Science.gov

Sample records for 218po 214pb 214bi

  1. Diurnal variations of (218)Po, (214)Pb, and (214)Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India.

    PubMed

    Pruthvi Rani, K S; Paramesh, L; Chandrashekara, M S

    2014-12-01

    The short-lived radon daughters ((218)Po, (214)Pb, (214)Bi and (214)Po) are natural tracers in the troposphere, in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. The behavior of radon daughters is similar to that of aerosols with respect to their growth, transport and removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile ions. Galactic cosmic rays are the main source of ionization in the planetary boundary layer; however, near the surface of the earth, ions are produced mainly by decays of natural radioactive gases emanating from the soil surface and by radiations emitted directly from the surface. Hence the electrical conductivity of air near the surface of the earth is mainly due to radiations emitted by (222)Rn, (218)Po, (214)Pb, (214)Bi and (214)Po, and depends on aerosol concentrations and meteorological parameters. In the present work the diurnal and seasonal variations of radon and its progeny concentrations are studied using Low Level Radon Detection System and Airflow Meter respectively. Atmospheric electrical conductivity of both positive and negative polarities is measured using a Gerdien Condenser. All the measurements were carried out simultaneously at one location in Mysore city (12°N, 76°E), India. The diurnal variation of atmospheric electrical conductivity was found to be similar to that of ion pair production rate estimated from radon and its progeny concentrations with a maximum in the early morning hours and minimum during day time. The annual average concentrations of (222)Rn, (218)Po, (214)Pb, and (214)Po at the study location were found to be 21.46, 10.88, 1.78 and 1.80 Bq m(-3) respectively. The annual average values of positive and negative atmospheric electrical conductivity were found to be 18.1 and 16.6 f S m(-1

  2. Diurnal variations of (218)Po, (214)Pb, and (214)Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India.

    PubMed

    Pruthvi Rani, K S; Paramesh, L; Chandrashekara, M S

    2014-12-01

    The short-lived radon daughters ((218)Po, (214)Pb, (214)Bi and (214)Po) are natural tracers in the troposphere, in particular near the ground surface. They are electrically charged particles and are chemically reactive. As soon as they are formed they get attached to the aerosol particles of the atmosphere. The behavior of radon daughters is similar to that of aerosols with respect to their growth, transport and removal processes in the atmosphere. The electrical conductivity of the atmosphere is mainly due to the presence of highly mobile ions. Galactic cosmic rays are the main source of ionization in the planetary boundary layer; however, near the surface of the earth, ions are produced mainly by decays of natural radioactive gases emanating from the soil surface and by radiations emitted directly from the surface. Hence the electrical conductivity of air near the surface of the earth is mainly due to radiations emitted by (222)Rn, (218)Po, (214)Pb, (214)Bi and (214)Po, and depends on aerosol concentrations and meteorological parameters. In the present work the diurnal and seasonal variations of radon and its progeny concentrations are studied using Low Level Radon Detection System and Airflow Meter respectively. Atmospheric electrical conductivity of both positive and negative polarities is measured using a Gerdien Condenser. All the measurements were carried out simultaneously at one location in Mysore city (12°N, 76°E), India. The diurnal variation of atmospheric electrical conductivity was found to be similar to that of ion pair production rate estimated from radon and its progeny concentrations with a maximum in the early morning hours and minimum during day time. The annual average concentrations of (222)Rn, (218)Po, (214)Pb, and (214)Po at the study location were found to be 21.46, 10.88, 1.78 and 1.80 Bq m(-3) respectively. The annual average values of positive and negative atmospheric electrical conductivity were found to be 18.1 and 16.6 f S m(-1

  3. Radon daughter carousel: An automated instrument for measuring indoor concentrations of 218Po, 214Pb, and 214Bi

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.

    1983-09-01

    A microprocessor-controlled instrument for measuring the concentrations of radon progeny in indoor air is described. The measurement technique is based on alpha spectroscopy and uses two counting intervals following a sampling period during which radon progeny are collected on a filter. The counting intervals are selected to provide optimal precision for measuring 222Rn progeny for fixed total measurement times ranging from 30 to 60 min: concentrations as low as 0.5 pCi/1 can be measured with less than 20% uncertainty in 45 min. The instrument can also be used to estimate the potential alpha energy concentration of 220Rn decay products. The device operates under the control of a computer or a data terminal and functions for week-long periods between filter changes. The user can specify the sampling- and counting-interval timing over a wide range and select from among several operating modes. A number of performance tests are also described indicating that for typical indoor concentrations the measurement uncertainty is dominated by counting statistics.

  4. Contribution of plated-out 218Po and 214Po to measurements of airborne 222Rn and daughters with plastic (CR-39) nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kahn, Bernd; Wang, Zuoyuan; Sensistaffar, Edwin

    1984-01-01

    The fraction of alpha-particle tracks due to radioactivity plated out on its surface was measured for CR-39 nuclear track detector foils used to determine working level values in air. Bare foils were exposed to known concentrations of airborne 222Rn and its short-lived daughters in a calibration chamber. The amounts of 218Po and 214Po on the foil surface were measured with a calibrated diffused junction detector-spectrometer system immediately after the foils were removed from the chamber. Deposition was mostly by 218Po, with some 214Pb but essentially no 214Bi. The track density due to the plated-out radionuclides and the 222Rn, 218Po, and 214Po in chamber air was calculated and compared to the value measured by electrochemical etching. The calculated values generally were slightly above the measured values. On the basis of these calculations, the deposited radioactivity contributed slightly less than one-half of the total tracks in one test and slightly more than two-thirds in another. This effect complicates calibration of the detector relative to airborne radon daughters.

  5. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  6. Quantitative evaluation of 218Po behaviour in air in an artificial environment.

    PubMed

    Yajima, K; Hirao, S; Moriizumi, J; Yamazawa, H

    2015-11-01

    Experiments were carried out in a small enclosed booth for the purpose of understanding and modelling (218)Po behaviour. The experiment was conducted under two kinds of conditions without and with injection of incense smoke. A working model of (218)Po behaviour was applied to analyse the measured data. Under the condition without incense smoke, temporal changes in aerosol-attached and unattached (218)Po concentrations were successfully reproduced by the model. The deposition rate of unattached fraction and the rate of attachment were determined by the working model. Under the condition with incense smoke, temporal changes in (218)Po concentration were poorly simulated by the model. This can be attributed to the significantly increased aerosol concentration in small size ranges which is not properly considered in the attachment rate calculation in the model.

  7. Quantitative evaluation of 218Po behaviour in air in an artificial environment.

    PubMed

    Yajima, K; Hirao, S; Moriizumi, J; Yamazawa, H

    2015-11-01

    Experiments were carried out in a small enclosed booth for the purpose of understanding and modelling (218)Po behaviour. The experiment was conducted under two kinds of conditions without and with injection of incense smoke. A working model of (218)Po behaviour was applied to analyse the measured data. Under the condition without incense smoke, temporal changes in aerosol-attached and unattached (218)Po concentrations were successfully reproduced by the model. The deposition rate of unattached fraction and the rate of attachment were determined by the working model. Under the condition with incense smoke, temporal changes in (218)Po concentration were poorly simulated by the model. This can be attributed to the significantly increased aerosol concentration in small size ranges which is not properly considered in the attachment rate calculation in the model. PMID:25920782

  8. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.

  9. Analysis of the saturation phenomena of the neutralization rate of positively charged 218Po in water vapor.

    PubMed

    Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian

    2014-09-01

    Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high. PMID:25068963

  10. Temporal variation of radon progeny ratio in outdoor air.

    PubMed

    Kobayashi, Tsuneo

    2002-08-01

    This paper investigates the concentration ratio of radon progeny (218Po, 214Pb, and 214Bi) in outdoor air. From 1988 to 1998, alpha spectroscopy was used intermittently to collect progeny data outside the author's office located in the northeastern part of Japan. Let the quantity R(EEC) represent the ratio EEC(218Po)/[EEC(214Pb) + EEC(214Bi)], where, e.g., EEC(218Po) denotes the equilibrium equivalent radon concentration contributed by 218Po. The concentration ratio R(EEC) correlates with outdoor air stability. Statistical and time series analyses of R(EEC) indicate (1) outdoor air is more stable in the morning than in the afternoon, (2) outdoor air is more stable in summer/autumn than in winter/spring, and (3) in spite of no significant correlation between R(EEC) and wind speed, the power spectrum of R(EEC) appears similar to that of wind speed. This is probably due to the fact that near-surface mixing is not very sensitive to wind speed.

  11. Measurement of liquid scintillation sources of (210)Pb obtained from (222)Rn decay.

    PubMed

    Antohe, A; Sahagia, M; Luca, A; Ioan, M-R; Ivan, C

    2016-03-01

    Liquid scintillation samples were filled with (222)Rn and the activity was measured with good precision after reaching the secular equilibrium with the progeny (218)Po, (214)Pb, (214)Bi and (214)Po. After decay of most of (222)Rn activity, the samples contain (210)Pb and progeny. The activities of (210)Pb and progeny can be calculated as a function of time using the initial (222)Rn activity. The samples were measured in a TDCR counter and the experimentally determined counting efficiencies are in accordance with previously published results.

  12. Measurement of liquid scintillation sources of (210)Pb obtained from (222)Rn decay.

    PubMed

    Antohe, A; Sahagia, M; Luca, A; Ioan, M-R; Ivan, C

    2016-03-01

    Liquid scintillation samples were filled with (222)Rn and the activity was measured with good precision after reaching the secular equilibrium with the progeny (218)Po, (214)Pb, (214)Bi and (214)Po. After decay of most of (222)Rn activity, the samples contain (210)Pb and progeny. The activities of (210)Pb and progeny can be calculated as a function of time using the initial (222)Rn activity. The samples were measured in a TDCR counter and the experimentally determined counting efficiencies are in accordance with previously published results. PMID:26725538

  13. Hawking's A Briefer History of Time's No-God-Universe disproven by primordial ^218Po halos embedded in granite rocks, which proves their rapid creation due to ^218Po's 3 min t1/2, something only the God of Genesis could have done

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2011-04-01

    Quotes from my Science (184, 62, 1974) report, Radiohalos in Radiochronological and Cosmological Perspective, show why primordial polonium halos earlier commanded attention for creation," It is also apparent that Po halos do pose contradictions to currently held views of Earth history" "For example, there is first the problem of how isotopic separation of several Po isotopes [or their β-decay precursors could have occurred naturally. Second, a straightforward explanation of ^218Po halos implies that the 1-μm radiocenters of very dark halos of this type initially contained as many as 5 x 10^9 atoms (a concentration of more than 50 percent) of the isotope ^218Po (half-life, 3 minutes), a problem that almost defies reason. A further necessary consequence, that such Po halos could have formed only if the host rocks underwent a rapid crystallization, renders exceedingly difficult, in my estimation, the prospect of explaining these halos by physical laws as presently understood." In 1977 E. P. Wigner, G. N. Flerov (Dubna), Ed Anders, E. Segre, F. Dyson, and John Wheeler all commented on these results (see alphacosmos.net). Also, ^14N detection in dwarf radiohalos may be of cosmological significance in implying a superheavy element origin from ^14C emission.

  14. Development of new analytical method based on beta-alpha coincidence method for selective measurement of 214Bi-214Po-application to dust filter used in radiation management.

    PubMed

    Sanada, Yukihisa; Tanabe, Yoichiro; Iijima, Nobuo; Momose, Takumaro

    2011-07-01

    The radionuclide pair (214)Bi and (214)Po which belongs to the uranium series interferes with airborne radionuclide measurement needed for the radiation management of a nuclear facility. Time intervals between (214)Bi (β) and (214)Po (α) are much shorter than artificial radionuclides due to the short half-life of (214)Po (164 μs). The purpose of this study is to develop of a new analytical method (time interval analysis: TIA) based on the beta-alpha coincidence method for selective measurement of (214)Bi-(214)Po. The developed method was applied to an actual dust-filter measurement. The TIA system was highly effective in measuring of the filter with background subtraction. PMID:21531747

  15. Abundance of low-energy gamma rays in the decay of 238U, 234U, 230Th, 227Ac, 226Ra and 214Pb

    NASA Astrophysics Data System (ADS)

    Komura, K.; Yamamoto, M.; Ueno, K.

    1990-11-01

    Abundance of low-energy gamma rays emitted from 238U (49.5 keV), 227Ac (50.0 keV), 234U (53.2 keV), 214Pb (53.2 keV), 230Th (67.7 and 143.9 keV) and 226Ra (186 keV) was determined using a high-purity Ge low energy photon spectrometer. The results are: 49.5 keV (238U): 0.059±0.002%, 50.0 keV (227Ac): 8.18±0.17%, 53.2 keV (234U): 0.156±0.006%, 53.2 keV (214Pb): 0.927±0.025%, 67.7 keV (230Th): 0.463±0.012%, 143.9 keV (230Th): 0.078±0.007%, 186.0 keV (226Ra): 3.688±0.099%.

  16. A study on natural radiation exposure in different realistic living rooms.

    PubMed

    El-Hussein, A

    2005-01-01

    In the first part of the paper, the factors affecting 222Rn properties in 25 different realistic living rooms (with low ventilation rates) of different houses in El-Minia City (Upper Egypt) have been studied; they included the activity concentration of 222Rn gas (C(o)), the unattached fraction (f(p)) of 218Po and 214Pb, the unattached potential alpha energy concentration (PAEC) and the equilibrium factor (F). The activity distributions of unattached 218Po and 214Pb as well as for the PAEC were determined. With a dosimetric model calculation [ICRP, 1994b. Human Respiratory Tract Model For Radiological Protection. Pergamon Press, Oxford. ICRP Publication 66] the total deposition fraction of unattached 218Po and 214Pb in human respiratory tract was evaluated to determine the total equivalent dose. An electrostatic precipitation method and a wire screen diffusion battery technique were both employed for the determination of 222Rn gas concentration and its unattached decay products, respectively. The mean activity concentration of 222Rn gas (C(o)) was found to be 110+/-20 Bq m(-3). The mean unattached activity concentrations of 218Po and 214Pb were found to be 0.6 and 0.35 Bq m(-3), respectively. A mean unattached fraction (f(p)) of 0.09+/-0.01 was obtained at a mean aerosol particle concentration (Z) of (2.9+/-0.23) x 10(3)cm(-3). The mean equilibrium factor (F) was determined to be 0.31+/-0.02. The mean PAEC of unattached 218Po and 214Pb was found to be 8.74+/-2.1 Bq m(-3). The activity distributions of 218Po and 214Pb show mean activity median diameters (AMD) of 1.5 and 1.85 nm with mean geometric standard deviations (SD) of 1.33 and 1.45, respectively. The mean activity distribution of the PAEC shows an AMD of 1.65 nm with a geometric standard deviation of 1.25. At a total deposition fraction of about 97% the total equivalent dose to the lung was determined to be about 133 microSv. The second part of this paper deals with a study of natural radionuclide contents of

  17. Nanoaerosols Including Radon Decay Products in Outdoor and Indoor Air at a Suburban Site

    PubMed Central

    Smerajec, Mateja; Vaupotič, Janja

    2012-01-01

    Nanoaerosols have been monitored inside a kitchen and in the courtyard of a suburban farmhouse. Total number concentration and number size distribution (5–1000 nm) of general aerosol particles, as measured with a Grimm Aerosol SMPS+C 5.400 instrument outdoors, were mainly influenced by solar radiation and use of farming equipment, while, indoors, they were drastically changed by human activity in the kitchen. In contrast, activity concentrations of the short-lived radon decay products 218Po, 214Pb, and 214Bi, both those attached to aerosol particles and those not attached, measured with a Sarad EQF3020-2 device, did not appear to be dependent on these activities, except on opening and closing of the kitchen window. Neither did a large increase in concentration of aerosol particles smaller than 10 or 20 nm, with which the unattached radon products are associated, augment the fraction of the unattached decay products significantly. PMID:22523488

  18. Half-life of /sup 218/Po

    SciTech Connect

    Potapov, V.G.; Soloshenkov, P.S.

    1986-10-01

    The decay of Po 218 is accompanied by the emission of 6.00-MeV alpha particles. The most suitable method for studying it is the alphaspectrometric method. To generate radon, the source for RaA, the authors used a preparation of Ra 226 with a high degree of purity. Targets were prepared for measuring the half-life on a radon setup. Approximately 30 sec after holding in a radon atmosphere the target was placed with the polonium deposited on it into a vacuum chamber. It was noted that the intensity of the peak at 6.70 MeV decreases at the same rate as the decay of Po 218, and the ratio of the intensities of their peaks was equal to 0.037 +/- 0.007%. The spectra (alpha was analyzed on an LP-4900 analyzer. The values of the half-life that were obtained are in good agreement with the values obtained previously.

  19. Age-dependent inhalation doses to members of the public from indoor short-lived radon progeny.

    PubMed

    Brudecki, K; Li, W B; Meisenberg, O; Tschiersch, J; Hoeschen, C; Oeh, U

    2014-08-01

    The main contribution of radiation dose to the human lungs from natural exposure originates from short-lived radon progeny. In the present work, the inhalation doses from indoor short-lived radon progeny, i.e., (218)Po, (214)Pb, (214)Bi, and (214)Po, to different age groups of members of the public were calculated. In the calculations, the age-dependent systemic biokinetic models of polonium, bismuth, and lead published by the International Commission on Radiological Protection (ICRP) were adopted. In addition, the ICRP human respiratory tract and gastrointestinal tract models were applied to determine the deposition fractions in different regions of the lungs during inhalation and exhalation, and the absorption fractions of radon progeny in the alimentary tract. Based on the calculated contribution of each progeny to equivalent dose and effective dose, the dose conversion factor was estimated, taking into account the unattached fraction of aerosols, attached aerosols in the nucleation, accumulation and coarse modes, and the potential alpha energy concentration fraction in indoor air. It turned out that for each progeny, the equivalent doses to extrathoracic airways and the lungs are greater than those to other organs. The contribution of (214)Po to effective dose is much smaller compared to that of the other short-lived radon progeny and can thus be neglected in the dose assessment. In fact, 90 % of the effective dose from short-lived radon progeny arises from (214)Pb and (214)Bi, while the rest is from (218)Po. The dose conversion factors obtained in the present study are 17 and 18 mSv per working level month (WLM) for adult female and male, respectively. This compares to values ranging from 6 to 20 mSv WLM(-1) calculated by other investigators. The dose coefficients of each radon progeny calculated in the present study can be used to estimate the radiation doses for the population, especially for small children and women, in specific regions of the world

  20. Radon progeny size distributions and enhanced deposition effects from high radon concentrations in an enclosed chamber.

