscape has created a large number of new wetland habitats. In the Red Run watershed, just outside of Baltimore, Maryland, 186 discrete natural or man-made wetland areas have been identified. Of these 186 wetland areas, 165 were created to manage stormwater and most were specifically designed as stormwater management ponds (i.e., human-created basins or depressions that hold runoff for some period during the annual hydrological year). Despite their abundance in the landscape, very little is known about how these systems impact the flux of stormwater pollutants or affect the organisms using these ponds as habitat. Results from a series of related projects in the Red Run watershed are presented here in an effort to summarize the range of issues associated with stormwater management ponds. The Red Run watershed is situated inside the Urban-Rural Demarcation Line (URDL) around Baltimore City and has been identified as a smart growth corridor by Baltimore County. This region is one of two areas in Baltimore County where new development is focused. In a series of investigations of soils, surface and ground waters, and amphibian and earthworm use of 68 randomly selected stormwater retention ponds from the Red Run watershed, a range of

  18. Decommissioning of a RCRA Treatment, Storage, and Disposal Facility: A case study of the 216-A-29 ditch at the Hanford Site

    SciTech Connect

    Smith, D.L.; Hayward, W.M.

    1991-09-01

    The 216-A-29 ditch is located in the central portion of the Hanford Site with Operable Unit 200-PO-5. The ditch is classified under the Resource Conservation and Recovery Act of 1976 as a Treatment, Storage, and Disposal (TSD) Facility and as such, is to be removed from service in support of the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement (Ecology et al. 1989) Milestone M-17-10, which states cease all liquid discharges to hazardous land disposal units unless such units have been clean closed in accordance with the Resource Conservation and Recovery Act of 1976''. The 216-A-29 ditch is one stream feeding the 216-B-3 Pond system, and its removal from service was necessary to support the closure strategy for the 216-B-3 Pond system. Interim stabilization of the 216-A-29 ditch is the first step required to comply with the Tri-Party Agreement (Ecology et al. 1989) and the eventual decommissioning of the entire B Pond system. Interim stabilization was required to maintain the 216-A-29 ditch in a stable configuration until closure actions have been determined and initiated. 4 refs., 3 figs.

  19. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term

  20. USING INTERNAL RADIO TRANSMITTERS TO DETERMINE THE BEHAVIORAL RESPONSE OF BULLFROGS, RANA CATESBEIANA, TO SEASONAL POND DRYING IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    We implanted radio tags in adult bullfrogs from three ponds located in a Willamette Valley game reserve to determine their behavior and habitat use as the ponds dried during late summer. We used radio telemetry and a Global Position System (GPS) to locate and record the position ...

  1. Effects of detention on water quality of two stormwater detention ponds receiving highway surface runoff in Jacksonville, Florida

    USGS Publications Warehouse

    Hampson, P.S.

    1986-01-01

    Water and sediment samples were analyzed for major chemical constituents, nutrients, and heavy metals following ten storm events at two stormwater detention ponds that receive highway surface runoff in the Jacksonville, Florida, metropolitan area. The purpose of the sampling program was to detect changes in constituent concentration with time of detention within the pond system. Statistical inference of a relation with total rainfall was found in the initial concentrations of 11 constituents and with antecedent dry period for the initial concentrations of 3 constituents. Based on graphical examination and factor analysis , constituent behavior with time could be grouped into five relatively independent processes for one of the ponds. The processes were (1) interaction with shallow groundwater systems, (2) solubilization of bottom materials, (3) nutrient uptake, (4) seasonal changes in precipitation, and (5) sedimentation. Most of the observed water-quality changes in the ponds were virtually complete within 3 days following the storm event. (Author 's abstract)

  2. The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming

    NASA Astrophysics Data System (ADS)

    Li, Shuangyang; Zhan, Hongbin; Lai, Yuanming; Sun, Zhizhong; Pei, Wansheng

    2014-04-01

    Due to environmental disturbances such as local human activity and global warming, melting of massive ground ice has resulted in thermokarst ponds, which are extensively distributed in the Qinghai-Tibet Plateau (QTP). Besides the global warming, the thermokarst pond, as a major heat source, speeds up the moisture change and degradation of its surrounding permafrost. To analyze the long-term coupled moisture-heat process near a representative nonpenetrative thermokarst pond in a permafrost region, abundant temperature data over multiple years at different depths and horizontal distances from the center of the thermokarst pond have been collected at a field experimental station in QTP. A numerical model is built to analyze this thermokarst pond. The temperature and moisture processes of surrounding permafrost are simulated by this model and compared with measured temperature data. Our results show that if the rate of air temperature rise is 0.048°C/yr, which refers to a 2.4°C temperature rise over 50 years, the thawing fronts underneath the thermokarst pond move downward at a linear rate of 0.18 m/yr and the permafrost beneath the pond center would disappear after the year of 2281. Beyond that time, the impact range of the pond on the natural ground increases to about 50 m in horizontal direction. So a dish-shape thawing zone occurs around the thermokarst pond. Simultaneously, the moisture state is greatly changed in 2281 and becomes completely different from that in 2013. All of these would inevitably deteriorate the ecological and environmental system in QTP.

  3. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (<0.1 ng L(-1)). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems. PMID:26030209

  4. The design, construction, and initial operation of a closed-cycle, salt-gradient solar pond

    SciTech Connect

    Alagao, F.B.; Akbarzadeh, A.; Johnson, P.W. )

    1994-10-01

    In operation of a closed-cycle salt-gradient solar pond (CCSGSP) system, fresh or low salinity water is supplied at the surface of the solar pond (SP) as make-up for evaporation losses as well as for surface washing. In the present investigation the surface water is flushed to an evaporation pond (EP) and concentrated for reinjection at the bottom of the SP. A 20 m[sup 2] SP incorporating an EP for concentrating brine, has been established. Theoretical modelling of the CCSGSP is presented. Results from the initial operation of the SP show that wind action and convective mixing caused some erosion of the gradient layer thereby increasing the surface layer thickness. Salt flux to the surface was found to be approximately 19 kg/m[sup 2] per year. Sodium hypochlorite solution proved successful as shock treatment during severe algal bloom. The result of acidification w as less promising in maintaining pond clarity. Occasional addition of alum helped in settling some of the suspended particulates in the pond.

  5. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.

    PubMed

    Girard, Catherine; Leclerc, Maxime; Amyot, Marc

    2016-04-01

    Permafrost thaw ponds of the warming Eastern Canadian Arctic are major landscape constituents and often display high levels of methylmercury (MeHg). We examined photodegradation potentials in high-dissolved organic matter (DOC) thaw ponds on Bylot Island (BYL) and a low-DOC oligotrophic lake on Cornwallis Island (Char Lake). In BYL, the ambient MeHg photodemethylation (PD) rate over 48 h of solar exposure was 6.1 × 10(-3) m(2) E(-1), and the rate in MeHg amended samples was 9.3 × 10(-3) m(2) E(-1). In contrast, in low-DOC Char Lake, PD was only observed in the first 12 h, which suggests that PD may not be an important loss process in polar desert lakes. Thioglycolic acid addition slowed PD, while glutathione and chlorides did not impact northern PD rates. During an ecosystem-wide experiment conducted in a covered BYL pond, there was neither net MeHg increase in the dark nor loss attributable to PD following re-exposure to sunlight. We propose that high-DOC Arctic thaw ponds are more prone to MeHg PD than nearby oligotrophic lakes, likely through photoproduction of reactive species rather than via thiol complexation. However, at the ecosystem level, these ponds, which are widespread through the Arctic, remain likely sources of MeHg for neighboring systems. PMID:26938195

  6. Fish Scale Evidence for Rapid Post Glacial Colonization of an Atlantic Coastal Pond

    NASA Technical Reports Server (NTRS)

    Daniels, R. A.; Peteet, Dorothy

    1996-01-01

    Fish scales from the sediment of Allamuchy Pond, New Jersey, USA, indicate that fishes were present in the pond within 400 years of the time of the first deposition of organic material, at approximately 12,600 yrs BP. The earliest of the scales, from a white sucker, Catostomus commersoni, appears in sediment dated 12,260 +/- 220 yrs BP. Presence of scales in sediment deposited before I 0,000 yrs BP indicates that Atlantic salmon, Salmo salar, sunfish, Lepomis sp., and yellow perch, Perca flavescens, also were early inhabitants of the pond. The timing of the arrival of each of these fishes suggests that they migrated out from Atlantic coastal refugia. A minnow scale, referred to Phoxininae, was also retrieved; it could not be matched to any cyprinid currently found in northeastern North America. The species present historically in this pond are from five families found currently in ponds throughout the Northeast and sugoest that the lentic palaeo-enviromnent was similar to present mid-elevation or high-latitude lentic systems.

  7. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  8. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jon; Chavis, Aaron; Kyndt, John; Kacira, Murat; Ogden, Kim L.; et al

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  9. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    SciTech Connect

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jon; Chavis, Aaron; Kyndt, John; Kacira, Murat; Ogden, Kim L.; Huesemann, Michael

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  10. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond.

    PubMed

    Mayer, T; Rochfort, Q; Borgmann, U; Snodgrass, W

    2008-11-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. PMID:18242807

  11. Suppression of ice fog from the Fort Wainwright, Alaska, cooling pond. Special report

    SciTech Connect

    Walker, K.E.; Brunner, W.

    1982-10-01

    Ice fog near the Ft. Wainwright cooling pond creates a visibility hazard. Observations show a substantial reduction in visibility along both private and public roadways in the path of the cooling pond's ice fog plume. This reduction in visibility increases as the ambient air temperature decreases. Visibility was less than 215 m (700 ft) on the Richardson Highway on the average of 8 days for each of the 3 data years. Data collected during the winters of 1979-80, 1980-81 and 1981-82 statistically show that use of a monomolecular film evaporation suppressant, hexadecanol (C16H33OH), on the pond to reduce ice fog is ineffective. There is an immediate need for a driver warning system when visibility is affected by the ice fog.

  12. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    PubMed Central

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  13. Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions

    PubMed Central

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, L. Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark P.; Topping, Brent R.; Shellenbarger, Gregory G.; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  14. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    PubMed

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  15. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    USGS Publications Warehouse

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  16. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    PubMed

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  17. Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment: nitrogen transformation and removal

    NASA Astrophysics Data System (ADS)

    Senzia, M. A.; Mashauri, D. A.; Mayo, A. W.

    It is estimated that 90% of sewage in cities in developing countries are today discharged untreated into water bodies. In Tanzania, pollution of rivers such as Karanga, Njoro and Rao in Moshi; Mirongo in Mwanza and Themi in Arusha is the cause of frequent disease outbreaks in communities downstreams. Solutions to effluent crisis can be found by its proper treatment and disposal. The principal objective of wastewater treatment is to allow effluents to be disposed without danger to human health or unacceptable damage to the ecology of receiving water bodies. Field investigations were made on pilot scale horizontal subsurface flow constructed wetlands (CW) units located downstream of waste stabilisation ponds (WSP). Six units filled with gravel of 6-25 mm diameters in equal proportion, which gave an initial hydraulic conductivity of 86 m/d were used. While four units covering surface area of 40.7 m 2 each, were located downstream of primary facultative pond, the other two units with surface area 15.9 m 2 each were located downstream of maturation pond. An attempt was made to compare the output of mathematical models for Phragmites and Typha macrophytes located downstream of primary facultative pond. Based on total inflow nitrogen of 1.457 gN/m 2 d, while Phragmites has shown a removal of 54%, Typha had a removal of 44.2%. Furthermore, while the system downstream of primary facultative pond has accretion as a major pathway, accounting for 19.1% of inflow nitrogen, the system downstream of maturation pond has denitrification as its major removal mechanism accounting for 20.5%. In this paper, a comparison of land required by CW and WSP based on the amount of water to be treated is made.

  18. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  19. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    PubMed

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (< 10 years old) and those located in coniferous watersheds had the highest MeHg concentrations (range, 0.10-4.53 ng L(-1)) and greatest methylation efficiencies (% THg as MeHg; range, 10-74%). High heterotrophic activity likely occurred in the beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies. PMID:19731651

  20. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    PubMed

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (< 10 years old) and those located in coniferous watersheds had the highest MeHg concentrations (range, 0.10-4.53 ng L(-1)) and greatest methylation efficiencies (% THg as MeHg; range, 10-74%). High heterotrophic activity likely occurred in the beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies.