    PubMed

    Leonard, Bobby E

    2004-01-01

    Prior work studying radon progeny in a small enclosed chamber found that at high (222)Rn concentrations an enhanced surface deposition was observed. Subsequent measurements for unfiltered air showed minimal charged particle mobility influence. Progeny particle size measurements reported here, performed at the US Department of Energy Environmental Measurement Laboratory (now with Home Security Department), using the EML graded screen array (GSA) system show in unfiltered air that the high (222)Rn levels causes a reduction in the attached (218)Po progeny airborne particulates and formation of additional normal sized unattached ( approximately 0.80 nm) and also even smaller (218)Po below 0.50 nm. At a (222)Rn level of 51 kBq m(-3), 73% of all (218)Po are of a mean particle diameter of about 0.40 +/- 0.02 nm. At this (222)Rn level, the ratio of (218)Po to (222)Rn airborne concentrations is reduced significantly from the concentration ratio at low (222)Rn levels. Similar reductions and size reformations were observed for the (214)Pb and (214)Bi/Po progeny. The particle size changes are further confirmed using the plateout rates and corresponding deposition velocities. The Crump and Seinfeld deposition theory provides the corresponding particle diffusion coefficients. With the diffusion coefficient to ultrafine clustered particle diameter correlation of Ramamurthi and Hopke, good agreement is obtained between EML GSA and deposition velocity data down to 0.40 nm. Strong evidence is presented that the progeny size reduction is due to, as a result of air ionization, the increased neutralization rate (primarily from electron scavenging of OH molecules) of the initially charged progeny. This is shown to increase with the (1/2) power of (222)Rn concentration and relative humidity as well as increased air change rate in the chamber. These results imply that at (222)Rn levels above 50 kBq m(-3), at relative humidity of 52%, a considerable reduction in lung dose could occur from

  1. Orphan radon daughters at Denver Radium site

    SciTech Connect

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    1992-12-31

    During 18 mo of sampling airborne radioactively at a National Priority List ({open_quotes}Superfund{close_quotes}) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as {open_quotes}orphan{close_quotes} daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the {open_quotes}orphan{close_quotes} daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method, to measure radon daughters, to which thoron daughters contributed 26 {+-} 12%. On average 28 {+-} 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the {sup 218}Po concentration was lower than that of {sup 214}Pb and {sup 214}Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses.

  2. Assessment of lifetime lung cancer risks induced by environmental radon

    SciTech Connect

    Mei, G.T.; Schutz, D.F.

    1987-01-01

    Radon and its progeny in air (/sup 218/Po, /sup 214/Pb, /sup 214/Bi, and /sup 214/Po) may enter the human body by inhalation and cause radiation damage to the respiratory tract to induce lung cancer. Among uranium miners, lung cancer induced by long term exposure to elevated levels of radon progeny is well established. The epidemiological evidence provided by such miners is the principal basis for determining the numerical relationship between environmental levels of radon exposure and lung cancer incidence. A number of lung cancer risk models have been published. All of these models are based on an intensity of radon or radon progeny exposure, referring to an average exposure over time, and on an assumed percentage of occupancy. However, the differences in life-styles among individuals or the seasonal variation in radon levels found in a home, which may influence the level of radon exposure, have not been considered in the published risk models. An assessment of the possible lifetime lung cancer risk from exposure to environmental levels of radon is presented.

  3. Dosimetry modelling of transient radon and progeny concentration peaks: results from in situ measurements in Ikaria spas, Greece.

    PubMed

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios; Petraki, Ermioni; Kottou, Sofia; Yannakopoulos, Panayiotis; Leontaridou, Maria; Louizi, Anna

    2013-06-01

    Radon and progeny ((218)Po, (214)Pb, (214)Bi and (214)Po) are radioactive indoor pollutants recognised for the human radiation burden that they induce. Bathing in thermal spas causes transient concentration peaks of radon and progeny and additional short-term impact in patients and personnel. This paper reports a semi-empirical non-linear first order model for describing radon and progeny variations in treatment rooms of the Ikaria spas. Non-measured physical parameters were estimated from in situ measurements in Ikaria through non-linear numerical solving. Exposure and dose variations were additionally modelled. Attachment rate constants were found to be between 0.44 and 55 h(-1). Deposition rate constants were between 0.28 and 7.3 h(-1) for attached nuclei and 0.42 and 64 h(-1) for unattached nuclei. Unattached progeny peaks were right-shifted compared to those of radon. Modelled effective doses ranged between 0.001 mSv per year and 0.589 mSv per year for patients and between 0.001 mSv per year and 18.9 mSv per year for workers. Apollon spas presented quite high doses. These were the highest reported in Greece and are significant worldwide.

  4. Estimates of inhalation doses resulting from the possible use of phospho-gypsum plaster-board in Australian homes.

    PubMed

    O'Brien, R S; Peggie, J R; Leith, I S

    1995-04-01

    Current materials used as internal lining in Australian buildings are based on natural gypsum of low radium content. A study was carried out to estimate the contribution to the annual effective dose due to airborne contamination from chemical by-product gypsum plaster-board of higher radium content if it were used as an internal lining. The 226Ra content and 222Rn exhalation rate were measured for several samples of the plaster-board, and the behavior of 222Rn and its progeny (218Po, 214Pb, 214Bi, and 214Po) in a typical building was modeled numerically, using the results of the exhalation rate measurements as input. For building ventilation rates greater than approximately 0.5 air changes per hour, the contribution to the total annual effective dose from inhalation of 222Rn and its progeny exhaled from the phospho-gypsum plaster-board is estimated to be below 1 mSv. This contribution is reduced if the surface of the plaster-board is coated with paint or cardboard, or if the very fine particles are removed from the phospho-gypsum during manufacture of the plaster-board. The effective doses arising from dust generation during the installation of the plaster-board are also estimated to be below 1 mSv. The recommended action level of 200 Bq m-3 for radon in air in Australia corresponds to an annual effective dose of approximately 6 mSv. The study indicates that the suggested acceptable level of 185 Bq kg-1 for the 226Ra concentration in the plaster-board may be too restrictive under Australian conditions.

  5. Computer-aided methods for evaluating cancer risk in miners due to radiation exposure.

    PubMed

    Domański, T; Kluszczyński, D; Chruścielewski, W; Olszewski, J

    1993-01-01

    The paper presents some aspects of radiation hazard which occurs in a non-nuclear sector of industry, namely radiation hazard in non-uranium underground mines. The radiation hazard is caused in each type of underground mine by the naturally occurring noble radioactive gas-radon (222Rn) and radioactive products of its decay 218Po, 214Pb, 214Bi/214Po the so-called 'radon daughters' occurring in the mines' air. The paper presents the concept of how to provide a reliable system of assessment of miners' exposure by application of representative individual dosimetry, and also presents principles of computer-aided methods for interpretation of the results of miner's dosimetry useful for conversion of dosimetry data to the term of expected risk of cancer caused by exposure at miner's workplaces. The representative Individual Dosimetry system strengthened by computer-aided methods of analysis of results provided essential information on radiation cancer risk for miners employed in coal mines, metal-ore mines, chemical raw material mines in Poland. The coefficient of annual cancer risk induction is 1.5 x 10(-4) year-1 for coal mines, 1.40 x 10(-4) year-1 for metal ore mines and 1.5 x 10(-4) year-1 for chemical raw material mines. The radiation risk appears to be of the same magnitude as the conventional risk of life loss at work-related accidents. The average Lost Life Expectancy coefficient for both the radiation risk and conventional risk are 0.5 and 0.3 year per each miner, respectively. PMID:8019199

  6. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  7. Concentrations and their ratio of (222)Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector.

    PubMed

    Takeyasu, Masanori; Iida, Takao; Tsujimoto, Tadashi; Yamasaki, Keizo; Ogawa, Yoshihiro

    2006-01-01

    The concentrations and the concentration ratios of individual short-lived (222)Rn decay products ((214)Pb and (214)Bi) in rainwater were measured at Kumatori village (34.39 degrees N, 135.35 degrees E, approximately 70 m above sea level) in Osaka, Japan, by gamma-ray spectrometry using a low-background Ge detector. The dependence of the time variations of the concentrations and their ratios on rainfall rate was investigated. It was observed that the concentrations were negatively correlated with the rainfall rate in some rainfall events, and that there was no clear correlation in other rainfall events. The changes in the dependence of the concentration on the rainfall rate occurred after the passage of a cold front during a single rainfall event. The concentration ratios showed a weak negative correlation with the rainfall rate for most of the observed rainfall events. A scavenging model was designed in this study in order to explain the observation results. Based on the relationship between the concentrations of (214)Pb and (214)Bi in the rainwater and the rainfall rate for an individual rainfall event, the increase in the environmental gamma-ray dose rate from (214)Pb and (214)Bi deposited on the ground was calculated, and the calculated increase agreed well with that observed by the in situ measurement on flat ground. PMID:16530896

  8. United role of radon decay products and nano-aerosols in radon dosimetry

    NASA Astrophysics Data System (ADS)

    Smerajec, M.; Vaupotič, J.

    2012-04-01

    The major part of human exposure to natural radiation originates from inhalation of radon (Rn) and radon short-lived decay products (RnDP: 218Po, 214Pb, 214Bi and 214Po). RnDP are formed as a result of α-transformation of radon. In the beginning they are positive ions which neutralize and form clusters with air molecules, and later partly attach to background aerosol particles in indoor air. Eventually, they appear as radioactive nano-aerosols with a bimodal size distribution in ranges of 1-10 nm (unattached RnDP) and of 200-800 nm (attached RnDP). When inhaled, they are deposited in the respiratory tract. Deposition is more efficient for smaller particles. Therefore, the fraction (fun) of the unattached RnDP, which appears to be influenced by the number concentration and size distribution of general (background) aerosols in the ambient air, has a crucial role in radon dosimetry. Radon, radon decay products and general aerosols have been monitored simultaneously in the kitchen of a typical rural house under real living conditions, also comprising four human activities generating particular matter: cooking and baking, as two typical activities in kitchen, and cigarette smoking and candle burning. In periods without any human activity, the total number concentration of general aerosol ranged from 1000 to 3000 cm-3,with the geometric mean of particle diameter in the range of 60-68 nm and with 0.1-1 % of particles smaller than 10 nm. Preparation of coffee changed the concentration to 193,000 cm-3, the geometric mean of diameter to 20 nm and fraction of particles smaller than 10 nm to 11 %. The respective changes were for baking cake: 503,000 cm-3, 17 nm and 19 %, for smoking:423,000 cm-3, 83 nm and 0.4 %, and forcandle burning: 945,000 cm-3, 8 nm and 85 %. While, as expected, a reduction of fun was observed during cooking, baking and smoking, when larger particles were emitted, fun did not increase during candle burning with mostly particles smaller than 10 nm

  9. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  10. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides. PMID:19027201

  11. Radiometric Meteorology: radon progeny as tracers

    NASA Astrophysics Data System (ADS)

    Greenfield, Mark; Iwata, Atsushi; Ito, Nahoko; Kubo, Kenya; Komura, Kazu; Ishizaki, Miho

    2008-10-01

    In-situ measurement of atmospheric γ radiation from radon progeny determine rain and snow rates to better accuracy than standard rain gauges and gives a handle on how droplets are formed. The measured γ ray rates (GRR) have been shown to be proportional to a power of radiometric precipitation rates (RPR)^α, α giving a handle on the extent to which radon progeny are surface adsorbed or volume absorbed.ootnotetextM. B. Greenfield et al., J. Appl. Phys. 93, (2003) pp 5733-5741. More recently time dependent ratios of GRR from ^214Pb and ^214Bi, concentrated from collected rainwater, have been used to determine the elapsed time since activity from RPR, adhered to rain droplets, was removed from secular equilibrium. Ion exchange resins precipitate out the ^214Pb and ^214Bi ions, which are then filtered from 10s of liters of rainwater or snowmelt. A portable Ge detector is used to integrate the resulting activity over 5-10 min intervals. The measured evolution of these two activities from secular equilibrium to transient equilibrium has meteorological applications enabling both the determination of average elapsed times between the formation of raindrops and the time they reach the ground, as well as an estimate of the initial activity at the source of droplet formation.

  12. Natural radionuclide accumulation by raindrops

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. A time resolution of up to 1 minute allows a detailed comparison of changes in meteorological parameters with those of a concentration of ambient radon progenies in the atmosphere. Results of a study of variation of a fallout of radon progenies ^{214}Pb and ^{214}Bi concomitanting rainfalls are present. The radionuclide fallout rate is reconstructed from the observed gamma rate through a simulation of the first kind Volterra integral equation with difference kernel, determined by ratio of precipitating rates of 214Pb and 214Bi and their decay half times. An original straightforward step-by-step procedure was used for the numerical solution of the equation. The radionuclide concentration in the rainwater is calculated as a ratio of the reconstructed fallout to the measured rainfall. It was observed that the radionuclide fallout rate increases as the rainfall one in approximately power 0.6, i.e. the same as the mean raindrop volume. The concentration thereafter decreases as the rainfall rate in power 0.4. A numerical simulation of the process of accumulation of the radionuclides during diffusion and coalescence drop growth and aerosol scavenging during a passage from a cloud to the ground was performed. The results of the simulations agree with the experimental data.

  13. A portable battery-powered continuous airborne {sup 222}Rn sampler

    SciTech Connect

    Scarpitta, S.; Kadnar, M.

    1998-04-01

    The Polyport, designed at the Environmental Measurements Laboratory (EML) for deployment in atmospheric balloons or remote areas, was laboratory and field tested to determine its effectiveness in collecting {sup 222}Rn gas in dry and humid air. Twelve 6-cm long tubes containing 0.4 g of Carboxen{trademark}-564 a hydrophobic beaded carbon molecular sieve (BCMS) material efficiently adsorbs airborne {sup 222}Rn under dynamic sampling conditions of 1--2 hr duration. The exposed sorbent is later weighed for water uptake, transferred and counted in a low background liquid scintillation (LS) counter that can detect alpha and beta emitting {sup 222}Rn progeny with a maximum counting efficiency of 5 cpm per dpm. Each sorbent tube can be gamma counted if it contains sufficient adsorbed {sup 214}Pb and {sup 214}Bi activity. The variables tested were sampling flow rate, temperature, sampling time and relative humidity (RH).

  14. Measurement of radioactivity levels and assessment of radioactivity hazards of soil samples in Karaman, Turkey.

    PubMed

    Agar, O; Boztosun, I; Korkmaz, M E; Özmen, S F

    2014-12-01

    In this study, the levels of the natural and artificial radioactivity in soil samples collected from surrounding of Karaman in Turkey were measured. Activity concentrations of the concerned radionuclides were determined by gamma-ray spectrometry using a high-purity germanium detector with a relative efficiency of 40 % at 1.332 MeV. The results obtained for the (238)U series ((226)Ra, (214)Pb and (214)Bi), (232)Th series ((228)Ac), (40)K and fission product (137)Cs are discussed. To evaluate the radiological hazard of radioactivity in samples, the radium equivalent activity (Raeq), the absorbed dose rate (D), the annual effective dose and the external (Hex) and internal hazard index (Hin) were calculated and presented in comparison with the data collected from different areas in the world and Turkey.

  15. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    NASA Astrophysics Data System (ADS)

    Mujaini, M.; Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-01

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  16. Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM).

    PubMed

    Rich, Alisa L; Crosby, Ernest C

    2013-01-01

    Soil and water (sludge) obtained from reserve pits used in unconventional natural gas mining was analyzed for the presence of technologically enhanced naturally occurring radioactive material (TENORM). Samples were analyzed for total gamma, alpha, and beta radiation, and specific radionuclides: beryllium, potassium, scandium, cobalt, cesium, thallium, lead-210 and -214, bismuth-212 and -214, radium-226 and -228, thorium, uranium, and strontium-89 and -90. Laboratory analysis confirmed elevated beta readings recorded at 1329 ± 311 pCi/g. Specific radionuclides present in an active reserve pit and the soil of a leveled, vacated reserve pit included 232Thorium decay series (228Ra, 228Th, 208Tl), and 226Radium decay series (214Pb, 214Bi, 210Pb) radionuclides. The potential for impact of TENORM to the environment, occupational workers, and the general public is presented with potential health effects of individual radionuclides. Current oversight, exemption of TENORM in federal and state regulations, and complexity in reporting are discussed.

  17. Attached and unattached fractions of short-lived radon decay products in outdoor environments: effect on the human respiratory system.

    PubMed

    Amrane, M; Oufni, L; Misdaq, M A

    2014-12-01

    The authors developed a model for determining the alpha- and beta-activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their decay products attached and unattached to the aerosol in the outdoor air at the workplace in natural conditions at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors. In addition, the percentage of (218)Po, (214)Pb and (214)Po radionuclides attached to the aerosols and the unattached fraction f(j) for different values of the attachment rate were evaluated. Radon and thoron concentrations in outdoor air of the studied different locations were found to vary from 9.20±0.8 to 16.30±1.50 Bq m(-3) and 0.22±0.02 to 1.80±0.20 Bq m(-3), respectively. The committed equivalent doses due to the radon short-lived progeny (218)Po and (214)Po attached and unattached to the aerosol air were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air.

  18. Determination of rain age via {gamma} rays from accreted radon progeny

    SciTech Connect

    Greenfield, M. B.; Ito, N.; Iwata, A.; Kubo, K.; Ishigaki, M.; Komura, K.

    2008-10-01

    The relative {gamma} ray activities from {sup 214}Pb and {sup 214}Bi condensed from precipitation are used to determine its 'age', the average time the accreted activity has been removed from secular equilibrium. A verifiable assumption that radon progeny on/in the surface/volume of droplets mostly remains in secular equilibrium until they begin their descent, enables estimates of their transit times to ground of typically a few tens of minutes. This agrees well with the time expected for the activity on the surface of droplets to reach the ground from heights of a few kilometers. The half lives of {gamma} activities from {sup 214}Bi and {sup 214}Pb, 19.7 and 26.9 min, respectively, are on the same scale as transit time to ground and close enough to each other to measure ratios of activities from secular equilibrium (1.00) to transient equilibrium (3.88) within a few hundreds of minutes. The ratio of {gamma} count rates is independent of knowledge of either initial activity or any systematic errors and thus limited only by the uncertainty from counting statistics, which from condensates of 5-30 l of rain viewed with 2{pi} solid angle by a 50% efficient, high-resolution Ge detector is only a few percent. These ratios fit extremely well to known theoretical curves, which cannot only be used to date rain but can also be extrapolated backward to determine radon progeny activities in rain prior to its descent, knowledge of which may facilitate further studies using radon progeny as tracers.

  19. Comparison of in situ and laboratory gamma spectroscopy of natural radionuclides in desert soil.

    PubMed

    Benke, R R; Kearfott, K J

    1997-08-01

    In situ and laboratory gamma spectroscopy were used to characterize natural background levels of radiation in the soil at eight sites around the Yucca Mountain Range. The purpose of this practical field analysis was to determine if published empirical in situ calibration factors would yield accurate quantitative specific activities (Bq kg(-1)) in a desert environment. Corrections were made to the in situ calibration factors to account for the on-axis response of a detector with a thin beryllium end window. The in situ gamma spectroscopy results were compared to laboratory gamma spectroscopy of soil samples gathered from each site. Five natural radionuclides were considered: 40K, 214Pb, 214Bi, 208Tl, and 228Ac. The in situ determined specific activities were consistently within +/-15% of the laboratory soil sample results. A quantitative discussion of the factors contributing to the uncertainty in the in situ and laboratory results is included. Analysis on the specific activity data using statistical hypothesis tests determined that three nuclides, 214Pb, 214Bi, and 228Ac showed a weak site dependence while the other two nuclides, 40K and 208Tl, did not exhibit a site dependence. Differing radiation background levels from site to site along with in situ and laboratory uncertainties in excess of 10% are two factors that account for the weak site dependence. Despite the good correlation between data, it was recommended that the in situ detector be calibrated by a detector-specific Monte Carlo code which would accurately model more complex geometries and source distributions. PMID:9228170

  20. Dose assessment of bremsstrahlung induced by beta-emitting radioisotopes of uranium-238 series and lead in human tissues.