  1. Avian response to early tidal salt marsh restoration at former commercial salt evaporation ponds in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Athearn, Nicole D.; Takekawa, John Y.; Shinn, Joel

    2009-01-01

    Restoration of former commercial salt evaporation ponds in the San Francisco Bay estuary is intended to reverse a severe decline (>79%) in tidal salt marshes. San Francisco Bay is a critical migratory stopover site and wintering area for shorebirds and waterfowl, and salt ponds are important high tide roosting and foraging areas. Conservation of past bird abundance is a stated goal of area restoration projects, and early adaptive management will be critical for achieving this objective. However, initial avian response at sites restored to tidal flow may not be indicative of long-term results. For example, winter shorebirds at a 529 ha pond breached in 2002 showed a marked increase in shorebird abundance following breaching. Shorebirds comprised 1% of area totals during 1999-2002 and increased to 46% during 2003-2008. These changes accompanied increased tidal range and sedimentation, but minimal vegetation establishment. Conversely, a fully vegetated, restored 216 ha pond in the same system consistently supported less than 2% of all waterbirds in the region. Early restoration may temporarily increase habitat, but managed ponds will be needed for long-term waterbird abundance within a restored pond-marsh system.

  2. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  3. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    ERIC Educational Resources Information Center

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  4. Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water.

    PubMed

    Levanoni, Oded; Bishop, Kevin; Mckie, Brendan G; Hartman, Göran; Eklöf, Karin; Ecke, Frauke

    2015-11-01

    Elevated concentrations of methylmercury (MeHg) in freshwater ecosystems are of major environmental concern in large parts of the northern hemisphere. Beaver ponds have been identified as a potentially important source of MeHg. The role of beavers might be especially pronounced in large parts of Europe, where beaver populations have expanded rapidly following near-extirpation. This study evaluates the role of the age and colonization history (encompassing patterns of use and reuse) of ponds constructed by the Eurasian beaver Castor fiber in regulating MeHg concentrations in Swedish streams. In 12 beaver systems located in three regions, we quantified MeHg concentrations together with other relevant parameters on five occasions per year in 2012-2013. Five were pioneer systems, inundated for the first time since beaver extirpation, and seven were recolonized, with dams reconstructed by newly recolonizing beavers. MeHg concentrations in pioneer but not in recolonized beaver systems were up to 3.5 fold higher downstream than upstream of the ponds, and varied between seasons and years. Our results show that pioneer inundation by beavers can increase MeHg concentrations in streams, but that this effect is negligible when dams are reconstructed on previously used ponds. We therefore expect that the recovery and expansion of beavers in the boreal system will only have a transitional effect on MeHg in the environment. PMID:26450629

  5. Reclamation of saline soils by partial ponding: Simulations for different soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A traditional method of reclaiming salt-affected soils involves ponding water on a field and leaching salts from the soil through a subsurface tile drainage system. Because water and salts move more slowly in areas midway between drain lines than in areas near the drains, achieving a desired level o...

  6. Salton Sea solar pond power plant design study and regional applicability

    NASA Astrophysics Data System (ADS)

    French, R. L.

    1984-08-01

    Ormat collected and organized the data base and conducted conceptual plant design, performance, and cost analysis. JPL conducted site-specific studies related to solar pond chemistry, soil biological activity, and dike design and construction. WESTEC conducted environmental investigation studies and performed an environmental assessment. SCE provided planning support for licensing and permitting and technical evaluations of the system design and cost estimate.

  7. Salton Sea Solar Pond Power Plant Design Study and Regional Applicability

    NASA Technical Reports Server (NTRS)

    French, R. L.

    1984-01-01

    Ormat collected and organized the data base and conducted conceptual plant design, performance, and cost analysis. JPL conducted site-specific studies related to solar pond chemistry, soil biological activity, and dike design and construction. WESTEC conducted environmental investigation studies and performed an environmental assessment. SCE provided planning support for licensing and permitting and technical evaluations of the system design and cost estimate.

  8. Hydrologic modeling of detention pond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban watersheds produce an instantaneous response to rainfall. That results in stormwater runoff in excess of the capacity of drainage systems. The excess stormwater must be managed to prevent flooding and erosion of streams. Management can be achieved with the help of structural stormwater Best...

  9. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  10. A biotic survey of Lovets Pond, Jackson County, Illinois

    SciTech Connect

    Peterson, M.J.

    1988-12-01

    Systematic collecting of the vascular flora, fishes, and aquatic macroinvertebrates in a natural floodplain pond ecosystem in Jackson County, Illinois, yielded 328, 17, and 93 taxa, respectively. The habitat and relative abundance of each collected specimen were recorded. Five distinct natural communities were identified in the 60-ha ecosystem and were described in detail, namely, pond, shrub swamp, true swamp, marsh, and wet-mesic flood-plain forest. With the exception of the floodplain forest all natural communities at the site were rare in the region, largely due to the extensive wetland drainage and land clearing for agricultural use. Slight disturbance to the study area appear to have had little significant impact on the site's overall natural quality. The character of the system compared favorably with the earliest known presettlement descriptions. The privately owned natural area is endangered because of the likelihood of draining and clearing for agriculture. Based on this study the site is a significant natural area of preservation. 22 refs., 5 figs.

  11. Novel Polarization Techniques and Instrumentation for Glacial Melt Pond Laser Bathymetry

    NASA Astrophysics Data System (ADS)

    Barton-Grimley, R. A.; Gisler, A.; Thayer, J. P.; Stillwell, R. A.; Grigsby, S.; Crowley, G.

    2015-12-01

    Melt ponds contribute significantly to the feedback processes that serve to amplify the polar response to climate change. A substantial volume of melt water is found in shallow ponds during the Arctic summer on the Greenland Ice Sheet, which have consequences on glacial dynamics and ice loss, however, the water content and subsurface topography of the ponds has proven difficult to measure. The need for instrumentation to provide high-resolution depth measurements in shallow water is addressed by utilizing novel polarization discrimination techniques in a high repetition rate, low power, 532nm photon counting lidar system. Recent advances demonstrate the ability to achieve kHz acquisition rates with a depth precision of 1cm. Use of this technique eliminates the necessity for short laser pulses and high-bandwidth detectors and instead provides a less complex, smaller, and more economical solution to airborne lidar instrumentation. Recent deployment of the lidar system aboard the NASA DC-8 research aircraft, during the 2015 NASA SARP campaign, provided critical engineering data and experience to facilitate further advancement of an airborne bathymetric lidar system for melt pond studies. Signal performance from flight indicates a 50 cm horizontal ground resolution at nominal altitudes below 1000 feet above ground level, and also indicates that maintaining a vertical precision of 1cm is achievable, though these results will be further examined. Results from the DC-8 aircraft deployment are promising, and the modest system size opens up the possibility for future integration into a UAS. This presentation will highlight the measurement capabilities of this novel lidar system, and explore polarization scattering properties of laser light with snow, ice, liquid water. System performance metrics will be evaluated for operating during summer periods in the Polar Regions and discuss the scientific contribution to Cryosphere research - most notably the depth and subsurface ice

  12. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Cheong, Youngwook; Yim, Giljae; Hong, Ji-Hye

    2016-10-01

    This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation.

  13. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Cheong, Youngwook; Yim, Giljae; Hong, Ji-Hye

    2016-10-01

    This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation. PMID:26936197

  14. Effect of anaerobic pretreatment on environmental and physicochemical characteristics of duckweed based stabilization ponds.

    PubMed

    Caicedo, J R; Espinosa, C; Andrade, M; Gijzen, H

    2002-01-01

    Duckweed based stabilization ponds, an alternative for wastewater treatment, are attracting a growing interest from researchers because they are basically a low cost technology, easy to built and operate, and produce tertiary quality effluents. Besides, this technology offers the possibility of resource recovery by producing high quality duckweed protein, which can be of further use. Since the technology is rather new, there are many aspects to be studied before its full-scale implementation. It is necessary to gain sound knowledge of the basic principles of the complex processes occurring in the system, as well as of the practical aspects of design and operation. The presence of a layer of duckweed on the surface is expected to produce different environmental and physicochemical conditions in the water from those found in conventional stabilization ponds. These environmental and physicochemical conditions affect both plant growth and biological treatment processes in the system, therefore it is important to determine their behavior in a duckweed system and how they can be affected by an anaerobic pretreatment. Continuous flow pilot plants composed of seven ponds in series were operated with artificial substrate under two different conditions: with anaerobic pretreatment and without anaerobic pretreatment. The flow was kept constant during the operation. Conditions such as pH, temperature, dissolved oxygen, alkalinity, conductivity, chemical oxygen demand, biochemical oxygen demand, total and ammonium nitrogen, nitrites and nitrates, and phosphorus were evaluated in the system under steady state conditions. The main conclusions from the study include the following: pH, temperature and oxygen profiles are more stable in duckweed ponds than in conventional stabilization ponds; anaerobic pretreatment has a significant effect on the oxygen concentration in the system and on the organic matter removal but not on the nutrient removal.

  15. A gradient maintenance technique for seawater solar ponds

    SciTech Connect

    Kleis, S.J.; Li, H.; Shi, J.

    1997-02-01

    Seawater solar ponds are being evaluated as a means of reducing heat losses from thermal refuge areas in outdoor mariculture ponds during cold weather. The thermal refuge areas are intended to provide a reliable means of protecting fish crops from lethal cold water temperatures in the winter months. A continuous filling technique is demonstrated for use in gradient zone maintenance of the seawater solar ponds. The technique allows indefinite operation of the refuge areas with a minimal amount of fresh water.

  16. 7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND - Outlook Irrigation District, Pumping Plant & Woodstave Pipe, Hudson Road & Snipes Lateral Road vicinity, Outlook, Yakima County, WA

  17. 7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING WEST FROM POWERHOUSE ROOF. TRANSFORMER SHED IN FOREGROUND. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  18. On solar ponds: salty fare for the world's energy appetite

    SciTech Connect

    Edesess, M.

    1982-11-01

    It is shown how a uniquely simple salt-gradient solar-energy trap is proving an economical source of electricity and low-temperature heat at various sites around the world. Problems with solar ponds include the thickening of the surface layer despite grids of wave-suppressors; the economics of using solar ponds to generate power and desalt water depend largely on the ability to operate without a synthetic liner; and some solar ponds lose much more heat to the ground than predicted. It is concluded that development of solar ponds is likely to depend on energy demand.

  19. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    PubMed

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. PMID:26899651

  20. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    PubMed

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited.

  1. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems.

  2. Closing the Energy Budget: Advances in assessing heat fluxes into shallow lakes and ponds (Invited)

    NASA Astrophysics Data System (ADS)

    Tyler, S. W.; Hausner, M. B.; Suarez, F. I.; Selker, J. S.

    2009-12-01

    While soil heat flux is traditionally directly measured in any land surface energy study, measuring heat flux into and out of lakes and ponds is complicated by water column mixing processes, differing radiation adsorption coefficients, turbidity variation and heat flux through the sediment-water interface. High resolution thermal profile, to assess heat storage changes in aquatic systems is both time consuming and challenging using traditional thermister or thermocouple strings or casts. Recent advances in Raman spectra distributed temperature sensing (DTS) offer the opportunity to measure, at high spatial and temporal resolution, the thermal storage changes occurring in lakes and ponds. Measurements of thermal storage using DTS are presented from two distinct environments; a strongly density stratified solar pond and a deep cavern system (Devils Hole in Death Valley National Park), demonstrating the effectiveness of high resolution temperature measurements. In the solar pond environment, closure of the energy budget using direct measurements of evaporation and net radiation was greatly improved by incorporating transient thermal measurements, and the development of a cooling boundary layer easily shown. At Devils Hole, variations in shading of the water surface produced small but measureable horizontal gradients in water column temperature for short periods of the day, which impact both pool evaporation and the metabolism and behavior of aquatic organisms

  3. Southwest region solar pond study for three sites: Tularosa Basin, Malaga Bend, and Canadian River

    SciTech Connect

    Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

    1984-08-01

    In the study, the Bureau of Reclamation investigated the technical and economic feasibility of using solar salt-gradient ponds to generate power and to produce freshwater in Bureau projects at three sites--the Canadian River at Logan, New Mexico; Malaga Bend on the Pecos River near Carlsbad, New Mexico; and the Tularosa Basin in the vicinity of Alamogordo, New Mexico. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Results of the economic analysis, which concentrated primarily on the Tularosa Basin site, showed that solar-pond-generated intermediate load power would cost between 62 and 90 mills/kWh and between 52 and 83 mills/kWh for baseload power. This results in benefit-cost ratios of approximately 2.0 and 1.3 for intermediate and baseload, respectively, when compared to similar facilities powered by fossil fuels. The cost savings are even more pronounced when comparing the two (solar versus fossil fuel) as a source of power for conventional distillation and membrane-type desalination systems.