    PubMed

    Manjunatha, H C

    2014-01-01

    In the natural uranium-238 decay series, pure beta isotopes such as (234)Th, (234)Pa, (214)Pb, (214)Bi, (210)Pb and (210)Bi are released. The few lead isotopes such as (211)Pb, (212)Pb, (213)Pb and (215)Pb are good beta emitters. In certain nuclear reactions of reactor these isotopes are released. These beta isotopes have maximum beta energies, which induce the bremsstrahlung radiation. The bremsstrahlung component of these beta isotopes has been traditionally ignored in dosimetry calculations. The shapes of bremsstrahlung spectra are a basic ingredient in the understanding and quantification of beta-ray dosimetry. The bremsstrahlung spectra produced by these high-energy isotopes such as (234)Th, (234)Pa, (214)Pb, (214)Bi, (210)Pb, (210)Bi, (211)Pb, (212)Pb, (213)Pb and (215)Pb in bone, muscle and teeth are studied, and the computed spectral distributions are presented. The spectral shapes are primarily responsible for variations in the shapes of depth-dose distributions. They are intended to provide a quick and convenient reference for spectral shapes and to give an indication of the wide variation in these shapes. The evaluated beta bremsstrahlung dose as a function distance for the studied nuclides is also presented. The efficiency, intensity and dose rate of bremsstrahlung induced by beta isotopes of natural uranium-238 decay series and beta-emitting lead isotopes in human tissues such as brain, breast, heart, kidney, liver, muscle, pancreas and bone have also been studied in the present investigation. The values of bremsstrahlung dosimetric parameters are low for pancreas, but they are high for bone. For all studied tissues these parameters are high for (234)Pa, but low for (210)Pb.

  1. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2006-09-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that 222Rn short-lived daughters, e.g. 218Po and 214Pb, have relevant radioactive decaying contributions acting as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a discrepancy in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations collapse due to the rapid growth

  2. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2007-02-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that the relevant radioactive decaying contributions of 222Rn short-lived daughters (218Po and 214Pb) act as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a variation in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations decrease due to the rapid growth of the

  3. Radon decay products in realistic living rooms and their activity distributions in human respiratory system.

    PubMed

    Mohery, M; Abdallah, A M; Baz, S S; Al-Amoudi, Z M

    2014-12-01

    In this study, the individual activity concentrations of attached short-lived radon decay products ((218)Po, (214)Pb and (214)Po) in aerosol particles were measured in ten poorly ventilated realistic living rooms. Using standard methodologies, the samples were collected using a filter holder technique connected with alpha-spectrometric. The mean value of air activity concentration of these radionuclides was found to be 5.3±0.8, 4.5±0.5 and 3.9±0.4 Bq m(-3), respectively. Based on the physical properties of the attached decay products and physiological parameters of light work activity for an adult human male recommended by ICRP 66 and considering the parameters of activity size distribution (AMD = 0.25 μm and σ(g) = 2.5) given by NRC, the total and regional deposition fractions in each airway generation could be evaluated. Moreover, the total and regional equivalent doses in the human respiratory tract could be estimated. In addition, the surface activity distribution per generation is calculated for the bronchial region (BB) and the bronchiolar region (bb) of the respiratory system. The maximum values of these activities were found in the upper bronchial airway generations.

  4. A two-particle-size model and measurements of radon progeny near the Earth`s surface

    SciTech Connect

    Schery, S.D.; Wasiolek, P.T.

    1993-12-20

    Measurements of radon progeny in the attached-to-aerosol and unattached-to-aerosol states were made in central New Mexico. Simultaneous measurements of attached and unattached progeny at 0.2 and 2 m were carried out over a range of meteorological and terrain conditions. The ratio of the average progeny concentrations at 2.2 to 0.2 m was 1.06 for total progeny and 1.35 for unattached progeny, indicating a net downward flux, with the unattached progeny dominating removal to the Earth`s surface. Progeny/parent activity ratios greater than 1 were clearly detected (for example, at 0.2 m, the average {sup 214}Pb/{sup 218}Po ratio was 1.43 {+-} 0.10), providing partial support for some previous observations. A two-particle-size model for radon progeny is able to account for the observed gradients, progeny/parent activity ratios greater than 1, and some trends in the experimental measurements as a function of meteorological conditions. 32 refs., 7 figs., 4 tabs.

  5. Natural Radionuclides In Mineral Sand Products From A Processing Plant In Northeastern Brazil

    SciTech Connect

    Hazin, C. A.; Khoury, H. J.; Silveira, S. V.

    2008-08-07

    This paper presents the results of a preliminary investigation carried out in a mineral sand processing plant located in the coastal region of Northeastern Brazil. The study aimed to determine the natural radionuclide content of the mineral products extracted from beach sands, with special emphasis on zircon. Measurements were performed through gamma spectrometry, by using a high-purity germanium detector (HPGe) coupled to a multichannel analyzer. Activity concentrations of {sup 226}Ra and {sup 228}Ra were determined by measuring some of the radon progeny activity concentrations ({sup 214}Pb and {sup 214}Bi for {sup 226}Ra, and {sup 228}Ac and {sup 208}Tl for {sup 228}Ra) and assuming an equilibrium condition upstream of the radon progeny. The results of the measurements carried out for the zircon samples showed activity concentrations ranging from 18.09 to 48.51 kBq kg{sup -1} for {sup 226}Ra. The results for {sup 228}Ra, on the other hand, were consistently lower than those obtained for {sup 226}Ra, ranging from 2.72 to 18.31 kBq kg{sup -1}.

  6. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed.

  7. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    SciTech Connect

    Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler; Livesay, Jake

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  8. Dating of sediments from four Swiss prealpine lakes with (210)Pb determined by gamma-spectrometry: progress and problems.

    PubMed

    Putyrskaya, V; Klemt, E; Röllin, S; Astner, M; Sahli, H

    2015-07-01

    In this paper the most important problems in dating lake sediments with unsupported (210)Pb are summarized and the progress in gamma-spectrometry of the unsupported (210)Pb is discussed. The main topics of these studies concern sediment samples preparation for gamma-spectrometry, measurement techniques and data analysis, as well as understanding of accumulation and sedimentation processes in lakes. The vertical distributions of artificial ((137)Cs, (241)Am, (239)Pu) and natural radionuclides ((40)K, (210,214)Pb, (214)Bi) as well as stable trace elements (Fe, Mn, Pb) in sediment cores from four Swiss lakes were used as examples for the interpretation, inter-comparison and validation of depth-age relations established by three (210)Pb-based models (CF-CSR, CRS and SIT). The identification of turbidite layers and the influence of the turbidity flows on the accuracy of sediment dating is demonstrated. Time-dependent mass sedimentation rates in lakes Brienz, Thun, Biel and Lucerne are discussed and compared with published data.

  9. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating

    NASA Astrophysics Data System (ADS)

    de Corte, F.; Vandenberghe, D.; de Wispelaere, A.; Buylaert, J.-P.; van den Haute, P.

    2006-01-01

    In Ge gamma-ray spectrometry for the annual radiation dose determination in the luminescence dating of sediments, the picture of 226Ra enrichment or depletion (in the 238U decay series) obtained via measurement of its 214Pb and 214Bi daughters may be disturbed by the 222Rn-content of the sample being decreased due to manipulations such as drying and pulverizing. Therefore, it is common practice to start the measurement only about 1 month after encapsulating the material, after which the 226Ra(1600 a)- 222Rn(3.82 d) mother-daughter equilibrium is re-established. Evidently, this only holds on condition that no significant escape of Rn occurs out of the sediment after making it up for counting. In order to experimentally investigate this effect, in the present work measurements were carried out with various types of dried and pulverized sediments that were either encapsulated in screw-cap polystyrene vials or in sealed glass containers, or that were mixed with molten wax followed by solidification in a cylindrical geometry. From the results obtained, it could be concluded that preparation and counting of the sediment-wax mixture is the method of choice.

  10. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  11. Gamma radiation and dose rate investigations on the Adriatic islands of magmatic origin.

    PubMed

    Petrinec, Branko; Franić, Zdenko; Leder, Nenad; Tsabaris, Christos; Bituh, Tomislav; Marović, Gordana

    2010-06-01

    Natural radioactivity of Middle-Adriatic Sea islands and islets was measured. Gamma spectrometric measurements, both in situ and in laboratory, as well as radon measurements in the seawater were performed. Activity concentrations and the associated dose rates due to naturally occurring (232)Th, (238)U and (40)K radioisotopes were determined. Dose rates calculated from in situ gamma spectrometry are in correlation with dose rates calculated from activity concentrations measured in collected samples of pebbles and rocks. In situ gamma ray spectrometry in the seawater has been performed, showing activity concentration of 220 and 240 Bq m(-3) for (214)Bi and (214)Pb, respectively due to the presence of magmatic rocks in the seabed. The radium equivalent activity varied from 13 to 53 Bq kg(-1). These values are lower than the limit values, indicating that the radiation hazard is not significant. The highest mean activity concentrations of naturally occurring radionuclides in rock samples collected were found on the islands of magmatic origin. PMID:20085897

  12. New insights into the chemical and isotopic composition of human-body biominerals. I: Cholesterol gallstones from England and Greece.

    PubMed

    Athanasiadou, Dimitra; Godelitsas, Athanasios; Sokaras, Dimosthenis; Karydas, Andreas-Germanos; Dotsika, Elisavet; Potamitis, Constantinos; Zervou, Maria; Xanthos, Stelios; Chatzitheodoridis, Elias; Gooi, Hock Chye; Becker, Udo

    2013-04-01

    We have analyzed gallstones from four patients of Europe and particularly from England (including samples from a mother and a daughter) and Greece. According to the XRD, FTIR, NMR and laser micro-Raman results the studied materials correspond to typical cholesterol monohydrate (ChM). The micro-morphology of cholesterol microcrystals was investigated by means of SEM-EDS. The XRF results revealed that Ca is the dominant non-organic metal in all gallstones (up to ∼1.95wt.%) together with Fe, Cu, Pb and Ni (up to ~19ppm for each metal). Gallstones from England contain additional Mn (up to ~87ppm) and Zn (up to ∼6ppm) while the sample of the mother contains negligible Zn and Mn, compared to that of her daughter, but significant As (~4.5ppm). All cholesterol gallstones examined are well enriched in potentially toxic metals (Pb, as well as Ni in one case) and metalloids (As also in one case) as compared to the global average. The position of Zn, which is a characteristic biometal, in the structure of cholesterol, was investigated by molecular simulation using the Accelrys Materials Studio(®) software. On the basis of IRMS results, all gallstones examined exhibit a very light δ(13)C signature (average δ(13)C ~-24‰ PDB). Gamma-ray spectrometry measurements indicate the presence of (214)Pb and (214)Bi natural radionuclides due to the (238)U series as well as an additional amount of (40)K.

  13. Measurement of radon decay products and thoron decay products in air by beta counting using end-window Geiger-Muller counter.

    PubMed

    Papp, Z; Daróczy, S

    1997-04-01

    A new grab sampling method has been developed for the simultaneous measurement of radon decay products and thoron decay products in air. It is based on direct beta counting of filtered aerosol sample over successive time intervals by end-window Geiger-Muller counter. Defined solid angle absolute counting was used to evaluate the efficiencies for the decay products one by one. Absolute activity concentrations can be determined with less than 10% systematic error. Glass-fiber filter, high sampling flow rate, and long duration of sampling can be used, as a result of which the detection limits are about 0.1, 0.2, and 0.01 Bq m(-3) for 214Pb, 214Bi, and 212Pb, respectively. Indoor saturated activity concentrations were measured in 86 buildings in Ajka town, Hungary, where industrial wastes rich in uranium had been used as building materials. Elevated radon decay product levels were found in houses built before 1960. Radon gas concentration was also measured simultaneously in 26 cases and the minimum, maximum, and average values of the equilibrium factor were 0.17, 0.73, and 0.40, respectively.

  14. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    SciTech Connect

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  15. Radionuclide concentrations in soils and vegetation at radioactive-waste disposal Area G during the 1996 growing season. Progress report

    SciTech Connect

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1997-07-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G--a low-level radioactive solid-waste disposal facility at Los Alamos National laboratory--were analyzed for {sup 3}H, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 137}Cs, {sup 234}U, {sup 235}U, {sup 238}U, {sup tot}U, {sup 228}Ac, {sup 214}Bi, {sup 60}Co, {sup 40}K, {sup 54}Mn, {sup 22}Na, {sup 214}Pb, and {sup 208}Tl. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in soil and vegetation were determined. In general, most radionuclide concentrations, with the exception of {sup 3}H and {sup 239}Pu, in soils and washed and unwashed overstory and understory vegetation collected from within and around Area G were within upper limit background concentrations. Tritium was detected as high as 14,744 pCi mL{sup {minus}1} in understory vegetation collected from transuranic (TRU) waste pad {number_sign}4, and the TRU waste pad area contained the highest levels of {sup 239}Pu in soils and in understory vegetation as compared to other areas at Area G.

  16. Comparison of Activity Determination of Radium 226 in FUSRAP Soil using Various Energy Lines - 12299

    SciTech Connect

    Tucker, Brian; Donakowski, Jough; Hays, David

    2012-07-01

    Gamma spectroscopy is used at the Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood Superfund Site as the primary radioanalytical tool for quantization of activities of the radionuclides of concern in site soil. When selecting energy lines in gamma spectroscopy, a number of factors are considered including assumptions concerning secondary equilibrium, interferences, and the strength of the lines. The case of the Maywood radionuclide of concern radium-226 (Ra-226) is considered in this paper. At the FUSRAP Maywood Superfund Site, one of the daughters produced from radioactive decay of Ra-226, lead-214 (Pb- 214), is used to quantitate Ra-226. Another Ra-226 daughter, bismuth-214 (Bi-214), also may be used to quantitate Ra-226. In this paper, a comparison of Ra-226 to Pb-214 activities and Ra-226 to Bi-214 activities, obtained using gamma spectrometry for a large number of soil samples, was performed. The Pb-214, Bi-214, and Ra-226 activities were quantitated using the 352 kilo electron volt (keV), 609 keV, and 186 keV lines, respectively. The comparisons were made after correcting the Ra-226 activities by a factor of 0.571 and both ignoring and accounting for the contribution of a U-235 interfering line to the Ra-226 line. For the Pb-214 and Bi-214 activities, a mean in-growth factor was employed. The gamma spectrometer was calibrated for efficiency and energy using a mixed gamma standard and an energy range of 59 keV to 1830 keV. The authors expect other sites with Ra-226 contamination in soil may benefit from the discussions and points in this paper. Proper use of correction factors and comparison of the data from three different gamma-emitting radionuclides revealed agreement with expectations and provided confidence that using such correction factors generates quality data. The results indicate that if contamination is low level and due to NORM, the Ra-226 can be measured directly if corrected to subtract the contribution from U-235. If there is

  17. U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico

    SciTech Connect

    D. French; E. Anthony; P. Goodell

    2006-03-16

    The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s a maximum residence time for the boulder is about 25 years, this also means that the soil was at background as well. The purpose of this study is to characterize the transport of uranium series radionuclides from ore to the soil. Transport is characterized by determining the activities of individual radionuclides and daughter to parent ratios. Isotopes of the uranium series decay chain detected include {sup 210}Pb, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 214}Pb, and {sup 214}Bi. Peak areas for each isotope are determined using gamma-ray spectroscopy with a Canberra Ge (Li) detector and GENIE 2000 software. The boulder sample is close to secular equilibrium when compared to the standard BL-5 (Beaver Lodge Uraninite from Canada). Results for the soils, however, indicate that some daughter/parent pairs are in secular disequilibrium. These daughter/parent (D/P) ratios include {sup 230}Th/{sup 234}U, which is greater than unity, {sup 226}Ra/{sup 230}Th, which is also greater than unity, and {sup 210}Pb/{sup 214}Bi, which is less than unity. The gamma-ray spectrum for organic material lacks {sup 230}Th peaks, but contains {sup 234}U and {sup 226}Ra, indicating that plants preferentially incorporate {sup 226}Ra. Our results, combined with previous studies require multistage history of mobilization of the uranium series radionuclides. Earlier studies at the ore zone could limit the time span for mobilization only

  18. New Neutron Rich Nuclei Near {sup 208}Pb

    SciTech Connect

    Aeystoe, J.; Andreyev, A.; Evensen, A.-H.; Hoff, P.; Huhta, M.; Huyse, M.; ISOLDE Collaboration; Jokinen, A.; Karny, M.; Kugler, E.; Kurpeta, J.; Lettry, J.; Nieminen, A.; Plochocki, A.; Ramdhane, M.; Ravn, H.; Rykaczewski, K.; Szerypo, J.; VanDuppen, P.; Walter, G.; Woehr, A.

    1998-11-13

    The level properties near the stable doubly-magic nuclei formed the experimental grounds for the theoretical description of nuclear structure. However with a departure from the beta-stability line, the classical well-established shell structure might be modified. In particular, it may even vanish for extremely exotic neutron-rich nuclei near the neutron-drip line. Presently, it is impossible to verify such predictions by a direct experimental studies of these exotic objects. However, one may try to observe and understand the evolution of the nuclear structure while departing in the experiment as far as possible from the stable nuclei. An extension of experimental nuclear structure studies towards the nuclei characterized by high neutron excess is crucial for such verifications as well as for the {tau}-process nucleosynthesis scenario. Heavy neutron-rich nuclei, south-east of doubly-magic {sup 208}Pb, were always very difficult to produce and investigate. The nuclei like {sup 218}Po and {sup 214}Pb or {sup 210}Tl marked the border line of known nuclei from the beginning of the radioactivity era for over ninety years. To illustrate the difficulties, one can refer to the experiments employing the on-line mass separator technique. A spallation of heavy targets like {sup 232}Th and {sup 238}U by high-energy protons was proven as a source of heavy neutron-rich nuclei. The isotopes near and beyond doubly-magic {sup 208}Pb were produced too. However, such studies often suffered from an isobaric contamination of much more strongly produced and efficiently released elements like francium or radon and their decay products. A new experimental technique, based on the pulsed release element selective method recently developed at the PS Booster-ISOLDE at CERN [7,8,9] greatly reduces the contamination of these very short-lived {alpha}-emitters (Z {ge} 84) for the isobaric mass chains A=215 to A=218.

  19. Distribution of natural radioactivity in sediment cores from Amvrakikos Gulf (Western Greece) as a part of IAEA's campaign in the Adriatic and Ionian Seas.

    PubMed

    Tsabaris, C; Evangeliou, N; Fillis-Tsirakis, E; Sotiropoulou, M; Patiris, D L; Florou, H

    2012-07-01

    The vertical distribution of natural radionuclides ((232)Th decay, (238)U decay, (40)K and (210)Pb) was assessed in sediment cores collected from the Amvrakikos Gulf, (Ionian Sea, Western Greece). Two collection stations were selected, the first at the western part of the Gulf near Preveza Strait (13A station) and the other near the centre of the Gulf (13B station). Activity concentrations were measured by means of gamma-ray spectrometry using high-purity germanium (HPGe) detectors installed at two national laboratories. The activity concentration of (226)Ra was found in a range from 10 to 20 Bq kg(-1), while the activity concentration of (222)Rn daughters ((214)Pb, (214)Bi) ranged from 6 to 20 Bq kg(-1). The activity concentration of (228)Ac varied from 20 to 28 Bq kg(-1), while (220)Rn daughters ((212)Pb, (208)Tl) from 7 to 35 Bq kg(-1). As concerns (40)K and (210)Pb, their activities varied from 400 to 830 Bq kg(-1) and from 11 to 360 Bq kg(-1), respectively. Also, the data of (210)Pb were utilised in the calculations of the sedimentation rate along the sediment cores. Both locations were characterised by a consistent pattern with the average rates of 0.55 ± 0.02 and 0.32 ± 0.02 cm y(-1), corresponding to 13A and 13B stations, respectively. Finally, the measurements constituted the basis of the first reported database concerning the radiological condition of the Gulf and which can be reclaimed as reference values in future monitoring studies.

  20. Environmental radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region, KSA

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Baz, Shadiah; Kelany, Adel M.; Abdallah, A. M.

    2014-04-01

    The natural radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region as well as the activity in the population of its surrounding environments were studied. In the regions surrounding Jeddah, the movements of floating water may increase the concentration of radioactivity due to the movement of soil due to heavy rains. In addition, the technological development of industry, agriculture and other sources around the Jeddah region has increased environmental pollution, resulting in noticeable concentrations of radioactivity. The measured activity concentrations of 214Pb, 214Bi, 228Ac, 208Tl, 40K, 226Ra and 228Ra in the studied area suggest that they are within the world average for soils and sediments, except those for water sample no. 4; the concentration in this sample was five times higher than the world average concentration (this water is not consumable). Herein, the radioactivity concentrations that were obtained from the analysis of soil and sediment samples that were collected from the investigated area are discussed. Additionally, the absorbed dose rate (D), radium equivalent activity (Raeq), external hazard index (Hex), annual gonadal dose equivalent (AGDE) and annual effective dose equivalent (AEDE) were evaluated. For the soil and sediment samples, the average radioactivity concentrations were determined for each site and are expressed in Becquerels per kilogram (Bq/kg) of dry weight, while for the measurement of both the 226Ra and 228Ra isotopes in the water samples, the activity concentration is expressed in picoCuries per liter (pCi/l). The obtained results were compared with other measurements from different countries. The movement of floating water around the Jeddah region increases the concentration of radioactivity due to the movement of soils with heavy rains.

  1. Radioactive nuclides in the incinerator ashes of municipal solid wastes before and after the accident at the Fukushima nuclear power plant.

    PubMed

    Iwahana, Yuki; Ohbuchi, Atsushi; Koike, Yuya; Kitano, Masaru; Nakamura, Toshihiro

    2013-01-01

    Radioactive nuclides in the incinerator ashes of municipal solid wastes were determined by γ-ray spectrometry before and after the accident at the Fukushima nuclear power plant (March 11, 2011). Incinerator ash samples were collected in northern Kyushu, Japan, which is located approximately 1200 km west-southwest (WSW) of the Fukushima nuclear power plant, from April 2006 to March 2007 and from March 2011 to October 2011. (40)K, (137)Cs, (208)Tl, (212)Pb, (214)Pb, (212)Bi, (214)Bi, and (228)Ac were identified in the ashes before the accident (~February 2011) and (134)Cs was identified along with these eight nuclides in the ashes after the accident (March 2011~). A sequential extraction procedure based on a modified Tessier method with added water extraction was used for 1st fly ash sampled in August 2011 because the highest activity concentrations of (134)Cs and (137)Cs were observed for this sample. The speciation of radioactive nuclides in the fly ash was achieved by γ-ray spectrometry and powder X-ray diffractometry for the extraction residues. Little variation was observed in the distribution of the chemical forms of (134)Cs and (137)Cs in 1st fly ash of municipal solid waste; one half of (134)Cs existed as water soluble salts and the other half as carbonate compounds, whereas 75% of (137)Cs existed as water soluble salts with the remainder as carbonates(10%) and sulfides (15%). These results show that 88% of the total radioactive Cs existed in water soluble and ion extractive forms and might be at risk for elution and diffusion with rain and wind.

  2. The low-level radioactivity ocean sediment standard reference material

    SciTech Connect

    Inn, K.G.W.; Lin, Z.; Liggett, W.S.; Krey, P.W.

    1995-12-31

    Over the past decades, on the order of 10{sup 15} Becquerel nuclear waste have been stored in the oceans. Potential contamination of the oceans from leaking nuclear waste has caused world wide concern. Currently, early warning of ocean contamination near the waste dumping sites rely on monitoring systems being set up by different countries and agencies. Because the determination of low-level radioactivity in ocean sediment is a difficult technical task, a basis for measurement quality assurance, methods verification, and data comparability is needed. The recently certified NIST ocean sediment Standard Reference Material (SRM-4355) is a composite of 1% contaminated Irish Sea sediment and 99% of Chesapeake Bay sediment by weight. The sediments were blended, pulverized to a median particle size of 8 {mu}m, and reblended to achieve acceptable sample homogeneity. A statistical assessment of the intercomparison results from 19 laboratories has shown the material to be homogeneous down to 10 grams. The certified radionuclide concentration range from 0.4 to 230 mBq/g. A variety of radiochemical procedures and detection techniques have been used in the measurements to minimize possible systematic bias. Twelve radionuclides including {sup 40}K, {sup 90}Sr, {sup 137}Cs, {sup 226}Ra, {sup 228}Th, {sup 230}Th, {sup 232}Th, {sup 234}U, {sup 235}U, {sup 238}U, {sup 238}Pu, and {sup (239+240)}Pu were certified. The mean values were reported for an additional 10 uncertified radionuclides: {sup 129}I, {sup 155}Eu, {sup 210}Po, {sup 210}Pb, {sup 212}Pb, {sup 214}Pb, {sup 214}Bi, {sup 228}Ra, {sup 237}Np, and {sup 241}Am. The standard reference material in unit quantities of about 100 gram each will be available by the end of 1995.

  3. Concurrent determination of 224Ra, 226Ra, 228Ra, and unsupported 212Pb in a single analysis for drinking water and wastewater: dissolved and suspended fractions.

    PubMed

    Parsa, Bahman; Obed, Reynaldo N; Nemeth, William K; Suozzo, Gail

    2004-02-01

    A technique has been developed for the measurement of 224Ra, 226Ra, 228Ra, and unsupported 2t2Pb concurrently in a single analysis. The procedure can be applied to both drinking water and wastewater, including the dissolved and suspended fractions of a sample. For drinking water samples, using 3-L aliquots, the radium isotopes are isolated by a fast PbSO4 co-precipitation and then quantified by gamma-ray spectroscopy. The radium isotopes 224Ra, 226Ra, and 228Ra are measured through their gamma-ray-emitting decay products, 212Pb, 214Pb (and/or 214Bi), and 228Ac, respectively. Because of the short half-life of 224Ra (T1/2 = 3.66 d), the precipitate should be counted within 4 d of the sample collection date. In case the measurement of unsupported 212Pb (T1/2 = 10.64 h) is required, the gamma-ray analysis should be initiated as soon as possible, preferably on the same day of collection. The counting is repeated after about 21 d to ensure the 226Ra progeny are in equilibrium with their parent. At this point, the 228Ac equilibration with its 228Ra parent is already established. In the case of samples containing suspended materials, an aliquot of sample is filtered and then the filtrate is treated as described above for drinking water samples. The suspended fraction of sample, collected on the filter, is directly analyzed by gamma-ray spectroscopy with no further chemical separation. Aliquots of de-ionized water spiked with various radium standards were analyzed to check the accuracy and precision of the method. In addition, analysis results of actual samples using this method were compared with the ones performed using U.S. Environmental Protection Agency-approved procedures, and the measured values were in close agreement. This method simplifies the analytical procedures and reduces the labor while achieving the precision, accuracy, and minimum detection concentration requirements of EPA's Regulations.

  4. Preliminary study of a radiological survey in an abandoned uranium mining area in Madagascar

    NASA Astrophysics Data System (ADS)

    N, Rabesiranana; M, Rasolonirina; F, Solonjara A.; Andriambololona., Raoelina; L, Mabit

    2010-05-01

    The region of Vinaninkarena located in central Madagascar (47°02'40"E, 19°57'17"S), is known to be a high natural radioactive area. Uranium ore was extracted in this region during the 1950s and the early 1960s. In the mid-1960s, mining activities were stopped and the site abandoned. In the meantime, the region, which used to be without any inhabitants, has recently been occupied by new settlers with presumed increase in exposure of the local population to natural ionizing radiation. In order to assess radiological risk, a survey to assess the soil natural radioactivity background was conducted during the year 2004. This study was implemented in the frame of the FADES Project SP99v1b_21 entitled: Assessment of the environmental pollution by multidisciplinary approach, and the International Atomic Energy Agency Technical Cooperation Project MAG 7002 entitled: Effects of air and water pollution on human health. Global Positioning System (GPS) was used to determine the geographical coordinates of the top soil samples (0-15cm) collected. The sampling was performed using a multi integrated scale approach to estimate the spatial variability of the parameters under investigation (U, Th and K) using geo-statistical approach. A total of 205 soil samples was collected in the study site (16 km2). After humidity correction, the samples were sealed in 100 cm3 cylindrical air-tight plastic containers and stored for more than 6 months to reach a secular equilibrium between parents and short-lived progeny (226Ra and progeny, 238U and 234Th). Measurements were performed using a high-resolution HPGe Gamma-detector with a 30% relative efficiency and an energy resolution of 1.8 keV at 1332.5 keV, allowing the determination of the uranium and thorium series and 40K. In case of secular equilibrium, a non-gamma-emitting radionuclide activity was deduced from its gamma emitting progeny. This was the case for 238U (from 234Th), 226Ra (from 214Pb and 214Bi) and 232Th (from 228Ac, 212Pb or

  5. Radon loss from zircon: emanation and diffusion as a function of grain size, temperature and fission track density

    NASA Astrophysics Data System (ADS)

    Eakin, M.; Brownlee, S. J.; Baskaran, M. M.; Barbero, L.; Walsh, C. N.

    2013-12-01

    Bancroft zircon to 975C for different durations. 222Rn loss after heating was assessed by measuring the activity of the daughter products of 222Rn (214Bi and 214Pb), in addition to 226Ra, 228Ra, 234Th, and 210Pb, using gamma spectroscopy before and after heating. Initial results indicate slow diffusion of 222Rn, and suggest there may be structural changes in the zircon lattice at long heating durations. We are currently conducting similar experiments at different temperatures. Results of both experiments have implications for U/Th-Pb geochronology (i.e., discordant ages), and noble gas escape systematics in zircon (i.e., volume diffusion or fast pathway escape).

  6. The COBRA Double Beta Decay Experiment

    SciTech Connect

    Dawson, J. V.

    2007-03-28

    The progress of the COBRA neutrinoless double beta decay experiment is discussed. Potential backgrounds are described. Estimates on the contamination levels of 214Bi in the detectors have been made using previously acquired low background data. New crystals with a different passivation material show an improved background count rate of approximately one order of magnitude.

  7. A radiometric and petrographic approach to risk assessment at Alte Madonie Mounts region (Sicily, Italy).

    PubMed

    Lanzo, G; Rizzo, S; Tomarchio, E

    2014-03-01

    The main goal of this work was to assess the radiological hazard at Alte Madonie Mounts region (north-central Sicily, Italy) in response to rumours of an increase in the incidence of cancer in this area. A correlation between the natural radionuclide contents and the petrographic features of the soil and rock samples was also evaluated. A total of 41 samples of selected soils and rocks were collected, powdered, dried and sealed in 'Marinelli' beakers for 20 d prior to measurement to ensure that a radioactive equilibrium between (226)Ra and (214)Bi had been reached. A gamma-ray spectrometer was used to quantify the radioactivity concentrations. To determine (238)U and (232)Th activities, the 609.3-keV line from (214)Bi in secular equilibrium with (226)Ra and the 911-keV line from (228)Ac, with which (232)Th can be assumed to be in equilibrium, were used, respectively. The gamma transition of 1461 keV was used to determine (40)K activity. The average values of the concentrations of (214)Bi, (228)Ac and (40)K were 30, 17 and 227 Bq kg(-1), respectively, whereas the greatest values were 134, 59 and 748 Bq kg(-1), respectively. A linear relationship was found between the activity values of (214)Bi, (228)Ac and (40)K. An exception was found for a group of samples in which the (214)Bi activities were much higher than expected. The chemical compositions and mineralogical features of the samples permitted the justification of these anomalies. The results of the primordial radionuclide contents are reassuring from a radiation protection point of view because the activities of the uranium and thorium series products and of the (40)K do not present a significant radiological hazard.

  8. A radiometric and petrographic approach to risk assessment at Alte Madonie Mounts region (Sicily, Italy).

    PubMed

    Lanzo, G; Rizzo, S; Tomarchio, E

    2014-03-01

    The main goal of this work was to assess the radiological hazard at Alte Madonie Mounts region (north-central Sicily, Italy) in response to rumours of an increase in the incidence of cancer in this area. A correlation between the natural radionuclide contents and the petrographic features of the soil and rock samples was also evaluated. A total of 41 samples of selected soils and rocks were collected, powdered, dried and sealed in 'Marinelli' beakers for 20 d prior to measurement to ensure that a radioactive equilibrium between (226)Ra and (214)Bi had been reached. A gamma-ray spectrometer was used to quantify the radioactivity concentrations. To determine (238)U and (232)Th activities, the 609.3-keV line from (214)Bi in secular equilibrium with (226)Ra and the 911-keV line from (228)Ac, with which (232)Th can be assumed to be in equilibrium, were used, respectively. The gamma transition of 1461 keV was used to determine (40)K activity. The average values of the concentrations of (214)Bi, (228)Ac and (40)K were 30, 17 and 227 Bq kg(-1), respectively, whereas the greatest values were 134, 59 and 748 Bq kg(-1), respectively. A linear relationship was found between the activity values of (214)Bi, (228)Ac and (40)K. An exception was found for a group of samples in which the (214)Bi activities were much higher than expected. The chemical compositions and mineralogical features of the samples permitted the justification of these anomalies. The results of the primordial radionuclide contents are reassuring from a radiation protection point of view because the activities of the uranium and thorium series products and of the (40)K do not present a significant radiological hazard. PMID:24106332

  9. Modeling of radon and its short-lived decay products emanating from tap water used inside a house: dose to adult members of the public.

    PubMed

    Ouabi, H

    2009-01-01

    Radon concentrations are measured in the tap water collected in different areas in Marrakech (Morocco) by using liquid scintillation techniques. The concentrations due to radon and its short-lived decay products emanating from the tap water used inside different compartments of the house were determined. Alpha activities due to the (218)Po and (214)Po short-lived radon decay products were evaluated in various compartments of the respiratory tract of adult members of the public. The committed equivalent doses due to the (218)Po and (214)Po short-lived progeny of radon were evaluated in different tissues of the respiratory tract by the frequencies of using the various parts of the house. PMID:18789711

  10. Assessing the deposition of radon progeny from a uranium glass necklace.

    PubMed

    Hansen, M F; Moss, G R

    2015-06-01

    Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny (218)Po and (214)Po. Phys. Med. Biol. 1997; 42: 1899-1911.) suggests that the alphas from the short-lived radon daughters, (218)Po and (214)Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the (218)Po and (214)Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk.

  11. Deposition of {open_quotes}unattached{close_quotes} radon daughters in models of human nasal and oral airways

    SciTech Connect

    Strong, J.C.; Swift, D.L.

    1992-12-31

    In order to estimate accurately an effective dose equivalent for exposures to radon daughters, knowledge of their deposition in the lung is required. However, the nose and mouth are effective filters for removing aerosol particles, especially in the range of sizes of {open_quotes}unattached{close_quotes} radon daughters. Therefore, it is equally important to have reliable data on deposition in this region of the respiratory tract. We will describe our work in studying nasal and oral deposition of {open_quotes}unattached{close_quotes} radon daughters in casts of these airways. Several hollow casts of adult and child nasal and oral airways were fabricated at The John Hopkins University from layers of Perspect{trademark} (an acrylic plastic). The shapes of the airway passages were obtained from nuclear magnetic resonance sectional images of healthy subjects. The casts were exposed to radon gas and daughters produced by flushing filtered air through a commercially available {sup 226}Ra source. The gas stream was drawn through a 1.4-L cylindrical tube to allow measurable growth of {sup 218}Po activity before it was passed through casts of both nasal passages or the oral cavity. The deposition of {open_quotes}unattached{close_quotes} {sup 218}Po was measured by comparing the activity collected on filters mounted in series and in parallel with a cast. Measurements were made at various flow rates (Q; 4 to 20 L min{sup -1}). The diffusion coefficient (D) of {sup 218}Po was measured each time the flow rate was changed, by replacing the cast with a stainless steel gauze screen and measuring the activity penetrating the screen. The measured diffusion coefficient ranged from 0.02 to 0.05 cm{sup 2} s{sup -1} and was found to vary with the residence time of {sup 218}Po in the growth tube. The deposition efficiency ({eta}) of {sup 218}Po measured in these casts ranged from 50 to 70%, and was similar to values we found previously, using casts of nasal and oral airways from cadavers.

  12. Radioactivity concentration measurement and analysis in construction floor materials of Korea

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Lee, H. K.; Cho, J. H.

    2016-05-01

    In this study, the radioactive concentrations contained in samples of commonly used building floor materials were measured. This result can be used as basic information for public health and the environment. Among building floor materials, samples of induction blocks, cement bricks, artificial granite blocks and compact high-pressure blocks were chosen and used. A detailed gamma nuclide analysis was performed with a multichannel analyzer by putting these samples on a high-purity germanium detector which is a semiconductor detector. In order to measure the concentration of radionuclides, a spectrum file was obtained by analyzing the concentration of gamma radionuclides and setting the measurement time as 1000, 4000, 7000 and 10,000 s. According to the study results, K-40, Bi-214, Pb-214, Ra-226 and U-235 were detected in the induction blocks measured at 10,000 s and K-40, Th-230, Bi-214, Pb-214, Ra-226 and Na-22 were detected in the cement bricks measured at 10,000 s. K-40, Bi-214, Pb-214, Th-234, U-235 and Ra-223 were detected in the artificial granite blocks measured at 10,000 s and K-40, Bi-214, Pb-214, Th-234, Ra-226, Ra-223 and Mn-54 were detected in the compact high-pressure blocks. In conclusion, low-level radioactivity was detected in building floor materials, so it is thought that measures to reduce radioactivity and further studies on this will be needed.

  13. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  14. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ``unattached`` fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ``unattached`` fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  15. Early onset of deformation in the neutron-deficient polonium isotopes

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Bastin, B.; Büscher, J.; Darby, I. G.; Dexters, W.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Fritzsche, S.; Huber, G.; Huyse, M.; Keupers, M.; Köster, U.; Kudryavtsev, Yu; Mané, E.; Marsh, B. A.; Molkanov, P. L.; Page, R. D.; Seliverstov, M. D.; Sjödin, A. M.; Stefan, I.; Van de Walle, J.; Van Duppen, P.; Venhart, M.; Zemlyanoy, S. G.

    2012-09-01

    In-source laser spectroscopy has been performed at CERN-ISOLDE with the RILIS laser ion source on 191-204,206,208-211,216,218Po. New information on the β decay of 199Po were extracted in the process, challenging previous results. Large-scale atomic calculations were performed to extract the changes in the mean-square charge radius δlangler2rangle from the isotope shifts. The δlangler2rangle for the even-A isotopes reveal a large deviation from the spherical droplet model for N < 116.

  16. Apparatus for the Measurement of {sup 222}Rn Diffusion

    SciTech Connect

    Mamedov, F.; Konicek, J.; Stekl, I.

    2009-11-09

    A new apparatus for the measurement of {sup 222}Rn diffusion through shielding foils developed in the frame of the NEMO collaboration is briefly described. The setup is based on the electrostatic collection of radon progenies {sup 218}Po and {sup 214}Po. The NEMO project is an underground experiment for the study of double beta decay processes. For such type of experiments the efficient suppression of background caused by radon is essential. The first test of the apparatus has been carried out using Penefol foil (0.8 mm thickness) and the suppression factor of radon concentration has been obtained.

  17. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    PubMed Central

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and

  18. Estimation of heat generation by radioactive decay of some phosphate rocks in Egypt.

    PubMed

    Din, Khaled Salahel

    2009-11-01

    Radiogenic heat production data for phosphate rocks outcropping on the three main areas Eastern Desert, Western Desert and Nile Valley are presented. They were derived from uranium, thorium and potassium concentration measurements of gamma radiation originating from the decay of (214)Bi ((238)U series), (208)Tl ((232)Th series) and the primary decay of (40)K. A low radioactive heat production rate (0.32+/-0.1 microWm(-3)) was found for Wadi Hegaza, whereas the highest value (19+/-4.1 microWm(-3)) was found for Gabel Anz, Eastern Desert of Egypt.