  4. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. PMID:27176549

  5. Fourteen Years of Pond Monitoring in Boreal Plain, northern Alberta, Canada: The effects of climate variability and harvesting practices

    NASA Astrophysics Data System (ADS)

    Abnizova, A.; Devito, K. J.; Petrone, R. M.

    2013-12-01

    Western Boreal forest of Canada is experiencing rapid increase in rates of cumulative impacts of disturbance for resource extraction, climate change and forest fires. To understand their sensitivity and response to multi-decadal natural and anthropogenic disturbances a long-term (1998-2013) and extensive pond ecosystem monitoring has been conducted on the Boreal Plains at the Utikuma Region Study Area (URSA) (56o N, 115o W). Hydrological, chemical and nutrient data were collected along a forest-peatland-pond transect in a paired catchment aspen harvest study in the area underlain by fine-grained till moraines glacial deposits. The aims of this study were (1) to identify the main characteristics in pond hydrologic regime, specifically water level dynamics, both seasonally and between years; (2) to identify factors controlling variation in measured hydro-chemistry and nutrients; and (3) to provide evidence on how water quality conditions in the ponds are changing on long (multi-year to decadal) time scales in response to harvesting practices and climatic trends during wet and dry cycles. No difference in pond or catchment hydrologic and hydro-chemical response was observed between harvested and reference sites pre- or post- harvesting. Wetland and pond waters were not affected by the harvesting practices due to lack of hydrologic connectivity between pond and forest systems. The hydrologic relationship between forestlands and open-water wetlands is a response in their water balance differences driven by their storage characteristics. Temporal trends in ponds' water levels, chemical and nutrient concentrations during the 14 year record were most closely related to relative connectivity to groundwater systems and flow direction in response to climatic cycles and vegetation water use and were the most useful parameters for characterizing duration and type of connectivity during wet and dry cycles. Using empirical relationships from such long-term monitoring, this study

  6. Effects on ground-water quality of seepage from a phosphatic clayey waste settling pond, north-central Florida

    USGS Publications Warehouse

    Hunn, J.D.; Seaber, P.R.

    1986-01-01

    Water samples were taken from test wells drilled near an inactive phosphatic clayey waste storage settling pond, from the settling pond and its perimeter ditch, and from an active settling pond near White Springs, Hamilton County, in north-central Florida. The purpose was to document the seepage of chemical constituents from the inactive settling pond and ditch into the adjacent surficial groundwater system, and to assess the potential for movement of these constituents into the deeper Floridan aquifer system which is the major source of public supply in the area. The study area is underlain by a 2 ,500-ft-thick sequence of Coastal Plain sediments of Early Cretaceous to Holocene age. The rocks of Tertiary and Quaternary age that underlie the test site area can be grouped into three major geohydrologic units. In descending order, these units are: surficial aquifer, Hawthorn confining unit, and Floridan aquifer system. Phosphate deposits occur in the upper part of the surficial aquifer. Water in the active settling pond is a calcium magnesium sulfate type with a dissolved solids concentration of 250 mg/L, containing greater amounts of phosphorus, iron, aluminum, barium, zinc, and chromium than the other surface waters. Water in the perimeter ditch is a calcium sulfate type with a dissolved solids concentration of 360 to 390 mg/L, containing greater amounts of calcium, sulfate, nitrogen, and fluoride than other surface waters. Water from the inactive settling pond is a calcium magnesium bicarbonate type with a dissolved solids concentration of 140 mg/L, containing more bicarbonate than the other surface waters. Large amounts of chemical constituents in the phosphate waste disposal slurry are apparently trapped in the sediments of the settling ponds. The quality of water in the upper part of the surficial aquifer from wells within 200 to 400 ft of the inactive settling pond shows no signs of chemical contamination from phosphate industry operations. The horizontal

  7. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    NASA Astrophysics Data System (ADS)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  8. Salt-Pond Box Model (SPOOM) and Its Application to the Napa-Sonoma Salt Ponds, San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan L.; Schoellhamer, David H.; Buchanan, Paul A.; Meyer, Scott

    2004-01-01

    A box model to simulate water volume and salinity of a salt pond has been developed by the U.S. Geological Survey to obtain water and salinity budgets. The model, SPOOM, uses the principle of conservation of mass to calculate daily pond volume and salinity and includes a salt crystallization and dissolution algorithm. Model inputs include precipitation, evaporation, infiltration, and water transfers. Salinity and water-surface-elevation data were collected monthly in the Napa-Sonoma Salt-Pond Complex from February 1999 through September 2001 and were used to calibrate and validate the model. The months when water transfers occurred were known but the magnitudes were unknown, so the magnitudes of water transfers were adjusted in the model to calibrate simulated pond volumes to measured pond volumes for three ponds. Modeled salinity was then compared with measured salinity, which remained a free parameter, in order to validate the model. Comparison showed good correlation between modeled and measured salinity. Deviations can be attributed to lack of water-transfer information. Water and salinity budgets obtained through modeling will be used to help interpret ecological data from the ponds. This model has been formulated to be applicable to the Napa-Sonoma salt ponds, but can be applied to other salt ponds.

  9. Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater.

    PubMed

    Zimmo, O R; van der Steen, N P; Gijzen, H J

    2003-11-01

    Quantification of ammonia volatilisation from wastewater stabilisation ponds is important in order to understand its significance for overall nitrogen removal in these widely applied low-cost treatment systems. Ammonia volatilisation rates were measured in pilot plant facilities consisting of one line of four algae-based ponds in series and a parallel line of four ponds with a floating mat of duckweed (Lemna gibba). Ammonia volatilisation was assessed during a period of one and a half years. The method applied is accurate, convenient and is proposed for analysis of a wide range of gasses emitted from stabilisation ponds and possibly other aquatic systems. The ammonia volatilisation rates in algae-based ponds (ABPs) were higher than in duckweed-based ponds (DBPs). This can be explained by the lower values of NH(3) in DBPs due to shading and lower pH values, since the volatilisation rate highly correlated with free ammonia concentration (NH(3)) in pond water. The duckweed cover appeared not to provide a physical barrier for volatilisation of unionised ammonia, because whenever NH(3) concentrations were equal in ABP and DBP also the volatilisation rates were equal. Volatilisation was in the range of 7.2-37.4 mg-Nm(-2)d(-1) and 6.4 -31.5 mg-Nm(-2)d(-1) in the ABPs and DBPs, respectively. Average influent and effluent ammonium nitrogen measurements showed that the ammonia volatilisation during the study period in any system did not exceed 1.5% of total ammonium nitrogen removal. Therefore this study confirmed results from simultaneous experimental work in our laboratory indicating that nitrification/denitrification, rather than ammonia volatilisation, is the most important mechanism for N removal in ABPs and DBPs. PMID:14568043

  10. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    PubMed

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. PMID:26657380

  11. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    NASA Astrophysics Data System (ADS)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  12. 30 CFR 817.56 - Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ponds, diversions, impoundments, and treatment facilities. 817.56 Section 817.56 Mineral Resources... Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment facilities. Before... removed and reclaimed, and that all permanent sedimentation ponds, diversions, impoundments, and...

  13. 30 CFR 816.56 - Postmining rehabilitation of sedimentation ponds, diversions, impoundments, and treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ponds, diversions, impoundments, and treatment facilities. 816.56 Section 816.56 Mineral Resources... rehabilitation of sedimentation ponds, diversions, impoundments, and treatment facilities. Before abandoning a... and reclaimed, and that all permanent sedimentation ponds, diversions, impoundments, and...

  14. First description of underwater acoustic diversity in three temperate ponds

    PubMed Central

    Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats’ soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds. PMID:26587351

  15. First description of underwater acoustic diversity in three temperate ponds.

    PubMed

    Desjonquères, Camille; Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats' soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds. PMID:26587351

  16. The aquatic fate of triclopyr in whole-pond treatments

    USGS Publications Warehouse

    Petty, D.G.; Skogerboe, J.G.; Getsinger, K.D.; Foster, D.R.; Houtman, B.A.; Fairchild, J.F.; Anderson, L.W.

    2001-01-01

    The aquatic fate of the triethylamine salt formulation of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) was determined in whole-pond applications in closed (no water exchange) systems in California, Missouri and Texas in two studies conducted in 1995 and 1996. These studies determined dissipation rates of triclopyr and its principal metabolites, 3,5,6-trichloropyridinol (tcp) and 3,5,6-trichloro-2-methoxypyridine (tmp) in water, sediment and finfish. Ponds at each site containing a healthy biological community were treated at 2.5 mg AE litre-1 triclopyr. Water and sediment samples were collected through 12 weeks post-treatment, and non-target animals were collected through 4 weeks post-treatment. Dissipation rates for triclopyr, TCP and TMP were similar at each of the study sites, despite differences in weather, water quality, biotic community, light transmission and geographic location. Half-lives of triclopyr in water ranged from 5.9 to 7.5 days, while those of TCP and TMP ranged from 4 to 8.8 and 4 to 10 days, respectively. Levels of triclopyr and TCP declined in sediments at half-lives ranging from 2.8 to 4.6 days and 3.8 to 13.3 days, respectively. No TMP was detected in sediment. Triclopyr and TCP cleared from fish in relation to concentrations found in the water column. TMP levels in fish were generally an order of magnitude higher than levels of triclopyr and TCP, particularly in the visceral portion of the animals. No adverse effects on water quality or on the non-target biotic community were found following triclopyr applications. Results of these studies were comparable to those of triclopyr dissipation studies conducted in reservoirs, lakes and riverine systems in Georgia, Florida, Minnesota and Washington, indicating that the degradation and dissipation of triclopyr and its metabolites are similar in representative systems throughout the USA. ?? 2001 Society of Chemical Industry.

  17. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  18. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.

    PubMed

    Meng, Chen; Huang, Jianke; Ye, Chunyu; Cheng, Wenchao; Chen, Jianpei; Li, Yuanguang

    2015-07-01

    In this study, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of circular ponds with three different impellers (hydrofoil, four-pitched-blade turbine, and grid plate). The reliability of the CFD model was validated by particle image velocimetry (PIV). Hydrodynamic analyses were conducted to evaluate the average velocity magnitude along the light direction (Uz), turbulence properties, average shear stress, pressure loss and the volume percentage of dead zone inside circular ponds. The simulation results showed that Uz value of hydrofoil was 58.9, 40.3, and 28.8% higher than those of grid plate with single arm, grid plate with double arms and four-pitched blade turbines in small-scale circular ponds, respectively. In addition, hydrofoil impeller with down-flow operation had outstanding mixing characteristics. Lastly, the results of Chlorella pyrenoidosa cultivation experiments indicated that the biomass concentration of hydrofoil impeller with down-flow operation was 65.2 and 88.8% higher than those of grid plate with double arms and four-pitched-blade turbine, respectively. Therefore, the optimal circular pond mixing system for microalgae cultivation involved a hydrofoil impeller with down-flow operation.

  19. Ecosystem service provision by stormwater wetlands and ponds - a means for evaluation?

    PubMed

    Moore, Trisha L C; Hunt, William F

    2012-12-15

    Stormwater control measures (SCMs) such as constructed stormwater ponds and constructed stormwater wetlands (CSWs) are designed to regulate runoff hydrology and quality. However, these created ecosystems also provide a range of other benefits, or ecosystem services, which are often acknowledged but rarely quantified. In this study, additional ecosystem services, including carbon sequestration, biodiversity, and cultural services, were assessed and compared between 20 ponds and 20 CSWs in North Carolina, USA. Carbon sequestration was estimated through the carbon content of pond and wetland sediments across a gradient of system age. Biodiversity was quantified in terms of the richness and Shannon diversity index of vegetative and aquatic macroinvertebrate communities. Cultural services were qualitatively assessed based on the potential for recreational and educational opportunities at each site. Ponds and wetlands were found to support similar levels of macroinvertebrate diversity, though differences community composition arose between the two habitat types. CSWs demonstrated greater potential to provide carbon sequestration, vegetative diversity, and cultural ecosystem services. This assessment provides an initial framework upon which future assessments of ecosystem service provision by SCMs can build.

  20. Evidence for ponding and catastrophic floods in central Valles Marineris, Mars

    USGS Publications Warehouse

    Harrison, K.P.; Chapman, M.G.

    2008-01-01

    The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (-3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation. ?? 2008 Elsevier Inc.

  1. Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds.

    PubMed

    Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio

    2016-01-01

    A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate. PMID:26953794

  2. Characteristics variation of coal combustion residues in an Indian ash pond.

    PubMed

    Asokan, Pappu; Saxena, Mohini; Aparna, Asokan; Asolekar, Shyam R; Asoletar, Shyam R

    2004-08-01

    Coal-fired power plants all over the world are cited as one of the major sources that generate huge quantities of coal combustion residues (CCRs) as solid wastes. Most frequently CCRs are collected through electrostatic precipitators, mixed with bottom ash by hydraulic systems and deposited in ash ponds. The quality of the CCRs at different locations in one of the ash ponds in Central India was evaluated to understand the variation in characteristics with a view to effective utilization. Results revealed that the presence of fine particles (< 50 mocrom) increased with increasing distance from the ash slurry inlet zone in the ash pond. Wide variations in the bulk density (800-980 kg m(-3)), porosity (45-57%) and water-holding capacity (57.5-75.7%) of CCRs were recorded. With increasing distance the pH of the CCRs decreased (from 9.0 to 8.2) and electrical conductivity increased (from 0.25 to 0.65 dS m(-3)). The presence of almost all the heavy metals in CCRs exhibited an increase with distance from the ash slurry discharge zone due to the increase in surface area (from 0.1038 to 2.3076 m2 g(-1)) of CCRs particles. The present paper describes the variation of characteristics of CCRs deposited in the ash pond and their potential applications.

  3. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    SciTech Connect

    Hranac, K.C.; Chromec, F.W.; Fiehweg, R.; Hopkins, J.

    1998-07-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

  4. Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds

    PubMed Central

    Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio

    2016-01-01

    A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate. PMID:26953794

  5. The ripple pond: enabling spiking networks to see

    PubMed Central

    Afshar, Saeed; Cohen, Gregory K.; Wang, Runchun M.; Van Schaik, André; Tapson, Jonathan; Lehmann, Torsten; Hamilton, Tara J.

    2013-01-01

    We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding. PMID:24298234

  6. Predicting waste stabilization pond performance using an ecological simulation model

    SciTech Connect

    New, G.R.

    1987-01-01

    Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.

  7. Internal nutrient sources and nutrient distributions in Alviso Pond A3W, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Garrett, Krista K.; Takekawa, John Y.; Parcheso, Francis; Piotter, Sara; Clearwater, Iris; Shellenbarger, Gregory

    2013-01-01

    Within the Alviso Salt Pond complex, California, currently undergoing avian-habitat restoration, pore-water profilers (U.S. Patent 8,051,727 B1) were deployed in triplicate at two contrasting sites in Pond A3W (“Inlet”, near the inflow, and “Deep”, near the middle of the pond; figs. 1 and 2; table 1, note that tables in this report are provided online only as a .xlsx workbook at http://pubs.usgs.gov/of/2013/1128/). Deployments were conducted in 2010 and 2012 during the summer algal-growth season. Specifically, three deployments, each about 7 weeks apart, were undertaken each summer. This study provides the first measurements of the diffusive flux of nutrients across the interface between the pond bed and water column (that is, benthic nutrient flux). These nutrient fluxes are crucial to pond restoration efforts because they typically represent a major (if not the greatest) source of nutrients to the water column in both ponds and other lentic systems. For soluble reactive phosphorus (SRP, the most biologically available form in solution), benthic flux was positive both years (that is, out of the sediment into the water column; table 2), with the exception of the August 2010 deployment, which exhibited nearly negligible but negative flux. Overall, the average SRP flux was significantly greater at Deep (23.9 ± 8.6 micromoles per square meter per hour (µmol-m-2-h-1); all errors shown reflect the 95-percent confidence interval) than Inlet (12.6 ± 4.9 µmol-m-2-h-1). There was much greater temporal variability in SRP flux in the pond than reported for the lower estuary (Topping and others, 2001). For dissolved ammonia, benthic flux was consistently positive on all six sampling trips, and similar to SRP, the fluxes at Deep (258 ± 49 µmol-m-2-h-1) were consistently greater than those at Inlet (28 ± 11 µmol-m-2-h-1). Dissolved ammonia fluxes reported for South San Francisco Bay by Topping and others (2001) fall in between these values. Once again, greater

  8. 2101-M Pond hydrogeologic characterization report

    SciTech Connect

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  9. Fate of permethrin in model outdoor ponds

    SciTech Connect

    Rawn, G.P.; Webster, G.R.; Muir, D.C.

    1982-01-01

    In 1979 and 1980, outdoor artificial ponds were treated with /sup 14/C-permethrin (labelled at either the cyclopropyl or methylene position) at 0.028 kg/ha (15 ug/L). Uptake of permethrin by duckweed and hydrosoil was monitored by direct combustion, TLC-autoradiography, HPLC, and liquid scintillation counting. Rapid loss of permethrin from the water coincided with the detection of five degradation products in the water at concentrations below 2.0 ug/L. The products were cis- and trans-cyclopropyl acid, phenoxybenzoic acid, and phenoxybenzyl alcohol, and an unknown non-cleaved product of permethrin. Permethrin was readily sorbed by duckweed but was not persistent. Permethrin residues in the hydrosoil, which was the major sink for permethrin added to the ponds, were persistent and were detected at 420 days post-treatment. Cis-permethrin was more persistent in the hydrosoil than the trans-permethrin. The results indicated that permethrin in water was short-lived at an application rate of 15 ug/L because of the rapid degradation of permethrin in the water and sorption of permethrin by the hydrosoil and vegetation. However, at one year post-treatment, permethrin residues were still detected in the hydrosoil at 1.0 ug/kg.

  10. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  11. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    EPA Science Inventory

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  12. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  13. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  14. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  15. A Pond Project for Junior High School Students

    ERIC Educational Resources Information Center

    David, Jim

    1977-01-01

    Described is how a neglected pond was transformed into a useful study area through the efforts of local junior high school students and the community. A chronology of events in the restoration of the pond is included, along with the names of resource personnel and organizations. (MA)

  16. Origin and flatness of ponds on asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Kahn, Eliezer G.; Barnouin, Olivier S.; Ernst, Carolyn M.; Prockter, Louise M.; Gaskell, Robert W.

    2014-10-01

    NEAR-Shoemaker Multi-Spectral Imager data reveal several hundred "ponds" on 433 Eros: smooth deposits that sharply embay the bounding depressions in which they lie, and whose spectra appear blue relative to that of the surrounding terrain. We investigate the topography of these ponds on Eros using a new shape model derived from stereophotoclinometric analysis, and validated against altimetry from the NEAR Laser Rangefinder, to constrain the mode of pond formation from three existing models. We update the locations of 55 pond candidates identified in images registered to the new shape model. We classify the flatness of these features according to the behavior of the first and second derivatives of the topography. We find that less than half of pond candidates have clearly flat floors. Based on the pond topography, we favor an external origin for the ponds' deposits. We suggest that fine dust may be transported into bounding depressions by electrostatic levitation, but may adhere to slopes, and that seismic shaking may not be sufficient to bring the deposits to an equipotential surface. Disaggregation of a central boulder should result in an obvious break in slope, such a variation is only observed in roughly half the pond candidates.

  17. Some basic considerations and possible improvements on the solar pond

    SciTech Connect

    Sha, W.T.; Cha, Y.S.; Liu, K.V.; Soo, S.L.

    1980-06-01

    Experimental results were compared to theoretical stability criteria of a salt gradient solar pond. Cellular motion in the non-convective layer is expected. Innovative concepts on friction stabilization using stabilizing barriers and longitudinal stratification to improve pond heat extraction efficiency are presented.

  18. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  19. Solar ponds in alkaline lake and oil well regions

    SciTech Connect

    Lodhi, M.A.K.

    1996-05-01

    Solar ponds are probably the simplest technology available for useful conversion of solar energy. The basic technology is proven. Solar ponds have been shown to be technically feasible and economically viable for many applications particularly for thermal use. The electrical conversion and use of solar energy via solar ponds is still questionable in general for economic viability. By putting the untapped sources together in the South Plains region it looks promising economically both for thermal and electrical conversions and applications. There are a number of alkaline lake basins randomly scattered in the South Plains region of the USA. In that area there are thousands of crude oil producing wells which produce brine in abundance. Selection of suitable alkaline lake basins as a solar pond site and as depository sites of brine from oil wells and using of this brine and salty water from alkaline lakes makes the solar pond economically viable for both thermal and electrical demands in the area.

  20. Walden Pond, Massachusetts: Environmental Setting and Current Investigations

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.

    1998-01-01

    Introduction Walden Pond, in Concord, Massachusetts, is famous among lakes because of its unique social history. Walden was the setting for American naturalist Henry David Thoreau's well-known essay 'Walden; or, Life in the Woods,' first published in 1854. Thoreau lived and wrote at Walden Pond from July 1845 to September 1847. In 'Walden,' Thoreau combined highly admired writing on Transcendental philosophy with pioneering observations of aquatic ecology and physical aspects of limnology, the study of lakes. Because Thoreau also defended so effectively the value of living close to nature in the Walden woods, the pond is considered by many to be the birthplace of the American conservation movement. Visitors come from all over the world to the pond, which has been designated a National Historic Landmark, and its fame has resulted in a major fund drive to preserve the surrounding woods. Walden Pond has no surfacewater inflow or outflow, and much of its ground-water contributing area likely is preserved within the Walden Pond Reservation area (fig. 1). Only 15 miles from Boston, the pond is unusually clear and pristine for an urban-area lake. However, point sources of nutrients near the pond, and a large annual visitor attendance, concentrated during the summer when the swimming beach (fig. 2) is open, may contribute a nutrient load sufficient to change the pond environment. The occurrence of nuisance algal species, a recent beach closing, and an awareness of water-quality problems suffered by other ponds in the region raise concerns about the risk of ecological change at Walden Pond. Despite the role of Walden Pond as a cultural and environmental icon, little is known about the pond's ecological features, such as its internal nutrient cycling or the structure of its food web, nor have consistent measurements been made to determine whether these features are changing or are stable. Production rates of aquatic plants in lakes and ponds naturally undergo a slow increase

  1. Crossing the final ecological threshold in high Arctic ponds.

    PubMed

    Smol, John P; Douglas, Marianne S V

    2007-07-24

    A characteristic feature of most Arctic regions is the many shallow ponds that dot the landscape. These surface waters are often hotspots of biodiversity and production for microorganisms, plants, and animals in this otherwise extreme terrestrial environment. However, shallow ponds are also especially susceptible to the effects of climatic changes because of their relatively low water volumes and high surface area to depth ratios. Here, we describe our findings that some high Arctic ponds, which paleolimnological data indicate have been permanent water bodies for millennia, are now completely drying during the polar summer. By comparing recent pond water specific conductance values to similar measurements made in the 1980s, we link the disappearance of the ponds to increased evaporation/precipitation ratios, probably associated with climatic warming. The final ecological threshold for these aquatic ecosystems has now been crossed: complete desiccation. PMID:17606917

  2. Gradient-zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1997-02-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. For conditions which are typical of those encountered in mariculture pond operation, the entrainment rate was found to depend only weakly on the Richardson number. For these conditions, a simple (linear) correlation of entrainment rate with wind speed was developed.

  3. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  4. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  5. Sensitivity to acidification of subalpine ponds and lakes in north-western Colorado

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Muths, E.; Turk, J. T.; Corn, P. S.

    2004-10-01

    processes in the water column and at the sediment-water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less-understood systems such as ponds.

  6. Carryover aquatic effects on survival of metamorphic frogs during pond emigration

    USGS Publications Warehouse

    Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.

    2006-01-01

    In organisms with complex life cycles, physiological stressors during early life stages may have fitness-level impacts that are delayed into later stages or habitats. We tested the hypothesis that body size and date of metamorphosis, which are highly responsive to aquatic stressors, influence post-metamorphic survival and movement patterns in the terrestrial phase of an ephemeral pond-breeding frog by examining these traits in two populations of northern red-legged frogs (Rana aurora aurora). To increase variation of body size at metamorphosis, we manipulated food availability for 314 of 1045 uniquely marked tadpoles and estimated the probability that frogs survived and emigrated using concentric rings of drift fencing surrounding ponds and Bayesian capture-recapture modeling. The odds of surviving and emigrating from the ponds to the innermost drift fences, ???12 m, increased by factors of 2.20 (95% credibility intervals 1.39-4.23) and 2.54 (0.94-4.91) with each millimeter increase in snout-vent length and decreased by factors of 0.91 (0.85-0.96) and 0.89 (0.80-1.00) with each day's delay in metamorphosis for the two ponds. The odds of surviving and moving to the next ring of fencing, 12 m to ???40 m from the ponds, increased by a factor of 1.20 (0.45-4.06) with each millimeter increase in size. Our results demonstrated that body size and timing of metamorphosis relate strongly to the performance of newly metamorphosed frogs during their initial transition into terrestrial habitat. Carryover effects of aquatic stressors that reduce size and delay metamorphosis may have population-level impacts that are not expressed until terrestrial stages. Since changes in both aquatic and terrestrial systems are implicated in many amphibian declines, quantifying both immediate and delayed effects of stressors on demographic rates is critical to sound management. ?? 2006 by the Ecological Society of America.