  19. Environmental neutralization of polonium-218

    SciTech Connect

    Goldstein, S.D.; Hopke, P.K.

    1985-01-01

    Previous work has indicated that two mechanisms of neutralization of the singly charged polonium ion exist. Charged Polonium-218 can be neutralized by reacting with oxygen to form a polonium oxide ion with a higher ionization potential than that of the polonium metal and then accepting an electron transferred from a lower ionization potential gas. In this present work, this mechanism has been verified by determining that the polonium oxide has an ionization potential in the range 10.35-10.53 eV. It was also previously reported that /sup 218/Po can be neutralized, in the absence of oxygen, by the scavenging of electrons by a trace gas such as water or nitrogen dioxide and their diffusion to the polonium ion. To verify this second neutralization mechanism, concentrations of nitrogen dioxide in nitrogen in the range of 50 ppb-1 ppm were examined for their ability to neutralize the polonium ion. Complete neutralization of /sup 218/Po was observed at nitrogen dioxide concentrations greater than 700 ppb. For concentrations below 700 ppb, the degree of neutralization was found to increase smoothly with the nitrogen dioxide concentration.

  20. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M. ); Hopke, P.K. )

    1993-07-01

    The theoretical potential for the formation of clusters of vapor-phase organic compounds found in indoor air around the [sup 218]PoO[sub x][sup +] ion was investigated as well as which compounds were most likely to form clusters. A compilation of measurements of indoor organic compounds has been made for future experiments and theoretical calculations by the radon research community. Forty-four volatile and semivolatile organic compounds out of the more than 300 that have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the [sup 218]PoO[sub x][sup +] ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones, and the acetates) and the semivolatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos). Although the estimated diameters are consistent with the measured diameters for the unattached fraction, the state of experimental and theoretical knowledge in this area is not sufficiently developed to judge the quantitative validity of these predictions. 48 refs., 1 fig., 5 tabs.

  1. Characterization of Radon Progeny in EXO-200 Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Smith, Erica

    Neutrinoless double beta decay (0nubetabeta) is a rare, second-order process that occurs in certain isotopes for which beta decay is energetically forbidden. EXO-200 is a 0nubetabeta experiment with 110 kg of active liquid xenon (LXe) isotopically enriched in 136Xe. EXO-200 detects events using a combination of scintillation and ionization signals, which allows for excellent particle discrimination. However, events with a low ionization signal cannot be fully characterized with the current analysis framework. To fill in these gaps, we introduce a boosted decision tree regressor as a new tool to characterize events in the detector. We focus on alpha decays of 222Rn and its progeny, which have low ionization signals that often fall below the threshold for position reconstruction. Using information gained from this technique, we confirm previous results for the 218Po ion velocity and improve previous results for the 218Po ionization fraction. We also investigate events that occur near the walls of the vessel. These events have no ionization signal and therefore cannot be characterized with any existing technique in the analysis framework. By investigating these events we determine that they are not distributed uniformly throughout the detector, which may point to charging up of the plastics inside the LXe vessel or a "hot spot'' on the plastic due to contamination during cleaning and installation.

  2. Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)

    SciTech Connect

    Reyes, H.; Rizo, O. Diaz; Bernal, J. L.; D'Alessandro, K.; Padilla, F.; Corrales, Y.; Casanova, O. A.; Gelen, A.; Martinez, Y.; Aguilar, J.; Arado, J. O.; Lopez-Pino, N.; Maidana, N. L.

    2009-06-03

    Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of {sup 210}Pb, {sup 234}Th, {sup 214}Pb, {sup 137}Cs, {sup 232}Th and {sup 40}K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.

  3. The CDF top search in the multijet decay mode

    SciTech Connect

    Denby, B.; CDF Collaboration

    1994-01-01

    A status report on the CDF top search in the multijet channel is given. After topological cuts and the requirement of a secondary vertex in the silicon microvertex detector, about 120 events remain (21.4 pb{sup {minus}1}), in which the signal to background ratio (for a nominal top mass of 160 GeV) is estimated to be 1/10. With further improvements it should be possible to improve this ratio to 1/1 while retaining good efficiency for top, which will make the multijet channel an important cross check for the leptonic modes.

  4. Nuclear physics for geo-neutrino studies

    SciTech Connect

    Fiorentini, Gianni; Ianni, Aldo; Korga, George; Suvorov, Yury; Lissia, Marcello; Mantovani, Fabio; Miramonti, Lino; Oberauer, Lothar; Obolensky, Michel; Smirnov, Oleg

    2010-03-15

    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from {sup 214}Bi decay, a process that accounts for about one-half of the total geo-neutrino signal. The feeding probability of the lowest state of {sup 214}Bi--the most important for geo-neutrino signal--is found to be p{sub 0}=0.177+-0.004 (stat){sub -0.001}{sup +0.003} (sys), under the hypothesis of universal neutrino spectrum shape (UNSS). This value is consistent with the (indirect) estimate of the table of isotopes. We show that achievable larger statistics and reduction of systematics should allow for the testing of possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.

  5. Characterisation of an electronic radon gas personal dosemeter.

    PubMed

    Gründel, M; Postendörfer, J

    2003-01-01

    The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked. PMID:14756187

  6. A novel algorithm for quick and continuous tracing the change of radon concentration in environment

    NASA Astrophysics Data System (ADS)

    Tan, Yanliang; Xiao, Detao

    2011-04-01

    Several measurements of the radon concentration are performed by RAD7 in the University of South China. We find that 30-40 min is needed for RAD7 for tracing the concentration of the standard radon chamber. There are two reasons. The first is that the sufficient time of air cycle is needed for the radon concentration in internal cell of RAD7 equal to that of the environment; and the second is that the sufficient decay time is needed for the 218Po concentration in internal cell of RAD7 equal to that of the radon. We used a zeroth order approximation to describe the evolution of the environment radon concentration, and obtained a novel algorithm for quick and continuous tracing the change of radon concentration. The corrected radon concentration obtained through this method is in good agreement with the reference value. This method can be applied to develop and improve the instruments for tracing the change of radon concentration quickly.

  7. Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes

    SciTech Connect

    Cocolios, T. E.; Van de Walle, J.; Dexters, W.; Bastin, B.; Buescher, J.; Darby, I. G.; Huyse, M.; Keupers, M.; Kudryavtsev, Yu.; Van Duppen, P.; Seliverstov, M. D.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Fedorov, D. V.; Molkanov, P. L.; Fedosseyev, V. N.; Marsh, B. A.; Flanagan, K. T.; Franchoo, S.

    2011-02-04

    In-source resonant ionization laser spectroscopy of the even-A polonium isotopes {sup 192-210,216,218}Po has been performed using the 6p{sup 3}7s {sup 5}S{sub 2} to 6p{sup 3}7p {sup 5}P{sub 2} ({lambda}=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in {sup 200-210}Po with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.

  8. Activity standardisation of ²²⁶Ra by 4πα liquid scintillation counting method.

    PubMed

    Havelka, Miroslav; Bluďovský, Richard

    2013-11-01

    Activity of (226)Ra in radium daughter products free solution was determined by 4πα liquid scintillation counting (LSC) method, where the detection efficiency of radium decay is practically equal to 1. The sources were prepared from solution with known (226)Ra mass concentration, from which, immediately before LS counting, (222)Rn and its daughter nuclides were removed by solvent extraction. LS counting results were corrected practically only for a <0.6% loss of radium from measured sample and for the ingrowth of (222)Rn and (218)Po concentrations in the sample after the separation was completed. The combined relative standard uncertainty was estimated to be lower than 0.34%.

  9. Concentrations of 222Rn, 220Rn and their decay products measured in outdoor air in various rural zones (Morocco) by using solid-state nuclear track detectors and resulting radiation dose to the rural populations.

    PubMed

    Misdaq, M A; Amrane, M; Ouguidi, J

    2010-03-01

    Alpha and beta activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their progenies were measured in the outdoor air at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured in one location by using the methods with SSNTDs and AlphaGuard counter. The influence of the geological and meteorological conditions as well as phosphate and building material dust on the radon concentration in the outdoor air of the areas studied was investigated. The committed equivalent doses due to (218)Po and (214)Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air. The annual effective dose due to radon short-lived progeny from the inhalation of outdoor air by the members of the rural population was estimated.

  10. Energy deposition and radiation quality of radon and radon daughters. Final report

    SciTech Connect

    Karam, L.R.; Caswell, R.S.

    1996-09-09

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of {sup 218}Po and {sup 214}Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny.

  11. An optimized system for measurement of radon levels in buildings by spectroscopic measurement of radon progeny

    NASA Astrophysics Data System (ADS)

    Fröjdh, A.; Thungström, G.; Fröjdh, C.; Petersson, S.

    2011-12-01

    Radon gas, 222Rn, is a problem in many buildings. The radon gas is not harmful in itself, but the decay chain contains charged elements such as 218Po, and 214Po ions which have a tendency to stick to the lungs when inhaled. Alpha particles from the decay of these ions cause damages to the lungs and increase the risk of lung cancer. The recent reduction in the limits for radon levels in buildings call for new simple and efficient measurement tools [1]. The system has been optimized through modifications of the detector size, changes to the filters and the design of the chamber. These changes increase the electric field in the chamber and the detection efficiency.

  12. A micromegas detector for {sup 222}Rn emanations measurements

    SciTech Connect

    García, J. A.; Garza, J. G.; Irastorza, I. G.; Mirallas, H.

    2013-08-08

    The {sup 222}Rn emanation has significant contribution in the overall background for rare event searches experiments. In order to measure this emanations a high sensitivity detector has been designed. The detection method is based on the electrostatic collection of the {sup 222}Rn daughters on a Micromegas detector. Using a chamber with a volume of 21.2 l for the collection of {sup 218}Po and {sup 214}Po progeny of {sup 222}Rn and a 12 × 12cm{sup 2} pixelized Micromegas for the α detection. The advantages of the Micromegas detectors are the low intrinsic radioactivity and the track reconstruction of the α’s, having excellent capabilities for event discrimination.

  13. Radiation doses to individuals due to ²³⁸U, ²³²Th and ²²²Rn from the immersion in thermal waters and to radon progeny from the inhalation of air inside thermal stations.

    PubMed

    Misdaq, M A; Ghilane, M; Ouguidi, J; Outeqablit, K

    2012-11-01

    In Morocco, thermal waters have been used for decades for the treatment of various diseases. To explore the exposure pathway of (238)U, (232)Th and (222)Rn to the skin of bathers from the immersion in thermal waters, these radionuclides were measured inside waters collected from different Moroccan thermal springs, by means of CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs), and corresponding annual committed effective doses to skin were determined. Accordingly, to assess radiation dose due to radon short-lived decay products from the inhalation of air by individuals, concentrations of these radionuclides were measured in indoor air of two thermal stations by evaluating mean critical angles of etching of the CR-39 and LR-115 II SSNTDs. Committed effective doses due to the short-lived radon decay products (218)Po and (214)Po by bathers and working personnel inside the thermal stations studied were determined.

  14. On the calibration of a radon exhalation monitor based on the electrostatic collection method and accumulation chamber.

    PubMed

    Tan, Yanliang; Tokonami, Shinji; Hosoda, Masahiro

    2015-06-01

    The radon exhalation rate can be obtained quickly and easily from the evolution of radon concentration over time in the accumulation chamber. Radon monitoring based on the electrostatic collection method is not interfered with by (220)Rn. In this paper, we propose that the difference between radon and (218)Po concentrations in the measurement cell of this kind of radon exhalation monitor is the main system error, and it changes with time and different effective decay constants. Based on the results of simulation experiments, we propose that the calibration factor obtained from the suitable experiment cannot completely correct the system error, even if it is useful to reduce the measurement error. The better way for reducing measurement error is to use the new measurement model which we have proposed in recent years.

  15. Radon dosimetry based on the depth distribution of nuclei in human and rat lungs

    SciTech Connect

    Mercer, R.R.; Russell, M.L.; Crapo, J.D. )

    1991-07-01

    Calculation of the absorbed dose by different lung cells is necessary for predicting the critical cells that are subject to injury from inhaled Rn and other alpha-particle sources. The absorbed dose was determined for cells in the airways of human and rat lungs, based on airway epithelial thickness and on cell cytoplasm and nuclear volume density as a function of depth from the luminal surface of the airway epithelium. The thickness of the stratified columnar epithelium of human airways varied from 57.8 micron in bronchi to 9.8 microns in bronchioles. The cell populations of all bronchi in human lungs were comparable. The cell populations of trachea and intrapulmonary airways in rats, however, were significantly different. Basal cell populations in rat trachea and human bronchi were similar and formed a nearly continuous layer. In rat bronchi, basal cells were not present in significant numbers. Measurements of epithelial thickness and volume density were used to estimate the absorbed dose for an alpha-particle source (214Po or 218Po) distributed uniformly in the mucus with an equivalent activity of 1 dpm per cm2 of epithelial surface. The following model predictions of dose to human bronchial epithelial cell nuclei for a 218Po alpha-particle source are provided in units of nanogray (nGy) for specific cell types: secretory 158, preciliated 114, ciliated 44, goblet 86, basal 78, and indeterminate cell nuclei 73. The absorbed dose to specific types of rat bronchial epithelial cell nuclei was also predicted: secretory 237, precillated 216, ciliated 203, goblet 204, basal 200, and indeterminate cell nuclei 166 nGy. These and other results indicate that human and rat airway dosimetry have significant differences that may contribute to the differences in cancer cell induction between the two species.

  16. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, May 1, 1993--January 31, 1994

    SciTech Connect

    Hopke, P.K.

    1993-01-01

    Progress is reported on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. The specific tasks addressed were to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations. Initial measurements were conducted of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants. A prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon are described. Methodology was developed to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  17. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  18. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the [sup 218]Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of [center dot]OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO[sub 2] ethylene, and H[sub 2]S to lower vapor pressure compounds and determine the role of gas phase additives such as H[sub 2]O and NH[sub 3] in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of [sup 218]Po[sub x][sup +] in O[sub 2] at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited [sup 210]Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  19. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Progress report, July 1, 1992--March 31, 1993

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report describes studies on the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and its dose to the cells in the respiratory tract are to be fully assessed. The specific tasks of the controlled laboratory studies are to determine the formation rates of {center_dot}OH radicals formed by the radiolysis of air following radon decay, to examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2} ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size, to measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and to measure the neutralization rate of {sup 218}Po{sub x}{sup +} in O{sub 2} at low radon concentrations. Tasks of the exposure studies in occupied indoor spaces are to initiate measurements of the activity size distributions in actual homes with occupants present so that the variability of the indoor activity size distributions can be assessed with respect to indoor aerosol sources and general lifestyle variations of the occupants, to initiate a prospective study of the utility of measurement of deposited {sup 210}Pb embedded in glass surfaces as a measure of the long-term, integrated exposure of the population to radon, and to develop the methodology to determine the hygroscopicity of the indoor aerosol so that the changes in deposition efficiency of the radioactive indoor aerosol with hygroscopic growth in the respiratory tract can be assessed.

  20. The BiPo detector for ultralow radioactivity measurements

    SciTech Connect

    Bongrand, M.

    2007-03-28

    The BiPo project is dedicated to the measurement of extremely low radioactivity contamination of SuperNEMO source foils (208Tl < 2 {mu}Bq/kg and 214Bi < 10 {mu}Bq/kg). The R and D phase is started : a modular BiPo prototype with its shielding test facility is under construction. The goal of this prototype is to study the background and particularly the surface contamination of scintillators. The first capsule has been installed in the Canfranc Underground Laboratory in October, 17th and is now taking data. After 10.7 days of measurements, a preliminary upper limit on the surface radiopurity of the scintillators of A(208Tl) < 60 {mu}Bq/m2 (90% C. L.) has been obtained.

  1. Lifetimes of (214)Po and (212)Po measured with Counting Test Facility at Gran Sasso National Laboratory.

    PubMed

    Miramonti, L; Bellini, G; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; Chubakov, V; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Göger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Lissia, M; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Mantovani, F; Manuzio, G; Meindl, Q; Meroni, E; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Nisi, S; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xhixha, G; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2014-12-01

    The decays of (214)Po into (210)Pb and of (212)Po into (208)Pb tagged by the previous decays from (214)Bi and (212)Bi have been studied inserting quartz vials inside the Counting Test Facility (CTF) at the underground laboratory in Gran Sasso (LNGS). We find that the mean lifetime of (214)Po is (236.00 ± 0.42(stat) ± 0.15(syst)) μs and that of (212)Po is (425.1 ± 0.9(stat) ± 1.2(syst)) ns. Our results are compatible with previous measurements, have a much better signal to background ratio, and reduce the overall uncertainties.

  2. Apparatus development for measurement of (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Kajimoto, Tsuyoshi; Endo, Satoru; Tanaka, Kenichi; Okashiro, Yasuharu; Kai, Hiroaki; Fujii, Syuuji; Mishima, Atsushi; Matsubara, Takahide; Yoshida, Shinji

    2016-09-01

    We developed an apparatus containing a NaI(Tl) scintillator to measure the (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident. The unfolding method with the least-squares technique was used to determine the radioactivity. Detector responses for each radionuclide in soil were calculated with EGS5 code for the unfolding method. The radionuclides that were measured were (40)K, (134)Cs, (137)Cs, (208)Tl, (214)Bi, and (228)Ac. The measured spectrum agreed well with the spectrum calculated from the response matrix and measured radioactivities. The unfolding method allows us to use the NaI(Tl) scintillator despite the overlap of peaks.

  3. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The "Multigroup γ-ray Analysis Method for Uranium" (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  4. Natural radioactivity concentration of peanuts in Osmaniye-Turkey

    SciTech Connect

    Akkurt, Iskender; Guenoglu, Kadir; Mavi, Betuel; Kara, Ayhan

    2012-09-06

    The peanut is grown in Osmaniye where located in southern Turkey. Due to it is grown underground, the measurements of natural radioactivity of peanuts become important. For this reason some peanut samples have been collected from different places of Osmaniye and the measurements of natural activity concentrations for {sup 40}K, {sup 226}Ra and {sup 232}Th in some peanuts samples have been carried out using a NaI(Tl) gamma-ray spectrometer. Activity of {sup 40}K was measured from its intensive line at 1460 keV, for {sup 226}Ra activity peak from {sup 214}Bi at 1760 keV and {sup 232}Th activity, peak from {sup 208}Tl at energy of 2610 keV was used.

  5. Background modeling for the GERDA experiment

    SciTech Connect

    Becerici-Schmidt, N.; Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  6. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. PMID:25979737

  7. Apparatus development for measurement of (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Kajimoto, Tsuyoshi; Endo, Satoru; Tanaka, Kenichi; Okashiro, Yasuharu; Kai, Hiroaki; Fujii, Syuuji; Mishima, Atsushi; Matsubara, Takahide; Yoshida, Shinji

    2016-09-01

    We developed an apparatus containing a NaI(Tl) scintillator to measure the (134)Cs and (137)Cs radioactivity of soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident. The unfolding method with the least-squares technique was used to determine the radioactivity. Detector responses for each radionuclide in soil were calculated with EGS5 code for the unfolding method. The radionuclides that were measured were (40)K, (134)Cs, (137)Cs, (208)Tl, (214)Bi, and (228)Ac. The measured spectrum agreed well with the spectrum calculated from the response matrix and measured radioactivities. The unfolding method allows us to use the NaI(Tl) scintillator despite the overlap of peaks. PMID:27289189

  8. Quest for the lowest-energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2015-08-01

    Super-Kamiokande (SK) has been observing 8B solar neutrinos for 17 years. Since the start of the SK-III phase, much effort has been expended in reducing backgrounds. The main contributing background comes from the beta decay of 214Bi, which is produced in the decays of radon in the purified air, detector materials, and the purified water. To reduce this background, the water system of SK has been upgraded. Heat exchangers for the cooling supply water were improved so as to suppress convection in the tank that transports radon near the photomultiplier tubes into the fiducial volume. To evaluate the remaining radon concentration, very-low-background radon detectors for air and water were designed and developed. Not only radon, but other contaminants in the water (bacteria and metal ions) were also investigated.