  7. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites.

  8. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    SciTech Connect

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-12-31

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.

  9. Basal-topographic control of stationary ponds on a continuously moving landslide

    USGS Publications Warehouse

    Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.

    2009-01-01

    The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability

  10. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type.

    PubMed

    Egemose, Sara; Sønderup, Melanie J; Grudinina, Anna; Hansen, Anders S; Flindt, Mogens R

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn. The concentrations varied considerably depending on the catchment type, with the highest concentrations coming from industrial areas and the lowest from uncultivated and rural areas. Ponds can effectively remove heavy metals in particulate forms through sedimentation processes, but the dissolved forms are more difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters such as pH, oxygen and organic matter. Input of metals to the ponds was reflected in the sediment content, but not significantly for all heavy metals probably due to low or varying retention caused by mineralization and re-suspension. The heavy metal concentration in the outlets was reduced to non-toxic levels, except for Cu and Cr at a few study sites. PMID:25262998

  11. Ecology and seasonal variation of microalgal community in an oil refinery effluent holding pond: monitoring and assessment.

    PubMed

    Joseph, Valsamma; Joseph, Ammini

    2002-12-01

    The microalgal community as primary producers has to play a significant role in the biotic and abitoic interactions of any aquatic ecosystem. Whenever a community is exposed to a pollutant, responses can occur because individuals acclimate to pollutant caused changes and selection can occur favouring resistant genotypes within a population and selection among species can result in changes in community structure. The microalgal community of industrial effluent treatment systems are continuously exposed to pollutants and there is little data available on the structure and seasonal variation of microalgal community of industrial effluent holding ponds, especially of a complex effluent like that of refinery. The aim of the present study was to investigate the annual variation in the ecology, biomass, productivity and community structure of the algal community of a refinery effluent holding pond. The results of the study showed the pond to be a eutrophic system with a resistant microalgal community with distinct seasonal variation in species composition.

  12. Evaluation of performance of full-scale duckweed and algal ponds receiving septage.

    PubMed

    Papadopoulos, Frantzis H; Metaxa, Eirini G; Iatrou, Miltos N; Papadopoulos, Aristotelis H

    2014-12-01

    The performance of duckweed and algal systems in removing fecal bacteria, organic matter, and nutrients was evaluated in three full-scale ponds operating in series. Trucks collected septage from holding tanks and discharged it into the system, daily. The inflow rates varied between the warm and the cold season. Duckweed and algae naturally colonized the ponds in two successive periods of 10 and 13 months, respectively. Environmental conditions were determined at various pond depths. Without harvesting, the duckweed system was neutral and anoxic. Alkaline and oversaturation conditions were observed in the algal system. The overall removals of 5-day biochemical oxygen demand, total suspended solids, total nitrogen removal, and orthophosphate (ortho-PO4(3-)) ranged from 94 to 97, 62 to 84, 68 to 74, and 0 to 26%, respectively. The E. coli and enterococci reductions varied between 2.2 to 3.0 and 1.1 to 1.4 log units, respectively. The upper values were always associated with the algal system.

  13. Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California March 1985 to March 1986

    USGS Publications Warehouse

    Fujii, Roger

    1988-01-01

    Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)

  14. Observational bias and the apparent distribution of ponds on Eros

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Barnouin, Olivier S.; Kahn, Eliezer G.; Prockter, Louise M.

    2014-10-01

    Over 300 “ponds” have been identified on 433 Eros: smooth deposits that sharply embay the bounding depressions in which they lie. The known ponds are largely concentrated near the equator at the ends of the long axis of the asteroid. Here, we examine the pixel scale of images available at the pond locations, and compare the observed distribution of ponds on Eros to that of the image pixel scale. We find that the majority (60%) of ponds are found in the regions covered by images with pixel scales less than 2 m/px, a total of only 13% of the surface area. The correlation between pond density and image pixel scale suggests a significant observational bias in the identification of small ponds. These findings suggest that the distribution of ponds on Eros may not be as clear-cut as previously reported, and that it may be best not to use this distribution to assess existing models regarding their formation of these landforms.

  15. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  16. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  17. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  18. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  19. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD.

  20. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  1. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  2. Orientation of the toad, Bufo japonicus, toward the breeding pond.

    PubMed

    Ishii, S; Kubokawa, K; Kikuchi, M; Nishio, H

    1995-08-01

    A variety of orientation cues has been suggested for the migration to the breeding site in adult amphibians. We categorized the cues into the following 3 groups: 1) cues from the breeding pond such as male calling and pond odors, 2) celestial cues such as the sun light and the magnetic field of the earth and 3) cues from the area or route of the migration which compose a local map such as a visual and olfactory maps. To determine which of these is used by the toad, Bufo japonicus, we designed and conducted a displacement experiment in which migrating toads from one direction were transported to the ground in the opposite side of the pond. The displaced toads were completely disoriented and moved to random directions. We conclude that the toad uses a local map to orient to the breeding pond and cues from celestial bodies and the pond are not used. We also found that adult toads tracked the same route on both trips from and to the pond. This suggests that the local map was memorized by newly metamorphosed toads at their first terrestrial trip from the pond. The next step of our study was to determine what sense is used to receive the cue. We found blind toads, whose upper and lower eye-lids were stitched together, could reach the pond at a similar rate with the sham-operated and intact toads. However, anosmic toads, whose olfactory mucosa were damaged by the treatment with a 5% silver nitrate solution, rarely reached the pond.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  4. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  5. Variations of temperature, concentration, and supersaturation in a laboratory-scale saturated solar pond

    SciTech Connect

    Vitner, A.; Sarig, S. )

    1990-01-01

    A laboratory simulation system of saturated solar pond using alum potash was operated in a series of experiments of 30 to 120 days duration. The system consisted of an insulated column 100 cm deep, heated at the bottom by heat exchangers with varying energy output. The supersaturation, temperature and concentration in the upper layer as a function of time are presented. Both insufficient and excessive heat flow cause failure of the layered configuration. Suitably, adjusted heat flow allows preservation of the layered structure. The concentration of the upper layer and the supersaturation display cyclic character: after attaining high supersaturation massive crystallization occurs with crystals sinking to the bottom where they are dissolved. The upward diffusion from the highly concentrated bottom solution completes the solute cycle and maintains the stability of the pond.

  6. Evaluation of the Rulison drilling effluent pond as trout habitat

    SciTech Connect

    1998-06-23

    The Rulison Site is located in Section 25, township 7 South, Range 95 West, Garfield County, Colorado. The site is approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado. Project Ruhson was an experiment conducted jointly by the U.S. Atomic Energy Commission and Austral Oil Company to test the feasibility of using a nuclear device to increase natural gas production in low permeability geological formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 43-kiloton nuclear device at a depth of 2,568 meters (m) (8,426 feet [ft]) below the ground surface (DOE, 1994). The Rulison Drilling Effluent Pond (called `the pond`) is an engineered structure covering approximately 0.2 hectare (0.5 acre), which was excavated and used to store drilling fluids during drilling of the device emplacement well. The drilling fluids consisted of bentonitic drilling mud with additives such as diesel fuel and chrome lignosulfonate. Most of the drilling muds were removed from the pond when the site was decommissioned in 1976, and the pond was subsequently stocked with rainbow trout by the land owner and used as a fishing pond. In 1994 and 1995, the U.S. Department of Energy (DOE) conducted sampling of the pond to evaluate residual contamination from the drilling fluids. Based on the results of this sampling, the DOE conducted a voluntary cleanup action in order to reduce the levels of total petroleum hydrocarbons and chromium in pond sediments. The cleanup was conducted between August and mid-November of 1995. At the end of cleanup activities, the pond was lined with a clay geofabric and left dry. The geofabric was covered with sod to protect it. The pond has since been refilled by snowmelt and inflow from a spring. Prior to remediation, the pond apparently had sufficient water quality and food resources to support stocked rainbow trout. The purpose of this

  7. Description of work for 216-U-Pond test pits

    SciTech Connect

    Kelty, G.G.

    1993-08-11

    This description of work (DOW) details the field activities associated with the test pit excavation and soil sampling at the 216- U-10 Pond (U-10 Pond) in the 200 West Area and will serve as a field guide for those performing the work. It will be used in conjunction with the 200-UP-2 Resource Conservation and Recovery Act of 1976 (RCRA) Facility Investigation/Corrective Measures Study (DOE-RL 1993a, [LFI]) and Site Characterization Manual (WHC 1988a). Test pits will be constructed to characterize the vertical extent of contaminants in sediments within and beneath the former U-10 pond.

  8. Arctic sea ice surface ponds due to saltwater impurities

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-03-01

    During the summer melt season the white surface of Arctic sea ice turns to a mixture of grays and blues as meltwater ponds come to dot the landscape. Rising temperatures in late spring melt ice and snow, and the meltwater pools in depressions left by drifting snow. In just a week, these meltwater ponds can come to dominate the ice surface, increasing their areal extent by up to 35% per day. But just as quickly as they appear, the pools can recede, the water flowing into the ocean. Surface ponds drastically reduce the ice's albedo, increasing the amount of light available for Arctic ecosystems and accelerating ice melt.

  9. Effect of High-Rate Algal Ponds on Viability of Cryptosporidium parvum Oocysts

    PubMed Central

    Araki, S.; Martín-Gomez, S.; Bécares, E.; De Luis-Calabuig, E.; Rojo-Vazquez, F.

    2001-01-01

    The physicochemical conditions of high-rate algal ponds were responsible for a more than 97% reduction in the infectivity of Cryptosporidium parvum oocysts in neonatal mice. The use of semipermeable bags of cellulose showed that pH, ammonia, and/or light seems to be a major factor for the inactivation of oocysts in wastewater, supporting the importance of alga-based systems for safer reuse of treated wastewater. PMID:11425762

  10. Management and conservation of San Francisco Bay salt ponds: Effects of pond salinity, area, tide, and season on pacific flyway waterbirds

    USGS Publications Warehouse

    Warnock, N.; Page, G.W.; Ruhlen, T.D.; Nur, N.; Takekawa, J.Y.; Hanson, J.T.

    2002-01-01

    Throughout the world, coastal salt ponds provide habitat for large numbers and diversities of waterbirds. San Francisco Bay contains the most important coastal salt pond complexes for waterbirds in the United States, supporting more than a million waterbirds through the year. As an initial step in attempting to understand how the anticipated conversion of salt ponds to tidal marsh might affect the Bay's bird populations, the number of birds using salt ponds on high and low tides was counted during the winter months of 1999/00 and 2000/01. Behavior and habitat use of birds in these ponds were assessed, and the effects of tide cycle, pond salinity, and pond area on bird use were examined. We recorded 75 species of waterbirds in surveys of salt ponds in the South Bay from September 1999 to February 2001, totaling over a million bird use days on high tide. Shorebirds and dabbling ducks were the most abundant groups of birds using the salt ponds. Waterbird numbers and diversity were significantly affected by the salinity of ponds in a non-linear fashion with lower numbers and diversity on the highest salinity ponds. With the exception of ducks and Eared Grebe (Podiceps nigricollis), tide height at the Bay significantly affected bird numbers in the salt ponds with ponds at high tides having higher numbers of birds than the same ponds on low tides. Considerable numbers of birds fed in the salt ponds on high and low tides, although this varied greatly by species. Habitat use varied by tide. Management recommendations include maintaining ponds of varying salinities and depths. Restoring salt ponds to tidal marsh should proceed with caution to avoid loss of waterbird diversity and numbers in San Francisco Bay.

  11. Landfill leachate treatment as measured by nitrogen transformations in stabilization ponds.

    PubMed

    Martins, Cláudia L; Fernandes, Heloísa; Costa, Rejane H R

    2013-11-01

    The treatment performance and nitrogen mass balance of a pilot-scale landfill leachate treatment system was evaluated. The system was comprised of a series of three ponds and a rock filter and was fed a continuous flow (200 L d(-1)) during 111 weeks. Three different operational conditions were investigated: conventional operation (stage I), aeration (stage II) and aeration/recirculation (stage III). The system was able to treat landfill leachate with soluble chemical oxygen demand and ammonia removal between 35-82% and 75-99%, respectively, and the highest removal occurred during the recirculation stage. The nitrogen balance was calculated using total nitrogen applied load and the main transformation processes within the ponds. The main form of nitrogen transformation/removal was by dead/inert algae settle (64-79%), followed by volatilization (12-27%) and algae assimilation (1-6%). Nitrification/denitrification occurred in only stage II. Analyses of the phytoplankton community showed that the Chlamydomonas genera were dominant in the photosynthetic ponds.

  12. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  13. Salt tracer experiments in constructed wetland ponds with emergent vegetation: laboratory study on the formation of density layers and its influence on breakthrough curve analysis.

    PubMed

    Schmid, Bernhard H; Hengl, Michael A; Stephan, Ursula

    2004-04-01

    Constructed wetlands are a rapidly expanding and intensively studied wastewater treatment system. One of the main types in use is the free water surface (FWS) wetland or wetland pond. In studies on these ponds, salt tracer experiments are a convenient tool to determine travel time distributions, which are, in turn, related to hydraulic and sedimentation (trapping) as well as nutrient removal efficiencies. Typically, flows encountered in constructed wetland ponds are characterized by low Reynolds numbers, at times even within the laminar flow regime. In such conditions the injection of salt may cause strong density effects, thereby threatening the usefulness of the recorded breakthrough curves. The processes and mechanisms governing the formation of density stratification due to salt tracer injections into wetland ponds with emergent vegetation were studied in the laboratory. The results reported are expected to be useful in the planning of future field tracer experiments.

  14. Investigation of the environmental impacts of sedimentation in Anzali Pond

    NASA Astrophysics Data System (ADS)

    Barmal, Milad; Neshaei, Seyed Ahmad; Farzan, Niloofar

    2016-04-01

    Anzali harbor is the most essential transportation pole between Iran and other countries of the Caspian Sea basin. Anzali pond is an important ecosystem in the region due to its unique plant and animal species. In order to determine the effects of interaction between pond and sea, a series of in-depth studies and analysis on the pattern of sedimentation in Anzali harbor and pond were performed. The study area is Anzali harbor and pond which is located in southwest of the Caspian Sea in Iran. In recent years the economical importance and improvement program of this region has devoted many scientists and authorities attention to itself. In this paper, researches on environmental impact by sediment and pollution in this zone are performed. Analysis indicates that by disposal of sediment and pollution in this area, the physical and chemical quality of water has declined. Some practical suggestions are made to improve the quality of the studied region in terms of environmental aspects.

  15. 52. View of "grandpappy" tree with Wings Rest Pond in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of "grandpappy" tree with Wings Rest Pond in background looking from the northeast (similar to HALS no. LA-1-22) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  16. 54. View of footbridge from Wings Rest Pond looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View of footbridge from Wings Rest Pond looking from the east (similar to HALS no. LA-1-24) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  17. Low-cost modification of sediment control ponds

    SciTech Connect

    Taylor, G.S.; Jenkins, C.R.

    1982-12-01

    This study explores the use of low cost modifications to improve sediment pond performance. Modifications used include: 1) baffles, 2) siphon and 3) floating outlet. The baffles were constructed of brattice cloth suspended from floating pieces of pipe. The siphon outlets were made up of a small diameter siphon and a large diameter siphon drawing water from different levels and attached to the riser outlet. The floating outlet was designed to skim water from the pond surface. Data was collected on effluent water quality for a period of time before and after all modifications. Data collected prior to the modifications showed the ponds breaking effluent limitations frequently. Data collection, after the modifications, showed improved pond performance with the baffles helping the most.

  18. 10. VIEW OF THE SEDIMENT DAM AND POND, FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF THE SEDIMENT DAM AND POND, FACING SOUTH. PHOTO TAKEN FROM WATER PUMP (FEATURE B-25). - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  19. 2. VIEW OF POND B, LOOKING NORTHEAST FROM THE WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POND B, LOOKING NORTHEAST FROM THE WEST SIDE OF THE SOURIS RIVER VALLEY, DUE SOUTH OF THE LOOKOUT TOWER - Upper Souris National Wildlife Refuge Dams, Souris River Basin, Foxholm, Surrey (England), ND

  20. Using Stormwater Detention Ponds for Aquatic Science Instruction.

    ERIC Educational Resources Information Center

    Cahoon, Lawrence B.

    1996-01-01

    Describes the use of recently constructed stormwater detention ponds to conduct a set of field and laboratory exercises in an undergraduate limnology course. Provides a number of logistical advantages that can benefit those teaching aquatic sciences. (JRH)

  1. Beyond Historical Fiction: Speare's "The Witch of Blackbird Pond."

    ERIC Educational Resources Information Center

    Thuente, Mary Helen

    1985-01-01

    Reviews "The Witch of Blackbird Pond" by E. Speare to show how the full narrative power of the novel derives from the author's successful integration of two separate narrative genres: historical fiction and the folktale. (EL)

  2. VIEW WEST FROM BEHIND ISLAND AND INFIELD POND. EAST FACADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST FROM BEHIND ISLAND AND INFIELD POND. EAST FACADE OF CLUBHOUSE AND PORTION OF GRANDSTANDS IN BACKGROUND. FLAMINGOS IN FOREGROUND: CD-W. - Hialeah Park Race Track, East Fourth Avenue, Hialeah, Miami-Dade County, FL

  3. Seawater as salt and water source for solar ponds

    SciTech Connect

    Folchitto, S. )

    1991-01-01

    This paper presents a method for preliminary design of a 1 km{sup 2} solar pond that will be supplied with salt and water from the sea. The evaporating basins, needed to concentrate the seawater are also included in the project. Starting from the experience that Agip Petroli gained in running the 25,000 m{sup 2} Solar Pond, built inside a salt-work in Margherita di Savoia, in southern Italy, two projects were worked out: the first one of 25,000 m{sup 2} and the second one of 1 km{sup 2} of surface. Making comparison between harvested energy cost of the solar pond, and the energy cost of alternative and traditional energy sources, the coastal Solar Pond of 1 km{sup 2} that utilizes seawater as salt and water source, is competitive.

  4. 8. Environmental view facing northwest showing pond in relationship to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Environmental view facing northwest showing pond in relationship to house - John Bly House, East side of County Road 857, just north of intersection with Quarry Run Road, Cheat Neck, Monongalia County, WV

  5. 53. View of Wings Rest Pond with reflection of "grandpappy" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. View of Wings Rest Pond with reflection of "grandpappy" looking from the southwest (similar to HALS no. LA-1-23) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  6. 1. VIEW EAST, TANK POND, OIL HOUSE, WATER TOWER, BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST, TANK POND, OIL HOUSE, WATER TOWER, BOILER HOUSE AND ASSEMBLY PLANT WITH MANHATTAN IN BACKGROUND - Ford Motor Company Edgewater Assembly Plant, 309 River Road, Edgewater, Bergen County, NJ

  7. Status report - Salton Sea solar pond power plant

    SciTech Connect

    French, R.L.; Lin, E.I.H.

    1981-01-01

    The feasibility of constructing salt gradient solar pond commercial power plants in the Salton Sea has been confirmed by a study completed in May 1981. The Salton Sea is an inland salt lake located in the Imperial Valley of Southern California. 600 MW/sub e/ of base load power can be generated if 15% of the sea's 932-km/sup 2/ (360-square mile) surface area is converted to solar ponds. 3 refs.

  8. Formation of the "ponds" on asteroid (433) Eros by fluidization

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Tornabene, L. L.; Osinski, G. R.; Hughes, S. S.; Heldmann, J. L.

    2015-11-01

    The "ponds" on asteroid (433) Eros are fine-grained deposits approximating flat (quasi-equipotential) surfaces with respect to local topographic depressions (e.g., craters) in spacecraft images. These ponds are discussed in the context of laboratory simulation experiments, crater-related ponded and pitted deposits observed on Mars and Vesta, terrestrial phreatic craters, and degassing features associated with eroded impact craters on Earth. While the details of formation of these features on Mars, Vesta and the Earth are thought to be different, they all include mechanisms that require the interactions between surface materials and volatiles (e.g., water vapor). Indeed, analogous features similar to the Eros ponds can be reproduced in the laboratory by the release of vapor (ice sublimation, water evaporation, or N2) through an unconsolidated regolith (independent of regolith composition). Eros is widely thought to be dry, but the discovery of exogenic water on Vesta, and recent arguments that subsurface water might be present in the inner asteroid belt suggest that endogenic water might also be present and serve as a source of the gases produced in the ponds. The amount of water required is comparable to the amount of water observed in little-metamorphosed ordinary chondrites (a few wt%). The primary morphologic characteristics of the Eros ponds can be explained in this model. The heat source for degassing could have been solar heating following transfer from a main belt orbit to a near Earth orbit. Although other hypotheses (e.g., electrostatic levitation, seismic shaking, and comminution of boulders) can account for most of the features of the ponds, recent observations regarding the role of volatiles on planetary surfaces, our laboratory experiments, and fluidization deposits on active comets suggests that degassing is a reasonable hypothesis to be considered and further tested for explaining the Eros ponds, and similar features on other bodies.

  9. Level 1 remedial investigation work plan, 300 Area Process Ponds

    SciTech Connect

    Not Available

    1987-06-01

    This report discusses the objectives of the site characterization for the 300 Area Process Ponds which are to identify and quantify contamination at the ponds and to estimate their potential impact on human health and the environment. The results of the site characterization will be used to identify any future actions related to contamination at the site and to identify any additional data requirements needed to support selection of a remedial action. 9 refs., 12 figs., 8 tabs.

  10. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%.

  11. Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments

    USGS Publications Warehouse

    Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.

    2010-01-01

    This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.

  12. Delineation of groundwater contamination around an ash pond: geochemical and GIS approach.

    PubMed

    Praharaj, T; Swain, S P; Powell, M A; Hart, B R; Tripathy, S

    2002-03-01

    The study has investigated the levels of metal contamination in groundwater due to particulate matter fallout and leaching from ash pond and assigned contamination indices for the adjacent localities around an ash disposal site with application of geographic information systems (GIS). Fe, Ba, Cu, Mn, S, Pb, V, and Zn were found to be the major contaminants in groundwater. Enrichment factors (EF) of these elements with respect to the United States Environmental Protection Agency (USEPA) maximum contaminant levels show high values for Mn, Fe, and Pb in groundwater. The zone of attenuation for Ba, Fe, Cu, Mn, S, and Zn in groundwater is about 600-900 m from the ash pond, while Pb did not show any significant attenuation even at a distance of 1200 m. Tube wells around Rankasingha and Kukurhanga villages are most contaminated whereas open wells of Lachhmanpur, Kaniapada, and Kurudul villages showed higher degrees of contamination.

  13. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  14. Mutagenic potential of water concentrates from the effluent of a waste oil storage pond

    SciTech Connect

    Brown, K.W.; Donnelly, K.C.

    1982-04-01

    An investigation to compare the mutagenic effects of water samples collected before and after a contaminated waste oil storage pond was dredged and to evaluate the utility of bioassays for the determination of the mutagenic potential of a complex mixture is presented. Water samples collected from the pond were analyzed in two biological systems capable of detecting mutagens and potential carcinogens (Salmonella/microsome assay and Bacillus subtillis DNA repair assay). Although the water samples contained compounds which were toxic to bacteria, the sample collected after the dredging operation exhibited a substantial reduction in its capacity to produce repairable DNA damage. The results indicate the potential utility of bioassays for the detection of mutagens in environmental samples. (JMT)

  15. Comparative survey of the influent and effluent water quality of shrimp ponds on Mexican farms.

    PubMed

    Ruiz-Fernández, A C; Páez-Osuna, F

    2004-01-01

    The influent and effluent water quality of two ponds at four aquaculture facilities (two intensive and two semiintensive growout systems) located on the Northwest coast of Mexico was monitored. Temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand (self-consumption in 48 hours), total suspended solids, particulate organic material, nitrite, nitrate, ammonium, reactive and total phosphate, and chlorophyll a were analyzed every 2 weeks during two consecutive growout cycles. Changes recorded in most of these water quality variables were not strongly related to the management practices of the ponds, but rather to environmental factors. The mean percent differences between inflowing and outflowing water that were observed indicated that water used for culture returned to the natural environment depleted of nutrients (inorganic nitrogen and reactive phosphate), and it was evident that the rearing activities promoted the exportation of particulate material to the surrounding environment.

  16. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  17. Acidification as environmental pollution: effects on fish-pond ecology

    SciTech Connect

    Murad, H.A.

    1987-01-01

    To establish the impact of acidity on fish production in ponds, experiments were conducted in fertilized sunfish (Lepomis spp.) ponds and fed channel catfish (Ictalurus punctatus) ponds. The alkalinity and pH of pond water were lowered by additions of H/sub 2/SO/sub 4/. Total alkalinity levels were 1, 3, 6, 8, and 20 mg/liter in sunfish ponds and 0, 5, and 20 in catfish production ponds. Water quality and phytoplankton density were monitored. The decrease in alkalinity caused changes in fish production and phytoplankton communities. Production of sunfish decreased with decreasing alkalinity below 20 mg/liter. Channel catfish yields were not affected significantly at a total alkalinity of 5 mg/liter and above (P > 0.05). No sign of fish stress of aluminum accumulation in the tissue were detected in catfish. There was no relation between alkalinity level and off-flavor in catfish. Chlorophyll a concentration increased as alkalinity and pH decreased, although total number of phytoplankters, gross photosynthesis, and turbidity decreased with decreases in total alkalinity. Phosphorus was more available at low alkalinity levels. Total hardness increased as alkalinity decreased.