  9. Lifetimes of (214)Po and (212)Po measured with Counting Test Facility at Gran Sasso National Laboratory.

    PubMed

    Miramonti, L; Bellini, G; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; Chubakov, V; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Göger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Lissia, M; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Mantovani, F; Manuzio, G; Meindl, Q; Meroni, E; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Nisi, S; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xhixha, G; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2014-12-01

    The decays of (214)Po into (210)Pb and of (212)Po into (208)Pb tagged by the previous decays from (214)Bi and (212)Bi have been studied inserting quartz vials inside the Counting Test Facility (CTF) at the underground laboratory in Gran Sasso (LNGS). We find that the mean lifetime of (214)Po is (236.00 ± 0.42(stat) ± 0.15(syst)) μs and that of (212)Po is (425.1 ± 0.9(stat) ± 1.2(syst)) ns. Our results are compatible with previous measurements, have a much better signal to background ratio, and reduce the overall uncertainties. PMID:24725806

  10. Quest for the lowest-energy neutrinos in Super-Kamiokande

    SciTech Connect

    Sekiya, Hiroyuki

    2015-08-17

    Super-Kamiokande (SK) has been observing {sup 8}B solar neutrinos for 17 years. Since the start of the SK-III phase, much effort has been expended in reducing backgrounds. The main contributing background comes from the beta decay of {sup 214}Bi, which is produced in the decays of radon in the purified air, detector materials, and the purified water. To reduce this background, the water system of SK has been upgraded. Heat exchangers for the cooling supply water were improved so as to suppress convection in the tank that transports radon near the photomultiplier tubes into the fiducial volume. To evaluate the remaining radon concentration, very-low-background radon detectors for air and water were designed and developed. Not only radon, but other contaminants in the water (bacteria and metal ions) were also investigated.

  11. Background modeling for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  12. An aerial radiological survey of the Davis-Monthan Air Force Base and surrounding area, Tucson, Arizona

    SciTech Connect

    1995-09-01

    An aerial radiological survey, which was conducted from March 1 to 13, 1995, covered a 51-square-mile (132-square-kilometer) area centered on the Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona. The results of the survey are reported as contours of bismuth-214 ({sup 214}Bi) soil concentrations, which are characteristic of natural uranium and its progeny, and as contours of the total terrestrial exposure rates extrapolated to one meter above ground level. All data were scaled and overlaid on an aerial photograph of the DMAFB area. The terrestrial exposure rates varied from 9 to 20 microroentgens per hour at one meter above the ground. Elevated levels of terrestrial radiation due to increased concentrations of {sup 214}Bi (natural uranium) were observed over the Southern Pacific railroad yard and along portions of the railroad track bed areas residing both within and outside the base boundaries. No man-made, gamma ray-emitting radioactive material was observed by the aerial survey. High-purity germanium spectrometer and pressurized ionization chamber measurements at eight locations within the base boundaries were used to verify the integrity of the aerial results. The results of the aerial and ground-based measurements were found to be in agreement. However, the ground-based measurements were able to detect minute quantities of cesium-137 ({sup 137}Cs) at six of the eight locations examined. The presence of {sup 137}Cs is a remnant of fallout from foreign and domestic atmospheric nuclear weapons testing that occurred in the 1950s and early 1960s. Cesium-137 concentrations varied from 0.1 to 0.3 picocuries per gram, which is below the minimum detectable activity of the aerial system.

  13. Network of seismo-geochemical monitoring observatories for earthquake prediction research in India

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Hirok; Barman, Chiranjib; Iyengar, A.; Ghose, Debasis; Sen, Prasanta; Sinha, Bikash

    2013-08-01

    Present paper deals with a brief review of the research carried out to develop multi-parametric gas-geochemical monitoring facilities dedicated to earthquake prediction research in India by installing a network of seismo-geochemical monitoring observatories at different regions of the country. In an attempt to detect earthquake precursors, the concentrations of helium, argon, nitrogen, methane, radon-222 (222Rn), polonium-218 (218Po), and polonium-214 (214Po) emanating from hydrothermal systems are monitored continuously and round the clock at these observatories. In this paper, we make a cross correlation study of a number of geochemical anomalies recorded at these observatories. With the data received from each of the above observatories we attempt to make a time series analysis to relate magnitude and epicentral distance locations through statistical methods, empirical formulations that relate the area of influence to earthquake scale. Application of the linear and nonlinear statistical techniques in the recorded geochemical data sets reveal a clear signature of long-range correlation in the data sets.

  14. Long-term measurements of equilibrium factor with electrochemically etched CR-39 SSNTD

    NASA Astrophysics Data System (ADS)

    Ng, F. M. F.; Nikezic, D.; Yu, K. N.

    2007-10-01

    Recently, our group proposed a method (proxy equilibrium factor method) using a bare LR 115 detector for long-term monitoring of the equilibrium factor. Due to the presence of an upper alpha-particle energy threshold for track formation in the LR 115 detector, the partial sensitivities to 222Rn, 218Po and 214Po were the same, which made possible measurements of a proxy equilibrium factor Fp that was well correlated with the equilibrium factor. In the present work, the method is extended to CR-39 detectors which have better-controlled etching properties but do not have an upper energy threshold. An exposed bare CR-39 detector is first pre-etched in 6.25 N NaOH solution at 70 °C for 6 h, and then etched electrochemically in a 6.25 N NaOH solution with ac voltage of 400 V (peak to peak) and 5 kHz applied across the detectors for 1 h at room temperature. Under these conditions, for tracks corresponding to incident angles larger than or equal to 50°, the treeing efficiency is 0% and 100% for incident energies smaller than and larger than 4 MeV, respectively. A simple method is then proposed to obtain the total number of tracks formed below the upper energy threshold of 4 MeV, from which the proxy equilibrium factor method can apply.

  15. Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor

    USGS Publications Warehouse

    Kim, G.; Burnett, W.C.; Dulaiova, H.; Swarzenski, P.W.; Moore, W.S.

    2001-01-01

    We report a simple new technique for measuring low-level radium isotopes (224Ra and 226Ra) in natural waters. The radium present in natural waters is first preconcentrated onto MnO2-coated acrylic fiber (Mn fiber) in a column mode. The radon produced from the adsorbed radium is then circulated through a closed air-loop connected to a commercial radon-in-air monitor. The monitor counts alpha decays of radon daughters (polonium isotopes) which are electrostatically collected onto a silicon semiconductor detector. Count data are collected in energy-specific windows, which eliminate interference and maintain very low backgrounds. Radium-224 is measured immediately after sampling via 220Rn (216Po), and 226Ra is measured via 222Rn (218Po) after a few days of ingrowth of 222Rn. This technique is rapid, simple, and accurate for measurements of low-level 224Ra and 226Ra activities without requiring any wet chemistry. Rapid measurements of short-lived 222Rn and 224Ra, along with long-lived 226Ra, may thus be made in natural waters using a single portable system for environmental monitoring of radioactivity as well as tracing of various geochemical and geophysical processes. The technique could be especially useful for the on-site rapid determination of 224Ra which has recently been found to occur at elevated activities in some groundwater wells.

  16. Nuclear Data Sheets for A = 218

    SciTech Connect

    Jain, Ashok K.; Singh, Balraj

    2006-04-15

    Nuclear spectroscopic information for known nuclides of mass number 218 (Bi,Po,At,Rn,Fr,Ra,Ac,Th,Pa,U) with Z = 83 to 92 and N = 135 to 126 have been evaluated and presented together with adopted energies and J{pi} of levels in these nuclei. No excited state data are yet available for {sup 218}Bi, {sup 218}At and {sup 218}Pa. Octupole structures are known in {sup 218}Rn, {sup 218}Fr, {sup 218}Ra and {sup 218}Ac nuclides. Since the previous update (1995El08) about ten years ago, many new data are available e.g. decays of {sup 218}Bi to {sup 218}Po, {sup 222}Ra to {sup 218}Rn and {sup 222}Th to {sup 218}Ra; high-spin structures in {sup 218}Rn and {sup 218}Fr; and lifetimes of excited states in {sup 218}Ra. This evaluation supersedes previous full evaluations of A = 218 published by 1987El12 and 1977To13; and an interim evaluation published in 'update' mode by 1995El08 with literature cutoff date of August 1995.

  17. The detection and measurement of the electrical mobility size distributions associated with radon decay products

    SciTech Connect

    Fei, Lin

    1996-04-01

    The potential risk of lung cancer has evoked interest in the properties of radon decay products. There are two forms of this progeny: either attached to ambient aerosols, or still in the status of ions/molecules/small clusters. This ``unattached`` activity would give a higher dose per unit of airborne activity than the ``attached`` progeny that are rather poorly deposited. In this thesis, a system for determining unattached radon decay products electrical mobility size distribution by measuring their electrical mobilities was developed, based on the fact that about 88% of {sup 218}Po atoms have unit charge at the end of their recoil after decay from {sup 222}Rn, while the remainder are neutral. Essential part of the setup is the radon-aerosol chamber with the Circular Electrical Mobility Spectrometer (CEMS) inside. CEMS is used for sampling and classifying the charged radioactive clusters produced in the chamber. An alpha- sensitive plastic, CR-39 disk, is placed in CEMS as an inlaid disk electrode and the alpha particle detector. CEMS showed good performance in fine inactive particles` classification. If it also works well for radon decay products, it can offer a convenient size distribution measurement for radioactive ultrafine particles. However, the experiments did not obtain an acceptable resolution. Suggestions are made for solving this problem.

  18. RADON AND PROGENY ALPHA-PARTICLE ENERGY ANALYSIS USING NUCLEAR TRACK METHODOLOGY

    SciTech Connect

    Espinosa Garcia, Guillermo; Golzarri y Moreno, Dr. Jose Ignacio; Bogard, James S

    2008-01-01

    A preliminary procedure for alpha energy analysis of radon and progeny using Nuclear Track Methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

  19. Measurement of α -particle quenching in LAB based scintillator in independent small-scale experiments

    NASA Astrophysics Data System (ADS)

    von Krosigk, B.; Chen, M.; Hans, S.; Junghans, A. R.; Kögler, T.; Kraus, C.; Kuckert, L.; Liu, X.; Nolte, R.; O'Keeffe, H. M.; Tseung, H. Wan Chan; Wilson, J. R.; Wright, A.; Yeh, M.; Zuber, K.

    2016-03-01

    The α -particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, α -particles were produced in the scintillator via ^{12}C( n,α )^9Be reactions. In the second approach, the scintillator was loaded with 2 % of ^{nat}Sm providing an α -emitter, ^{147}Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants ^{222}Rn, ^{218}Po and ^{214}Po provided the α -particle signal. The behavior of the observed α -particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter kB ranges from (0.0066± 0.0016) to (0.0076± 0.0003) cm/MeV. In the first approach, the α -particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proton elastic scattering. This enabled a first time a direct comparison of kB describing the proton and the α -particle response of LAB based scintillator. The observed kB values describing the two light response functions deviate by more than 5σ . The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles.

  20. Equilibration correction of temporal measurements for sudden 222Rn concentration changes

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Tokonami, S.; Liu, H.; Kearfott, K. J.

    2016-02-01

    222Rn and 220Rn can be used as tracers of groundwater or submarine springs, and 222Rn in water also could indicate indoor radon problems in some regions. The half-life of 222Rn is long enough that its concentration may remain significant during transit over relatively long distances, while that of 220Rn is not. Prior research revealed that it took about 15 min for the radon to achieve gas equilibrium at a water flow rate of 17.5 L min-1, which is approximately equivalent to the time required for the 222Rn-218Po pair to approach radioactive equilibrium and is limiting in terms of measurements of sudden radon concentration change. In this work, an algorithm is applied to improve the continuous tracing of radon concentrations in the field environment. Results of a laboratory experiment analyzed applying the analysis method illustrated its ability to allow immediate identification of sharp concentration increases. In this paper we find that a precipitous drop in radon concentrations lead to improper corrected values as the result of measurement uncertainties prior to the drop, and a method using zero instead negative values for reducing the uncertainties under such condition also is proposed.

  1. A novel approach for long-term determination of indoor 222Rn progeny equilibrium factor using nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Font, Ll.; Baixeras, C.

    2003-06-01

    A detailed study of the measurement principles of airborne 222Rn decay products by means of nuclear track detectors (NTDs), taking into account the range of variation of the parameters influencing their concentration indoors, has shown that it is not possible for the existing methods to obtain the associated long-term equilibrium factor with an appropriate accuracy. For this reason, we have established a novel approach based on the new concept of reduced equilibrium factor, which can be obtained from the only measurement of airborne 222Rn and its α-emitter daughter ( 218Po and 214Po) concentrations using a passive, integrating and multi-component system of NTDs. We have found that the equilibrium factor has a linear dependence on the reduced equilibrium factor regardless the values taken for the rates of ventilation, of aerosol attachment and of surface deposition. By using well-controlled exposures in a reference laboratory, we have shown that the equilibrium factor values determined with our system agree with those obtained by active monitors. Finally, as a pilot test, several dosimeters were exposed in an inhabited Swedish single-family house. The results of this exposure suggest the usefulness of this method to perform routine surveys in private homes and in workplaces in order to estimate the annual effective dose received by the general public and the workers due to the presence of 222Rn daughters.

  2. Clean galena, contaminated lead, and soft errors in memory chips

    NASA Astrophysics Data System (ADS)

    Lykken, G. I.; Hustoft, J.; Ziegler, B.; Momcilovic, B.

    2000-10-01

    Lead (Pb) disks were exposed to a radon (Rn)-rich atmosphere and surface alpha particle emissions were detected over time. Cumulative 210Po alpha emission increased nearly linearly with time. Conversely, cumulative emission for each of 218Po and 214Po was constant after one and two hours, respectively. Processing of radiation-free Pb ore (galena) in inert atmospheres was compared with processing in ambient air. Galena processed within a flux heated in a graphite crucible while exposed to an inert atmosphere, resulted in lead contaminated with 210Po (Trial 1). A glove box was next used to prepare a baseline radiation-free flux sample in an alumina crucible that was heated in an oven with an inert atmosphere (Trials 2 and 3). Ambient air was thereafter introduced, in place of the inert atmosphere, to the radiation-free flux mixture during processing (Trial 4). Ambient air introduced Rn and its progeny (RAD) into the flux during processing so that the processed Pb contained Po isotopes. A typical coke used in lead smelting also emitted numerous alpha particles. We postulate that alpha particles from tin/lead solder bumps, a cause of computer chip memory soft errors, may originate from Rn and RAD in the ambient air and/or coke used as a reducing agent in the standard galena smelting procedure.

  3. Metrological Determination of Natural Radioactive Isotopes {sup 226}Ra, {sup 228}Ra and {sup 210}Pb by Means of Ge Detector

    SciTech Connect

    Almeida, Maria Candida M. de; Delgado, Jose U.; Poledna, Roberto; Oliveira, Estela Maria de; Silva, Ronaldo L. da

    2008-08-07

    A metrological method to determine the activity per mass unity (activity concentration) of {sup 226}Ra and {sup 210}Pb ({sup 238}U decay series) and {sup 228}Ra ({sup 232}Th series) by gamma-ray spectrometers based on hyper-pure coaxial germanium detector was developed. In the soil the {sup 22}Ra (half-life = 1600 years) exhibits the same level of radioactivity as {sup 238}U (half-life 4.5x10{sup 9} years) because of a natural phenomenon called secular equilibrium. {sup 226}Ra decays into {sup 222}Rn (half-life = 3.8 days), a radioactive inert gas. After several days, the {sup 222}Rn naturally decays to {sup 218}Po (half-life = 3 minutes), where finally {sup 210}Pb (half-life = 22 years) is produced. The metrological capability of high-resolution gamma-ray spectrometry for naturally occurring radionuclides at environmental levels is showed, with emphasis on the use of 2 mL standard sources volume in a glass ampoule. Source preparation and calibration procedures are described. Radionuclide standards in an activity range of 10 to 250 Bq/g were produced which can be applied in a variety of environmental sample analysis (water, plant material, sediment, etc.). Uncertainties for {sup 226}Ra and {sup 210}Pb around 3% (k = 1) were obtained.

  4. Size distribution of radon decay products in the range 0.1-10 nm.

    PubMed

    Zhukovsky, Michael; Rogozina, Marina; Suponkina, Anna

    2014-07-01

    Information about the size distribution of radioactive aerosols in nanometre range is essential for the purposes of air contamination monitoring, dose assessment to respiratory tract and planning of protective measures. The diffusion battery, which allows capturing particles in the size range of 0.1-10 nm, has developed. Interpreting data obtained from diffusion battery is very complex. The method of expectation maximisation by Maher and Laird was chosen for indirect inversion data. The experiments were performed in the box with equivalent equilibrium concentration of radon in the range of 7000-10,000 Bq m(-3). The three modes of size distribution of radon decay products aerosols were obtained: activity median thermodynamic diameter (AMTD) 0.3, 1.5 and 5 nm. These modes can be identified as: AMTD 0.3 nm--atoms of radon progeny (218Po in general); AMTD 1.5 nm--clusters of radon progeny atoms and non-radioactive atoms in the atmosphere; AMTD 5 nm--particles formed by coagulation of previous mode clusters with existing aerosol particles or nucleation of condensation nuclei containing atoms of radon progeny.

  5. Measurement of 224Ra and 225Ra activities in natural waters using a radon-in-air monitor.

    PubMed

    Kim, G; Burnett, W C; Dulaiova, H; Swarzenski, P W; Moore, W S

    2001-12-01

    We report a simple new technique for measuring low-level radium isotopes (224Ra and 226Ra) in natural waters. The radium present in natural waters is first preconcentrated onto MnO2-coated acrylic fiber (Mn fiber) in a column mode. The radon produced from the adsorbed radium is then circulated through a closed air-loop connected to a commercial radon-in-air monitor. The monitor counts alpha decays of radon daughters (polonium isotopes) which are electrostatically collected onto a silicon semiconductor detector. Count data are collected in energy-specific windows, which eliminate interference and maintain very low backgrounds. Radium-224 is measured immediately after sampling via 220Rn (216Po), and 226Ra is measured via 222Rn 218Po) after a few days of ingrowth of 222Rn. This technique is rapid, simple, and accurate for measurements of low-level 224Ra and 226Ra activities without requiring any wet chemistry. Rapid measurements of short-lived 222Rn and 224Ra, along with long-lived 226Ra, may thus be made in natural waters using a single portable system for environmental monitoring of radioactivity as well as tracing of various geochemical and geophysical processes. The technique could be especially useful for the on-site rapid determination of 224Ra which has recently been found to occur at elevated activities in some groundwater wells.

  6. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements.

  7. Concentrations of 222Rn, 220Rn and their decay products measured in outdoor air in various rural zones (Morocco) by using solid-state nuclear track detectors and resulting radiation dose to the rural populations.

    PubMed

    Misdaq, M A; Amrane, M; Ouguidi, J

    2010-03-01

    Alpha and beta activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their progenies were measured in the outdoor air at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured in one location by using the methods with SSNTDs and AlphaGuard counter. The influence of the geological and meteorological conditions as well as phosphate and building material dust on the radon concentration in the outdoor air of the areas studied was investigated. The committed equivalent doses due to (218)Po and (214)Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air. The annual effective dose due to radon short-lived progeny from the inhalation of outdoor air by the members of the rural population was estimated. PMID:19887516

  8. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg‑1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g‑1 for the dressing floor and waste heap and 18 to <1 Bq g‑1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the

  9. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g-1 for the dressing floor and waste heap and 18 to <1 Bq g-1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective

  10. [Determination of natural radioactive nuclides in the travertine samples from Tamagawa hot spring].

    PubMed

    Hashimoto, T; Masumura, S; Takahashi, K; Sotobayashi, T

    1982-07-01

    The determination of natural radioactive nuclides was carried out for 7 travertine samples collected from Tamagawa hot spring by means of the non-distructive gamma-ray spectrometry and of the alpha-ray spectrometry. From the former measurements, the relative activity strength, due to 223Ra, 226Ra, and 228Th, and their ratios was obtained in comparison with the photopeak strength due to respective daughters, 228Ac, 214Bi, and 212Pb, and with the results from a monazite sand standard. One travertine sample was engaged to the alpha-ray spectrometric determination of Th isotopes after the chemical purification using a 234Th-yield tracer. On the basis of the resultant absolute content of 228Th, the 228Ra and 228Th contents in the remainder samples were evaluated to be the range of 3 approximately 80 Bq (81 approximately 2160 pCi)/g and 2 approximately 20 Bq (54 approximately pCi)/g respectively. These radioactive nuclides were verified to exist almost within a Hokutolite small crystals up to 90% and there are apparently the radioactive disequilibrium relations between 228Ra and 228Th among freshly deposited travertines. The presence of 227Ac in Hokutolite was also suggested from the detection of 227Th owing to 215Po-alpha peak. PMID:7178540

  11. Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt.

    PubMed

    Abbady, Adel G E

    2010-10-01

    Radioactive heat-production (RHP) data of sedimentary outcrops in Gebel Anz (Eastern Desert) and Gebel Sarai (Nile Valley) are presented. A total of 103 rock samples were investigated, covering all major rock types of the areas. RHP were derived from uranium, thorium and potassium concentrations measured from gamma-radiation originating from the decay of (214)Bi ((238)U series), (208)Tl ((232)Th series) and the primary decay of (40)K, obtained with a NaI (Tl) detector. The heat-production rate of Gebel Anz ranges from 0.94 (Nubai Sandstone ) to 5.22 microW m(-3) (Duwi Formation). In Gebel Sarai it varies from 0.82 (Esna Shale) to 7 microW m(-3) (Duwi Formation). The contribution due to U is about 62%, from Th is 34% and 4% from K in Gebel Anz. The corresponding values in Gebel Sarai are 69.6%, 26.9% and 3.5%, respectively. These data can be used to discuss the effects of the lateral variation of the RHP rate on the heat flux and the temperature fields in the upper crust.

  12. Measurements of gamma radiation levels and spectra in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Lo, B. T.; Brozek, K. P.; Angell, C. T.; Norman, E. B.

    2011-10-01

    Much of the radiation received by an average person is emitted by naturally-occurring radioactive isotopes from the thorium, actinium, and uranium decay series, or potassium. In this study, we have measured gamma radiation levels at various locations in the San Francisco Bay Area and the UC Berkeley campus from spectra taken using an ORTEC NOMAD portable data acquisition system and a large-volume coaxial HPGe detector. We have identified a large number of gamma rays originating from natural sources. The most noticeable isotopes are 214Bi, 40K, and 208Tl. We have observed variations in counting rates by factors of two to five between different locations due to differences in local conditions - such as building, concrete, grass, and soil compositions. In addition, in a number of outdoor locations, we have observed 604-, 662-, and 795-keV gamma rays from 134,137Cs, which we attribute to fallout from the recent Fukushima reactor accident. The implications of these results will be discussed. This work was supported in part by a grant from the U. S. Dept. of Homeland Security.

  13. Modern aerial gamma-ray spectrometry and regional potassium map of the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.

    1990-01-01

    The aerial gamma-ray data were obtained as part of the National Uranium Resource Evaluation (NURE) Program sponsored by the U.S. Department of Energy during the period 1975-1983. References for the Open-File Reports that describe the surveys and data collection can be found in Bendix Field Engineering Corp. (1983). The aerial surveys were flown by contractors using fixed-wing and helicopter systems with 33-50 L (liters) of thallium-activated sodium iodide (NaI (TI)) crystals. The nominal survey altitude used is 122 m. The survey lines were generally east-west with line spacings of 1.6-10 km. Tie lines were flown perpendicular to the flight lines at intervals of 16- 30 km. The data were corrected for background from aircraft contamination and cosmic rays, altitude variations, airborne 214Bi, and Compton scattering. The gamma-ray systems were calibrated using the calibrations pads at Grand Junction, Colorado (Ward, 1978 ) and the dynamic test strip at Lake Mead, Arizona (Geodata International, Inc., 1977).  

  14. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    SciTech Connect

    Soulé, B.; Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  15. Low Radioactive Techniques in SuperNEMO: Status of the Radon R and D

    SciTech Connect

    Perrot, F.

    2011-04-27

    Radon is a well-known source of background with respect to the search for neutrinoless double beta decay (0{nu}{beta}{beta}), due to the high Q{sub {beta}} value of one of its daughter nucleus {sup 214}Bi. Radon has been observed and reduced down to 6.5 mBq/m{sup 3} in the NEMO-3 experiment which is looking for the 0{nu}{beta}{beta} process in {sup 100}Mo and in six other isotopes. The SuperNEMO project, a next-generation double beta decay experiment which will also use a tracko-calorimeter technique, has been in an R and D phase since 2006. The goal is to reach a sensitivity of T{sub 1/2}(0{nu})>10{sup 26} y corresponding to an effective Majorana neutrino mass of 0.05-0.1 eV with 100 kg of {sup 82}Se. Such a sensitivity requires in particular to improve the radon radiopurity down to 0.1 mBq/m{sup 3} in the tracking chamber.

  16. Analytical evaluation of natural radionuclides and their radioactive equilibrium in raw materials and by-products.

    PubMed

    Ji, Young-Yong; Chung, Kun Ho; Lim, Jong-Myoung; Kim, Chang-Jong; Jang, Mee; Kang, Mun Ja; Park, Sang Tae

    2015-03-01

    An investigation into the distribution of natural radionuclides and radioactive secular equilibrium in raw materials and by-products in a domestic distribution was conducted to deduce the optimum conditions for the analytical evaluation of natural radionuclides for (238)U, (226)Ra, and (232)Th using a gamma-ray spectrometer and inductively coupled plasma mass spectrometer (ICP-MS). The range of the specific activities of natural radionuclides was first evaluated by analyzing (228)Ac and (214)Bi, which are (232)Th and (226)Ra indicators, respectively, in about 100 samples of raw materials and by-products through a gamma-ray spectrometer. From further experiments using several samples selected based on the results of the distribution of natural radionuclides, the validation of their analytical evaluations for the indirect measurements using a gamma-ray spectrometer and direct measurements using ICP-MS was assured by comparing their results. Chemically processed products from the raw materials, such as Zr sand and ceramic balls, were generally shown for the type of bead and particularly analyzed showing a definite disequilibrium with above a 50% difference between (238)U and (226)Ra in the uranium series and (232)Th and (228)Ra in the thorium series.

  17. The BiPo detector for ultralow radioactivity measurements

    SciTech Connect

    Bongrand, Mathieu

    2011-04-27

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in {sup 208}Tl and {sup 214}Bi for the SuperNEMO double beta decay source foils. A modular prototype called BiPo-1 with 0.8 m{sup 2} of sensitive surface area has been running in the Modane Underground Laboratory since February 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in {sup 208}Tl. After more than one year of background measurement a surface activity of the scintillators of A({sup 208}Tl) = 1.5 {mu}Bq/m{sup 2} is reported here.Given this level of background, a larger BiPo3 detector having 3.25 m{sup 2} of active surface area, will able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A({sup 208}Tl)<3-4 {mu}Bq/kg(90% C.L.) with a six month measurement. This detector is actually under construction and will be installed in the Canfranc Underground Laboratory mid 2011.

  18. Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt.

    PubMed

    Abbady, Adel G E

    2010-10-01

    Radioactive heat-production (RHP) data of sedimentary outcrops in Gebel Anz (Eastern Desert) and Gebel Sarai (Nile Valley) are presented. A total of 103 rock samples were investigated, covering all major rock types of the areas. RHP were derived from uranium, thorium and potassium concentrations measured from gamma-radiation originating from the decay of (214)Bi ((238)U series), (208)Tl ((232)Th series) and the primary decay of (40)K, obtained with a NaI (Tl) detector. The heat-production rate of Gebel Anz ranges from 0.94 (Nubai Sandstone ) to 5.22 microW m(-3) (Duwi Formation). In Gebel Sarai it varies from 0.82 (Esna Shale) to 7 microW m(-3) (Duwi Formation). The contribution due to U is about 62%, from Th is 34% and 4% from K in Gebel Anz. The corresponding values in Gebel Sarai are 69.6%, 26.9% and 3.5%, respectively. These data can be used to discuss the effects of the lateral variation of the RHP rate on the heat flux and the temperature fields in the upper crust. PMID:20472452

  19. Radiopurity requirements for the SuperNEMO experiment and the BiPo detector

    NASA Astrophysics Data System (ADS)

    Eurin, Guillaume; SuperNEMO Collaboration

    2015-04-01

    The main goal of the SuperNEMO collaboration is to try to observe neutrinoless double-β decay. This would prove that the neutrino is a Majorana particle (ν = ν¯). Today the best lower limits on half-lives of this process are set around 1024 - 1026 years as obtained by the NEMO-3 experiment [1] (for the 2β isotope 100Mo) and other experiments. SuperNEMO is the next generation experiment based on the NEMO-3 tracker-calorimeter detection principle. The targeted contamination levels for the source foils are lower than can be measured through γ spectroscopy. A more sensitive detector has been constructed to measure low contaminations in 208Tl (around few μBq/kg) and 214Bi (few dozen μBq/kg) in thin materials: the BiPo detector. BiPo-3 has been fully operational at the Laboratorio Subterráneo de Canfranc (LSC) since January, 2013. The construction, performance and calibration of the BiPo-3 detector will be covered as well as the radiopurity requirements for SuperNEMO.

  20. Analytical evaluation of natural radionuclides and their radioactive equilibrium in raw materials and by-products.

    PubMed

    Ji, Young-Yong; Chung, Kun Ho; Lim, Jong-Myoung; Kim, Chang-Jong; Jang, Mee; Kang, Mun Ja; Park, Sang Tae

    2015-03-01

    An investigation into the distribution of natural radionuclides and radioactive secular equilibrium in raw materials and by-products in a domestic distribution was conducted to deduce the optimum conditions for the analytical evaluation of natural radionuclides for (238)U, (226)Ra, and (232)Th using a gamma-ray spectrometer and inductively coupled plasma mass spectrometer (ICP-MS). The range of the specific activities of natural radionuclides was first evaluated by analyzing (228)Ac and (214)Bi, which are (232)Th and (226)Ra indicators, respectively, in about 100 samples of raw materials and by-products through a gamma-ray spectrometer. From further experiments using several samples selected based on the results of the distribution of natural radionuclides, the validation of their analytical evaluations for the indirect measurements using a gamma-ray spectrometer and direct measurements using ICP-MS was assured by comparing their results. Chemically processed products from the raw materials, such as Zr sand and ceramic balls, were generally shown for the type of bead and particularly analyzed showing a definite disequilibrium with above a 50% difference between (238)U and (226)Ra in the uranium series and (232)Th and (228)Ra in the thorium series. PMID:25527894

  1. Prototype of a primary calibration system for measurement of radon activity concentration.

    PubMed

    Mostafa, M Y A; Vasyanovich, M; Zhukovsky, M

    2016-01-01

    To calibrate measurement devices for monitoring the activity concentration of (222)Rn in air, a prototype of a calibration facility is tested using a solid (226)Ra source and a high-purity germanium (HPGe) detector. An emanation box was mounted on the detector for online gamma measurements. Inside this box, a 32.8 kBq ±3% (226)Ra standard source was placed. An AlphaGUARD control radon monitor was connected to the emanation box with a pumping air system in an open flow mode as a reference monitor. The emanation coefficient of the source was controlled online by comparing the gamma activity of (214)Bi (Eγ=609.3 keV), progeny of (226)Ra, to that of the calibration source. A standard (137)Cs source, installed within the emanation box, was used as a reference for gamma spectroscopy using the HPGe detector, with a total systematic error of 4% and a random error less than 2%. The ratio between gamma measurements and AlphaGUARD was 0.94±0.4; which is within the 9% uncertainties of AlphaGUARD calibration. PMID:26490512

  2. Multiple-scattering effects in nucleus-nucleus reactions with Glauber theory

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shinya; Ebata, Shuichiro; Horiuchi, Wataru; Kimura, Masaaki

    2014-09-01

    A study of new unstable nuclei has become possible in new radioactive beam facilities. In order to understand the relationship between reaction observables and nuclear structure, we need reaction theory which exactly reflects the nuclear structure. The Glauber theory is a powerful tool of analyzing high energy nuclear reactions. The theory describes the multiple scattering processes, whereas the optical limit approximation (OLA), which is widely used, ignores those processes. Those effects are expected to play an important role in the nuclear collision involving unstable nuclei (see for example Phys. Rev. C 54, 1843 (1996)). Here we apply the Glauber theory to nucleus-nucleus reactions. The wave functions are generated by the Skyrme-Hartree-Fock method and are expressed in a Slater determinant that allows us to evaluate the complete Glauber amplitude easily. We calculate total reaction cross sections, elastic cross sections and differential elastic cross sections for 16~24O, 40~70Ca, 56,58Ni, 100~140Sn, 190~214Pb on proton, 4He, 12C targets and compare with experimental data. The Glauber theory gives much better description than the OLA, especially at larger scattering angles.

  3. Applications of environmental 14C measured by AMS as a carbon tracer

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshio; Nakai, Nobuyuki; Ohishi, Shoji

    1987-11-01

    AMS techniques have been applied to measure 14C concentrations, or Δ 14C values, of annual tree rings (1945-1983) of a Kiso hinoki tree grown in Gifu prefecture, and of acid-insoluble carbonaceous compounds extracted from cored sediments (surface to 30 cm deep) of Lake Biwa in Shiga prefecture. An increase in Δ 14C values was found for both tree rings and cored sediments, resulting from 14C artificially produced by nuclear weapon tests. Activities of 210Pb and 214Pb were measured to estimate the sedimentation rate of the Lake Biwa sediments and to provide a temporal control. A primitive model of carbon exchange between the troposphere, surface ocean water, and the biosphere was applied to the annual changes in Δ 14C of the hinoki tree rings and also of coral rings from Florida, USA. The times required to transfer bomb-carbon from the troposphere to surface sea water and to the biosphere were estimated to be about 11 and 23 years, respectively.

  4. Activity concentrations and mean annual effective dose of foodstuffs on the island of Tenerife, Spain.

    PubMed

    Hernández, F; Hernández-Armas, J; Catalán, A; Fernández-Aldecoa, J C; Landeras, M I

    2004-01-01

    A total of 26 different food types and 12 elaborated diets were analysed by low-level gamma spectrometry to measure their content of 238U(234Th), 228Ra(228Ac), 226Ra(214Pb), 210Pb, 137Cs and 40K. The concentrations of these radionuclides measured in some imported foodstuffs were compared with those measured in some locally produced ones. Moreover, the concentrations found in the analysed foodstuffs and composite diets were compared with the data available in literature from other locations, such as Egypt, Brazil, Poland and Hong Kong. 40K contributed highest to the daily dose produced by the intake of comestibles. The largest 40K concentrations were measured in the chickpeas and beans with 380 +/- 30 and 380 +/- 20 Bq kg(-1) fresh weights, respectively. The artificial radionuclide 137Cs was measured only above detection limits in the potatoes and sweet potatoes. A mean annual effective dose of 362 microSv with a standard deviation of 110 microSv was calculated from the composite diets.

  5. Retrospective assessment of indoor radon exposure by measurements of embedded 210Po activity in glass objects

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Gusain, G. S.; Prasad, Ganesh

    In most of the epidemiological studies contemporary radon measurements have been used as surrogates for radon concentrations in past decades even though changes in radon levels and residence may have occurred. Short-lived radon progeny may deposit on available surfaces in dwellings thus giving rise over time to a build up of long-lived progeny. Airborne radon decay products can be deposited and implanted through alpha recoil into the glass surfaces. On glass surface, activities of 210Po may arise as a result of the decay of recoil implanted activity following the alpha decay of surface deposited 218Po or 214Po. Measurement of 210Po implanted on a household glass is a method that can be employed to retrospectively determine the historic level of radon in dwellings. This method is based on the assumption that levels of recoil implanted 210Po in the glass provide a measure of time integrated radon concentration in the environment in which the glass has been located. The surface deposited activity of the radon progenies, which then become implanted in the glass by alpha recoil, is believed to reflect past exposure to airborne activity. Such retrospective measurements on glass are valuable in estimating the human dose derived from radon during the time of exposure. In this paper an account is given of the principles and some field applications of a retrospective technique, using the alpha track detectors, CR-39 and LR-115, to measure 210Po implanted in glass surfaces (surface traps). By using this CR-LR difference technique, the cumulative radon exposure in a dwelling in past decades may be estimated. This method provides reliable radon exposure data as a support to epidemiological studies concerning the health effects of radon exposure in the living environment.

  6. Radon Update: Facts concerning environmental radon: Levels, mitigation strategies, dosimetry, effects and guidelines

    SciTech Connect

    Brill, A.B.; Becker, D.V.; Donahoe, K.

    1994-02-01

    The risk from environmental radon levels is not higher now than in the past, when residential exposures were not considered to be a significant health hazard. The majority of the radon dose is not from radon itself, but from short-lived alpha-emitting radon daughters, most notably {sup 218}Po (T{sub {1/2}}3min) and {sup 214}Po(T{sub {1/2}}19.7 min). Radon gas can penetrate homes from many sources and in various fashions. Measuring radon in homes is simple and relatively inexpensive and may be accomplished in a variety of ways. Although it is not possible to radon-proof a house, it is possible to reduce the level. In high radon areas, if the average level is higher than 4-8 pCi/liter (NCRP recommended level is 8 pCi/liter; EPA recommmended level is 4 PCi/liter), appropriate action is advised. The shape of the dose response curves for miners exposed to alpha-emitting particles in the workplace is consistent with current biologic knowledge. It is linear in the low dose range and saturates in the high dose range. No detectable increase in lung cancer frequency is seen in the lowest exposed miners (those with exposures <120 WLM, the relevant dose interval for most homes). Evidence for a health effect from radon exposure is based on data from animal studies and epidemiologic studies of mines. Extensive radiobiologic data predict a linear dose-response curve in the low dose region due to poor biological repair mechanisms for the high density of ionizing events that alpha particles create. However, no compelling evidence for increased cancer risks has yet been demonstrated from {open_quotes}acceptable{close_quotes}levels (<4-8 pCi/liter). 58 refs., 11 figs., 12 tabs.

  7. Alpha particle spectra and microdosimetry of radon daughters

    SciTech Connect

    Caswell, R.S.; Coyne, J.J.