  18. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  19. Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant.

    PubMed

    Detweiler, Angela M; Bebout, Brad M; Frisbee, Adrienne E; Kelley, Cheryl A; Chanton, Jeffrey P; Prufert-Bebout, Leslie E

    2014-01-01

    Photosynthetic oxidation ponds are a low-cost method for secondary treatment of wastewater using natural and more energy-efficient aeration strategies. Methane (CH(4)) is produced during the anaerobic digestion of organic matter, but only some of it is oxidized in the water column, with the remaining CH(4) escaping into the atmosphere. In order to characterize the CH(4) flux in two photosynthetic oxidation ponds in a wastewater treatment plant in northern California, the isotopic compositions and concentrations of CH(4) were measured in the water column, in bubbles and in flux chambers, over a period of 12 to 21 months to account for seasonal trends in CH(4) emissions. Methane flux varied seasonally throughout the year, with an annual average flux of 5.5 g CH(4) m⁻² d⁻¹ Over half of the CH(4) flux, 56.1-74.4% v/v, was attributed to ebullition. The oxidation efficiency of this system was estimated at 69.1%, based on stable carbon isotopes and a calculated fractionation factor of 1.028. This is the first time, to our knowledge, that a fractionation factor for CH(4) oxidation has been empirically determined for oxidation ponds. Quantifying CH(4) emissions from these systems is essential to properly identify their contribution and to mitigate their impact on global warming. PMID:25259485

  20. Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps.

    PubMed

    Norvill, Zane N; Shilton, Andy; Guieysse, Benoit

    2016-08-01

    Whereas the fate of emerging contaminants (ECs) during 'conventional' and 'advanced' wastewater treatment (WWT) has been intensively studied, little research has been conducted on the algal WWT ponds commonly used in provincial areas. The long retention times and large surface areas exposed to light potentially allow more opportunities for EC removal to occur, but experimental evidence is lacking to enable definite predictions about EC fate across different algal WWT systems. This study reviews the mechanisms of EC hydrolysis, sorption, biodegradation, and photodegradation, applying available knowledge to the case of algal WWT. From this basis the review identifies three main areas that need more research due to the unique environmental and ecological conditions occurring in algal WWT ponds: i) the effect of diurnally fluctuating pH and dissolved oxygen upon removal mechanisms; ii) the influence of algae and algal biomass on biodegradation and sorption under relevant conditions; and iii) the significance of EC photodegradation in the presence of dissolved and suspended materials. Because of the high concentration of dissolved organics typically found in algal WWT ponds, most EC photodegradation likely occurs via indirect mechanisms rather than direct photolysis in these systems.

  1. Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant.

    PubMed

    Detweiler, Angela M; Bebout, Brad M; Frisbee, Adrienne E; Kelley, Cheryl A; Chanton, Jeffrey P; Prufert-Bebout, Leslie E

    2014-01-01

    Photosynthetic oxidation ponds are a low-cost method for secondary treatment of wastewater using natural and more energy-efficient aeration strategies. Methane (CH(4)) is produced during the anaerobic digestion of organic matter, but only some of it is oxidized in the water column, with the remaining CH(4) escaping into the atmosphere. In order to characterize the CH(4) flux in two photosynthetic oxidation ponds in a wastewater treatment plant in northern California, the isotopic compositions and concentrations of CH(4) were measured in the water column, in bubbles and in flux chambers, over a period of 12 to 21 months to account for seasonal trends in CH(4) emissions. Methane flux varied seasonally throughout the year, with an annual average flux of 5.5 g CH(4) m⁻² d⁻¹ Over half of the CH(4) flux, 56.1-74.4% v/v, was attributed to ebullition. The oxidation efficiency of this system was estimated at 69.1%, based on stable carbon isotopes and a calculated fractionation factor of 1.028. This is the first time, to our knowledge, that a fractionation factor for CH(4) oxidation has been empirically determined for oxidation ponds. Quantifying CH(4) emissions from these systems is essential to properly identify their contribution and to mitigate their impact on global warming.

  2. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping. PMID:16125215

  3. Compost treatment of contaminated pond sediment

    SciTech Connect

    Francis, M.; Gukert, D. |

    1995-12-31

    This paper summarizes an experiment involving compost treatment of pond sediment contaminated with hydrocarbons. Experimental variables included the size, shape, and aeration of the compost pile. Pile temperature measurements and hydrocarbon analyses were made periodically. Temperatures in the pyramid shaped compost piles rose quickly and remained elevated above ambient for about one month; during this period, hydrocarbon loss from the piles was greatest. The flat pile did not show elevated temperatures at any time, and total hydrocarbon losses by volatilization were 19.1 g. Total losses from the passively aerated pile were 1.02 g, while the actively aerated pile had losses of 0.08 g. Individual identified component compounds in the sediment included polycyclic aromatic hydrocarbons (PAHs). Final levels were in the 2 to 20 ppM range compared to 100 to 400 ppM in the original sediment. Composting removed PAH components and other light organics, and the composted material can be stored onsite or landfilled without leaching concerns.

  4. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  5. Quality control summary report for the RFI/RI assessment of the submerged sediment core samples taken at Par Pond, Pond C, and L-Lake

    SciTech Connect

    Koch, J. II

    1996-12-01

    This report presents a summary of the sediment characterization performed under the direction of the Westinghouse Savannah River Company`s (WSRC) Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) in support of Par Pond, Pond C, and L- Lake. This characterization will be a screening study and will enable the Environmental Sciences Section (ESS) to develop a defensible contaminants of concern list for more extensive characterization of the Par Pond, Pond C, and L-Lake.

  6. Diurnal hydrochemical variations in a karst spring and two ponds, Maolan Karst Experimental Site, China: Biological pump effects

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Zaihua; Macpherson, G. L.; Yang, Rui; Chen, Bo; Sun, Hailong

    2015-03-01

    A karst spring and two downstream ponds fed by the spring at the Maolan Karst Experimental Site, Guizhou Province, China, were used to investigate the effect of submerged plants on the CO2-H2O-CaCO3 system during a time of spring base flow in summer when underwater photosynthesis was strongest. Temperature, pH, electrical conductivity (EC) and dissolved oxygen (DO) were recorded at 15 min intervals for a period of 30 h (12:00 29 August-18:00 30 August, 2012). [Ca2+], [HCO3-], CO2 partial pressure (pCO2) and saturation index of calcite (SIC) were estimated from the high-frequency measurements. Water samples were also collected three times a day (early morning, midday and evening) for δ13CDIC determination. A floating CO2-flux monitoring chamber was used to measure CO2 flux at the three locations. Results show that there was little or no diurnal variation in the spring water parameters. In the midstream pond with flourishing submerged plants, however, all parameters show distinct diurnal changes: temperature, pH, DO, SIc, δ13CDIC increased during the day and decreased at night, while EC, [HCO3-], [Ca2+], and pCO2 behaved in the opposite sense. In addition, maximum DO values (16-23 mg/L) in the midstream pond at daytime were two to three times those of water equilibrated with atmospheric O2, indicating strong aquatic photosynthesis. The proposed photosynthesis is corroborated by the low calculated pCO2 of 20-200 ppmv, which is much less than atmospheric pCO2. In the downstream pond with fewer submerged plants but larger volume, all parameters displayed similar trends to the midstream pond but with much less change, a pattern that we attribute to the lower biomass/water volume ratio. The diurnal hydrobiogeochemical variations in the two ponds depended essentially on illumination, indicating that photosynthesis and respiration by the submerged plants are the dominant controlling processes. The large loss of DIC between the spring and midstream pond, attributed to

  7. Validation of remotely-sensed soil moisture observations for bare soil at 1.4 GHz: A quantitative approach through radiative transfer models to characterize abrupt transitions caused by a ponding event in an agricultural field, modifications to the radiative transfer models, and a mobile ground-based system

    NASA Astrophysics Data System (ADS)

    Erbas, Cihan

    Soil moisture controls the physical processes that exchange mass and energy between the atmosphere and the land surface in the hydrologic cycle. Improved observations of soil moisture may lead to dramatic improvements in weather forecasting, seasonal climate prediction, and our understanding of the physical, chemical and biological processes that occur within the soil. Recent advances in remote sensing have shown that microwave radiometry is a suitable approach to retrieve soil moisture. However, the quantitative aspects of remotely-sensed soil moisture observations are not well-known, and validation of remotely-sensed measurements is an important challenge. In this dissertation, we describe efforts made at Iowa State University to establish the framework needed for the validation of remotely-sensed soil moisture observations. In the process of developing this framework, we engineered new tools that can be used by both our research group and the wider remote sensing community, and we discovered new science. The first tool is a direct-sampling digital L-band radiometer system. This radiometer system is the world's first truly mobile ground-based system. The other tools are radiative transfer models that have been modified in order to be applied to the most general remote sensing situations. An incoherent radiative transfer model was modified to include the contributions of a semi-infinite layer, and a coherent radiative transfer model was modified to account for abrupt transitions in the electrical properties of a medium. The models were verified against each other and the code was written in a user-friendly format. We demonstrated the use of these tools in determining the effect of the transient ponding of water in an agricultural field on the remote sensing signal. We found that ponding was responsible for a 40 K change in the L-band horizontally-polarized brightness temperature. We were able to model this change with both modified coherent and incoherent

  8. Direct Experimental Assessment of Microbial Activity in North Pond Sediments

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Picard, A.; Morando, M.; Ziebis, W.

    2009-12-01

    North Pond, an isolated sediment pond located at 22°45’N on the western flank of the Mid-Atlantic Ridge, offered the opportunity to study microbial activities in deeply-buried low-activity sediments. About 8 x 15 km in size with sediment maximum thickness of about 300 m, North Pond is completely surrounded by exposed 7 Ma old basement. North Pond lies above the carbonate compensation depth at a water depth about 4500 m; hydrostatic pressure at the seafloor is about 45 MPa and the temperature is near 2°C. During the a R/V MS Merian cruise (MSM-11/1) in February -March 2009, 14 gravity cores of up to 9 m length were successfully obtained, from which samples were taken with 1-m resolution for experimental activity measurements. The goal of the experimental work was 1) to examine potential metabolic pathways in North Pond sediments and carbon assimilation pathways in this low-energy environment, and 2) explore the effects of pressure on microbial metabolic activities. As dissolved oxygen penetrated through all depths, sediments were aerobically sampled, processed and incubated at 4°C. Selected samples were immediately stored at in situ pressure until further use. The microbial uptake of both organic and inorganic carbon in selected North Pond sediment samples was investigated by following the fate of 14C in radio-labeled organic and organic compounds in North Pond sediment slurry incubations. Shipboard and on-shore experiments using 14C-leucine, 14C-glucose and 14C-bicarbonate were performed on selected cores. Day- to month- incubations were performed at 4°C. Parallel incubations were conducted at atmospheric pressure (0.1 MPa) and in situ pressure (~45 MPa). Either whole cell extraction (Kallmeyer et al., Limnol. Oceanogr.: Methods 6, 2008, 238-245) or protein-DNA extraction was carried on after various incubations to determine the fraction of 14C incorporated into cellular components. Formation of 14C-labeled CO2 was determined on samples incubated with 14C

  9. Individual variation affects departure rate from the natal pond in an ephemeral pond-breeding anuran

    USGS Publications Warehouse

    Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.

    2008-01-01

    Frogs exhibit extreme plasticity and individual variation in growth and behavior during metamorphosis, driven by interactions of intrinsic state factors and extrinsic environmental factors. In northern red-legged frogs (Rana aurora Baird and Girard, 1852), we studied the timing of departure from the natal pond as it relates to date and size of individuals at metamorphosis in the context of environmental uncertainty. To affect body size at metamorphosis, we manipulated food availability during the larval stage for a sample (317) of 1045 uniquely marked individuals and released them at their natal ponds as newly metamorphosed frogs. We recaptured 34% of marked frogs in pitfall traps as they departed and related the timing of their initial terrestrial movements to individual properties using a time-to-event model. Median age at first capture was 4 and 9 days postmetamorphosis at two sites. The rate of departure was positively related to body size and to date of metamorphosis. Departure rate was strongly negatively related to time elapsed since rainfall, and this effect was diminished for smaller and later metamorphosing frogs. Individual variation in metamorphic traits thus affects individuals' responses to environmental variability, supporting a behavioral link with variation in survival associated with these same metamorphic traits. ?? 2008 NRC.

  10. Changing the Rules on Fuel Export at Sellafield's First Fuel Storage Pond - 12065

    SciTech Connect

    Carlisle, Derek

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) was built in 1949/50 to receive, store and de-can fuel and isotopes from the Windscale Piles. Following closure of the Piles in 1957, plant operations were scaled down until fuel processing eventually ceased in 1962. The facility has held an inventory of metal fuel both from the Piles and from other programmes since that time. The pond is currently undergoing remediation and removal of the fuel is a key step in that process, unfortunately the fuel export infrastructure on the plant is no longer functional and due to the size and limited lifting capability, the plant is not compatible with today's large volume heavy export flasks. The baseline scheme for the plant is to package fuel into a small capacity flask and transfer it to another facility for treatment and repackaging into a flask compatible with other facilities on site. Due to programme priorities the repackaging facility is not available to do this work for several years causing a delay to the work. In an effort accelerate the programme the Metal Fuel Pilot Project (MFPP) was initiated to challenge the norms for fuel transfer and develop a new methodology for transferring the fuel. In developing a transfer scheme the team had to overcome challenges associated with unknown fuel condition, transfers outside of bulk containment, pyro-phoricity and oxidisation hazards as well as developing remote control and recovery systems for equipment not designed for this purpose. A combination of novel engineering and enhanced operational controls were developed which resulted in the successful export of the first fuel to leave the Pile Fuel Storage Pond in over 40 years. The learning from the pilot project is now being considered by the main project team to see how the new methodology can be applied to the full inventory of the pond. (author)

  11. A coupled biogeochemical-Dynamic Energy Budget model as a tool for managing fish production ponds.

    PubMed

    Serpa, Dalila; Pousão-Ferreira, Pedro; Caetano, Miguel; Cancela da Fonseca, Luís; Dinis, Maria Teresa; Duarte, Pedro

    2013-10-01

    The sustainability of semi-intensive aquaculture relies on management practices that simultaneously improve production efficiency and minimize the environmental impacts of this activity. The purpose of the present work was to develop a mathematical model that reproduced the dynamics of a semi-intensive fish earth pond, to simulate different management scenarios for optimizing fish production. The modeling approach consisted of coupling a biogeochemical model that simulated the dynamics of the elements that are more likely to affect fish production and cause undesirable environmental impacts (nitrogen, phosphorus and oxygen) to a fish growth model based on the Dynamic Energy Budget approach. The biogeochemical sub-model successfully simulated most water column and sediment variables. A good model fit was also found between predicted and observed white seabream (Diplodus sargus) growth data over a production cycle. In order to optimize fish production, different management scenarios were analysed with the model (e.g. increase stocking densities, decrease/increase water exchange rates, decrease/increase feeding rates, decrease phosphorus content in fish feeds, increase food assimilation efficiency and decrease pellets sinking velocity) to test their effects on the pond environment as well as on fish yields and effluent nutrient discharges. Scenarios were quantitatively evaluated and compared using the Analytical Hierarchical Process (AHP) methodology. The best management options that allow the maximization of fish production while maintaining a good pond environment and minimum impacts on the adjacent coastal system were to double standard stocking densities and to improve food assimilation efficiency.

  12. Gull contributions of phosphorus and nitrogen to a Cape Cod kettle pond

    USGS Publications Warehouse

    Portnoy, J.W.; Soukup, M.A.

    1990-01-01

    Nutrient excretion rates and the annual contribution of P from the feces of the gulls Larus argentatus and L. marinus (and of N from L. argentatus) to the nutrient budget of Gull Pond (Wellfleet), a soft water seepage lake, have been estimated. Intensive year-round gull counts by species were combined with determinations of defecation rate and the nutrient content of feces to quantitatively assess the P loading rates associated with regular gull use of this coastal pond on a seasonal and annual basis. Total P loading from gulls was estimated to be 52 kg yr?1, with 17 kg from L. argentatus and 35 kg from L. marinus, resulting from about 5.0 ? 106 h yr?1 and 1.7 ? 106 h yr?1 of pond use. This compares with P loading estimates of 67 kg yr?1 from upgradient septic systems, 2 kg yr?1 from precipitation and 3 kg yr?1 from unpolluted ground water. Fifty-six percent of annual gull P loading was associated with migratory activity in late fall. Estimated annual N loading by L. argentatus was 14 kg TKN, 206 g NO3-N, and 1.85 g g NH3-N.

  13. Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria

    2015-09-01

    Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.

  14. Reciprocal subsidies in ponds: does leaf input increase frog biomass export?

    PubMed

    Earl, Julia E; Semlitsch, Raymond D

    2012-12-01

    Reciprocal subsidies occur when ecosystems are paired, both importing and exporting resources to each other. The input of subsidies increases reciprocal subsidy export, but it is unclear how this changes with other important factors, such as ambient resources. We provide a conceptual framework for reciprocal subsidies and empirical data testing this framework using a pond-forest system in Missouri, USA. Our experiment used in situ pond mesocosms and three species of anurans: wood frogs, American toads, and southern leopard frogs. We predicted that increases in ambient resources (primary productivity) and detrital subsidy input (deciduous tree leaves) into pond mesocosms would increase reciprocal export (frog biomass) to the surrounding terrestrial ecosystem. In contrast, we found that increases in primary productivity consistently decreased frog biomass, except with leaf litter inputs. With leaf inputs, primary productivity did not affect the export of frogs, indicating that leaf detritus and associated microbial communities may be more important than algae for frog production. We found that subsidy inputs tended to increase reciprocal exports, and thus partial concordance with our conceptual framework.

  15. Seasonal variations in planktonic community structure and production in an Atlantic coastal pond: the importance of nanoflagellates.

    PubMed

    Dupuy, C; Ryckaert, M; Le Gall, S; Hartmann, H J

    2007-05-01

    food resource for higher trophic levels, such as oysters, farmed in this type of pond. Overall, the system appeared to be more autotrophic than heterotrophic. Because inorganic nutrients are quickly exhausted in a semiclosed pond, pigmented flagellates dominated the carbon biomass, production and biomass of bacteria were high (thus, the microbial food web appeared to be active in this pond), and mixotrophy seemed to be an important trophic mode there.

  16. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.

  17. Evaluation of relocation of unionid mussels into artificial ponds

    USGS Publications Warehouse

    Newton, T.J.; Monroe, E.M.; Kenyon, R.; Gutreuter, S.; Welke, K.I.; Thiel, P.A.

    2001-01-01

    Relocation of unionid mussels into refuges (e.g., hatchery ponds) has been suggested as a management tool to protect these animals from the threat of zebra mussel (Dreissena polymorpha) invasion. To evaluate the efficacy of relocation, we experimentally relocated 768 mussels, representing 5 species (Leptodea fragilis, Obliquaria reflexa, Fusconaia flava, Amblema plicata, and Quadrula quadrula) into an earthen pond at a National Fish Hatchery or back into the river. In both locations, mussels were placed into 1 of 4 treatments (mesh bags, corrals, and buried or suspended substrate-filled trays). Mussels were examined annually for survival, growth (shell length and wet mass), and physiological condition (glycogen concentration in foot and mantle and tissue condition index) for 36 mo in the pond or 40 mo in the river. We observed significant differences in mortality rates between locations (mortality was 4 times greater in the pond than in the river), among treatments (lowest mortality in the suspended trays), and among species (lower mortality in the amblemines than lamp-silines). Overall survival in both locations averaged 80% the 1st year; survival in the pond decreased dramatically after that. Although length and weight varied between locations and over time, these changes were small, suggesting that their utility as short-term measures of well being in long-lived unionids is questionable. Mussels relocated to the pond were in poor physiological condition relative to those in the river, but the magnitude of these differences was small compared to the inherent variability in physiological condition of reference mussels. These data suggest that relocation of unionids into artificial ponds is a high-risk conservation strategy; alternatives such as introduction of infected host fish, identification of mussel beds at greatest risk from zebra mussels, and a critical, large-scale assessment of the factors contributing to their decline should be explored.

  18. Pond permanence and the effects of exotic vertebrates on anurans

    USGS Publications Warehouse

    Adams, M.J.

    2000-01-01

    In many permanent ponds throughout western North America, the introduction of a variety of exotic fish and bullfrogs (Rana catesbeiana) correlates with declines in native amphibians. Direct effects of exotics are suspected to be responsible for the rarity of some native amphibians and are one hypothesis to explain the prevalence of amphibian declines in western North America. However, the prediction that the permanent ponds occupied by exotics would be suitable for native amphibians if exotics were absent has not been tested. I used a series of enclosure experiments to test whether survival of northern red-legged frog (Rana aurora aurora) and Pacific treefrog (Hyla regilla) larvae is equal in permanent and temporary ponds in the Puget Lowlands, Washington State, USA. I also examined the direct effects of bullfrog larvae and sunfish. Survival of both species of native anuran larvae was generally lower in permanent ponds. Only one permanent pond out of six was an exception to this pattern and exhibited increased larval survival rates in the absence of direct effects by exotics. The presence of fish in enclosures reduced survival to near zero for both native species. An effect of bullfrog larvae on Pacific treefrog larval survival was not detected, but effects on red-legged frog larvae were mixed. A hypothesis that food limitation is responsible for the low survival of native larvae in some permanent ponds was not supported. My results confirm that direct negative effects of exotic vertebrates on native anurans occur but suggest that they may not be important to broad distribution patterns. Instead, habitat gradients or indirect effects of exotics appear to play major roles. I found support for the role of permanence as a structuring agent for pond communities in the Puget Lowlands, but neither permanence nor exotic vertebrates fully explained the observed variability in larval anuran survival.

  19. Pond sediment magnetite grains show a distinctive microbial community.

    PubMed

    Song, H-K; Sonkaria, S; Khare, V; Dong, K; Lee, H-T; Ahn, S-H; Kim, H-K; Kang, H-J; Lee, S-H; Jung, S P; Adams, J M

    2015-07-01

    Formation of magnetite in anaerobic sediments is thought to be enhanced by the activities of iron-reducing bacteria. Geobacter has been implicated as playing a major role, as in culture its cells are often associated with extracellular magnetite grains. We studied the bacterial community associated with magnetite grains in sediment of a freshwater pond in South Korea. Magnetite was isolated from the sediment using a magnet. The magnetite-depleted fraction of sediment was also taken for comparison. DNA was extracted from each set of samples, followed by PCR for 16S bacterial ribosomal RNA (rRNA) gene and HiSeq sequencing. The bacterial communities of the magnetite-enriched and magnetite-depleted fractions were significantly different. The enrichment of three abundant operational taxonomic units (OTUs) suggests that they may either be dependent upon the magnetite grain environment or may be playing a role in magnetite formation. The most abundant OTU in magnetite-enriched fractions was Geobacter, bolstering the case that this genus is important in magnetite formation in natural systems. Other major OTUs strongly associated with the magnetite-enriched fraction, rather than the magnetite-depleted fraction, include a Sulfuricella and a novel member of the Betaproteobacteria. The existence of distinct bacterial communities associated with particular mineral grain types may also be an example of niche separation and coexistence in sediments and soils, which cannot usually be detected due to difficulties in separating and concentrating minerals. PMID:25592636

  20. Multiple Contaminant and Predatory Stressors in Experimental Pond Communities

    NASA Astrophysics Data System (ADS)

    Keeley, K.; Crumrine, P. W.; Barlow, P. F.

    2005-05-01

    Anthropogenic contaminants, such as agricultural pesticides found in aquatic systems, have the potential to negatively impact organisms via direct and indirect pathways. The magnitude of these indirect effects depends on the strength of the interactions through which they are propagated. We sought to determine how environmentally realistic levels of the insecticides endosulfan and malathion and the herbicide atrazine impact pond communities. We investigated the effects of these pesticides in mesocosm communities containing larval dragonflies (Anax junius), adult water bugs (Belostoma flumineum), and snails (Planorbella trivolvis). Dragonflies presented a moderate predatory threat to snails, as they affected snail behavior but not survival. Direct effects of pesticides on snails were limited, and pesticides only induced modest changes in snail behavior. All pesticides negatively influenced dragonfly survival and this was most pronounced in treatments with endosulfan. However, the reduction in dragonfly survival did not transmit benefits to snails that were detectable as changes in behavior or survival, as would be expected if dragonflies represented a stronger predatory threat. These results show that individuals in communities can be differentially impacted by contaminants, and indicate that strong indirect effects depend on the strength of underlying trophic interactions.