    1992-12-31

    We are interested in understanding the physics of the process by which radon-daughter alpha particles irradiate cells, leading to the induction of cancer. We are focusing initially on two aspects: the alpha spectra incident upon cells, which are needed for input to biophysical models of cancer induction; and microdosimetric spectra and parameters which give information on radiation quality. Adapting an analytical method previously developed for neutron radiation, we have calculated the alpha-particle slowing-down spectra (the spectra incident upon cells) and, subsequently, the microdosimetric spectra and parameters for various cell nuclei or site diameters. Results will be presented from three modes of program operation. MODE 1 is for the thin, plane source of radon-daughter activity adjacent to the epithelium. MODE 2 is for the thick source layer (the mucous-serous layer) adjacent to the epithelium. MODE4 is for cylindrical airways of various radii, lined by the mucous-serous layer. MODE 1 is most useful for understanding the problem; MODE 4 is most anatomically relevant. MODE 3 is not discussed in this paper. Alpha-particle spectra and microdosimetric spectra and parameters are studied as a function of cell depth, {sup 218}Po/{sup 214}Po ratio, airway radius, and cell nucleus or the site size. Also available from the calculation is mean dose as a function of depth below the airway surface. The results described here are available on personal computer diskettes. We are beginning to compare our studies with the calculations of other workers and plan to extend the calculations to the nanometer target level.

  8. Radioisotope Deposition on Interior Building Surfaces: Air Flow and Surface Roughness Influences

    SciTech Connect

    Leonard, Bobby E

    2005-12-15

    Interior surface deposition effects of vaporized radioactive aerosols are important in understanding their behavior in accident conditions such as the Japanese nuclear laboratory accident in 1999 and the Chernobyl nuclear power plant accident in 1986, where entire communities had to be abandoned because of surface contamination, and the hopefully unlikelihood of a terrorist dirty nuclear bomb attack. Airborne radon progeny offers an opportunity to study radioisotope surface deposition. A significant annual lung cancer rate is also attributed to airborne radon progeny in the interior domestic environment. Surface deposition rates influence the airborne progeny levels. Here, we report extensive {sup 218}Po deposition rates over typical air change rates (ACHs) from 0.02 to 1.0 h{sup -1} for interior furnishings surfaces in a 0.283-m{sup 3} test chamber to supplement earlier reported deposition rates for interior wall, ceiling, and floor surfaces. In analyzing the deposition results from the different materials, it is found that they correlate in terms of roughness with relative static friction and aerodynamic shear stress. Extrapolation to perfectly smooth surfaces provides a good estimate of the Fick's law value. Contrary to prior radon analysis at higher air flow, where the Crump and Seinfeld (CS) turbulent deposition models seemed to fit, at low ACH below 0.5 h{sup -1} the deposition data found excellent agreement with a new Brownian diffusive deposition model for laminar flow. A composite model using the Brownian diffusive laminar flow and the CS turbulent flow models provides an excellent fit to all data. These results provide insight into contamination issues relative to other airborne radioisotopes, with the relative effects being dependent on the airborne contaminant particle sizes and their respective diffusion coefficients as seen in the two deposition models.

  9. Radon concentrations in soil gas, considering radioactive equilibrium conditions with application to estimating fault-zone geometry

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi

    2009-02-01

    A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.

  10. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. PMID:26851823

  11. Natural radioactivity measurements in building materials in Southern Lebanon.

    PubMed

    Kobeissi, M A; El Samad, O; Zahraman, K; Milky, S; Bahsoun, F; Abumurad, K M

    2008-08-01

    Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.

  12. Natural radioactivity contents in tobacco and radiation dose induced from smoking.

    PubMed

    Shousha, Hany A; Ahmad, Fawzia

    2012-06-01

    One of the causative factors for cancer-inducing mechanisms in humans is radioactive elements present in tobacco leaves used in the manufacture of cigarettes. Smoking of tobacco and its products increases the internal intake and radiation dose due to naturally occurring radionuclides that are considered to be one of the most significant causes of lung cancer. In this work, different commercial types of cigarettes, cigar and moassel were collected from market. Naturally occurring radionuclides (226)Ra and (214)Bi ((238)U series), (228)Ac and (228)Ra ((232)Th series), (40)K  and man-made (137)Cs were measured in tobacco using gamma-ray spectrometer. Results show that the average concentrations of (238)U, (232)Th and (40)K were 4.564, 3.940 and 1289.53 Bq kg(-1), respectively. This reflects their origin from the soil by root uptake and fertilisers used in the cultivation of tobacco plants. Concentration of (137)Cs was 0.348 Bq kg(-1) due to root uptake or deposition onto the leaf foliage. For smokers, the annual effective dose due to inhalation of (238)U varied from 49.35 to 139.40 μSv(-1) (average 104.27 μSv y(-1)), while of (232)Th from 23.86 to 111.06 μSv y(-1) (average 65.52 μSv y(-1)). The annual effective dose resulting from (137)Cs was varied from 10.96 to 24.01 nSv y(-1) (average 19.41 nSv y(-1)).

  13. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon.

    PubMed

    Kobeissi, M A; El-Samad, O; Rachidi, I

    2013-03-01

    Measurements of specific activities (Bq kg(-1)) of gamma-emissions from radioactive nuclides, (238)U, (226)Ra, (214)Bi, (232)Th, (212)Pb and (40)K, contained in 28 granite types, used as building materials in indoors in Lebanon, were performed on the powdered granites. The concentration of the nuclides, (226)Ra, (232)Th and (40)K, in the granites varied from below detection level (BDL) to 494 Bq kg(-1), BDL to 157.2 Bq kg(-1) and BDL to 1776 Bq kg(-1), respectively. (226)Ra concentration equivalents, C(Raeq), were obtained and ranged between 37 and 591 Bq kg(-1), with certain values above the allowed limit of 370 Bq kg(-1). Calculated annual gamma-absorbed dose in air, D(aR), varied from 17.7 to 274.5 (nGy h(-1)). Annual effective dose, E (mSv y(-1)), of gamma radiations related to the studied granites and absorbed by the inhabitants was evaluated. E (mSv y(-1)) ranged from 0.09 to 1.35 mSv y(-1). Some granite types produced E above the allowed limit of 1 mSv y(-1) set by ICRP. Values of (222)Rn mass exhalation rate, E(M) (mBq kg(-1)h(-1))(,) in granite powder were obtained using the CR-39 detector technique. Diffusion factors, f, in 23 granite types were calculated with f ranging between (0.1 ± 0.02)×10(-2) and (6.6 ± 1.01)×10(-2).

  14. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    PubMed

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. PMID:26992514

  15. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    PubMed

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013.

  16. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.

    PubMed

    Abril, José-María; García-Tenorio, Rafael; Enamorado, Santiago M; Hurtado, M Dolores; Andreu, Luis; Delgado, Antonio

    2008-09-15

    Phosphogypsum (PG), a by-product of the phosphate fertiliser industries, has been applied as soil amendment to reduce Na saturation in soils, as in the reclaimed marsh area from SW Spain, where available PG has a typical fingerprint of 710+/-40 Bq kg(-1) of (226)Ra, 165+/-15 Bq kg(-1) of (238)U and 2.8+/-0.4 mg kg(-1) of Cd. This work was focussed on the cumulative effects of PG amendments on the enrichment of these pollutants in cultivated soils and plants (Lycopersicum esculentum Mill L.) from the area studied, where PG has been applied since 1978 at recommended rates of 20-25 Mg ha(-1) every 2-3 years. A field experiment was conducted over three years to compare activity concentrations of (226)Ra ((214)Pb) and (238)U ((234)Th) in non-reclaimed soils, reclaimed soils with no additional PG application, and reclaimed soils with two additional PG applications. A non-significant effect of two PG amendments (in three years) was observed when compared with non-amended reclaimed plots. Nevertheless, a significant (p<0.05) enrichment of (226)Ra was observed in the surface horizon (0-30 cm) of reclaimed plots relative to deeper horizons and also when compared with the surface horizon of non-reclaimed soil (p<0.05), thereby revealing the cumulative effect of three decades of PG applications. Furthermore, the effect of a continuous application of PG was studied by analysing soils and tomato fruits from six commercial farms with different cumulative rates of PG applied. Cadmium concentrations in tomatoes, which were one order of magnitude higher than those found in tomatoes from other areas in South Spain, were positively correlated (r = 0.917) with (226)Ra-concentration in soils, which can be considered an accurate index of the cumulative PG rate of each farm.

  17. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.

    PubMed

    Abril, José-María; García-Tenorio, Rafael; Enamorado, Santiago M; Hurtado, M Dolores; Andreu, Luis; Delgado, Antonio

    2008-09-15

    Phosphogypsum (PG), a by-product of the phosphate fertiliser industries, has been applied as soil amendment to reduce Na saturation in soils, as in the reclaimed marsh area from SW Spain, where available PG has a typical fingerprint of 710+/-40 Bq kg(-1) of (226)Ra, 165+/-15 Bq kg(-1) of (238)U and 2.8+/-0.4 mg kg(-1) of Cd. This work was focussed on the cumulative effects of PG amendments on the enrichment of these pollutants in cultivated soils and plants (Lycopersicum esculentum Mill L.) from the area studied, where PG has been applied since 1978 at recommended rates of 20-25 Mg ha(-1) every 2-3 years. A field experiment was conducted over three years to compare activity concentrations of (226)Ra ((214)Pb) and (238)U ((234)Th) in non-reclaimed soils, reclaimed soils with no additional PG application, and reclaimed soils with two additional PG applications. A non-significant effect of two PG amendments (in three years) was observed when compared with non-amended reclaimed plots. Nevertheless, a significant (p<0.05) enrichment of (226)Ra was observed in the surface horizon (0-30 cm) of reclaimed plots relative to deeper horizons and also when compared with the surface horizon of non-reclaimed soil (p<0.05), thereby revealing the cumulative effect of three decades of PG applications. Furthermore, the effect of a continuous application of PG was studied by analysing soils and tomato fruits from six commercial farms with different cumulative rates of PG applied. Cadmium concentrations in tomatoes, which were one order of magnitude higher than those found in tomatoes from other areas in South Spain, were positively correlated (r = 0.917) with (226)Ra-concentration in soils, which can be considered an accurate index of the cumulative PG rate of each farm. PMID:18602676

  18. Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and northern Alaska

    SciTech Connect

    Efurd, D.W.; Miller, G.G.; Rokop, D.J.

    1997-07-01

    This study was performed to establish a quality controlled data set about the levels of radio nuclide activity in the environment and in selected biota in the U.S. Arctic. Sediment and biota samples were collected by the National Oceanic and Atmospheric Administration (NOAA), the National Biological Service, and the North Slope Borough`s Department of Wildlife Management to determine the impact of anthropogenic radionuclides in the Arctic. The results summarized in this report are derived from samples collected in northwest Alaska with emphasis on species harvested for subsistence in Barrow, Alaska. Samples were analyzed for the anthropogenic radionuclides {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu and {sup 241}Am. The naturally occurring radionuclides {sup 40}K, {sup 212}Pb and {sup 214}Pb were also measured. One goal of this study was to determine the amounts of anthropogenic radionuclides present in the Beaufort Sea. Sediment samples were isotopically fingerprinted to determine the sources of radio nuclide activities. Biota samples of subsistence and ecological value were analyzed to search for evidence of bio-accumulation of radionuclides and to determine the radiation exposures associated with subsistence living in northern Alaska. The anthropogenic radio nuclide content of sediments collected in the Beaufort Sea was predominantly the result of the deposition of global fallout. No other sources of anthropogenic radionuclides could be conclusively identified in the sediments. The anthropogenic radio nuclide concentrations in fish, birds and mammals were very low. Assuming that ingestion of food is an important pathway leading to human contact with radioactive contaminants and given the dietary patterns in coastal Arctic communities, it can be surmised that marine food chains are presently not significantly affected.

  19. Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece

    SciTech Connect

    Ioannidou, A.; Papastefanou, C.

    2010-01-21

    This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

  20. Radon Dose Determination for Cave Guides in Czech Republic

    SciTech Connect

    Thinova, Lenka; Rovenska, Katerina

    2008-08-07

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin

  1. Radon Dose Determination for Cave Guides in Czech Republic

    NASA Astrophysics Data System (ADS)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-01

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of

  2. Dissolved gas 222Rn, 220Rn and 220Rn/222Rn in the Ground Water System of Las Cañadas, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Castro, L.; Salazar, J.; Hernandez, P.; Perez, N.; Lopez, D.

    2001-12-01

    Tenerife (2,034 Km2) could be considered as an unique natural-scale laboratory for hydrological studies at oceanic volcanic islands. Thousands of well and galleries have been drilled (1,650 Km) reaching the island volcanic aquifer at different depth and elevations. Cañadas' aquifer is located in the central part of Tenerife and is affected by Teide volcanic-hydrothermal system. The purpose of this study is to evaluate the concentration levels of dissolved gas 222Rn and 220Rn as well as their spatial distribution at Cañadas' aquifer. Dissolved gas 222Rn and 220Rn were measured at 13 observation sites "galleries" on July and August, 2001. Concentration of these dissolved gases were performed by means of a gas-water exchange membrane and an electrostatic-type alfa detector SARAD RTM2010-2 during 24 hours, allowing to measure alfa particles from its radioactive progeny, 214Po, 216Po and 218Po in hourly basis. Dissolved gas 222Rn concentrations ranged from 0.12 to 67.3 BqL-1, and 220Rn content ranged from 0.06 to 24.5 BqL-1. Median values for dissolved gas 222Rn and 220Rn are 1.7 and 0.64 BqL-1, respectively. Most of the ground waters showed dissolved gas 222Rn concentrations lower than 10 BqL-1, and relatively high levels up to 67.3 y 24.7 BqL-1 where observed at two galleries on the eastern side of Cañadas' aquifer. 220Rn/222Rn ratio ranged from 0.1 to 0.6. A wide range of 222Rn and 220Rn/222Rn ratios were just detected at the recharge zone of Cañadas' aquifer and a more limited range was observed at lower elevations. Teide volcanic-hydrothermal system might be playing a role on this spatial distribution. These results could be useful for hydrological modelling of Cañadas' aquifer and the geochemical monitoring for the seismic-volcanic surveillance of Tenerife.

  3. Modeling Background Attenuation by Sample Matrix in Gamma Spectrometric Analyses

    SciTech Connect

    Bastos, Rodrigo O.; Appoloni, Carlos R.

    2008-08-07

    In laboratory gamma spectrometric analyses, the procedures for estimating background usually overestimate it. If an empty container similar to that used to hold samples is measured, it does not consider the background attenuation by sample matrix. If a 'blank' sample is measured, the hypothesis that this sample will be free of radionuclides is generally not true. The activity of this 'blank' sample is frequently sufficient to mask or to overwhelm the effect of attenuation so that the background remains overestimated. In order to overcome this problem, a model was developed to obtain the attenuated background from the spectrum acquired with the empty container. Beyond reasonable hypotheses, the model presumes the knowledge of the linear attenuation coefficient of the samples and its dependence on photon energy and samples densities. An evaluation of the effects of this model on the Lowest Limit of Detection (LLD) is presented for geological samples placed in cylindrical containers that completely cover the top of an HPGe detector that has a 66% relative efficiency. The results are presented for energies in the range of 63 to 2614keV, for sample densities varying from 1.5 to 2.5 g{center_dot}cm{sup -3}, and for the height of the material on the detector of 2 cm and 5 cm. For a sample density of 2.0 g{center_dot}cm{sup -3} and with a 2cm height, the method allowed for a lowering of 3.4% of the LLD for the energy of 1460keV, from {sup 40}K, 3.9% for the energy of 911keV from {sup 228}Ac, 4.5% for the energy of 609keV from {sup 214}Bi, and8.3% for the energy of 92keV from {sup 234}Th. For a sample density of 1.75 g{center_dot}cm{sup -3} and a 5cm height, the method indicates a lowering of 6.5%, 7.4%, 8.3% and 12.9% of the LLD for the same respective energies.

  4. 238U, and its decay products, in grasses from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg‑1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  5. 238U, and its decay products, in grasses from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  6. The exogenous particles of heavy metals and/or radionuclide interaction with cellular organelles in Phragmites australis (Cav.) Steudel leaf

    NASA Astrophysics Data System (ADS)

    Corneanu, Gabriel; Corneanu, Mihaela; Craciun, Constantin; Tripon, Septimiu

    2013-04-01

    Phragmites australis (Cav.) Steudel (reed), is a phytoremediatory species, meet in the swampy areas, being a hypperaccumulator for chromium (Calheiros et al., 2008; Ait Ali et al., 2004, a/o). In nature there are cytotypes with a different somatic chromosome number (6x - 16x), with a good adaptation at various environmental conditions. Weis and Weis (2004) consider that reed is an invasive species, sequester more metals than some native species and recommended to use it, in wetlands, for phytoremediation and marsh restoration. Researches performed by Hakmaoui et al. (2007) regarding the ultrastructural effect of cadmium and cooper on reed, evidenced the presence of the ferritin aggregates in the chloroplast stroma, as well as some reversible modifications in chloroplast. In this paper, the ultrastructural features of the leaf in three Phragmites australis genotypes, from the Middle Jiu river valley (Gorj county, Romania), were analyzed: Control (Ţânţăreni village); a population from neighbourhood of TEPP-Turceni; and other population developed at the basis a sterile waste dump of 40 years-old (near Cocoreni village). The heavy metal and radionuclide content of the soil was different in the three sites, with the lowest values in Control and the highest values for many heavy metals (Zn, Mn, Ni, Co, Cd) and radionuclide's (U-238, Ra-226, Pb-210, Bi-214, Pb-214, U-235, Ac-228, Pb-212, Cs-137) on the sterile waste dump. The analysis of the ultrastructural features of the leaf in mature plants revealed some differences between the three Phragmites australis genotypes. The ultrastructural investigations underlined the adaptation of this species against the stress factors (heavy metals and radionuclides). The exogenous particles penetrated the foliar tissue through the epidermis and stomata, being spread in the cells, at the plasmodesmata level, through endoplasmic reticulum, and through the vascular system. The exogenous particles were present on the endoplasmic

  7. Constraints for Using Radon-in-Water Concentrations as an Indicator for Groundwater Discharge into Surface Water Bodies

    NASA Astrophysics Data System (ADS)

    Petermann, Eric; Schubert, Michael

    2015-04-01

    The radon (222-Rn) activity concentration of surface water is a favourable indicator for the detection of groundwater discharge into surface water bodies since radon is highly enriched in groundwater relative to surface waters. Hence, positive radon-in-water anomalies are interpreted as groundwater discharge locations. For this approach, usually, radon time-series are recorded along transects in near-surface waters. Time-series of radon-in-water concentration are commonly measured by permanent radon extraction from a water pump stream and continuous monitoring of the resulting radon-in-air concentration by means of a suitable radon detector. Radon-in-water concentrations are derived from the recorded radon-in-air signal by making allowances for water/air partitioning of radon. However, several constraints arise for this approach since undesirable factors are influencing the radon-in-water concentration. Consequently, corrections are required to remove the effect of these undesirable factors from the radon signal. First, an instrument inherent response delay between actual changes in the radon-in-water concentration and the related radon-in-air signal was observed during laboratory experiments. The response delay is due to (i) the water/air transfer kinetics of radon and (ii) the delayed decay equilibrium between radon and its progeny polonium (218-Po), which is actually being measured by most radon-in-air monitors. We developed a physical model, which considers all parameters that are responsible for the response delay. This model allows the reconstruction of radon-in-water time-series based on radon-in-air records. Second, on a time-scale of several hours the tidal stage is known as a major driver for groundwater discharge fluctuations due to varying hydraulic gradients between groundwater and surface water during a tidal cycle. Consequently, radon-in-water time-series that are detected on tidal coasts are not comparable among each other without normalization

  8. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi

    2014-04-01

    The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with

  9. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides

  10. Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest

    SciTech Connect

    Dragusin, Mitica

    2008-01-15

    The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP